
this is a new chapter 41

...and of course, Mommy
never lets me stay out

after 6 p.m.

memory and pointers2

What are you
pointing at?

If you really want to kick butt with C, you need to understand
how C handles memory.
The C language gives you a lot more control over how your program uses the computer’s

memory. In this chapter, you’ll strip back the covers and see exactly what happens when

you read and write variables. You’ll learn how arrays work, how to avoid some nasty

memory SNAFUs, and most of all, you’ll see how mastering pointers and memory

addressing is key to becoming a kick-ass C programmer.

Thank heavens my
boyfriend variable isn’t
in read-only memory.

42 Chapter 2

introducing pointers

C code includes pointers
Pointers are one of the most fundamental things to understand in

the C programming language. So what’s a pointer? A pointer is

just the address of a piece of data in memory.

Pointers are used in C for a couple of reasons.

Instead of passing around a whole copy of the data, you
can just pass a pointer.

1

You might want two pieces of code to work on the same
piece of data rather than a separate copy.

2

Pointers help you do both these things: avoid copies and share data.

But if pointers are just addresses, why do some people find them

confusing? Because they’re a form of indirection. If you’re not

careful, you can quickly get lost chasing pointers through memory.

The trick to learning how to use C pointers is to go slowly.

 Don’t try to rush

this chapter.

Pointers are a simple

idea, but you need

to take your time and understand

everything. Take frequent breaks, drink

plenty of water, and if you really get

stuck, take a nice long bath.

To best understand
pointers, go slowly.

I’ve got the
answer you need;
it’s right here in
the Encyclopedia
Britannica.

Or you could
just look at
page 241.

This is a copy of
the information
you need.

This is a pointer:
the location of
the information.

You were supposed to
sign the birthday card we
left in the lunch room.

But I prefer
this one—it’s
got kittens!

memory and pointers

you are here 4 43

Digging into memory
To understand what pointers are, you’ll need to dig into

the memory of the computer.

Every time you declare a variable, the computer creates

space for it somewhere in memory. If you declare a

variable inside a function like main(), the computer

will store it in a section of memory called the stack. If

a variable is declared outside any function, it will be stored

in the globals section of memory.

int y = 1;

int main()
{
 int x = 4;
 return 0;
}

The computer might allocate, say, memory location

4,100,000 in the stack for the x variable. If you assign

the number 4 to the variable, the computer will store 4

at location 4,100,000.

If you want to find out the memory address of the

variable, you can use the & operator:

printf("x is stored at %p\n", &x);

x is stored at 0x3E8FA0

The address of the variable tells you where to find the

variable in memory. That’s why an address is also called

a pointer, because it points to the variable in memory.

A variable declared inside a
function is usually stored in the
stack.
A variable declared outside a
function is stored in globals.

Stack

Heap

Globals

Constants

Code

Variable y will live in the
globals section.
Memory address 1,000,000.

Value 1.

Variable x will live in the stack. Memory address 4,100,000. Value 4.

x lives at location 4,100,000.

&x is the address of x.

%p is used to format addresses. This is what the
code will print.

This is 4,100,000 in
hex (base 16) format.

You’ll probably get
a different address
on your machine.

1

4

y lives in globals.

x

y

44 Chapter 2

pirates of the bermuda rectangle

Set sail with pointers
Imagine you’re writing a game in which players have to

navigate their way around the…

The game will need to keep control of lots of things, like

scores and lives and the current location of the players. You

won’t want to write the game as one large piece of code;

instead, you’ll create lots of smaller functions that will each

do something useful in the game:

What does any of this have to do with pointers? Let’s begin

coding without worrying about pointers at all. You’ll just

use variables as you always have. A major part of the game

is going to be navigating your ship around the Bermuda

Rectangle, so let’s dive deeper into what the code will need

to do in one of the navigation functions.

go_south_east() go_north_west()

go_south()

die_of_scurvy()eat_rat()

acquire_facial_hair()

speaks_in_present_tense()

make_one_sequel_to
o_many()

memory and pointers

you are here 4 45

Set sail sou’east, Cap’n
The game will track the location of players using latitudes and

longitudes. The latitude is how far north or south the player

is, and the longitude is her position east or west. If a player

wants to travel southeast, that means her latitude will go down,

and her longitude will go up:

So you could write a go_south_east() function that takes

arguments for the latitude and longitude, which it will then

increase and decrease:

The program starts a ship at location [32, –64], so if it

heads southeast, the ship’s new position will be [31, –63].

At least it will be if the code works…

Look at the code carefully. Do you think it will work? Why? Why not?

#include <stdio.h>

void go_south_east(int lat, int lon)
{
 lat = lat - 1;
 lon = lon + 1;
}

int main()
{
 int latitude = 32;
 int longitude = -64;
 go_south_east(latitude, longitude);
 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);
 return 0;
}

Pass in the latitude
and longitude.

Decrease the
latitude.

Increase the longitude.

go_south_east()

The longitude
will increase.

The
latitude
will
decrease.

46 Chapter 2

test drive

Test Drive
The code should move the ship southeast from [32, –64] to

the new location at [31, –63]. But if you compile and run the

program, this happens:

> gcc southeast.c -o southeast
> ./southeast
Avast! Now at: [32, -64]
>

File Edit Window Help Savvy?WTF? The ship
is still in the
same place.

Where’s The
Fightin’?

The ship’s location stays exactly the same as before.

C sends arguments as values
The code broke because of the way that C calls functions.

We be
becalmed,
cap’n!

Arr! We be
writin’ a bad
Amazon review!

32

latitude

But if that’s how C calls functions, how can you ever write a

function that updates a variable?

It’s easy if you use pointers…

 Initially, the main() function has a local variable called latitude

that had value 32.
1

 When the computer calls the go_south_east() function, it

copies the value of the latitude variable to the lat argument.

This is just an assignment from the latitude variable to the lat

variable. When you call a function, you don’t send the variable as an

argument, just its value.

2

 When the go_south_east() function changes the

value of lat, the function is just changing its local copy.

That means when the computer returns to the main()

function, the latitude variable still has its original

value of 32.

3

32

lat

32

latitude

This is a new variable
containing a copy of
the latitude value.

32
lat

31

Only the local copy
gets changed.

The original variable
keeps its original value.

memory and pointers

you are here 4 47

Q: I printed the location of the
variable on my machine and it wasn’t
4,100,000. Did I do something wrong?

A: You did nothing wrong. The memory
location your program uses for the variables
will be different from machine to machine.

Q: Why are local variables stored in
the stack and globals stored somewhere
else?

A: Local and global variables are used
differently. You will only ever get one copy of
a global variable, but if you write a function
that calls itself, you might get very many
instances of the same local variable.

Q: What are the other areas of the
memory used for?

A: You’ll see what the other areas are for
as you go through the rest of the book.

Try passing a pointer to the variable
Instead of passing the value of the latitude and longitude

variables, what happens if you pass their addresses? If the

longitude variable lives in the stack memory at location 4,100,000,

what happens if you pass the location number 4,100,000 as a

parameter to the go_south_east() function?

If the go_south_east() function is told that the latitude

value lives at location 4,100,000, then it will not only be able to find

the current latitude value, but it will also be able to change the

contents of the original latitude variable. All the function needs

to do is read and update the contents of memory location 4,100,000.

Because the go_south_east() function is updating the original

latitude variable, the computer will be able to print out the

updated location when it returns to the main() function.

Pointers make it easier to share memory
This is one of the main reasons for using pointers—to let functions

share memory. The data created by one function can be modified by

another function, so long as it knows where to find it in memory.

Now that you know the theory of using pointers to fix the

go_south_east()function, it’s time to look at the details of

how you do it.

Read contents of
memory 4,100,000

Subtract 1 from
value
Store new value in
memory 4,100,000

31
32
latitude

32

latitude

4,100,000

4,100,000

The latitude
variable is at
memory location
4,100,000.

Please
update locker 4,100,000

Instead of passing
the value of the
variable, pass its
location.

48 Chapter 2

memory pointers

Using memory pointers
There are three things you need to know in order to use

pointers to read and write data.

Get the address of a variable.
You’ve already seen that you can find where a variable is stored in

memory using the & operator:

1

int x = 4;
printf("x lives at %p\n", &x);

But once you’ve got the address of a variable, you may want to store it

somewhere. To do that, you will need a pointer variable. A pointer

variable is just a variable that stores a memory address. When you

declare a pointer variable, you need to say what kind of data is stored

at the address it will point to:

int *address_of_x = &x;

Read the contents of an address.
When you have a memory address, you will want to read the data

that’s stored there. You do that with the * operator:

2

int value_stored = *address_of_x;

The * and & operators are opposites. The & operator takes a piece

of data and tells you where it’s stored. The * operator takes an

address and tells you what’s stored there. Because pointers are

sometimes called references, the * operator is said to dereference

a pointer.

Change the contents of an address.
If you have a pointer variable and you want to change the data

at the address where the variable’s pointing, you can just use the *

operator again. But this time you need to use it on the left side of

an assignment:

3

*address_of_x = 99;

OK, now that you know how to read and write
the contents of a memory location, it’s time
for you to fix the go_south_east() function.

4

x

4,100,000

The %p format will
print out the location in
hex (base 16) format.

& will find the
address of
the variable:
4,100,000.

This is a pointer variable for
an address that stores an int.

This will read the contents at
the memory address given by
address_of_x. This will be set
to 4: the value originally stored
in the x variable.

99

x

4,100,000

4

This will change the contents of
the original x variable to 99.

memory and pointers

you are here 4 49

&latitudeint *

&longitude

Compass Magnets
Now you need to fix the go_south_east() function so that it uses

pointers to update the correct data. Think carefully about what type of

data you want to pass to the function, and what operators you’ll need

to use to update the location of the ship.

int *

*lat
*lat

*lon
*lon

lat lon&lat

&lat &lon
&lon int

int

*latitude *longitude

#include <stdio.h>

void go_south_east(lat, lon)
{

 = - 1;

 = + 1;
}

int main()
{
 int latitude = 32;
 int longitude = -64;

 go_south_east(,);
 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);
 return 0;
}

What kinds of arguments will store
memory addresses for ints?

Remember: you’re going to pass the
addresses of variables.

50 Chapter 2

compass magnets

#include <stdio.h>

void go_south_east(lat, lon)
{

 = - 1;

 = + 1;
}

int main()
{
 int latitude = 32;
 int longitude = -64;

 go_south_east(,);
 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);
 return 0;
}

&latitude

int *

&longitude

Compass Magnets Solution
You needed to fix the go_south_east() function so that it

uses pointers to update the correct data. You were to think carefully

about what type of data you want to pass to the function, and what

operators you’ll need to use to update the location of the ship.

int *

*lat*lat

*lon *lon

lat lon&lat

&lat &lon
&lon int

int

*latitude *longitude

The arguments will store pointers
so they need to be int *.

*lat can read the old value

and set the new value.

You need to find the address
of the latitude and longitude
variables with &.

memory and pointers

you are here 4 51

Test Drive
Now if you compile and run the new version of the function,

you get this:

> gcc southeast.c -o southeast
> ./southeast
Avast! Now at: [31, -63]
>

File Edit Window Help Savvy?This is
southeast of
the original
location.

The code works.
Because the function takes pointer arguments, it’s able to

update the original latitude and longitude variables.

That means that you now know how to create functions that

not only return values, but can also update any memory

locations that are passed to them.

 � Variables are allocated storage in
memory.

 � Local variables live in the stack.

 � Global variables live in the globals
section.

 � Pointers are just variables that store
memory addresses.

 � The & operator finds the address of
a variable.

 � The * operator can read the contents
of a memory address.

 � The * operator can also set the
contents of a memory address.

Set sail for
Cancun!

Wind in the
sails, cap’n!

Arr! Spring
break!

52 Chapter 2

no dumb questions

Q: Are pointers actual address
locations? Or are they some other kind
of reference?

A: They’re actual numeric addresses in
the process’s memory.

Q: What does that mean?

A: Each process is given a simplified
version of memory to make it look like a
single long sequence of bytes.

Q: And memory’s not like that?

A: It’s more complicated in reality. But
the details are hidden from the process so
that the operating system can move the
process around in memory, or unload it and
reload it somewhere else.

Q: Is memory not just a long list of
bytes?

A: The computer will probably structure
its physical memory in a more complex way.
The machine will typically group memory
addresses into separate banks of memory
chips.

Q: Do I need to understand this?

A: For most programs, you don’t need to
worry about the details of how the machine
arranges its memory.

Q: Why do I have to print out pointers
using the %p format string?

A: You don’t have to use the %p string.
On most modern machines, you can use
%li—although the compiler may give you
a warning if you do.

Q: Why does the %p format display
the memory address in hex format?

A: It’s the way engineers typically refer
to memory addresses.

Q: If reading the contents of a
memory location is called dereferencing,
does that mean that pointers should be
called references?

A: Sometimes coders will call pointers
references, because they refer to a memory
location. However, C++ programmers
usually reserve the word reference for a
slightly different concept in C++.

Q: Oh yeah, C++. Are we going to
look at that?

A: No, this book looks at C only.

memory and pointers

you are here 4 53

Cookies make you fat

How do you pass a str ing to a funct ion?
You know how to pass simple values as arguments to functions, but what

if you want to send something more complex to a function, like a string?

If you remember from the last chapter, strings in C are actually arrays of

characters. That means if you want to pass a string to a function, you can

do it like this:

void fortune_cookie(char msg[])
{
 printf("Message reads: %s\n", msg);
}

char quote[] = "Cookies make you fat";
fortune_cookie(quote);

The function will be passed a char array.

The msg argument is defined like an array, but because you won’t know

how long the string will be, the msg argument doesn’t include a length.

That seems straightforward, but there’s something a little strange going on…

Honey, who shrank the str ing?
C has an operator called sizeof that can tell you how many bytes of

space something takes in memory. You can either call it with a data type or

with a piece of data:

sizeof(int)
sizeof("Turtles!")

But a strange thing happens if you look at the length of the string

you’ve passed in the function:

void fortune_cookie(char msg[])
{
 printf("Message reads: %s\n", msg);
 printf("msg occupies %i bytes\n", sizeof(msg));
}

> ./fortune_cookie
Message reads: Cookies make you fat
msg occupies 8 bytes
>

File Edit Window Help TakeAByte

Instead of displaying the full length of the string, the code returns

just 4 or 8 bytes. What’s happened? Why does it think the string

we passed in is shorter?

On most machines, this
will return the value 4.

This will return 9, which is 8
characters plus the \0 end character.

8??? And on some
machines, this
might even say 4!
What gives?

Why do you think sizeof(msg)
is shorter than the length of
the whole string? What is msg?
Why would it return different
sizes on different machines?

54 Chapter 2

array variables

Array variables are like pointers…
When you create an array, the array variable can be used as a

pointer to the start of the array in memory. When C sees a line of

code in a function like this:

char quote[] = "Cookies make you fat";

The computer will set aside space on the stack for each of the

characters in the string, plus the \0 end character. But it will also

associate the address of the first character with the quote

variable. Every time the quote variable is used in the code, the

computer will substitute it with the address of the first character in

the string. In fact, the array variable is just like a pointer:

printf("The quote string is stored at: %p\n", quote);

> ./where_is_quote
The quote string is stored at: 0x7fff69d4bdd7
>

File Edit Window Help TakeAByte

…so our funct ion was passed a pointer
That’s why that weird thing happened in the fortune_cookie()

code. Even though it looked like you were passing a string to the

fortune_cookie() function, you were actually just passing a

pointer to it:

void fortune_cookie(char msg[])
{
 printf("Message reads: %s\n", msg);
 printf("msg occupies %i bytes\n", sizeof(msg));
}

And that’s why the sizeof operator returned a weird result. It

was just returning the size of a pointer to a string. On 32-bit

operating systems, a pointer takes 4 bytes of memory and on 64-bit

operating systems, a pointer takes 8 bytes.

msg is actually a pointer variable.

msg points to the message.

sizeof(msg) is just the
size of a pointer.

You can use “quote” as
a pointer variable, even
though it's an array.

If you write a test program
to display the address, you
will see something like this.

oC \0ko ei s ...

The quote variable will
represent the address
of the first character
in the string.

memory and pointers

you are here 4 55

What the computer thinks when it runs your code

The computer sees the function.1

void fortune_cookie(char msg[])
{
 ...
}

The computer calls the function.3

char quote[] = "Cookies make you fat";
fortune_cookie(quote);

Then it sees the function contents.2

 printf("Message reads: %s\n", msg);
 printf("msg occupies %i bytes\n", sizeof(msg));

Hmmm…looks like they intend to pass
an array to this function. That means
the function will receive the value of the
array variable, which will be an address,
so msg will be a pointer to a char.

I can print the message because I know
it starts at location msg. sizeof(msg).
That’s a pointer variable, so the answer is
8 bytes because that’s how much memory
it takes for me to store a pointer.

So quote’s an array and I’ve got to pass
the quote variable to fortune_cookie().
I’ll set the msg argument to the address
where the quote array starts in memory.

56 Chapter 2

no dumb questions

 � An array variable can be used as a
pointer.

 � The array variable points to the first
element in the array.

 � If you declare an array argument
to a function, it will be treated as a
pointer.

 � The sizeof operator returns the
space taken by a piece of data.

 � You can also call sizeof for a data
type, such as sizeof(int).

 � sizeof(a pointer) returns
4 on 32-bit operating systems and 8
on 64-bit.

Q: Is sizeof a function?

A: No, it’s an operator.

Q: What’s the difference?

A: An operator is compiled to a sequence of instructions by
the compiler. But if the code calls a function, it has to jump to a
separate piece of code.

Q: So is sizeof calculated when the program is
compiled?

A: Yes. The compiler can determine the size of the storage at
compile time.

Q: Why are pointers different sizes on different machines?

A: On 32-bit operating systems, a memory address is stored as
a 32-bit number. That’s why it’s called a 32-bit system. 32 bits == 4
bytes. That’s why a 64-bit system uses 8 bytes to store an address.

Q: If I create a pointer variable, does the pointer variable
live in memory?

A: Yes. A pointer variable is just a variable storing a number.

Q: So can I find the address of a pointer variable?

A: Yes—using the & operator.

Q: Can I convert a pointer to an ordinary number?

A: On most systems, yes. C compilers typically make the long
data type the same size as a memory address. So if p is a pointer
and you want to store it in a long variable a, you can type
a = (long)p. We’ll look at this in a later chapter.

Q: On most systems? So it’s not guaranteed?

A: It’s not guaranteed.

memory and pointers

you are here 4 57

THE
MATIN

G
GAME We have a classic trio of bachelors ready to play The Mating

Game today.

Tonight’s lucky lady is going to pick one of these fine contestants.
Who will she choose?

#include <stdio.h>

int main()
{
 int contestants[] = {1, 2, 3};
 int *choice = contestants;
 contestants[0] = 2;
 contestants[1] = contestants[2];
 contestants[2] = *choice;
 printf("I'm going to pick contestant number %i\n", contestants[2]);
 return 0;
}

Contestant 1

Contestant 2
Contestant 3 I’m going to pick

contestant number

Look at the
code below,
and write your
answer here.

58 Chapter 2

date picked

SOLUTION

THE
MATIN

G
GAME We had a classic trio of bachelors ready to play The Mating Game

today.

Tonight’s lucky lady picked one of these fine contestants. Who did
she choose?

#include <stdio.h>

int main()
{
 int contestants[] = {1, 2, 3};
 int *choice = contestants;
 contestants[0] = 2;
 contestants[1] = contestants[2];
 contestants[2] = *choice;
 printf("I'm going to pick contestant number %i\n", contestants[2]);
 return 0;
}

Contestant 1

Contestant 2
Contestant 3 I’m going to pick

contestant number
2

“choice” is now the address of the
“contestants” array.

contestants[2]
 == *choice
 == contestants[0]
 == 2

memory and pointers

you are here 4 59

But array variables aren’t quite pointers
Even though you can use an array variable as a pointer, there

are still a few differences. To see the differences, think about this

piece of code.

char s[] = "How big is it?";
char *t = s;

sizeof(an array) is...the size of an array.
You’ve seen that sizeof(a pointer) returns the value 4 or 8,

because that’s the size of pointers on 32- and 64-bit systems. But if you

call sizeof on an array variable, C is smart enough to understand that

what you want to know is how big the array is in memory.

1

The address of the array...is the address of the array.
A pointer variable is just a variable that stores a memory address. But

what about an array variable? If you use the & operator on an array

variable, the result equals the array variable itself.

2

If a coder writes &s, that means “What is the address

of the s array?” The address of the s array is just…s.

But if someone writes &t, that means “What is the

address of the t variable?”

An array variable can’t point anywhere else.
When you create a pointer variable, the machine will

allocate 4 or 8 bytes of space to store it. But what if

you create an array? The computer will allocate space

to store the array, but it won’t allocate any memory to

store the array variable. The compiler simply plugs in

the address of the start of the array.

But because array variables don’t have allocated

storage, it means you can’t point them at anything else.

3

s = t;

Pointer decay
Because array variables are slightly

different from pointer variables, you need

to be careful when you assign arrays

to pointers. If you assign an array to a

pointer variable, then the pointer variable

will only contain the address of the array.

The pointer doesn’t know anything about

the size of the array, so a little information

has been lost. That loss of information is

called decay.

Every time you pass an array to a

function, you’ll decay to a pointer, so

it’s unavoidable. But you need to keep

track of where arrays decay in your code

because it can cause very subtle bugs.

This will give a compile error.

&s == s &t != t

oH \0w ...b

*

This is the s
array.
sizeof is
15.

This is the t pointer.
sizeof is 4 or 8.

sizeof(s)
 sizeof(t)

This returns 15.

This returns 4 or 8.

60 Chapter 2

five-minute mystery

The Case of the Lethal List

The mansion had all the things he’d dreamed of: landscaped grounds,

chandeliers, its own bathroom. The 94-year-old owner, Amory

Mumford III, had been found dead in the garden, apparently of a

heart attack. Natural causes? The doc thought it was an overdose of

heart medication. Something stank here, and it wasn’t just the dead

guy in the gazebo. Walking past the cops in the hall, he approached

Mumford’s newly widowed 27-year-old wife, Bubbles.

“I don’t understand. He was always so careful with his medication.

Here’s the list of doses.” She showed him the code from the drug

dispenser.

 int doses[] = {1, 3, 2, 1000};

“The police say I reprogrammed the dispenser. But I’m no good with

technology. They say I wrote this code, but I don’t even think it’ll

compile. Will it?”

She slipped her manicured fingers into her purse and handed him a

copy of the program the police had found lying by the millionaire’s bed.

It certainly didn’t look like it would compile…

 printf("Issue dose %i", 3[doses]);

What did the expression 3[doses] mean? 3 wasn’t an array. Bubbles

blew her nose. “I could never write that. And anyway, a dose of 3 is not

so bad, is it?”

A dose of size 3 wouldn’t have killed the old guy. But

maybe there was more to this code than met the eye…

Five-Minute
Mystery

memory and pointers

you are here 4 61

Why arrays really start at 0
An array variable can be used as a pointer to the first element in an

array. That means you can read the first element of the array either

by using the brackets notation or using the * operator like this:

int drinks[] = {4, 2, 3};
printf("1st order: %i drinks\n", drinks[0]);
printf("1st order: %i drinks\n", *drinks);

These lines
of code are
equivalent.

drinks[0] == *drinks

But because an address is just a number, that means you can do

pointer arithmetic and actually add values to a pointer value

and find the next address. So you can either use brackets to read

the element with index 2, or you can just add 2 to the address of

the first element:

printf("3rd order: %i drinks\n", drinks[2]);
printf("3rd order: %i drinks\n", *(drinks + 2));

In general, the two expressions drinks[i] and *(drinks + i)

are equivalent. That’s why arrays begin with index 0. The index is

just the number that’s added to the pointer to find the location of

the element.

Use the power of pointer arithmetic to mend a broken heart. This

function will skip the first six characters of the text message.

void skip(char *msg)
{
 puts();
}

char *msg_from_amy = "Don't call me";
skip(msg_from_amy);

What expression do you need here to
print from the seventh character?

The function needs to print this
message from the ‘c’ character on.

24 3

This is at
location “drinks.”

This is at “drinks + 1.”

This is at
“drinks + 2.”

62 Chapter 2

pointers and types

You were to use the power of pointer arithmetic to mend a

broken heart. This function skips the first six characters of the

text message.

void skip(char *msg)
{
 puts();
}

char *msg_from_amy = "Don't call me";
skip(msg_from_amy);

If you add 6 to the msg pointer,
you will print from character 7.

msg + 6

> ./skip
call me
>

File Edit Window Help

Why pointers have types
If pointers are just addresses, then why do pointer variables have types?

Why can’t you just store all pointers in some sort of general pointer

variable?

The reason is that pointer arithmetic is sneaky. If you add 1 to a

char pointer, the pointer will point to the very next memory address.

But that’s just because a char occupies 1 byte of memory.

What if you have an int pointer? ints usually take 4 bytes of space,

so if you add 1 to an int pointer, the compiled code will actually add

4 to the memory address.

int nums[] = {1, 2, 3};
printf("nums is at %p\n", nums);
printf("nums + 1 is at %p\n", nums + 1);

If you run this code, the two memory address will be more than one

byte apart. So pointer types exist so that the compiler knows how

much to adjust the pointer arithmetic.

> ./print_nums
nums is at 0x7fff66ccedac
nums + 1 is at 0x7fff66ccedb0

File Edit Window Help

(nums + 1) is 4 bytes
away from nums.

short*

int*

long*

char*

Pointer variables have different
types for each type of data.

Remember, these
addresses are printed
in hex format.

oD \0‘n t ac ll m e
The code will display this.

msg points here. msg + 6 points to the letter c.

memory and pointers

you are here 4 63

The Case of the Lethal List

Last time we left our hero interviewing Bubbles Mumford,

whose husband had been given an overdose as a result of

suspicious code. Was Bubbles the coding culprit or just a

patsy? To find out, read on…

He put the code into his pocket. “It’s been a pleasure, Mrs. Mumford. I don’t

think I need to bother you anymore.” He shook her by the hand. “Thank you,”

she said, wiping the tears from her baby blue eyes, “You’ve been so kind.”

“Not so fast, sister.” Bubbles barely had time to gasp before

he’d slapped the bracelets on her. “I can tell from your

hacker manicure that you know more than you say about

this crime.” No one gets fingertip calluses like hers without

logging plenty of time on the keyboard.

“Bubbles, you know a lot more about C than you let on. Take a

look at this code again.”

int doses[] = {1, 3, 2, 1000};
printf("Issue dose %i", 3[doses]);

“I knew something was wrong when I saw the expression 3[doses]. You

knew you could use an array variable like doses as a pointer. The fatal 1,000

dose could be written down like this…” He scribbled down a few coding

options on his second-best Kleenex:

doses[3] == *(doses + 3) == *(3 + doses) == 3[doses]

“Your code was a dead giveaway, sister. It issued a dose of 1,000 to the old guy.

And now you’re going where you can never corruptly use C syntax again…”

Five-Minute
Mystery

Solved

64 Chapter 2

no dumb questions

 � Array variables can be used as
pointers…

 � …but array variables are not quite
the same.

 � sizeof is different for array and
pointer variables.

 � Array variables can’t point to
anything else.

 � Passing an array variable to a pointer
decays it.

 � Arrays start at zero because of
pointer arithmetic.

 � Pointer variables have types so they
can adjust pointer arithmetic.

Q: Do I really need to understand pointer arithmetic?

A: Some coders avoid using pointer arithmetic because it’s
easy to get it wrong. But it can be used to process arrays of data
efficiently.

Q: Can I subtract numbers from pointers?

A: Yes. But be careful that you don’t go back before the start of
the allocated space in the array.

Q: When does C adjust the pointer arithmetic calculations?

A: It happens when the compiler is generating the executable. It
looks at the type of the variable and then multiplies the pluses and
minuses by the size of the underlying variable.

Q: Go on…

A: If the compiler sees that you are working with an int array
and you are adding 2, the compiler will multiply that by 4 (the length
of an int) and add 8.

Q: Does C use the sizeof operator when it is adjusting
pointer arithmetic?

A: Effectively. The sizeof operator is also resolved at
compile time, and both sizeof and the pointer arithmetic
operations will use the same sizes for different data types.

Q: Can I multiply pointers?

A: No.

memory and pointers

you are here 4 65

Using pointers for data entry
You already know how to get the user to enter a string from the

keyboard. You can do it with the scanf() function:

char name[40];
printf("Enter your name: ");
scanf("%39s", name);

You’re going to store a
name in this array.

scanf will read up to 39 characters
plus the string terminator \0.

How does scanf() work? It accepts a char pointer, and in this

case you’re passing it an array variable. By now, you might have

an idea why it takes a pointer. It’s because the scanf() function

is going to update the contents of the array. Functions that need to

update a variable don’t want the value of the variable itself—they

want its address.

Entering numbers with scanf()
So how do you enter data into a numeric field? You do it by

passing a pointer to a number variable.

int age;
printf("Enter your age: ");
scanf("%i", &age);

%i means the user will
enter an int value. Use the & operator to get the address of the int.

Because you pass the address of a number variable into the

function, scanf() can update the contents of the variable.

And to help you out, you can pass a format string that contains

the same kind of format codes that you pass to the printf()

function. You can even use scanf() to enter more than one

piece of information at a time:

char first_name[20];
char last_name[20];
printf("Enter first and last name: ");
scanf("%19s %19s", first_name, last_name);
printf("First: %s Last:%s\n", first_name, last_name);

> ./name_test
Enter first and last name: Sanders Kleinfeld
First: Sanders Last: Kleinfeld
>

File Edit Window Help Meerkats

This reads a
first name, then
a space, then the
second name.

The first and last names are
stored in separate arrays.

%i

%29s

%f

Enter an integer.

Enter up to 29 characters (+ ‘\0’).

Enter a floating-point number.

66 Chapter 2

scanf() can cause overflows

SECURITY ALERT!
SECURITY ALERT!
SECURITY ALERT!!

Be careful with scanf()
There’s a little…problem with the scanf() function. So

far, all of the code you’ve written has very carefully put a limit

on the number of characters that scanf() will read into a

function:

scanf("%39s", name);

scanf("%2s", card_name);

Why is that? After all, scanf() uses the same kind of format

strings as printf(), but when we print a string with printf(),

you just use %s. Well, if you just use %s in scanf(), there can

be a problem if someone gets a little type-happy:

char food[5];
printf("Enter favorite food: ");
scanf("%s", food);
printf("Favorite food: %s\n", food);

> ./food
Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11
>

File Edit Window Help TakeAByte

The program crashes. The reason is because scanf() writes

data way beyond the end of the space allocated to the food array.

scanf() can cause buffer overf lows
If you forget to limit the length of the string that you read with

scanf(), then any user can enter far more data than the

program has space to store. The extra data then gets written into

memory that has not been properly allocated by the computer.

Now, you might get lucky and the data will simply be stored and

not cause any problems.

But it’s very likely that buffer overflows will cause bugs. It might

be called a segmentation fault or an abort trap, but whatever the

error message that appears, the result will be a crash.

il ev -r at n

This is the
food array.

The food array ends
after five characters.

Everything beyond
letter r is outside
the array.

From the “-”
on, this code is
in illegal space.

memory and pointers

you are here 4 67

fgets() is an alternat ive to scanf()
There’s another function you can use to enter text data:

fgets(). Just like the scanf() function, it takes a char

pointer, but unlike the scanf() function, the fgets() function

must be given a maximum length:

char food[5];
printf("Enter favorite food: ");
fgets(food, sizeof(food), stdin);

That means that you can’t accidentally forget to set a length

when you call fgets(); it’s right there in the function

signature as a mandatory argument. Also, notice that the

fgets() buffer size includes the final \0 character. So

you don’t need to subtract 1 from the length as you do with

scanf().

OK, what else do you need to know about
fgets()?

Using sizeof with fgets()
The code above sets the maximum length using the sizeof

operator. Be careful with this. Remember: sizeof returns

the amount of space occupied by a variable. In the code

above, food is an array variable, so sizeof returns the

size of the array. If food was just a simple pointer variable,

the sizeof operator would have just returned the size of a

pointer.

If you know that you are passing an array variable to

fgets() function, then using sizeof is fine. If you’re

just passing a simple pointer, you should just enter the size

you want:

printf("Enter favorite food: ");
fgets(food, 5, stdin);

If food was a simple
pointer, you’d give an
explicit length, rather
than using sizeof.

Tales from
the Crypt

The fgets() function
actually comes from an
older function called
gets().

Even though fgets() is seen
as a safer-to-use function than
scanf(), the truth is that the
older gets() function is far
more dangerous than either of
them. The reason? The gets()
function has no limits at all:

char dangerous[10];
gets(dangerous);

gets() is a function that’s
been around for a long time.
But all you really need to know
is that you really shouldn’t
use it.

Nooooooo!!!!!
Seriously,
don’t use
this.

This is the
same program
as before.

First, it takes a
pointer to a buffer.

Next, it takes a maximum size
of the string (‘\0’ included).

stdin just means the
data will be coming
from the keyboard.

You’ll find out
more about
stdin later.

68 Chapter 2

scanf() vs fgets()

Title Fight
Roll up! Roll up! It’s time for the title fight we’ve all been waiting for. In the

red corner: nimble light, flexible but oh-so-slightly dangerous. It’s the bad

boy of data input: scanf(). And in the blue corner, he’s simple, he’s safe,

he’s the function you’d want to introduce to your mom: it’s fgets()!

scanf():

scanf() can limit the data

entered, so long as you remember

to add the size to the format string.

Yes! scanf() will not only allow

you to enter more than one field,

but it also allows you to enter

structured data including the

ability to specify what characters

appear between fields.

Oof ! scanf() gets hit badly by

this one. When scanf() reads a

string with the %s, it stops as soon

as it hits a space. So if you want

to enter more than one word, you

either have to call it more than

once, or use some fancy regular

expression trick.

fgets():

fgets() has a mandatory limit.

Nothing gets past him.

Ouch! fgets() takes this one on

the chin. fgets() allows you to

enter just one string into a buffer.

No other data types. Just strings.

Just one buffer.

No problem with spaces at all.

fgets() can read the whole

string every time.

Round 1: Limits
Do you limit the number of
characters that a user can
enter?

Round 2: Multiple ields
Can you be used to enter

more than one field?

Round 3: Spaces in strings
If someone enters a string,

can it contain spaces?

Result: fgets() takes this round on points.

Result: scanf() clearly wins this round.

Result: A ightback! Round to fgets().

A good clean fight between these two feisty functions. Clearly, if you need to enter

structured data with several fields, you’ll want to use scanf(). If you’re entering

a single unstructured string, then fgets() is probably the way to go.

memory and pointers

you are here 4 69

#include <stdio.h>

int main()
{
 char *cards = "JQK";
 char a_card = cards[2];
 cards[2] = cards[1];
 cards[1] = cards[0];
 cards[0] = cards[2];
 cards[2] = cards[1];
 cards[1] = a_card;
 puts(cards);
 return 0;
}

Anyone for three-card monte?
In the back room of the Head First Lounge, there’s a game

of three-card monte going on. Someone shuffles three cards

around, and you have to watch carefully and decide where you

think the Queen card went. Of course, being the Head First

Lounge, they’re not using real cards; they’re using code. Here’s the

program they’re using:

The code is designed to shuffle the letters in the three-letter

string “JQK.” Remember: in C, a string is just an array of

characters. The program switches the characters around and

then displays what the string looks like.

The players place their bets on where they think the “Q” letter

will be, and then the code is compiled and run.

Find the Queen.

70 Chapter 2

memory problems

Oops…there’s a memory problem…
It seems there’s a problem with the card shark’s code. When

the code is compiled and run on the Lounge’s notebook

computer, this happens:

Darn it. I knew that
card shark couldn’t be
trusted…

What’s more, if the guys try the same code on different

machines and operating systems, they get a whole bunch of

different errors:

What’s wrong with the code?

> gcc monte.c -o monte && ./monte
monte.exe has stopped working
File Edit Window Help HolyCrap

SegPhault!

Bus Error!
Segmentation Error!

Whack!

Kapow!

> gcc monte.c -o monte && ./monte
bus error
File Edit Window Help PlaceBet

memory and pointers

you are here 4 71

Whack!

?What’s Your Hunch?

It’s time to use your intuition. Don’t overanalyze. Just take a guess.

Read through these possible answers and select only the one you think is

correct.

What do you think the problem is?

The string can’t be updated.

We’re swapping characters outside the string.

The string isn’t in memory.

Something else.

72 Chapter 2

gut instinct

?What’s Your Hunch?

It was time to use your intuition. You were to read through these

possible answers and select only the one you think is correct.

What did you think the problem was?

The string can’t be updated.

We’re swapping characters outside the string.

The string isn’t in memory.

Something else.

String li terals can never be updated
A variable that points to a string literal can’t be used to change the

contents of the string:

char *cards = "JQK"; This variable can’t modify this string.

But if you create an array from a string literal, then you can

modify it:

char cards[] = "JQK";

It all comes down to how C uses memory…

Solution

memory and pointers

you are here 4 73

In memory: char *cards=“JQK”;

The computer loads the string literal.
When the computer loads the program

into memory, it puts all of the constant

values—like the string literal “JQK”—into

the constant memory block. This section of

memory is read only.

1

char *cards="JQK";
...
cards[2] = cards[1];

The program creates the cards
variable on the stack.
The stack is the section of memory that the

computer uses for local variables: variables

inside functions. The cards variable will live

here.

2 cards

1

2

The cards variable is set to the
address of “JQK.”
The cards variable will contain the address

of the string literal “JQK.” String literals

are usually stored in read-only memory to

prevent anyone from changing them.

3

3
The computer tries to change the
string.
When the program tries to change the

contents of the string pointed to by the cards

variable, it can’t; the string is read-only.

4

So the problem is that string literals like

“JQK” are held in read only memory. They’re

constants.

But if that’s the problem, how do
you fix it?

4

I can’t update
that, buddy. It’s in
the constant memory
block, so it’s read-only.

Stack

Heap

Globals

Constants

Code

Lowest address

Highest address

Re
ad

-o
nly

 m
em

or
y

\0J Q K

To understand why this line of code causes a memory error, we

need to dig into the memory of the computer and see exactly

what the computer will do.

74 Chapter 2

copy and change

If you’re going to change a str ing , make a copy

char cards[] = "JQK";

It’s probably not too clear why this changes anything. All

strings are arrays. But in the old code, cards was just a pointer.

In the new code, it’s an array. If you declare an array called

cards and then set it to a string literal, the cards array will

be a completely new copy. The variable isn’t just pointing at the

string literal. It’s a brand-new array that contains a fresh copy

of the string literal.

To see how this works in practice, you’ll need to look at what

happens in memory.

\0J KQ

\0J KQ

This string is in read-only memory…

…so make a copy of the string in a
section of memory that can be amended.

The truth is that if you want to change the contents of a string,

you’ll need to work on a copy. If you create a copy of the

string in an area of memory that’s not read-only, there won’t be

a problem if you try to change the letters it contains.

But how do you make a copy? Well, just create the string as a

new array.

Geek Bits

If you see a declaration like this, what does it really

mean?

char cards[]

Well, it depends on where you see it. If it’s a normal

variable declaration, then it means that cards is an

array, and you have to set it to a value immediately:

int my_function()
{
 char cards[] = "JQK";
 ...
}

But if cards is being declared as a function argument, it

means that cards is a pointer:

void stack_deck(char cards[])
{
 ...
}

void stack_deck(char *cards)
{
 ...
}

cards[] or cards*?

There’s no array size given, so you have
to set it to something immediately.

cards is
an array.

cards is a char pointer.

These two functions are equivalent.

cards is not just
a pointer. cards
is now an array.

memory and pointers

you are here 4 75

Stack

Heap

Globals

Constants

Code

In memory: char cards[]=“JQK”;

The computer loads the string literal.
As before, when the computer loads the

program into memory, it stores the constant

values—like the string “JQK”—into read-only

memory.

1

char cards[]="JQK";
...
cards[2] = cards[1];

The program creates a new array on
the stack.
We’re declaring an array, so the program will

create one large enough to store the “JQK”

string—four characters’ worth.

2

1

2

The program initializes the array.
But as well as allocating the space, the

program will also copy the contents of the

string literal “JQK” into the stack memory.

3

3

So the difference is that the original code

used a pointer to point to a read-only string

literal. But if you initialize an array with

a string literal, you then have a copy of the

letters, and you can change them as much as

you like.

Lowest address

Highest address

Re
ad

-o
nly

 m
em

or
y

We’ve already seen what happens with the broken code,

but what about our new code? Let’s take a look.

\0J Q K

\0J Q K

76 Chapter 2

test drive

Test Drive
See what happens if you construct a new array in the code.

#include <stdio.h>

int main()
{
 char cards[] = "JQK";
 char a_card = cards[2];
 cards[2] = cards[1];
 cards[1] = cards[0];
 cards[0] = cards[2];
 cards[2] = cards[1];
 cards[1] = a_card;
 puts(cards);
 return 0;
}

> gcc monte.c -o monte && ./monte
QKJ
File Edit Window Help Where’sTheLady?

The code works! Your cards variable now points to a string in an

unprotected section of memory, so we are free to modify its contents.

Geek Bits

One way to avoid this problem in the future is to never write code that sets a simple char pointer to a string

literal value like:

 char *s = "Some string";
There’s nothing wrong with setting a pointer to a string literal—the problems only happen when you try to

modify a string literal. Instead, if you want to set a pointer to a literal, always make sure you use the const

keyword:

 const char *s = "some string";
That way, if the compiler sees some code that tries to modify the string, it will give you a compile error:

 s[0] = 'S';
 monte.c:7: error: assignment of read-only location

Yes! The Queen
was the first
card. I knew it…

memory and pointers

you are here 4 77

The Case of the Magic Bullet

He was scanning his back catalog of Guns ’n’ Ammo into Delicious Library when there was

a knock at the door and she walked in: 5' 6", blonde, with a good laptop bag and cheap

shoes. He could tell she was a code jockey. “You’ve gotta help me…you gotta clear his

name! Jimmy was innocent, I tells you. Innocent!” He passed her a tissue to wipe the tears

from her baby blues and led her to a seat.

It was the old story. She’d met a guy, who knew a guy. Jimmy Blomstein worked tables at

the local Starbuzz and spent his weekends cycling and working on his taxidermy collection.

He hoped one day to save up enough for an elephant. But he’d fallen in with the wrong

crowd. The Masked Raider had met Jimmy in the morning for coffee and they’d both

been alive:

char masked_raider[] = "Alive";
char *jimmy = masked_raider;

printf("Masked raider is %s, Jimmy is %s\n", masked_raider,
jimmy);

Then, that afternoon, the Masked Raider had gone off to pull a heist, like a hundred

heists he’d pulled before. But this time, he hadn’t reckoned on the crowd of G-Men

enjoying their weekly three-card monte session in the back room of the Head First

Lounge. You get the picture. A rattle of gunfire, a scream, and moments later the villain

was lying on the sidewalk, creating a public health hazard:

masked_raider[0] = 'D';
masked_raider[1] = 'E';
masked_raider[2] = 'A';
masked_raider[3] = 'D';
masked_raider[4] = '!';

Problem is, when Toots here goes to check in with her boyfriend at the coffee shop, she’s

told he’s served his last orange mocha frappuccino:

printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

So what gives? How come a single magic bullet killed Jimmy and the

Masked Raider? What do you think happened?

Masked raider is Alive, Jimmy is Alive
File Edit Window Help

Masked raider is DEAD!, Jimmy is DEAD!
File Edit Window Help

Five-Minute
Mystery

78 Chapter 2

case solved

The Case of the Magic Bullet

How come a single magic bullet killed Jimmy and the Masked Raider?

Jimmy, the mild-mannered barista, was mysteriously gunned down at the same time as arch-fiend the

Masked Raider:

#include <stdio.h>
int main()
{
 char masked_raider[] = "Alive";
 char *jimmy = masked_raider;
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 masked_raider[0] = 'D';
 masked_raider[1] = 'E';
 masked_raider[2] = 'A';
 masked_raider[3] = 'D';
 masked_raider[4] = '!';
 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);
 return 0;
}

It took the detective a while to get to the bottom of the mystery. While he was waiting,

he took a long refreshing sip from a Head First Brain Booster Fruit Beverage. He sat

back in his seat and looked across the desk at her blue, blue eyes. She was like a rabbit caught

in the headlights of an oncoming truck, and he knew that he was at the wheel.

“I’m afraid I got some bad news for you. Jimmy and the Masked Raider…were one and the same man!”

“No!”

She took a sharp intake of breath and raised her hand to her mouth. “Sorry, sister. I have to say it how I

see it. Just look at the memory usage.” He drew a diagram:

“jimmy and masked_raider are just aliases for the same memory address. They’re pointing to the

same place. When the masked_raider stopped the bullet, so did Jimmy. Add to that this invoice

from the San Francisco elephant sanctuary and this order for 15 tons of packing material, and it’s an

open and shut case.”

Note from Marketing: ditch the product placement for the Brain Booster drink; the deal fell through.

Five-Minute
Mystery

Solved

jimmy
vilA \0e

masked_raider

memory and pointers

you are here 4 79

Q: Why didn’t the compiler just tell
me I couldn’t change the string?

A: Because we declared the cards
as a simple char *, the compiler didn’t
know that the variable would always be
pointing at a string literal.

Q: Why are string literals stored in
read-only memory?

A: Because they are designed to be
constant. If you write a function to print

“Hello World,” you don’t want some other
part of the program modifying the “Hello
World” string literal.

Q: Do all operating systems enforce
the read-only rule?

A: The vast majority do. Some versions
of gcc on Cygwin actually allow you to
modify a string literal without complaining.
But it is always wrong to do that.

Q: What does const actually
mean? Does it make the string read-
only?

A: String literals are read-only anyway.
The const modifier means that the
compiler will complain if you try to modify
an array with that particular variable.

Q: Do the different memory
segments always appear in the same
order in memory?

A: They will always appear in the same
order for a given operating system. But
different operating systems can vary the
order slightly. For example, Windows
doesn’t place the code in the lowest
memory addresses.

Q: I still don’t understand why an
array variable isn’t stored in memory. If
it exists, surely it lives somewhere?

A: When the program is compiled, all
the references to array variables are
replaced with the addresses of the array.
So the truth is that the array variable
won’t exist in the final executable. That’s
OK because the array variable will never
be needed to point anywhere else.

Q: If I set a new array to a string
literal, will the program really copy the
contents each time?

A: It’s down to the compiler. The final
machine code will either copy the bytes
of the string literal to the array, or else
the program will simply set the values of
each character every time it reaches the
declaration.

Q: You keep saying “declaration.”
What does that mean?

A: A declaration is a piece of code that
declares that something (a variable, a
function) exists. A definition is a piece of
code that says what something is. If you
declare a variable and set it to a value
(e.g., int x = 4;), then the code is
both a declaration and a definition.

Q: Why is scanf() called
scanf()?

A: scanf() means “scan formatted”
because it’s used to scan formatted input.

 � If you see a * in a variable declaration,
it means the variable will be a pointer.

 � String literals are stored in read-only
memory.

 � If you want to modify a string, you need
to make a copy in a new array.

 � You can declare a char pointer as
const char * to prevent the code
from using it to modify a string.

80 Chapter 2

memory reminder

Memory memorizer
Stack
This is the section of memory used for local

variable storage. Every time you call a

function, all of the function’s local variables

get created on the stack. It’s called the stack

because it’s like a stack of plates: variables get

added to the stack when you enter a function,

and get taken off the stack when you leave.

Weird thing is, the stack actually works upside

down. It starts at the top of memory and

grows downward.

Heap
This is a section of memory we haven’t

really used yet. The heap is for dynamic

memory: pieces of data that get created

when the program is running and then hang

around a long time. You’ll see later in the

book how you’ll use the heap.

Globals
A global variable is a variable that lives

outside all of the functions and is visible to

all of them. Globals get created when the

program first runs, and you can update them

freely. But that’s unlike…

Constants
Constants are also created when the program

first runs, but they are stored in read-only

memory. Constants are things like string

literals that you will need when the program

is running, but you’ll never want them to

change.

Code
Finally, the code segment. A lot of operating

systems place the code right down in the

lowest memory addresses. The code segment

is also read-only. This is the part of the

memory where the actual assembled code

gets loaded.
Lowest address

Highest address

Re
ad

-o
nly

 m
em

or
y

memory and pointers

you are here 4 81

Your C Toolbox
You’ve got Chapter 2 under
your belt, and now you’ve

added pointers and memory to
your toolbox. For a complete list of

tooltips in the book, see Appendix ii.

CHAPT
ER 2

scanf(“%i”, &x)

will allow a
user to enter

a number x
directly.

ints are
different sizes on different machines.

&x returns
the address
of x.

&x is called
a pointer
to x.

A char pointer
variable x is
declared as
char *x.

String literals
are stored
in read-only
memory.

Initialize a
new

array with a

string, and
it

will copy it.

Local
variables are
stored on
the stack.

Array
variables can
be used as
pointers.

Read the
contents of
an address a
with *a. fgets(buf, size,

stdin) is a
simpler way to
enter text.

	Chapter 2: Memory and Pointers: What are you pointing at?
	C code includes pointers
	Digging into memory
	Set sail with pointers
	Set sail sou’east, Cap’n
	Try passing a pointer to the variable
	Using memory pointers
	How do you pass a string to a function?
	Array variables are like pointers…
	What the computer thinks when it runs your code
	But array variables aren’t quite pointers
	Why arrays really start at 0
	Why pointers have types
	Using pointers for data entry
	Be careful with scanf()
	fgets() is an alternative to scanf()
	Anyone for three-card monte?
	Oops…there’s a memory problem…
	String literals can never be updated
	In memory: char *cards=“JQK”;
	If you’re going to change a string, make a copy
	In memory: char cards[]=“JQK”;
	Memory memorizer
	Your C Toolbox

