2 memory and pointers

* What are you
* pointing at? "

...and of course, Mommy
never lets me stay out
after 6 p.m.

Thank heavens my
boyfriend variable isn't
in read-only memory.

If you really want to kick butt with C, you need to understand
how C handles memory.

The C language gives you a lot more control over how your program uses the computer’s
memory. In this chapter, you'll strip back the covers and see exactly what happens when
you read and write variables. You'll learn how arrays work, how to avoid some nasty
memory SNAFUSs, and most of all, you'll see how mastering pointers and memory

addressing is key to becoming a kick-ass C programmer.

this is a new chapter

introducing pointers

C code includes pointers

Pointers are one of the most fundamental things to understand in

the C programming language. So what’s a pointer? A pointer is TO lf)est unC[eI' staﬂ(l[

just the address of a piece of data in memory. .
]oomters, go slowly.

Pointers are used in C for a couple of reasons.

0 Instead of passing around a whole copy of the data, you
can just pass a pointer.

This is a topy of

o the in(:oV'ma‘{:'th
o?° ﬁr/\y You need.

Or you could

T've got the
answer you need;
it's right here in
the Encyclopedia
Britannica.

Jjust look at
page 241.

Thisis @ ?o’m{‘,cr:
the lotation
fhe information.

©

6 You might want two pieces of code to work on the same
piece of data rather than a separate copy.

But I prefer
this one—it's
got kittens!

You were supposed to
sign the birthday card we
left in the lunch room.

Don’t try to rush
this chapter.

Pointers are a simple
: idea, but you need
: to take your time and understand

Pointers help you do both these things: avoid copies and share data.

But if pointers are just addresses, why do some people find them : ’ o
- everything. Take frequent breaks, drink :

plenty of water, and if you really get
. stuck, take a nice long bath.

confusing? Because they’re a form of indirection. If youre not
careful, you can quickly get lost chasing pointers through memory.
The trick to learning how to use C pointers is to go slowly.

42 Chapter 2

Pigging into mewory

To understand what pointers are, you’ll need to dig into
the memory of the computer.

Every time you declare a variable, the computer creates
space for it somewhere in memory. If you declare a
variable inside a function like main (), the computer
will store it in a section of memory called the stack. If
a variable 1s declared outside any function, it will be stored
in the globals section of memory.

[{\ Vanab\c \/ will live in Jd\c

int y = 1; lobals settion.
?Wmoﬁ/ addvess 1,000,000.-——
\/aluc '
int main ()
{
int x = Vaviable x will live in the staek.
return 0; M‘”‘°"Y addvess 4,100,000.
Value 4’

}

The computer might allocate, say, memory location
4,100,000 in the stack for the x variable. If you assign
the number 4 to the variable, the computer will store 4
at location 4,100,000.

If you want to find out the memory address of the
variable, you can use the & operator:

£x is the addvess of x.

printf ("x is stored at %p\n", &x);

This is what the %y is used 4o format addvesses.

tode will print.
X 1s stored at 0x3E8FAQ

%u Il P\r'obabl et
This is 4,100, 000 in -j\ q\\ adi ‘FCVCH‘E a)t;grcss

on Your mathine.

hex (base |b) format.

The address of the variable tells you where to find the
variable in memory. That’s why an address is also called
a pointer, because it points to the variable in memory.

memory and pointers

W

oL sTack

4 L* <~ « lnvcs lives at lotation 4.100,000.

E—
HEAP

ﬂ _ GLOBALS

!‘& y lives in 5lobals

ONPA

D

——T—-CODE-

| . N
[[~ 7

e]
| l | |

A variable declared inside a

function is usually stored in the
stack.

A variable declared outside a
function is stored in glol)als.

you are here » 43

pirates of the bermuda rectangle

Set sail with pointers

Imagine you’re writing a game in which players have to
navigate their way around the...

The game will need to keep control of lots of things, like
scores and lives and the current location of the players. You
won’t want to write the game as one large piece of code;
instead, you’ll create lots of smaller functions that will each
do something useful in the game:

go—SOUth_east 0) ‘ go_north_west () .
| acquire_facial_hair ()
‘ go_south() ' ‘ '

What does any of this have to do with pointers? Let’s begin
coding without worrying about pointers at all. You’ll just

s .
peaks_J.n _present_tense ()

make °“e—seque1

use variables as you always have. A major part of the game
1s going to be navigating your ship around the Bermuda
Rectangle, so let’s dive deeper into what the code will need
to do in one of the navigation functions.

44 Chapter 2

Set sail sov’east, Capn

The game will track the location of players using latitudes and
longitudes. The latitude is how far north or south the player

1s, and the longitude is her position east or west. If a player
wants to travel southeast, that means her latitude will go down,
and her longitude will go up:

So you could write a go_south east () function that takes
arguments for the latitude and longitude, which it will then
increase and decrease:

Pass in the latitude
and longitude.

Vi

void go south east(int lat, int lon)

{

#include <stdio.h>

lat - 1; & Deerease the
latitude.

lat

lon lon + 1;

Intvease the longitude.

int main ()
{
int latitude = 32;
int longitude = -64;
go_south east (latitude, longitude);
printf ("Avast! Now at: [%1, %i]\n",

return O;

The program starts a ship at location [32, —64], so if it
heads southeast, the ship’s new position will be [31, —63].
At least it will be if the code works. ..

memory and pointers

90_south_east()

The
latitude
will
dectvease.

J/

N

The longitude

will intrease.

latitude, longitude);

- @QA\N
PAWEWR

Look at the code carefully. Do you think it will work? Why? Why not?

you are here » 45

test drive

We be

The code should move the ship southeast from [32, —64] to
becalmed,

the new location at [31, —63]. But if you compile and run the
program, this happens:

WTF? The ship [Fle Edi Window Felp_Savvy?

is still in the > gcc southeast.c -o southeast
same PlaCc. > ./southeast
Avast! Now at: [32, -64]
Wheve's The >

Fig\w{in’?

Arrl We be
writin' a bad
Amazon review!

The ship’s location stays exactly the same as before.

C sends arguments as values

The code broke because of the way that C calls functions.

Initially, the main () function has a local variable called latitude
that had value 32.

This is @ new vaviable
éon{;&mmg a 60\7\/ o‘('\
l the latitude value.

U

e When the computer calls the go_south east () function, it §< lat

copies the value of the latitude variable to the lat argument. ’ = | |
P

|
T
| ¢

This is just an assignment from the latitude variable to the 1at
variable. When you call a function, you don’t send the variable as an
argument, just its value.

e When the go_south_east () function changes the Only the local eopy The original vaviable
value of lat, the function is just changing its local copy. 36{‘,5 ¢hanged. keeps its o\rlgma| value.
That means when the computer returns to the main () \}/
function, the 1atitude variable still has its original
value of 32.

But if that’s how C calls functions, how can you ever write a
function that updates a variable?

I
IS
f g

It’s easy if you use pointers... =S J _

46 Chapter 2

Try passing a pointer to the variable

Instead of passing the value of the latitude and longitude
variables, what happens if you pass their addresses? If the

longitude variable lives in the stack memory at location 4,100,000,

what happens if you pass the location number 4,100,000 as a
parameter to the go_south east () function?

o latitude o

%

941

|
The |a‘f:i‘{‘,udc l
variable is at l

memory lo¢ation
4,100,000.

@W/ g

[_____

L

If the go_south east () function is told that the latitude
value lives at location 4,100,000, then it will not only be able to find
the current latitude value, but it will also be able to change the
contents of the original 1atitude variable. All the function needs

to do is read and update the contents of memory location 4,100,000.

0 latltude o

@W/ -~

|
N
SutreetT e s
|

oaererd HOSRSS l g 4100000 o
/ |

Because the go_south east () function is updating the original
latitude variable, the computer will be able to print out the
updated location when it returns to the main () function.

Pointers make it easier to share memory

This is one of the main reasons for using pointers—to let functions
share memory. The data created by one function can be modified by
another function, so long as it knows where to find it in memory.

Now that you know the theory of using pointers to fix the
go_south east () function, it’s time to look at the details of
how you do it.

memory pointers

|ns{',cad o‘(" assing
the value the

‘7 [variab\C; pass its

P
lease lotation.

update \O(LKer
4 100 ,000

therejare no

— Dumb Questions —

Q: I printed the location of the
variable on my machine and it wasn’t
4,100,000. Did | do something wrong?

A: You did nothing wrong. The memory
location your program uses for the variables
will be different from machine to machine.

Q: Why are local variables stored in
the stack and globals stored somewhere
else?

A: Local and global variables are used
differently. You will only ever get one copy of
a global variable, but if you write a function
that calls itself, you might get very many
instances of the same local variable.

Q,: What are the other areas of the
memory used for?

A: You'll see what the other areas are for
as you go through the rest of the book.

47

memory pointers

Using mewmory pointers

There are three things you need to know in order to use
pointers to read and write data.

o Get the address of a variable.

You've already seen that you can find where a variable is stored in
memory using the & operator:

The %p format will

print out the lotation in
hex (base 16) format. printf ("x lives at %p\n", &x);
A

int x = 4;

But once you've got the address of a variable, you may want to store it
somewhere. To do that, you will need a pointer variable. A pointer

variable is just a variable that stores a memory address. When you

declare a pointer variable, you need to say what kind of data is stored

at the address it will point to:

This is a pointer variable for
an address that stores an in{:$ int *address of x = &x;

e Read the contents of an address.

When you have a memory address, you will want to read the data
that’s stored there. You do that with the * operator:

The * and & operators are opposites. The & operator takes a piece
of data and tells you where it’s stored. The * operator takes an
address and tells you what’s stored there. Because pointers are
sometimes called references, the * operator is said to dereference
a pointer.

9 Change the contents of an address.
If you have a pointer variable and you want to change the data
at the address where the variable’s pointing, you can just use the *
operator again. But this time you need to use it on the left side of
an assignment:

*address_of x = 99;

OK, now that you know how to read and write

£ will £ind the
addvess of
+he vaviable:
4,100,000.

This will vead the tontents at
the memovy address given by
int value_stored = *address of x;T—— addvcss_oz

to 4 the value originally stored

in the % vaviable.

%. This will be set

N
&

0y,

L —

99

This will thange the tontents of /

the contents of a memory location, it’s time the original x variable to 99.

for you to fix the go_south_east() function.

48 Chapter 2

memory and pointers

Compass Magnets

Now you need to fixthe go_south east () function so that it uses
pointers to update the correct data. Think carefully about what type of
data you want to pass to the function, and what operators you'll need
to use to update the location of the ship.

#include <stdio.h> What kinds of arguments will store
memory addvesses for ints?

N

void go_south east(. Tats . Lon)
{
........................... = D R R I - l;
= +1;

int main ()

{

int latitude = 32; Rcmcmbcr:ozou'rc going o pass the

int longitude = -64; addresses ot variables.
go_south east (’) ;

return 0O;

&lon
-
K [y

&latitude -I .
int *

int

you are here » 49

compass magnets

Compass Magnets Solution

You needed to fix the go_south east () function so that it
uses pointers to update the correct data. You were to think carefully
about what type of data you want to pass to the function, and what
operators you'll need to use to update the location of the ship.

' ' The arguments will store pointers
#include <stdio.h> © {:hcy need o be int %,

— - - - 1; & ¥|at tan vead the old value
........ - . 1; and ok the new wahe.

int main ()

{ You need to find the addvress

. . of the latitude and longitude
int latitude = 32; variables with ¢.

int longitude = -64; /N
&latit: itude
go_south east (,.,. . £1om9)i

printf ("Avast! Now at: [%i, %i]\n", latitude, longitude);

~

return 0;

\ *longitude '

-m

50 Chapter 2

memory and pointers

Kok
—Test DRrive

Now if you compile and run the new version of the function,
you get this:

This is File Edit_Window Help Sawvy?
Soufhcas{;o,(' > gcc southeast.c -o southeast

X > ./southeast
the original Avast! Now at: [31, -63]
lota{:lon

>

Wind in the
sails, cap'nl

Set sail for
Cancun!

Arrl Spring

The code works.

Because the function takes pointer arguments, it’s able to
update the original 1atitude and longitude variables.
That means that you now know how to create functions that
not only return values, but can also update any memory
locations that are passed to them.

%BULLET POINTS

Variables are allocated storage in m The & operator finds the address of
memory. a variable.

m | ocal variables live in the stack. The * operator can read the contents

® CGlobal variables live in the globals of a memory address.

section. = The * operator can also set the

® Pointers are just variables that store contents of a memory address.

memory addresses.

you are here » 51

no dumb

Q: Are pointers actual address
locations? Or are they some other kind
of reference?

A: They're actual numeric addresses in
the process’s memory.

Q,: What does that mean?

A: Each process is given a simplified
version of memory to make it look like a
single long sequence of bytes.

Q,: And memory’s not like that?

A: It's more complicated in reality. But
the details are hidden from the process so
that the operating system can move the
process around in memory, or unload it and
reload it somewnhere else.

52

thereqare no o
Dumb Questions

Q: Is memory not just a long list of
bytes?

A: The computer will probably structure
its physical memory in a more complex way.
The machine will typically group memory
addresses into separate banks of memory
chips.

Q,: Do | need to understand this?

A: For most programs, you don’t need to
worry about the details of how the machine
arranges its memory.

Q} Why do | have to print out pointers
using the $p format string?

A: You don’t have to use the $p string.
On most modern machines, you can use
%1 1—although the compiler may give you
a warning if you do.

Q: Why does the $p format display
the memory address in hex format?

A: It's the way engineers typically refer
to memory addresses.

Q: If reading the contents of a
memory location is called dereferencing,
does that mean that pointers should be
called references?

A: Sometimes coders will call pointers
references, because they refer to a memory
location. However, C++ programmers
usually reserve the word reference for a
slightly different concept in C++.

Q: Oh yeah, C++. Are we going to
look at that?

A: No, this book looks at C only.

memory and pointers

How do you pass a string to a function?

N
You know how to pass simple values as arguments to functions, but what € '/
if you want to send something more complex to a function, like a string? P o
If you remember from the last chapter, strings in C are actually arrays of wk‘es make you fat i
characters. That means if you want to pass a string to a function, you can ‘
do it like this:

IIOld rortune_cookie (Chawﬂ\c Lunction will be passed a char arvay.

printf ("Message reads: %s\n", msqg);

char quote[] = "Cookies make you fat";
fortune cookie(quote);

The msg argument is defined like an array, but because you won’t know
how long the string will be, the msg argument doesn’t include a length.
That seems straightforward, but there’s something a little strange going on...

Honey, who shrank the string?

C has an operator called sizeof that can tell you how many bytes of

space something takes in memory. You can either call it with a data type or
with a piece of data:

On most mathines, this — sizeof (int) This will veturn 9, which is 8
WI“ Y‘C{u\‘h ‘U’IC Va'IAC 4' sizeof ("Turtles! u) é_\ Charactcrs Ylus '{',\'\C \O end ChaY’aL‘ECh

But a strange thing happens if you look at the length of the string
you've passed in the function:

void fortune cookie(char msgl[])
{
printf ("Message reads: %s\n", msqg);
printf ("msg occupies %$i bytes\n", sizeof (msg));

} .

File Edit Window Help TakeAByte [@?RA‘~]
8222 And on < > ./fortune cookie _ '?QWER
T ome Message reads: Cookies make you fat
machines, this I\ msg occupies 8 bytes Why do you think sizeof (msg)
might even say 41 g is shorter than the length of
What gjves? the whole string? What is msg?
Why would it return different
sizes on different machines?

Instead of displaying the full length of the string, the code returns
just 4 or 8 bytes. What’s happened? Why does it think the string
we passed in is shorter?

you are here » 53

array variables

Array variables are like pointers...

When you create an array, the array variable can be used as a

pointer to the start of the array in memory. When C sees a line of
code in a function like this:

The quo{:c vaviable will char quote[] = "Cookies make you fat";
vepresent the addvress /

of the first chavacter

in the string, W C

ollo|lk||i]|le]l|ls ... \O

The computer will set aside space on the stack for each of the

characters in the string, plus the \ 0 end character. But it will also

associate the address of the first character with the quote

variable. Every time the quote variable is used in the code, the You tan use “o\uo{:c" as
computer will substitute it with the address of the first character in 3 pointer vari able, even
the string. In fact, the array variable is just like a pointer: Ehough i E's an aveay.

printf ("The quote string is stored at:

$p\n", quote);

File Edit Window Help TakeAByte
If you write a test LCLELEN > . /where is quote

to display the address, you The quote string is stored at: 0x7£££69d4bdd?7
will see something like this. >

.80 our function was passed a pointer

That’s why that weird thing happened in the fortune cookie ()
code. Even though it looked like you were passing a string to the

fortune cookie () function, you were actually just passing a
pointer to it:

N msg is actually a pointer variable.
void fortune cookie(char msgl])

msq points to the message.
{

printf ("Message reads: %s\n", msqg);

printf ("msg occupies %1 bytes\n", sizeof (msg));

} /V
siuog(msg) is \')us{: the
And that’s why the sizeof operator returned a weird result. It size of a \vo'm{;er-
was just returning the size of a pointer to a string. On 32-bit

operating systems, a pointer takes 4 bytes of memory and on 64-bit
operating systems, a pointer takes 8 bytes.

54 Chapter 2

memory pointers

What the computer thinks when it runs your code

o The computer sees the function.

void fortune cookie(char msgl])

{

Hmmm...looks like they intend to pass
an array to this function. That means
the function will receive the value of the
array variable, which will be an address,
so msg will be a pointer to a char.

=]

L

e Then it sees the function contents.

printf ("Message reads: %s\n", msqg);

printf ("msg occupies %i bytes\n", sizeof (msg));

Y] T can print the message because I know
=____ 90 it starts at location msg. sizeof(msg).
That's a pointer variable, so the answer is
T 8 bytes because that's how much memory
it takes for me to store a pointer.
o/
——

9 The computer calls the function.

char quote[] = "Cookies make you fat";

fortune cookie(quote);

P —

=]

So quote’s an array and T've got to pass
the quote variable to fortune_cookie().
T'll set the msg argument to the address
where the quote array starts in memory.

55

no dumb

%BUI.I.ET POINTS

= An array variable can be used as a
pointer.

= The array variable points to the first
element in the array.

= [f you declare an array argument
to a function, it will be treated as a
pointer.

m The sizeof operator returns the
space taken by a piece of data.

You can also call sizeof fora data
type, such as sizeof (int).

B sizeof (apointer) retuns
4 on 32-bit operating systems and 8
on 64-bit.

Dum

Q: Is sizeof afunction?
A: No, it's an operator.
Qj What's the difference?

A: An operator is compiled to a sequence of instructions by
the compiler. But if the code calls a function, it has to jump to a
separate piece of code.

Q: So is sizeof calculated when the program is
compiled?

A: Yes. The compiler can determine the size of the storage at
compile time.

Q; Why are pointers different sizes on different machines?

A: On 32-bit operating systems, a memory address is stored as
a 32-bit number. That's why it's called a 32-bit system. 32 bits ==

bytes. That's why a 64-bit system uses 8 bytes to store an address.

56

t}xerelg;re no

Questions

Q: If I create a pointer variable, does the pointer variable
live in memory?

A: Yes. A pointer variable is just a variable storing a number.
Q: So can | find the address of a pointer variable?

A: Yes—using the & operator.

Q,: Can | convert a pointer to an ordinary number?

A: On most systems, yes. C compilers typically make the long
data type the same size as a memory address. So if p is a pointer
and you want to store it in a 1 ong variable a, you can type

a = (long)p. We'll look at this in a later chapter.

Q: On most systems? So it’s not guaranteed?

A: It's not guaranteed.

memory and pointers

b B+
mGAME We have a classic trio of bachelors ready to play The Mating

Game today.

Tonight’s lucky lady is going to pick one of these fine contestants.
Who will she choose?

Coy\‘tcs'bah't l
VA Contestant > I'm going to pick
contestant humber

Look at the
tode bc'ow,
and write Your
answer heye.

Confcs-[;an{: 2

b

#include <stdio.h>

int main ()

{
int contestants[] = {1, 2, 3};
int *choice = contestants;

contestants([0] = 2;

contestants[1] contestants[2];
contestants[2] = *choice;
printf ("I'm going to pick contestant number %i\n", contestants[2]);

return O;

you are here » 57

date picked

b B+
mGAME We had a classic trio of bachelors ready to play The Mating Game

today.

geLUTIQN Tonight’s lucky lady picked one of these fine contestants. Who did
she choose?

Coy\‘tcs'bah't l
VA Contestant > I'm going to pick
contestant humber

Confcs-[;an{: 2 |

#include <stdio.h>

“thoite” is now the addvress of the

int main () “COn{:cs{:an{:s" a\r\ray.

{
int contestants([] = {1, 2, 3}; tontestants(2]
int *choice = contestants; == ¥¢hoite
contestants[0] = 2; == tontestants[O]

contestants[2]; —

contestants[1]
contestants[2] = *choice;
printf ("I'm going to pick contestant number %i\n", contestants[2]);

return O;

58 Chapter 2

memory pointers

But array variables arent quite pointers

Even though you can use an array variable as a pointer, there
are still a few differences. To see the differences, think about this
piece of code.

o

This is the s —

ar\ray‘
sizeof is
/5.

(2]

This will give

char s[] = "How big is it?";

char *t = s;

sizeof (an array) is...the size of an array.

You've seen that sizeof (a pointer) returns the value 4 or 8,
because that’s the size of pointers on 32- and 64-bit systems. But if you
call sizeof on an array variable, C is smart enough to understand that
what you want to know is how big the array is in memory.

This veturns 1.

Hi|lo ||lw bl|.. \O sizeof(s)

™k Q—THS 'E .{')‘;{5 \’°g‘£"' This vetuens 4 or 8. —> SlZGOf(t)
sizeot is &4 or @.

The address of the array...is the address of the array.
A pointer variable is just a variable that stores a memory address. But
what about an array variable? If you use the & operator on an array
variable, the result equals the array variable itself.

fis == s ft =1

If a coder writes &s, that means “What is the address

Pointer decay

of the s array?” The address of the s array is just...s. Because array variables are slightly
But if someone writes &t, that means “What is the different from pointer variables, you need
address of the t variable?” to be careful when you assign arrays

to pointers. If you assign an array to a

pointer variable, then the pointer variable
will only contain the address of the array.
The pointer doesn’t know anything about

An array variable can't point anywhere else.
When you create a pointer variable, the machine will

allocate 4 or 8 bytes of space to store it. But what if the size of the array, so a little information
you create an array? The computer will allocate space has been lost. That loss of information is
to store the array, but it won’t allocate any memory to called decay.

store the array variable. The compiler simply plugs in

Every time you pass an array to a
the address of the start of the array.

function, you'll decay to a pointer, so
it'’s unavoidable. But you need to keep
track of where arrays decay in your code
because it can cause very subtle bugs.

But because array variables don’t have allocated
storage, it means you can’t point them at anything else.

a tompile evvor. —As = t;

59

five-minute

60

The Case of the Lethal List

The mansion had all the things he’d dreamed of: landscaped grounds,
chandeliers, its own bathroom. The 94-year-old owner, Amory
Mumford III, had been found dead in the garden, apparently of a
heart attack. Natural causes? The doc thought it was an overdose of
heart medication. Something stank here, and it wasn’t just the dead
guy in the gazebo. Walking past the cops in the hall, he approached
Mumford’s newly widowed 27-year-old wife, Bubbles.

“I don’t understand. He was always so careful with his medication.
Here’s the list of doses.” She showed him the code from the drug
dispenser.

int doses[] = {1, 3, 2, 1000};

“The police say I reprogrammed the dispenser. But I'm no good with
technology. They say I wrote this code, but I don’t even think it’ll
compile. Will it?”

She slipped her manicured fingers into her purse and handed him a
copy of the program the police had found lying by the millionaire’s bed.
It certainly didn’t look like it would compile...

printf ("Issue dose %i", 3[doses]);

What did the expression 3 [doses] mean? 3 wasn’t an array. Bubbles
blew her nose. “I could never write that. And anyway, a dose of 3 is not
so bad, is 1t?”

A dose of size 3 wouldn’t have killed the old guy. But
maybe there was more to this code than met the eye...

memory and pointers

Why arrays really start at 0

An array variable can be used as a pointer to the first element in an
array. That means you can read the first element of the array either
by using the brackets notation or using the * operator like this:

) int drinks[] = {4, 2, 3};
These lines
intf("lst der: %i drink ", drinks[0]);
o«cftodc ave printf("lst order: %i drinks\n", drinks[O0]) dvinksCOT == *dvinks
equivalent. printf("lst order: %i drinks\n", *drinks);

But because an address 1s just a number, that means you can do

pointer arithmetic and actually add values to a pointer value
and find the next address. So you can either use brackets to read
the element with index 2, or you can just add 2 to the address of

the first element: This is at This is at)
location “dinks.” “dinks + 2.
printf ("3rd order: %i drinks\n", drinks[2]); \L
printf ("3rd order: %i drinks\n", *(drinks + 2)); 4 2 3

In general, the two expressions drinks[i] and * (drinks + 1i)
are equivalent. That’s why arrays begin with index 0. The index is
just the number that’s added to the pointer to find the location of
the element.

This is at “dvinks + [

_ % harpen your pencil

\x Use the power of pointer arithmetic to mend a broken heart. This
function will skip the first six characters of the text message.

1 1 *
void skip(char *msg) What expression do You need here to

{ K print Lrom the seventh ehavacter?

) The funttion needs +o Frih‘f: this
message from the ‘¢’ tharacter on.

char *msg from amy = "Don't call me";

skip (msg from amy);

you are here » 61

pointers and types
— Gdharpen your penci
& 30|Utlﬂl'l You were to use the power of pointer arithmetic to mend a

broken heart. This function skips the first six characters of the
text message.

void skip (char *msg) |€ you add b to the msy pointer,

{ you will print from thavatter 1.
puts(.msg 6 7 .)i

}

char *msg from amy = "Don't call me";

skip (msg from amy) ;

FBEDDBDDDEE@ THC\«Zde will display this.

File Edit Window Help
> ./skip
call me

ms0 Yoin{‘,s heve. msg + 6 Poin'{:s 1o the letter e.

>

Why pointers have types

If pointers are just addresses, then why do pointer variables have types?

Why can’t you just store all pointers in some sort of general pointer R
variable? int
The reason is that pointer arithmetic is sneaky. If you add 1 to a

char pointer, the pointer will point to the very next memory address. m

But that’s just because a char occupies 1 byte of memory.

What if you have an int pointer? ints usually take 4 bytes of space, . £levent

; e
so if you add 1 to an int pointer, the compiled code will actually add P°'“+’C£ Var'ab\lci’ havi(:dl da{e'; "
4 to the memory address. ‘{’«‘/VCS or eath type '

int nums[] = {1, 2, 3};

printf ("nums is at %p\n", nums);
printf ("nums + 1 is at %p\n", nums + 1);
If you run this code, the two memory address will be more than one

byte apart. So pointer types exist so that the compiler knows how
much to adjust the pointer arithmetic.

File Edt Window Help Remember, these Lo
) > ./print_nums addvesses are printe
rums + 1) is 4 bytes x nums is at Ox7fff66ccedac = in hex Format.
nums + 1 is at 0x7fff66ccedb0 &£

away ‘("\rom nums.

62 Chapter 2

memory pointers

The Case of the Lethal List

Last time we left our hero interviewing Bubbles Mumford,
whose husband had been given an overdose as a result of
suspicious code. Was Bubbles the coding culprit or just a
patsy? To find out, read on...

He put the code into his pocket. “It’s been a pleasure, Mrs. Mumford. I don’t
think I need to bother you anymore.” He shook her by the hand. “Thank you,”
she said, wiping the tears from her baby blue eyes, “You’ve been so kind.”
“Not so fast, sister.” Bubbles barely had time to gasp before e MO

he’d slapped the bracelets on her. “I can tell from your Flve' Inute
hacker manicure that you know more than you say about s Mystelvy
this crime.” No one gets fingertip calluses like hers without

logging plenty of time on the keyboard. N

“Bubbles, you know a lot more about C than you let on. Take a
look at this code again.”

int doses[] = {1, 3, 2, 1000},

printf ("Issue dose %i", 3[doses]);

“I knew something was wrong when I saw the expression 3 [doses]. You
knew you could use an array variable like doses as a pointer. The fatal 1,000
dose could be written down like this...” He scribbled down a few coding
options on his second-best Kleenex:

doses[3] == *(doses + 3) == *(3 + doses) == 3[doses]

“Your code was a dead giveaway, sister. It issued a dose of 1,000 to the old guy.
And now you’re going where you can never corruptly use C syntax again...”

63

no dumb

%BUI.I.ET POINTS

Array variables can be used as
pointers...

m . .Dbutarray variables are not quite
the same.

® sizeof is different for array and
pointer variables.

= Array variables can’t point to
anything else.

m Passing an array variable to a pointer
decays it.

= Arrays start at zero because of
pointer arithmetic.

m Pointer variables have types so they
can adjust pointer arithmetic.

Dum

Q: Do I really need to understand pointer arithmetic?

A: Some coders avoid using pointer arithmetic because it's
easy to get it wrong. But it can be used to process arrays of data
efficiently.

Q: Can | subtract numbers from pointers?

- Yes. But be careful that you don't go back before the start of
the allocated space in the array.

Q,: When does C adjust the pointer arithmetic calculations?

A: It happens when the compiler is generating the executable. It
looks at the type of the variable and then multiplies the pluses and
minuses by the size of the underlying variable.

64

t};ere e NO
l) Questions

Q: Go on...

A: If the compiler sees that you are working with an int array
and you are adding 2, the compiler will multiply that by 4 (the length
ofan int)and add 8.

Q,: Does C use the sizeof operator when it is adjusting
pointer arithmetic?

A: Effectively. The sizeof operator is also resolved at
compile time, and both sizeof and the pointer arithmetic
operations will use the same sizes for different data types.

Q: Can | multiply pointers?

A: No.

memory and pointers

Using pointers for data entry

You already know how to get the user to enter a string from the
keyboard. You can do it with the scanf () function:

You've 9oing to store 3 —>> char name[40];

na i i ,
me in this array. printf ("Enter your name: ");

" " . £ seank il vead vp 1o 39 thavacters
scant ("%39s", name) ; plus the string terminator \O.

How does scanf () work? It accepts a char pointer, and in this
case you’re passing it an array variable. By now, you might have
an idea why it takes a pointer. It’s because the scanf () function
1s going to update the contents of the array. Functions that need to
update a variable don’t want the value of the variable itself—they
want its address.

Entering numbers with scanf()

So how do you enter data into a numeric field? You do it by
passing a poinler to a number variable.

int age;
%i means the user will printf ("Enter your age: "); of the int
enter an int value. scanf ("$i", &age) ;& Use the € oyera{:or to 5ch the addvess e int.

function, scanf () can update the contents of the variable.
And to help you out, you can pass a format string that contains

the same kind of format codes that you pass to the printf () £— Enter up to 29 chavacters (+ \O).

function. You can even use scanft () to enter more than one

Because you pass the address of a number variable into the &' Enter an 'nr[:cgcr.
%1

piece of information at a time: Enter a ‘(:loa{:ing—\?oin{: number-
f
char first name[20];
This veads a char last name[20];
fist name, then printf ("Enter first and last name: ");

a spate, then the

\>scanf("%19s %$19s", first name, last name);
setond name. — —

printf ("First: %s Last:%s\n", first name, last name);
File Edit Window Help Meerkats Thj‘;
e tir
> ./name test irst and last names ave

Enter first and last name: Sanders Kleinfeld stored in sepavate arrays.
First: Sanders Last: Kleinfeld

>

you are here » 65

scanf() can cause overflows

Be careful with scanf()

There’s a little...problem with the scanf () function. So
far, all of the code you’ve written has very carefully put a limit
on the number of characters that scanf () will read into a
function:

SECURITY ALERT!
SECURITY ALERT!
SECURITY ALERT!

scanf ("$39s", name);

scanf ("%2s", card name);

Why is that? After all, scanf () uses the same kind of format
strings as printf (), but when we print a string with printf (),
you just use $s. Well, if you just use $s in scanf (), there can

be a problem if someone gets a little type-happy:

char food[5];
printf ("Enter favorite food: ");
scanf ("%$s", food);

printf ("Favorite food: %$s\n", food);

File Edit Window Help TakeAByte
> ./food

Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11

>

The program crashes. The reason is because scanf () writes This is the The food arvay ends

data way beyond the end of the space allocated to the food array. food array. alter five chavacters.

scanf() can cause buffer overflows le][e][-1[t 1[2]
N——

If you forget to limit the length of the string that you read with Every thing beyon d From the “_”

scanf (), then any user can enter far more data than the lekter v is outside on, this tode is

program has space to store. The extra data then gets written into E\'\c era\/- in i||c58| space.

memory that has not been properly allocated by the computer.
Now, you might get lucky and the data will simply be stored and
not cause any problems.

But it’s very likely that buffer overflows will cause bugs. It might
be called a segmentation_fault or an abort trap, but whatever the
error message that appears, the result will be a crash.

66 Chapter 2

memory pointers

fgets() is an alternative to scanf()

There’s another function you can use to enter text data:

fgets (). Just like the scanf () function, it takes a char
pointer, but unlike the scanf () function, the fgets () function
must be given a maximum length:

This is the —\ char food[5];

same program
as bcfo\rc, printf ("Enter favorite food: ");
fgets (food, sizeof (food), stdin);
4\
. . L h
FWS{’ it bakcc z(: ch{:} it takes a maximum size N stdin ‘)M.Tl{:bmc:ns it ‘ d £
Y°i“{cv to a butter. of the s{:\ring ("\O’ intluded) data will be toming You'll £ind out
' £rom the kc\/boa\rd <—\ move about

That means that you can’t accidentally forget to set a length stdin later.

when you call f£gets () ; it’s right there in the function

signature as a mandatory argument. Also, notice that the
fgets () buffer size includes the final \ 0 character. So
you don’t need to subtract 1 from the length as you do with
scanf ().

‘Tales from

the Crypt

OK, what else do you need to know about The fgets() function
fgets()? actually comes from an
older function called

gets().
Using sizeof with fgets()

The code above sets the maximum length using the sizeof SV Bedigl Egeie () 5 SEEH

as a safer-to-use function than
scanf (), the truth is that the
older gets () function is far
more dangerous than either of
them. The reason? The gets ()

operator. Be careful with this. Remember: sizeof returns
the amount of space occupied by a variable. In the code
above, food is an array variable, so sizeof returns the
size of the array. If food was just a simple pointer variable,
the sizeof operator would have just returned the size of a

. unction has no limits at all:
| function h limits at all
pointer. Noooooool!lll
. . Scriously,

If you know that you are passing an array variable to don't char dangerous[10];

fgets () function, then using sizeof is fine. If you're {::,: we — gets (dangerous) ;

just passing a simple pointer, you should just enter the size)

you want: gets () is a function that’s

been around for a long time.

1€ food was 3 simple . . But all you really need to know
pointer, \/ou'd give an printf ("Enter favorite food: "); is that you really shouldn’t

explieit |cn3+)\) vather — fgets (food, 5, stdin); use it.
than using sizeof.

67

scanf() vs

Title Fight

Round 1: Limits

Do you limit the number of
characters that a user can
enter?

Result: fgets() takes this round on points.

Round 2: Multiple fields

Can you be used to enter
more than one field?

scanf():

scanf () can limit the data
entered, so long as you remember

to add the size to the format string.

Yes! scanf () will not only allow
you to enter more than one field,
but it also allows you to enter
structured data including the
ability to specify what characters
appear between fields.

Result: scanf() clearly wins this round.

Round 3: Spaces in strings

If someone enters a string,
can it contain spaces?

Oof! scanf () gets hit badly by
this one. When scanf () reads a
string with the $s, it stops as soon
as it hits a space. So if you want
to enter more than one word, you
either have to call it more than
once, or use some fancy regular
expression trick.

Result: A fightback! Round to fgets().

Roll up! Roll up! It's time for the title fight we've all been waiting for. In the
red corner: nimble light, flexible but oh-so-slightly dangerous. It's the bad
boy of data input: scanf ().And in the blue corner, he's simple, he’s safe,
he’s the function you'd want to introduce to your mom: it's fgets ()!

fgets():

fgets () has a mandatory limit.
Nothing gets past him.

Ouch! fgets () takes this one on
the chin. fgets () allows you to
enter just one string into a buffer.
No other data types. Just strings.
Just one buffer.

No problem with spaces at all.
fgets () can read the whole
string every time.

A good clean fight between these two feisty functions. Clearly, if you need to enter
structured data with several fields, you'll want to use scanf () . If you're entering
a single unstructured string, then fgets () is probably the way to go.

68

e ¢ |

[2] [

\ » [1] [

’ ’ ¢ cards[0] = cards]|

| S | [2] [
[1]

Anyone for three-card monte?

In the back room of the Head First Lounge, there’s a game

of three-card monte going on. Someone shuffles three cards
around, and you have to watch carefully and decide where you
think the Queen card went. Of course, being the Head First
Lounge, they’re not using real cards; they’re using code. Here’s the
program they’re using:

#include <stdio.h>

int main ()

char *cards = "JQK";
char a card = cards|[2];
. cards = cards ;

’

= cards

’

1]
0]
2]
11;

’

= cards
= a_card;

puts (cards) ;

return 0;

The code 1s designed to shuffle the letters in the three-letter
string “JQK.” Remember: in C, a string is just an array of
characters. The program switches the characters around and
then displays what the string looks like.

The players place their bets on where they think the “Q” letter
will be, and then the code 1s compiled and run.

@

t 4
NS

pointers

69

memory problems

Oops..there’s a memory problew...

It seems there’s a problem with the card shark’s code. When
the code is compiled and run on the Lounge’s notebook
computer, this happens:

Darn it. I knew that
card shark couldn't be
trusted...

ile_Fdit Window Help PlaceRe
> gcc monte.c -o monte && ./monte Q
bus error

What’s more, if the guys try the same code on different
machines and operating systems, they get a whole bunch of
different errors:

File Edit Window Help HolyCrap

> gcc monte.c -o monte && ./monte
monte.exe has stopped working

SegP\'\au\'U

Error!

What’s wrong with the code?

70 Chapter 2

memory and pointers

e ved o
X WHAT'S ¥ R HUNCH™?
®
¥

It’s time to use your intuition. Don’t overanalyze. Just take a guess.

Read through these possible answers and select only the one you think is
correct.

What do you think the problem is?

The string can’t be updated.

We're swapping characters outside the string.

The string isn’t in memory.

Something else.

you are here » 71

gutinstinct

* 2 X
X WHAY 'S Yy RV HONCH?

¢ -+ SQLLTIQW

It was time to use your intaition. You were to read through these
possible answers and select onfy the one you think is correct.

What did you think the problem was?

The string can’t be updated. \/

We're swapping characters outside the string.

The string isn’t in memory.

Something else.

String literals can never be updated

A variable that points to a string literal can’t be used to change the
contents of the string:

char *cards = "JOK"; &— This vaviable tant modify this string:
But if you create an array from a string literal, then you can
modify it:

char cards[] = "JQK";

it all comes down to how C uses memory...

72 Chapter 2

memory pointers

In mewory: char xcards="JQK"

To understand why this line of code causes a memory error, we
need to dig into the memory of the computer and see exactly
what the computer will do. H'.Shes{: addvess

e The computer loads the string literal. MWMMW
When the computer loads the program ' L
into memory, it puts all of the constant Wm"\] DY
values—Ilike the string literal “JQK”—into ' S'l‘ j‘(j l(

the constant memory block. This section of — —_ —
memory is read only. S

e The program creates the cards g cards o
variable on the stack. -

The stack is the section of memory that the
computer uses for local variables: variables

inside functions. The cards variable will live
here. i

9 The cards variable is set to the
address of "JQK.”
The cards variable will contain the address
of the string literal “JQK.” String literals
are usually stored in read-only memory to
prevent anyone from changing them.

e The computer tries to change the
string.
When the program tries to change the
contents of the string pointed to by the cards
variable, it can’t; the string is read-only.

— -GLOBALS

s
e

CONSTAN
\]"//////////

A p—— '—G()Q!i;]—
——char *cards=" R i
e . I] ‘J ?ﬁ;&%
@) cards[2] = cards[1 :)

| [[|
— T

I can't update
that, buddy. It's in
the constant memory

block, so it's read-only.

So the problem is that string literals like
“JOK” are held in read only memory. They’re
constants.

|

Lowest address 73

But if that’s the problem, how do
you fix it?

copy and change

If you're going to change a string, make a copy

The truth is that if you want to change the contents of a string, This strin 9 is in vead
you’ll need to work on a copy. If you create a copy of the —°"'Y memory...
string in an area of memory that’s not read-only, there won’t be N
a problem if you try to change the letters it contains.
But how do you make a copy? Well, just create the string as a
new array. J Q K \ O
tavds is not Jus{; m

char cards[] = "JQK"; <— 4 pointer. tards
IS now an array.

-

<----

It’s probably not too clear why this changes anything. A/

strings are arrays. But in the old code, cards was just a ponter.

In the new code, it’s an array. If you declare an array called J Q K \O

cards and then set it to a string literal, the cards array will
be a completely new copy. The variable isn’t just pointing at the

string literal. It’s a brand-new array that contains a fresh copy

of the string literal. -
) ...s0 make a topy of the string in 3

To see how this works in practice, you’ll need to look at what setkion of memory that ean be amended.
happens in memory.

Geek Bits
cardsc or cardsx?

If you see a declaration like this, what does it really But if cards is being declared as a function argument, it
mean? means that cards is a pointer:
char cards/[] void stack deck(char cards[])
(™
Well, it depends on where you see it. If it's a normal .. tavds is @ thar ?oin’ccr.
variable declaration, then it means that cards is an }

array, and you have to set it to a value immediately:

1 *
int my function () void stack deck(char *cards)

{ {
tards is > char cards[] = "JOK"; }
an array.) . . have
ay size given, so You
} T;\c:{ SiEO {:,r:o"\(czhinggimmt diaz,cl‘/- These two funetions are equivalent.

74 Chapter 2

memory and pointers

In mewory: char cardsf1="1QK"

We’ve already seen what happens with the broken code,
but what about our new code? Let’s take a look.

H\5h55+' addvess

o The computer loads the string literal. W iy —

As before,. when the conilputer loads the ' S'l‘ 1‘(:[‘
program into memory, it stores the constant — — I
values—Tlike the string “JQK”—into read-only

e — [alel(=]po] — — —
e The program creates a new array on e ON) —

the stack.)} — G :
We’re declaring an array, so the program will ‘
create one large enough to store the “JOK” ¢ . . ‘ : . IAD ‘
string—four characters’ worth. ‘ . ‘ © . lllﬂ‘l

P

9 The program initializes the array. o . . ‘ ‘ e
But as well as allocating the space, the ‘ ‘ . . :
program will also copy the contents of the ‘ . < ’ ¢
string literal “JQK” into the stack memory. ‘

—_— — _— NW- 5 = Y
So the difference is that the original code . i @(,li(’lgj‘éb
used a pointer to point to a read-only string . o - =
literal. But if you initialize an array with — —

L > ' L /(7/
a string literal, you then have a copy of the // 5//7/ e NTQ
letters, and you can change them as much as //J |m| KMo / (’()1 b /j‘h/lk
you like. ///////////
———————|¢opE-
—char cards[]="JQK"; e
_ J S

e o o ’ ’ _
| cards[2] = cards[1l ;/\%@)

—_—

]
| (=]
11/f11

Lowest addvess you are here » 75

Read—only memor

test drive

See what happens if you construct a new array in the code.

#include <stdio.h>

File Edit Window Help Where'sTheLady?
> gcc monte.c -o monte && ./monte
int main () QKJ

{
char cards([] = "JQK";
char a card = cards([2];

cards[2] = cards[1l];

cards[1l] = cards[0]; Yes! The Queen
cards([0] = cards[2]; was the first
cards([2] = cards[1l]; card. I knew it...
cards[1l] = a card;

puts (cards) ;
return 0O;

The code works! Your cards variable now points to a string in an \
unprotected section of memory, so we are free to modify its contents. &‘ S

] :
Geek Bis

o

One way to avoid this problem in the future is to never write code that sets a simple char pointer to a string
literal value like:

char *s = "Some string";

There's nothing wrong with setting a pointer to a string literal—the problems only happen when you try to
modify a string literal. Instead, if you want to set a pointer to a literal, always make sure you use the const
keyword:

const char *s = "some string";
That way, if the compiler sees some code that tries to modify the string, it will give you a compile error:
s[0] = 'S';

monte.c:7: error: assignment of read-only location

76 Chapter 2

memory and pointers

The Case of the Magic Bullet

He was scanning his back catalog of Guns n’ Ammo into Delicious Library when there was
a knock at the door and she walked in: 5' 6", blonde, with a good laptop bag and cheap
shoes. He could tell she was a code jockey. “You’ve gotta help me...you gotta clear his
name! Jimmy was innocent, I tells you. Innocent!” He passed her a tissue to wipe the tears
from her baby blues and led her to a seat.

It was the old story. She’d met a guy, who knew a guy. Jimmy Blomstein worked tables at
the local Starbuzz and spent his weekends cycling and working on his taxidermy collection.
He hoped one day to save up enough for an elephant. But he’d fallen in with the wrong
crowd. The Masked Raider had met Jimmy in the morning for coffee and they’d both
been alive:

char masked raider[] = "Alive";
char *jimmy = masked raider;

printf ("Masked raider is %s, Jimmy is %s\n", masked raider,

Five-Minute e
Mystery

Masked raider is Alive, Jimmy is Alive

Then, that afternoon, the Masked Raider had gone off to pull a heist, like a hundred
heists he’d pulled before. But this time, he hadn’t reckoned on the crowd of G-Men
enjoying their weekly three-card monte session in the back room of the Head First
Lounge. You get the picture. A rattle of gunfire, a scream, and moments later the villain
was lying on the sidewalk, creating a public health hazard:

masked raider([0] = 'D';
masked raider([l] = 'E';
masked raider([2] = 'A';
masked raider([3] = 'D';
masked raider([4] = '!';

Problem is, when Toots here goes to check in with her boyfriend at the coffee shop, she’s
told he’s served his last orange mocha frappuccino:

printf ("Masked raider is %$s, Jimmy is %$s\n", masked raider, jimmy);

File Edit Window Help
Masked raider is DEAD!, Jimmy is DEAD!

So what gives? How come a single magic bullet killed Jimmy and the
Masked Raider? What do you think happened?

you are here » 77

case solved

The Case of the Magic Bullet
How come a single magic bullet killed Jimmy and the Masked Raider?

Jimmy, the mild-mannered barista, was mysteriously gunned down at the same time as arch-fiend the
Masked Raider:

#include <stdio.h>
int main ()
{
char masked raider[] = "Alive";
char *jimmy = masked raider;
printf ("Masked raider is %s, Jimmy is %$s\n", masked raider, jimmy);

masked raider[0] = 'D';
masked raider[l] = 'E';
masked raider([2] = 'A';
masked raider([3] = 'D';
masked raider([4] = '!';

printf ("Masked raider is %s, Jimmy is $%s\n", masked raider, jimmy);

return 0;

} Note from Marketing: diteh the product placement
for the Brain Booster drink; the deal fell through.

It took the detective a while to get to theybottom of the mystery. While he was waiting,
he took a long refreshing sip from a Head First Brain Booster Fruit Beverage. He sat
back in his seat and looked across the desk at her blue, blue eyes. She was like a rabbit caught
in the headlights of an oncoming truck, and he knew that he was at the wheel.

12>

“I'm afraid I got some bad news for you. Jimmy and the Masked Raider...were one and the same man
“NO!”

She took a sharp intake of breath and raised her hand to her mouth. “Sorry, sister. I have to say it how I
see it. Just look at the memory usage.” He drew a diagram:

masked raider ~—

Alll

v|le|NO

|

jjJnn“,‘//,/QV

“jimmy and masked raider are just aliases for the same memory address. They’re pointing to the
same place. When the masked raider stopped the bullet, so did Jimmy. Add to that this invoice
from the San Francisco elephant sanctuary and this order for 15 tons of packing material, and it’s an
open and shut case.”

78 Chapter 2

%BUI.I.ET POINTS

memory

If you see a * in a variable declaration,
it means the variable will be a pointer.

String literals are stored in read-only
memory.

If you want to modify a string, you need
to make a copy in a new array.

You can declare a char pointer as
const char * to prevent the code
from using it to modify a string.

Dum

therejare no
b Questions

pointers

Q: Why didn’t the compiler just tell
me | couldn’t change the string?

A: Because we declared the cards
as a simple char *, the compiler didn’t
know that the variable would always be
pointing at a string literal.

Q: Why are string literals stored in
read-only memory?

A: Because they are designed to be

constant. If you write a function to print

“Hello World,” you don’t want some other
part of the program modifying the “Hello
World” string literal.

Q: Do all operating systems enforce
the read-only rule?

A: The vast majority do. Some versions
of gcc on Cygwin actually allow you to
modify a string literal without complaining.
But it is always wrong to do that.

Q: What does const actually
mean? Does it make the string read-
only?

A: String literals are read-only anyway.
The const modifier means that the
compiler will complain if you try to modify
an array with that particular variable.

Qj Do the different memory
segments always appear in the same
order in memory?

A: They will always appear in the same
order for a given operating system. But
different operating systems can vary the
order slightly. For example, Windows
doesn’t place the code in the lowest
memory addresses.

Q; I still don’t understand why an
array variable isn’t stored in memory. If
it exists, surely it lives somewhere?

A: When the program is compiled, all
the references to array variables are
replaced with the addresses of the array.
So the truth is that the array variable
won't exist in the final executable. That's
OK because the array variable will never
be needed to point anywhere else.

Q: If I set a new array to a string
literal, will the program really copy the
contents each time?

A: It's down to the compiler. The final
machine code will either copy the bytes
of the string literal to the array, or else
the program will simply set the values of
each character every time it reaches the
declaration.

Q: You keep saying “declaration.”
What does that mean?

A: A declaration is a piece of code that
declares that something (a variable, a
function) exists. A definition is a piece of
code that says what something is. If you
declare a variable and set it to a value

(e.9., int x =4;), then the code is
both a declaration and a definition.

Qj Why is scanf () called
scanf ()?

A: scanf () means “scan formatted”
because it's used to scan formatted input.

79

memory reminder

Mewory mewmorizer

Stack

This is the section of memory used for local
variable storage. Every time you call a
function, all of the function’s local variables
get created on the stack. It’s called the stack
because it’s like a stack of plates: variables get
added to the stack when you enter a function,
and get taken off the stack when you leave.
Weird thing is, the stack actually works upside
down. It starts at the top of memory and
grows downward.

Heap

This is a section of memory we haven’t
really used yet. The heap is for dynamic
memory: pieces of data that get created
when the program is running and then hang
around a long time. You'll see later in the
book how you’ll use the heap.

Globals

A global variable is a variable that lives
outside all of the functions and is visible to
all of them. Globals get created when the
program first runs, and you can update them
freely. But that’s unlike...

Constants

Constants are also created when the program
first runs, but they are stored in read-only
memory. Constants are things like string
literals that you will need when the program
is running, but you’ll never want them to
change.

Code

Finally, the code segment. A lot of operating
systems place the code right down in the
lowest memory addresses. The code segment
is also read-only. This is the part of the
memory where the actual assembled code
gets loaded.

80 Chapter 2

Read—only memory

Highest addvess

MWMMMWM%%MW%MM

R

Lowest addvess

- Your C Toolbox

You’ve got Chapter 2 under

your belt, and now you’ve
added pointers and memory to
your toolbox. For a complete list of
tooltips in the book, see Appendix ii.

will allow 3

scawc(“%'\”; Y \

user to enter
3 numbﬂ' * ints dre
diveetly- di#‘ercnf sizes
mm—— O, di‘F‘FCV'Cn ¢
macthines,
A thar pointer —
vaviable % is
detlared as
char ¥x.
o String literals
are stoved
in V'cad-—only
memory.
\n\‘\'j\a\\u 3 nev
acedy wikh 2
sbeinoy and *
will eapy T

memory and pointers

£x veturns
the addvess

of *
é* is ealled
em—— a Poin{'.c\r
to »

Loca\
vaviables are
s{'pv'cd on
the stack.

Alr'v-ay
Vakiables Cah

€ used as
Pointeys.

fgc{:s(buf, size,
stdin) is a
simpler way to
enter text.

you are here » 81

	Chapter 2: Memory and Pointers: What are you pointing at?
	C code includes pointers
	Digging into memory
	Set sail with pointers
	Set sail sou’east, Cap’n
	Try passing a pointer to the variable
	Using memory pointers
	How do you pass a string to a function?
	Array variables are like pointers…
	What the computer thinks when it runs your code
	But array variables aren’t quite pointers
	Why arrays really start at 0
	Why pointers have types
	Using pointers for data entry
	Be careful with scanf()
	fgets() is an alternative to scanf()
	Anyone for three-card monte?
	Oops…there’s a memory problem…
	String literals can never be updated
	In memory: char *cards=“JQK”;
	If you’re going to change a string, make a copy
	In memory: char cards[]=“JQK”;
	Memory memorizer
	Your C Toolbox

