
2 Chapter 1

how c works

C is a language for small , fast programs
The C language is designed to create small, fast programs. It’s

lower-level than most other languages; that means it creates code

that’s a lot closer to what machines really understand.

Source
You start off by

creating a source

file. The source file

contains human-

readable C code.

1

#include <stdio.h>

int main()
{
 puts("C Rocks!");
 return 0;
}

Compile
You run your source

code through a compiler.

The compiler checks

for errors, and once it’s

happy, it compiles the

source code.

2

> gcc rocks.c -o rocks
>
File Edit Window Help Compile

Output
The compiler creates a new

file called an executable. This

file contains machine code,

a stream of 1s and 0s that

the computer understands.

And that’s the program you

can run.

3

The way C works
Computers really only understand one language: machine code, a

binary stream of 1s and 0s. You convert your C code into machine

code with the aid of a compiler.

C is used where speed, space, and
portability are important. Most
operating systems are written in C.
Most other computer languages are
also written in C. And most game
software is written in C.

rocks.c rocks

In Windows, this will

be called rocks.exe

instead of rocks.

There are three C standards that you may
stumble across. ANSI C is from the late 1980s
and is used for the oldest code. A lot of things
were ixed up in the C99 standard from 1999. And
some cool new language features were added in
the current standard, C11, released in 2011. The
differences between the different versions aren’t
huge, and we’ll point them out along the way.

you are here 4 3

getting started with c

Try to guess what each of these code fragments does.

Describe what you think the code does.

int card_count = 11;
if (card_count > 10)
 puts("The deck is hot. Increase bet.");

int c = 10;
while (c > 0) {
 puts("I must not write code in class");
 c = c - 1;
}

/* Assume name shorter than 20 chars. */
char ex[20];
puts("Enter boyfriend's name: ");
scanf("%19s", ex);
printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';
switch(suit) {
case 'C':
 puts("Clubs");
 break;
case 'D':
 puts("Diamonds");
 break;
case 'H':
 puts("Hearts");
 break;
default:
 puts("Spades");
}

4 Chapter 1

fragments demystified

Don’t worry if you don’t understand all of this yet. Everything is

explained in greater detail later in the book.

int card_count = 11;
if (card_count > 10)
 puts("The deck is hot. Increase bet.");

int c = 10;
while (c > 0) {
 puts("I must not write code in class");
 c = c - 1;
}

/* Assume name shorter than 20 chars. */
char ex[20];
puts("Enter boyfriend's name: ");
scanf("%19s", ex);
printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';
switch(suit) {
case 'C':
 puts("Clubs");
 break;
case 'D':
 puts("Diamonds");
 break;
case 'H':
 puts("Hearts");
 break;
default:
 puts("Spades");
}

Create an integer variable and set it to 11.
Is the count more than 10?
If so, display a message on the command prompt.

An integer is a whole number.

This displays a string on the command prompt or terminal.

Create an integer variable and set it to 10.
As long as the value is positive…
…display a message…
…and decrease the count.
This is the end of the code that should be repeated.

The braces define a
block statement.

This is a comment.
Create an array of 20 characters.
Display a message on the screen.
Store what the user enters into the array.
Display a message including the text entered.

This will insert this string of characters here in place of the %s.

This means “store everything the
user types into the ex array.”

Create a character variable; store the letter H.
Look at the value of the variable.
Is it ‘C’?
If so, display the word “Clubs.”
Then skip past the other checks.
Is it ‘D’?
If so, display the word “Diamonds.”
Then skip past the other checks.
Is it ‘H’?
If so, display the word “Hearts.”
Then skip past the other checks.
Otherwise…
Display the word “Spades.”
This is the end of the tests.

A switch statement checks a single variable for different values.

you are here 4 5

getting started with c

But what does a complete C program look like?
To create a full program, you need to enter your code into a

C source file. C source files can be created by any text editor,

and their filenames usually end with .c.

Let’s have a look at a typical C source file.

This is just a convention, but you should follow it.

/*
 * Program to calculate the number of cards in the shoe.
 * This code is released under the Vegas Public License.
 * (c)2014, The College Blackjack Team.
 */
#include <stdio.h>

int main()
{
 int decks;
 puts("Enter a number of decks");
 scanf("%i", &decks);
 if (decks < 1) {
 puts("That is not a valid number of decks");
 return 1;
 }
 printf("There are %i cards\n", (decks * 52));
 return 0;
}

So let’s look at the main() function in a little more detail.

C programs normally begin with a comment.
The comment describes the purpose of the code in the file, and might

include some license or copyright information. There’s no absolute need

to include a comment here—or anywhere else in the file—but it’s good

practice and what most C programmers will expect to find.

1

Next comes the
include section.
C is a very, very small

language and it can do

almost nothing without

the use of external

libraries. You will need

to tell the compiler what

external code to use by

including header files

for the relevant libraries.

The header you will see

more than any other

is stdio.h. The stdio

library contains code

that allows you to read

and write data from and

to the terminal.

2

The last thing you find in a source file are the functions.
All C code runs inside functions. The most important function you will

find in any C program is called the main() function. The main()

function is the starting point for all of the code in your program.

3

The comment starts with /*.

The comment ends with */.

These *s are optional. They’re
only there to make it look pretty.

6 Chapter 1

main() function

The main() Function Up Close
The computer will start running your program from the main()

function. The name is important: if you don’t have a function called main(),

your program won’t be able to start.

The main() function has a return type of int. So what does this mean?

Well, when the computer runs your program, it will need to have some way of

deciding if the program ran successfully or not. It does this by checking the return

value of the main() function. If you tell your main() function to return 0, this

means that the program was successful. If you tell it to return any other value,

this means that there was a problem.

int main()
{
 int decks;
 puts("Enter a number of decks");
 scanf("%i", &decks);
 if (decks < 1) {
 puts("That is not a valid number of decks");
 return 1;
 }
 printf("There are %i cards\n", (decks * 52));
 return 0;
}

The function name comes after the return type. That’s followed by the function

parameters if there are any. Finally, we have the function body. The function body

must be surrounded by braces.

Geek Bits
The printf() function is used to display formatted output. It

replaces format characters with the values of variables, like this:

printf("%s says the count is %i", "Ben", 21);

You can include as many parameters as you like when you call the printf()

function, but make sure you have a matching % format character for each one.

If you want to chec
k the

exit status
of a progra

m,

type:
echo %Error

Level%

in Windows, or:

echo $?

in Linux or on t
he Mac.

First parameterThe first parameter will be inserted here as a string.

Second parameterThe second parameter will be inserted here as an integer.

This is the return type. It

should always be int for the

main() function.

Because the function is called “main,” the program will start here.

If we had any parameters, they’d be mentioned here.

The body of the
function is always
surrounded by braces.

you are here 4 7

getting started with c

/*
 * Program to evaluate face values.
 * Released under the Vegas Public License.
 * (c)2014 The College Blackjack Team.
 */

 main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {
 val = 10;

 } (card_name[0] ==) {

 } else {
 val = atoi(card_name);
 }
 printf("The card value is: %i\n", val);

 0;
}

Code Magnets
The College Blackjack Team was working on some code on the dorm fridge, but

someone mixed up the magnets! Can you reassemble the code from the magnets?

else

'J' ifint

val = 11

#include 'A' <stdio.h>

return

val = 10

#include

<stdlib.h> ;

; This converts the
text into a number.

Enter two characters
for the card name.

8 Chapter 1

magnets unmixed

/*
 * Program to evaluate face values.
 * Released under the Vegas Public License.
 * (c)2014 The College Blackjack Team.
 */

 main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {
 val = 10;

 } (card_name[0] ==) {

 } else {
 val = atoi(card_name);
 }
 printf("The card value is: %i\n", val);

 0;
}

Code Magnets Solution
The College Blackjack Team was working on some code on the dorm fridge, but someone

mixed up the magnets! You were to reassemble the code from the magnets.

else

'J'

if

int

val = 11

#include

'A'

<stdio.h>

return

val = 10

#include <stdlib.h>

;

;

Q: What does
card_name[0] mean?

A: It’s the first character that
the user typed. So if he types 10,
card_name[0] would be 1.

Q: Do you always write
comments using /* and */?

A: If your compiler supports the
C99 standard, then you can begin
a comment with //. The compiler
treats the rest of that line as a
comment.

Q: How do I know which
standard my compiler supports?

A: Check the documentation for
your compiler. gcc supports all three
standards: ANSI C, C99, and C11.

you are here 4 9

getting started with c

But how do you run the program?
C is a compiled language. That means the computer will not interpret the code

directly. Instead, you will need to convert—or compile—the human-readable

source code into machine-readable machine code.

To compile the code, you need a program called a compiler. One of the

most popular C compilers is the GNU Compiler Collection or gcc. gcc is

available on a lot of operating systems, and it can compile lots of languages

other than C. Best of all, it’s completely free.

Here’s how you can compile and run the program using gcc.

Save the code from the Code Magnets exercise on the
opposite page in a file called cards.c.

1

Compile with gcc cards.c -o cards at a command
prompt or terminal.

2

Run by typing cards on Windows, or ./cards on Mac,
Linux, and Cygwin.

3

Compile cards.c
to a file called cards.

Geek Bits

You can compile and run your code on most machines using this trick:

gcc zork.c -o zork && ./zork

You should put “zork”
instead of “./zork”
on a Windows machine.

This command will run the new program only if it compiles

successfully. If there’s a problem with the compile, it will skip running

the program and simply display the errors on the screen.

Do this!

You should create the
cards.c file and compile
it now. We’ll be working
on it more and more as
the chapter progresses.

cards.c

> gcc cards.c -o cards
>
File Edit Window Help Compile

> ./cards
Enter the card_name:
File Edit Window Help Compile

C source files usually end .c.

cards.c cards

&& here means “and then if it’s successful, do this…”

This will be cards.exe
if you’re on Windows.

10 Chapter 1

test drive

Test Drive
Let’s see if the program compiles and runs. Open up a command prompt

or terminal on your machine and try it out.

> gcc cards.c -o cards
> ./cards
Enter the card_name:
Q
The card value is: 10
> ./cards
Enter the card_name:
A
The card value is: 11
> ./cards
Enter the card_name:
7
The card value is: 7

File Edit Window Help 21

The program works!
Congratulations! You have compiled and run a C program. The gcc

compiler took the human-readable source code from cards.c and converted

it into computer-readable machine code in the cards program. If you are

using a Mac or Linux machine, the compiler will have created the machine

code in a file called cards. But on Windows, all programs need to have a

.exe extension, so the file will be called cards.exe.

Q: Why do I have to prefix the program with ./ when I run it on Linux and the Mac?

A: On Unix-style operating systems, programs are run only if you specify the directory where
they live or if their directory is listed in the PATH environment variable.

This line compiles the code and creates the cards program.

This line runs the program.
If you’re on Windows, don’t
type the ./

Remember: you can combine

the compile and run steps

together (turn back a
page

to see how).

Running the program again

The user enters the name from a card…

…and the program displays
the corresponding value.

you are here 4 11

getting started with c

Wait, I don’t get it. When
we ask the user what the name

of the card is, we’re using an
array of characters. An array of
characters???? Why? Can’t we use
a string or something???

The C language doesn’t support strings out
of the box.
C is more low-level than most other languages, so instead

of strings, it normally uses something similar: an array of

single characters. If you’ve programmed in other languages,

you’ve probably met an array before. An array is just a list of

things given a single name. So card_name is just a variable

name you use to refer to the list of characters entered at

the command prompt. You defined card_name to be a

two-character array, so you can refer to the first and second

character as char_name[0] and char_name[1]. To see

how this works, let’s take a deeper dive into the computer’s

memory and see how C handles text…

But there are
a number of
C extension
libraries that
do give you
strings.

12 Chapter 1

string theory

Strings Way Up Close
Strings are just character arrays. When C sees a string like this:

s = "Shatner"

it reads it like it was just an array of separate characters:

s = {'S', 'h', 'a', 't', 'n', 'e', 'r'}
This is how you define an array in C.

Each of the characters in the string is just an element in an array, which is

why you can refer to the individual characters in the string by using an index,

like s[0] and s[1].

Don’t fall off the end of the str ing
But what happens when C wants to read the contents of the string? Say

it wants to print it out. Now, in a lot of languages, the computer keeps

pretty close track of the size of an array, but C is more low-level than most

languages and can’t always work out exactly how long an array is. If C is going

to display a string on the screen, it needs to know when it gets to the end of

the character array. And it does this by adding a sentinel character.

The sentinel character is an additional character at the end of the string that

has the value \0. Whenever the computer needs to read the contents of the

string, it goes through the elements of the character array one at a time, until

it reaches \0. That means that when the computer sees this:

\0 is the ASCII character
with value 0.

s = "Shatner"

it actually stores it in memory like this:

That’s why in our code we had to define the card_name variable like this:

The card_name string is only ever going to record one or two characters, but because

strings end in a sentinel character we have to allow for an extra character in the array.

char card_name[3];

'\0' C knows
to stop
when it
sees \0.

S h a ...
s[0] s[2]s[1]

S h a t
s[0] s[3]s[2]s[1]

n e r \0
s[4] s[7]s[6]s[5]

C coders ofter call this
the NULL character.

you are here 4 13

getting started with c

Q: Why are the characters numbered
from 0? Why not 1?

A: The index is an offset: it’s a measure
of how far the character is from the first
character.

Q: Why?

A: The computer will store the
characters in consecutive bytes of memory.
It can use the index to calculate the
location of the character. If it knows that
c[0] is at memory location 1,000,000,
then it can quickly calculate that c[96]
is at 1,000,000 + 96.

Q: Why does it need a sentinel
character? Doesn’t it know how long the
string is?

A: Usually, it doesn’t. C is not very good
at keeping track of how long arrays are,
and a string is just an array.

Q: It doesn’t know how long arrays
are???

A: No. Sometimes the compiler
can work out the length of an array by
analyzing the code, but usually C relies on
you to keep track of your arrays.

Q: Does it matter if I use single
quotes or double quotes?

A: Yes. Single quotes are used for
individual characters, but double quotes
are always used for strings.

Q: So should I define my strings
using quotes (") or as explicit arrays of
characters?

A: Usually you will define strings using
quotes. They are called string literals, and
they are easier to type.

Q: Are there any differences between
string literals and character arrays?

A: Only one: string literals are constant.

Q: What does that mean?

A: It means that you can’t change the
individual characters once they are created.

Q: What will happen if I try?

A: It depends on the compiler, but gcc
will usually display a bus error.

Q: A bus error? What the heck’s a
bus error?

A: C will store string literals in memory
in a different way. A bus error just means
that your program can’t update that piece
of memory.

In C, the equals sign (=) is

used for assignment. But a

double equals sign (==) is

used for testing equality.

teeth = 4;

teeth == 4;

If you want to increase

or decrease a variable,

then you can save space

with the += and -=

assignments.

teeth += 2;

teeth -= 2;

Finally, if you want to

increase or decrease a

variable by 1, use ++

and --.

teeth++;

teeth--;

Not all equals signs are equal.

Set
teeth to
the value
4.

Test if teeth has
the value 4.

Adds 2 to teeth.

Takes away 2 teeth.

Increase by 1.

Decrease by 1.

Painless Operations

14 Chapter 1

do something

Two types of command
So far, every command you’ve seen has fallen into one of the following two

categories.

Do something
Most of the commands in C are statements. Simple statements are actions;

they do things and they tell us things. You’ve met statements that define

variables, read input from the keyboard, or display data to the screen.

split_hand(); This is a simple statement.

These commands form
a block statement
because they are
surrounded by braces.

Do something only if something is true
Control statements such as if check a condition before running the code:

if (value_of_hand <= 16)
 hit();
else
 stand();

This is the condition.

if statements typically need to do more than one thing when a

condition is true, so they are often used with block statements:

if (dealer_card == 6) {
 double_down();
 hit();
}

{
 deal_first_card();
 deal_second_card();
 cards_in_hand = 2;
}

Sometimes you group statements together to create block statements. Block

statements are groups of commands surrounded by braces.

Run this statement if the condition is false.

Run this statement if the condition is true.

BOTH of these commands will
run if the condition is true.
The commands are grouped
inside a single block statement.

if (x == 2) {
 call_whitehouse();
 sell_oil();
 x = 0;
}

most C programmers write:

if (x == 2)
 puts("Do something");

Do you need braces?
Block statements allow you to

treat a whole set of statements as if

they were a single statement. In C,

the if condition works like this:

if (countdown == 0)
 do_this_thing();

The if condition runs a single

statement. So what if you

want to run several statements

in an if? If you wrap a list of

statements in braces, C will treat

them as though they were just

one statement:

C coders like to keep their code

short and snappy, so most will

omit braces on if conditions

and while loops. So instead of

writing:

if (x == 2) {
 puts("Do something");
}

you are here 4 15

getting started with c

/*
 * Program to evaluate face values.
 * Released under the Vegas Public License.
 * (c)2014 The College Blackjack Team.
 */
#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 printf("The card value is: %i\n", val);
 return 0;
}

I’ve had a thought.
Could this check if
a card value is in a
particular range? That
might be handy…

Here’s the code so far

16 Chapter 1

page goal header

Hey, how’s it going? You look

to me like a smart guy. And I

know, ’cause I’m a smart guy

too! Listen, I’m onto a sure

thing here, and I’m a nice

guy, so I’m going to let you

in on it. See, I’m an expert

in card counting. The Capo

di tutti capi. What’s card
counting, you say? Well, to

me, it’s a career!

Seriously, card counting is

a way of improving the odds

when you play blackjack. In

blackjack, if there are plenty

of high-value cards left in

the shoe, then the odds are

slanted in favor of the player.

That’s you!

Card counting helps you
keep track of the number of

high-value cards left. Say

you start with a count of 0.

Then the dealer leads with

a Queen—that’s a high card.

That’s one less available in

the deck, so you reduce the

count by one:

It’s a queen  count – 1

But if it’s a low card, like a 4,

the count goes up by one:

It’s a four  count + 1

High cards are 10s and the

face cards (Jack, Queen,
King). Low cards are 3s, 4s,

5s, and 6s.

You keep doing this for every

low card and every high
card until the count gets real

high, then you lay on cash

in your next bet and ba-da-

bing! Soon you’ll have more

money than my third wife!

If you’d like to learn more,

then enroll today in my
Blackjack Correspondence

School. Learn more about

card counting as well as:

* How to use the Kelly
Criterion to maximize the

value of your bet

* How to avoid getting
whacked by a pit boss

* How to get cannoli stains

off a silk suit

* Things to wear with plaid

For more information,
contact Cousin Vinny c/o the

Blackjack Correspondence

School.

you are here 4 17

getting started with c

Card count ing? In C?
Card counting is a way to increase your chances of winning at blackjack.

By keeping a running count as the cards are dealt, a player can work out

the best time to place large bets and the best time to place small bets. Even

though it’s a powerful technique, it’s really quite simple.

Evaluate the card.Is it between 3 and 6 (inclusive)? Increase count by 1.Otherwise…
 Is it a 10, J, Q, or K? Decrease the count by 1.

We’ve already got
code that does this.

How difficult would this be to write in C? You’ve looked at

how to make a single test, but the card-counting algorithm

needs to check multiple conditions: you need to check that

a number is >= 3 as well as checking that it’s <= 6.

You need a set of operations that will allow
you to combine conditions together.

We can just use a
variable for this.

We’ve got to check for a few
values here…or do we?

How do we check that
it is >= 3 and <= 6?
Is that two checks?

18 Chapter 1

what condition the condition is in

There’s more to booleans than equals…
So far, you’ve looked at if statements that check if a single condition is true, but

what if you want to check several conditions? Or check if a single condition is

not true?

&& checks if t wo condit ions are true
The and operator (&&) evaluates to true, only if both conditions given to it are

true.

if ((dealer_up_card == 6) && (hand == 11))
 double_down();

Both of these conditions need to be
true for this piece of code to run.

The and operator is efficient: if the first condition is false, then the computer

won’t bother evaluating the second condition. It knows that if the first condition

is false, then the whole condition must be false.

II checks if one of t wo condit ions is true
The or operator (||) evaluates to true, if either condition given to

it is true.

if (cupcakes_in_fridge || chips_on_table)
 eat_food();

If the first condition is true, the computer won’t bother evaluating

the second condition. It knows that if the first condition is true, the

whole condition must be true.

Either can be true.

! f lips the value of a condit ion
! is the not operator. It reverses the value of a condition.

if (!brad_on_phone)
 answer_phone();

Geek Bits
In C, boolean values

are represented by

numbers. To C, the number 0 is

the value for false. But what’s the

value for true? Anything that is

not equal to 0 is treated as true.

So there is nothing wrong in

writing C code like this:

In fact, C programs often use this

as a shorthand way of checking if

something is not 0.

int people_moshing = 34;
if (people_moshing)
 take_off_glasses();

! means “not”

you are here 4 19

getting started with c

You are going to modify the program so that it can be used for card counting. It will need to
display one message if the value of the card is from 3 to 6. It will need to display a different
message if the card is a 10, Jack, Queen, or King.

int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if
 puts("Count has gone down");
 return 0;
}

The ANSI C standard has no value for true
and false. C programs treat the value 0 as
false, and any other value as true. The C99
standard does allow you to use the words true
and false in your programs—but the compiler
treats them as the values 1 and 0 anyway.

The Polite Guide to Standards

20 Chapter 1

cards counted

Q: Why not just |and &?

A: You can use & and | if you want.
The & and | operators will always
evaluate both conditions, but && and ||
can often skip the second condition.

Q: So why do the & and | operators
exist?

A: Because they do more than simply
evaluate logical conditions. They perform
bitwise operations on the individual bits of
a number.

Q: Huh? What do you mean?

A: Well, 6 & 4 is equal to 4, because
if you checked which binary digits are
common to 6 (110 in binary) and 4 (100 in
binary, you get 4 (100).

You were to modify the program so that it can be used for card counting. It needed to display
one message if the value of the card is from 3 to 6. It needed to display a different message if
the card is a 10, Jack, Queen, or King.

int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if
 puts("Count has gone down");
 return 0;
}

((val > 2) && (val < 7))

(val == 10)

There are a few
ways of writing
this condition.

Did you spot that you

just needed a single
condition for this?

getting started with c

Test Drive
Let’s see what happens when you compile and run the program now:

> gcc cards.c -o cards && ./cards
Enter the card_name:
Q
Count has gone down
> ./cards
Enter the card_name:
8
> ./cards
Enter the card_name:
3
Count has gone up
>

File Edit Window Help FiveOfSpades
This line compiles and runs the code.

The code works. By combining multiple conditions with a boolean

operator, you check for a range of values rather than a single value.

You now have the basic structure in place for a card counter.

Stealthy communication device

We run it a
few times to
check that the
different value
ranges work.

The computer says the
card was low. The count
went up! Raise the bet!
Raise the bet!

you are here 4 21

22 Chapter 1

interview with gcc

Head First: May I begin by thanking you, gcc, for

finding time in your very busy schedule to speak to

us.

gcc: That’s not a problem, my friend. A pleasure to

help.

Head First: gcc, you can speak many languages, is

that true?

gcc: I am fluent in over six million forms of

communication…

Head First: Really?

gcc: Just teasing. But I do speak many languages. C,

obviously, but also C++ and Objective-C. I can get

by in Pascal, Fortran, PL/I, and so forth. Oh, and I

have a smattering of Go…

Head First: And on the hardware side, you can

produce machine code for many, many platforms?

gcc: Virtually any processor. Generally, when a

hardware engineer creates a new type of processor,

one of the first things she wants to do is get some

form of me running on it.

Head First: How have you achieved such incredible

flexibility?

gcc: My secret, I suppose, is that there are two sides

to my personality. I have a frontend, a part of me

that understands some type of source code.

Head First: Written in a language such as C?

gcc: Exactly. My frontend can convert that language

into an intermediate code. All of my language

frontends produce the same sort of code.

Head First: You say there are two sides to your

personality?

gcc: I also have a backend: a system for converting

that intermediate code into machine code that is

understandable on many platforms. Add to that my

knowledge of the particular executable file formats

for just about every operating system you’ve ever

heard of…

Head First: And yet, you are often described as a

mere translator. Do you think that’s fair? Surely that’s

not all you are.

gcc: Well, of course I do a little more than simple

translation. For example, I can often spot errors in

code.

Head First: Such as?

gcc: Well, I can check obvious things such as

misspelled variable names. But I also look for subtler

things, such as the redefinition of variables. Or I

can warn the programmer if he chooses to name

variables after existing functions and so on.

Head First: So you check code quality as well,

then?

gcc: Oh, yes. And not just quality, but also

performance. If I discover a section of code inside

a loop that could work equally well outside a loop, I

can very quietly move it.

Head First: You do rather a lot!

gcc: I like to think I do. But in a quiet way.

Head First: gcc, thank you.

The Compiler Exposed
This week’s interview:
What Has gcc Ever Done for Us?

you are here 4 23

getting started with c

BE the Compiler
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");

 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

24 Chapter 1

code compiled

BE the Compiler Solution
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");

 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

The code compiles. The
program displays “Small
card.” But it doesn’t work
properly because the else is
attached to the wrong if.

The code compiles. The
program displays nothing
and is not really working
properly because the else is
matched to the wrong if.

The code compiles. The
program displays “Ace!”
and is properly written.

The code won’t compile
because the braces are
not matched.

you are here 4 25

getting started with c

What’s the code like now?
int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if ((val > 2) && (val < 7))
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q, or K */
 else if (val == 10)
 puts("Count has gone down");
 return 0;
}

C programs often need to check the same value several
times and then perform very similar pieces of code for
each case.
Now, you can just use a sequence of if statements, and that will probably be

just fine. But C gives you an alternative way of writing this kind of logic.

C can perform logical tests with the switch statement.

Hmmm…is there something we can do with
that sequence of if statements? They’re all
checking the same value, card_name[0], and most
of them are setting the val variable to 10. I wonder
if there’s a more efficient way of saying that in C.

26 Chapter 1

switch statement

Pulling the ol’ switcheroo
Sometimes when you’re writing conditional logic, you need to

check the value of the same variable over and over again. To

prevent you from having to write lots and lots of if statements,

the C language gives you another option: the switch statement.

The switch statement is kind of like an if statement, except it

can test for multiple values of a single variable:

switch(train) {
case 37:
 winnings = winnings + 50;
 break;
case 65:
 puts("Jackpot!");
 winnings = winnings + 80;
case 12:
 winnings = winnings + 20;
 break;
default:
 winnings = 0;
}

If the train == 37, add 50 to the
winnings and then skip to the end.

When the computer hits a switch statement, it checks the value

it was given, and then looks for a matching case. When it finds

one, it runs all of the code that follows it until it reaches a break

statement. The computer keeps going until it is told to

break out of the switch statement.

For any other value of train, set the winnings back to ZERO.

If the train == 12, just
add 20 to the winnings.

If the train == 65, add 80 to the
winnings AND THEN also add 20 to
the winnings; then, skip to the end.

 Missing breaks can make
your code buggy.

Most C programs have a break
at the end of each case section
to make the code easier to

understand, even at the cost of some efficiency.

you are here 4 27

getting started with c

Let’s look at that section of your cards program again:

int val = 0;
if (card_name[0] == 'K') {
 val = 10;
} else if (card_name[0] == 'Q') {
 val = 10;
} else if (card_name[0] == 'J') {
 val = 10;
} else if (card_name[0] == 'A') {
 val = 11;
} else {
 val = atoi(card_name);
}

Do you think you can rewrite this code using a switch statement? Write your answer below:

28 Chapter 1

code switched

int val = 0;
if (card_name[0] == 'K') {
 val = 10;
} else if (card_name[0] == 'Q') {
 val = 10;
} else if (card_name[0] == 'J') {
 val = 10;
} else if (card_name[0] == 'A') {
 val = 11;
} else {
 val = atoi(card_name);
}

You were to rewrite the code using a switch statement.

int val = 0;
switch(card_name[0]) {
case ‘K’:
case ‘Q’:
case ‘J’:
 val = 10;
 break;
case ‘A’:
 val = 11;
 break;
default:
 val = atoi(card_name);
}

Q: Why would I use a switch
statement instead of an if?

A: If you are performing multiple
checks on the same variable, you might
want to use a switch statement.

Q: What are the advantages of
using a switch statement?

A: There are several. First: clarity. It
is clear that an entire block of code is
processing a single variable. That’s not so
obvious if you just have a sequence of if
statements. Secondly, you can use fall-
through logic to reuse sections of code for
different cases.

Q: Does the switch statement
have to check a variable? Can’t it
check a value?

A: Yes, it can. The switch
statement will simply check that two
values are equal.

Q: Can I check strings in a
switch statement?

A: No, you can’t use a switch
statement to check a string of characters
or any kind of array. The switch
statement will only check a single value.

 � switch statements can
replace a sequence of if
statements.

 � switch statements check a
single value.

 � The computer will start to run
the code at the first matching
case statement.

 � It will continue to run until it
reaches a break or gets
to the end of the switch
statement.

 � Check that you’ve included
breaks in the right places;
otherwise, your switches will
be buggy.

you are here 4 29

getting started with c

Sometimes once is not enough…
You’ve learned a lot about the C language, but there are still some

important things to learn. You’ve seen how to write programs for many

different situations, but there is one fundamental thing that we haven’t

really looked at yet. What if you want your program to do something

again and again and again?

Two cards???
Oh crap…

Using while loops in C
Loops are a special type of control statement. A control statement

decides if a section of code will be run, but a loop statement decides

how many times a piece of code will be run.

The most basic kind of loop in C is the while loop. A while loop

runs code over and over and over as long as some condition remains true.

while (<some condition>) {
 ... /* Do something here */
}

This checks the condition before running the body.

When it gets to the end of the body, the computer
checks if the loop condition is still true. If it is, the
body code runs again.

If you have only one line in the

body, you don’t need the braces.The body is between

the braces.

while (more_balls)
 keep_juggling();

There’s another form of the while loop that
checks the loop condition after the loop body is
run. That means the loop always executes at
least once. It’s called the do...while loop:

Do you do while?

do {
 /* Buy lottery ticket */
} while(have_not_won);

30 Chapter 1

for loops

Loops of ten fol low the same structure…

int counter = 1;
while (counter < 11) {
 printf("%i green bottles, hanging on a wall\n", counter);
 counter++;
}

…and the for loop makes this easy
Because this pattern is so common, the designers of C created the

for loop to make it a little more concise. Here is that same piece

of code written with a for loop:

int counter;
for (counter = 1; counter < 11; counter++) {
 printf("%i green bottles, hanging on a wall\n", counter);
}

for loops are actually used a lot in C—as much, if not more than,

while loops. Not only do they make the code slightly shorter,

but they’re also easier for other C programmers to read, because

all of the code that controls the loop—the stuff that controls the

value of the counter variable—is now contained in the for

statement and is taken out of the loop body.

Remember: counter++ means “increase the counter variable by one.”

This is the loop startup code.

This is the loop condition. This is the loop
update code that
runs at the end of
the loop body to
update a counter.

This initializes the
loop variable.

This is the text condition checked
before the loop runs each time. This is the code that

will run after each loop.

Because there’s only one line in the loop body, you could actually have skipped these braces.

Every for loop needs
to have something in
the body.

For example, this is a while loop that counts from 1 to 10:

 Do something simple before the loop, like set a counter.¥
 Have a simple test condition on the loop.¥
 Do something at the end of a loop, like update a counter.¥

Loops like this have code that prepares variables for the loop,

some sort of condition that is checked each time the loop runs,

and finally some sort of code at the end of the loop that updates

a counter or something similar.

You can use the while loop anytime you need to repeat a piece

of code, but a lot of the time your loops will have the same kind

of structure:

you are here 4 31

getting started with c

You use break to break out…
You can create loops that check a condition at the beginning or end

of the loop body. But what if you want to escape from the loop from

somewhere in the middle? You could always restructure your code,

but sometimes it’s just simpler skip out of the loop immediately using

the break statement:

while(feeling_hungry) {
 eat_cake();
 if (feeling_queasy) {
 /* Break out of the while loop */
 break;
 }
 drink_coffee();
}

A break statement will break you straight out of the current

loop, skipping whatever follows it in the loop body. breaks can

be useful because they’re sometimes the simplest and best way to

end a loop. But you might want to avoid using too many, because

they can also make the code a little harder to read.

 The break
statement is
used to break
out of loops
and also

switch statements.

Make sure that you know what
you’re breaking out of when
you break.

Tales from
the Crypt

breaks don’t break if
statements.

On January 15, 1990, AT&T’s
long-distance telephone system
crashed, and 60,000 people
lost their phone service. The
cause? A developer working
on the C code used in the
exchanges tried to use a break
to break out of an if statement.
But breaks don’t break out
of ifs. Instead, the program
skipped an entire section of
code and introduced a bug that
interrupted 70 million phone
calls over nine hours.

…and cont inue to cont inue
If you want to skip the rest of the loop body and go back to the

start of the loop, then the continue statement is your friend:

while(feeling_hungry) {
 if (not_lunch_yet) {
 /* Go back to the loop condition */
 continue;
 }
 eat_cake();
}

“break” skips out of
the loop immediately.

“continue” takes you back
to the start of the loop.

32 Chapter 1

writing functions

Writing Functions Up Close

Before you try out your new loop mojo, let’s go on a detour and

take a quick look at functions.

So far, you’ve had to create one function in every program you’ve

written, the main() function:

int main()
{
 puts("Too young to die; too beautiful to live");
 return 0;
}

Pretty much all functions in C follow the same format. For

example, this is a program with a custom function that gets called

by main():

#include <stdio.h>

int larger(int a, int b)
{
 if (a > b)
 return a;
 return b;
}

int main()
{
 int greatest = larger(100, 1000);
 printf("%i is the greatest!\n", greatest);
 return 0;
}

The larger() function is slightly different from main() because

it takes arguments or parameters. An argument is just a local

variable that gets its value from the code that calls the function. The

larger() function takes two arguments—a and b—and then it

returns the value of whichever one is larger.

This function
returns an
int value.

This is the name of the function.

Nothing between these parentheses.

The body of
the function is
surrounded by
braces.

The body of the function—
the part that does stuff.

When you’re done, you return a value.

Returns an int value

This function takes two arguments:

a and b. Both arguments are ints.

Calling the function here

The main() function
has an int return type,
so you should include a
return statement when
you get to the end. But
if you leave the return
statement out, the code
will still compile—though
you may get a warning
from the compiler. A
C99 compiler will insert
a return statement for
you if you forget. Use
-std=c99 to compile to
the C99 standard.

The Polite Guide
to Standards

you are here 4 33

getting started with c

Void Functions Up Close
Most functions in C have a return value, but sometimes you

might want to create a function that has nothing useful to return. It

might just do stuff rather than calculate stuff. Normally, functions always

have to contain a return statement, but not if you give your function

the return type void:

void complain()
{
 puts("I'm really not happy");
}

In C, the keyword void means it doesn’t matter. As soon as you tell

the C compiler that you don’t care about returning a value from the

function, you don’t need to have a return statement in your function.

Almost everything in C has
a return value, and not just
function calls. In fact, even
things like assignments have

return values. For example, if you look at
this statement:

x = 4;

It assigns the number 4 to a variable. The
interesting thing is that the expression

“x = 4” itself has the value that was
assigned: 4. So why does that matter?
Because it means you can do cool tricks,
like chaining assignments together:

y = (x = 4);

That line of code will set both x and y to
the value 4. In fact, you can shorten the
code slightly by removing the parentheses:

y = x = 4;

You’ll often see chained assignments in
code that needs to set several variables to
the same value.

Q: If I create a void function,
does that mean it can’t contain a
return statement?

A: You can still include a return
statement, but the compiler will most
likely generate a warning. Also, there’s
no point to including a return
statement in a void function.

Q: Really? Why not?

A: Because if you try to read the
value of your void function, the
compiler will refuse to compile your
code.

Chaining Assignments

The void return
type means the
function won’t
return anything.

There’s no need for a return
statement because it’s a void function.

The assignment
“x = 4” has
the value 4.

So now y is also set to 4.

34 Chapter 1

messages mixed

Mixed
Messages

A short C program is listed below. One block of the program is missing. Your

challenge is to match the candidate block of code (on the left) with the output

that you’d see if the block were inserted. Not all of the lines of output will be

used, and some of the lines of output might be used more than once. Draw lines

connecting the candidate blocks of code with their matching command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()
{
 int x = 0;
 int y = 0;
 while (x < 5) {

 printf("%i%i ", x, y);
 x = x + 1;
 }
 return 0;
}

Candidates: Possible output:

Candidate code goes here.

Match each
candidate with
one of the
possible outputs.

you are here 4 35

getting started with c

Now that you know how to create while loops, modify the program to keep a running count
of the card game. Display the count after each card and end the program if the player types X.
Display an error message if the player types a bad card value like 11 or 24.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 do {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if (val == 10) {
 count--;
 }
 printf("Current count: %i\n", count);
 } while ()
 return 0;
} You need to stop if she enters X.

What will you do here?

You need to display an error if
the val is not in the range 1 to
10. You should also skip the rest
of the loop body and try again.

Add 1 to count.

Subtract 1 from count.

36 Chapter 1

messages unmixed

Mixed
Messages
Solution

A short C program is listed below. One block of the program is missing. Your

challenge was to match the candidate block of code (on the left) with the output

that you’d see if the block were inserted. Not all of the lines of output were used. You

were to draw lines connecting the candidate blocks of code with their matching

command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()
{
 int x = 0;
 int y = 0;
 while (x < 5) {

 printf("%i%i ", x, y);
 x = x + 1;
 }
 return 0;
}

Candidates: Possible output:

Candidate code goes here.

you are here 4 37

getting started with c

Now that you know how to create while loops, you were to modify the program to keep a
running count of the card game. Display the count after each card and end the program if the
player types X. Display an error message if the player types a bad card value like 11 or 24.

You need another
 continue here

because you want to keep loopin
g.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 do {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if (val == 10) {
 count--;
 }
 printf("Current count: %i\n", count);
 } while ()
 return 0;
}

card_name[0] != ‘X’

continue;

if ((val < 1) || (val > 10)) {
 puts(“I don't understand that value!");
 continue;
}

You need to check if the first character was an X.

break wouldn’t break us out of the loop, because we’re inside

a switch statement. We need a continue to go back and check

the loop condition again.

This is just one way of
writing this condition.

38 Chapter 1

test drive

Test Drive
Now that the card-counting program is finished, it’s time to take it for

a spin. What do you think? Will it work?

> gcc card_counter.c -o card_counter && ./card_counter
Enter the card_name:
4
Current count: 1
Enter the card_name:
K
Current count: 0
Enter the card_name:
3
Current count: 1
Enter the card_name:
5
Current count: 2
Enter the card_name:
23
I don't understand that value!
Enter the card_name:
6
Current count: 3
Enter the card_name:
5
Current count: 4
Enter the card_name:
3
Current count: 5
Enter the card_name:
X

File Edit Window Help GoneLoopy

Remember: you don’t need “/

if you’re on Windows.

The card counting program works!
You’ve completed your first C program. By using the power of C

statements, loops, and conditions, you’ve created a fully functioning card

counter.

Great job!

By betting big when
the count was high, I
made a fortune!

The count is
increasing!

We now check
if it looks
like a correct
card value.

This will compile
and run the
program.

Disclaimer: Using a computer for card counting is illegal in many states,
and those casino guys can get kinda gnarly. So don’t do it, OK?

you are here 4 39

getting started with c

Q: Why do I need to compile C?
Other languages like JavaScript aren’t
compiled, are they?

A: C is compiled to make the code
fast. Even though there are languages
that aren’t compiled, some of those—like
JavaScript and Python—often use some
sort of hidden compilation to improve their
speed.

Q: Is C++ just another version of C?

A: No. C++ was originally designed as
an extension of C, but now it’s a little more
than that. C++ and Objective-C were both
created to use object orientation with C.

Q: What’s object orientation? Will we
learn it in this book?

A: Object orientation is a technique to
deal with complexity. We won’t specifically
look at it in this book.

Q: C looks a lot like JavaScript, Java,
C#, etc.

A: C has a very compact syntax and it’s
influenced many other languages.

Q: What does gcc stand for?

A: The Gnu Compiler Collection.

Q: Why “collection”? Is there more
than one?

A: The Gnu Compiler Collection can be
used to compile many languages, though
C is probably still the language with which
it’s used most frequently.

Q: Can I create a loop that runs
forever?

A: Yes. If the condition on a loop is the
value 1, then the loop will run forever.

Q: Is it a good idea to create a loop
that runs forever?

A: Sometimes. An infinite loop (a loop
that runs forever) is often used in programs
like network servers that perform one thing
repeatedly until they are stopped. But most
coders design loops so that they will stop
sometime.

 � A while loop runs code as long as its
condition is true.

 � A do-while loop is similar, but runs the
code at least once.

 � The for loop is a more compact way of writing
certain kinds of loops.

 � You can exit a loop at any time with break.

 � You can skip to the loop condition at any time
with continue.

 � The return statement returns a value from
a function.

 � void functions don’t need return
statements.

 � Most expressions in C have values.

 � Assignments have values so you can chain
them together (x = y = 0).

40 Chapter 1

c toolbox

You can use the && operator on the command line to run your program only if it compiles.

Your C Toolbox
You’ve got Chapter 1 under
your belt, and now you’ve

added C basics to your toolbox.
For a complete list of tooltips in the

book, see Appendix ii.

Simple
statements

are
commands. Block

statements
are surrounded
by { and }
(braces).

if statements
run code if
something is
true.

switch statements

efficiently che
ck

for multiple values

of a variable.

Every
program needs a main() function.

#include includes

external code

for things

like input and

output.

You can use &&
and || to combine
conditions
together.

You need to

compile your C

program before

you run it.

gcc is the
most popular
C compiler.

Your source files should have a name ending
in .c.

-o specifies

the output

file.

count++

means add 1

to count.

count--
means
subtract 1
from count.

CH
AP

T
ER

 1

while repeats

code as long

as a conditi
on

is true. do-while
loops run
code at
least once.

for loops are a
more compact
way of writing
loops.

	C is a language for small, fast programs
	But what does a complete C program look like?
	But how do you run the program?
	Two types of command
	Here’s the code so far
	Card counting? In C?
	There’s more to booleans than equals…
	What’s the code like now?
	Pulling the ol’ switcheroo
	Sometimes once is not enough…
	Loops often follow the same structure…
	You use break to break out…
	Your C Toolbox

