


INTRODUCTION
TO GAME

DEVELOPMENT,
SECOND EDITION

Edited by
Steve Rabin

Charles River Media

A part of Cengage Learning

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States



© 2010 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited 
to photocopying, recording, scanning, digitizing, taping, Web distribution, 
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

All trademarks are the property of their respective owners.

Library of Congress Control Number: 2008941417

ISBN-13: 978-1-58450-679-9

ISBN-10: 1-58450-679-2

Course Technology, a part of Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Introduction to Game Development,

Second Edition

Edited by Steve Rabin

Publisher and General Manager, 

Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Content Project Manager:

Jessica McNavich

Marketing Manager:

Jordan Casey

Acquisitions Editor:

Heather Hurley

Project and Copy Editor:

Marta Justak

Technical Reviewer:

Steve Rabin

CRM Editorial Services Coordinator:

Jennifer Blaney

Interior Layout:

Shawn Morningstar

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Brandon Penticuff

Indexer:

Valerie Haynes Perry

Proofreader:

Michael Beady

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09

eISBN-10: 1-58450-705-5



iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

How to Use this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Contributor Bios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

PART 1 CRITICAL GAME STUDIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Brief History of Video Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Robert T. Bakie

1.2 Games and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Robert T. Bakie

PART 2 GAME DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Game Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Isaac Barry

2.2 Game Writing and Interactive Storytelling. . . . . . . . . . . . . . . . . . . . . 139

Leslie Stirling

PART 3 GAME PROGRAMMING: LANGUAGES AND ARCHITECTURE. . 165

3.1 Teams and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Noel Llopis

3.2 C++, Java, and Scripting Languages . . . . . . . . . . . . . . . . . . . . . . . . . 189

Noel Llopis

3.3 Programming Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Noel Llopis

Table of Contents



3.4 Game Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Noel Llopis

3.5 Memory and I/O Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Noel Llopis

3.6 Debugging Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Steve Rabin

PART 4 GAME PROGRAMMING: MATH, COLLISION DETECTION, 
AND PHYSICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

4.1 Mathematical Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Eric Lengyel

4.2 Collision Detection and Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Steve Rabin and Bretton Wade

4.3 Real-Time Game Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Graham Rhodes

PART 5 GAME PROGRAMMING: GRAPHICS, ANIMATION, AI, 
AUDIO, AND NETWORKING . . . . . . . . . . . . . . . . . . . . . . . . . . 421

5.1 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Tom Forsyth

5.2 Character Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Tom Forsyth

5.3 Artificial Intelligence: Agents, Architecture, and Techniques . . . . . . 521

Steve Rabin

5.4 Artificial Intelligence: Pathfinding Overview . . . . . . . . . . . . . . . . . . . 559

Syrus Mesdaghi

5.5 Audio Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

James Boer

5.6 Networking and Multiplayer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Chuck Walters

iv Contents



PART 6 AUDIO VISUAL DESIGN AND PRODUCTION . . . . . . . . . . . . . . 641

6.1 Visual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Mark Peasley

6.2 3D Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

David Johnson

6.3 3D Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Jeff Selbig

6.4 2D Textures and Texture Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 687

Tito Pagan

6.5 Special Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

David Johnson

6.6 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Peter Lewis

6.7 Animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

Tito Pagan

6.8 Cinematography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

Peter Lewis

6.9 Audio Design and Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

Tommy Tallarico and Todd M. Fay

PART 7 GAME PRODUCTION AND THE BUSINESS OF GAMES . . . . . . 789

7.1 Game Production and Project Management . . . . . . . . . . . . . . . . . . . 791

Tom Sloper

7.2 Game Industry Roles and Economics . . . . . . . . . . . . . . . . . . . . . . . . 837

Kathy Schoback

7.3 The Publisher-Developer Relationship . . . . . . . . . . . . . . . . . . . . . . . 857

Ed Bartlett

7.4 Marketing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

Sue Bohle

7.5 Intellectual Property Content, Law, and Practice . . . . . . . . . . . . . . . 895

Stephen Rubin

7.6 Content Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

Stephen Rubin

Contents v



ABOUT THE CD-ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

vi Contents



vii

Many dedicated people helped create this book. First and foremost, I want to
thank the authors. This book is a tribute to their hard work and dedication
to sharing their knowledge with others. As leaders in their respective fields,

it takes a great deal of sacrifice and goodwill for them to spend their free time distilling
their wisdom for others to benefit from. For this effort, I thank them.

This book started out as a dream to bring top industry veterans together to create
an unparalleled tome of knowledge and wisdom. Charles River Media strongly believed
in this project from the start and entrusted me with bringing it to fruition. I want to
thank them for their guidance, support, and faith. The entire staff of Charles River
Media was also very helpful and skilled in putting this book together quickly, and
they deserve many thanks as well.

I want to thank Jason Della Rocca, former executive director of the IGDA, not
only for his encouragement for this project, but also for his support and contribution
to the IGDA and the IGDA Curriculum Framework, which inspired and guided this
book. Thanks also to the other Curriculum Development Committee members:
Tracy Fullerton, Magy Seif-El Nasr, Darius Kazemi, Darren Torpey, Yusuf Pisan, Rob
Catto, Doug Church, Robin Hunicke, Katherine Isbister, Katie Salen, Warren Spector,
and Eric Zimmerman.

I want to extend additional thanks to Rob Bakie, Isaac Barry, Hal Barwood, 
Jim Charne, Henry Cheng, Miguel Gomez, Jeff Lander, Eric Lengyel, Tito Pagan, and
Graham Rhodes for help recruiting authors, as well as reviewing many of the chapters.

Finally, I want to thank my loving wife and my children, Aaron and Allison, for
supporting me during this endeavor, as well as my parents, Diane and Barry, and my
in-laws, Jim and Shirley.

Acknowledgments



This page intentionally left blank 



ix

Welcome to Introduction to Game Development, 2nd Edition. This is a unique
book in that it combines the wisdom and expertise of over 20 game indus-
try professionals to give you an unprecedented view of game development

—from game design, to programming, to production and business issues.
The greatest challenge in creating this book was to cover virtually all of game

development, while still maintaining the depth necessary to truly understand and
appreciate state-of-the-art processes. The solution was to gather some of the brightest
and most respected experts in the industry and allow each author to go into the detail
that he or she felt was necessary to cover his or her field of expertise. While this
resulted in a very large book by most standards, it was critical to maintaining all of the
key concepts and ideas, while giving practical insight into the problems of real game
development.

The background of the respective authors is most impressive. Most have more
than a decade of experience in the games industry and are leaders in their respective
fields, speaking regularly at the annual Game Developers Conference, instructing 
college-level game development classes on the side, or having written books of their
own. What sets this book apart is the incredible insight and experience that each
author brings to his or her chapter, with the entire gamut of game development
explored. No one person could write a book like this, since it requires lifetimes of 
specialization and experience to understand and distill the issues. However, don’t take
my word for it; browse through each author’s biography in the following pages.

Book Structure and Inspiration

The structure of this book is largely based on the International Game Developers
Association (IGDA) Curriculum Framework proposed by the IGDA Curriculum
Development Committee. Through cooperation between respected game industry
professionals and academia, this committee was able to define a framework that
would give guidance to schools and universities working to create their own academic
programs in game development. While the IGDA Curriculum Framework is an
ongoing process, it provided the guidance and inspiration for this book.

Preface



As the first edition of this book was being assembled, the game industry wit-
nessed the introduction of the Nintendo DS. This portable handheld game system is
a perfect example of how innovation continues to spring forth around us, year after
year. This system supports multiple screens, a microphone, a touch panel, wireless
connectivity, and wireless download play. Each of these elements has existed for some
time in one form or another, but by putting it into one package that millions of 
people have bought, developers can depend on these features being present and have
explored new ways of play. Hundreds of companies have dedicated their most talented
developers to creating games that exploit this new interactivity.

At roughly 40 years old, the videogames industry is still young and expanding at
an amazing clip. The global revenue for 2007 was $41.9 billion and is estimated to be
nearly $57 billion in 2008. Despite the global economic crisis in late 2008 and 2009,
videogames appear to be far more recession proof than other industries and will weather
the economic environment rather well, perhaps reaching as much as $68 billion in
global revenue by 2012 according to PricewaterhouseCoopers LLP. 

This incredible growth means opportunity for new ideas, new ways to play, and the
need for new talent within the industry. This book hopes to inspire, motivate, and
guide future generations of game developers to create innovative games that continue
to push the boundaries of what has come before.

www.IntroGameDev.com

Along with the publication of this book is a Web site that supports aspiring game
developers with learning everything there is to know about game development. This
Web site serves as a guide for where to find articles and information on game develop-
ment that aren’t indexed anywhere else. Currently, there are roughly 1,300 articles,
categorized by discipline such as physics, AI, or game design. Use it as a tool and a
resource when exploring game development techniques and knowledge.

Preface xi

www.IntroGameDev.com


This page intentionally left blank 



xiii

At first glance, the comprehensive nature of this book can be daunting to any
student, instructor, or aspiring game developer. Clearly, it is not the intention
that every single chapter be taught in-depth within a single academic quarter,

but rather it is encouraged that various parts are used to create a customized educa-
tional experience. By tailoring the content of this book, many academic programs
with slightly different purposes can be well served. The parts and chapters are largely
independent, which facilitates customization by omitting certain parts or shuffling
around chapters as needed. The following information provides guidance and examples
for how to use this book in an educational setting.

Understanding the various parts of this book is key to creating a custom curriculum.
As shown in Figure 1, the parts can be divided into four main categories: understanding
games, game programming, art/asset creation, and business/management. For any given
curriculum, the goal is to find a suitable balance among these four categories.

How to Use this Book

Part 1
Critical Game Studies

Part 2
Game Design

Part 3
Game Programming:

Languages and
Architecture

Part 4
Game Programming:

Math, Collision Detection,
and Physics

Part 5
Game Programming:

Graphics, Animation, AI,
Audio, and Networking

Part 6
Audio Visual Design

and Production

Part 7
Game Production and
the Business of Games

Understanding Games

Game Programming

Art/Asset Creation

Business/Management

FIGURE 1 Four main categories to balance within any particular curriculum.



It is not the intention that every topic and every chapter of this book be taught
thoroughly within a single class on game development. Rather, this book contains an
assortment of topics, broken up in parts, which can be mixed and matched to create a
custom, yet focused curriculum for a particular academic program.

While this book can be customized to create a particular focus, there is immense
value to understanding all elements of game development and how they interact.
Game development isn’t just about game design or programming or creating 3D
models. It is about the entire process and how each element interacts and impacts the
others. Experts on graphics programming will be ineffective if they don’t understand
the motivations of the game designer, artists, or producer. Artists will create useless art
if they don’t appreciate the programming limitations of the hardware and don’t create
art that works to meet the game design. Finally, it would clearly be detrimental to a
project if the business professionals failed to understand the technical challenges with
both programming and art generation. Game development is a cooperative process
that depends on each discipline understanding the motivations, requirements, and
constraints placed by the others. This book strives to create a mutual respect and
teamwork attitude toward game development.

Updates in the Second Edition

The first edition of this book was developed in 2004-2005, before the release of the
Xbox 360, PS3, and Wii. During this latest console transition, we’ve seen processors
move from single core to multicore, game prices rise from $50 to $60, digital distrib-
ution become more widely accepted, and a return to an emphasis on great gameplay
over impressive visuals. And as much as game development has changed over the last
four years, the core fundamentals have remained largely the same. The only way to
succeed is to make great games that focus on the player experience.

In this new second edition, we’ve revamped the Game Design section, greatly
expanding on the methods and techniques for designing games. A new chapter on
“Game Writing and Interactive Storytelling” has been added that complements and
completes the Game Design section, giving guidance on the unique discipline of how
to construct and tell a story within an interactive experience. In addition, we’ve updated
every chapter to reflect the state-of-the-art in current commercial game development.

Game Development in the Twenty-First Century

Gone are the days of the lone game developer single-handedly crafting the game
design, code, and art for a game. Game development in the twenty-first century is
about large teams striving toward a common goal over a period of several years. 
The games industry is a “hits-driven” business, and it takes incredible talent, exper-
tise, creativity, marketing, and luck to make the next blockbuster game. However, in
this innovative and evolving industry, there is an enormous opportunity to break new
ground and push the state of games further.

x Preface



As a game development course within a computer science department, it is
undoubtedly important to focus on game programming aspects (Parts 3, 4, and 5).
However, it is essential to motivate what is being built (Parts 1 and 2), what constraints
exist with regard to integrating assets (Part 6), as well as how a game project is managed
(Part 7). Within a 10-week course, it would be appropriate to spend seven or eight
weeks on game programming, while interspersing the core topic with roughly two or
three weeks of understanding games, art/asset creation, and business/management
issues.

Increasingly among universities, special interdisciplinary courses are being offered
in game development, bringing together students from several different majors such
as computer science, art, music, and business. In such a rich, dynamic environment,
this book can serve many different purposes ranging from game design, program-
ming, art creation, and management of group projects. Within this type of course,
students adopt a role and interact with each other as if they were part of a real game
development team. The class lectures can consist of an even split among the four main
categories, staying fairly high level with respect to programming topics. The book
then provides enough depth for students in each discipline to delve deeper and
explore individual topics.

Narrow curriculums, such as game design, can benefit greatly from exploring the
interrelationships of all aspects of game development that this book offers. While
most of the programming topics would be lightly or sparsely covered, there is a great
deal of material to explore within Parts 1, 2, 6, and 7. A course on game design would
dedicate about three weeks to looking at the history of games and game studies,
another two or three weeks on core game design, then the remaining four weeks look-
ing at how programming, asset creation, and business issues (such as content regula-
tion) relate to game design. For example, topics such as artificial intelligence or audio
can have a large impact on game design by affording many interesting gameplay
opportunities.

In summary, three sample curriculums are given in Table 1 for each of the three
types of courses presented. Interestingly, each covers most of the chapters in this book,
but the difference is in focus and depth. By spending the appropriate amount of time
on each topic, students are guaranteed to delve deeply into a particular subject, yet
stay well-rounded and appreciate the technological, artistic, and business issues that
are integral to game development. Also note that the parts and chapters are mostly
independent and can be omitted, shuffled, or paired as needed.

xiv How to Use this Book



TABLE 1 Three Sample Curriculums Based on a 10-week College-level Course

Programming-oriented 
Week Course Interdisciplinary Course Game Design Course

1 Overview and Design of Overview of Video Games History of Video Games
Video Games
(1.1, 1.2, 2.1, 2.2) (Ch 1.1, 1.2) (Ch 1.1)

2 Game Production and Teams Game Production and Teams Societal and Cultural 
Game Issues

(Ch 3.1, 7.1) (Ch 3.1, 7.1) (Ch 1.2)
3 Language and Architecture Game Industry Roles Studying Games from an 

and Economics Academic Perspective
(Ch 3.2 – 3.6) (Ch 7.2, 7.3, 7.4) (Ch 1.3)

4 Mathematics, Collision Game Design Game Design
Detection, and Physics
(Ch 4.1, 4.2, 4.3) (Ch 2.1, 2.2) (Ch 2.1, 2.2)

5 Graphics, 3D Models, Art and Asset Creation Game Design
Textures
(Ch 5.1, 6.2, 6.4, 6.7) (Ch 6.1–6.7) (Ch 2.1, 2.2)

6 Animation Programming Programming Languages Influence of Artificial 
and Creation and Architecture Intelligence and Audio 

on Game Design
(Ch 5.2, 6.7) (Ch 3.2–3.6) (Ch 5.3, 5.5, 6.8)

7 Graphics and Animation 3D Math and Physics Game Production and 
Continued Concepts Teams
(Ch 5.1, 5.2) (Ch 4.1, 4.3) (Ch 3.1, 7.1)

8 Artificial Intelligence Graphics and Animation Art Asset Creation 
Overview Overview

(Ch 5.3, 5.4) (Ch 5.1, Ch 5.2) (Ch 6.1–6.7)
9 Audio and Networking Artificial Intelligence, Game Industry Roles 

Audio, and Networking and Economics
Overview

(Ch 5.5, 5.6) (Ch 5.3, Ch 5.5, Ch 5.6) (Ch 7.2, 7.3, 7.4)
10 Business and Legal Issues Intellectual Property and Intellectual Property and 

Content Regulation Content Regulation
(Ch 7.2–7.6) (Ch 7.5, 7.6) (Ch 7.5, 7.6)

How to Use this Book xv



This page intentionally left blank 



xvii

Robert T. Bakie

slinkie@serv.net

Rob Bakie has been a games industry professional since 1998 and an avid game player
since shortly after birth. Currently, he works at Nintendo of America as Webmaster
for the developer support group. Previously, he worked at Sierra Entertainment’s
online multiplayer division WON.net. He has written game reviews and walkthroughs
for national magazines and Web sites. Rob holds a B.A. in Communications-Broadcast
Journalism from the University of Washington with a minor in Computer Music.

Isaac Barry

isaac.barry@gmail.com

Isaac Barry is the Creative Director for GameHouse, a premiere casual game develop-
ment studio in Seattle, Washington. Near the end of the 20th century, he started 
testing and soon found work as a game designer. Designing all kinds of systems and
content led to a passion for learning as a tool to improve his work and the industry 
in general. He is fortunate to have found a second home in a field of professionals
dedicated to creating affective experiences, and grateful to the first home for continu-
ing to support and endure the process. 

Ed Bartlett

ebartlett@igaww.com

Ed Bartlett, Vice President Europe and co-founder of IGA Worldwide, is one of a
new generation of multidiscipline industry visionaries, combining a 15-year back-
ground in the videogame sector with astute business acumen and proven advertising
and media expertise. Having fulfilled senior creative and production roles on key
game releases for publishers including Sega, Virgin Interactive, BMG Interactive,
Acclaim, and Hasbro Interactive, Bartlett moved into business development in 1999
as a director of the renowned games development house, The Bitmap Brothers.

Contributor Bios



Bartlett is one of the original pioneers of in-game advertising, founding dedicated
agency Hive Partners ahead of the curve in 2003. As its CEO, Bartlett led the com-
pany to profit in its very first year of trading, securing global Blue Chip advertiser
accounts such as Red Bull, and striking groundbreaking deals with leading videogame
publishers including Sega and Vivendi Universal Games. In 2005, Bartlett negotiated
the acquisition of Hive Partners by IGA Worldwide, joining the company as a found-
ing member and helping to raise its $17 million Series A VC round. He has since
been responsible for building the foundations of its industry-leading proprietary
Radial Network, securing landmark global deals with the likes of Electronic Arts,
Valve, Sega, Atari, and Codemasters. IGA Worldwide was subsequently selected by
Sony Computer Entertainment America and Sony Computer Entertainment Europe
as the first partner for the PLAYSTATION3 in-game advertising platform.

James Boer

author@boarslair.com

James Boer has been in the games industry since 1997, working on such titles as Deer
Hunter, Deer Hunter II, Trophy Hunter, Pro Bass Fishing, Microsoft Baseball 2000,
Tex Atomic’s Big Bot Battles, and Digimon Rumble Arena 2. He has also contributed
prolifically to the game industry’s printed media, having written several articles for 
Game Developer magazine, coauthoring DirectX Complete, authoring Game Audio
Programming, and contributing to four volumes of Game Programming Gems. He is
currently employed at ArenaNet, where he is responsible for creating audio and cine-
matic systems and tools for upcoming titles.

Sue Bohle

sue@bohle.com

Sue Bohle is a highly regarded public relations professional. She started her career at
Burson-Marsteller, the world’s largest public relations agency. She was then hired by
the J. Walter Thompson Co. to help the firm develop a PR presence in Los Angeles.
Within three years, she became JWT’s first vice president on the West Coast and a
year later, the first woman in Los Angeles to be named general manager of an office of
an international PR firm. In 1979, Sue decided to open her own public relations firm.
Today, The Bohle Company is one of the 50 largest independent PR agencies in the
country and the largest technology-focused firm in Southern California. Active pro-
fessionally, Sue is both a member and former chair of the College of Fellows, PRSA,
an honor bestowed on professionals judged to be role models in the PR industry. She
is also past chairman of the Counselors Academy, a national organization of heads of
agencies, as well as past president of the Los Angeles Chapter of Public Relations
Society of America. Sue holds both bachelor’s and master’s degrees from Northwestern

xviii Contributor Bios



University’s Medill School of Journalism. Before getting into public relations, she was
an instructor in journalism at both the high school and college levels.

Todd M. Fay

todd@audiogang.org

Todd M. Fay was previously the director of development for the Game Audio
Network Guild (www.audiogang.org). Todd has worked with Creative Labs ATC,
Blizzard Entertainment, THQ, Vivendi Universal, Black Ops Entertainment, G4
Media, and Tommy Tallarico Studios. His work has appeared in Game Developer
Magazine, Gamasutra.com, Music4Games.net, and on G4: Television for Gamers,
the 24-hour network dedicated to games and the gaming lifestyle. While at G4 Media,
Todd oversaw the development of the shows Filter and Cheat!: Pringle’s Gamer’s Guide,
as well as the Icon’s Special: Splinter Cell. While working with Creative Labs, Todd
contributed to the development of EAX 3.0, as well as authoring the designer’s guide
for that technology. Todd produced his first book, DirectX 9 Audio Exposed: Interactive
Audio Development, for Wordware Publishing in 2003, which captured him a
G.A.N.G. Award in 2004. Todd holds a bachelor of music degree from the University
of Massachusetts Lowell’s award-winning sound recording technology department.

Tom Forsyth

Tom.Forsyth@eelpi.gotdns.org

Tom is a software and hardware architect at Intel working on the Larrabee project. In
his past, he has written animation middleware for RAD Game Tools, game graphics
engines for Muckyfoot Productions, and Direct3D video card drivers for 3Dlabs. In
his spare time, he has done a wide variety of graphics-related research with a heavy
focus on shadows, and has written and edited many books and articles, notably as part
of the ShaderX series.

David Johnson

undertone_dj@yahoo.com

David started his career as a colorist at CST technology in 1994 colorizing cartoons
and film. After studying animation and special effects at Santa Monica College’s
Academy of Entertainment Technology, David became a 3D modeler. He worked as a
professional modeler at 3Name3D and Viewpoint Digital. David has one film credit,
several game credits, and has created models for several Web sites and TV commercials.
David has been working in games since 1999 and has been a dedicated effects artist
since 1995. David has created effects on titles such as Shadowrun, Halo 3, and is cur-
rently working on Infinity Ward’s Modern Warfare 2.

Contributor Bios xix

www.audiogang.org


Eric Lengyel

lengyel@terathon.com

Eric Lengyel is chief architect at Terathon Software, where he heads up development
of the C4 Engine. Eric has been dedicated to 3D graphics research for over 15 years
and is the author of the bestselling book Mathematics for 3D Game Programming and
Computer Graphics. He is also the author of the OpenGL Extensions Guide and has
written many articles for industry publications ranging from gamasutra.com to the
Game Programming Gems series.

Peter Lewis

peterlewis@primitive-eye.com

Peter Lewis has been working in computer graphics since the mid-1980s, when he
started programming motion control cameras for the film industry. He began work-
ing in the videogames industry in 1991 with Dynamix, Sierra Online, where he 
created Cinematics and 3D graphics for games. He has been a senior art lead at
WildTangent, Mad Doc Software, ACES studio inside Microsoft Game Studio, and is
currently an art director at Reality Gap. Peter has been an instructor at the DigiPen
Institute of Technology, where he taught computer animation to art and programming
students and has been an instructor for the computer animation certificate program
through the University of Washington Extension.

Noel Llopis

llopis@gmail.com

Noel Llopis is founder of Snappy Touch, independently developing iPhone games,
and previously co-founded Power of Two Games. Before that he was lead technical
architect at High Moon Studios where he spearheaded the research and development
of their next-generation internal technology. At Day 1 Studios, he architected and
developed the technology behind the games MechAssault 1 and 2. He is very enthusi-
astic about agile development, automated testing, and test-driven development. He is
the author of the book C++ for Game Programmers, has contributed several articles to
the Game Programming Gems series, and currently writes the Inner Product column in
Game Developer Magazine. He obtained a B.S. from the University of Massachusetts
Amherst and an M.S. from the University of North Carolina at Chapel Hill.

xx Contributor Bios



Syrus Mesdaghi

syrusm@hotmail.com

Syrus Mesdaghi is the lead AI engineer at Dynamic Animation Systems where he’s
been the tech lead on a FPS team-based tactical decision-making trainer and has
taken on many aspects of the project, which include the AI. He was previously the
Course Director of the AI course at Full Sail University’s Game Design and
Development curriculum. Beside his passion for AI, he has put a lot of effort in
improving, demonstrating, and promoting the Java technology. He has developed and
exhibited cutting-edge game technology for DAS, Full Sail University, and Sun
Microsystems at various conferences such as GDC, SIGGARH, QuakeCon, and
I/ITSEC in projects ranging from FPS, RTS, fighting, and racing games. He has pre-
sented at GDC a few times and is one of the authors of Practical Java Programming
and contributed to other publications such as AI Game Programming Wisdom.

Tito Pagan

tpagan@w-link.net

Art director Tito Pagan is a veteran game developer and writer with 17 years of
industry experience and dozens of published game titles to his credit. His professional
experiences range from texture artist, level designer, animation lead, character 
modeler, concept artist, motion capture director, and technical director. He recently
founded BoldFist, which is a motion capture and animation studio in Washington.
Previously for WildTangent, Tito led the art direction of client-branded Internet game
titles as well as custom published Internet retail games. The aggressive development
cycles at WildTangent taught Tito a great deal about streamlining game art produc-
tion and outsourcing with an average of three games per year during his five years of
service. With the startup Gas Powered Games, he led the animation effort charged
with the task of making the character movement elements in the game Dungeon Siege.

Mark Peasley

mp@pixelman.com

Mark Peasley is a games industry veteran with 20 years of experience producing 
artwork, scheduling, managing teams, and herding cats. During his tenure, he’s been
an artist, art director, producer, and project director. He has worked on over 25 PC,
3DO, Xbox, and Xbox 360 titles. Most recently at Microsoft Games Studio, he’s
shipped Forza Motorsport, Forza Motorsport 2, Midtown Madness, and Rallisport. His
work can be seen at www.pixelman.com.

Contributor Bios xxi

www.pixelman.com


Steve Rabin

steve.rabin@gmail.com

Steve Rabin is a principal software engineer at Nintendo of America, where he researches
new techniques for Nintendo’s current and future platforms, architects development
tools such as the WiiProfiler, and supports Nintendo developers. Before Nintendo,
Steve worked primarily as an AI engineer at several Seattle start-ups including Gas
Powered Games, WizBang Software Productions, and Surreal Software. He organized
and edited the AI Game Programming Wisdom series of books, the book Introduction
to Game Development, and has over a dozen articles published in the Game
Programming Gems series. He’s spoken at the AIIDE conference at Stanford, the
Game Developers Conference, and numerous Nintendo development conferences in
North America and Europe. He organized the two-day AI Summit at GDC 2009 and
has moderated the GDC AI roundtables. Steve also founded and manages the profes-
sional group known as the AI Game Programmers Guild. Steve teaches artificial intel-
ligence for games at both the University of Washington Extension and at the DigiPen
Institute of Technology. He earned a B.S. in computer engineering and an M.S. in
computer science, both from the University of Washington. Finally, he maintains a
Web site that catalogs over 1,000 game development articles at www.introgamedev.com.

Graham Rhodes

grhodes@nc.rr.com

Graham Rhodes began making games on the Commodore and Atari 8-bit computers
when he was still in high school, and has been creating software for real-time 3D
graphics, gaming, and simulation for many years. He was lead programmer for a series
of educational games for the World Book Multimedia Encyclopedia as well as various
first/third-person “serious” games, and has contributed to numerous procedural mod-
eling and physics-based simulation projects. Graham contributed chapters for several
books in the Game Programming Gems series. He is moderator of the math and
physics forum on the gamedev.net Web site, has presented at the annual Game
Developers Conference (GDC) and other events, and regularly attends GDC and the
annual ACM/SIGGRAPH conference. Graham is a member of ACM/SIGGRAPH,
the International Game Developer’s Association (IGDA), the North Carolina
Advanced Learning Technologies Association (NC ALTA), and the Long Now
Foundation.

xxii Contributor Bios

www.introgamedev.com


Stephen Rubin, Esquire

sr@stephenrubin.com

Steve Rubin represents developers and distributors engaged in all aspects of the game
industry in such matters as contracts and licenses, intellectual property protection and
enforcement, litigation, and business formation, acquisitions, and financing. Before
establishing his own firm, Steve was an attorney in the Antitrust Division of the
Department of Justice, professor of law at the University of Florida, and partner at a
national firm where he headed the antitrust and intellectual property practices. He
has served as special master and as a mediator by federal court appointment in patent
cases and other litigation. He is the author of several books and a number of articles
on antitrust and intellectual property, and is a speaker on law and business topics at
the annual Game Developers Conference.

Kathy Schoback

kathy@igda.org

As the executive vice president and global brand director for the Game Group of
Think Services, Kathy oversees the Game Developers Conference series of events,
which take place in San Francisco, CA; Austin, TX; Vancouver, Canada; Shanghai,
China; and Cologne, Germany. She also manages print products and Web sites for the
Game Group, which includes Gamasutra.com and Game Developer. A game industry
veteran, Kathy began her career at SEGA of America and in her nine years at SEGA,
she occupied a variety of relationship management and business development posi-
tions. Other professional experience includes working as Director of Product
Operations at Eidos and VP of Content Acquisition for AGEIA Technologies, as well
as serving on the Game Developers Conference advisory board, as chair of the
International Game Developers Association, and participating in the steering com-
mittee of Women in Games International. Kathy graduated summa cum laude with a
B.A. in English from the University of California, Berkeley.

Jeff Selbig

jselbig@hotmail.com

Jeff has worked in the game industry since 2000 as a 3D artist, art lead, and outsourc-
ing manager. In a past life, he has worked as an exploration geologist for ARCO and a
geotechnical engineer in Alaska. He spends his free time convincing his family that
playing World of Warcraft and Guild Wars is job-related research. 

Contributor Bios xxiii



Tom Sloper

tomster@sloperama.com

Tom Sloper has been a game producer and designer for over 25 years, having designed 
and produced games for major console platforms from the Vectrex and Atari 2600 on
up to the PlayStation, Dreamcast, Nintendo DS, Xbox 360, and IPTV. He’s worked
for Sega, Atari, Activision, and Yahoo. An author and speaker, he’s spoken at KGC,
GDC, and the Smithsonian, and has contributed to several books on games and the
industry (Secrets of the Game Business, Game Design Perspectives, Introduction to Game
Development). Sloper is on the faculty of the University of Southern California, where
he teaches about video game design, producing, and quality assurance. He is an inter-
nationally recognized author and expert on the classic Chinese game of mah-jongg.

Leslie Stirling

lesliestirling@hotmail.com

Leslie is a professional game writer and storyteller. She has a masters in library 
and information science, with an emphasis on storytelling and technology from the
University of Washington. She’s been a lifelong video game player and actively man-
ages an online MMO guild of more than 2,500 players.

Tommy Tallarico

www.tallarico.com

Tommy Tallarico has been writing music for videogames for more than 18 years. In
1994, he founded Tommy Tallarico Studios, the multimedia industry’s largest audio
production house. Tommy was the first to use 3D audio in a game (Q-Sound) and
was instrumental in bringing true digital interactive surround 5.1 (six-channel) to the
gaming industry. Tommy has worked in the games industry as a games tester, product
manager, producer, writer, designer, and heads of both music and video departments.
He is the founder and president of G.A.N.G. (Game Audio Network Guild), which is
a nonprofit organization educating and heightening the awareness of audio for the
interactive world (www.audiogang.org). Tommy is an advisory board member for 
the Game Developers Conference, a proud member of the International Game
Developers Association, and a nominating committee member for the Academy of
Interactive Arts & Sciences. He has won over 20 industry awards for best videogame
audio and has worked on more than 200 game titles; to date, with total sales of more
than 75 million units and 2 billion dollars.

xxiv Contributor Bios

www.tallarico.com
www.audiogang.org


Bretton Wade

brettonwade@gmail.com

Bretton Wade is a 10-year veteran of the games and graphics industries and is currently
a principal at SC Technologies and Clockwork 3. Previously, he was the director of
technology at Firaxis Games, a manager on the Xbox system software team, a title lead
for an independent studio contracted by Blizzard Entertainment, and a development
lead on Microsoft’s Flight Simulator.

Chuck Walters

chuck@gamegineer.com

Chuck Walters currently contracts game development through Gamegineer Corp. He
also instructs courses in Multiplayer Game Architecture and ASP.NET at the University
of Washington Extension. His past endeavors include Magic The Gathering Online at
Wizards of the Coast, Brew-based cell phone games for Tooned In, the Need for Speed
racing game for Electronic Arts, demos for Microsoft Research Group, game ports 
for Manley & Associates, software tools for Tektronix, hardware engineering for
Attachmate, and an article on force feedback devices for Game Developer Magazine.

Contributor Bios xxv



This page intentionally left blank 



1

P A R T

1
CRITICAL GAME

STUDIES



This page intentionally left blank 



3

Overview

In the quest to learn about the video games industry and how state-of-the-art games
are made, it helps to start with some perspective. How did it all begin? Who were the
people who drove the business and what were their inspirations? What significant
games of yesteryear shaped the way games are made today?

While a student of filmmaking will study legendary directors like Orson Welles
and groundbreaking films like Citizen Kane, there is equal reason for game developers
to study the work and techniques of Shigeru Miyamoto and influential games like
Donkey Kong and The Legend of Zelda. It is certainly true that games have not reached
the status of films as works of art, but this is slowly changing. The skill and artistry
involved in making games will soon rival motion pictures, with typical game produc-
tion budgets skyrocketing upward of 10 to 20 million dollars with no end in sight.

This chapter travels through time from the first recorded video game in 1958 all
the way to the present. There are many ways to view and compare history, so we’ll
start with a timeline approach, and then break out specific platforms, studios, people,
and genres to effectively understand specific lines of innovation.

A Brief History of 
Video Games

1.1

In This Chapter

Overview
The First Video Games
Games for the Masses
The Console Kings
Home Computers
The Designers
The Phenomenons
The Studios
A Brief Overview of Genres
Summary
Exercises
References



The First Video Games

The first video games can be attributed to two key people: William Higinbotham and
Steve Russell. While William Higinbotham would be credited as the first to design
and implement a video game, Steve Russell would be the first to create a game that
would inspire the multibillion-dollar video games industry.

William Higinbotham and Tennis for Two

Who invented the first video game? As far as historians can tell, it was the United
States Department of Energy. Specifically, it was a man named William Higinbotham
who was the head of the Instrumentation Division for Brookhaven National Labora-
tory. Before Brookhaven, William had previously worked on the Manhattan Project at
Los Alamos and had witnessed the very first atomic blast. However, in the 1950s, peo-
ple were wary of atomic power, and Brookhaven tried to present a friendly image by
hosting an annual visitor’s day. Hundreds of people would visit the laboratory every
fall to see the various exhibits that were set up in their gymnasium. In 1958, William
had a brainstorm. On previous visitor days, people weren’t very interested in static
exhibits, so for this year he came up with the idea for an interactive display. The dis-
play would be a video tennis game.

In a matter of three weeks, the very first video game was assembled. William, who
drew up the original design in only a couple of hours, worked closely with Robert V.
Dvorak, a technical specialist, who wired up the patchboard. Between the two of them,
they spent about two days debugging and tuning the game, getting it done just in time
for the first tour. Tennis for Two was the result, and it was a big hit with the visitors.

Running on an analog computer and hooked up to an oscilloscope, the first video
game looked sharp and ran fast. Surprisingly, this game was not a top-down perspec-
tive like Pong, but rather a side view of a tennis court. Two players would smash a ball
back and forth, with the ball realistically bouncing off the ground and net, apparently
under the influence of gravity. While the game kept no score, clearly there was a 
winner and loser after each volley. Even without audio speakers of any kind, the game
had its own distinct sound effects, even if they were somewhat unintentional. The
relays that enabled the device to operate made loud clicking noises with every hit and
bounce of the ball. 

This game was truly an impressive first attempt, even by today’s standards. Yet to
William, the fact that he had invented something unique didn’t occur to him. The ana-
log computer that he used actually came with examples in the instruction book, show-
ing how to simulate many things on an oscilloscope, such as missile/bullet trajectories
as well as a bouncing ball. Therefore, when William made the leap allowing two people
to volley a bouncing ball back and forth, he didn’t consider it a major breakthrough.

Although several hundred people saw the Brookhaven exhibit in 1958 and 1959,
it failed to inspire future video games. The exhibit simply didn’t reach the right people

4 Part 1 Critical Game Studies



to make an impact, and thus is recorded in history as an isolated incident. It was as if
the airplane was invented, but nobody recognized the significance or possessed the
interest to push the idea further. After the autumn of 1959, Tennis for Two was dis-
mantled and replaced with newer exhibits the following year.

Steve Russell and Spacewar

In 1961, computers were scarce, but they could be found at the most prestigious
schools, such as MIT. Steve Russell was a student at MIT, and over the course of six
months and roughly 200 hours, he created a two-player video game called Spacewar
on a DEC PDP-1 computer. The goal of the game was for each player to maneuver
his spaceship while trying to shoot the other player’s spaceship with torpedoes. Using
four separate switches, each player could rotate clockwise and counterclockwise,
thrust, or fire a torpedo.

Spacewar was created in 1961, but by the spring of 1962, the game had been
expanded. Pete Sampson added an accurate starfield in the background by integrating
an existing program called Expensive Planetarium. Next, Dan Edwards optimized the
game to allow gravitational computations to be performed. Thus, a flickering sun was
added to the center of the display that would influence the spaceships and destroy any
that flew too close. Finally, J. Martin Graetz added the concept of hyperspace: the
ability for a panicked player to warp his spaceship from its current location to a new
randomly generated location. With these additions, interesting tactics began to develop,
such as slingshotting oneself around the sun to quickly overtake a slow-moving oppo-
nent. Within MIT, the game was a huge success and created quite a sensation at
MIT’s annual Science Open House.

Steve Russell never made any money off Spacewar, but he did briefly consider the
possibility. Unfortunately, the cost of a PDP-1 computer in the early 1960s was about
$120,000, and the feasibility of commercially recouping that cost was out of the ques-
tion. Spacewar become a public domain program and quickly spread to other colleges
over ARPAnet, an early version of the Internet. In addition, DEC ended up using
Spacewar as a diagnostics program that shipped with new PDP machines, therefore
distributing the game to its customers for free. A re-creation of Spacewar in Java can
be played at http://spacewar.oversigma.com/.

Games for the Masses

While Tennis for Two and Spacewar were amazing first games, they only reached a
select group of people. During the early 1970s, two key people, Ralph Baer and
Nolan Bushnell, would bring video games into the home and the arcades for the
masses to enjoy. Thus, these two visionaries gave birth to the video games industry as
we know it today.

1.1 A Brief History of Video Games 5

http://spacewar.oversigma.com/


The Advent of Home Video Games: 
Ralph Baer and the Magnavox Odyssey

The next significant chapter in video games centered on Ralph Baer. Ralph’s back-
ground was in TV design, but in the early 1960s he was a division manager at Sanders
Associates, a military defense contractor based in New Hampshire. While on a busi-
ness trip to New York in the summer of 1966, he came up with the idea of making
games for a home TV. Since Ralph had more than 500 people under him, along with
a payroll of almost $8 million, he was able to allow a couple of engineers, Bob Trem-
blay and Bob Solomon, to work on his ideas without anyone noticing.

When Ralph finally presented his project to the executive board at Sanders, his new
invention garnered a cold reception. Most on the board thought Ralph was wasting
the company’s money and wanted to kill the project. Despite this poor showing,
Ralph’s boss, Bill Rusch, was impressed, primarily by the rifle game. Rusch was quite
adept at shooting the target spot on the television from the hip with the plastic rifle.
With a champion in his corner, the project remained alive.

In 1967 and 1968, better games started to take shape with the help of Bill Rusch.
Soon, the small group had a respectable ping-pong game working. With a little refinement
—removing the net and adding a blue “ice” color for the background—it became
known as a hockey game. The game featured three controls: an up/down control for
protecting the goal, a left/right control for moving close to the centerline, and an
“English control” to put a spin on the puck.

Since Sanders wasn’t in the TV or toy business, the next step was to sell the home
video game system to a large manufacturer. After several failed attempts with General
Electric, Zenith, and Sylvania, the television company Magnavox finally signed con-
tracts with Sanders in late 1971. By 1972, Magnavox dealerships showed the new
device, marketed as the Magnavox Odyssey. Unfortunately, the machine was badly
overpriced at $100 and went largely unnoticed by the public due to limited marketing.

Breaking into the Amusement Business: Nolan Bushnell and
Atari

William Higinbotham was a scientist, Steve Russell was a programming prodigy, and
Ralph Baer was a determined inventor. However, for the video games industry to really
take off, it needed a salesperson and entrepreneur. Enter Nolan Bushnell. As an engi-
neering major at the University of Utah from 1962 to 1968, Nolan was lucky enough
to be at one of the few colleges experimenting with computer graphics. He learned to
program in FORTRAN and became an avid player of Steve Russell’s Spacewar. Being a
charismatic man, he convinced several senior students to help him create video games
of their own. He ended up creating seven computer games with the help of his friends.

While the university and Spacewar were huge influences, an equal influence was
Nolan’s experience during those same years working at an amusement park north of
Salt Lake City. Starting out on the midway selling balls to knock over milk bottles,

6 Part 1 Critical Game Studies



1.1 A Brief History of Video Games 7

Nolan became an expert at convincing people to part with their quarters. Later, he
would work at the park’s pinball and electromechanical game arcade, learning how the
devices worked and how the business operated. These experiences would later prove
invaluable. Nolan was an engineer who loved video games, understood the amuse-
ment business, and had the charisma to sell his passion. All he needed was a product.

With Spacewar on his mind, in 1969 Nolan worked to re-create a Spacewar-
inspired game as a coin-operated device. Since cheap computers lacked the computa-
tional power to make the game work, he resorted to building a custom device that
would only play his single game. Once the prototype was completed after a few
months, he found a partner to manufacture it: Nutting Associates. Nutting was
already in the amusement business with a successful trivia game called Computer
Quiz, but the company saw promise in the new action space game, Computer Space.
Nutting licensed the game from Nolan and hired him as their chief engineer.

Soon there were 1,500 Computer Space machines manufactured in wildly curvy
futuristic cabinets, but the public reaction to the game was poor. Although Nolan per-
sonally demonstrated the game at the 1971 Music Operators Association show in
Chicago, few arcade operators bought the machines. In the end, the game was too
complex and intimidating for early audiences. Thinking that he could do a better job
of marketing, Nolan set out to start his own company to produce arcade games. That
company would become Atari.

Bringing Games to the Masses

The Atari name is synonymous with video games. However, in 1972, it was a tiny
startup with Nolan Bushnell as its visionary leader. While Nolan worked on plans to
combine the physics of Computer Space with a racetrack concept, he hired an engineer
named Al Alcorn. Al’s first warm-up assignment was to make a game based on ping-
pong with one ball and two paddles. After three months, a working prototype was fin-
ished. Al wasn’t sure the end product would be successful as an arcade game, but
Nolan was impressed and dubbed the game Pong. After two weeks of testing at a local
tavern, it seemed clear that Pong would be a hit.

Soon after Atari started marketing Pong, Magnavox took Atari to court. Unfortu-
nately for Atari, Ralph Baer kept impeccable records of his inventing process and had
filed numerous patents during the late 1960s. Magnavox alleged that Atari had vio-
lated many of Ralph’s patents and even more critically had copied Ralph’s ping-pong
concept. In depositions, witnesses also alleged that Nolan Bushnell had been given a
demonstration of the Magnavox Odyssey at a large trade show in May of 1972.

In the end, Atari settled with Magnavox in 1976 for a one-time license payment
of $700,000. After that, Atari was free to produce video games without paying any
more money to Magnavox—“a sweetheart deal” as Nolan would later put it. As part
of the settlement, Magnavox agreed to aggressively go after other video game makers,
demanding royalties on every video game produced. Nolan escaped from this predica-
ment with Atari still intact and still on top.



Pong became the first well-known video game and helped launch the entire video
games industry. Atari struggled to keep up with orders for Pong, while other compa-
nies imitated it and exploited Atari’s success. Atari became the premier video game
company; however, it was forced to innovate to keep competitors at bay. During the
1970s, this innovation led to Atari creating the first racing game, Trak 10, and the
first maze chase game, Gotcha.

The Console Kings

After the success of Pong, the next stage in the evolution of video games in the home
was the cartridge-based console. Atari was an important player, but was soon joined
by other companies with a mark to make of their own.

Atari and the 2600

In 1977, Atari entered the cartridge-based home console market with the Atari Video
Computer System (later redubbed the Atari 2600). Despite their reputation for inno-
vation, they were not the first company to release a cartridge-based home system, hav-
ing been beaten to the punch by two short-lived consoles, the Fairchild VES and the
RCA Studio II. While they weren’t the first to market, after a rocky Christmas, they
became the first giant success (selling well for the next 10 years), and the name of the
system became nearly synonymous with video games. Initially released with nine
games, it was an innovative system based on the idea of moving costly functionality
out of the hardware and into the software. In addition to having brightly colored
graphics and selector switches that selected the games and changed difficulty settings,
it also introduced the joystick to the home market. 

Part of the reason for its success was the huge variety of games that could be made
for it—an unintended consequence of having an architecture built around saving
costs in the hardware. Third-party companies formed to take advantage of the open
architecture and create games without Atari’s blessing. The most famous of these was
Activision, which was formed by four ex-employees of Atari. Atari initially tried to
stop third-party companies from making games for its system, but later relented and
charged royalties on the games instead. This is standard practice in the home console
market these days, with massive sums of money in the form of royalties exchanging
hands for games to be “licensed” by the console manufacturers.

Video Game Crash of 1983

In 1983, a great shakeup occurred in the video games industry that would have seri-
ous repercussions on the fledgling market. There were several factors leading to the
crash: a poor economy, natural market cycles, and consumer perception that video
games were just a fad. Two of the largest factors leading to the crash were the role of the
Atari and the 2600, and the introduction of cheap home computers to the market.

8 Part 1 Critical Game Studies



In addition to a glut of poor third-party games released for the Atari 2600 at that
time, two infamously bad high-profile first-party titles were released for the system
that year. The home console version of Pac-Man was a disappointing rendition of its
video arcade counterpart, featuring poor graphics and differing far too much from the
beloved original. The game E.T., a tie-in with the blockbuster Spielberg movie, was
created in a frantically rushed five weeks by Atari programmer Howard Scott Warshaw.
The game rights were purchased for $20 million, with the expectation that the game
would be a big Christmas hit. Gameplay was poor, the programming was understand-
ably buggy, and the game was another disappointment for Atari, who had produced
more copies of the game than there were 2600s in homes at the time (leading to now-
substantiated rumors of New Mexico landfills being filled with millions of cartridges).
These two games, given other factors, did irreparable damage to Atari’s reputation.
Moreover, while Atari alone had created more game cartridges than could be absorbed
by the market, the oversupply of third-party game cartridges for the 2600 exacerbated
the issue.

Another factor was the influx of inexpensive home computers into the market—
particularly the Commodore Vic-20, Commodore 64, and Atari 400. Where com-
puters had long been expensive and the province of specialty stores, the early 1980s
saw computers being sold from department stores, toy stores—everywhere that video
game consoles were selling. The computers offered a compelling sales pitch, duplicat-
ing many of the popular games from the consoles, while also offering software such as
word processing and accounting programs. In addition, companies like Commodore
offered trade-in deals on used game machines, further encouraging people to abandon
their consoles.

As a result of increased competition, the lack of a next-generation console being
ready, the huge glut of poor first- and third-party games, and a bad economy—the
market crashed. The third-party companies, unable to sell their product, were also
unable to pay their distributors and had to close doors. Atari, a bulwark against the
panic that was setting in, eventually began to dump its product cheaply on the market
and then collapsed as well. The consumers, seeing this, began to believe that it was all
a fad, and lost confidence in the industry. Companies like Mattel, Magnavox, and
Coleco, as well as a host of others, got out of the video game business. The slump
lasted for years, until the introduction of the NES console from the Japanese com-
pany Nintendo.

Nintendo and Shigeru Miyamoto 

Nintendo helped shape the video games industry and pull it out of the slump of 1983,
and continues to be a major force and innovator. Surprisingly, Nintendo was founded
over 100 years ago, in 1889, and started out making hanafuda cards (Japanese playing
cards). By the middle of the twentieth century, Nintendo had done well with Disney-
licensed Western-style cards and later expanded into toys. During the late 1970s, toys

1.1 A Brief History of Video Games 9



began to move toward electronic video games, and Nintendo joined the fray with the
introduction of the Game and Watch series.

The Game and Watch series, created by the visionary Gunpei Yokoi in 1980, was
a line of over 50 handheld games that featured one or two LCD screens. As the name
implies, each unit had one simple game along with the functionality of a digital
watch. Gunpei invented the D-Pad (the plus-shaped directional pad found on most
modern-day controllers), and would later go on to create the handheld Game Boy and
the groundbreaking NES game Metroid.

Around the same time as the Game and Watch series, another visionary creator
within Nintendo began designing the arcade game Donkey Kong. Nintendo had
shipped 3,000 Radarscope games to the United States, but only 1,000 sold. Desperate
to sell the remaining inventory, a young Shigeru Miyamoto was given the task of cre-
ating a new game that could be put within the Radarscope cabinets. Shigeru started
out by creating an elaborate story about a gorilla that had stolen a carpenter’s girl-
friend. This carpenter, simply named Jumpman (but later known as Mario), would 
be forced to avoid barrels and flames, while jumping around on steel girders to reach
his girlfriend. The converted Radarscope units quickly sold out in 1981 and orders
continued to roll in. Donkey Kong would become one of the most influential arcade
games ever, selling more than 65,000 units in the United States, and launching Mario
as the enduring corporate mascot of Nintendo.

Shigeru Miyamoto’s Mario character has now appeared in more than 80 games,
selling a combined total of roughly 200 million games. The most notable are Mario
Brothers, the Super Mario Brothers series, Super Mario 64, Super Mario Kart, and the
Mario Party series. In 1983, Mario Brothers first introduced Mario’s brother, Luigi.
The 1985 game Super Mario Brothers, which first appeared in arcades and later on the
Nintendo Entertainment System (NES), is recognized as one of the all-time best-
selling games, with approximately 40 million copies sold in North America alone. In
1996, Super Mario 64 on the Nintendo 64 console would again innovate by bringing
the platform genre into 3D. For the first time, players could explore Mario’s world,
running, jumping, swimming, flying, and tiptoeing wherever the player wished.

Although retailers were reluctant to stock home video games after the 1983 video
game crash, in 1985 Nintendo was able to position the NES in a manner that made it
more palatable to risk-averse retailers. The unit was bundled with a light gun and a
robot named R.O.B. (Robotic Operating Buddy), and was labeled as an “entertain-
ment system” rather than a “video game system.” Nintendo also guaranteed to retail-
ers that their company would buy back all unsold systems, to further put them at ease.
This unique positioning worked, and the NES snuck onto retailer shelves and soon
became a remarkable success.

During the late 1980s, Nintendo’s success was so extreme that at times they owned
more than 90 percent of the video game market. As a result of being too successful,
internally Nintendo was worried that they might lose their “Nintendo” trademark
since it was becoming synonymous with “video game” and “video game machine.”

10 Part 1 Critical Game Studies



However, this fear would fade and by the late 1990s, it was more common to hear
“PlayStation” used to obliquely refer to video game machines. 

Today, Nintendo remains a considerable force in the video games industry. While
always enjoying nearly unchallenged dominance in the handheld market with the
Game Boy, Game Boy Advance, and Nintendo DS, Nintendo had seemed to stumble
with the N64 and the Nintendo GameCube on the home console front. While nei-
ther system was considered a failure, the sales numbers indicated a cult (rather than
mainstream) success. Nintendo’s console fortunes turned with the release of the Wii
on November 19, 2006. 

The Wii was a risky venture, relying as it did on an innovative controller while
purposely eschewing the system spec arms race in order to hit a low, introductory
price point of $250. By building a machine dramatically less powerful than its rivals,
Nintendo bet that the lower priced systems coupled with innovative games would
outweigh the downside of less horsepower and lower quality graphics. The risk paid
off and as of December 2008, the Wii has sold more than 45 million units across the
world. This represents roughly 50 percent of current-generation console sales. Wii Sports
(which is bundled with the Wii in most regions) is now the best-selling videogame of
all time, surpassing Super Mario Bros for the NES (also a bundled title). To date, the
top 10 best-selling video games of all time are Nintendo titles. Sixteen of the top 20
best-selling video games of all time are Nintendo titles. Given Nintendo’s past console
sales and current console successes as well as top 10 franchises like Pokémon and
Mario, Nintendo easily owns the biggest piece of the video games business.

Sega

Japanese company Sega started life in 1952 as Service Games. Seeing a viable market
supplying jukeboxes and other amusement devices to U.S. military bases, American
creators Dick Stewart and Ray Lemaire soon grew the company beyond their modest
ambitions. Changing their name to Sega (the first two letters of each word in their
previous company name), they proceeded to take advantage of the recovering Japan-
ese economy. In 1965, they merged with Dave Rosen’s Rosen Enterprises, a company
formed by another American in 1953 to import arcade machines from the United
States into Japanese arcades. They became Sega Enterprises Ltd., and created many of
the finest mechanical arcade games ever built.

In the 1970s, they began working on arcade video games, acquiring California
company Gremlin, and soon expanded by creating games for the home console mar-
ket. In the early 1980s, Sega briefly became part of Hollywood moviemaker Para-
mount, until the video game crash saw them parting ways. Rosen, his head of
Japanese operations H. Nakayama, and Japanese investor Mr. Ohkawa bought the
company back. Rosen became head of U.S. operations, with Nakayama the president
and Ohkawa the chairperson back in Japan.

1.1 A Brief History of Video Games 11



Sega had been developing a home console during this time, the Sega Master System.
After seeing Nintendo’s NES revive the video games market, Sega made a distribution
deal with Tonka Toys and released the Master System nearly a year after the NES
proved that there was still a viable market. Sega had trouble securing third-party 
software for its new system (Nintendo had locked many developers in with exclusive
contracts), and mostly ported its arcade properties to the system.

While the Master System was not a great success, it gave Sega time to create a 16-
bit console to fuel the next generation. By Christmas 1990, Sega had released the
Genesis (inspired by a sense of rebirth and the Genesis Project from Star Trek II: The
Wrath of Khan). Its main competition was the aging NES and NEC’s PC Engine
(released in the United States as the TurboGrafx-16). Sega won the Christmas battle
with its combination of well-known arcade titles and sports games. Ultimately, Sega
gained some important support with a third-party deal with Electronic Arts, and the
16-bit console race was on between Sega, Nintendo, and NEC, with all three parties
remaining viable throughout.

In 1994 in Japan, Sega released its next system, the Saturn. While the system did
well in Japan on release, the May 1995 U.S. release was more problematic. Con-
sumers had become unhappy with Sega because of the release or failed release of add-
ons for the Genesis. The Saturn was more expensive than Sony’s PlayStation by $100,
and because of a rushed introduction, it had initial supply problems. All of this ulti-
mately contributed to the system’s demise by 1998, despite some innovative games
such as Yuji Naka’s Nights and add-ons such as a modem.

The year 1999 saw the release of Sega’s last home console to date, the Sega
Dreamcast. An innovative console in many ways, it included a built-in 56K modem,
128-bit graphics, and support for graphical memory cards that could display game
objects or mini games on the controller. Despite the innovative nature of the system,
it was unable to gain a strong foothold. The PlayStation and N64 were still strong in
the marketplace, and when Sony announced the specifications of its next-generation
system the PlayStation 2, Nintendo revealed the codename of “Dolphin” for its next
project, and Microsoft made clear its intentions to join the console market, the
Dreamcast fell by the wayside, ultimately being discontinued before its product lifecy-
cle was over. Sega has since shifted business focus, producing quality software for the
other consoles.

While Sega employed many talented people, of special note was Yu Suzuki who
drove many of Sega’s best arcade games. He was responsible for Hang-On, Space Harrier,
Out Run, and Afterburner, which were all pseudo-3D arcade games. Then, in 1992, he
began producing the Virtua series of games that relied on real 3D hardware. The most
notable was Virtua Fighter, the first real-time 3D fighting game. The Smithsonian
Institute recognized the Virtua Fighter series for its contribution to arts and entertain-
ment, and Virtua Fighter has become part of the Smithsonian Institution’s Permanent
Research Collection (the first Japanese game to receive that honor). Later in 2001, 

12 Part 1 Critical Game Studies



Yu Suzuki finished the console game Shenmue, which took five years to develop and
roughly $50 million, making it one of the most expensive video games ever created.
In development, the game was referred to as Virtua Fighter RPG, which characterized
the game quite nicely with its mix of Virtua Fighter-like battles and RPG elements.

Sony’s PlayStation

In 1991, consumer electronics giant Sony contracted with Nintendo to design a 
CD-ROM game system, but the project was prematurely abandoned. As a result of
the knowledge gained, Sony took its newly honed expertise and decided to pursue its
own video game console. In December 1994, Sony released the PlayStation in Japan,
and in September 1995 released it in both the United States and Europe. Lacking
good first-party games, Sony relied on third-party publishers to provide the lion’s
share of games. While not a huge success at first, the PlayStation increased in popular-
ity and slowly became the dominant home console of its time. This was largely due to
exclusive games, such as the Final Fantasy series, but was also influenced by the
cheaper CD game format, which resulted in faster manufacturing times and less
money tied up in inventory—both critical factors in getting third-party support.

The year 2000 saw the release of the Sony PlayStation 2 in Japan and the United
States (a year before Nintendo’s GameCube and Microsoft’s Xbox were released).
Incorporating a DVD player, strong third-party support, and maintaining backward
compatibility with the PlayStation, the PlayStation 2 dominated the home console
market of the early 2000s. 

Sony had hoped to extend that dominance into the handheld market in 2005 with
the release of the disc-based PlayStation Portable (PSP), a device that has comparable
3D power to the PlayStation 2, as well as being an MP3 and movie player. Thus far,
despite being more powerful than the Nintendo DS, as well as being the first handheld
console to feature an optical disc drive, PSP sales have lagged behind the Nintendo DS,
and UMD movie sales have never performed to expectations. Still, it has sold 43 
million units worldwide and a third redesigned model is soon to be released.

While the PlayStation 2 was a tale of unmitigated success, the PlayStation 3 has 
a much more troubled story. Released in November 2006, the PS3 has thus far 
captured only about 21 percent of the current generation home console sales. Early
reviews criticized the system’s higher price point (when compared to the Wii and
Xbox 360) and poor launch titles. Other contributing factors to slow sales included
the loss of former exclusives such as Grand Theft Auto, a controller that lacked the 
fan-beloved rumble feature, consumer-confusing multiple models, and a price-raising
high-definition Blu-Ray drive. The fact that Blu-Ray won as the high-definition suc-
cessor to DVD would seem to indicate good fortunes for Sony, but PS3 sales are still
lagging, and it remains to be seen if Sony can avoid last-place status for this current
console generation.

1.1 A Brief History of Video Games 13



Microsoft and the Xbox

Founded in 1975 by Bill Gates and Paul Allen, Microsoft’s modest beginnings creat-
ing and selling BASIC interpreters have lead to them becoming the largest software
development company in the world. The Windows operating system is nearly ubiqui-
tous in the world of personal and business computers. Before 2001, Microsoft was
somewhat less well known for its games, although they have two strong franchises in
Age of Empires and Microsoft Flight Simulator.

In 1999, they decided to enter the home console market, going head to head
against Sony and Nintendo. Released on November 15, 2001, the PC architecture-
based Xbox became a very popular system with a strong software lineup topped by the
first-person shooters Halo and Halo 2. Perhaps its strongest feature was Xbox Live, a
subscription-based online service connecting Xbox users nationwide. 

Quick on the heels of the Xbox, Microsoft followed with the Xbox 360 in
November of 2005. Released a full year before either the Wii or the PS3, Microsoft
hoped to get a head start on the “next-gen” console war and become deeply
entrenched in gamer’s minds, hearts, and living rooms. Their attempt has met with
partial success. Strongly outselling the PS3 (which is seen as its strongest competitor
in the hardcore gamer demographic), it nevertheless trails behind the Wii. Still,
Microsoft has continued to invest in and expand upon the Xbox Live service, making
it the premier online service of the current generation of consoles with its offerings of
game matchmaking, as well as downloadable games, movies, TV shows, and hooks
into third-party services such as Netflix.

Microsoft has invested and lost billions of dollars with the Xbox, Xbox 360, and
Xbox Live, and is not expecting to make a sustained profit on the Xbox franchise for
years to come, instead sacrificing money in a long-term bid to gain a foothold in liv-
ing rooms worldwide. With each subsequent generation of consoles, they’ve made
further inroads to this purpose, as well as some very compelling hardware.

Home Computers

Simultaneous to the advent of the home consoles is the introduction of inexpensive
home computers into the marketplace. Where before computers had been the
purview of universities and businesses, the introduction of the home computer had
serious implications for the budding electronic games business.

Apple Computer

Formed on April Fools Day, 1976, Apple Computer began life as a partnership
between two California whiz kids and Hewlett-Packard employees, Steve Wozniak
and Steve Jobs. “Woz,” as he has become known, was a homebrew computer genius.
Jobs was a fellow electronics enthusiast and former Atari employee with an abundance
of confidence and a strong vision. Woz showed his latest creation at the Homebrew
Computing Club, dubbed the Apple I, and Jobs convinced him that they should start

14 Part 1 Critical Game Studies



a company together. Seeing some success with the Apple I in local shops, Jobs made a
gutsy move and went to Atari’s Nolan Bushnell to ask for advice. Bushnell’s advice
eventually led Jobs to Mike Markkula, a former Intel employee who had retired as a
millionaire. Markkula invested his money in the young dreamers, and the company
was born.

Their next computer, the Apple II, was released in 1977 and started a revolution.
Featuring an integrated keyboard and TV or monitor support, the Apple II was the
first computer to gain a real foothold in the home market and found huge support
with software publishers. With its open design and hardware slots, the Apple II also
allowed the use of a plethora of third-party devices that could improve its capabilities.
Various models of the Apple II came out during its lifetime, each improving on its
predecessor—the most famous being the Apple IIe. The Apple IIc Plus was the last
new computer in the Apple II series, and was produced in 1988. A popular staple in
school classrooms, however, the Apple IIgs were produced and sold until 1993. Many
classic games were created or ported to the Apple II, including The Bard’s Tale, Castle
Wolfenstein, Choplifter, the Infocom games, Karateka, Prince of Persia, Swashbuckler,
the Ultima series, and Wizardry. All told, somewhere in the neighborhood of 366
games were produced for the Apple II series.

While the modern gaming landscape strongly favors consoles and PC gaming,
the switch to Intel chip architecture has made Apple game development easier than
ever before. While most game releases for Apple’s OS X are ports of recent PC game
successes, there are some notable games that favor simultaneous release on OS X and
Windows XP/Vista such as Blizzard’s World of Warcraft and EA’s Spore.

Commodore 

Founded in 1954 by Auschwitz survivor Jack Tramiel, Commodore Business
Machines started life as a typewriter manufacturer. Switching from typewriters to
adding machines and then calculators before settling on computers in 1977, the com-
pany’s motto became “Computer for the masses, not the classes.” In 1977, it released
the Commodore PET, a simple computer with a monochrome monitor, keyboard,
tape drive, and metal case. The PET was not a huge success (finding its best market in
classrooms because of its durable metal construction). Their next computer would
change all that.

The Commodore Vic-20 debuted in 1981 with an ad campaign starring William
Shatner that posed the question, “Why buy just a video game?” Although the com-
puter was fairly low-powered for the time, its $299 price point and placement in
department stores and toy stores helped it become the first computer to sell more than
one million units. Eventually, the Vic-20 would sell 2.5 million units before being
discontinued.

The follow-up to the Vic-20 was a significant improvement, with its 64K of
memory and a customized sound chip. Selling for $595, the Commodore 64 was
released in 1982 in an effort to compete more directly with the Apple II. A three-way

1.1 A Brief History of Video Games 15



battle erupted between Texas Instruments, Atari, and Commodore. Tramiel reduced
the price of the C64 to compete with the lowered prices of the TI-99/4a. The plan
worked, and the Commodore 64 became the best-selling computer in history, moving
22 million units in 1983 alone. The battle did serious damage to the competition,
with Texas Instruments dropping out entirely and Atari being seriously hurt. The
price war also had consequences at Commodore, though, and Tramiel left the com-
pany in 1984. 

Commodore tried to pick up the pieces by buying a design for a new computer
from a group of ex-Atari designers. In 1985, they released this design as the Amiga.
The Amiga was an innovative machine that ultimately had trouble finding its niche in
a market dominated by Apple’s Macintosh and cheap PC clones. In 1992, the last
Amigas, the A4000 and A1200, were released. The third-generation Amigas were
powerful computers, offering a compelling alternative to PCs, but were more expensive
—dooming them to failure. 

IBM

In August 1981, the venerable computer manufacturer IBM introduced the IBM PC
(short for “personal computer”). The PC represented a departure for IBM, which had
failed to bring an affordable computer to market once before with the IBM 5100.
This time around, IBM committed a small team of engineers headed by William
Lowe to the project, and gave them free reign for their design. The team came up with
the IBM 5150 within a year, deciding to use parts bought from OEMs (Original
Equipment Manufacturers) instead of IBM-designed components. Another impor-
tant aspect of the PC, one that would have important ramifications for IBM, was the
use of an open architecture, allowing other companies to create compatible machines
or “clones.” IBM’s goal with the PC was to license their BIOS and keep innovating to
dominate the competition. 

The PC was released with a price tag of $1,565.00, placing it outside the price
range of most homes. However, it made important inroads with business users when
the VisiCalc spreadsheet program was ported to it. More PC models followed, offer-
ing expanded capability (such as internal hard drives). Eventually, the PC and its
compatibles would become a significant player in the home market, with most games
being ported to it or developed for it.

IBM’s plan to license their BIOS and keep an open architecture ultimately back-
fired when the BIOS was reverse-engineered by several companies that then came to
market with compatible clones that were cheaper. Even then, IBM did great business
because consumers felt they could trust them. This trust started to erode when IBM
released computers that did not maintain 100 percent compatibility with their own
specification. Largely, consumers wanted a computer that could run programs
branded as IBM PC software right out of the box. When they began to feel that other
manufacturers could provide them with that security cheaper, IBM’s more expensive
computers fell by the wayside.

16 Part 1 Critical Game Studies



Today, the term PC has become a generic term for personal computers, and IBM
has completely removed itself as a player in the home market. The modern PC archi-
tecture is still very similar to that originally created by William Lowe’s team, although
more powerful by leaps and bounds. The IBM-compatible PC (running some variant
of Windows or Linux) still dominates the personal computer market, with only Apple
providing a significant alternative. 

The Designers

In addition to the companies that create the hardware for games to run on, someone
must create the games themselves—enter the designers. 

Maxis and Will Wright

Will Wright has created one of the most enduring software legacies around. In 1984,
Wright created the successful game Raid on Bungeling Bay for Brøderbund. His next
project, inspired by the books Urban Dynamics and System Dynamics by Jay Forester,
was a Commodore 64 game initially called City Builder or Micropolis. Eventually, team-
ing with fledgling company Maxis (created by Jeff Braun and Ed Kilham with a desire
to develop video games that adults would enjoy), the game would be renamed SimCity.

In February 1989, it was released for the Apple Macintosh and Commodore
Amiga. An article in Newsweek and good press all around helped the innovative city
simulation game become a success. People loved the game, in which you managed
many aspects of a city’s development. The Sim appellation, suggested by Maxis writer
Michael Bremer, helped defined a brand. 

Wright followed SimCity with a somewhat less successful game called SimEarth in
which you guided the ecosystem, geology, and climate of Earth. The follow-up to that
was a somewhat more playful game called SimAnt, an ant colony simulation. Wright’s
next project was SimCopter, an ambitious simulation that allowed you to fly a heli-
copter through SimCity 2000 cities. Maxis published other Sim titles (including Sim-
Tower, SimFarm, and SimLife), but Wright’s next project wouldn’t debut for a few
years. When it did, it would cement the Sim name in popular culture.

While working on SimAnt and SimCopter, Wright was inspired by books once
more—Understanding Comics by Scott McCloud provided the idea for a level of
abstraction in representation that would allow players to put more of themselves into
a game; the architecture book A Pattern Language, by Chris Alexander, led to the idea
of making placement of household elements fun. The game, codenamed Project X for
much of its early life, was eventually called The Sims.

The Sims, a “God game” of sorts, is a simulation of the lives of virtual people. You
guide them in many of the daily elements of their lives—cooking, eating, hygiene, jobs,
learning, sleeping, and so forth—while outfitting their house based on the money
they earn. The series has become a phenomenon—selling more than 100 million
copies since its January 2000 debut. It has an unprecedented number of expansion

1.1 A Brief History of Video Games 17



packs, as well as multiple sequels and ports, and has become one of those rare video
games played by people who traditionally do not purchase or play video games.

In September 2008, Wright and Maxis released Spore, a game that tracks a species
from microbe up to space-faring race through four distinct stages and types of game-
play. Characteristics that players select in earlier stages have ramifications throughout
the later stages and so on. A large aspect of the game is the creation and sharing of
content with other Spore players, including vehicles, buildings, and even species. The
game was released on Mac, PC, and DS platforms simultaneously and sold millions of
copies within weeks of release. One “creature pack” has been released so far, with more
expansions planned as well as versions planned for other systems.

MicroProse and Sid Meier

MicroProse began life as something of a dare. On a company trip to Las Vegas, Sid
Meier and J. W. “Wild Bill” Stealey met over a game of Red Baron, an arcade dogfight
machine. Wild Bill had been beating all comers until Sid Meier plugged in his quarter.
Meier impressed Stealey by trouncing the game—one that Meier had never played
before. Meier followed up his impressive performance with a boast, telling Stealey
that he could program a better game in just one week. Stealey countered by saying
that if Meier could program it, he could sell it.

It took Meier two months, but he created a game called Hellcat Ace. Stealey fol-
lowed up on his end of the bargain and successfully sold 50 copies right away, so they
joined forces and created a company. They named it MicroProse as a nod to the
microprofessionals working on the games and the idea that they would be creating
works of art. More games were created, and the money started coming in. They quit
their jobs at the Baltimore defense contractor that had sent them on that fateful Vegas
trip, and started working on MicroProse projects full time.

Solo Flight (1984) was their first national success, and its combination of fun and
realistic gameplay helped to define what the company was shooting for. More strate-
gic simulations followed, games putting the player in planes, submarines, or in control
of armies in hex-based board game conversions as in 1985’s Decision in the Desert.

Then, in 1987, came the first game to bear Sid’s name right on the cover—Sid
Meier’s Pirates! A clever mix of role-playing, action, and swash-buckling adventure,
Pirates! is largely regarded as one of the best games of all time. (The demand for a visit
back to the sun-splashed Caribbean game world was so strong that Meier even remade
it in 2004 with updated graphics and modifications to a few gameplay elements.)
More signature games would follow, the next being Railroad Tycoon—a “God game”
where you controlled the nation’s budding transportation system and economy 
during the golden age of railroads.

In 1991, Sid expanded on ideas from Railroad Tycoon, threw in a little SimCity
and Empire, and came up with Sid Meier’s Civilization. The game was an instant 
classic, with gameplay that inspired many a late-night session with its addictive “one

18 Part 1 Critical Game Studies



more turn” style. In the game, the player guided a budding civilization through all the
technologies of the ages—from bronze working and pottery to computers and nuclear
power. The ultimate goal of the game was adaptable to the style of the player, with
peaceful strategies and gameplay being just as viable as ones that were more warlike.
The game has sponsored numerous sequels; some with Meier’s guiding hand, and
others that just carried the name and spirit. In 2001, Sid’s new company Firaxis
obtained the rights to the series and created Civilization III, expanding and updating
the classic game with new elements while retaining the same addictive play. Since then
they have released multiple expansion packs to Civilization III, Civilization IV with
multiple expansion packs, and a new version of Colonization using the Civilization IV
engine.

MicroProse had many hits with other talented game designers in its stable. Partic-
ularly of note were the games Master of Orion, a space exploration game created by
Steve Barcia’s SimTex group, and 1994’s turn-based UFO-inspired squad combat
game X-Com by Mythos Gaming. 

Spectrum Holobyte acquired MicroProse in 1993, with Sid leaving to form
Firaxis games some time after. In 1998, Hasbro Interactive purchased MicroProse,
closing both California and North Carolina studios in 1999. In 2001, French com-
pany Infogrames (which later purchased Atari and renamed itself to the classic brand)
acquired Hasbro Interactive and discontinued the MicroProse label, eventually clos-
ing the Maryland offices where MicroProse started.

Sierra and Ken and Roberta Williams

One of the most enduring computer game companies of all time, Sierra, literally got
its start on a kitchen table. Programmer Ken Williams had created a company named
On-Line systems in 1979, doing odd programming jobs for the financial sector. His
wife, Roberta, with newborn in tow and too much time on her hands, played a com-
puter game called Colossal Cave on a mainframe through a connection from Ken’s
TRS-80. Inspired by this simple line-text adventure, she started planning a computer
adventure game of her own, mapping it out with pieces of paper strewn across their
kitchen table. One romantic dinner later, Roberta convinced Ken to help her with the
project and a legacy was born.

Mystery House, the world’s first graphical adventure game, was their first product.
Released in 1980—and distributed by hand to stores in Ziploc® bags—Mystery
House eventually sold 80,000 copies. Their output was prolific in those first few years,
making a variety of re-creations of arcade games, graphical adventures, and licensed
titles. Their real claims to fame, though, were the graphical adventure titles that
Roberta scripted, such as The Princess and The Warrior. Ken was also an innovator,
doing things with graphics that hadn’t been done before, drawing complex scenes pro-
grammatically, rather than relying on premade graphics stored on the disk (a tech-
nique that saved tremendous amounts of space).

1.1 A Brief History of Video Games 19



In 1982, they changed their name to Sierra On-Line and moved their offices to
Oakhurst, California. IBM approached them soon after to create a computer game
that would show off its new computer, the PCjr. Roberta made an important leap at
this point. With the advanced capabilities of the PCjr, she saw a way to place the
player on the computer screen, rendered in third-person. Given the change in focus,
her story writing took off, and the IBM-commissioned game became the now-classic
King’s Quest.

Released in 1984, King’s Quest was a huge success, eventually spawning seven
sequels. Other Quest titles by other designers followed, including Space Quest and
Police Quest. Each started a successful franchise, and Sierra became hugely profitable.
In addition to the Quest lineup, Sierra had success with several other franchises as
well, including the adult-aimed comedy series Leisure Suit Larry, supernatural detec-
tive Gabriel Knight’s adventures, Phantasmagoria (a mature horror series), the futuris-
tic EarthSiege, and the blockbuster first-person shooter Half-Life.

In 1994, they moved their headquarters to Bellevue, Washington in an effort to
place themselves in more of a technological hub. In the 1990s, Sierra started acquir-
ing other studios to add to its growing stable of talent (Impressions and Dynamix
being the most notable). In 1996, they were acquired themselves by CUC, later merg-
ing with HFS to become Cendant Software. Cendant was, in turn, purchased by French
publisher Havas Interactive, and then eventually became part of the Vivendi empire.

Today, Sierra Entertainment exists only as a brand of Vivendi Universal games.
Ken left Sierra a year after the sale to CUC. Roberta’s last production credits were in
1999, although she has not ruled out coming back to computer games. The Bellevue
offices were closed in 2004.

Origin Systems and Richard Garriott

Inspired by Dungeons & Dragons, J. R. R. Tolkien’s The Lord of the Rings, and his love
of computers, Richard Garriott built an RPG empire. Garriott created his first com-
mercial game, Akalabeth, as a teenager working one summer at a Computerland store.
Based on a game he had created at school, Akalabeth was a first-person dungeon crawl
where players received quests from a character named “Lord British” to kill progres-
sively harder monsters. The Ziploc-bagged adventure caught the attention of Califor-
nia Pacific Computer, who struck a deal with Garriot that gave him $5 per game sold.
Garriott made $150,000 and then started work on a game called Ultimatum.

Ultima I, as it was later called, was published in 1981 and put the player on a
quest to bring down the evil wizard Mondain. Ultima I was later republished by Sierra
On-Line when California Pacific went out of business. In 1982, Sierra published
Ultima II, a grand time-traveling adventure sending the player on a quest to thwart
Mondain’s lover, Minax. A signature element of the Ultima series was a cloth map
contained in each box. (One of the reasons Garriott went with Sierra as a publisher
was their willingness to include the map.) By the time Ultima III came out, though,

20 Part 1 Critical Game Studies



Garriott had become disenchanted with the deal with Sierra and created his own
company, Origin Systems.

While the early Ultimas were good games, with Ultima IV, Garriott (or “Lord
British” as he was known in and out of his games) raised the bar. Garriott has
acknowledged that the first three games were really a process of him learning to pro-
gram, and that with Ultima IV, he concentrated on the story for the first time. It con-
tained an element of morality and ethics to it, an element that Lord British worried
would ruin the game’s chances for success, but Ultima IV went to the top of the soft-
ware charts. In the game, the player’s goal was to become a prophet, the paragon of
the Eight Virtues of the Avatar. This was a departure from most previous RPGs, in
which the goal was to dispose of some evildoer. The next two Ultimas continued the
story started in Ultima IV.

EA acquired Origin Systems in 1992, around the time that production was
started on Ultima VII. In 1997, Ultima Online, one of the first massively multiplayer
online role-playing games (MMORPGs), was released. The game was enough of a
success that EA decided in 1999 that Origin would become an online-only company.
Garriott left soon after. While many expansion packs to Ultima Online were released,
that last single-player Ultima—Ultima IX: Ascension—was released in 1999. Ultima
IX: Ascension was released before it was finished, and was notorious for its bugs and
incomplete storyline. Origin Systems was disbanded in 2004 by EA, although they
still retain rights to the brand.

Garriot formed Destination Games in 2000 and in 2001 partnered with NCSoft,
a South Korean MMORPG maker who had struck online gaming gold with Lineage.
The Austin offices of Destination Games became NCSoft Austin, and Garriot worked
there as producer and designer of the sci-fi MMORPG Tabula Rasa. Since then, he
has become the first child of an astronaut to also go into space, flying to the Interna-
tional Space Station as a “space tourist” in October 2008. The following month he
announced his plans to leave NCSoft in a desire to pursue new interests resulting
from his space flight. Later that month, NCSoft announced they would be discontin-
uing live service for Tabula Rasa the following February.

Origin’s Other Blockbuster: Wing Commander

Ultima was not the only famous series to come out of Origin Studios. In 1990, Chris
Roberts created Wing Commander. The games featured an epic storyline based on
intergalactic war. The story was told through a series of starfighter missions and cut-
scenes. Later installments of the game featured full-motion video cut-scenes starring
Hollywood actors such as Mark Hamill and Malcolm McDowell. In 1996, Chris
Roberts left Origin to form his own studio, Digital Anvil (although EA has continued
to produce Wing Commander games). He revisited the Wing Commander universe in
1999 when he directed a live-action movie version set during the timeline of the first
game. Since then, he has continued to work as a movie producer in Hollywood.

1.1 A Brief History of Video Games 21



Peter Molyneux

In 1987, Peter Molyneux and Les Edgar transformed their earlier company, Taurus,
into Bullfrog Productions. Two years later they would have a bonafide hit with the first
PC “God game” Populous. This innovative game saw the player overseeing an entire
world and its denizens as a deity of sorts, instead of as a specific character. Populous
spawned sequels and ports across many platforms even as recently as November 2008
when a Nintendo DS version was released. In addition, it put UK-based Bullfrog on
the map and made a name for designer Peter Molyneux. Since then, he has released a
steady flow of games either as designer or producer, first at Bullfrog and then, after they
were sold to EA in 1995, from Lionhead Studios, which he founded in 1997.

While Peter has a reputation for over-hyping his own games, often discussing 
features with the press that don’t make it into the final release (although given the
nature of video game production cycles, this is somewhat understandable as features
are often dropped to meet deadlines), he has nevertheless had a highly respectable
string of successes associated with his name, including such hits as Magic Carpet,
Dungeon Keeper, Black and White, and Fable.

The latest game to be released by Molyneux is 2008’s Fable II, an ambitious
sequel that has garnered many game-of-the-year awards for its well-executed story and
gameplay. Set 500 years after the first Fable game, this action role-playing game incor-
porates such now-standard tropes as good or evil gameplay affecting the appearance
and in-game reactions to the character, as well as a novel take on the NPC relationship,
which allows you to have marriages, multiple marriages, children, divorces, and more.
Downloadable content for the game has already come in the form of the “Knothole
Island” expansion, with more content planned.

The Phenomenons

While there are many success stories in the history of video games, there are a few
breakouts that reach above and beyond the status of mere success. These phenomenons
speak to the incredible innovation and spirit of discovery that has defined the industry.

Space Invaders

In 1978, the Japanese company Taito, with distribution partner Midway, introduced
the U.S. market to the arcade machine Space Invaders. While not the first Japanese
import, Space Invaders was the first big Japanese success. The game, created by Taito’s
Toshihiro Nishikado, featured a never-ending stream of airborne alien invaders
attacking the player’s lone base on the ground. The player used three destructible
shields for cover while firing at the rows of aliens as they descended. All levels were
essentially the same, but the aliens got progressively faster as the game went on, thus
ensuring that the player would ultimately never win. The music was simple, but effec-
tive, keeping pace with the aliens’ attack and increasing the tension. The graphics
were simple—black and white with a color overlay on top of the video screen.

22 Part 1 Critical Game Studies



Despite its seemingly simple premise, presentation, and gameplay, the game was a
huge success, creating a shortage of 100-yen coins in Japan when it was released. The
game later went on to be successfully reproduced on a variety of home consoles,
including the Atari 2600. Perhaps its most notable contribution to the world of video
games was its introduction of the High Score, a saved list of the highest scores achieved
during gameplay that was then displayed while the game was in attraction mode. 

Pac-Man

Inspired by the Japanese folk hero Paku (who was known for his large appetite) and a
pizza with one slice missing, Namco’s Toru Iwatani created the most popular arcade game
of all time. Originally dubbed Puckman, the game was Iwatani’s attempt to create a
completely nonviolent arcade game, one that would appeal to both men and women. 

In the game, players used a simple four-position joystick to guide the yellow pro-
tagonist around the mazelike playing field. Pac-Man’s mission was to eat all the little
white dots, while trying to avoid four ghosts (named Inky, Blinky, Pinky, and Clyde)
that chased him around the screen. On each screen were four larger dots that Pac-Man
could eat to turn the tables—the ghosts become blue for a brief period, during which
Pac-Man could eat them. The game was a huge hit in Japan, and with a slight name
change to prevent vandals from easily turning the hero’s name into something
improper, Pac-Man debuted on American shores in 1981.

The Bally/Midway-distributed Pac-Man was a huge success in arcades, generating
some $100 million worth of sales during its lifetime. The Pac-Man craze was not lim-
ited to arcade coin-ops, however, as a fevered nation bought everything from Pac-Man
cereal and t-shirts to albums featuring songs about the hungry fellow. To date, there
have been 10 sequels to the game, with likely more to follow that feature the enduring
yellow hero, as well as Ms. Pac-Man and the ghosts Inky, Blinky, Pinky, and Clyde.

The Tangled History of Tetris

In 1985, Russian programmer Alexey Pajitnov created the game Tetris, based on a
puzzle game called Pentominoes. Pajitnov decided to take the concept onto the com-
puter (specifically an Electronica 60 in the Computer Center at the Academy of 
Sciences in Moscow), making some important alterations to the concept in the
process. Pajtinov first limited the blocks on his pieces to four instead of five, which
reduced the number of shape permutations to seven. He then made the playing field
two-dimensional and vertical, allowing the pieces to drop into place. While writing
the code that rotated pieces, Pajitnov was impressed with the speed he was getting and
decided the game needed to be in real time. Lastly, Pajitnov solved the problem of
what to do when lines were filled in by removing the finished lines completely, allow-
ing play to continue and new plays to open up. Renaming it Tetris (from the Greek
word for four, “tetra”), he had Vadim Gerasimov port it to the PC. Gerasimov’s port
started spreading across Moscow and then on to Budapest, Hungary. From there,
things got more complicated. 

1.1 A Brief History of Video Games 23



Hungarian programmers had ported Pajitnov’s game to the Apple II and Com-
modore 64. One of these ports caught the attention of Robert Stein of Andromeda, a
British software company. Stein started working with Pajitnov to get the rights, but
sold the PC rights to Mirrorsoft UK—and its U.S. affiliate Spectrum Holobyte (a
subsidiary of Pergamon, headed by Robert Maxwell)—before the deal was inked. The
deal with Pajitnov fell through, and Stein contacted the Hungarian programmers,
attempting to license it through them. Spectrum Holobyte’s PC version was released
and quickly became a hit.

Stein later went to Russia and eventually came back with home computer rights
to Tetris—but no contract. Before Stein could work his other angle and secure rights
from the Hungarian programmers, the CBS Evening News did a piece on Tetris that
firmly established Pajitnov as the inventor of the program. Stein’s negotiations with
the Russians then started going through ELORG (Electronorgtechnica), the trade
organization of the Soviet government. ELORG threatened to cancel any deals with
Stein when they learned about his involvement with the Hungarian programmers.
Eventually, they reached terms, with Stein getting the rights to do computer versions
of Tetris, but specifically not arcade or handheld versions.

Things got further complicated, however, when Spectrum Holobyte sublicensed
Japanese computer game rights to Bullet-Proof Software (under the leadership of Henk
Rogers), and its UK division Mirrorsoft licensed home console and arcade rights to Ten-
gen (an Atari company). These were rights that they did not actually possess. In Novem-
ber 1988, Bullet-Proof software released Tetris for the Nintendo FamiCom in Japan. 

Rogers contacted Stein at the request of Nintendo of America president Minoru
Arakawa. The Game Boy was in development, and Nintendo wanted to offer Tetris as
a bundle with the new handheld. Months passed, and Stein failed to get the rights for
Rogers, so Rogers flew to Moscow to try to secure the rights directly. Stein flew to
Moscow as well, having guessed that Rogers had lost faith in his ability or willingness
to secure the handheld rights and was attempting to take matters into his own hands.
Spectrum Holobyte approached Nintendo at the same time, wanting to develop Tetris
for the Game Boy. Kevin Maxwell, Robert Maxwell’s son, flew to Moscow to attempt
to gain the rights so they could create their handheld version. 

Maxwell, Rogers, and Stein converged on Moscow at the same time. Rogers met
with ELORG before the others, and secured the handheld rights. In the process of
meeting with ELORG, the Russians were surprised to realize that a console version had
already been developed (Tetris for FamiCom). Stein had never discussed with ELORG
that he had sold console rights he didn’t possess to Atari. Rogers pushed on, thinking
he might be able to secure all console rights with Nintendo’s muscle behind him.

Stein met with ELORG after Rogers and signed a document with the Russians
that slightly altered his contract—a brief passage defining a computer in such a way
that consoles and arcade games were clearly not covered by his contract. ELORG then
told Stein that he could not get the handheld rights, but could get the arcade rights—
so he did just that.

24 Part 1 Critical Game Studies



Maxwell made his way to ELORG. Maxwell was shown the FamiCom cartridge
and, not realizing that his company had licensed it, told ELORG that it must be a
fake. He didn’t get the handheld rights he came for, and was then offered the chance
to bid on any Tetris rights remaining. 

When all was said and done, Rogers had secured the handheld rights for Nin-
tendo, and had opened a door so Nintendo could bid on the console rights; Stein had
secured the arcade rights, and signed a contract that defined very specifically what a
computer was; and Maxwell had asserted that no legal console version existed, and
secured for his company the opportunity to bid against Nintendo for console rights. 

Nintendo’s bid was too high for Maxwell’s company to match, and Nintendo
secured the home console rights. A lawsuit ensued, with Tengen suing Nintendo,
alleging that a version of Tetris would violate their copyright. Nintendo countersued
Tengen. Tengen then released Tetris for the NES, despite the legal issues. Tengen’s
contention was that the FamiCom was a computer, and a Tetris version on the plat-
form violated their rights. Nintendo’s assertion was that the Russians had never
planned to give out video game rights until Nintendo had bid on them. 

Nintendo won the lawsuit after many years, but an initial injunction favored
them strongly. Tengen was forced to pull its version of Tetris for the NES off the
shelves. Nintendo released Tetris for the NES, and then as a bundle with the Game
Boy. Both versions sold phenomenally well, with the Game Boy pack-in version help-
ing to sell Game Boys in the tens of millions.

In 1996, Pajitnov partnered with Rogers to form The Tetris Company LLC,
which maintains and controls Tetris rights worldwide, allowing Pajitnov to see money
from his sensational game—nearly 17 years after its creation.

Capcom and Resident Evil

Founded in 1979, Japanese Capsule Command (Capcom for short) is one of the pre-
miere Japanese video game developers and game publishers. Over the years, they have
created many memorable games, appearing on virtually every video game platform
and in arcades, and have created three series of special note. First is the Street Fighter
series of fighting games, immortalized in arcades and feature film. Second is the
immensely popular platformer series Mega Man. Finally, is the series that popularized
a genre, Resident Evil.

Resident Evil (known as Biohazard in Japan) coined the term “survival horror” in
describing the genre it has come to define. In Resident Evil, you are part of an elite
commando team sent in to retrieve another team that was lost investigating a series of
gruesome murders outside Raccoon City. The game throws all manner of puzzles,
zombies, and other undead things at the player, with the player’s goal being to stay
alive and solve the mystery of what has happened. The game has spawned 15 varia-
tions, updates, and sequels since its release on the Sony PlayStation in 1996, as well as
two Hollywood movies (2002’s Resident Evil and 2004’s Resident Evil: Apocalypse).

1.1 A Brief History of Video Games 25



Square and Final Fantasy

In 1987, in a last-ditch effort to stave off bankruptcy, Japanese software company Square
Co., Ltd. released what they thought would be their last game. They were wrong, and
happily so—their next game was Final Fantasy, a console role-playing game for the
FamiCom. Created by Hironobu Sakaguchi, the game proved successful enough that
Square sought a distribution deal with Nintendo for the North American market.

Fifteen games later, and 40 million copies sold so far, the Final Fantasy series is
the king of the console RPG. Games from the Final Fantasy series have appeared on
nearly every platform since the NES (despite a feud between Nintendo and Square
that saw no Final Fantasy games on the N64). Although most games in the series are
not sequels as such, the complex stories, graphic quality, and superb art direction
clearly define games with the Final Fantasy name. The Final Fantasy series is so popu-
lar that a computer-animated motion picture was released in 2001, called Final Fan-
tasy: The Spirits Within. In 2004, Final Fantasy: Advent Children—a computer
animated movie like The Spirits Within—was produced as a sequel to the most popu-
lar game in the series, Final Fantasy VII.

Final Fantasy is not the only popular series from Square; the series Dragon Quest
(known as Dragon Warrior in the United States) is incredibly popular in Japan, with
each installment setting sales records over the previous ones. The Kingdom Hearts
series, featuring a mix of Square and Disney characters, has also proven very popular.

Cyan and Myst

Working from their studios in Spokane, Washington, the brothers Robyn and Rand
Miller created one of the most popular games of the 1990s. The Millers had made a
couple of modestly successful games when Japanese company Sunsoft approached
them to create a game for adults. Anticipating a CD-ROM add-on for the N64 (that
was never released in the United States), Sunsoft was only interested in the console
rights. The Miller’s budgeted $400,000 and paid for the overages themselves. Starting
work in 1991, the game Myst was created on Macintosh computers as a very large
HyperCard stack, with each card being a 3D-rendered scene of atmospheric, ethereal
beauty. The scenes were punctuated with short live-action video clips that helped
move the story along. The user clicked through each screen, navigating the world and
solving puzzles that led to unraveling the mystery of the island. 

Released in 1993 on the Macintosh and then on the PC quickly thereafter, Myst
became a critical darling and the kind of game that everyone had to own in the begin-
ning of the CD-ROM age. The immense success of Myst led to the sequels Riven,
Myst III: Exile, Uru: Ages Beyond Myst, and Myst IV: Revelation as well as remakes,
three books, and a host of clones attempting to capture the essence of the ground-
breaking adventure-puzzle game. 

26 Part 1 Critical Game Studies



Pokémon

When avid insect hunter Satoshi Tajiri earned the nickname Dr. Bug from his friends
as a boy, little did he know that he would create one of the most lucrative video game
franchises ever. Satoshi would search the ponds and fields near his home in a suburb
of Tokyo for any insects he could find, classifying them as he caught them. Sometimes
he would trade them with friends, and they would let them fight. As a teen, he went
to technical school to become an electrician at his father’s request, but haunted the
local arcades in his spare time. In 1982, he formed a magazine called Game Freak with
his friends. In 1991, Satoshi bought a Game Boy and, seeing a Link Cable, imagined
insects crawling along them between the Game Boys. The idea for Pokémon was born.
Striking a creation deal for initial funding from the studio Creatures, and then bring-
ing his idea to Nintendo, Tajiri worked for the next six years to create his game.

Originally called Pocket Monsters (Pokketo Monsuta in Japanese), the name was
shortened to Pokémon when it was discovered that there already existed a Pocket
Monsters toy in the United States. Pokémon Red and Green were released in 1996 in
Japan and localized as Pokémon Red and Blue for the North American release. In the
game, the player sets about collecting the mythical monsters and having them battle
each other. Each version (Red and Blue) features different subsets of the entire collec-
tion of Pokémon monsters. This aspect has added to the addictiveness of the games—
indeed, the first motto for Pokémon was “Gotta catch ’em all!” Since its debut, each
version of Pokémon has broken the sales records set by the previous versions. The game
has become hugely popular, and has branched out into several other forms of media,
including comic books, cartoons, anime, movies, manga, and collectible card games. 

Harmonix: Guitar Hero and Rock Band

One of the most explosive genres of recent years has been the rhythm game, and more
specifically the rhythm games created by Cambridge, Massachusetts’ developer 
Harmonix Music Systems. Scoring early critical (thought not financial) successes with
music-based games FreQuency and Amplitude, Harmonix tapped gold in 2005 with the
release of Guitar Hero. Guitar Hero combined gameplay elements from FreQuency and
Amplitude, as well as some inspiration from one-time collaborator (on 2003’s Karaoke
Revolution) Konami’s GuitarFreaks. Guitar Hero was a music-based rhythm game fea-
turing popular songs “played” on a special guitar-shaped controller (based on a Gibson
SG and developed in conjunction with publisher RedOctane) utilizing five “fret 
buttons” and a “strum bar.” The guitar is also tilt-sensitive, which the player can use 
to trigger “star power,” a bonus multiplier that adds an element of showmanship and
replayability. The idea of playing guitar along with your favorite songs without requir-
ing years of practice and lessons struck a chord (pun intended) with gamers. Guitar
Hero was a critical and commercial success and spawned two quick sequels Guitar Hero
II and Guitar Hero Encore: Rocks The 80s. MTV Networks acquired Harmonix in 
September 2006 for $175 million and after the releases of Rocks The 80s, Harmonix’s
production on the Guitar Hero series ended.

1.1 A Brief History of Video Games 27



Activision acquired RedOctane in June of 2006 for $99.9 million in cash and
stock, and with it the Guitar Hero franchise. Development shifted to Activision-owned
Neversoft (which had been very succesful with the Tony Hawk skateboarding franchise)
who began work on Guitar Hero III: Legends of Rock rebuilding the engine from the
ground up.

Harmonix may not have been steering the Guitar Hero franchise anymore, but
they weren’t done with music-based games and custom controllers by a long shot. In
2001: A Space Odyssey, the arrival of a large black monolith from space sparked the
next stage in evolution for early man. In November 2007, that evolutionary step for
the rhythm game arrived in the form of a plastic drum set. Harmonix released Rock
Band, which incorporated the guitar controller of Guitar Hero (although this time a
Fender-branded Stratocaster lookalike), the microphone of games like Karaoke Revo-
lution and SingStar, and a drum set based off existing electronic drum kits. The game
re-creates the communal experience of being in a band, again without requiring years
of practice or lessons (depending on skill level) to successfully play popular songs. 

One could argue that the microphone brought the game into the mainstream, as
someone can sing well independently of the game and still perform well in it, thus
making it accessible, whereas using the guitar controller well results only in being able
to play games well that use a guitar controller. The microphone, however, carries the
same social stigmas and rewards as a real microphone does: perform well and everyone
hears you, perform poorly and everyone hears you (and everyone has a well-formed
opinion before playing the game about whether they can sing or not). The drumset is
a different story because it blurs the line between game controller and its analagous
real-life counterpart by effectively teaching you skills in one that are necessary for
mastery of the other, and it does this while not attaching a social stigma for poor per-
formance (after all, it’s only a game).

Rock Band, and its eventual sequal, Rock Band 2, has helped thrust rhythm games
to the forefront of all gaming and into the mainstream spotlight. Also of note is that
Rock Band features one of the strongest DLC (Downloadable Content) components of
any video game and offers multiple new songs (playable in both Rock Band and Rock
Band 2) for sale each week through the online service of whichever system you play on.

Spurred by the success of Rock Band, as well as their own need to evolve their
franchise, Activision and Neversoft released Guitar Hero World Tour in October 2008,
which incorporated a similar drumset and microphone, and it features analogous
gameplay to Rock Band (with some subtle differences). Like Harmonix’s franchise,
Guitar Hero World Tour features DLC song offerings each week. Unlike Rock Band,
Guitar Hero World Tour features a “Music Studio” that enables players to create their
own tracks (without vocals) and share them online. Chart positions and sales figures
will vary, but the combined numbers for Harmonix’s current and past franchises are
impressive with many millions of games sold and many millions of songs down-
loaded, representing more than $2 billion in sales thus far—a number sure to become
quickly out of date as sequels with new capabilities and songs are released.

28 Part 1 Critical Game Studies



The Rise and Fall of the Video Game Mascot

Shortly after the dawn of video game history came the mascots. Pac-Man and Frogger
were popular, but the first real breakout character was Mario. Starring as “Jumpman”
in the arcade game Donkey Kong, Mario soon starred in titles of his own. Super Mario
Bros., which came as a pack-in with the NES, rocketed Mario to the heights of popu-
larity—the Italian plumber even became more well known to kids of the era than
Mickey Mouse. 

Others mascots would follow, first being Sega’s Sonic the Hedgehog. Conceived
as competition for Mario, Sonic became the flagship character for Sega. Soon after its
release, Sonic the Hedgehog replaced Altered Beast as the Sega Genesis pack-in title.
Sonic was the first of the anthropomorphic animal characters, such as Crash Bandi-
coot, Spyro the dragon, and Blinx. 

As Mario was to Nintendo, and Sonic was to Sega, Crash Bandicoot became the
original mascot for the Sony PlayStation. Featured in a variety of games and humor-
ous commercials, Crash was never quite as popular as his competing console hawkers
were. In recent years, long since making the leap from the PlayStation (Vivendi Uni-
versal currently owns the rights to the character), Crash has been seen on Nintendo’s
systems and Microsoft’s Xbox. 

Another mascot of mythic proportions (no pun intended) is Lara Croft, the
braided heroine of the Tomb Raider games. She has appeared in more than a dozen
Tomb Raider games covering the various platforms and PC. She is a strong female
character that nevertheless comes under a lot of criticism for her overtly sexualized
persona. Despite the criticism, she has become immensely popular, and has had two
live-action movies (Tomb Raider and Tomb Raider: Cradle of Life) that chronicle her
adventures, as well as books and comic books. 

Other mascots have become popular to varying degrees over the years. Nintendo
has the lion’s share with Samus Aran, star of the Metroid series (and one of the few
nonsexualized females in video games); Link, the yellow-haired hero of Hyrule in the
Zelda series; Kirby, the pink ball-shaped creature who stars in his own cartoon now;
Donkey Kong, the original arcade ape; and Pikachu, the electrifying yellow hero of
the Pokémon games, movies, and cartoon series. Sony has had its own sets of heroes
with Jak and Daxter, Solid Snake from Metal Gear Solid, Ratchet and Clank, Kratos
from God of War, and Spyro the dragon. It is worth noting that many of Sony’s once-
exclusive mascots have since appeared on other systems. Microsoft has just a few mas-
cots for its relatively recent systems, including the Master Chief from the Halo series
and Marcus Fenix and Dominic “Dom” Santiago from the Gears of War series.

Many consider the heyday of the mascots to be over. There are several reasons
why mascots may not be as popular as they once were. One is the possible oversatura-
tion of existing characters. At the apex of a character’s popularity, there seems to be no
upper limit to how much attention a mascot can garner and sustain, but when a char-
acter is not at its apex, this same attention level can appear to be far too much. In the

1.1 A Brief History of Video Games 29



1980s, after the initial introduction of characters such as Sonic and Mario, everyone
jumped on board the mascot bandwagon. Everything from soft drink to pizza chain
mascots made it into video games, creating an influx of characters without much
depth to them that the public didn’t get behind (cheapening all mascots as a result).

Another possibility is the advancing age of the audience: the audience that first
fell in love with Mario’s adventures in 1985 has had roughly two decades to grow up
and move on to other concerns. An audience not present for a character’s defining
games may not view the character in the same light as those present for the character’s
introduction (as in the case of Tomb Raider where Angelina Jolie’s movie representa-
tion of Lara Croft may far overshadow the games that made the character popular in
the mid-1990s). 

Marketing can also be a factor in the popularity of the mascots. If a particular
console is skewed toward an older audience and doesn’t possess any strong mascots, it
benefits them to characterize the mascots and other consoles using them as “kiddy.”
Calling a system “kiddy” is a disingenuous way of denigrating a particular system, as
it has no technological basis in the capability of the console.

Perhaps the largest factor in the perceived decrease in popularity of the video
game mascot is the increased realism and immersion level in video games. Most 
mascots have appeared as brightly colored third-person characters manipulated within
the games, while the trend is toward games where the player is the main character 
in the game, seeing through the eyes of an on-screen persona (as in most first-person
shooters) or treating the character as a sort of alter ego (Grand Theft Auto). As technol-
ogy advances, the opportunities for immersion increase as the game playing field
becomes far more realistic. The president of Nintendo, Satoru Iwata, underlined the
problem at his E3 2003 speech when he pledged that Mario would never start shoot-
ing hookers. While on the one hand, this promise takes a stand in addressing the
trend of increasing violence in games, it also points to the idea that the video game
mascot might just be of a different era—an era now gone.

The Studios

In the games industry, hits, innovation, and great design do not necessarily mean that
a company will experience long-term success. Indeed, the history of video games is lit-
tered with once-successful companies that no longer exist. It takes a particular combi-
nation of success and business savvy to last. Here is a necessarily brief overview of
some of the many notable studios and publishers.

Activision and Infocom

Formed by four former Atari programmers and Jim Levy, a former music industry
executive, Activision was the first third-party game developer. David Crane, Larry
Kaplan, Bob Whitehead, and Alan Miller were among Atari’s best and brightest, but

30 Part 1 Critical Game Studies



they’d become disillusioned with practices at Atari. The new company created some
of the best-known Atari 2600 games ever, including such hits as Bob Whitehead’s
Chopper Command, Carol Shaw’s River Raid, and David Crane’s Pitfall! (Activision
prided itself on giving its designers credit, featuring them in much of its marketing—
a practice that Atari had eschewed.) A lawsuit from Atari resulted in Activision and all
other third-party companies agreeing to pay royalties on each game sold, but Activi-
sion had become so successful that this hardly damaged its bottom line.

After Activision’s initial success, they merged with popular text adventure creator
Infocom. Infocom had created the beloved Zork franchise, as well as other popular
text-based games, but had fallen on difficult financial times. The merger soon created
issues for the combined companies, however, when new CEO Bruce Davis took over.
Davis had been against the merger and made changes that eventually led to the 
closing of Infocom’s studios in Massachusetts, losing most of the Infocom staff in the
process.

A name change to Mediagenic, a change in focus to business software, an even-
tual bankruptcy, a merger, and a name change back to Activision lead us to the early
2000s, where Activision continued to make and distribute popular PC and console
game titles like Doom 3, Tony Hawk’s Underground, and Spider-Man.

The mid to late 2000s were a period of tremendous consolidation and growth in
the industry in general and for Activision in particular. Acquisitions for Activision
included studios like Treyarch, Infinity Ward, Vicarious Visions, and more, culminat-
ing (at least for now) in the 2008 merger with Vivendi to become Activision Blizzard.
In 2007, Activision finally beat EA to become the number one third-party publisher in
2007 (based in large part on the strength of the Guitar Hero franchise). A continued
series of strong franchises (Guitar Hero, Call of Duty, and now World of Warcraft) and
smart acquisitions make Activision one of the top companies in the business today.

Electronic Arts

Originally starting life as Amazin’ Software, Electronic Arts (EA) was founded in 
1982 by former director of product marketing for Apple Computer, Trip Hawkins.
Acquiring $2,000,000 in venture capital and putting up $200,000 of his own money,
Hawkins was able to bring to life ideas he’d had for seven years. The business plan
developed by Trip was visionary and had three key elements: first, that the creative
talent at the company would be treated like artists, involved in the marketing, and
generally revered more than at other companies in the industry; second, that they
would develop proprietary tools and technology that would enable them to quickly
develop their titles cross-platform; and third, that they would handle the distribution
to stores. Hawkins brought many of his former colleagues at Apple onboard and the
company was off and running. Nobody liked the name Amazin’ Software, though,
and at an early company retreat—and inspired by Hollywood’s United Artists—the
company was renamed to Electronic Arts.

1.1 A Brief History of Video Games 31



In May 1983, Electronic Arts released its first five titles: Hard Hat Mack for the
Atari 800 and Apple II; Archon for the Atari 800; Pinball Construction Set for the Atari
800 and Apple II; Worms for the Atari 800; and M.U.L.E. for the Atari 800. The last
four of these are seminal titles in the history of video games. Archon was an innovative
chess-like game with action elements to it. Pinball Construction Set allowed you to cre-
ate your own pinball playing fields. Worms, the first entry in the venerable series, was
a strategic war game with worms as your troops. M.U.L.E. was an economic simula-
tion set on a space colony that was masquerading as a game. 

While EA wouldn’t develop its own internal games until 1988’s Skate or Die!, they
had a knack for finding external development houses with great ideas. Some other
early classic EA titles include One on One: Dr. J vs. Larry Byrd (1983), The Seven Cities
of Gold (1984), The Bard’s Tale (1984), Mail Order Monsters (1985), Bullfrog’s Populous
(1989), and Maxis’ SimCity (1991). True to Trip’s business plan, these titles were
developed for multiple computer platforms and eventually consoles. 

Trip Hawkins left EA in 1991 to help found the 3DO company, a console and
game maker that eventually filed for bankruptcy in 2003. Larry Probst became the
next CEO of EA, guiding it to reach profits of $1 billion in 1994—the first for a
video game publisher. The outspoken Probst has been criticized for his reluctance to
create games such as Take Two Interactive’s ultraviolent (but ultrasuccessful) Grand
Theft Auto Series. Despite that, in 2005 EA is expected to reach $3 billion in profit.

Under Probst’s leadership, EA has found a knack for acquiring external develop-
ment houses that rivals Microsoft’s. In 1992, they acquired Richard Garriot’s Origin
Studios, creators of the Ultima series. In 1995, they added Peter Molyneux’s Bullfrog
(makers of Populous, Dungeon Keeper, and Magic Carpet) to their list of studios. In 1997,
Maxis (all things Sims) joined their stable. Finally, in 1998, Westwood Studios (creators
of the Command and Conquer series) came on board. Consolidating their external 
studios, EA now publishes some of the most famous franchises in games through their
four brands (EA Games, EA Sports, EA Casual Entertainment, and The Sims).

The economic crisis of 2008 has hit the gaming industry hard, despite some
record successes in the same time period. EA is currently one of the partial casualties
of this economic downturn and has announced pending layoffs and studio closures.
The full extent of this crisis and the inevitable rebound are unknown as of this writing,
but EA has many strong franchises in their arsenal that will certainly weather the storm.
Some of these franchises include James Bond 007, The Lord of the Rings, Madden NFL,
Tiger Woods Golf, Need for Speed, Medal of Honor, Battlefield, Harry Potter, The Sims,
Spore, and Rock Band.

Interplay

Formed in 1983, Interplay Productions created a few odds-and-ends game products
and ports until striking it big with The Bard’s Tale in 1985. The Bard’s Tale was a dun-
geon crawl similar to the Wizardry series, but featured innovative quasi-3D graphics.

32 Part 1 Critical Game Studies



Two sequels followed in the immensely popular series, further expanding on adven-
tures in the town of Skara Brae.

In 1987, Interplay created one of the finest entries ever into the CRPG (Computer
Role-Playing Game) genre using the Bard’s Tale engine. Wasteland was set in a post-
apocalyptic desert world, the universe created by the tabletop role-playing game 
Mercenaries, Spies, and Private Eyes. The innovative game allowed players to solve
problems in the game based on their variety of skills, not just brute force. Wasteland
has become a steady staple of “best of” lists since its release.

Founder Brian Fargo realized around that time that they could make more money
by publishing their own games. The company released William Gibson’s Neuromancer
and Battle Chess on their own label in 1988. In 1990, amidst financial troubles, 
they released Castles, which did well enough that they could release their next hit—
Star Trek: 25th Anniversary. Amazingly, 25th Anniversary broke the curse of licensed
Star Trek games, and became very successful, eventually being rereleased in a CD-ROM
version with voiceovers recorded by the original actors. 

In 1997, they released Fallout, the spiritual successor to Wasteland. Fallout show-
cased a retro-futuristic style that was a marvel of art direction. Coupled with a combi-
nation of real-time and turn-based gameplay and a strong dash of humor, Fallout was
a classic CRPG that, in turn, spawned its own sequel (Fallout 2). Like Wasteland
before it, Fallout has become a steady fixture in lists of the best games of all time. 

One of Interplay’s most important and lucrative partnerships was with a Cana-
dian company called BioWare. Formed by three medical doctors, BioWare has 
specialized in creating superb CRPGs, including the Baldur’s Gate series, Neverwinter
Nights, and Star Wars: Knights of the Old Republic—the latter two published by Info-
grames and LucasArts, respectively. The Baldur’s Gate series, in particular, spawned
several immensely popular games, including Baldur’s Gate: Tales of the Sword Coast,
Baldur’s Gate II: Shadows of Amn, and Baldur’s Gate II: Throne of Baal.

In the late 1990s, despite the success of Baldur’s Gate, Interplay’s fortunes began
to wane. After becoming a public company in 1998, Interplay then announced losses
covering several years. The company divested itself of its publisher duties and signed
with Vivendi Universal. Soon after, Titus Interactive gained control of the company,
prompting the departure of founder Fargo. The company was de-listed from the
NASDAQ, threatened with eviction from their offices, and, for a brief time, was shut
down following these and other financial troubles.

Interplay has seen something of a resurgence since that time. Thanks to the sale 
of the Fallout IP to Bethesda Softworks (who subsequently released the critically
acclaimed Fallout 3 for PC, PS3, and Xbox 360) and sale of a controlling interest of
stock to a Luxembourg company, Interplay has been reborn. Their current plans
include releasing some of their Sega and N64 games on the Wii Virtual Console, as
well as releasing a new Earthworm Jim game with series creator Doug TenNapel serv-
ing as creative consultant. In addition, they are planning sequels to Dark Alliance,
Descent, MDK, and a Fallout MMO.

1.1 A Brief History of Video Games 33



LucasArts

LucasArts started in 1982 as the Games Group, an offshoot of Lucasfilm Ltd. Using
$1 million in seed money from Atari, they set to work on creating two games, Ball-
blazer and Rescue on Fractalus. The games were completed, but before they could be
released, they were pirated. In the meantime, Jack Tramiel had taken over at Atari,
and the Games Group didn’t like the terms he was offering. In 1984, Epyx published
the games, and Lucasfilm Games (as they were now known) had its unique and inno-
vative product on the shelves.

While their early games were creative and well made, it wasn’t until 1987, with
the release of Maniac Mansion, that LucasArts began to define itself. Maniac Mansion
was essentially the first point-and-click adventure game. All the game verbs were
located on the screen, so interaction was accomplished by clicking on combinations
of on-screen items and words—no typing was needed. The engine used to create the
game was called SCUMM (Script Creation Utility for Maniac Mansion), and typified
the sense of humor that went into the games themselves. SCUMM was used for the
next 10 years in every adventure game made by LucasArts until The Curse of Monkey
Island was produced in 1997. With SCUMM, LucasArts built a powerful reputation
as a maker of witty and original adventure games.

LucasArts wasn’t known only for its adventure games, though. In the early years,
they had produced a few strategic simulations, and, after working on adventure game
ports, programmers Larry Holland and Noah Falstein were anxious to return to their
roots. In 1988, they released Battlehawks 1942, the first in a series of World War II air
combat games. They followed up with Their Finest Hour: The Battle of Britain and
then the classic Secret Weapons of the Luftwaffe.

In 1992, rights to produce games set in the Star Wars universe reverted to LucasArts
from Brøderbund, and Holland seized the opportunity to apply his combat simulation
experience to a new genre. Star Wars X-Wing was the result of this first effort—a space
combat game that skillfully captured the feel of the beloved movies and put you in the
pilot’s seat of an X-Wing fighter. Star Wars TIE Fighter followed, which told the story
from the Empire’s point of view, providing shades of gray to the evil Empire. The next
game in the series, Star Wars X-Wing VS. TIE Fighter, brought the series to the Internet
in an ambitious multiplayer experience—complete with death match and cooperative
missions. The final game in the venerable series was Star Wars X-Wing Alliance, which
allowed the player to pilot the Millennium Falcon for the first time. 

LucasArts has had other notable games in other genres. They brought The Force
to the first-person shooter with Dark Forces, released in 1995. Sequels to Dark Forces
followed in the form of the Jedi Knight series and saw the lead character, Kyle Katarn,
go from mercenary to Jedi Knight to Jedi Master, adding light sabers and force pow-
ers to his arsenal along the way. The 1998 Grim Fandango saw them revisiting famil-
iar territory with an amazing 3D adventure game featuring skeletal Manny Calavera
on his journey through the land of the dead. The popularity of the action game Star

34 Part 1 Critical Game Studies



Wars Rebel Assault (which was released only on CD-ROM) is credited with helping
bring CD-ROM drives to the masses. More recently, LucasArts has had success with
several different franchises within the Star Wars universe including the hit RPG Knights
of the Old Republic and its sequel (created by BioWare and Obsidian Entertainment
respectively), the MMORPG Star Wars Galaxies, the real-time strategy game Star Wars:
Empire at War, Lego Star Wars, and Star Wars: The Force Unleashed. LucasArts also has
several non–Star Wars properties of varying degrees of popularity, including Indiana
Jones (with the hit Lego Indiana Jones), Mercenaries, Fracture, and Thrillville. Much
anticipated as of this writing is an upcoming Star Wars game utilizing the Wii Remote
in lightsaber duels.

Blizzard

Starting life in 1991 as Silicon & Synapse, the company later to be known as Blizzard
Entertainment was founded by Mike Morhaime, Allen Adham, and Frank Pearce.
Using ties with Brian Fargo at Interplay, they spent their first three years creating con-
sole games like The Lost Vikings and Rock & Roll Racing. They were acquired in 1994
by Davidson & Associates and soon thereafter released the game Warcraft—their first
big hit. Warcraft was one of the first real-time strategy games (along with Westwood’s
Command & Conquer), and helped to define the genre.

The development house Condor had been shopping around a game idea called
Diablo—and finding no takers—when they talked to their old friends at Blizzard.
Blizzard liked the idea, and contracted Condor to make it happen. While Condor was
working on Diablo, Blizzard was applying the finishing touches on the sequel to their
biggest success. Warcraft II was released in 1995, and was a blockbuster hit. In 1996,
they purchased Condor and renamed it Blizzard North. Blizzard has had an unprece-
dented number of blockbuster hits since then, each game outselling the last; their lat-
est game, the MMORPG World of Warcraft and its two expansion packs, has become
the fastest selling PC game in history and as of December 2008 has 11.5 million sub-
scribers, easily making it the most popular MMORPG ever.

id Software

id Software formed on February 1, 1991, when the game development group at Soft-
disk (a monthly software newsletter) quit nearly en masse. 

John Carmack, Adrian Carmack (no relation), John Romero, and Tom Hall had
created a shareware game called Commander Keen. Keen was distributed by Apogee,
who had figured out that splitting a game into three parts and charging for the second
and third parts was a way to make shareware pay off well. Seeing the success of Keen,
Scott Miller of Apogee encouraged the id team to create a 3D game. In December
1991, they completed some final obligations to Softdisk and began work on a 3D
game. The game was Wolfenstein 3D, a first-person shooter based on Castle Wolfenstein.
Within the first month after release, Miller paid the id team $100,000 in royalties on
the smash hit.

1.1 A Brief History of Video Games 35



Inspired by the movies Evil Dead and Aliens, id parted ways with Apogee and cre-
ated the phenomenon DOOM. While not the first first-person shooter (Carmack’s
contributions to Softdisk earning that place in history), DOOM became the ultimate
expression of it. Featuring a state-of-the-art graphics engine, DOOM was a compelling
combination of action, puzzle-solving, art, multiplayer LAN play, and inspired level
design. Like their previous products, DOOM was distributed using the shareware
model that had helped make Commander Keen and Wolfenstein 3D lucrative. 

Each successive product since DOOM has been a showcase of genius program-
ming and 3D engine design, with id making massive profits licensing their engines to
other game companies. On the heels of DOOM followed success with DOOM II,
Quake, Quake II, Quake III: Arena, and their latest, DOOM III, a dark, atmospheric
return to the demon- and zombie-filled world of their first giant success. Upcoming
titles include Rage and Doom 4.

A Brief Overview of Genres

Most modern video games can be assigned to a particular genre, or classified as a
hybrid of two or more genres. These genres have come about over the years, often as 
a result of trial-and-error, but more often as an evolution. The following is a description
of some important genres and the games that either introduced or popularized them.

Adventure

In the adventure game genre, there have been two important subgenres: the text-
based adventure and the graphical adventure. For text-based breakouts, one need look
no further than Zork by Infocom. On the graphical adventure side, one of the series
that defined the genre was the King’s Quest series from Roberta Williams at Sierra.

Action

The action game is the superset of many other genres. First-person shooters, action-
adventure, combat simulations, fighting games, even platform games are all parts of
the action genre. Games in the action genre are typified by fast-paced combat and
movement. Some of the earliest examples of video games such as Spacewar, Pong,
and Space Invaders defined the genre and were also its earliest successes.

Action-Adventure

Action-adventure games are similar to adventure games, but incorporate action ele-
ments. Nintendo’s The Legend of Zelda was the first breakout hit of the genre, but
there have been many more since. Recent games like Jak 3, Metroid Prime 3, and 
Resident Evil 5 continue the tradition of action with strong puzzle solving.

36 Part 1 Critical Game Studies



Platformer

The original platform games involved the character running and jumping in a side-
scrolling playing field. While the definition has been expanded now to include 3D
playing fields, the genre is still fairly true to its roots. Some of the most famous plat-
formers have been Super Mario Bros., Sonic the Hedgehog, Pitfall!, and Super Mario 64.

Fighting

In fighting games, the player fights other players or the computer with martial arts or
swordplay. These games originated in the arcades, where players could signify their
intent to challenge one another by placing quarters on the top of the cabinet. Double
Dragon is one of the most famous games from the genre, allowing players to fight side
by side through a scrolling landscape. Street Fighter and Mortal Kombat are two of the
most famous of the 2D fighting games in which players choose characters and fight
against each other (called a versus fighter), while Virtua Fighter, Soul Calibur, and
Tekken are the leading examples of the 3D version of this subgenre.

First-Person Shooter

The first-person shooter is an action game that places the player “behind the eyes” of
the game character. In the games, the player is able to wield a variety of weapons and
dispatches enemies by shooting them. The genre took hold with id Software’s Wolfen-
stein 3D and Doom.

Real-Time Strategy (RTS)

In a typical RTS, the goal is for the player to collect resources, build an army, and con-
trol his units to attack the enemy. The action in these games is fairly fast-paced and
because of the continuous play, strategic decisions must be made quickly. While
1984’s The Ancient Art of War and 1989’s Herzog Zwei were early examples of the
genre, the games that popularized it were Westwood’s Dune 2 and Command and
Conquer and Blizzard’s Warcraft.

Turn-Based Strategy

These games are similar to real-time strategy games (indeed, they were the precursors
to them), but the players take turns in which they make their moves. For example,
most board games (like Chess and Checkers) are turn based. In the era of the RTS,
turn-based games are less frequently made, but there are some notable games in the
genre, namely Civilization, X-COM, Master of Orion, and Jagged Alliance.

1.1 A Brief History of Video Games 37



Role-Playing Game (RPG)

The video game version of pen and paper games like Dungeons & Dragons differs from
its tabletop counterpart mostly in its ability to create a world that doesn’t require
imagination. Most differentiations from the formula are hybrids with other genres.
Some of the most famous RPGs to grace computer and TV screens are the Final Fan-
tasy series, the Baldur’s Gate series, and Wasteland.

Massively Multiplayer Online Role-Playing Game (MMORPG)

The MMORPG or MMO is a role-playing game set in a persistent virtual world pop-
ulated by thousands of players simultaneously connected over the Internet. The MMO
was predated by text-based games called Multi-User Dungeons/Dimensions (MUDs),
but in modern times it is largely graphical. In the games, the player is represented by an
on-screen character called an avatar. The first modern MMO was Meridian 59 in
1996. The first popular implementation, however, was Ultima Online in 1997. World
of Warcraft is currently the king of the genre with more than 11 million subscribers.

Stealth

Stealth games (sometimes called sneakers) are characterized by their focus on subterfuge
and their planned-out, deliberate gameplay. They are generally similar to first-person
or third-person shooters, but are less action-oriented and more methodical in nature.
The first stealth game was the original Metal Gear in 1987, but other notable stealth
games include the Thief series, the Metal Gear series, and the Splinter Cell series.

Survival Horror

Survival horror is a subgenre of action-adventure and first-person shooter games. Typ-
ically, they involve exploring abandoned buildings or towns where various monsters
and undead creatures lurk. The survival elements are stressed by never giving the
player quite enough bullets or health, thus increasing the tension. The horror aspect
defines the theme and pacing, commonly directing the player to explore quiet,
deserted, bloodstained hallways until a monster comes crashing through a window, or
a seemingly lifeless corpse begins to stir. Players are often startled and can become vis-
ibly shaken from the experience, much like a good horror movie. While 1992’s Alone
in the Dark is recognized as the first in the genre, Resident Evil in 1996 popularized
the “survival horror” term and set the bar for subsequent games.

Simulation

Simulation games are based on the simulation of a system. This system can be anything
from the workings and economy of the railroads (such as in Railroad Tycoon) to a
combat scenario where the player controls large movements of troops, or even single
fighter craft. SimCity is one of the breakout simulation games, allowing you to micro-
manage a city. Wing Commander and X-Wing are two of the defining space combat

38 Part 1 Critical Game Studies



simulation games. Microsoft Flight Simulator is one of the most famous airplane simu-
lation games. In recent years, The Sims is one of the more popular games in the genre,
with its complex simulation of human life and social interactions.

Racing

Racing games involve competing in a race in vehicles ranging from racecars to motor-
cycles to go-karts. This genre is a little different from others in that the games essen-
tially try to re-create as best they can a real-world activity. The first breakout racing
game was Pole Position from Atari.

Sports

The sports game genre covers a myriad of games that simulate the sporting experi-
ence. As with racing games, sports games are mostly an attempt to re-create the com-
plex interactions in a real sport. Some of the breakout series in the genre have been
John Madden Football and Tiger Woods Golf.

Rhythm

Rhythm games gauge a player’s success based on his ability to trigger the controls in
time to the beat of music. Some games, such as Konami’s Dance Dance Revolution
(DDR), require the player to step on floor pads in time to music, while Nintendo’s
Donkey Konga for the Nintendo GameCube comes with a specialized bongo drum
controller—although not all rhythm games require specialized controllers. For example,
PaRappa the Rapper is regarded as the first significant rhythm game, appearing on
the PlayStation in 1996, and it only required the standard controller. Currently, the 
Guitar Hero and Rock Band franchises are responsible for the tremendous popularity
of this type of game.

Puzzle

Puzzle games combine elements of pattern matching, logic, strategy, and luck—often
with a time element. Tetris is easily the most popular puzzle game ever, and serves as a
fine example of the genre with its frenetic pattern-matching action.

Mini-Games

Mini-games are typically short, simple games that exist within a larger traditional
game. They are sometimes used as a reward for completing a challenge or unlocked by
discovering a secret. Alternately, the larger game can be a thin veil for a collection of
mini-games, as in the Mario Party series or the Wario Ware series. The Wario Ware
series is of special note since each title contains more than 100 games, with each last-
ing only several seconds. Many games on the Internet used for advertising purposes
could also be described as mini-games.

1.1 A Brief History of Video Games 39



Traditional

Traditional games include computerized versions of card games and board games. The
first traditional game implemented on a computer screen was Noughts and Crosses
(tic-tac-toe) by A. S. Douglas at the University of Cambridge in 1952. Throughout
the years, chess has long been a staple of traditional video games, with Chessmaster
being the most recognized series. In 1988, Interplay developed Battle Chess, which
was just normal chess, but when each piece took another, there was a unique (and
often humorous) animation of the “battle.” Sierra’s Hoyle series is one of the most
dedicated efforts to bring traditional games to a computer format, with its faithful
translations of card, board, casino, word, table, and puzzle games.

Educational

Educational games are designed to teach grade-school concepts to children and young
adults in an entertaining manner. The first notable educational game was Oregon
Trail, originally designed in 1971 for teletype machines at Carleton College, but
made popular in the 1980s and 1990s by a version running on Apple computers in
public schools. Other notable games in this genre include the Carmen Sandiego series
and Mavis Beacon Teaches Typing.

Serious

The serious game genre has emerged in the past couple of years as a cheaper and more
entertaining way of teaching real-world events or processes to adults. These games are
usually privately funded for specific uses, with the U.S. government and medical pro-
fessionals being the largest users. For example, game developers can develop training
simulators relatively cheaply, while infusing the simulation with entertainment value.
The fun value is important so that users are motivated to replay the game often and
thus become better trained. The Game Developers Conference has recognized the
strong interest in serious games and in 2004 added a two-day Serious Games Summit
as part of its annual event, focusing on “the intersection of games, learning, policy,
and management.” [GDC]

Summary

While the history of video games tells a story of men and women driven by innova-
tion and creativity, it also tells the story of bad business moves and failure to capitalize
on opportunities. Innovation doesn’t necessarily lead to success, and success doesn’t
necessarily lead to longevity. True success and longevity in the video game world often
rely on a combination of creativity, business acumen, and luck. Just as in any emerg-
ing media, there is an evolution that takes place, as genres are defined and capabilities
are explored. The consoles and computers of the year 2000 enable ways of game 
playing that weren’t possible in the early 1980s, while some classic games still remain

40 Part 1 Critical Game Studies



classic games despite featuring outdated technology. Ultimately, as advanced as video
games have become and as much money as the industry generates, the medium must
still be considered in its infancy. This does not invalidate the lessons learned from 
the designers and companies that have made a success in it, but serves to inform the
future.

Exercises

1. A graphical computer version of tic-tac-toe (Noughts and Crosses) was devel-
oped by A. S. Douglas at the University of Cambridge in 1952. Why do
many historians not consider this the first video game? Research the game
on the Internet and make an argument why it should be regarded as the first
video game.

2. Why was Atari successful with the 2600 while Fairchild and RCA both
bowed out of the console race early?

3. Do you believe that the video game mascot is in decline? If so, why? If not,
why not?

4. Having read stories of companies that were both successful and unsuccess-
ful, what are some of the elements that would lead to having a successful
video game company and some pitfalls to watch out for?

References

[Burnham03] Burnham, Van, “Supercade: A Visual History of the Videogame Age
1971–1984,” The MIT Press, 2003. 

[DeMaria03] DeMaria, Rusel, and Wilson, Johnny L., High Score!: The Illustrated
History of Electronic Games, Second Edition, McGraw-Hill, 2003.

[GDC] Game Developers Conference, www.gdconf.com.
[Kent01] Kent, Steven L., The Ultimate History of Video Games, Three Rivers Press,

2001.
[Sellers01] Sellers, John, Arcade Fever: The Fan’s Guide to the Golden Age of Video

Games, Running Press, 2001.
[Wikipedia04] Wikipedia, 2004, http://en.wikipedia.org.

1.1 A Brief History of Video Games 41

www.gdconf.com
http://en.wikipedia.org


This page intentionally left blank 



43

Overview

Twenty years ago, the study of video games might have been greeted with scorn or
derision. After all, who would have considered simplistic games like Pong and Breakout
anything more than a novelty? At most, they were perceived as primitive extensions of
board and card games. However, in the three plus decades since then, what was seen
as a mildly diversionary collection of dots on a TV screen has become a cultural phe-
nomenon of massive proportions and certainly one worth examining in greater detail. 

Clearly, the enormous fiscal and cultural success of video and computer games is
too long-lived to be a fluke or a fad. The presumption has to be that they fulfill some
social or personal need, and that this fulfillment has enabled their enduring success.
However, what is this social or personal need, and what power does it have? Are video
games merely a reflection of culture and society, or do they exert undue influence on
that culture and society? Surely, the answer is somewhere in between, but the answer to
this question is critical in determining how societies reconcile their relationships with
video games. Are they to be feared or embraced? What laws, if any, should regulate
them? Are children or adults susceptible to violent content within video games? 

Games and Society1.2

In This Chapter

Overview
Why Do People Play Video Games?
Audience and Demographics
Societal Reaction to Games
Cultural Issues
Society within Games
Summary
Exercises
References



How do particular societies and cultures view games and react to their content, and how
does that change when that game has been produced by a different culture or society? 

Moreover, the classification of video games can be a tricky business. Clearly, they
are intended to be entertainment, but what kind of entertainment? Are they an art form,
like paintings or literature? Or are they an entertainment medium, like television or
movies? Are they to be considered an activity or sport, like tennis or ping-pong,
because of their capability to sharpen reflexes and improve hand-eye coordination? Or
does the interactive nature of the gaming experience require a new classification?
Whatever the classification, do video games constitute speech, and thus fall subject to
the protections and laws governing speech? How should a society reconcile these very
different portrayals of video games? While consumers, lawmakers, and judges ham-
mer out these thorny issues, society keeps humming along, and the consumption and
integration of video games into daily life continues, often creating or highlighting
newer and thornier issues.

At the extreme of this absorption into daily life is the phenomenon of massively
multiplayer online games (MMORPGs) such as EverQuest or Lineage. The nature of
these games is such that they can be remarkably immersive and time consuming.
Because of this, within these MMORPGs, video games and society combine to form
a completely new environment with its own unique cultural flavor and its own set of
societal rules. People will play, chat, cooperate, compete, and argue with other humans
in a place that knows no borders or time zones. No study of games and society could
be complete without the acknowledgment and study of how these societies form and
operate, and the view that this “blank slate” provides into the inner workings of more
traditional societies.

Why Do People Play Video Games?

An examination of this question could easily fill a book, and, in fact, UCLA psychol-
ogy professor Patricia Marks Greenfield (among others) wrote a book in 1984 that
addresses it [Green01]. Her approach was anthropological in nature because research
into this emerging field was nearly nonexistent at the time. In Mind and Media: The
Effects of Television, Video Games, and Computers, she concluded that video games are
appealing to people, in part, because they provide real-time gameplay, goals, and
stages. Additionally, they encourage communication by facilitating cooperation. Even
this very brief summary of her work yields some important insights. As the games
themselves have evolved, however, the concept of these fundamental appealing 
elements should evolve as well. Greenfield anticipated these potential changes by sug-
gesting that every game will offer different things to different players in terms of their
appeal. In this spirit, “real-time gameplay” will be expanded to “real-time interaction,”
and “facilitating cooperation” will be expanded to “facilitating community.” These
expanded elements and their varied implementations provide a basis for the rest of
this chapter.

44 Part 1 Critical Game Studies



Audience and Demographics

At this point, it is useful to determine who in society is playing games and how this
information is known. While video games are ostensibly about fun and entertain-
ment, every published video game is, at its core, a business venture designed to make
money. As such, it is targeted toward a particular audience or demographic. The
demographics within a society can guide what kinds of games are financially feasible
to produce, and timing, above all, is crucial. For example, in the late 1990s, several
game development companies were created to capitalize on what was seen as a rapidly
emerging preteen female market, despite evidence that only a small percentage of
these individuals had previously sought out video games aimed at their age group and
gender. Unfortunately for many of these companies, they could not grow the demo-
graphic at the time and were forced to close doors after conceding that there wasn’t a
viable market there. Fast-forward to late 2000s, and that audience is now there and
buying games in droves for systems like the Nintendo DS and Wii. 

Sometimes it is possible to create a new video game genre and thus capture a pre-
viously unknown or untapped demographic. In 1997, the game Deer Hunter showed
that it was possible to make game players out of people who normally did not play
games. This game was produced exclusively for Wal-Mart at its request. Wal-Mart
understood the demographics of its customers and was confident that there would be
demand for a hunting game that ran on lower-end computers. The game was devel-
oped in a mere three months and went on to sell several million copies and spawn a
whole genre of hunting games. For a short time, the games industry was baffled and
dumbfounded, but came to accept the new demographic. 

In more recent times, the meteoric rise of the rhythm games (in the form of 
Guitar Hero and Rock Band) has resulted in an expanded demographic (while at the
same time expanding what is meant by a video game). The accessories for those two
games alone dominate aisles of consumer electronic stores. Finally, Nintendo’s Wii has
enjoyed amazing success in no small part due to an expanded demographic that
includes the elderly, thanks to its innovative controller and a pack-in game (Wii
Sports) that allows those with limited mobility to experience sports they can no longer
experience in “real life.” Sports games weren’t enough to entice that audience previ-
ously, but a sports game with a motion-sensitive controller and analagous motions to
the real sport provided an enticing combination and broadened the genre and subse-
quently the demographic.

Demographics can give you the broad strokes of who is out there buying and
playing games. Of course, there will be exceptions (the soccer mom who plays noth-
ing but first-person shooters), but, in general, demographics can show informative
trends. For instance, a broad brushstroke view of gamers indicates that games with
cute, cartoony images tend to be geared toward children. On the other hand, if a
game featured violent gameplay or sexual innuendos in the context of cute, fuzzy crea-
tures, there might be some demographic issues.

1.2 Games and Society 45



Interestingly, this exact situation occurred in 2001 with the Nintendo 64 game
Conker’s Bad Fur Day. The UK company that developed the game, Rare, originally
designed a cute, harmless platform game centered on a bushy-tailed squirrel named
Conker. An early version of the game was demonstrated at a trade event, but the press
angrily derided the developer for making another happy-go-lucky children’s game. As
a result, the team at Rare took the criticism to heart and retooled the game to make it
adult-oriented; however, they retained the main character and the cartoonish style.
Using English wit, sexual innuendos, and a gratuitous amount of toilet humor, the
final game spoofed such R-rated movies as The Terminator, Saving Private Ryan, The
Godfather, Reservoir Dogs, and The Matrix. In one of the most demented gameplay
moments, the player would direct Conker to drink from a beer keg so that he could
then urinate on fire demons. While the game was applauded by critics for being
extremely innovative and well done, the cartoony main character failed to appeal to
an older demographic and sales were dismal. In the end, Nintendo also had to go
to considerable effort to ensure that parents did not accidentally purchase the game
for someone under 17. By an odd twist of fate, Nintendo later sold the development
company Rare to Microsoft, which then remade the game as Conker: Live and
Reloaded for the original Xbox (which had a considerably older demographic than the
Nintendo 64). 

Understanding what (beyond some very basic elements) will appeal and be desir-
able to particular demographics and societies can be tricky (indeed, fortunes are won
and lost on such things). Demographics research is one tool that can shed light on
how a society uses and interacts with games. While not being a crystal ball, it can pro-
vide answers to the question of who within society is currently playing games.

The Entertainment Software Association

Where can demographic data be found? The Entertainment Software Association,
which is composed of many leading gaming industry companies and professionals,
performs a yearly survey of representative U.S. households to determine gaming and
purchasing habits [ESA08]. These numbers provide some insight into who is buying
and playing video games.

ESA Statistics for the United States in 2008 

The average game player’s age is 35 (up from 29 in 2003) [ESA04].
The average game buyer’s age is 40 (up from 36 in 2003).
40 percent of gamers are women, although individual consoles will skew those
numbers.
44 percent of online game players are women (up from 40% in 2003).
65 percent of American households play video games.

46 Part 1 Critical Game Studies



1.2 Games and Society 47

While it’s important to remember that these are generalities of a particular market
(U.S.) during a particular year, it is remarkable that 65 percent of all American house-
holds play video games. Markets do fluctuate, and certainly, the statistics were very
different five years before this survey (and very different five years before that), but
just as certainly, video games have achieved great mainstream acceptance within soci-
ety. Also of note is that while in the past video games have typically been targeted
toward a male audience, clearly the most successful current games and systems target
a healthy mix of genders and ages to truly reach the mass market. Massively multi-
player online games and rhythm games have been particularly adept at providing
compelling entertainment for both males and females, and the Wii has expanded the
demographic to embrace an older audience.

ESRB

The Entertainment Software Rating Board [ESRB04], a self-regulatory body created
in 1994 for the interactive software industry by the ESA, provides ratings for video
games much like the Motion Picture Association of America provides ratings for
movies. Recently, they’ve significantly expanded their ratings system, so in addition to
a rating geared toward ages (EC for Early Childhood, E for Everyone, E10+ for Every-
one 10 and older, T for Teen, M for Mature, and AO for Adults Only), they’ve pro-
vided Content Descriptors to describe particular kinds of activity in games, as well as
more specifics on the kinds of violence a game may contain (e.g., Cartoon Violence,
Intense Violence, Violence). An ESRB rating, while technically voluntary, is always
required by console manufacturers, the majority of game publishers, and most large
retail stores within the United States. 

More 2007 ESRB Statistics 

57 percent of all games rated received an E for Everyone rating.
28 percent of all games rated received a T for Teen rating.
15 percent of all games rated received an M for Mature rating.
In 2007, 80 percent of the top 20 best-selling console games were rated E or T, while
75 percent of the top 20 best-selling computer games were rated either E or T.

So, how does one interpret the ESRB and ESA data? Does the fact that 57 per-
cent of all games were rated E mean that these are necessarily the most popular games,
or just the most frequently made? The Grand Theft Auto series of games is a huge suc-
cess—despite its M for Mature rating. Of course, looking at the average age of game
buyers from the ESA data (40 years old) versus the average age of game players (35
years old), one might reasonably conclude that parents make up a significant portion
of the game-buying public. Consequently, of course, games are going to be made to
appeal to everyone from the young to the old.



Societal Reaction to Games

Societal reaction to games is often not favorable. Even given the $9.5 billion the
industry experienced in sales in 2007, there is a prevailing idea that games are just kid
stuff. Even gaming industry professionals, pulling down close to six-figure salaries,
have a difficult time explaining what they do for a living to those not in the industry
(fighting the idea that all they do is play games all day). Clearly, the numbers support
the fact that it’s primarily adults buying and playing games, but there are significant
issues that arise because of this perception of games as child’s play.

In addition, violence in video games has garnered an incredible amount of atten-
tion because of concerns with youth violence. As with television and movies, parents
are concerned with their children being exposed to violent images in video games.
Throw in a few school shootings (where the assailants were known to play video
games or sometimes just wrongly assumed to have done so) into the mix, and the 
perception is formed that games are detrimental to children in our society. Is this per-
ception well deserved or unfair? If part of the popularity of games is because they have
goals and stages, what happens when those goals and stages are violent in nature?

Legal Issues

An exhaustive history of controversial video games is beyond the scope of this chapter
(and has been done very well on the Web in at least two places: an article on the
Gamespot Web site [Gonzalez03] and one by University of Bucknell computer science
student Jason Yu [Yu01]). However, a few “notorious” games spurred Congress or
community to action, and we’ll briefly survey some of them here.

In 1992, Sega released a game called Night Trap to a largely unaware public. The
game, likely destined for the bargain bin on its own merits, gained a certain celebrity
for its “mature” content. Although the game featured nothing more controversial than
your average B-grade movie, it was pulled from stores. In the game, you were tasked
with saving the lives of five coeds living in a house haunted by vampires (and not cast
in the role of the killer as was often mistakenly reported). Through a series of closed-
circuit cameras, you were able to view events in the house, spring traps on the vampires,
and catch the occasional lingerie pillow fight. Certainly, the game achieved notoriety
far beyond what was warranted by the crude gameplay and vaguely titillating content. 

Segue to another 1992 game called Mortal Kombat. Between its gruesome “fatali-
ties” and the virtual gouts of blood, this fighting game was notable for its gameplay,
but notorious for its quasi-realistic depictions of violence. While the arcade debut
didn’t garner much negative attention, the decision to bring it into the home shined a
harsh spotlight on the game. 

As a reaction to games like Mortal Kombat and Night Trap, Senator Joseph Lieber-
man (D-Connecticut) started hearings in late 1993 to call the video games industry
on the carpet. The ultimatum to video game manufacturers was delivered: regulate
yourselves or the government will do it for you. Lieberman, joined in March 1994 by
Senator Herbert Kohl (D-Wisconsin), held a meeting attended by top video game

48 Part 1 Critical Game Studies



officials where video game companies presented the senators with a 12-point plan for
self-regulation. This was the birth of the ESRB.

In late 1994, another game destined for notoriety was created in Texas by (now
legendary) id Software. The game Doom featured fast-paced action as you wandered
around a demon-infested space station destroying the zombified former occupants (as
well as various hell-spawned monsters) with a variety of armaments littering the hall-
ways. It, and its predecessor, Wolfenstein 3D, were some of the earliest entries into the
first-person shooter genre of games. It was a hugely successful game, and was one of
the first to popularize a method of distribution where the first “chapter” of the game
was free and players purchased the game only if they wanted to play the subsequent
two chapters. It skated by the 1993–1994 hearings without mention, but was the sub-
ject of controversy a few years later.

On April 20, 1999, one of the most devastating school shootings in U.S. history
occurred at Columbine High School, just west of Denver, Colorado. The two teenage
gunmen were known to play Doom. Once more, video games were at the forefront of
controversy. Several lawsuits followed, against id Software and other video game com-
panies, alleging that their games had influenced the two perpetrators. Since then, all
lawsuits have been dropped [AP0302].

Another game that has been the focus of legal issues is Rockstar’s Grand Theft
Auto: Vice City. Set in Miami, this first-person action/adventure game puts you in the
role of a lackey driver for the mob. A sequel to the equally controversial Grand Theft
Auto III, the game’s innovative brand of gameplay has made it a huge success. The
game series is not without its detractors, however. In November 2003, the Haitian
Centers Council and Haitian Americans for Human Rights, two Haitian-American
rights groups, protested the game in New York City. In Vice City, during one of the
missions, the player is instructed to “Kill the Haitians.” The context of the game
places this in the midst of a gang battle between a Cuban gang and a Haitian gang,
where to score points with one gang, you are to eliminate members of the other. In
early December 2003, Rockstar announced that they would remove the offending
line from the game (which they later did). This didn’t really quell the controversy,
however, when in January 2004 a Federal case against Rockstar Games, Take-Two
Interactive, Sony, Wal-Mart, Microsoft, Best Buy, and Target was dropped, only to be
taken up again in a Florida court where the plaintiff group, headed by the Haitian-
American Coalition of Palm Beach County, hoped to get a more stringent ruling than
they would by leaving it at the Federal level. Since that time, numerous lawsuits have
been filed against Rockstar and Take-Two because of the Grand Theft Auto series of
games (many by the infamous, now-disbarred Florida attorney, Jack Thompson).
Note that GTA IV was one of the best-selling video games of 2008 and that the only
long-term result thus far of these lawsuits has been the self-censoring of GTA: Vice City.

Finally, in the year 2000, in the state of Missouri, a St. Louis County ordinance
was passed that regulated access of video games in the home and arcades. The ESA
(then called the Interactive Digital Software Association) filed a lawsuit in response.

1.2 Games and Society 49



In April 2002, Senior U.S. District Judge Stephen N. Limbaugh rejected the Associa-
tion’s argument [AP0402]. After viewing gameplay from Resident Evil, Mortal Kombat,
Doom, and Fear Factor, he wrote in his decision, “This court reviewed four different
video games and found no conveyance of ideas, expression, or anything else that
could possibly amount to speech. The court finds that video games have more in
common with board games and sports than they do with motion pictures.” The 8th
Circuit Court of Appeals in St. Louis eventually overturned the decision stating,
“Whether we believe the advent of violent video games adds anything of value to 
society is irrelevant; guided by the first amendment, we are obliged to recognize that
‘they are as much entitled to the protection of free speech as the best of literature’”
[USDCOA03].

Games and Youth Violence

As you will have noticed, most of the legal battles and threatened legislation in these
few, brief examples revolved around fears about the potential effects of violent video
games on youth. Is this a reasonable concern? What are the effects of violent video games
on children? That’s a tricky question, as often anecdotal or skewed evidence is pointed
to as definitive.

In the same St. Louis court case mentioned previously, an amicus scholars’ brief
was filed by 33 media scholars, games researchers, historians, and psychologists. The
scholars’ brief quoted British psychologist Guy Cumberbatch, who claimed that it
was puzzling that anyone could look at the research evidence and be so confident and
passionate that harm was caused by the violence on television, film, and video games.
While tests of statistical evidence are important, Cumberbatch worried they were
being used to torture the data until it confessed to something that could secure publi-
cation in a scientific journal. He further claimed that lynch mob mentality has 
surrounded the debate on media violence with almost any evidence used to prove
guilt [FEP02]. There are studies that point to such things as heightened heart rates
after playing violent video games or watching violent television programs or movies,
but these studies also point to those physical effects quickly fading. If the amicus
scholars’ brief is correct, then clearly, more thoughtful research needs to be done to
determine the effects of violent video games on children.

It begs the question: What exactly is violence as portrayed in video games? Does a
violent action correspond exactly with what would be considered a violent action in
society? There are many games for children where the on-screen character hits other
characters or is hit in cartoonlike fashion, and they are largely not considered violent.
Games that depict just the strategic elements of war in Risk-like fashion are largely not
considered violent either, although war is, by its very nature, unavoidably violent. Is
whether an action is violent or not determined in some sense by the realism of the
depiction? How does this change over time? Games like Mortal Kombat were contro-
versial for their “realistic” depictions of blood, but that 1992 depiction is now laugh-
able compared to any modern depiction of blood.

50 Part 1 Critical Game Studies



Root of All Evil, or Good, Old-Fashioned Fun?

On the one hand, the argument by one St. Louis judge concludes that games don’t
constitute speech (much less protected speech), while on the other hand, the fear in
violent games is that they are essentially indoctrinating our youth into violent behavior.
Is there a disconnect there, in the idea that games are simultaneously seen as meaning-
less entertainment, and yet as a source of potentially violent behavior? These argu-
ments would seem opposed to each other, for wouldn’t games have to be more than
meaningless entertainment to have a lasting effect? If a game currently considered
speech is stripped of elements one by one (art, story, gameplay, sound, etc.), which ele-
ment or elements would need to be stripped away to not consider it speech anymore?
Moreover, at what point would it not be able to be considered a game anymore? How
would that change depending on the culture you were in and its particular values?

Cultural Issues

Cultural issues are an important consideration during game creation. Things that may
be commonplace in one culture can have an entirely different connotation in another
culture. If a game is going for a global release versus a domestic release, many things
might have to be changed to appeal to or even simply not offend another culture.
Even within a culture, there might be people in an intended demographic who don’t
get the in-jokes, or find the content of a game outright offensive. It’s not always clear
from the outset what these issues might be, either. History can provide important
guideposts in this area, while not necessarily providing all the answers.

Worst . . . Stereotype . . . Ever

Humor is subjective, as anyone who’s listened to eggnog-inspired, bad holiday jokes
can tell you, and some cultures are a little more sensitive to depictions within games
than others (as evidenced by the Haitian-American response to Grand Theft Auto: Vice
City). Sometimes, when a cultural stereotype is played for humorous effect, the effects
may just not hit everyone’s funny bone. It’s easy to rationalize it away or say, “Well,
they just don’t get the joke,” but a significant uproar can have detrimental effects on a
game’s sales and community standing.

See the case of the 1997 3D Realms game Shadow Warrior and its humorously
(but perhaps insensitively) named hero “Lo Wang.” The game was riddled with send-
ups of cultural stereotypes and rife with politically incorrect references. The Japanese-
American community didn’t appreciate the lampooning of its culture, and they didn’t
see it as the good-natured jab it was intended to be. Sales for the game weren’t huge,
and the controversy didn’t last long, but it could be argued that the culture that might
have found the most fun with the game was offended instead of amused.

Even the TV show The Simpsons, which has a long history of poking fun at liter-
ally everything and everyone, got in some trouble when Bart pretended to have Tourette’s

1.2 Games and Society 51



Syndrome in one episode. The Simpsons has had umpteen years with millions and 
millions of viewers to build a strong case of being an equal-opportunity offender to all
creeds, cultures, races, and religions. However, games don’t have that long to establish
exactly where they stand, and it can be dangerous and insensitive to be seen as sin-
gling out one culture for ridicule.

Foreign Diplomacy

A global release brings its own set of issues. Games can be banned outright in some
countries for seemingly arbitrary reasons, sometimes even after great lengths have
been taken to be culturally sensitive to that specific country. Other times, a game that
would seem on its face to be offensive to a particular country can be a huge success,
leaving befuddled producers and marketers scratching their heads. 

Germany

Germany, sensitive to its past, has stringent regulations on the violent content in its
video games. In Germany, there exists a list called the index or banned list. With
restrictions more stringent than most other European countries (or most countries in
general), many violent video games have some hoops to jump through upon German
release. Some games can avoid being placed on the list by changing a few controver-
sial elements (red blood to green blood, for example). Games depicting Nazi iconog-
raphy have avoided the list by switching those images to less controversial ones. In
cases like Return to Castle Wolfenstein (where in addition to changing the Nazi flags to
a generic symbol, a Nazi song played by a phonograph within the game was changed
to a piece of classical music), that may not be enough, and the game may be placed on
the index despite extensive measures taken to be sensitive to the culture. Ultimately, a
banned list game cannot be advertised, displayed in stores, or be sold to people under
18, which can make a game incredibly hard to market and sell.

China

China has a long history of banning video games as well. In May 2004, the 2002 PC
game Hearts of Iron by Swedish company Paradox was banned by China’s Ministry of
Culture for “distorting history and damaging China’s sovereignty and territorial integrity”
[CD04]. In part, the game supposedly misrepresented historical facts regarding Japan,
Germany, and Italy’s participation in World War II. In addition, the game made
“Manchuria,” “West Xinjiang,” and “Tibet” sovereign countries in the in-game maps.
All of these are big no-nos according to China’s gaming and Internet service regulations.
As a result, Web sites were prohibited from releasing the game, sellers were prohibited
from selling the game (under threat of legal punishment), and all CD-ROM copies of
the game were confiscated. This is just one example from a very long list.

52 Part 1 Critical Game Studies



Japan

While Japan has in the past banned games for sexual content, and, in general, they
eschew the more violent games, a recent game caused a curious reaction. EA’s Medal
of Honor: Rising Sun depicts, among other things, the Japanese attack on Pearl Har-
bor. The game covers the Pacific campaign of World War II from 1941–1945. The
player’s basic goal, as outlined on EA’s Web page, is to “stop Japanese forces from
achieving control of the Pacific Theatre.” The game sold 200,000 copies in Japan in
its first two weeks. The game did a good job of depicting nonstereotyped Japanese sol-
diers as real human beings in an armed conflict, but still, one wouldn’t necessarily
expect a game depicting this particular conflict to be a huge success in Japan. Japanese
gamers were unconcerned with the idea that they were killing their grandfathers, and
concentrated instead on the gameplay.

Cultural Acceptance

It’s not a simple thing to make clear-cut rules about what will find acceptance within
others’ cultures. Sometimes, the preemptive tailoring of a game to a specific culture’s
mores helps, and sometimes it doesn’t. Certain cultures will ban a game specifically
for a depiction of history that disagrees with what they believe; others will ignore cul-
turally sensitive issues in favor of strong gameplay. Cultural sensitivity is a minefield,
where only the strongest instances of offense are clearly problematic.

Society within Games

Take any subset of society, and you’ll see much of what that superset of society has to
offer—the good, the bad, and the ugly of human behavior, if you will.

Online Behavior: The Good

The hugely popular massively multiplayer online role-playing game (MMORPG)
EverQuest has seen many different kinds of behavior since its release in 1999. One
phenomenon of note, though, was the EverQuest Wedding, where characters “wed”
other characters in online ceremonies (complete with virtual food, drink, and avatars
of their virtual friends). In some ways, this might seem to represent stunted social
interaction, but that would be a somewhat pessimistic view. It could also be seen as
representing the natural culmination of society—the joining of people together 
in bonds that, to the people involved, could be serious and genuine. What can be 
better than the mutual expression of love between two people, virtual or otherwise?
Societally speaking, we are built around that very premise.

Online Behavior: The Bad

Online play is not always representative of the best society has to offer, though. More
serious than simple antisocial behavior (which we will discuss next), online games can

1.2 Games and Society 53



become so involving to people that their real lives are neglected, or they can’t separate
the virtual world from the real. Take the case of South Korea’s Kim Kyung-Jae, a 24-
year-old who collapsed and died after playing online games nearly nonstop (taking
breaks only to use the restroom and buy cigarettes) for 86 straight hours [Gluck02]. In
another disturbing online gaming-related death, a 17-year-old British Columbia boy
was killed after repeatedly trouncing three men in a game of CounterStrike at an Inter-
net café. After one too many wins, the three men physically beat the 17-year-old, then
left the café, returned with a handgun, and shot him [Devitt03]. Lastly, there is the
case of a mentally troubled Wisconsin man who took his life with a shotgun after many
months of a 12-hour-a-day EverQuest habit. His mother claimed to have found him
with an EverQuest login screen up on his computer, and started a lawsuit against Sony,
wanting warning labels placed on the games. Her belief was that some event online
caused him to take his own life, and that Sony should be held partially responsible
[Fox02]. While online gaming can’t reasonably be held responsible for the behavior of
a few emotionally troubled individuals, as more and more online games get more and
more popular, statistically speaking, there will be an increase of these types of incidents.

Online Behavior: The Ugly

An interesting psychological phenomenon that has taken root in the online gaming
world and in gaming forums is that of deindividuation. This is the phenomenon
where anonymity allows the person to demonstrate behaviors that he would not be
able to exhibit if he were known. A somewhat insidious noncomputer example of this
is that of the Ku Klux Klan. Essentially, the white hoods and robes rob the individu-
als of their identity and thus their compunction to follow societal norms, allowing
them to commit acts outside the bounds of accepted behavior. In online games, this
behavior, taken to a far less extreme than in the KKK example, nonetheless allows
people a certain anonymous “bravado” with which to fuel antisocial desires. In games,
this often exhibits as rude or disruptive behavior to other players (excessive taunting,
swearing, racial and homophobic epithets, etc.). In real life, these people almost uni-
versally would not be able to act this way, but in the anonymity of an online world,
they have few perceptible limits on their behavior.

Tools 

Society in the online world has come up with ways to deal with these issues. Just as
the police in nonvirtual society enforce socially acceptable behavior, moderators and
game wardens can help create a sense of stronger community within a game by
encouraging social behavior and discouraging disruptive behavior. A game is not going
to be fun to members of a particular ethnicity if that particular ethnicity is the target
of the invective of some anonymous gamer. Gamers also like the ability to take con-
trol of their own destinies, as it were, so tools that allow them to ignore other users or
report bad behavior are also a standard in most modern games with online capability. 

54 Part 1 Critical Game Studies



Some of the more positive tools are those that facilitate communication. Often,
games come with multiple tiers of communication. The MMORPG World of Warcraft
contains the ability to talk on a zone channel (where players can conduct general,
game, or nongame chat to players within the same zone); a trade channel (to facilitate
the buying and selling of player-created/found goods); a “say” channel with a limited
range so players can communicate with those directly near them; a “yell” channel (a
larger ranged “say” channel); a group channel (for communication within a joined
party); a whisper channel (for private communication between players); and a guild
channel (for discussion within player-created guilds). That’s quite a few ways that
people can do something seemingly simple, like talk with each other, but this reflects
the myriad ways in which societal communication works (whispers, private phone
calls, interaction with small groups, garage sales, yelling in a public place, social groups
and clubs, etc.). In addition, the game features mailboxes where players can send 
each other messages, money, or goods (for when players are not on simultaneously),
further enhancing the societal interaction and sense of cooperation. 

In-game tools are only the start, though. There are many MMO fansites on the
Internet, with seemingly more popping up every day. These sites contain elements
like fan-created stories, game information, forums, newsletters, and fan-created art.
Liken it to, for example, golfers, who purchase golfing magazines, wear golfing para-
phernalia, spend time reading books about and discussing their favorite hobby. People
like to spend time immersed in their favorite hobbies, even when they’re not directly
doing them. It’s not hard to tie this into two of the fundamental reasons posited why
people play video games, namely communication and interactivity.

Summary

The tremendous popularity of games can be attributed, in part, to characteristic ele-
ments of games that fulfill certain societal and personal needs. Some of these elements
are real-time interaction, goals, and stages. Increasing audience and expanding demo-
graphics point to the further evolution of video games in their ability to incorporate
these elements in a way that fulfills players’ needs. Different game elements appeal
differently to people. Culture and society have a major impact on the success of games
because of this variability. 

The success of video games as a fiscal and cultural entity is not without contro-
versy, though, as people struggle to understand this emerging media’s effect on society.
In some cases, a game may find a niche within a particular culture or society; in others,
a game element may inadvertently cause offense. In particular, concerns over the
effects of violent games on youth are prevalent, with few comprehensive studies done
that can point to clear answers. Lawmakers and judges will continue to hammer out
issues of what regulations and restrictions should apply to games, while attempting to
answer questions about whether games constitute speech or merely mechanical action. 

1.2 Games and Society 55



Ultimately, the evolution and sophistication of games has led to a point where 
the communities that spring up within and around games act as a microcosm for the
larger society. In-game tools and extra-game elements like fansites enable these in-game
societies to function at a high level and increase the absorption of video games into
society. This absorption is also not without controversy, as some individuals are
unable to successfully separate their online lives from their real lives.

Exercises

1. Take the statement: The ultimate measure of a video game’s success is the
absorption of its characters and symbols into other forms of media, such as
television or movies. Defend or refute this statement.

2. Do you agree with the list of appealing video game elements (interactive
play, goals, community facilitation, stages)? What would you change, remove,
or add to this list?

3. What elements of a game need to be taken away before it can no longer be
considered speech? At what point does it no longer become a game? 

4. Discuss which is more violent, a game that uses very graphic, but cartoon-
like violence, or a game that has mild, but incredibly realistic violence? Is
realism the only key, or are there others?

5. Consider your culture and society. What aspects of your culture and society
might be offensive to you if lampooned in a game? Would it depend on the
overall presentation, or are there always taboo elements despite the presen-
tation?

References

[AP0302] Associated Press, Columbine lawsuit against makers of video games,
movies thrown out, www.firstamendmentcenter.org/news.aspx?id=4161, 2002.

[AP0402] Associated Press, Federal judge backs limits on kids’ access to violent video
games, www.firstamendmentcenter.org/news.aspx?id=3977, 2002.

[CD04] China Daily, Swedish video game banned for harming China’s Sovereignty,
www.chinadaily.com.cn/english/doc/2004-05/29/content_334845.htm, 2004.

[Devitt03] Devitt, Ron, Coquitlam teen killed at Internet café, www.thenownews.
com/issues03/013203/news/013203nn1.html, 2003.

[ESA04] Entertainment Software Association, Essential Facts About the Computer
and Gaming Industry, www.theesa.com/pressroom.html, 2004.

[ESA08] Entertainment Software Association, Essential Facts About the Computer
and Gaming Industry, www.theesa.com/facts/pdfs/ESA_EF_2008.pdf, 2008.

[ESRB04] Entertainment Software Rating Board, www.esrb.com, 2004.

56 Part 1 Critical Game Studies

www.firstamendmentcenter.org/news.aspx?id=4161
www.firstamendmentcenter.org/news.aspx?id=3977
www.chinadaily.com.cn/english/doc/2004-05/29/content_334845.htm
www.thenownews.com/issues03/013203/news/013203nn1.html
www.thenownews.com/issues03/013203/news/013203nn1.html
www.theesa.com/pressroom.html
www.theesa.com/facts/pdfs/ESA_EF_2008.pdf
www.esrb.com


[FEP02] The Freedom of Expression Policy Project, Media Scholars’ Brief in 
St. Louis Video Games Censorship Case, www.fepproject.org/courtbriefs/
stlouissummary.html, 2002.

[Fox02] Fox, Fennec, Mother blames ‘EverQuest’ for son’s suicide,
http://archives.cnn.com/2002/TECH/industry/04/05/everquest.suicide.idg/,
2002.

[Gluck02] Gluck, Caroline, South Korea’s gaming addicts, http://news.bbc.co.uk/
2/hi/asia-pacific/2499957.stm, 2002.

[Gonzalez03] Gonzalez, Lauren, A History of Video Game Controversy,
www.gamespot.com/features/6090892/index.html, 2003.

[Green01] Greenfield, Patricia Marks, Mind and Media: The Effects of Television,
Video Games, and Computers, Harvard University Press, 1984.

[USDCOA03] U.S. District Court of Appeals for the 8th Circuit, No. 02-3010,
www.ca8.uscourts.gov/opndir/03/06/023010P.pdf, 2003.

[Yu01] Yu, Jason, The Online Guide to Controversial Video Games, 
www.boilingpoint.com/~jasonyu/cs240/, 2001.

1.2 Games and Society 57

www.fepproject.org/courtbriefs/stlouissummary.html
www.fepproject.org/courtbriefs/stlouissummary.html
http://archives.cnn.com/2002/TECH/industry/04/05/everquest.suicide.idg/
http://news.bbc.co.uk/2/hi/asia-pacific/2499957.stm
http://news.bbc.co.uk/2/hi/asia-pacific/2499957.stm
www.gamespot.com/features/6090892/index.html
www.ca8.uscourts.gov/opndir/03/06/023010P.pdf
www.boilingpoint.com/~jasonyu/cs240/


This page intentionally left blank 



59

P A R T

2
GAME DESIGN



This page intentionally left blank 



61

Overview

Throughout all of world history and culture, games have been a part of human life. But
in spite of their place in human experience, professional designers of games were practi-
cally unheard of 30 years ago. Between then and now, games that run on microchip
computers, commonly known as video games, have changed everything. As the business
matured into a multibillion dollar industry, the need for skilled game designers
increased. In turn, this created a demand for training and education and now we are in
a modern renaissance of sorts where game design is in the forefront. This chapter will
introduce you to a brief glimpse of topics and issues common to video game design.

While there are many, equally valid, ways to view a game, this chapter will take a
functional view, focused on shortening the conceptual distance between what the
player experiences and what the game actually does.

With a broad field and limited space, some assumptions have to be made about
an “average” reader. Designers, for example, usually work as part of a team; frequently
make games for people other than themselves and for profit; are sometimes responsible
for documentation; and take care of other things not uncommon in the game devel-
opment workplace. It will also be assumed that you are not just interested in design
but are actively engaged. So do not be alarmed if you read “your game” or “your
career” every now and then, because we have faith in you.

Games and Society2.1

In This Chapter

Overview
Who Is a Game Designer?
Special Definitions
A Model of Games
Game
Player
Experience
Play Mechanics
Actions
Interface

Game Systems
Content
Design Work
Prototyping and Playtesting Cycles
Playtesting
Five Tips
Summary
Exercises
References



Who Is a Game Designer?

To create something you have to be something.
—Goethe

A game designer is someone who designs games. Could it get any easier than that?
But, while taking up the mantle is uncomplicated, getting others to see you’re really
wearing it will require more effort; you will need to continue designing games and
probably for some time to come. The designing-a-game part… that can get a little
tricky. Now that we come to it, game design can be downright difficult. A game
designer needs help at every turn: a friendly ear listening to another way that players
might use a summoning spell; a fresh set of eyes and an honest opinion about the feel-
ing of your new levels; perhaps even a mentor to suggest a new way to approach a pac-
ing problem.

Though it does happen from time to time, it is rare that game designers really go
it alone. There are certainly many more people who could design, program, and deco-
rate games on their own than people who actually do it. Creating video games is really
a collaborative art—even for those who are doing it “on their own.” It requires listen-
ing to people who are sure to tell you things you would rather not hear. Cooperation
can be beneficial, and it can help to allow other people to put their handiwork into
your game. In fact, just about every member of a game development project will, at
one time or another, be a game designer too. They are applying countless judgments
and perspective shifts while working on the game. Like an artist who repaints textures
to improve the visibility of the track or a programmer who laid out the controls as it
was described in the design document but made a few “tweaks” after trying it out—
each one of these people is a closet designer, making the game design better without
anyone noticing it. If there is one thing of value to take from this chapter, you may as
well get it up front: Everything in a game that adds value to the player experience has
affected the design of the game.

So, good news: You are probably a game designer already. Your experience may be
limited, and you may not “know” a thing about what you are doing, but that’s alright
because you become a better designer by continuing to practice and learn. Designing
a game isn’t half the battle, it is the battle, and it begins whenever you do.

When first infected by an interest in some creative craft, who doesn’t want to see
where the magic happens? The visible parts and tangible parts are real things that get
transformed into a final product that people will enjoy. You can look at prototypes or
brainstorming sessions or diagrams or even a giant game design document (GDD)
and witness the art in progress for yourself, right? Well…the truth is that, while all of
that stuff is vital and every game designer needs to learn how to do the work, equally
important is a context for learning—a way to fit everything together in your mind so
that you can take in more and more information and put it where it belongs.

62 Part 2 Game Design



Take your time and keep an open mind. But be prepared to think for yourself and
to disagree if need be. Game designers who are certain they’ve already worked every-
thing out are going to need those closet game designers to pick up the slack.

Special Definitions

We have too many high-sounding words, and too few actions that correspond with them.

—Abigail Adams

While continually improving and maturing, the video game field is still young. Terms
and definitions are not standardized and disagreements on language are common. In
part, this is because definitions frequently depend on the particular kind of game
being discussed. This language gap reflects a gap in understanding—terms for video
games differ because thinking on video games differs. In reality, studios and gamer
communities get by just fine. 

A well-known philosopher, Ludwig Wittgenstein, asked readers to try describing
a definition for the word “game.” Each time he proposed a necessary condition (a
game must have competition; a game must be amusing, etc.), he would turn to a pop-
ular game that violated that condition. You might be surprised to know that he really
wasn’t looking for the answer—he was trying to illustrate that fixed, exact definitions
are usually not workable because people do not naturally use them. We communicate
with loose and flexible categories instead of tight, precise definitions. But modern
folks get uncomfortable when things aren’t well understood. Formal systems, tax-
onomies, standards… people really like to agree and are willing to fight through a lot
of disagreement just to get there.

“What is a game?” is a difficult question under any light, one with no shortage of
differing opinions and heated argument. All game players, developers, and academics
have their preferred beliefs and it is unlikely that a single view will be coming any time
soon. Terms here are not a key matter and are mainly presented to support a concep-
tual schematic—a diagram showing how the many parts of a game relate to the whole.
So you are encouraged to construct your own definitions and get comfortable trans-
lating them into the languages of others; a necessary skill for communicating design
issues with people who don’t think like you do.

The definitions offered in this section are intended to be functional. You should
be able to apply them to all games that could ever be made. The rationale behind each
definition will be explained so that you can disagree in part or in whole according to
your own opinion. These particular meanings may not be “right,” but by the stan-
dards of the field today, they are certainly not “wrong.” 

2.1 Game Design 63



Artifacts

An artifact is a thing made with an intended function [HMCo00]: a thing someone
used or made to be used. Ancient swords and golden idols, stuff you might first imag-
ine being an “artifact,” certainly count, but so do everyday things. Spoons, shoes, pens,
screwdrivers, computers, sandwiches, and everything else that has ever been made or
used are described as artifacts. Clearly, games are artifacts [LeBlanc04] but we will need
to look at the ways people categorize and comprehend artifacts in order to get any
more detail.

People distinguish artifacts by what they do (purpose), what they are made of
from (form), and how they do it (function) [Norman88]. Normally, all of these things
work together, and the kind of sorting that is required has as much or as little detail as
needed. For example, a “tool” is something that helps us perform work; a “hammer”
is a kind of tool, usually with a handle and a head, used to bang on things; a “mallet” is
a hammer with a soft head to prevent damaging the objects it hits; a “copper mallet”
is a type used to move iron or steel machine parts without scuffing the surfaces. Once
the appropriate level of detail is found, we’re finished. If “any old hammer” won’t do,
maybe you will have to specify, “The blue-handled claw hammer in the bottom
drawer.”

The materials can be important: for example, how a cup may be made of many
substances but a glass cannot. More frequently, we identify things by the ways they are
assembled and operate (bulky CRT monitors versus light and slim LCDs). 

A system is a collection of objects that function together to do something. It’s a set
of components structured in such a way that their properties, actions, and relation-
ships to each other form a whole that produces a set of behaviors [Meadows08]. The
behavior, the doing part, is the key to systems being more than a group of stuff. A 
system has an operational purpose, a reason for existing even if that reason is mean-
ingless. By the way, add “systems” to the list of things, like artifacts and models, which
fill our everyday world.

If there is one thing agreed (and that may be about right) across game develop-
ment, game studies, and in the public, it is that games are systems. Video games are
even systems running on systems! It’s the other facets of the artifact that are causing
the fuss.

So to answer our questions, we just need to organize them into their category of
function. But that kind of organization will lead us, sadly, straight into the rocks with
no way out other than through!

Play and Fun

Games facilitate play where either rules or goals or both impose some degree of structure
to the interactions [Salen04]; they are “play artifacts.” So, then, what is play all about?

With increasing interest in games, recent years have seen the discussions on play
intensify. Books, articles, and conferences, large and small, have offered potential

64 Part 2 Game Design



answers, from the philosophical to the scientific. A good place to start is to ask scien-
tists how play appears—what does it look like when it happens? There is a great deal
of agreement on this topic, so sifting through many descriptions highlights some
familiar themes. 

No apparent purpose, play is just to play
Voluntary
Different from serious behaviors
Fun, play is pleasurable
Begun in relatively safe situations
Improvisational

These features of play, skimmed from leading voices in the science, have been
observed across the spectrum of animals—not just dogs and cats. While it isn’t univer-
sal, it seems close—primates to birds, lizards, fish, and so on [Burghardt05, Brown09].
With all of this data and evidence, is it known why play exists?

The short answer is that things really aren’t clear, at least not to the satisfaction of
science. There are some good indications that it is beneficial [Brown09], but evidence
on how and in what circumstances is still weak. Play might be an important means of
learning, offering an evolutionary advantage, or it might be a recurring side-effect of
other biological/behavioral patterns—reappearing because of sensory-emotional
structure more than selective pressure [Burghardt05]. Play, in humans, might even be
a critical factor that leads to culture, creativity, social classes, literacy, war, market
economies, etc. Studies have shown similarities in brain activity that may ultimately
lead to understanding the impulses in animal and human play [Siviy98]. At this point
in the research, just about the only thing that seems a safe assumption is that playing
feels good to the player. Players—both people and animals—are enjoying themselves
when they play. We’re all having fun.

Fun: What provides amusement—entertains or occupies [Oxford09].

Everyone holds their own opinions about fun because they have particular expe-
riences of it. Cultural attitudes help describe and set expectations, while individual
preferences actually govern our reactions to our own emotions. Fun isn’t so much a
single set of favored emotions as it is a label we put on preferred feelings that fit our
personal attitudes.

You’ve probably experienced something like this: a friend insists you’ll have fun
trying something. You agree only to discover that, while they had fun, you didn’t; and
it wasn’t because it wasn’t fun enough. You just didn’t like it. No sir.

Why do some people like watching Schindler’s List or The Exorcist? Why do some
want to play Shadow of the Colossus or Braid or Dead Space? Why would anyone want
to experience sadness, guilt, disgust, loss, fear, or any emotion of that sort? Long-held
views have attempted answers, suggesting that negative feelings experienced in enter-
tainment were either not real or that the audience was willing to endure in order to

2.1 Game Design 65



get to the end where “good” feelings were, to feel better when it’s over. But recent
studies suggest that people can actually like bad feelings in the right context; feeling in
control of the situation is one such situation. Playing a game, we can feel true, mea-
surable fear—in the same form and intensity as if under real threat—yet enjoy it
[Andrade07]. But taste and personality matter; for example, some people won’t ever
like watching a horror movie.

The interesting mental trick that allows entertainment to work at all, is the way
our brains judge feelings based upon our perspective—experiencing things that are
not part of the real world. When a situation is fictitious or “not serious,” the brain
regards emotional responses differently than if the situation were real or “serious.” All
of this fits with current leading theories on emotion, which we will mention later. 

Pause a moment to review where we are. We began by asking “What is a game?”
which reminded us that people identify artifacts by function. This led us to ask “What
is play?” and then “Why is play?” We looked at some voices from science and found
that people play because it’s fun and that fun is a description of feelings when they fit
the personality and the context.

A good game designer doesn’t need existential answers (“Why does play exist?”),
but rather practical and functional ones (“Why do people play games?”). We are
standing at the answer: People play to have fun. You also know that fun isn’t just one
emotion. All that is left is a good-sounding term.

In the cognitive sciences, cognitive artifact describes artifacts used to aid thinking
[Hutchins99]. Examples include lists, maps, string tied around a finger, calculators, and
Wikipedia. If you use it to reason, calculate, or remember, it’s a cognitive artifact. There
are certainly emotions involved during cognition, but games have another purpose.

Since words are free, we create a provisional definition, emotional artifact: an
object created and used to experience feelings.

Game: An emotional artifact used through a series of structured interactions.

A Model of Games

A model (as a noun) means a representation or an explanation of something
[Chartrand77]. Model (as a verb) is the act of representing or explaining. Models are
everywhere: a blueprint modeling the floor of a building, a number of hit points (HP)
modeling the health of a player, and sheet music modeling the arrangement of sounds
over time. In our modern lives, models are like artifacts: pervasive, important, and so
common that even bringing them up to talk about can seem pretty silly. Photographs,
meters, indicators, price tags, audio recordings… the list is endless.

To abstract is to remove details from something, and the process of abstraction is
the universal method for solving problems—simplify matters by ignoring unimpor-
tant and distracting details. Abstract models, then, are representations with only the
important and relevant bits left in them. Look up “abstract model” on Wikipedia, and
you will be redirected to “scientific modeling” and find the following: 

66 Part 2 Game Design



Modeling is an essential and inseparable part of all scientific activity… [Wikipedia09].

All models are abstractions in some way or other; after all, they represent some-
thing else, but that doesn’t mean that particular thing is replaced by the model.
Models are not reality. A picture of a car won’t get you anywhere. The photo of the
food is not the food itself [Fauconnier02]. This is the essence behind the saying, “The
map is not the territory.”

Details are expected to be missing and imperfections expected to misrepresent
reality, but as long as the model serves the intended purpose, we’re happy. A map to
your friend’s new house needs to show the streets to get there, but doesn’t need every
side street, alley, and tree along the way. You won’t expect to arrive and find, outside
on the lawn, letters the size of a school bus spelling “My House.” It’s just a model.
Today, game designers have a lot of choices when it comes to conceptual models of
games. You will probably look to several over the course of your career. Programmer
and designer Mark LeBlanc’s MDA (Figure 2.1.1, left) is a model of the player expe-
rience, showing how subjective experiences are generated through play. In the middle
is Jesse Schell’s “Elemental Tetrad” (from the excellent The Art of Game Design), which
describes the elements that make up the game artifact. Furthest right is a formal
model, by Jesper Juul, which proposes necessary and sufficient conditions for some-
thing to be a game [Juul03].

The model of the player-game used in this chapter will organize some major fea-
tures into two domains: Player and Game. Three pairs of closely related concepts will
be placed into the model. Keep in mind that boundaries are fluid and blurry. No
attempt is being made to declare that this is the way games are designed or organized;
it is an outline for a way designers think and organize their design work for the games
they create.

2.1 Game Design 67

FIGURE 2.1.1 Three models, MDA, Elemental Tetrad, 
“6 game features” [LeBlanc04, Schell08, Juul03].



Everyone knows that game designers have to consider games and players, so
Figure 2.1.2 doesn’t hold many surprises. On the left, you see Player and on the right
Game. Neither of these domains is meant to represent its subject entirely, just
abstractly. In this case, Player can be thought of as things directly concerning the player
rather than being just about some real person. Eventually, every thought and feeling
ends up on this side of the model.

On the right half, into Game, go things that make up the game. Just what those
things are will vary depending on the particulars of each game (video game, board
game, jolly round of pat-a-cake, etc.) at a given time. In video game development,
most of the things that fit into this domain will be built out of software. Video games
usually run on general-purpose gaming machines that are outside the control of a
designer; using the hardware is relevant but designing hardware is not typically con-
sidered part of the game design. Exceptions will always exist, of course, and can result
in successes like the guitars of Guitar Hero, but it’s still relatively unusual unless you’re
Shigeru Miyamoto.

The arrows in the center of Figure 2.1.2 are another abstraction, just hinting at
some type of interaction happening during play—for example. Player affects Game,
Game affects Player—but not much more yet. There are no clues to the order, rate,
sequence, duration, or even type of inputs and outputs.

The Game Half

This is the domain of the “real” stuff. As we mentioned, hardware (if it matters) and
software (which always matters) definitely are the game. The digital bits that describe
what can and will happen in the course of playing are set here (Figure 2.1.3). 

68 Part 2 Game Design

FIGURE 2.1.2 Player, meet game.



While every game is a system, video games, in particular, are systems built of sys-
tems running on systems and so on. But game system or gameplay system refers to just
those that directly affect the things that the player will do (see “play mechanics” in the
next section). Often, this is what people think of when imagining the work of game
design: creating the rules. Game systems determine the procedures and operations that
will utilize game resources and, with a little help from the Player, produce outcomes.
Most formal elements that define a game are products of game system structures.

Game content is all of the stuff forming and populating the universe that game
systems govern. It is the space and substance of your game, from game board to
galaxy, and the resources that fuel the game systems during the course of an actual
game. Content makes up the what, where, and when of everything operating in the
game; all of the materials experienced during the game, whether concrete objects like
battle tanks and rooks, or more abstract concepts like “Mission 12,” or states like a
running account balance of 2500 credits.

The Player Half

Try as you might, you won’t have direct control over the player. The limits of a
designer’s direct control are inside the limits of the Game domain. All of the really
important stuff—motivations and feelings—happen across the border, in the mind of
the player. People are the most important part of your game.

Earlier, you read that there are all kinds of things about players we would leave
out of the model until they mattered. In Figure 2.1.4, you can now see something that
really matters, the experience—the relevant perceptions, feelings, thoughts, intents, and
actions. It’s so important that we show it twice! (One is the overall experience, the
other more specific.)

Experiences are enormous sets of mental stuff—packages of psychological and
physical states all crammed into a box of percepts and memories and labeled with a

2.1 Game Design 69

FIGURE 2.1.3 The rules.



context. How we talk and think about them can shed a little light on how they fit into
that box. “Driving home was nice today, for a change.” “I got beat last time, but this
time I have my defenses set up... Here they come!” “I’m trying to finish as fast as I
can, but I’m still going to be late!” The range of possible experiences is boundless.
Miniscule experiences might be a single percept like feeling a touch; epic experiences
could be a bike ride from Chile to New York. 

Our specific inner experience is our shorthand for aesthetics and emotions.
Aesthetics are reflections on and considerations of the emotional experiences evoked
during play [LeBlanc04, Huizinga55]. The emotions are those feelings. The experi-
ence is what players want from your game, why any of this exists in the first place, and
why you are reading this book. 

A little later on you will find that emotion covers much more than you might
imagine. Solving problems, defeating an enemy, and spending time with friends
online all have emotional components that largely determine whether or not you
enjoy that experience. The cold facts rarely mean much to us—emotions are the only
things that matter.

Mechanics (game mechanics) are systems of interactions between the player and
the game. More particularly (and a little atypically), this chapter will consider game
mechanics to be the player’s experience of those interactions. While game mechanics
are more than what the player may recognize, they are only those things that impact
the play experience. In other words: what happens during play that affects the player.

While there can be any number of particular reasons for a person to play a partic-
ular game, all rely on it to evoke feelings that the person will value. If it can’t, there
will be nothing to encourage play. Games are emotional artifacts. When they create
the kinds of experiences you intend and give players the kinds of feelings you want,
you are an effective artist.

70 Part 2 Game Design

FIGURE 2.1.4 The player’s experience.



The Third Half

It has been said that video games run on a “coprocessor system” [Wright03]; one
made of silicon and powered by electricity, the other inside the player’s mind. Before
you can run any part of that system, however, you will need to provide a bridge
between the two physical entities. Game don’t just need an interface, they need two!

In Figure 2.1.5, the Player and Game are connected to each other via a system of
interfaces—hardware and software devices that connect information and commands
between device and user. As a general concept, this is the most straightforward piece
in our schematic. Interfaces are the most visible aspect of a Game, and the Player has
little difficulty identifying the systems of input and output.

In our model, the interface element will contain all aspects of presentation and
feedback, regardless of their mode—video, audio, haptic, etc. The reason for this
approach is that it makes more sense to organize design thinking around the func-
tional effects (alerting the player to a danger, providing good feedback on a failed
command, and so on) instead of by the modalities used to express them.

Players perform actions in the game, using the interface to signal their intentions
to the game. There are two dimensions of action: the actions using the controls (press-
ing a button, moving a stick) and the actions that happen in the metaphorical space
of the game (shooting a basketball, unlocking a gate)—inside the coprocessor system
of brain and machine.

The arrows attempt to show that information is traveling in a circuit through the
whole system. Once things are underway, there is no real point of origin—the player
has something to tell the game and the game has something to show the player. Every
bit of this information crosses through the interface.

2.1 Game Design 71

FIGURE 2.1.5 Interfaces connect Player to Game.



All Together

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end
of the beginning.

—Winston Churchill

Here we are at the finished schematic (see Figure 2.1.6). As a hybrid, it’s not too com-
plex while viewing structure, experience, and the cycle of interaction in a fair way. It
does oversimplify and understate, but the leading problem is that all relevant matters
of a game will not always fit into neat categorical bins. This is because the relevant
matters of a game do not always fit into neat categorical bins!

Just remember that it’s still a model, not a substitute for the real thing. As an
abstraction, it should offer you a reasonable way to organize thinking while learning
how to be a game designer the right way—making games!

The rest of this chapter will be split into two major sections. The next eight sec-
tions, through Content, are focused on the pieces of a game, and these things are
treated like that: in pieces. The sections that end the chapter will deal with design
work itself, creating concepts, working in iterations, documentation, and so on.

Game

Before you picked up this book, you knew what a game was. From Backgammon to
BioShock, despite all of the variety in kind and style, we know a game when we play it.
But, ever since Plato, people have valued formal qualities as a way to fully explain and
understand things.

72 Part 2 Game Design

FIGURE 2.1.6 A model of the Player-Game relationship.



What follows in this section is a brief description of various formal elements typ-
ical of games. No assumptions are being made that any game has all of these, but most
games have some.

Objectives

Objectives are designed requirements that players must satisfy to accomplish a partic-
ular outcome [Fullerton08]. Encoded into the structure of the system itself, objectives
are formal properties of the game, gating player progress. As a means of establishing
conflict and challenge, objectives motivate player engagement with an offer of finite
and solvable problems that players then work toward. At their most rudimentary
level, objectives give people something to do. 

When a game offers one set of mutually exclusive objectives to everyone, it begins
with a natural balance in place. When games offer differing objectives to players,
greater effort is needed to balance and minimize the player concern for unearned
advantages. (It’s not fair!) One approach, popular with online games, is a team versus
team arrangement where objectives trade back and forth between opposing teams,
from one round to the next. A given player’s success is then tied to the choices and
actions of fellow players—not the by-product of unit design.

An objective is not quite the same thing as a goal. Objectives are those things
players get asked to do; goals are those things that players want to do. We’ll go over
the difference later in the Player section.

Outcomes

Games have a set of possible and uncertain outcomes that will result from the players’
interactions. These conclude play—they end the game—and need to be measurable.
Why do they need to be measurable? The full answer involves the way our brains
anticipate futures and evaluate the successes and failures in our decision making, 
giving us good or bad feelings in the process. For now, we can say players need to eval-
uate their performance for the game to be “meaningful.” This is also why outcomes
are usually unequal, and some results are better than others. Adding a little risk of fail-
ure and potential for reward makes a game even better at holding our attention.

It is not enough that a game’s outcomes can be measured and that those measure-
ments be as meaningful as possible. Outcomes must also be agreeable, clearly present-
ing the end of the game and the measures of performance. Players need a standardized
way to agree on the result. When this is absent, things get uncomfortable as the play-
ers must negotiate their opinionated versions of “who beat who.”

Winning and losing are the two classic outcomes. They are discrete and definitive
results of competition, but even among classic examples of the type (backgammon,
chess, etc.), games commonly can end without decision—a third outcome, the tie (draw).

Many video games lack distinct outcomes, like win or lose altogether.
Nevertheless, players evaluate and compare performance, weigh accomplishment and

2.1 Game Design 73



failure, and have a great time in the process. Sometimes people will describe this as
temporary states, such as win state or loss state. So, if you hear these terms, you may
need to clarify whether or not the state in discussion is final or temporary. Was an end
condition reached? Or was the commentator just reaching?

Uncertainty

In a situation with many possible futures and no way to foretell which one will happen,
you have uncertainty; it’s any time that things are not certain! In life this is unavoidable
and regrettable, but, in games, uncertain outcomes are customarily expected and
desired. (Who wants to keep playing when the outcome is predetermined?)

Uncertainty is necessary to the experience of playing games. Final outcomes that
feel totally predictable tend to be boring or frustrating or both. When the decisions
that remain have obvious answers and conclusions, there isn’t much room to build in
expectations. Without that space to grow, feelings quickly atrophy, and the whole
experience stops being worthwhile. Players need to feel as though the things that they
want to do can be accomplished, but have some chance of failure, either through mis-
take or bad luck. Designers control uncertainty by requiring physical performance
and mental strategy, as well as limiting the information. Random systems can also
help; however, you will be cautioned about them later.

Rules and Structure

Rules form the structure of each game, establishing an uncertain relationship between
the player and her objective. Without rules, play becomes unregulated and nebulous.
It is ironic that less certainty in rules can diminish the expectation of uncertainty in
play. Personal creativity and social skills are used to express and negotiate acceptable
behavior. The fantasy play of children (e.g., House, War, Cops and Robbers, etc.) is one
common example. Rules for these games do exist on a moment-to-moment basis,
inconclusive and ephemeral, “made up” while the game is being played. Ad hoc rules
such as these force players to make an effort to simply understand the boundaries of
the game. By clarifying the manner of play, formal rules allow players to concentrate
on exploring different strategies in uncertain systems rather than spending most of
their effort on continually reinventing and maintaining the system itself.

Explicit rules are a basic formal structure of any game artifact. These are some-
times called the “laws” of the game—binding, nonnegotiable, and unambiguous
[Huizinga55]. In nondigital games, the explicit rules are written into rule books or
formed by the playing equipment and moderated by either the players or a separate
referee. In electronic games, they exist within the hardware and software architecture.

Ideally, explicit rules are clear, every player sharing the same interpretation of
their meaning. Vagueness is often harmful to the system, leading to confusion,
exploitation, or a breakdown in the play. If ambiguity is revealed, the players must
agree, among themselves, to clarifications.

74 Part 2 Game Design



Some rules only come into effect at given times or in particular circumstances.
These often serve to create variation, govern game progress, and ensure that the sys-
tem remains within preordained limits [Fullerton08].

Rules in electronic games are formed by the platform and software architectures.
The first advantage is that no ambiguity in explicit rules is possible; the computer refer-
ees, and it has a perfect understanding of the rules (at least as far as that version is con-
cerned). Second, the rule systems can be much more detailed because players are not
required to process all of the rules themselves. The richness and responsiveness of com-
puter simulation can operate at a level of sophistication impractical by other means.

Operations are rules describing the methods and procedures players use to play the
game. These are concerned with defining what actions players may perform at a given
moment. Operations determine the timing and order of actions and the precise
instructions for how to do them.

Systemic rules define the possible conditions of the game and its events. They are con-
cerned with the various states (configurations of position, value, etc.), limits (especially
resources), and events that result from player action or chance (scoring, penalties, etc.). 

Frames

Games and playing create, in our minds, temporary spaces that are separate from the
real world. Dutch historian John Huizinga coined the phrase “magic circle” to refer to
these places. Later, Gregory Bateson offered a similar description of the frame of a
game as the understood context of play—“this is just a game”—the time and space
setting apart playful and inconsequential activities from the serious and consequential
[Bateson72]. Moves made during a game of chess are within the frame of the game,
but the players’ entrance and the conversation afterward is not.

These contexts aren’t a recent invention or exclusively human. Animals, when
playing with others, signal their intent to others. These signals let them engage and
remain in play. 

Feelings within the context of the game’s frame are supposed to be safe and experi-
enced without real-world effects. That said, not all feelings are as compatible with these
frames as others. A betrayal in Diplomacy, which is part of the game, can be difficult for
some players to enjoy and can be tough to forgive, lingering into the real world. Other
feelings, like frustration or humiliation, can disengage players from the game entirely.

Player

I work tirelessly not to laugh at human actions, not to cry at them or to hate them, but to
understand them. 

—Baruch Spinoza

2.1 Game Design 75



There is nothing for a game designer to value more highly than the player.
Most of today’s veteran game designers grew up playing games. They tend to

come from very similar stock, having tuned their awareness and sensitivities playing
hardcore games. Passion and excitement have been forged in experience to create the
sensibilities that guide them through each day’s work. Since most of the industry is
still serving the “core” gamer and designers understand that kind of player because
they are that kind of player, personal judgment and preference are excellent guides
when you are the audience.

But times are changing and the audience is changing with them. The population
of game players is growing and becoming more diverse. In the United States, 65 per-
cent of households play video games and the average age of the most frequent pur-
chasers is 40 years old. More than a quarter of adults over 50 play video games, and it
is the largest area of growth recently, according to “Family Entertainment” [ESA09].

But how can designers create a successful game for people potentially different
from them? The answer is by becoming deeply interested in people and psychology,
and most importantly, learning how to listen.

Emotions and Feelings

Any emotion, if it is sincere, is involuntary.

—Mark Twain

Set this book down for a moment and make a fist with each hand. Now hold
them together with the heel of each palm touching. That is a rough model, in shape
and size, of a human brain. The one in your head has around a hundred billion neu-
rons in various modes of resting and firing while you read this, while you think, and
while you feel.

In 1884 psychologist William James posed a question in an article: Why do we
run from a bear? Perhaps, he suggested, we see the bear, begin running, and become
afraid because we are running. Well what would you say to that? Most of his col-
leagues knew what to say: poppycock! Common sense told us all that we needed to
know. We see the bear, become afraid, and run because we are scared. (Duh!) Well,
over a hundred years later, the ideas that James-Lange posed would get a lot more
respect since neuroscience technology has advanced enough to allow scientists to
watch the brain at work.

While today’s most commonly held scientific view (Figure 2.1.7) is more
nuanced than James-Lange, it looks far different than the common-sense model most
of us regular folk still hold today [Ledoux02, Pinel07]. Seeing the bear creates visceral
emotions and bodily reactions before we have even made sense of what we have seen.
The likely reason for this supercharged emotional system is efficiency—it is much
faster to react than to have to wait for consciousness to make up its mind.

76 Part 2 Game Design



The process looks a little like this: 

1. Something worth feeling comes up—present or remembered.
2. Signals run between emotion systems and conscious systems (cortex).

3a. The emotion system generates responses.
3b. The cortex is using explicit memories to recognize and understand.
4. The cortex uses information from 3a and 3b to make choices.

Emotion systems are quick and often accurate (the subject of the book Blink), but
the cortex isn’t just along for the ride. We can go with the emotional flow, or the cor-
tex can try to control the rest of the system. For example, when it recognizes that the
bear is stuffed and has a tag on its bottom. “That’s a teddy bear, silly!”

People spend a good part of their lives unaware of the emotions that they are hav-
ing. And when they do feel something, they make sense of it by referring to the context
of the situation they are in. What’s really interesting is how we can confuse these things
a bit. In experiments, men have been “made” to find women more attractive than others
by speeding up the sound of a heartbeat. And everyone knows (or should) that a scary
movie is a great place for a first date. What everyone might not know is that this works
because the feelings of fear and romantic attraction are similar and easy to confuse.

Even this view here is getting a little dusty from all the progress neuroscience has
been making. But game designers don’t need to be scientists—we just need a model
that makes sense and makes good predictions, such as understanding that our minds
evaluate our emotions differently depending on the situation. Some people enjoy the
rush and tensions of being scared in Left 4 Dead, and some people find those same
sensations unpleasant and, consequently, decide that the game is, “not for them.”

2.1 Game Design 77

FIGURE 2.1.7 A modern theory of emotion [Pinel07].



Players have preferences, feelings they like to have during entertainment, and
feelings they do not like. Not everyone enjoys hunting and gathering. A designer
needs to understand the audience that will be playing the game. Emotions are not just
for entertainment. Emotions are also covering our goals and everything we care about.

Thinking Is Feeling

Let’s not forget that little emotions are the great captains of our lives and we obey them
without realizing it.

—Vincent Van Gogh

From antiquity comes a common belief about our minds: one part rational, moral,
and recently evolved; one part irrational, reckless, and rooted in the primitive parts of
the brain.

But a great many of our decisions happen much “deeper” in the brain. Much of our
thinking and calculating, that stuff that most people feel like they have a firm cognitive
grip on, is actually leaping up from emotional systems that have channeled the answer
to us before we were hardly aware of the question. And even when our rational cortex is
in full effect, calculating and figuring, we need the brain’s emotional systems to let us
know when the “right” answer has been reached. It feels good when we think we have
the right answer. Why do we play games again? (We play because it feels good!)

Working Memory

Working memory, or short-term memory, is one of our most important cognitive sys-
tems. It allows us to keep a limited amount of information, roughly 7 ± 2 items at any
one time [Zimbardo92], for a few seconds, while other portions of the brain perform
computations on it. When a new task is begun, the old information is bumped out to
make room [LeDoux02], and if we aren’t done with the first, too bad.

You will find this figure, 7 ± 2, throughout design fields of all types. Keep the
demand on your player’s lower range of memory retention if you want them to
remember. Higher if you want them to forget.

Any professional dealing with the abilities and capacities of others must respect
both of these precious capacities; don’t squander or abuse them. As a designer, you
must balance the decisions and choices you ask of your players at any given moment
so as not to frustrate them. This includes overwhelming them with information or
requiring that their attention be spread over too many areas at the same time.

Attention

You are in a busy restaurant waiting, with your friends, for a table. Despite the noise
and movement of people chatting over lunch, hurrying in and out, you listen to your
friend as she tells you about her day. The host steps up and begins “Is there a…,” and

78 Part 2 Game Design



before you know it, all you can hear is his voice, waiting to see if you are being called.
The sound of your friend’s voice has fallen into the crowd, and you wonder what she
just said.

That is selective attention (attention), the process of focusing; tuning in on things
you care about and out on things you don’t. This focus is engaged by either your own
thoughts (choosing to listen to your friend) or by an external experience (the voice of
the host drawing your ears away) [Pinel07]. Your brain, in order to do this tuning, is
able to amplify and dampen the mental representations, depending on whether the
thing is attended to or not. In other words, it’s how we turn our focus on things that
seem to matter, allowing us to effectively prioritize goals.

Some of the most important studies of attention were conducted in the 1950s
and involved people listening to two simultaneous messages. These studies produced
several findings:

Limited capacity: Identifying both messages at once is difficult.
Conditions for attention: One message can be identified and the other ignored

if the messages had different properties (pitch, location, etc.).
Consequences of selection: Listening to one message while ignoring the other

resulted in only the crudest recollection of the ignored message.

Example: Getting Attention in Hidden Object Games
In the casual game markets, the hidden object genre is popular. Players search for
items embedded in and around the details of colorful background scenes, often racing
against a countdown timer. Once some minimum number of objects has been found,
they are able to progress; failure usually results in retrying the level over again. It is
typical for people to get stuck from time to time, usually because they aren’t sure
about what one of the requested items should look like (What kind of “bow” do they
mean? Bow and arrow? Violin bow?), or they believe that they have already thor-
oughly looked over some part of the scene and have mentally checked it off a list (I
know it’s not up there!). It helps to give them a hand when it’s been a while since their
last find, such as a brief move, or a pulse, or a sparkle. Keep the effect subtle, and it
will just tickle their peripheral vision and draw an eye toward it. When they find it
(There it is!), they feel a sense of accomplishment, you feel the awesome joy of mak-
ing something fun, and everybody wins. The next time it happens and they notice
(That sparkles when I’m stuck.), it gets added to the suite of mechanics. 

Psychological Quirks

There are a number of thinking and feeling oddities that influence decision making
and emotional evaluations. Sometimes there are specific circumstances that must be
at work, but other biases are in full effect regardless of the situation. 

2.1 Game Design 79



Framing Challenges
Put one way, a problem is easy. Put another way, our brain can have trouble under-
standing the context of the question, failing to find a good strategy for reasoning.

Consider the following puzzle: You are dealt four cards, as shown in Figure 2.1.8.
Each card has a letter on one side and a number on the other. Please pick only those
cards that must be turned over to verify the following statement.

A card with a D on one side must have a 3 on the other.

Make a quick note of your answer. Now, imagine that you are working at a bar
and grill and must make sure that no one under legal age (21) is drinking. Each card
in Figure 2.1.9 represents a patron. One side shows the age of the person, the other
what they are drinking. Please pick only those cards that must be turned over to see if
any of these people are breaking the law.

The answer to the first question is D and 3. The answer to the second is beer and 15.
About 25 percent of people choose correctly in the first case and about 65 percent

in the second, even though they are the same task [Pinker97]. (In psychological
research, this experiment has caused a lot of debate!) One thing is clear: the way a
puzzle is presented matters!

Conditioning
Conditioning is a type of learning through association or reinforcement. The best

known of these is classical conditioning. In classical conditioning, one stimulus that
does not elicit a particular response, naturally, is paired with another that does until
the subject learns to respond to both in the same manner.

80 Part 2 Game Design

FIGURE 2.1.8 D on one side must have a 3 on the other.

FIGURE 2.1.9 Which people need to be checked?



The classic example of Pavlov’s dogs illustrates the concept. Before conditioning,
a sound heard by the dog produces no response. However, meat in the dog’s mouth
causes the animal to salivate; the meat is the unconditioned stimulus, and the salivating
is the unconditioned response as the dog’s reactions were in their natural state. During
conditioning, the sound is played while meat is put into the dog’s mouth, causing sali-
vation. After this has gone on for a while, the dog is “conditioned,” and needs only to
hear the tone to begin salivating (the conditioned response or CR) [Zimbardo92].

Operant conditioning describes learning where a behavior is encouraged or dis-
couraged by its consequences. Positive reinforcement rewards a behavior (the operant)
with a positive outcome, making that behavior more likely. In negative reinforcement,
the behavior is encouraged by the threat of a bad outcome should the subject choose
to stop the actions. Note that both positive and negative reinforcement schemes
encourage a particular behavior; one is nice about it (have a cookie!), the other… not
so nice (do it or else!).

Punishment is the third kind of operant conditioning. Punishers reduce the likeli-
hood that the subject will perform the act, and punishment is, well, the application of
the punisher [Zimbardo92]. Be very careful when thinking about using punishment,
as it tends not to be a ton of fun. Try reinforcing alternative behaviors rather than sim-
ply punishing those you want to discourage.

Aiming at Audiences

The more one pleases everybody, the less one pleases profoundly.  

—Stendhal

Your audience is a set of people—from none to everyone—with enough interest
in your game to give it some attention. Increasing that number of people is a complex
and uncertain problem, but there is a lot you can do to help improve your chances.
For the moment, we have time to concentrate on one: targeting an audience.

The basics of this approach are simple: don’t try to please everybody. Not because
you have any good reason to keep people from liking your game, but because it is
nearly impossible for everyone to like your game. By trying to achieve that effect, you
only increase the risk of pleasing no one.

1. Identify groups to aim for—your target audiences.
2. Model their preferences.
3. Create a list of aesthetic goals informed by the model.
4. Use the model for guidance in design.

This style of approach has roots in the practices of targeted marketing
[Russell02]. In the 1980s, advertisers began to move away from mass market advertis-
ing, where markets were represented by size or households. People were being faced
with a proliferation of choices and advertisers found a need to address their new and

2.1 Game Design 81



more individual demands. To reach these individual demands, whole markets are 
segmented into smaller groups of people with shared qualities (demographic variables).
While segments can be based on any kind of relevant feature, age and gender became
standard. Market segments are still generalizations, not real individuals but a sort of
averaged concept, the demographic profile.

A target audience is a segment you choose to serve with your game. In professional
game development, it is a bit uncommon for the developer to have complete freedom
in this decision. Most professional studios are working for or with a client (publisher,
investor) that will want a defined segment with a purchasing history. If, however, you
are the master of your own destiny, then you can choose the target audience that fits
the goals you have.

After (or as an exercise in) choosing an audience, commit these to a model. The
best way to do this is by creating personas, which are fictional characters representing
your targets. Personas have become a popular tool in many customer-centric busi-
nesses because they let you address fictional characters as though they were real people.
A persona is a little like a role-playing character (sans cape).

Resist the urge to create elaborate personas with exhaustive lists, personal histories,
and irrelevant details about traits and quirks. Short simple and memorable, like Figure
2.1.10, are preferred to complex and confusing. “Was frightened by an anteater as a
child,” will not help you decide if your players would like to customize their playing
piece. On the other hand, you should spend a little time making sure that the personas
you create will fit the audience you are targeting. How? By talking to people that fit
the demographic profile!

82 Part 2 Game Design

FIGURE 2.1.10 A persona without too much detail.



Experience

There is no excellent beauty that hath not some strangeness in the proportion.

—Francis Bacon

Experience: The emotions and aesthetic feelings evoked during play.

Experience is huge, but we will concentrate almost exclusively on one part: the
emotions. Emotions are our reactions to the game—the feelings we have while play-
ing. These sensations arise from game mechanics, graphic art, sounds, settings and
narratives, and everything all at once.

Designers make games that affect and move people. Just what affects and what
movement is really the art of creating a design for an audience. Maybe you want to try
something new, not limited to the aesthetics typical of other games. There are plenty
of opportunities.

Nicole Lazzaro, president of the research and design company XEODesign, was
the first to apply a special technique for monitoring expressions (FACS) while observ-
ing players and identifying the emotional states they were experiencing. Through that
work, came the Four Keys, descriptions of emotional experience that people enjoy in
games: Hard Fun, Easy Fun, Experience, and Social Fun [Lazzaro04]. As they are
convenient categories of experiences, this will form the basis of the organization in
this section.

Mastery

“Winning isn’t everything.”

Mastery has been the hallmark aesthetic throughout the history of games. It is the
part of gaming driven by contests of talent and effort. For many, gamer and nongamer
alike, this is what games are all about: using skills and strategies to beat the game. For
game designers, this has been the single most important and time-consuming aesthetic
goal. Many have spent their careers concerned with nothing more than this.

This is not so much “the desire to win” as it is the reason behind that desire. It is
a way for players to prove how good they are. The emphasis of mastery is on satisfac-
tion for a job well done and well tried. Loss is acceptable because it’s a possibility with
any worthy challenge. Mastery exemplifies achievement and success in the face of
creditable risk. Potential defeat is what makes the challenge meaningful. 

Mastery is personal. While a particular challenge may involve defeating oppo-
nents, the motivation is pride in oneself for your talent and effort. Players motivated
by mastery want to know, inside, that they are good, not just share the news. Bragging
is just a bonus. “I beat Ninja Gaiden on hard!”

2.1 Game Design 83



The feeling of this triumph is fiero [Ekman03]. It is the vigorous joy at overcom-
ing adversity. It is cheering “Yes!” and maybe even performing an embarrassing gesture
while doing it. This is the fruit of sustained effort—the purity of victory.

To offer mastery, you must also offer control. If players have no control and fail,
they are frustrated. If they have no control and succeed, they didn’t do anything 
special. You must offer players choices. Periodically present players with a few options.
Give them opportunities to use strategy so they can delight in their own shrewdness.

Design mechanics to test player skills.
Test multiple skills at the same time.
Minimize the role of luck in mechanics for mastery.
Lead players to tempting rewards.
Allow players to choose to accept risky opportunities.
Separate meaningful objectives from players with significant obstacles.
Use multiple objectives to allow players to use strategy.
Create danger and risk that they can choose for themselves.
Enhance the perception of difficulty where possible.

Flow

The flip-side to mastery is frustration, and this is a huge issue for game designers in
their daily work. How can your game let people overcome meaningful obstacles with-
out those obstacles being too challenging?

The most popular model of this issue is called Flow. Created by positive psychol-
ogist Mihalyi Csikszentmihalyi, Flow is a fully immersed mental state. The player is
absorbed with task at hand, unaware and unbothered by things outside of the imme-
diate experience. Csikszentmihalyi calls Flow “optimal experience,” and it is common
to any activity where people are “in the zone.”

Flow starts with a challenging activity, with an uncertain outcome, that needs
skills [Csikszentmihalyi90]. In other words, start with an opportunity for mastery.

1. Clear goals; reachable goals compatible with the player’s skills.
2. Becoming one with the activity.
3. Clear and immediate feedback; aware of goals.
4. Complete concentration on the task at hand.
5. Effortless control; no concern for losing control.
6. Loss of self-consciousness.
7. Time becomes distorted.

As Figure 2.1.11 shows, attaining Flow is a balance between the challenge of the
task and the skills needed to succeed at it. The white area rising diagonally is the Flow
channel showing that the challenge of the task must increase along with the player’s
skill (and vice versa). When someone is here, they are said to be in Flow.

84 Part 2 Game Design



Immersive

Curiosity is lying in wait for every secret.

—Ralph Waldo Emerson

Where mastery challenges, immersion entices. Players are drawn into the game
with a suite of feelings from wonder to curiosity. Inspire players to look around the
next bend or over the next hill, and keep their minds filled with possibilities.

You have an advantage. When a player chooses to engage a game, he has made a
statement: “I am willing to see what is inside.” Now the game needs to deliver.
Capture his attention with patterns of concealing and revealing. Show a little bit and
hide a little bit.

Curiosity is an inspiration that seeks answers; we want to know because we antic-
ipate something interesting in the result. Present mysteries and ambiguities, and offer
answers in small amounts until you are ready to surprise them. If answers are to be
found, offer answers in exchange for a little effort. Give people questions to ask and
they will say: “What is this?” “Is it safe?” “Is it for me?” “What will happen if I try
this?” “What’s happening?”

Wonder is experienced when faced with things that are rare and incomprehensible.
We are overwhelmed and fascinated by things that we can’t understand—either what it
is or how it has happened [Ekman03]. When the understood is revealed to be some-
thing much greater or more complex than ever imagined, the player can be placed into
a state of wonder. You will need to maintain a balance between improbable and impos-
sible. The player must believe the wonderful could exist; she’s just amazed that it does.

2.1 Game Design 85

FIGURE 2.1.11 The flow channel—not too hard, not too easy.



When wonder is mixed with fear, we have awe. Not only is it something we can’t
understand, but we also are struck with the feeling that its danger cannot be measured.
Is it a threat? Undoubtedly. Is it threatening us? Uncertain.

Consider the following when trying to increase immersion:

Curiosity—want to figure things out.
Create mysteries but leave some answers ambiguous.
Excite players with possibilities and opportunities; show them new worlds.
Show people the curtain, not the man behind it.
Attention—keep people interested by presenting things that would interest them.
Leave them guessing with ambiguity.
Rhythm—allow people to fall into patterns of behavior.
Incomplete—Gestalt psychologists would say that the mind seeks closure.
Wonder—reveal things at a scale they hadn’t expected—much larger or smaller.
Awe—the dangerous wonder.
Fantasy—give players a space to imagine what could be.
Improbably—not impossible to find the unreal in the real.
Use interesting stories and intriguing characters.
Use audio to fill the world with unseen substance.
Always leave them wanting more.

Internal Experience

We are feeling machines. Our bodies and our minds work together to produce these
feelings, and we experience the sensations. Players can be motivated by a desire to change
their mood or just to experience new feelings. The feelings that a person desires, of
course, depends on the situation, and your game will offer some set appropriate to the
experience you want to create.

Excitement is a reaction to the new and the challenging. Our interest is captured
by the sudden appearance of something fresh and unexpected. With a rush of adren-
aline, the player is ready for action. It is an arousal, like fear and anger, but lacking the
context of the dangerous or unjustified. Excitement mixes well with others, intensify-
ing both pleasant and unpleasant emotions.

Where excitement can involve other emotions, relief always does. It is a feeling
that can seem to course through the whole body in a large sigh or a gentle lift as a 
burden disappears. We experience relief when some larger emotional experience is
removed. The relieved emotion can be immediate like the fear in a narrow escape of a
car crash, or extended like worry over a job application. We can be relieved even after
something positive, such as a hard-fought win. Relief can be subtler, following moods,
like the escape from everyday concerns and stresses at the end of a workday.

86 Part 2 Game Design



A combination of focus and new emotions help offer relief.
Offer pleasant emotions with lower effort.
Change perspective.
Provide support and recognition.
Treat the players kindly and caringly.
Care for the players.
Remind them of their past.
Get their mind away from the real world, or at least their part in it.
Amuse them with interactions.

Players can enjoy the simpler structure that games can offer. Confident with their
understanding of the game, they can enjoy the process of working through to the
answer. Here the designer wants to create challenges that most players will overcome,
if even by a little trial and error. In fact, the trial and error approach is quite pleasant,
provided the player doesn’t have to spend too much time without making progress.

Social Experience

Until they went digital, a primary reason people played games was as a structured
activity to do together. As video games shifted from arcades and entered our homes,
they became stigmatized as “anti-social.” While that was always unfair, the Internet
has now removed all doubt: games can be downright social.

Players do not need to be collocated—right next to each other—for social experi-
ences. It is only necessary that the appropriate connection to others is made. Even a
cleverly constructed high score system, such as Geometry Wars 2, can give players the
feeling of being with friends as they try to best their score. City of Heroes is a social
experience, with similarities and differences to a room of friends playing Wii Sports.

Schadenfreude is a German word for the joy in the misfortune of a rival [Ekman03].
This is “You lose!” and it is an emotion present (whether our culture frowns on it or not)
in every competitive game ever created. The more polite might suppress the grin or
the laugh or the secret cheer, but it is still there. The less polite… well, schadenfreude
is the fountain of gloat, and the longer the rivalry has existed, the more will flow.

In Yiddish, the word naches is the pleasure that is felt at the accomplishment of a
child or mentee (person mentored) [Lazzaro04]. People will watch friends and others
play, sharing in their successes. 

Create opportunities for competition.
Create opportunities for cooperation.
Allow players to display their skills.
Allow players to display their individuality—“peacocking.”
Allow players to display their humor.
Provide tools for communication and sharing.
Create a connection between the player and meaningful others.

2.1 Game Design 87



Support the ability for players to metagame.
Naches—pride in the child.
Give people the opportunity to watch.

Tempo and Rhythm

Time is an entire dimension that you have to alter the game experience. It is an easy
tool for building drama (“will they be alright?”) or excitement (“I can’t wait to get there!”)
or fear (“I’ll never make it in time!”) You can turn it into a resource that players have
to manage like any other. In fact, time usually is the resource most players are contend-
ing with.

Whether intentional or not, your game will have a rhythm. The player will expe-
rience this through cycles of risk and reward or exploration and discovery. Think
about what you would like that pace to be and whether you would like it to change—
accelerate or decelerate. 

Session Length

Frequently, we are concerned with the length of the game—overall, how long a game
will take to complete. However, one of the most practical concerns about time is sim-
ply how long will it take for the player to have a meaningful experience that he can
leave, feeling satisfied? We now use the term session length to indicate the anticipated
time required for a single sitting.

A brief comment about the word “anticipated.” We know that casual game play-
ers can actually play for hours at a time. But what is important is that when they are
deciding to play, a choice is being made around perception of the future game session.
They aren’t sitting down with the expectation that two hours will pass unnoticed.
Instead they innocently think, “Oh, I should take a break for five or ten minutes…”

Short session games take around 5–15 minutes to play, and most of the classic
casual games fit into this range. Mid-session games are 15 minutes to an hour. Long
session titles are those that start around 30 minutes and can run until self-neglect
becomes a serious concern.

Casual gamers could have a complete experience in less than 10 minutes—from
launch to play to exit. This became more obvious when consoles began offering down-
loadable games and developers began making hardcore games with short session lengths.

Short session games must be quick to enter and leave, with a minimum number of
options to set or confirmations to acknowledge. For this reason, casual games usually have
a profile-based save system so that players may quit at any time without losing progress.

What is the shortest length of time it will take a player to sit down, play, accom-
plish something worthwhile, and leave the game safely?
What is the shortest length of time to make a major step forward in the progression,
such as moving to the next chapter?

88 Part 2 Game Design



The average of these two figures should give you something of a rough estimate of
the player’s operating assumptions when evaluating the length of time she will be
playing.

Play Mechanics

Things won are done—joy’s soul lies in the doing.

—William Shakespeare

When someone playing Lego Star Wars cracks apart a table, jogs in a circle to gather the
coins that erupted from the rubble, and receives the value of those coins into her total
account, they experience a mechanic. If she continues breaking objects and collecting
coins, she might be able to unlock Greedo back at the cantina; that is a mechanic.

The previously described sequences—hitting the table to break it, collecting
coins from rubble, buying Greedo—are all simple game mechanics; they represent a
single transaction. If we bring our perspective a little further back, looking at all of the
sequences together, we can see a compound game mechanic that describes a relation-
ship between the player and the game’s coin economy.

A play mechanic is formed when the player applies game actions to game ele-
ments. They are interactions that produce a meaningful result—it “matters” within
the context of the game. Mechanics don’t have to be critical enterprises, but they do
need to serve the overall purpose of play in some way. In other words and in an
abstract sense, play mechanics create feelings.

As a note, keep in mind one running thesis for all design:

If the feature does not improve the game, it should not exist in the game.

Player Arrangements

In narrative arts (literature, movies, etc.), various types of conflict, related to dramatic
struggle, are categorized—man vs. man, man vs. nature, etc. In games, these narrative
conflicts can still exist. At a far more specific level, games offer all sorts of other kinds of
conflict such as different styles of fighting within a single game. So the word “conflict”
can get overloaded quickly.

We will use player arrangement for those configurations of player conflict (Figure
2.1.12). In the book Game Design Workshop, Tracy Fullerton uses the term interaction
patterns and adapts a scheme that offers a nice illustration of the various forms these
game conflicts can take [Fullerton08].

The following are some typical player arrangements:

Single player—player contends with the game system.
Player vs. player—two players contend with each other.
Multilateral competition—three or more players contend with each other.

2.1 Game Design 89



Team competition—two groups compete with each other.
Multilateral team competition—three or more groups compete.
Unilateral competition—two or more players compete with one player.
Multiple individual vs. game—multiple players compete against the system.
Cooperative—two or more cooperate against the game system.

Core Mechanics

In every game there is one or more core mechanics—distinctive and fundamental
sequences of actions and results that players repeat throughout the game to advance.
Not all repeatable mechanics are considered to be core, only those tied to reaching the
overall goal or maintaining desired states, like survival.

In an action game, core mechanics might be based on movement and combat; in
a farming game, tilling and sowing; a social networking game might have trading and
stealing for core mechanics. You will want to explore core mechanics that immediately
support your project’s thematic, aesthetic, and audience goals. Discover the proper set
of activities through team creative collaboration, prototyping, and user testing. Prove
your ideas first and then find efficient ways to build them.

Local Emergent Gameplay

Local emergent gameplay (second-order mechanics) results from the combined use of
other mechanics and systems. Most often, these are player inventions, arising from
the creative use of properties and relationships among game elements. When second-
order mechanics are simple exploitations of game systems, they can often be viewed
negatively as exploits, even when they don’t violate the game premise.

As a classic example of simple second-order mechanics: id Software’s original Quake
had two explosive weapons, a rocket launcher and a grenade launcher. In addition
to the damage system injuring anyone near, the game’s physics engine would add an

90 Part 2 Game Design

FIGURE 2.1.12 Player arrangements [Fullerton08].



outward force, moving characters away from the source of the blast. Players jumping
over an explosion at the right moment would be propelled in the air, an order of 
magnitude higher than a standard jump. (When performed purposely with your own
weapon, this has become known as rocket jumping.)

While emergent gameplay offers many interesting and exciting possibilities, not
every game is suited to it. Local emergence usually requires that the game systems are
operating somewhat beyond the immediate needs of the play mechanics. Often, systems
are performing some amount of general-purpose simulation; they are running rules of
the world that aren’t necessarily relevant to the designed actions. For example, FPS
games usually have some level of physics simulation that includes objects with masses
and velocities. If there is also a combat system that calculates damage to a character
when colliding with an object (where force = mass × acceleration), then nearly anything
that can move in the world is a potential weapon. But a Texas Hold ’Em game would
probably not have or benefit from such a system.

Local emergence is sometimes called systemic gameplay, which is a fair description
of the way designers might go about creating it: use several small systems with the
potential to interrelate in new ways [Dunniway08]. To support local emergence, game
designers need to focus on designing coherent rules for the world and give players tools
that operate on those principles (fire that injures, a field that burns, and a match).

Fighting

Combat is no stranger to video games. It used to be the primary mechanic in most
games, but this has changed gradually over time, especially with the rise of online
casual games. Even further, sites that cater to more traditional gamer audiences and
sensibilities, like Kongregate, feature more and more games with new mechanics.

Fighting can be roughly classified by type: melee, ranged, and mounted. Melee is
hand-to-hand combat with fists or hand-wielded weapons like swords and spears.
Ranged combat involves weapons that shoot things over some distance and is often
categorized as short, medium, and long. The distances involved with each range are
unique for each game, but the general reason for the classification is one of balance.
Mounted is being on top of another unit, like a horse or such, which often gives a
combat advantage over unmounted units. Combat units frequently balance different
attributes like speed and range to offer players a variety of ways to do the same thing:
kill, kill, and kill.

Inventories and Collections

Inventories are a frequent consideration, coming up whenever a game allows players
to hold something for later use. Inventories can be abstract interfaces (“things you
have”) without much more explanation. They can also be deeply integrated into the
game universe. At one end of the spectrum, you have a single power-up in Mario Kart;
at the other end, you have an elaborate network of hangars distributed through the
galaxy in EVE Online.

2.1 Game Design 91



Just remember that, any time you are considering players owning something, you
will need to also design a good and useful way for those things to be managed. By
their nature, inventories—storing things where they cannot be seen at all times—will
add complexity to your game. You should be asking questions to determine whether
or not that complexity will add any value to the game.

How large will the inventory need to be? Can it be smaller?
How will objects be stored? Removed?
How will they be retrieved? Used?
Will they need to be organized? Sorted?

The difference between a collection and an inventory is really one of intent.
When all of the items can be gathered but not used, you are usually dealing with a 
collection. Collections are much simpler to design because the interface considerations
are small. The collection may need to be viewed, but usually the elements in the col-
lection don’t need to be moved around or managed.

Collection has become one of the most popular mechanics across all games and
demographics. Collection mechanics can even provide motivation for players to continue
playing after the main game progression has been completed (as in Lego Star Wars).

Rewards (and Punishment)

I became a game designer to create joy.
—Anonymous

The mechanics you design should be rewarding in their own right; it should be
fun to play. But outcomes need to produce an emotional component to be of signifi-
cance to the players; they should fall somewhere between coveted and unwanted. This
relative value is the meaning behind reward and (to a much lesser extent) punishment,
and both share two approaches to one primary purpose. The purpose, of course, is to
attach the players to your game; get them interested and keep them there. This is
approached by informing the players and by encouraging them.

First, we know that successes are most meaningful when the player feels in control.
But control comes from feeling informed, from understanding what is good and valu-
able and what is not. Reward and punishment forms a language that game designers
use to communicate and teach the players the relative values of rights and wrongs in
the game’s universe.

The more important the choice, the better the reward should be. If there are mul-
tiple ways or degrees of success, consider variable rewards that show it. In one mode of
the racing game Midnight Club: Los Angeles, players deliver cars, with the payment
contingent on the condition of the car. The message is clear: “It really is better if you
don’t run into everything.”

92 Part 2 Game Design



Punishments can be an instructive tool, but be very careful in using them. Chances
are very good that players will already understand that they have failed without needing
to be reminded. However, careful use of punishment can intensify the player’s excitement
and pressure later in the game, which will result in more satisfying moments of relief. (If
a few early deaths teach players the painful consequence of running from cover into the
open, they will learn to sidle up to protection whenever they can.) When your game
focuses on the experiences of mastery, punishment is a useful tool for increasing risk.

The second approach to using rewards is more general than the first; here, we
simply want to offer players enjoyment. We want people to like themselves and our
games. Players are our friends, and we should keep their feelings in mind. Encourage
them when they are beginning, praising them to keep confidence and spirits up, espe-
cially when they might be struggling to learn. The player’s offer to you is his time, so
your game’s offer should be to reward that time in a delicious assortment of rewards.

As players progress, keep them going with reward loops (gameplay loops) of tasks
and rewards; they do something, they get something. These are rewards that are fore-
cast, and the player has a good idea what to expect ahead. Each loop forms a cycle,
which, according to industry research, is best kept under 15 minutes [Dunniway08].
Through these sequences come the game’s rhythm and tempo.

Offer valuable rewards for valuable achievement.
Keep rewards coming in cycles averaging less than 15 minutes.
Use rewards to establish and emphasize the game’s rhythm.
Allow players to chain rewards together, increasing the value.
Create rewards for each experience you want to support.
Use collections of small rewards that lead to huge rewards.

Jay Minn calls the reward loops the “potato chip loop.” The game serves potato
chips to players periodically, encouraging progress. The chip might be a reward for
completing a stage, collecting an object, or some interesting feat. The chip may be
bigger or smaller, but the most important thing is the rhythm between one chip and
the next. Too few, and the player gets hungry, looking for something else to eat. Too
many, and the player gets full and wants to take a break. The potato chip loop doesn’t
try to establish formal accounts; it’s just an easily understood, communicated, and
remembered device.

Puzzles

Puzzles are problems. There is, in game industries and studies, debate about whether
or not puzzles are games (one gets the feeling there is not a lot of serious work to do).
Certainly, puzzles are an essential part of many games, enough that a whole genre of
games exists that uses little else but puzzles. One delightful game, Professor Layton and
the Curious Village has even wrapped an adventure around solving a wide, huge collec-
tion of puzzles that aren’t (gasp!) even themed in Layton’s world! The people of the 
village just like puzzles.

2.1 Game Design 93



Puzzles have a solution, a right answer [Kim09]. It is this aspect, more than any
other, which makes puzzles a challenge to solve and a challenge to design. The diffi-
culty of a particular style of puzzle is dependent upon the skills and knowledge of the
puzzle solver. A clear understanding of your target audience can help, but that “most
people get it” is not much comfort to the poor sucker left out.

Think of puzzle design like game design. You want to offer your players both
challenge and control. Help them to understand the goal, that it is solvable, and how
they might go about finding that solution. They should be guessing at the answer
rather than the point! 

A puzzle that displays progress encourages players to keep working at it. Whenever
you see a player sitting still, staring into her screen, you are looking at a mounting risk
of frustration. It’s better to have distinct failure states and let the player try again
immediately. Perhaps your puzzle can, through this trial and error, reveal something
about its solution. 

The early years of adventure games should serve as an object lesson: any puzzle that
is mandatory to the game’s main progression needs to be treated with the utmost care. 

Expect that players will get stuck, and plan to offer hints or allow them to bypass
challenging puzzles. You may also want to have a method of simply offering the
answer. As Jesse Schell notes, the “Aha!” doesn’t come from finding the answer, it
comes from seeing it. Finding the answer just adds fiero to fire. Victory!

Information

Players set goals and intentions (make decisions) based on subjective understandings.
They make choices according to what they believe about the game at any given point.
In turn, those beliefs are based on the information they’ve received. Experienced
designers know that information is a resource with many uses and applications. To
put it to work, they need a few answers.

What kind of information is this?
What is the value of this information to players?
What are the benefits of sharing it with them?
What are the benefits of keeping it from them?

Open information is shared freely, while hidden information is kept from one or
more players. Most games have a mixture of the two, with specific designs determin-
ing what is open and what is hidden. So which and when should you use either?
Usually, games have some combination of both, but like most of the wishy-washy
answers you’re getting around here, it depends on what your game needs.

Open information reduces uncertainty but does not necessarily eliminate it. For
games with broad possibility spaces (chess, Go, etc.), the effects can be minimal as
most of their uncertainty results from the spontaneous choice of an unpredictable
opponent with many options. Games with open information typically include chance
and player choice.

94 Part 2 Game Design



For example, in the board game Carcassonne (Figure 2.1.13), players take turns
drawing tiles at random and then aligning them with other tiles already in play. After a
tile is placed, the player may place one of her seven followers on it to earn points. There
are fourteen types of tile, each with a particular layout, and the count of each varies—
some as many as nine, others as few as one. Each time a tile is drawn, it is shown to the
group who are supposed to help find places where it can go. Because the board changes
shape during the game, and because scoring involves careful placement of followers, the
open information contributes to a friendly experience without ruining the uncertainty
of the outcome. There are enough possibilities that hiding information isn’t necessary.

Hidden information builds uncertainty, letting players keep secrets while they
strategize, and it provides opportunities for bluffing and misdirection—a key feature
in many of the most popular card games. It creates opportunity for inference, where
players look at what information is known and imagine likely outcomes, building
anticipation and mystery. Without hidden information, poker would be turned into a
five-card version of war (see Figure 2.1.14). But, again, we see a blending of hidden
and open information in Texas Hold ’Em, which is why it is currently the most pop-
ular poker game in casinos.

2.1 Game Design 95

FIGURE 2.1.13 Carcassonne (courtesy Hans im Glück).

FIGURE 2.1.14 Hidden information is a critical element to particular 
card games like poker and Texas Hold ’Em.



Video games with local multiplayers (playing on the same screen) are limited in
the amount of hidden information they can feature. Sports games like the Madden
series compensate by allowing players to input play calls without explicitly showing
the selected choice on the UI.

Enhancing Uncertainty

When you are working on your game, if you discover that things are too predictable,
resist the immediate temptation of quick fixes like “adding randomness.” Before
adding chaos, look to player performance and strategy first. Hiding a little informa-
tion (for example a fog of war) is often all that you will need to get the excitement
back. A deterministic system can still have plenty of mystery and uncertainty. Just
remember that it is seldom fun for the player if randomness plays a key role in a
player’s success. Random fates tend to frustrate players.

If you do decide to introduce randomness, look for parts of your game systems
where the unsystematic behavior won’t be too obvious or out of place. For example,
you might hide this a bit by using a random outcome in a supporting role; somewhere
in your system that will subtly and quietly affect the overall result.

Choices and Outcomes

Choice—“the act of choosing” [HMCo00]—lies close to the root of how we under-
stand our game experiences. A quote by designer Sid Meier: “A game is a series of
interesting choices”—quickly became one of the earliest and most popular maxims to
be adopted by other designers. It gave direct and succinct articulation to an experi-
ence everyone understood firsthand: satisfying play.

A choice may be known as a question asked of the player. What unit would you
like to build? Which ally will you betray? Which door will you choose? And so on.

Through the course of a game, player choices create imperatives for actions,
which lead to outcomes. Choice really is at the heart, and we can describe the land-
scape of potential choice as a possibility space. This space represents all possible actions
as an area; wide indicates many possible choices; small indicates very few. 

The consequence, or weight, of a choice notes the significance of the outcome.
With greater effect comes greater weight; the more a choice will change the game, the
heavier it is. This weight is one of the most important factors in designing and balanc-
ing choices. Choices that your players must deal with should involve their desire to
achieve their goals. A well-designed choice will often feature both desirable and unde-
sirable effects [Fullerton08]. Insignificant or irrelevant decisions are usually annoying.

In keeping players engaged, you try to enable an experience that oscillates within
an ever-rising balance of challenge and ability or Flow. You will often want the weight
of choice to behave similarly—more significant on average as the game progresses.

One way to make decisions more significant is to keep the available choices
orthogonal—distinctive by nature of quality and property [Smith03]. With a set of

96 Part 2 Game Design



orthogonal choices, the desirable and undesirable effects of each choice are different
from each other. This difference is not just in scale, but also in kind.

Keep It Simpler

Play mechanics are mirrors of the game systems (funhouse mirrors anyway), and
because they are systems themselves, can quickly grow complicated. Keep a watchful
eye over them. Careless complexity causes us to spend more time trying to get
mechanics under control than we ever spent inventing them in the first place. When
in doubt, test, limit, reduce, and scope!

Each option that you offer players comes at a cost. When they make a choice,
they are getting something they want, but it often comes at the cost of other things
that they might have wanted. Studies show that people tend to weigh their satisfaction
with a past decision against the imagined results of the options they passed on.

Provide frequent but restricted choices. Allow players to pick and choose, here
and there. And reward them constantly, and maybe even reassure them that they
made the right decision to play your game.

Actions

I have always thought the actions of men the best interpreters of their thoughts.

—John Locke

When players step out of their pirate freighter, on to the docking platform of a
titanic interstellar trading station, they have taken an action within a game world.
When they move the right thumbstick on their controller to turn the camera, looking
around the platform, they have also taken an action.

Action has two meanings, and they both involve “what the player does.” One
regards the events in the real world, and the other events in the game world. We can
understand actions as primary elements of the mechanics [Cousins04]. These can be
things such as “move forward” or “jump” or “select item,” depending on their context
within the game. 

Normally, designers are focused on the second case: actions happening in the
game world. But you will be encouraged not to forget about the real world. When you
are playtesting, don’t just look at what your users are doing in the game, or what they
are reporting they are feeling. Take your eyes down and watch their bodies. Look at
their fingers as they use the controller or the mouse. Look for actions that you think
might be fatiguing or tedious. Sometimes, they are difficult to see if you are only look-
ing into the screen.

Think carefully about the way that your game will connect with the player phys-
ically. How will they do what they need to? Apply these concerns to the interface
design issues that follow.

2.1 Game Design 97



Goals

Goals (or incentives) are subjective notions directing our actions toward outcomes
[LeDoux02]. A goal is “what the player wants to do.” All games involve goals, even
those few lacking clear high-level objectives (for example, software toys). Goals are the
personal property of players, not designers.

During a game, the player’s goals are usually aligned with game objectives. But
the disconnect between those goals and objectives reminds us that incentives must be
communicated clearly. 

Kobe Bryant Doesn’t Dribble

Imagine your friend is visiting, bringing a new game. It’s a basketball game, even
though he knows it’s not your thing. “You’re a game designer… you’re going to love
this!” he promises and tells you that it’s just like being in the NBA. He arrives, sets up
the game, and hands you a controller. “You’re the Lakers. Get ready to be Kobe!” The
game starts, and the tip is to Bryant. You have the ball, so you move… instantly the
whistle blows. Traveling? “Yeah of course… don’t forget to dribble!” Ten minutes later,
and you are wondering if real basketball players ever injure their thumbs like you
have. You might have to be on injured reserve until it heals.

Few of us know what it is really like to be a professional basketball player on the
court at game time. But we can make a good guess that passing and shooting and
picking up the open teammate are things athletes think about; they’re a little beyond
thinking about bouncing the ball while walking. Dribbling isn’t part of what we imag-
ine the NBA experience to be, and therefore it doesn’t appear as a feature in games
that represent pro ball.

Now imagine you are designing a basketball game of your own. But this time the
setting is a kindergarten with children playing using soft rubber balls and big low
hoops. Your partner shows you a diagram of the controls (see Figure 2.1.15). Do you
shake your head and say, “Kobe Bryant doesn’t dribble?” Or do you think about how
much fun it will be for players to feel like a little kid loping around the playground,
with a giant slapping dribble?

98 Part 2 Game Design

FIGURE 2.1.15 Playtime or playground?



Real World to Game World

When players hold a controller or click a button, they are trying to tell the game that
there is something they want to do. “I want to go here!” “I want to eat that!” For them
to make successful game actions, they will need to execute successful actions in the
real world.

In his 1988 book The Psychology of Everyday Things, Donald Norman introduced
a wide audience to the subject of usability—a field that attempts to improve object
and interface designs, making them easier to use and more effective [Norman88]. In
the book, he shares a seven-stage model of user action, a tool for designers of all kinds
to serve as a checklist for preventing and troubleshooting situations where players
who are running into trouble perform actions in the real world to perform actions in
the game world. 

Figure 2.1.16 shows the psychology of performing a task.

The player imagines a goal—an attractive possibility—“I would like that.”
An intention to reach the goal is formed—“I am going to do this…”
A sequence of actions are planned—“I need to do this, then this, and this…”
The player executes that sequence—“Move forward, pick up object…”
The player perceives the outcome—“What’s this I see?”
Perceptions are interpreted—“Hey it’s a thing!”
Outcome is evaluated—“No, that’s not what I want.”

2.1 Game Design 99

FIGURE 2.1.16 The seven stages of action [Norman88].



The player forms a goal in his mind. Goals don’t have to be grand noticeable
things, just something wanted. During the execution phase, the goal is transformed
into an intention to act; the player has decided to go for the goal. These intentions are
put into an action sequence where the necessary steps are planned out, in the order that
the actions will be performed. The execution is the actual act of putting the body into
motion, manipulating the controller. (“I want to turn left.” “OK, here it goes.”)

At this point, the action has been “done.” The player is now waiting for the 
system to respond to the action. Keep in mind, this whole sequence can happen in a
moment. The player may not have had a conscious thought this whole time.

Presuming that the system did do something, the player would perceive the result,
noticing its existence. Then the perception is interpreted or recognized. Finally, the
player can evaluate the result against the initial goal.

There is a remarkable amount of time spent fantasizing as a method of under-
standing the player’s viewpoint, choices, and strategies. Designers imagine playing the
game and visualizing the behaviors of game systems. These imaginary agents move
through game spaces, accepting challenges or pursuing mysteries, engaging activities
and reacting to them. These thought experiments are a cheap and quick way to test
ideas. “What would I do?”

The limit to these exercises, of course, is that the player is not you. She will not
understand the game as you do because she has never seen inside the game systems.
Player strategies must rely on their unique but imperfect understanding of the game.
While working, don’t be afraid to return to a very basic question: “Why would the
player know this?”

Interface

The interface is a network of components allowing the player to interact with the game
—a communication system spanning the physical gaps between both ends of our
model. Every unit of information that the game will need to convey comes through
this system and every action the player intends will need to be directed through this
system. While a game cannot be made great through its interface alone, as the visible
and audible expression of a game, a bad interface can be more than enough to dis-
courage players before even laying a hand on it.

Let’s step through the interface network shown in Figure 2.1.17. We can begin
almost anywhere, but let’s start with the physical interface, the display. A graphical
element displays some information. The player sees and interprets the meaning. (His
meter is nearly full.) The player creates a goal and an intention, sequences his actions,
and executes by pressing a button on the controls. This becomes a message sent to the
game, which is processed according to the operational rules of the system. Game
states are changing and the results update on the virtual interface. A new signal is 
produced and sent to the physical interface, which updates the graphical element.
This is the continual exchange between the player and the game through the interface. 

100 Part 2 Game Design



Controls

Simplicity, simplicity, simplicity!

—Henry D. Thoreau

Controls are the systems of input that convert physical signals from the player (touch,
sound, etc.) and convert that information to digital signals that the game system can
properly interpret. These are things like keyboards and mice, console controllers,
touch screens, and everything right down to a pair of Samba de Amigo maracas (Ole!).

The task for a game designer is to take these physical objects and map game
actions to it (Figure 2.1.18). More specifically, you will need to consider the entire
loop of interaction and map the player’s intentions to execute game actions through
real-world actions using the controls. 

2.1 Game Design 101

FIGURE 2.1.17 Connecting the player to the game in a loop.

FIGURE 2.1.18 Two thumbs, four placements.



The ability for players to express themselves, to do what they want, must be 
balanced against the intuitiveness of the control design. The more things there are to
do in your game, the more work you will need to devote to designing controls. Don’t
simply look at the buttons and sticks you have available and fill them up. Try to care-
fully build clear, understandable mappings between actions and controls. You should
only change mappings when some significant event has taken place in the game, such
as entering or exiting a car in Grand Theft Auto IV.

Most game types have standardized control schemes that are accepted as the norm.
If you are designing a game that will appear similar to something well known and
established, start there. Don’t fear addressing the individual needs of your game with
a unique control method, but be considerate of those players who will expect things
to work in a standard way.

It’s rare, but you could have an innovation in controls that will set your game
apart. For example, boxing games had a standard control for throwing a punch set in
1984 with the Punch-Out! arcade game: press a button. For 20 years, every boxing
game followed suit. Then, Fight Night 2004 introduced something truly new (see Figure
2.1.19) to give players a better feel for throwing punches. Rather than just mapping a
punch to a button press, they mapped it to the right stick and in that change created
a visceral experience: boxing with fists thrown in jabs, hooks, and uppercuts.

Feedback

By and by is easily said.

—William Shakespeare, Hamlet

While ultimately of the same stuff, helping the player to understand, let’s discuss
feedback from the perspective of controls and game system separately.

102 Part 2 Game Design

FIGURE 2.1.19 Analog punching à la Fight Night 2004.



Control feedback is the information the player gets about controls and the things
that she is trying to do with them. When an action is committed, feedback informs
the player of the result or (just as importantly) the non-result.

A simple example of feedback’s proper role in an interface is the mouse and
pointer system used in nearly every graphical operating system (Mac, Windows, etc.).
As the user moves the mouse, the pointer moves. Up, right, diagonally, fast, slow, or
whatever, the cursor is mapped directly and immediately to the mouse. Every move-
ment provides feedback, and while clicking is a little tougher to get, it doesn’t take
new users very long to understand how moving the mouse is supposed to work. It is
such a powerful system of feedback, and one of the ways we test to see if our computer
is responsive or has crashed is to shake the mouse and see if something happens.

Your game is the ultimate boss and gatekeeper. When a player performs an action,
there are two aspects to the request. The player executes a command and implicitly
asks for an acknowledgment, such as: “I want to do this. Is this OK?” The player
wants to know if she has been heard and if she is allowed. The interface should
respond in one of two ways: “Your command has been executed,” or “You may not
execute that command.” 

When player input is received, the system will either accept it or reject it. If this is
in a menu or other GUI device, a response should be made immediately. Most of the
time these responses are so subtle we fail to recognize them, like the brief blink of a
button with a warm click. But when this feedback is missing, we notice the uncer-
tainty, disagreement, and low standards. Poor feedback can make games feel “cheap.”

Action games need to be responsive. Spend some time reading reviews, and you
will notice that nobody enjoys issuing a command that isn’t executed with urgency.
Any delay in response greater than a tenth of a second risks confusing the player and
making him wonder what is wrong [Schell08].

Game feedback is the information given to the player about the state of the game
systems and their place in it. This is where your needs and designs for hidden and
open information matter. If you’ve already worked through the issues concerning
open and hidden information, you’re ready to use that knowledge.

Ask the following questions about your game state information:

What should the player never know?
What should the player always know?
What should the player sometimes know?
When should he know it?
How should he know it?
Will he need to be alerted or reminded?

For example, a strategy game might keep the positions of the enemy a mystery
until (…sometimes…) contact between friendly and hostile units has been made
(When…). The enemy positions show up in the main view and on the map (How…).
The player receives a message when there is fighting between units (…alerted…).

2.1 Game Design 103



Constraints and Context Sensitivity

Constraints are limits on actions. While it may sound counter-intuitive, by limiting
the things that a player can do, at any one time, you are helping make the player’s
goals clearer. Too many available choices lead to confusion.

Context-sensitive controls allow players to do specific actions in specific circum-
stances. Most of today’s 3D action-adventure games place players into rich interactive
worlds where context-sensitive controls are required to manage the number of differ-
ent interactions. This is done by relating the player’s current position and state (in 
flying mode, on offense, etc.) to the appropriate actions.

Viewpoint

Game worlds are viewed on flat displays, like movies, and the camera is a metaphor
for our view. The virtual position and orientation of that camera is the viewpoint or
presentation.

Orthogonal Views
Orthogonal presentations place the camera perpendicular to the playing field, either in
a top-down or side-view arrangement (see Figure 2.1.20). These were standard views
for arcade games for almost two decades. With the massive popularity of 3D engines,
these views had often fallen into secondary, supporting roles, like maps. But, in recent
years, with the proliferation of short-session games online, orthogonal views have
been making a comeback. Bellwether titles like Desktop Tower Defense (Flash) and
Geometry Wars (XBLA) have inspired a new wave of games that have returned to clas-
sic orthogonal presentations.

First and Third Person
First-person presentation hardly needs an introduction these days. An unequalled tool
for many experiences, it still has some limitations. Seeing and hearing are not the only
senses we have. One that is easy to forget is proprioception—feeling our body position
—it is how we know what we are doing at any moment in the real world. It is the

104 Part 2 Game Design

FIGURE 2.1.20 The virtual camera in overhead and side orthogonal views.



combination of this sense, with our others, that puts our real-world selves into some-
thing closer to third person than you might think. We are used to sensing what we
“look” like through proprioception.

With invisible bodies, so many actions and interactions with the environment are
unsatisfying—melee, using furniture, and so on. Even navigation is not trouble free.
Players are easily stuck against things in the game world outside of view (a constant
consideration for level designers).

The second problem is that, because the main character can’t be seen in first person,
players can’t build real empathy for them; players forget about the character quickly
and place themselves in the game instead. So if your game demands that players really
feel like someone else, it will be a hard sell.

But, if your goal is to stick the player to the game world, first-person presentation
is almost unparalleled. The position is not only at the level of the avatar’s eyes, but the
center of the screen works well as a natural aiming point.

Third-person perspectives place the camera outside of the body, presenting the
avatar to the player more clearly. It becomes easier for players to identify, empathize,
and understand the character because they can see it; it isn’t just a mask they have on.
But the challenge with third-person presentations always involves getting the camera
and movement systems to work well.

Graphical Interface

Graphical user interfaces (GUIs) convey information to the player in any number of
various abstractions. Get in the habit of listing information that the player might
need to know. You can start with the information you were considering hiding or
revealing. Go ahead and err on the side of listing too much. Then review your lists
and prioritize the items in order of importance. Do the same thing for menu opera-
tions. Create lists or mind maps, as shown in Figure 2.1.21. 

2.1 Game Design 105

FIGURE 2.1.21 A mind map for a menu system.



Once you have determined what the GUI needs to do, use sketches to organize
those ideas into an arrangement. Think about how the player would interact with all
these elements.

Take these notes and work with an interface artist/designer and try to turn simple
implementations into prototypes. This stage can be difficult if you’ve created elabo-
rate ideas about the way the GUI must work. There are a limited number of ways for
people to interact with most GUI configurations and UI designers have often worked
through many of them.

As your prototypes and work begin to get more refined, the GUI is taking shape.
Make sure to fit the controls into the game’s theme and setting (as shown in Figure
2.1.22). Anything that a player will have to see or use should always support the over-
all experience, even if it’s just a button.

Audio Effects

From environment to interface, games present visible and audible experiences.
Recorded effects and voices bring games to life. But it is easy to overlook the impor-
tance of strong audio cues in your interface. Audio is that underappreciated tool that
gets players through menus and options with a minimum of confusion or need for
a manual.

Beeps, pops, clicks, and other abstractions communicate to users when their con-
trols have made an appropriate choice such as a selection, or an inappropriate one,
like trying to use a deactivated button.

Your interface should offer a small vocabulary of audio effects, standardized
sounds for things like selections, advancing (start), return (back), and errors in input
as well as warnings and confirmations.

As a general rule of thumb, if an element of the interface (button, slider, window)
produces a visible reaction to player input (pressing, closing), there should be an
accompanying sound effect to reinforce the action.

106 Part 2 Game Design

FIGURE 2.1.22 Embody theme and function.



Designers will often be responsible for creating a sound event list that maps indi-
vidual sounds to various game or interface events. Figure 2.1.23 shows a hypothetical
event map, where different scoring events trigger progressively “bigger” sound
rewards, reinforcing the player’s successes.

It should be noted that there are diminishing returns to adding new sounds once
a critical mass has been reached. Sounds are just like any other language, and there
comes a point where having more words won’t help your communication. 

Game Systems

Joy is not in things, it is in us.   
—Richard Wagner

Systems are organizations of related elements that work together to produce a result. 
All systems can be described in three aspects:

Elements (objects)—multiple parts form a system.
Interconnections (relationships)—the elements influence each other.
Function (purpose)—what the system does.

Systems are composed of elements. There are no real limits to what an element
can be—large, small, simple, complex, physical, mental, etc. System elements are
often other systems too.

Figure 2.1.24 shows a ring, a line, and a weight. In this arrangement, these are
objects and the objects are collected together, but they do not represent a system.
Being close together doesn’t count; the objects need to be connected. Elements must
have relationships to each other so that they can create behaviors. Until they operate
together to do something as a whole, we are not looking at a system.

2.1 Game Design 107

FIGURE 2.1.23 Sound event list.



In Figure 2.1.25, we create the first relationship by attaching the ring to the line.
This creates an interconnection by physically attaching the two elements; pull one part
and the other will follow. With just that step, a simple system that could lift or pull is
created. Attach a weight to the free end of the line, and the weight can be lifted by
pulling on the ring. (Or the weight, with the line and ring, can become part of another
system for crushing or smashing.) But this system isn’t satisfying yet; the weight can’t
be lifted very high, and it takes 100 units of force to lift 100 units of weight.

The height of the lift can be improved if we add another system as an element in
our system. A pulley changes the direction of applied force and now the weight can be
lifted above the operator (Figure 2.1.26). To reduce the force needed to operate, we
add an anchor and another pulley and the behavior of the system changes again.

If we keep adding objects, behavior continues to change. But there are two reasons
to be careful when adding complexity to a system. First, continuing to add elements
seldom keeps improving the ability of the system to achieve the same goal. Second, the
more things that are in a system, the harder it is to predict the actual behavior.

Note that function and purpose both refer to what the system actually does rather
than what it is “supposed” to do; the designer’s intent is something else entirely.

108 Part 2 Game Design

FIGURE 2.1.24 Three unrelated elements.

FIGURE 2.1.25 Interconnected elements arranged in a simple system.



System designs usually begin at a high level, starting with the intended play
mechanic. Each step along the way, things are broken down into more specific details,
refining your questions and answers. When at all possible, build your systems as pro-
totypes and test them frequently with anybody you can find. 

Dynamics of Systems

Game dynamics result from continued interactions between the players and the game
system. Because the behavior of a system is dependent on its unique structure, it can
be hard to determine just how it will operate. As systems get larger, involving more
elements, this challenge can become immense.

One tool is known as systems thinking and was begun in 1956 at MIT by Dr. Jay
Forrester to study how systems change over time. Systems thinking is a model for
understanding general behaviors we can find in systems. For the game designer, it can
explain why some parts of our game that are supposed to do one thing are, instead,
doing something else. 

System dynamics describe everything in two aspects (Figure 2.1.27). Stocks (levels)
are a stored amount of something—gold, enemies, etc. Flows (rates) are changes in the
level of that amount; inflows are increases, and outflows are decreases. Game designers
will often call these “faucets” and “drains.” (The clouds on either end of a model 
indicate that where the stuff comes from is unimportant to the model.) Arrows show
the direction of the flow, into or away from the stock. The handles over inflow and
outflow indicate where the rates of change are controlled. 

2.1 Game Design 109

FIGURE 2.1.26 Adding elements doesn’t always have the same effect.

FIGURE 2.1.27 Stocks and flows.



Figure 2.1.28 shows the same basic model as it might be applied in game design.
The character has a health that is lowered by damage and raised by healing.

But not everything needs to have both inflows and outflows. The two models in
Figure 2.1.29 show systems that only fill or drain. Sometimes you have a drain with-
out any faucets; it just depends on what you want the system to do.

Game systems often have multiple inflows and outflows to a given stock (Figure
2.1.30). When you don’t need to show connections to other systems, generalize the
increases and decreases with single flows and show what influences those rates.

Stock and flow diagrams are fine for sketching structure, but we also need a way
to view behavior over time. For this, basic graphs are fine; they’re easy to read and
make. Let’s go back to the silver mine we first saw in Figure 2.1.29 and see what hap-
pens if our player assigns a worker to mine silver at a rate of 400 units per minute
(Figure 2.1.31). The mine starts with 8,000 units, and the worker keeps at it for 20
minutes when the last unit is taken. 

110 Part 2 Game Design

FIGURE 2.1.28 A basic combat system.

FIGURE 2.1.29 Earning points and mining a limited resource.

FIGURE 2.1.30 Multiple inflows and outflows.



Feedback Loops

The systems we have been looking at have all been static. While stocks have risen or
fallen, it has all happened at a constant rate. Game systems don’t get really exciting
until they start changing. If every fight was just a slow slog to the death, even the vio-
lence wouldn’t help. So we need to put a hand or two onto those valves to get things
really changing.

Feedback is what happens when changes in a stock alter the rate of the flow in or
out of the same stock [Meadows08]. Feedback is part of a tool for controlling system
behavior; the name of that tool is called a feedback loop (see Figure 2.1.32). The arrow
point from the stock to the controller of the flow.

There are two basic types (Figure 2.1.33): balancing loops (negative feedback)
try to keep the stock at a certain level; reinforcing loops (positive feedback) produce
more change in the same direction, either an increase or decrease. (“Balancing” and 
“reinforcing” are easier to understand than “negative” and “positive” feedback because
negative feedback is usually desirable and positive feedback will usually break a game.
Not a particularly positive effect.)

Figure 2.1.34 shows the balancing loops in a “rubber banding” system. To keep a
racing game exciting, the designers want the racers to stay closer together (a typical
trick). So balancing feedback loops—the Bs—slow a car that gets too far ahead and
speed up a car that is lagging behind. Balancing loops try to move a stock toward a goal.

2.1 Game Design 111

FIGURE 2.1.31 Mining silver over time.

FIGURE 2.1.32 Feedback loops diagrammed.



Reinforcing loops, on the other hand, cause runaway behavior and havoc. Look
at the imaginary MMORPG character level system in Figure 2.1.35. As the player
defeats enemies, she increases her level, which improves her ability to defeat enemies.
The R shows the reinforcing loop that related her current level with the rate of com-
bat victories. On the right, you see how the situation would get rapidly out of hand.

112 Part 2 Game Design

FIGURE 2.1.33 Comparing reinforcing and balancing feedback.

FIGURE 2.1.34 Balancing feedback in a racing game for a car.

FIGURE 2.1.35 Leveling system run amok.



Like with many MMORPGs, we want the players of our fictional game to
advance quickly at first, and then have to progress through levels slowly as they near
the endgame. Our system in Figure 2.1.35 needed to be clamped down, and Figure
2.1.36 shows this clamping. First, the new figure added a progressive experience
requirement for each new level; players need more and more XP for each subsequent
level. Then, just to be sure, we added a modifier to the experience earned for defeat-
ing monsters to prevent players from simply lighting anthills on fire.

LeBlanc has generalized some of the feedback behaviors as they relate to games
[LeBlanc99]:

Balancing loops stabilize the game.
Reinforcing loops destabilize the game.
Balancing loops forgive the loser.
Reinforcing loops reward the winner.
Balancing loops can prolong the game.
Reinforcing loops can end the game.
Reinforcing loops magnify early successes.
Balancing loops magnify late successes.

Simulation versus Emulation

Games are models. They are interactive representations of something like driving, city
planning, war, baseball, etc. Like any model, we make choices about what to include
and what to ignore—we abstract. In designing game systems, you will not only
choose what things to represent but how to represent those things. These choices form
a large part of the art and work of game system design.

Simulation is modeling with an emphasis on imitating structure first and behav-
ior second. Emulation is modeling with an emphasis on approximating the behavior

2.1 Game Design 113

FIGURE 2.1.36 A normal approach to leveling.



and without real regard to the structure of the thing being modeled. Simulation is a
model of systems, where the behavior is a result of the model system; emulation sim-
ply models the behavior.

Simulations model systems by also modeling the elements of that system. For
example, in complex flight simulators like X-Plane, a plane flies because the simulator
calculates the effects of air flowing over its wing. If the shape and the size of the wing
are not right, the plane would not get off the ground. In emulation, the plane would
fly because it would be assigned a behavior: “planes fly.” There would be no deeper
system, it would just be so.

Emulation is a tool for abstraction and all games use it, even the most hardcore
simulator. A racing game may simulate much of a car’s engine—the mixture of fuel,
the efficiency of the exhaust system, but there comes a time when emulation steps in.
For example, the internal engine operation (pistons and valves) would be emulated.

Simulation tends to be more expensive because it requires more calculation than
emulation. So you will choose when and when not to use it based upon the need.
Generally, all else being equal, emulation is usually the correct choice. Even when all else
isn’t equal, emulation usually has the upper hand. Simulation is more fragile and harder
to tune. When an emulated behavior is broken, you can just change the behavior;
simulations require looking at structure and properties and looking at causes of behavior.

Simulation is very effective at making more natural-seeming behaviors and can
make complex systems easier to design and manage because rules are defined generally
for the world. When agents in the world behave according to these rules, it can often
feel natural and immersive. The entire Sims franchise has been built based on the sat-
isfying behaviors resulting from simulation.

Nevertheless, most game systems are emulations. Not only is it usually easier to
design behavior but also to play with.

Variable Difficulty

Challenge can be difficult to gauge, as you will find once you begin any real playtest-
ing. Even if the designer follows all of the rules and gets all of the feedback and
processes in all of the right ways, she still can’t hope to make a game that fits everyone’s
tastes and abilities. But it is less tragic to us that our game might not be the right kind
of game for a player than if someone failed to enjoy it because they were frustrated.

Offering players the ability to adjust the overall difficulty can help lessen the 
burden and allow them to enjoy the game more fully.

Some factors that can be adjusted:

Adjust time—speed or slow game times.
Opponent populations—adjust the number/rate of enemies.
Opponent characteristics—slow, weaken, or limit the AI.
Augment resource income—increase the rate and volume.
Power-up distribution—populations, rates, and value.

114 Part 2 Game Design



Dynamic difficulty is a procedural approach where game systems will monitor
player performance, attempting to regulate challenges closer to their current abilities.
The earlier example of rubber banding in racing games is a classic example of a simple
dynamic difficulty system.

If balance and challenge are important for your game and you believe that variable
difficulty is called for, make a list of the elements that contribute to the game’s challenge.
Because you want the player experience to still hold a feeling of tension (otherwise this
system is probably more expensive than simply tuning your game to be easier), try look-
ing for elements that are the least visible yet still offer enough leverage to be effective.
Prioritize the tunable features and begin creating your difficulty templates.

Contrary to what you might expect, playtesting and tuning times usually increase
with variable difficulty systems. You will want to tune each level relative to the others,
and you will want testers who represent likely players of those difficulties.

Probability

Probability is a mathematical tool for understanding the unpredictable; it describes
the likeliness that a given outcome may occur during a random test. This is one of the
main engines behind countless game systems. Any game where cards are shuffled or
dice rolled have relied on probability. It is one of the key areas of mathematics that
designers need to become familiar with.

Basic probability is easy to grasp, but for now, we will just get your feet wet. 
Calculating a simple probability is straightforward:

1. Count all of the outcomes that are possible.
2. Count the outcomes you are interested in.
3. Divide the number you are interested in by the number possible.

Equation 2.1.1 shows the basic formula.

(2.1.1)

When we write a probability, we use a number from 0 to 1; zero represents
“impossible” and 1 is “certain.” Just remember that fractions and decimals and per-
cents are all the same; they are all numbers. So 3⁄4 is the same as 3 ÷ 4; which is the
same as 0.75; which is the same as 75 percent. After going through some of these
examples, we will explain why using 0 to 1 is useful for probability and video games.

Figure 2.1.37 shows two simple probabilities, the first looking for the chance—
the probability—of rolling a 4 on a six-sided die. With six possible outcomes and one
of interest to us, we calculate our chances to be one in six. You knew that already. To
get the decimal number, you just divide 1 by 6 (1/6) which gives us 0.1667—just
about 17 percent.

2.1 Game Design 115

probability(A) �
outcomes being looked for

total possible outcomes



The second example is almost the same as the first with the exception of the event
we are interested in: rolling a 4 or a 6. There are still six possible outcomes, but now
we are looking for two numbers (4 or 6) rather than just one. Since these are mutually
exclusive events—you can only have either a 4 or a 6, not both—we can just add the
two probabilities.

Things get a little trickier when you start rolling more than one die (Figure
2.1.38). So you know that any one number on any one roll has a chance of 1 in 6; in
decimal it’s 0.1667. But each time you want to add a die roll to that experiment and
look for another number, you multiply the two probabilities. Rolling a six has a
chance of 1 in 6, which you then multiply by the chance of rolling another six and
arrive at 0.0278, or just under 3 percent. (Rolling a 12 or a 2 are the rarest outcomes
using two dice.) As long as you keep adding rolls and looking for one outcome each
time, you keep multiplying. For example, rolling four times and getting (1, 2, 3, 4) in
a row would be 1/6×1/6×1/6×1/6 or 0.000077; in other words, pretty unlikely.

The second problem in Figure 2.1.38 considers the result of rolling two dice and
looking for a total value, in this case: 4. Just remember that each roll is an individual
test and the order of events matters. So rolling a 1 and a 3 is not the same as getting 
3 and a 1. You will need to include probabilities for (1,3) and (3,1) as well as (2,2).
Once you have worked out all of the possible combinations (in this case three), you
then add the probabilities together just like in the second example in Figure 2.1.37.

116 Part 2 Game Design

FIGURE 2.1.37 A basic probabilistic problem.

FIGURE 2.1.38 What are the chances?



Rolling a 4 with two dice has around an 8 percent chance, while rolling 12 is less
than three percent; this makes sense when you consider that there are three ways to
roll a 4 and only one way to roll a 12. Figure 2.1.39 shows how die rolls stack up.
Consider the six ways to roll a 7: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). Looking at
Equation 2.1.2, you can see that it is no more difficult than any simple probability
once you know how many events you are dealing with.

(2.1.2)

Our last diagram on probabilities (Figure 2.1.40) illustrates a different problem.
Here we are looking for kings or clubs. Of course, there is a king of clubs, and we
don’t want to count him twice. So you take the first set, kings, and calculate the prob-
ability (4/52). Do the same for clubs (13/52). You know, from Figure 2.1.37, that
looking for more than one outcome increases your chances—you’re open to more
results—so you will add the two probabilities. But you need to make sure you’re not
adding in a given outcome more than once. So you need to remove the king of clubs
from your calculation as in Equation 2.1.3.

(2.1.3)

Why is it useful to express probability as a decimal value between 0 and 1? The
reason that decimals are preferred over fractions: they are easy to work with. Even com-
mon fractions like 2⁄3 and 5⁄8 aren’t as simple to evaluate as 0.667 and 0.625; math with
decimals is painless, too. If you feel more comfortable talking in percentages, feel free.
In the long run, however, being comfortable expressing probabilities in decimals will pay
off, especially if you work on systems with lots of potential outcomes (e.g., RPGs).

2.1 Game Design 117

FIGURE 2.1.39 The probabilities with rolling two dice.

probability(7) �
6

36

p(king or club) �
all kings

52 cards
�

all clubs

52 cards
�

king of clubs

52 cards
� � 0.3077



Save/Load Systems

Saving is the process of recording the current state of the game, and loading reinitial-
izes the game according to the state in which it was saved. There are many ways save
systems can function, and each game has particular needs that should help decide
which scheme is most appropriate.

There are three primary ways players utilize a save system: 

Stop play and return later without losing progress.
Protect current progress from future failure.
Branch their progression to explore alternative choices.

It comes as a surprise to learn that players have lives in the “real world” with 
biological and social demands that call people away from their games. A save system is
a mechanism that allows the player to retire from the game, knowing that progress
will be secure and waiting for her when she returns.

Save systems are also useful for games that feature challenging and risky mechanics.
Players can be comforted by knowing that, if they fail, all will not be lost, and they
can continue to enjoy their game.

When the player comes to a moment of decision, it can often be difficult to
choose which way to go. Players may use a save system to buy themselves some leeway.
(I’ll try this out, and if I don’t like it, I’ll go back.) Or they may be intent on seeing
everything that the game has to offer, so they would like to return to the decision
point just to experience the alternative.

Some different save systems:

Limited—finite number or special locations.
Checkpoint—system automatically saves at key environmental points.
Unlimited—users may save anywhere in the game.

118 Part 2 Game Design

FIGURE 2.1.40 What are the chances?



Autosave—saves happen periodically or after key events.
Profile—autosave system tied to the player identity/profile.

If you are working within memory constraints or it fits the aesthetics of your
game (risk, challenge, etc.), you may consider limiting saves. One approach limits
saves by requiring players to use special locations or limiting the overall number that
the player can access during a given unit of content (level).

Checkpoint saves offer players a system where they do not have to worry about
safeguarding their progress. Usually, checkpoints are placed between challenges or
automatically during transitions from one area to another. Plan for situations where
checkpoints might catch the player in a weak moment. For example, set minimums
for important attributes so that players will not find their game has saved just at the
moment before failure.

Save anywhere systems are powerful, and players often prefer to save where and
when they want. Unfortunately, there are two downsides: 1) they can be used to cir-
cumvent designed challenges, making the game easier; 2) they require more work for
the player to maintain.

Autosave systems provide some of the benefits of checkpoints, while retaining
some of the flexibility of unlimited. Frequently, autosaving is an option that modifies
an unlimited save system. Players have the option of turning the autosave off if they
would rather manage their own saves.

Most games in the casual industry use profile-based systems. When the player begins
the game, he is asked to name the profile. This is, effectively, the save slot. At any time,
the player may simply shut down the game, knowing that his progress has been saved.

Resources and Economies

Resources are things that are used in support of some activity (such as manufacturing)
and are drawn from an available supply—they are the factors of production and 
the bases of development. Resources needn’t only be physical things: for example,
entrepreneurship and education are viewed as important resources in capitalist systems.
In games, resources are the things used by players and other agents to reach goals
[Fullerton08].

Resources may exist within the premise of the game or without. Within the
game’s premise, we might expect resources such as materials, people, magic power, 
or health. Outside of the premise, we might consider functional components as
resources, such as save games or lives; these can be provided in limited supply to build
tension, challenge, and provide opportunity for further strategy but without necessar-
ily being understandable within the game’s premise.

To be meaningful, a supply of resources must not only be useful, but also limited
in some way. To limit a resource, we can restrict the total supply to a finite amount or
restrict the rate. We might instead provide special conditions for their use or employ-
ment, or create penalties for their consumption.

2.1 Game Design 119



The relative value of a given resource can be determined by looking at the rela-
tionship between its utility and its scarcity. Expect problems to arise if a resource is
either useless or readily and infinitely available. To consider these issues in the context
of systems, it is helpful to view resources in economies—closed systems of supply, 
distribution, and consumption.

Some typical questions regarding resource economies include:

What resources exist in the game?
How and when will a player use the resources?
How and when are the resources supplied?
What are their limits?

Content

Content is the space of your game and everything that fits inside of it: the combined
total of all areas, elements, and states throughout any moment in time. 

Developers spend the workday making games and to us, no surprise, content
ordinarily means things like levels, models, missions, back-stories, enemies, animations,
textures, dialogue, sound effects, music, particles, characters, and so on. We tend to
think in terms of the things we need to create during the production of a game—stuff
we need to work on.

You will be encouraged to hold a broader and more inclusive view of content. For
example, the range of content might include the following information:

Game spaces—chessboards, The Barrens 
Game objects—a rook
Narratives—back stories
Characters—Mario, Frodo
Scripted events
Models and animations
Sounds and music

A game’s content and its systems are intertwined—two parts of the same whole.
While the game is being played, there is no clear distinction between them. Through
play, the player’s experience results from the synthesis and the quality of execution in
both the content and its systems. A superb combat system could be transformed into
a broken and frustrating mess if the game’s levels are choked with too many enemies.
Beautifully detailed woodland landscapes can be a total bore if the process of collect-
ing what you need from them is tedious.

That the two are not synonymous can be seen in water cooler talk over the influ-
ence of each in the experience of game progression. Someone might describe some-
thing as “system heavy” because the progression focused on the interplay of rules and
behaviors (Civilization); another is “content heavy” for using environments, narratives,

120 Part 2 Game Design



and characters to do the same (Metal Gear Solid, Gears of War). Additionally, developers
tend to say that players “experience” systems while they “consume” content (the greedy
scalawags!).

Theme

Theme is the core idea or message that your game will convey. Theme is not the setting,
mechanics, backstory, characters, graphic art, sound, or any other individual element;
it is produced by, and the result of, everything in the game when considered as a whole. 

Understanding what theme is and how it operates is easier if you understand the
difference between two ways to convey meaning. The first, denotation, is the literal
meaning of something expressed. This is where we operate most of the time, at school
or work or with our friends. Something is said, we listen, and we interpret the mean-
ing more or less literally. You say, “I went to Washington D.C.,” and we accept that as
plain fact.

The second way we get ideas across is by using connotation, where statements are
considered along with links to other meanings. This is where the audience exercises
their interpretive skill, picking up on metaphors and emotions encoded in the state-
ment. You say, “I hadn’t realized there were so many snakes in the capitol,” and we
have something connotative going on—Washington D.C. is “full of snakes.” Clearly,
we think, this is political.

Your game may not have a theme, as you see it, but themes will get in there any-
way. Connotation is part and parcel of arts, and it’s almost entirely unavoidable
because it is produced by inference; the audience is the one connecting things
together in its mind, even if you’re not trying to say anything. Maybe you visited the
National Zoological Park during your trip, and you really had no idea that the
Herpetological department was so big. See? No politics, just snakes.

Premise

All games have a premise that ties together the environment and action [Fullerton08],
relying on a set of rules that the fictional universe will be bound to. The premise can
be formed with just a few words. A fine example comes from the middle of the 1980s,
when a player could sink a quarter into Robotron: 2084 and, with five words, be trans-
ported into a understandable future place: “Save the last human family.”

It is impossible for a game to completely lack a setting, though it may be radically
abstract with nothing for the mind to grasp—completely indescribable as a real place,
but our minds are not so quick to fail us as is our language. Within the first few
moments, a premise is forming in our minds whether the game is providing it for us,
or we have to invent it on our own. We need context to guide our experiences and the
mapping of our actions. The premise is the source of the game’s individual context.

When you are developing a concept, you should be considering the premise from
the outset. Summarize, in a short statement, what the game is all about. For example:

2.1 Game Design 121



“Jenny Briar: Investigator” is a puzzle detective game that challenges you to collect evidence
to solve crimes in 1970s New Orleans.”

The Game Setting

One last point worth making on the subject of premise is regarding its content.
Writers are often taught to distinguish plausibility from possibility. When something is
considered possible, it is capable of happening in the real world: planes may fly, but
muscular men in cape and tights alone cannot. However, in creative writing, you are
free to suggest any kind of truth as long as it is plausible within the rules of the uni-
verse you’ve described in your fiction; there must be an explanation that makes sense 
in the particular context of the environment. As it relates to a player’s map of the
premise, we can view plausibility as the domain (area) of the player’s map. When an
object or situation is implausible, it is beyond the border of what the player can (or is
willing to) map acceptably.

The limits of plausibility are subjective, understanding what audiences will and
will not allow being essential to pushing those boundaries. For example, games that
attempt to blend science fiction and fantasy universes together have to account for the
segment of their audience that cannot accept the two fictional conventions in the
same space. Similarly, it is common for fantasy massively multiplayer online games
(such as Dark Age of Camelot) to have to provide special role-playing (RP) servers for
their customers who find the implausibility of a wizard named “MonsterTruck,” since
it shatters their enjoyment of the game.

Content and Progression

Game systems provide the framework, and content forms the shape of your game.
You could also think of game systems as building codes and standards, defining the
rules and guidelines for construction. But it is the layout and arrangement of the con-
tent that puts the roof over the player’s head. Ultimately, the structure of your content
will reflect the qualities of your game, but keep in mind that it will be the content that
players are actually getting their eyeballs, ears, and hands on.

The good news is that, when it comes time to plan content structure, you will
already have some ideas about how it will look. As a rule of thumb, if you are able to
formulate a description of your game’s core play mechanics, you should be sketching
ideas for the way your content will be structured. Trying to “tie things together”
halfway through a project (or later!) is a desperate situation for everyone and has been
responsible for countless disasters over the years.

While there are good arguments for bottom-up and top-down approaches to cre-
ating mechanics, systems, and content, you are strongly encouraged to structure that
content from the top—the whole game experience—and work in more and more
detailed plans.

122 Part 2 Game Design



So you can begin with big questions like:

What things do the mechanics and systems require of the content?
How does the game’s start relate to its end?
What does a single session (sitting) of play look like?
Will the game need to be divided to support these sessions?
How will units of content be related to each other? To the whole?

Frequently, these questions are easy to answer because the game concept has been
developed with assumptions about the content structure. You will begin to consider
the overall layout of your game spaces and the player’s progression through the course
of the game.

By conceptually sketching the content structure, you can begin experimenting
with different progression layouts. There are a variety of basic arrangement elements
that you will see in various mapping and planning, as shown in Figure 2.1.41.

Level Design

The most common way for games to divide their content is into stages, rounds, and
levels. They are all names for the same thing: an arbitrary unit of content or progress.
The size and form of a level varies greatly from game to game, but they ordinarily
include distinctive spatial or temporal elements: levels each form a unique setting.
Within a game, levels are known by similarities and differentiated by unique elements. 

For example, Peggle levels each have unique background art and placement of
pegs, blocks, and obstacles. In Halo, a level is an arrangement of space and geometry,
game objects, and scripted narrative events. In BookWorm, levels are sets of letter tiles
where the distribution of common to uncommon letters changes over time to increase
the difficulty.

Some typical questions you may ask about levels:

What is the structure of the game’s content? How do levels support this?
How will levels be distinct from one another?

2.1 Game Design 123

FIGURE 2.1.41 Basic elements of content arrangement.



What will the player do to transition between levels?
What elements are required in every level?
What kinds of features can be unique to a level?

During production, level designers are touching the ground at every moment.
Their eyes and thoughts are set at the player’s perspective. They don’t have to be a
member of the game’s target audience, but they do need to understand and appreciate
that view in order to make the hundreds of small decisions that, collectively, will make
each level successful.

Progression

A field having rested gives a bountiful crop.
—Ovid

Progression is how the player’s experience of the game changes over time. It is usually
expected that a game’s progression will ramp in difficulty to track the player’s skills.
But progression can also determine how content is distributed throughout the game.
For example, it is important to ensure that assets get enough use to justify their
expense, as shown in Figure 2.1.42. (This is a business after all!)

Figure 2.1.43 shows a few examples of different progressions. Using a linear pro-
gression, players are directed from one level to the next as they complete objectives.
There is no decision to be made, they simply continue on. While this may sound bor-
ing (and many critics will argue that it is), players have continued to enjoy the crafted
experiences that this kind of progression can support. Because you have control over
the order that players will encounter content, you can have a tighter control over their
experience. A branching progression allows the player some choice in the overall 
progression, while still keeping them on a reasonably predictable path through the
game. Branching progressions typically expand for a few steps and then contract
again, funneling the player back to certain key points like bosses or significant story
events. Hub-based progressions offer even more freedom, but the designer must sacri-
fice a little of the narrative sequence to player whim.

124 Part 2 Game Design

FIGURE 2.1.42 A map of levels to chapters for a casual game.



Game designers map other distributions to and for game progressions: player
skills, likely powers and inventory, and other attributes that can be used to help judge
the appropriate challenge.

Shaking the Line

Many people think that a game’s difficulty should, if it were graphed, look something
like the ones in Figure 2.1.44. If humans were learning robots, these would be great.
Sadly, people aren’t able to continue to get better and better on an endless cycle. You
are fighting against the diminishing returns of our minds.

2.1 Game Design 125

FIGURE 2.1.43 Examples of linear, branching, and hub-based progressions.

FIGURE 2.1.44 How should difficulty rise?



The flow diagrams in Figure 2.1.45 illustrate what it feels like when the difficulty
of a game continues going up. We run into our limits, and we become frustrated and
often angry. A more player-friendly difficulty curve looks like Figure 2.1.46, where
over time it rises, but periodically the difficulty decreases after a sharp rise. These
decreases should naturally occur after a boss fight or the conclusion of a level, in order
to give the player a short break and a period of recuperation.

Environment Sounds

Today’s computer visuals are stunning, and they can go a long way to bringing
players into your worlds. But it is the audio that can sink them deeper without even
realizing what is happening. The ambience of the world and the player’s place in that
world need to be supported and reinforced through audio. An adventure in the
wilderness would not feel complete without the sounds of wind sighing through grass
and trees, or the sound of a small stream growing louder as you approach.

Consider one classic sound effect of first- and third-person action games: the
time-honored footstep. Without it, players do not walk through a world; they hover

126 Part 2 Game Design

FIGURE 2.1.45 The player experience of the relentless rise in difficulty.

FIGURE 2.1.46 The ideal difficulty progression.



on a magic carpet over it. But it is not enough to have a footstep, repeating over and
over. There needs to be a set of footstep sounds that vary in pitch and volume. Not
only that, but if there is more than one material to walk on (concrete, sand, grass,
metal, snow, etc.), then there will need to be sets of those footsteps as well.

During system or content design, it’s not unusual to find yourself thinking of
sounds that would accompany the things you are working on. You might even find
yourself making some pretty strange noises with your mouth. (Be careful of this if you
are working in an “open” office, unless you don’t mind a little teasing.) As you work
and think of these sounds, keep running lists of those that you imagine will help sup-
port the player’s experience. As these lists grow, periodically take a few minutes to sort
and categorize what you have. If you maintain lists of sounds while you work, you will
capture tons of great inspiration and make the job of designing the audio require-
ments easier and more effective.

Unless you have experience working with audio or are willing to put in the time to
really learn, resist the temptation to do it yourself. The Internet is littered with game
audio that is copied from the same files or junked together without care. If you are
working independently on a budget, it can be tough to beat the value of good sounds.

Design Work

You can accomplish anything in life, provided you do not mind who gets the credit.

—H.S. Truman

One of the most exciting things about game design is the endless opportunity for
solving new problems and learning new skills. Despite the various roles you may have
in your career, most of your work will be approached in styles and techniques familiar
to you. These will get bundled together, and people will describe you by your general
approach to design. 

Designers Solve Problems

When starting out, problems you have never seen before can be a little scary. Maybe
it’s a procedural mission system, a scripted event for a level, or a new UI for virtual
item trades; if you lack a process for solving problems, it is easy to get overwhelmed.

To describe a simple problem-solving method, we will use the Plan Do Check Act
diagram (Figure 2.1.47). There are similarities between PDCA and the way design is
generally carried out.

Plan: Begin by developing an understanding of the current problem—the things
that need to be done. Ask questions, write answers. Make lots of lists! You are creating
a clear picture of what success looks like.

2.1 Game Design 127



Make lists of answers to questions like:

What are the requirements?
What are the goals?
What are the options?
What has been tried before?

Sketch proposed solutions using brainstorming, mind maps, flowcharts, diagrams,
spreadsheets, and any other tool you find helpful. Test those ideas with others or
against objective criteria, and decide on a reasonable solution that meets the needs 
of the problem effectively and efficiently.

Remember not to worry; you’re making games!

Do: Take that reasonable plan and put it to work. Complete the work to the
appropriateness of the problem. Resist the temptation to put extra effort into the solu-
tion just yet. You are going to need to see if you’re on the right track.

Check: Test and measure the results, comparing them with what you had
expected. List and describe the differences you find.

Act: Review the results. Did they measure up to the expectations of the plan? Is the
problem solved? If not, what didn’t work? Will you need to change the plan? Will you
need to change how the plan was carried out? Did you make a mistake while checking?

Repeat: Cycles like this will rule your work. Something needs to be created or
changed, and we need to figure out the best way to do it.

When the problem you are facing looks large, remember not to worry; you are
making games! It gets easier over time, and when you are comfortable solving prob-
lems, you won’t worry about unknown challenges.

128 Part 2 Game Design

FIGURE 2.1.47 PDCA, the Deming Cycle.



Creating Concepts

If we could first know where we are, and whither we are tending, we could better judge
what to do, and how to do it.

—Abraham Lincoln

Developing a concept for a new game is like sketching. An idea is taken from some
early state and transformed into something more elaborate. Through that process,
details are worked out and the concept becomes more “real.”

Creativity

Creativity is the ability to produce an idea, action, or object that can be considered new
and valuable within the culture at hand [Csikszentmihalyi99]. Just as a doctor’s job is
not to “use a stethoscope,” a game designer’s job is not to “be creative.” A stethoscope
is an important tool for a doctor. Being creative is an important tool for a game
designer. Your job is to create, maintain, and share a conceptual model of the game.

Most people believe creativity to be a talent or an aptitude. People inherit creativ-
ity through the luck of the gene pool, and you either have it or you don’t. If you’re one
of the unlucky majority, so the wisdom goes, you may as well pack it in. The truth is
that anyone can learn to be creative as long as they are willing to risk a little.

Going it Alone
In 1926, Graham Wallas proposed a general form for creative thought. It described
the creative process in four distinct stages, and later work on the subject of creativity
commonly looks to this early framework for guidance [Wallas26]. Later versions of
this model would integrate a fifth stage, elaboration, to appear as follows:

Preparation: The background of research and comprehension of a subject, prepa-
ration is an intentional effort to become immersed in a symbolic system or domain.
You read, study, and consider every lesson on the subject you encounter. Known and
common solutions are reviewed or deconstructed in a process typical of reverse engi-
neering.

Incubation: “Mulling things over,” is the thinking and reflection applied to an
idea. This work may or may not occur consciously and can continue during unrelated
activities [Campbell85]. During this time, ideas are subjected to broad censorship and
discrimination, most of which occurs either too subtly or too rapidly to be noticed.

Insight: Whole answers that are resistant to unconscious censorship become
revealed to awareness in a moment of sudden illumination. These revelations are the
“Eureka!” or “Aha!” experience, hallmarks of the creative process. This is the “one 
percent inspiration” of Edison’s famous quote: “Genius is one percent inspiration and
ninety-nine percent perspiration.”

2.1 Game Design 129



Evaluation: Validating the revealed insight. Strive for balance in the evaluation of
your ideas, as there are equal tendencies to be overly critical or not critical enough.
Solutions should be discarded if a lack of significant novelty is revealed.

Elaboration: Although Wallas did not include this phase in his first description
of the creative process, it is a common addendum. Elaboration is the transformation
from concept to object, transforming the idea into substance.

These phases are recursive, to be repeated in part or in full as many times as 
necessary. Failure at any given stage often returns creative thinkers back to the prepa-
ration phase where they incorporate what has been learned by the failure into their
assessments.

Going Together
Going alone is a lot of work and fails to use your biggest asset: your network of
coworkers, friends, and family (see Figure 2.1.48). Get other people involved!

By far, the most popular and common approach to group creativity is brainstorming.
Nearly all brainstorming involves eliminating criticism during early stages. Evaluate
ideas only after many of them have been noted.

Critics point out that brainstorming is often unproductive because the process is
not directed. Participants are encouraged not to think critically, and time is wasted
elaborating on plainly bad ideas. But effective brainstorming is a learned skill. For all
practical purposes, there are such things as “bad ideas.” The trick with brainstorming
is to identify, appreciate, and cut the bad ideas as soon as possible. 

Six Thinking Hats
A role-playing system for creative problem solving, this approach uses a metaphor of
colored hats to symbolize the different ways people think. Encouraging groups to
change the way they work together, each person “wears” a different approach to the

130 Part 2 Game Design

FIGURE 2.1.48 The whiteboard during a creative meeting



problem at hand [deBono85]. It can be a refreshing change of pace to your collabora-
tion, especially if your group is unable to progress because everyone continues to
repeat themselves and restate their position.

White Hat: Neutral and objective, wearing this hat involves analyzing known
facts and detecting gaps to fill in with information. The emphasis is on assessing the
decision.

Red Hat: Intuition, gut reaction, and emotion are all qualities of the red hat. Use
your feelings and anticipate those of your audience. Allow views to be presented with-
out justification or explanation.

Black Hat: Dark and gloomy, the naysayer’s hat is worn when judging and criti-
cizing ideas. Identify all the bad points of a proposed decision cautiously and defen-
sively and actively play the part of devil’s advocate.

Yellow Hat: Pollyannaish attitude typifies this hat. Optimistic logic is applied,
looking for benefits and profitable outcomes that could result from an idea.

Green Hat: Symbolizing vegetation, growth and creative possibilities are explored.
New ideas or modifications to earlier suggestions are offered with an emphasis on
novelty.

Blue Hat: The cool mediating influence of organization is symbolized by blue sky.
Wearing this hat, you maintain a process and control-oriented perspective, organizing
and reviewing the work of the other hats.

Inspiration
Countless ideas fill the world around you. To find them you have only to maintain a
mind receptive to playfulness and the structure of games. For game designers, play is
the thing. Look for opportunities to play at all moments. Look at elements of life
around you and reconfigure them into amusements. Play with your friends (Figure
2.1.49). If you lack friends, learn how to have them; a number does not matter—one
is enough—but the ability to relate to people is coupled with anticipating their feelings.

2.1 Game Design 131

FIGURE 2.1.49 Paul and Dave playing a great card game, getting inspired.



One of the greatest sources of inspiration and learning for any video game
designer is the vibrant world of board games. If “board game” makes you think of
Monopoly or Risk, then you don’t know what you’re missing.

Here is a list of a few board games that you should play:

Agricola
Blokus
Bohnanza
Carcassonne
Dominion
Hive
For Sale
Power Grid
Puerto Rico
The Settlers of Catan
Ticket to Ride

Other media types are another endless source of inspiration. Don’t just consume
passively, but take joy in analyzing them: deconstruct their signs and techniques.
Render them into system diagrams. Enjoy being a game designer!

Prototyping and Playtesting Cycles

All life is an experiment. The more experiments you make the better. 

—Ralph Waldo Emerson

Without a doubt, the best way to know if a design is good is to play it as soon as 
possible. The best way to know if your game is good for your audience is to have some
of them play it as soon as possible. Prototypes are the tool for this. All prototypes,
whether in software or physical material, serve the same purpose: to quickly build a
rough, working model to evaluate an idea, answer a question, or as a test run at solv-
ing a larger problem. Prototypes are disposable sketches to be thrown away once your
questions have been answered. They can be used during all phases of design and can
take any shape you need to prove your ideas.

Physical prototypes are games you make from paper, cards, chips, tokens, dice, and
other common items. Use pens to draw figures, words, and numbers on playing sur-
faces while concentrating on the utility of the art, not its aesthetics; it needs to be
effective while play-testing, not pretty. Make changes quickly as testing and tuning
demand and do not let romantic attachments to features get in your way.

This is where you should start putting your ideas together. Chances are good that,
in the real world of professional game development, you will hardly ever get to start
with a prototype, but there is always time to take control of your own work and make
them for yourself.

132 Part 2 Game Design



Software prototypes are implemented in code. These are the prototypes that, once
in production, you are most likely to make use of regularly. They may be separate
from the main body of the game’s code, or they may be implemented within the main
branch but in a discrete location where they are easy to remove. Often, prototypes are
written in a scripting language (such as Lua or Python) where performance concerns
are secondary to ease of development.

Playtesting

Playtesting is finding problems from the user’s perspective. Playtesters are the people
who play your prototypes or game and report feedback on the experience. Designers
will often observe playtesters, taking notes and occasionally asking questions of them.

Ask questions continually:

Can the players use the controls? Do they understand them?
Is the GUI clear? Menus navigable?
Can the levels be completed? With how much effort?
Can the needed skills be learned? In how long?
Are they entertained? In what ways?

It is an easy thing, during the course of creating a game, for developers to become
blinded to the actual experience of play. Some aspects of the game may have under-
gone several revisions, and with each change, the risk that the player experience is
overlooked is increased. In Game Design Perspectives, Sim Dietrich offers the following
list of warning signs for faulty game design [Dietrich02]:

New players can’t play the game without assistance.
New players don’t enjoy the game without assistance.
Excessive saving and loading.
Unpopular characters.
The all-offense syndrome.
Players frequently reconfigure controls.

Five Tips

Here are five quick suggestions that just about any experienced game designer will share.

1. Carry a notebook.
When you have an idea, write it down. When you want to show something
to someone, make sure it’s captured in your notebook. Sketches and diagrams
and anything that you want to remember can go here. Just the process of
writing it down will help you remember.

2.1 Game Design 133



2. Grow creativity in everyone by sharing yours.
Your job isn’t to generate ideas, it is to harvest them, and the most fertile
fields are the people around you. Encourage people to share ideas by offer-
ing yours, and the earlier the better. Test and validate your thoughts with
everyone or, better, share your thinking. How you come to a given answer or
inspiration can be just as important as the result itself.

3. Listen to people deeply.
Whether talking with a friend, colleague, or customer, listen to everything
they are telling you but ignore how they are saying it. Look beyond the
words and even their assessments. Look for core causes. Ask questions to
draw the answers out. Repeat their positions in your own words, asking
“Did I understand what you were saying?”

4. Learn how to do the rest. 
A good designer understands game design first and foremost. But a working
knowledge of the other parts of development (art, programming, audio, etc.)
provides several benefits. First, and most importantly, you create designs
that make the most of the available resources. Next, you have more tools to
help communicate with others. Last, if you go far enough to be able to cre-
ate your own digital prototypes (using Flash, for example), you can reduce
the time it takes to create effective digital gameplay sketches.

5. Kill your bad ideas! 
If your wonderful idea bombs in the prototype and you can’t find a path to
fixing it, kill it. If you can’t find anyone in the office that “understands”
your great game idea—fix it or kill it.

Summary

This chapter has introduced you to a brief picture of concepts, vocabulary, tools, and
other issues related to video game design. Our goal has not been to prepare you as a
game designer but as a student of game design. With this snapshot, you should be
able to fit the issues you encounter into a basic view of game systems.

After beginning with some reassurance, we established some basic terms and
highlighted the importance of communicating with other developers. After moving
through these provisional definitions, you were shown one model of games. This
schematic reflects the need for game designers to solve problems by isolating issues
into parts. Remember that this model is not reality but a representation. In any real
game, pieces do not fit into neat categorical bins; things get complicated, and we cre-
ate models to simplify them. Play mechanics and experience were put into the Player,
emphasizing the personal and subjective nature of both. Game systems and content
were put on the opposite end of the relationship, indicating the physical reality of
where those materials lie—in the artifact. Actions and interface were grouped under

134 Part 2 Game Design



Interface to show both how the player and game connected and to emphasize that the
actions of the player are every bit as relevant as the controllers that listen to them.

You were then brought through many issues and concerns facing game designers
every day, organized into the areas of our schematic model. An adequate discussion on
any one topic could easily fill whole chapters or books, and here you only got a
glimpse. With the strongest and most sincere emphasis, you are encouraged to 
continue learning about game design. Something happens, along the way, where it
becomes difficult not to relate just about everything you learn to game design; this is
a diverse and expressive art.

The only thing you will ever need to do to be a game designer is to be one: start
now and don’t stop.

Exercises

1. A target audience has been chosen for you: women 35–55. Create a game
concept to meet the demands of this audience.
a. Start by modeling the preferences of this audience. Begin by creating a

list using public sources of information (e.g., library, Internet). Include
considerations for playing styles, learning styles, themes, and settings.

b. Create a list of game features, mechanics, and actions with this 
information.

c. Gather a group (4–8) of people belonging to this demographic and
conduct a focus test that you will record using audio or video. Share
your feature list as a starting point, asking them for opinions. Ask general
questions about their gaming habits, likes and dislikes before narrowing
to your list of preferences from 1a. Encourage group discussion. Make
notes of opinions that resonate strongly with the group. Keep the
conversation moving but do not contribute your own opinions.

d. Create personas (2–3) representing your audience. Using focus test
data and your initial list of preferences, look for agreement between
the two sources.

e. Brainstorm concepts (2–3) addressing the preferences of your audience.
List features and sketch mechanics and interfaces. Use diagrams and short,
clear descriptions. The writing should fill one-half to one page, no more.

f. Gather a second focus group to record and present your concepts. 
For each concept, start by having the group read and review printed
material. Then offer a short description of the concept. Begin to solicit
opinions by taking a quick show of hands to see like/dislike. Then
work through what was liked and disliked, getting more and more
detail as the discussion moves on. Provide explanations for questions
but do not defend your concepts.

g. Review the test results and suggest possible ways the concepts could be
improved to meet the concerns of the participants.

2.1 Game Design 135



2. Analyze one of the Lego series games by TT Games.
a. List objectives. Sort these into primary/required and secondary/optional.
b. Create a list of play mechanics and relate these to the objectives. Make

sure to note mechanics requiring the use of specific characters.
c. Create two or three system diagrams showing, as a best guess, how the

game systems are arranged to support play mechanics. Choose systems
that have at least two variable stocks. (For more information on systems
thinking, see Thinking in Systems, by Donella Meadows [Meadows08].)

d. List the game actions that players can perform in the game.
e. Map player actions to the interface. Create a control diagram and a

schematic map between player actions and the feedback from the interface.
3. Convert the design of a physical board game to a video game.

a. Summarize the objectives.
b. List all of the physical components: pieces, dice, board layout, etc.
c. Describe the sequence of play. How are turns structured? When are

players allowed to act? What actions are allowed and when?
d. List all of the game information (position, cards, etc.) and determine

which can be open and which must remain hidden.
e. Design an interface that allows players to perform all of the necessary

game actions and understand the state of the game at any time.
4. Prototype a game concept.

a. Choose an audience that you would like. (It can be you.)
b. Create a list of experience goals for the project.
c. Create goals and core mechanics to satisfy those goals.
d. Design a system that supports those mechanics. (Note: 4c and 4d

almost always cycle back and forth.)
e. Design an interface mapping the player actions, which hides or reveals

appropriate information.
f. Create a physical or digital prototype (for more information on prototyp-

ing, see Game Tuning Workshop, 2nd Ed. by Tracy Fullerton [Fullerton08]).
g. Test the prototype with your audience and adjust the design using this

information.
h. Repeat 4d to 4g until the concept meets your goals.

References

[Andrade07] Andrade, Eduardo, Cohen, Joel B., “On the Consumption of Negative
Feelings,” Journal of Consumer Research, (October 2007).

[Apostol69] Apostol, Tom, Calculus, Volume II, 2nd ed., John Wiley & Sons, 1969.
[Bateson72] Bateson, Gregory, “A Theory of Play and Fantasy,” Steps to an Ecology

of Mind, The University of Chicago Press, 1972:pp.177-193.

136 Part 2 Game Design



[Brown09] Brown, Stuart, Vaughan, Play, John Wiley & Sons, 1969.
[Burghardt05] Burghardt, Gordon, The Genesis of Animal Play: Testing the Limits,

Massachusetts Institute of Technology, 2005
[Campbell85] Campbell, David, Take the Road to Creativity and Get off Your Dead

End, Center for Creative Leadership, 1985.
[Chartrand77] Chartrand, Gary, Graphs as Mathematical Models, Prindle, Webber

& Schmidt, 1977.
[Cousins04] Cousins, Ben, “Elementary game design,” Develop, October 2004.
[Csikszentmihalyi90] Csikszentmihalyi, Mihalyi, Flow: The Psychology of Optimal

Experience, Harper Row, 1990
[Dawkins76] Dawkins, Richard, The Selfish Gene, Oxford University Press, 1976
[deBono85] de Bono, Edward, Six Thinking Hats, Little, Brown, and Co., 1985.
[Dietrich02] Dietrich, Sim, “Six Principles of User Interaction,” Game Design

Perspectives, Charles River Media, 2002
[Duniway08] Dunniway, Troy, Novak, Jeannie, Game Development Essentials:

Gameplay Mechanics, Delmar Cengage, 2008
[ESA09] ESA Entertainment Software Association, “Industry Facts,” available online

at http://www.theesa.com/facts/index.asp, April 1, 2009
[Ekman03] Ekman, Paul, “Emotions Revealed,” Henry Holt and Company, 2003
[Fauconnier02] Fauconnier, Gilles, and Turner, Mark, The Way We Think, Basic

Books, 2002.
[HMCo00] Houghton Mifflin Company, The American Heritage Dictionary of the

English Language, Fourth Edition, 2000.
[Huizinga55] Huizinga, Johann, Homo Ludens: A Study of the Play Element in

Culture, Beacon Press, 1955.
[Hutchins99] Hutchins, Edwin, “Cognitive Artifacts,” The MIT Encyclopedia of

the Cognitive Sciences, The MIT Press, 1999: pp. 126–127.
[Juul03] Juul, Jesper, “The Game, the Player, the World: Looking for a Heart of

Gameness,” Level Up: Digital Game Research Conference Proceedings, Utrecht
University, 2003.

[Kim09] Kim, Scott, “What Is a Puzzle?” Scott Kim, available online at:
http://www.scottkim.com/thinkinggames/whatisapuzzle/index.html, April 10,
2009

[Lazzaro04] Lazzaro, Nicole, “Why We Play Games: 4 Keys to More Emotion 
in Player Experiences,” XEODesign® Inc., available online at
http://www.xeodesign.com/whyweplaygames, 2004.

[LeBlanc99] LeBlanc, Marc, “Formal Design Tools: Feedback Systems and the
Dramatic Structure of Competition,” (Game Developers Conference), available
online at http://algorithmancy.8kindsoffun.com/cgdc99.ppt, 1999.

[LeBlanc04] LeBlanc, Marc, “Game Design and Tuning Workshop Materials,”
(Game Developers Conference), available online at http://algorithmacy.
8kindsoffun.com/GDC2004/, 2004.

2.1 Game Design 137

http://www.theesa.com/facts/index.asp
http://www.scottkim.com/thinkinggames/whatisapuzzle/index.html
http://www.xeodesign.com/whyweplaygames
http://algorithmancy.8kindsoffun.com/cgdc99.ppt
http://algorithmacy.8kindsoffun.com/GDC2004/
http://algorithmacy.8kindsoffun.com/GDC2004/


[LeDoux02] LeDoux, Joseph, Synaptic Self: How Our Brains Become Who We Are,
Penguin, 2002.

[Meadows08] Meadows, Donella H., Thinking in Systems, Chelsea Green, 2008
[Norman88] Norman, D. A., and Draper, S. Eds., User Centered System Design:

New Perspectives in Human-Computer Interaction, Erlbaum Associates, 1986.
[Oxford09]”fun” The Concise Oxford Dictionary of English Etymology. Ed. T. F. Hoad.

Oxford University Press, 1996. Oxford Reference Online. Oxford University
Press. 5 April 2009, http://www.oxfordreference.com.

[Pinel07] Pinel, John P. J., Biopsychology 6th Ed., Pearson Education, Inc., 2007 
[Pinker97] Pinker, Steven, How the Mind Works, W. W. Norton & Co., 1997.
[Russell02] Russell, J. Thomas, Lane, W. Ronald, Kleppner’s Advertising Procedure,

Prentice Hall, 2002.
[Salen04] Salen, Katie, and Zimmerman, Eric, Rules of Play: Game Design

Fundamentals, The MIT Press, 2004.
[Schell09] Schell, Jesse, The Art of Game Design: A Book of Lenses, Elsevier, 2008
[Schwartz04] Schwartz, Barry, The Paradox of Choice: Why More is Less, Harper

Collins, 2004
[Siviy98] Siviy, S. M., “Neurobiological substrates of play behavior: Glimpses into

the structure and function of mammalian playfulness,” Animal Play:
Evolutionary, Comparative, and Ecological Perspectives, Cambridge University
Press, 1998: pp. 221–242.

[Smith03] Smith, Harvey, “Orthogonal Unit Differentiation,” Game Developers
Conference, 2003, available online at
www.gdconf.com/archives/2003/Smith_Harvey.ppt.

[Wallas26] Wallas, Graham, The Art of Thought, Harcourt-Brace, 1926.
[Waugh07] Waugh, Eric-Jon, “GDC: Randy Smith Doesn’t Save the Day”,

Gamasutra.com, available online at http://www.gamasutra.com/php-bin/
news_index.php?story=13087, April 10, 2009.

[Wikipedia09] Wikipedia contributors, “Scientific modelling,” Wikipedia, The Free
Encyclopedia, available online at http://en.wikipedia.org/w/index.php?title
=Scientific_modelling&oldid=282766386, April 10, 2009.

[Wright03] Wright, Will, “Models Come Alive,” PC Forum 2003, EDventure
Holdings Inc., 2003.

[Zimbardo92] Zimbardo, Philip, Psychology and Life, Thirteenth Edition,
HarperCollins, 1992.

138 Part 2 Game Design

http://www.oxfordreference.com
www.gdconf.com/archives/2003/Smith_Harvey.ppt
http://www.gamasutra.com/php-bin/news_index.php?story=13087
http://www.gamasutra.com/php-bin/news_index.php?story=13087
http://en.wikipedia.org/w/index.php?title=Scientific_modelling&oldid=282766386
http://en.wikipedia.org/w/index.php?title=Scientific_modelling&oldid=282766386


139

Overview

While stories have been a part of electronic gaming since the beginning, in the major-
ity of cases, they seem to exist as merely an afterthought, secondary to graphics and
game mechanics. They are often overlooked by game developers and written off as
being all dialogue or simply not interesting. Unfortunately, this sells the story short,
for a story is, at its heart, conflict, and conflict, after all, is exactly what gaming is
about. Furthermore, as technical elements are reaching their apex, developers are now
turning to alternate ways to make games realistic and immersive. The emerging art of
interactive storytelling in games is an excellent way to achieve this.

Game Writing and
Interactive Storytelling

2.2

In This Chapter

Overview
Know Your Audience
Budget and Other Limitations
Basic Storytelling Techniques
Plot Types
Backstory
The Interactive Story
Story Mechanisms
Interactive Storytelling Techniques
Characters
Dialogue
Summary
Exercises
References



Storytelling has been an integral part of the human experience since the cave-
painting era. Stories allow people to escape reality and to be people they could never
be, doing things they could never do, in places they could never go. This holds true
for stories in video games as well, and in fact, the gaming medium takes storytelling to
a new level. For example, even narratives written from a first-person view in a tradi-
tional story are still about someone else, whereas in a game, the player is playing the
role of the character and events that affect the character, in essence, affect the player’s
own personal experience. While interactive storytelling within electronic gaming
shares many elements with more traditional storytelling, it has, over the past few
decades, evolved into its own unique medium. 

There are three primary ways a story can be experienced. A person can be told a
story, either orally or through text, he can be shown a story as through a movie or cut
scene, or he can experience the story by interacting dynamically with the storyline. While
the first two ways can be quite immersive, when delivered alone, they fall short in the
gaming arena. The average gamer is an impatient soul, with action on the brain, and will
almost always prefer to experience the story, rather than hear, read, or see it. This, com-
bined with increasing player sophistication, calls for the growth of the interactive story.

While not possible, or even desirable, in every game situation, the interactive
story is an excellent way to fulfill this wish to experience the story, rather than pas-
sively absorb it. At its best, the interactive story can create within the player, the psy-
chological state of flow, where reality fades and all consciousness is focused inside the
game. The story also provides the player with the motivation to continue playing and
a reason to press forward through game obstacles. The player is continually rewarded
with uncovering new parts of the story as he plays the game. This maintains his sense
of immersion and creates a more fulfilling game experience.

Immersion is the main reason to create amazing game stories and to build impres-
sive game worlds. Giving players a presence in the world and making them a part of
the story is essential in creating a sense of immersion [Krawczyk06]. As a writer, it is
also important to know your audience and be fully aware of the scope of the project
so that the writing is appropriate to the type of game being developed. Generally,
when writing for a game, the rule is to be as efficient with resources as possible, while
still creating an entertaining experience for the player. Game making is a for-profit
business, and as much as writers would love to try new and fantastical ways of telling
a story, it is usually not within the scope or budget of the game being developed.
However, there are many methods and techniques for creating an immersive game
experience through writing that aim to maximize immersion, while still keeping the
scope of the game within reasonable parameters. 

Know Your Audience

It is essential for the development team, including the game writer, to be on the same
page and to have complete understanding of the scope and vision of the game they
would like to create. Different types of games, traditionally, demand a different type

140 Part 2 Game Design



of story, and even within each game genre, there will be differences that will affect the
type of narrative that will best suit the game [Dille08]. For instance, it would be a
huge waste of resources to include several very expensive, cinematic cut scenes to
explain the background of a character in an action game for the Nintendo DS.

For most action games, such as SEGA Corporation’s Sonic Unleashed or
Nintendo’s Super Mario games, the purpose behind the game is to survive and to use
timing and fast reflexes to overcome obstacles. While an exciting setting and a fun
character are usually essential to these types of games, an elaborate story usually is not
necessary. The character is driven by one major goal, such as to rescue the princess or
to simply survive in the treacherous game. The testing of reflexes required of such
games is usually sufficient to keep players entertained and to motivate them to con-
tinue playing. Furthermore, unless the storyline is delivered as quickly as the game is
running, it will not be well received, and will instead be seen as an intrusion on the
action. Therefore, for the majority of action games, creating an elaborate or interac-
tive storyline will probably be a waste of resources.

The case is often the same for shooters, although several recent releases have
expanded to include a more complex story. Moreover, some shooters have become
crossed with other genres and share many game elements with puzzle games, action
games, and RPGs. Valve’s Half-Life 2 and 2K Games’ BioShock, for example, are still
both shooters; however, they are also both also rich with narrative elements usually
seen in RPGs and twitch elements traditionally used in action games. Shooters have
also moved online with games such as Left 4 Dead and Halo 3, where there is a basic
story and setting; however, for the most part, players create their own stories through
their play. Ask any players that have been playing a game online for a day or two and
they will have plenty of stories to share about what events transpired in their gameplay
world with their online partners and enemies. These stories are personal, and could
never be anticipated or designed into the game.

Because of the large diversity among shooters, it is really up to the scope of the
project as to how much and how complex the narrative should be. It has been shown
that narrative has been well received in recent shooters, and many of the top-selling
games over the past few years have been shooters with a storyline. Other, more pure
shooters without a plot are also still selling well. There will always be impatient play-
ers for whom the story just gets in the way of the mass slayings. For shooters, then, it
truly is a case of “know your audience.”

This same “know your audience” philosophy can be assigned to other genres as
well. Traditionally, racers, fighting games, strategy, puzzle, and rhythm games have
been thin on plot. However, this does not mean that there is not room for narrative
within these genres. Incorporated correctly, a strong narrative can easily increase
immersion into these games. In the near future, it is likely that many genres will
expand to include more intricate narratives into their gameplay. 

The genres that customarily have demanded strong narrative elements are the
role-playing game (RPG) and the adventure game. Players in these genres not only

2.2 Game Writing and Interactive Storytelling 141



appreciate a good story, but they also have come to expect it. This is the place where a
well-thought-out setting, plot, and narrative are integral to the gameplay. With these
genres, the players usually have time to think about and analyze their next move.
They want to make their own decisions, and they want their decisions to matter. They
want to be immersed in rich and fantastical worlds they can explore as they develop
and nurture their character. It is within these genres that the interactive story can
really enhance a player’s experience.

Not only is genre a major consideration, but it also needs to be known which
platform the game is intended to be played on. The audience between console games,
PC games, handheld, and mobile games is very different, and the players have very
different expectations and tolerance levels. The age group the game targets also needs
to be considered, as again, different ages have different expectations of a game. The
details of these expectations will not be explored in this chapter; however, it is impor-
tant to be aware that these differences exist and to make sure when writing for a game
that these differences have been taken into consideration. 

Budget and Other Limitations

Ask any group of developers, and they would agree that, of course, the writing is
important to the game. Unfortunately, a look at the budget tells a completely differ-
ent story, and generally, only a small portion of time and funds are devoted to the
writing. Games with good plots don’t necessarily sell any better than those without, so
when budget cuts are necessary, the story is often the first to go [Jeffries08]. It is key,
then, for writers to be clear about what limitations are being placed on them, and to
find ways to maximize immersion while staying within budget limitations. 

Implementing stories in games has been a slow process and has not always proven
profitable, and in general, the game industry does not like to take financial risks.
Warren Spector of Deus Ex fame compares the current situation to the movie, Citizen
Kane [Kosak 05]. For all of its critical acclaim, Citizen Kane failed to turn a profit. In
games, Sony’s innovative 2004 game Ico is an example of a groundbreaking and criti-
cally acclaimed design that failed to meet with commercial success. Ico uses a simple,
yet compelling story to motivate the player through a series of puzzles. It is done in
such a clever and simple way that the player becomes completely immersed in the boy
meets girl tale. However, despite its innovation and current cult following, it never
turned a profit for its developers. 

Commercial failures of this sort often keep game developers reluctant to take a
financial risk on a game based on a cutting-edge story design. Often, they prefer to stick
to guaranteed moneymakers, like sequels and games based on commercial characters.
This means that authors might be forced to only make small strides away from time-
honored game-writing techniques. Clever stories are not always welcomed with open
arms in gaming studios. Be aware of how far the studio is willing to go in implement-
ing innovative ideas and be sure they are open to it before attempting experimental
story designs.

142 Part 2 Game Design



Another cost consideration is that of hiring professional actors. Stilted and poorly
spoken dialogue can be the death of immersion for a player. If the acting is not con-
vincing, the game will be unbelievable, thwarting the entire reason for having dia-
logue in the first place. Even the most superbly written script will fail in the hands of
a poor actor. If the budget does not allow for the hiring of professionals, it is prefer-
able to have dialogue delivered in text form, rather than poorly delivered expositions
by an amateur. Therefore, know ahead of time if there will be a budget for profes-
sional actors and plan accordingly. 

The writer might also be bound by technical limitations. For example, the writer
might write that a giant bat comes down and swoops the character off to a new area,
but the game engine doesn’t support flying. One of the biggest problems with game
writing is lack of communication about what is and isn’t possible within the game
[Jeffries08]. Although it might seem as though a game world is filled with unlimited
possibilities, most games are actually fairly limited in what can and cannot be accom-
plished. Therefore, writers need to be fully aware of the technical limitations of the
game they are writing for.

Basic Storytelling Techniques

It is important for a game writer to understand classic story structure. It is a tried and true
method that is simple, works, and will repeatedly meet audience expectations. There are
many ways for the experienced writer to stretch her creative limbs and move from this
path; however, for the beginner, it is usually best to stick to a formula that has stood the
test of time. These are the roots from which the vast majority of stories are created.

The perception of many developers is that story is primarily dialogue. Not only is that
not true, but a lot of dialogue is usually not ideal in a game, and will try most players’
patience. Instead, think of the story as a series of conflicts and obstacles that build upon
each other. Place these conflicts within a classic story structure, and a story is created.

A story usually begins as a basic concept or idea. This is generally a broad idea
that places some character, in some situation, in some setting. For example, a concept
might be that a woman wakes up on another planet with amnesia and must find a
way to get back home. Meanwhile, she uncovers a devious plot to dominate earth and
finds a way to stop it. Or a rookie cop discovers that he has the power to read minds
and takes down the mob without letting his supervisors become aware of his power.
These are the basic premises of the games and the details can be fleshed out later. 

By following basic story structure when writing for the game, the writer is much
more likely to provide the player what she expects and the tools to be satisfied. While
other story formulas exist, and an experienced storyteller can take creative license and
try some new methods, the story structure outlined here is simple and fairly easy to
implement. The basic story structure goes like this: Begin with the inciting incident, 
followed by rising action, then a heart-stopping climax, and finally, a satisfying resolution.

Inciting Incident 1 Rising Action 1 Climax 1 Resolution

2.2 Game Writing and Interactive Storytelling 143



Inciting Incident

Every story begins with what is called an “inciting incident,” where the major conflict
of the story is introduced. Up until this point, the character’s life was going along a
predictable path, then, bam, some event occurs that throws things out of balance.
This is the hero answering the call to adventure. The moment when Jack’s plane
crashes in 2K Games’ BioShock is an example of an inciting incident, and it is at this
moment his character is thrust into the story, and the wheels begin turning. You also
see this in Bungie’s Halo, when the Covenant attacks your ship. From this point for-
ward, the hero’s path has been irrevocably changed, and the story begins.

It is important at this stage to really grab the player’s interest. For many gamers, if
they are not drawn in within the first 10 minutes, they are lost and may not choose to
ever attempt to play the game again. This means beginning the game with immediate
action and conflict. It can be brief and minor, but ideally, there should be an immedi-
ate obstacle for the player to overcome right from the outset.

Rising Action

Following the inciting incident, the character begins to experience a series of conflicts
that drive the story forward. This is the rising action. It is during this time that the
majority of the gameplay occurs, with the character encountering numerous obstacles
and challenges as he journeys to his end goal.

In a book, much of the conflict is internal and takes place within the character’s
own mind. With a screenplay, the majority of the conflict is usually interpersonal and
is played out with conflict between the characters. With games, however, while the
other types of conflict exist, the majority of the conflict is going to be external and
come from the environment. It is important, therefore, to make the environment rich
and filled with conflict. This can come in the form of puzzles to solve, enemies to
fight, people to coerce, resources to gather, and many other ways, but what is key here
is to keep the player moving through the story. 

It is during this portion that the players, through the game narrative, discover
who they are and what they are capable of. They also find out who the enemies are
and why they are fighting them. Basically, the rising action and the conflict uncovered
provide justification to the players to keep going and a reason to continue pushing the
A button. 

It is important for the writer to set up goals for the character during this portion
and to make these goals meaningful [Krawczyk06]. Goals can be given meaning and
significance by making them about human wants and needs and relating them back
to the story. For example, sending the character out to find a hat has so much more
significance if it is a special hat that has the power to make women fall in love with the
hero. Later, that hat creates a scene of conflict between two NPC women in the story
fighting for the hero’s attentions. Don’t send the character out on meaningless, empty
quests to fill time. If you want your character to collect pink orbs or silver coins, give
him a reason why these are useful and a way for him to use these items in the game.

144 Part 2 Game Design



Make the quests and missions creative and interesting and keep them relevant to the
story and to the character.

Pacing

Pacing is very important here. You want to build tension and suspense within the
player. This tension and suspense can be released in small revelations to the character,
and this is actually desirable to maintain motivation; however, there needs to be an
overall sense of building suspense and tension. There needs to be a balance, revealing
enough to the character to keep her intrigued and to reward her, but not so much that
she feels she will know how it ends already. This is done by the character continually
resolving small conflicts within the game, but not being allowed to solve the main
conflict until the end. Furthermore, a good formula for achieving this is to put the cut
scenes and slower action points after high action points, such as a dramatic confronta-
tion, a huge revelation, or a boss fight. 

Another way to keep the pace up is to use a concept borrowed from screenplays:
Come late, leave early. What this means is to start the scene at the point of action and
end it at the moment the action is resolved. For example, if the scene is to take place
at a sporting event, the audience doesn’t need to see the characters park their car, buy
their tickets, and find their seats. Instead, the audience should be dropped right where
the action starts—in this case, in the stadium.

The same methods apply at the end of the scene. The audience doesn’t need to see
anything past when the action stops, and doesn’t want to watch the characters exit the
stadium if it is not furthering the plot. In this case, the action stops and then the next
scene starts at a new location. With games, this would translate to having enemies and
obstacles right from the beginning of any transition period. This inserting of charac-
ters at action points will keep the pace from slowing and the player’s interest from
waning. This is not to say you shouldn’t ever slow the pace, but just make sure there
are some sort of obstacles at the beginning of a new story segment, and that the char-
acter can leave the module once the final action piece is finished.

Climax

All of this rising action leads to the next element in the story, which is the climax.
Everything so far in the game has led up to this event. The climax is the point in the
game story where the major conflict of the story is resolved and all of the player’s
questions get answered. This is the point where all the clues have led and the hero
slays his archenemy, or rescues the princess, or disables the bomb and saves the world.
Players expect this portion of the narrative to be intense and worth the investment
they have given up to this point. This means the stakes should be high and the drama
intense. The players need to feel like they have won. It is up to the writer to make sure
that the clues and story elements that lead to this moment make sense and that it con-
nects to the rest of the story.

2.2 Game Writing and Interactive Storytelling 145



Resolution

The final portion of the game narrative is the resolution. This is usually a brief 
portion of the narrative that gives the happy ending. It shows the hero enjoying his 
success and is the reward for having won. This can take place in a full motion video
(FMV) or just a brief cheer from the hero. Primarily, it is just to satisfy the players 
that have succeeded, and it helps them bring closure to the story. As most players feel
finished after the climax, this is not a time to introduce new conflicts.

Plot Types

The plot of a game is revealed in segments. Think of these segments like scenes in a
play or film. A series of actions take place within one scene; then the characters move
onto the next scene or series of events. Many games do this using a level system. A
player completes one level and then moves forward through the subsequent levels. Or
a game might employ a series of missions for the character to complete or dungeons
for him to conquer. Whatever the method used, these segments can be viewed as
modules that contain conflict, action, and plot. This is different from modular story-
telling, which will be described later in this section. How these modules are arranged
dictates the way the player will experience the plot. 

There is often contention among designers about which method of arrangement
is superior. The thinking is that sandbox or modular storytelling is somehow superior
to the linear plot; however, this is not always the case. Both types of games can create
a successful entertainment experience and sell well on the market. A real-life example
would be the Expedition Everest ride in Disneyworld’s Animal Kingdom. A great
attraction, it leads its riders on rails through a brief and exciting encounter. People
have lined up for hours to get a chance to experience this. Contrast this to the actual
Mt. Everest experience. Sure, the real experience is going to be more immersive, but it
is also much more expensive, time consuming, dangerous, and requires far more for-
titude. Currently, there is a market for both types of experiences. Again, it all depends
on the target audience.

Linear Plots

The linear plot is the most simple of the plot lines. Picture a series of modules placed
in order, from beginning to end. In this type of narrative, the plot points are revealed
in a predetermined sequential manner. Once a player has accomplished all of the goals
in one module, he must move to the next in the sequence to progress the story. The
player can still interact with the game world; however, his interactions will not change
how the story unfolds or which game module comes next. The majority of the con-
tent in a linear story is explicit and created by the game writers and game designers.
The experience variation from player to player in this type of game is minimal. Most
players will have a fairly similar and predictable experience.

146 Part 2 Game Design



Narrative is often delivered between the modules in the form of cut scenes, brief-
ings, or voice-overs. Reverse movement through the modules may or may not be
allowed, but once a section is cleared, no new plot elements or challenges should be
available to the player. Games of this sort are often compared to an amusement park
ride on a rail, with one clear path through the fun. In a linear game, there is only one
prescribed ending.

Linear narrative in games often gets a bad rap. However, there are times when this
type of story best fits the game. For one thing, they are cheaper to make. It is familiar
and comfortable to both the player and writer, and keeps control of the story in the
hands of the author [Bateman07]. Also, they usually follow a winning formula that
will have a guaranteed audience. There are times when a gamer doesn’t necessarily
want to think or solve puzzles and just wants to be taken on a ride. Games of this
nature are probably not likely to win awards for their narrative, but they do have a
place in the gaming world, and it is still important for them to have good writing. A
good example of a well-done linear game is Call of Duty 4. The game sends the char-
acter out on missions that are completed in order and down hallways with doors that
cannot be opened. Players are left not caring that they have no choices, as they hap-
pily blast away the enemy on an adrenaline-pumping ride. 

Branching Plots

Implementing a branching plot is a tempting approach to take in order to have a
player’s choices make a large impact on the development of the story. Depending on
which choice a player makes at critical junctures in the game story, the plot will play
out completely differently. Branching plots contain multiple endings and have no
clear spine, but rather, several spines. An implementation of this type of plot is seen in
the game Dragon’s Lair that Ernest Adams, in his 2006 Game Developers Conference
lecture, dubbed the “decision tree of death.” That is because there was only one cor-
rect, golden path through the branching that would lead to the hero’s success. All
other paths led to the hero’s demise and the goal of the game was to uncover the sole
correct path through the branches. This is not true of all games, however, and the pos-
sibility exists for many successful endings. While effective in creating different experi-
ences for different players and conveying player empowerment, branching has many
drawbacks.

One of the drawbacks of a branching plot is the waste of resources. Game ele-
ments need to be created for each area of the game, and some players will never even
get to experience or enjoy the areas that fall outside of their chosen path. Even if they
replay the game several times, there will still be areas that will remain unexplored.
Also, the branches can grow to be large and unwieldy very quickly. For example, if a
player is given just 12 binary choices, the result would be 212 = 4,096 unique paths.
Furthermore, despite the choices, the story is still, at its heart, linear and constrained
by the author.

2.2 Game Writing and Interactive Storytelling 147



Modified Branching Plots

There are other ways of implementing branching that prevent some of these limita-
tions. These are often referred to as parallel paths. For example, there is the branching
plot that leads the character back to the spine. The player will have choices and will
have varying game experiences, but the road eventually leads back to the spine. This
keeps the paths from growing exponentially.

Alternately, the author might only offer a couple of junctures, usually toward the
end of the game. Here, after experiencing the same rising action sequence as every
other player, the players are presented with a choice. For example, at the end, the hero
might have the option of keeping all of the treasure she has accumulated and going
evil, resulting in a climax that is different than the one for the player who chooses to
return the treasure to the proper owners. This gives the game alternate endings, but
still keeps the game fairly constrained and allows for the vast majority of game con-
tent to be enjoyed by all players [Sheldon04].

Modular Storytelling

The modular storytelling structure is a relatively new concept [Sheldon04]. It is a
method where the modules of the story can be experienced in any order, and the plot
is still understood. Quentin Tarantino’s Pulp Fiction and Kill Bill are examples of sto-
ries in film that are told out of chronological order and yet the arc of the story is still
understood by the audience. In a game, the player has complete control over which
area of the story to explore next and can move through the story at his whim. This can
be a difficult concept to grasp, and very challenging to implement as it removes some
authorial control [Sheldon04]. Furthermore, the twists and turns a character might
take navigating through the plot can wind up looking like a ball of yarn. However, it
can be done. Imagine, for example, a 10-day vacation. Each day of the vacation,
something new and interesting happens. It really doesn’t matter in which order the days
happen. Each day is a story in and of itself, and they add up to one large experience,
or story, called a vacation. Stories of this nontraditional type can be very immersive
and can be a sound way of granting a player a new experience.

Nonlinear Plots

In contrast to the linear plot on a rail, is the sandbox game where the game elements are
not as formally scripted. Instead, the player is given an environment and a set of tools
to manipulate that environment. Content is implicit and is made up of stories, goals,
and objectives that players create for themselves, and these can be completed in any
order the players choose. The story comes from what the player thinks and feels while
playing the game. This is most often seen in simulation games, such as The Sims series.

148 Part 2 Game Design



Quasilinear Plots 

Some games combine the elements of linear and nonlinear plots. This can be an effec-
tive method of making players feel as if they have free will within the game, while
keeping the main story along a prescribed path with one fixed ending. Basically, linear
gameplay is being integrated into a nonlinear world [Bateman07].

For example, the player has free access to what would appear to be the entire
game world. He can wander the map at will. However, there are dungeons or missions
that unfold in a chronological order. The player must complete “dungeon one” before
entering “dungeon two.” To add to the illusion, the player can enter dungeon two
first, but won’t have the skills necessary to defeat the monsters. In this way, the player
feels like where he or she goes is their choice. In another example of this, the world is
open to exploration, but missions are given in a particular order to be carried out
within the already open world. 

The quasilinear plot can be seen in some of The Legend Zelda games and in the
Grand Theft Auto series. No matter what decisions or actions the character chooses in
the main game world, the outcomes and ending are the same. All players will see the
same cut scenes and experience the same basic story. Players might start businesses,
purchase clothing or weapons, earn extra money, or take up a hobby, however, despite
these decisions, all players will eventually wind up in the same locations and will expe-
rience the same game ending. This can be a very effective method of giving players the
feeling they are in control, while still keeping the explicit narrative controlled and
keeping the story constrained. The effect can be so concealed, that oftentimes these
types of games are referred to as sandbox games. This is technically incorrect as the lin-
ear mission structure forces the player to stay on the path in order to reach the pre-
scribed ending.

Another model that has elements of a linear plot, but is not truly linear, is one
that allows the player or character to move away from the main plot and move
through side quests and subplots. These side quests might advance the character, add
interesting, yet nonessential plot elements, or change a player’s faction. Ubisoft’s Far
Cry 2 works similarly to this. There are a handful of plot points and transitions that
the main character must pass through, such as the character awakening in an old slave
outpost after becoming unconscious. Between these plot points, the player can choose
which missions to take and in which order, who to help, who to befriend, and which
weapons and vehicles to use. Or perhaps the player would like to go on a quest to col-
lect all seven pieces of epic armor, and this quest takes him to all corners of the world.
The game can be completed without this armor, but some players will take great plea-
sure in ensuring that their character has the best gear possible. These side quests will
give the game a very open and interactive feel, while still providing linear progress
[Chandler 07]. 

2.2 Game Writing and Interactive Storytelling 149



Backstory

The backstory, which consists of all relevant parts of the story that occurred prior to
the story opening, is often an important part of whom a character is and why he is
where he is and why he has to do what he has to do. However, uncovering a backstory
can be tricky. It is often instinctive for a writer to want to present the audience with
the backstory all at once in the beginning. Doesn’t the player need to know these
details to understand the story? Usually not. Oftentimes, giving it all to them at the
beginning backfires, and the audience winds up feeling dumped upon and wonders
why they are given all this information about a person they have yet to care about. It
is equivalent to hearing your Aunt Myrtle drone on and on about a childhood friend.
The audience is left thinking “so what,” and this is not a good way to grab attention. 

It also has the effect of ruining the suspense. Part of the mystery is discovering
what led the player to be in his current predicament. It is okay for the audience not to
know, and, in fact, it is intriguing to them. It causes them to ask questions and then
want to know answers, further engaging them. Another problem with presenting the
backstory at the beginning is that the player doesn’t know what details are important
to focus on, or what details are important from the backstory. This means that key
information presented here isn’t always absorbed and is often quickly forgotten.

Instead, it is preferable to drop a player in the middle of the action, engaging him
immediately, and then have the backstory unfold through plot and narrative ele-
ments. This is especially true in games, where the impatient player wants to get right
to the action. Though many games in the past have used cinematic cut scenes at the
beginning of a game, this is not always the best place for them, as they often go
ignored. Some players do enjoy this, so it is okay to include them, but just allow the
player the option of skipping the cut scene and make sure that any essential informa-
tion in the cut scene is given to the player in another form elsewhere. Don’t forget that
in games, unlike written stories, the story is there to serve the game and that the goal
is active engagement and interactivity, not passive absorption.

So, if there are details from the past that the player needs to know to understand
the storyline, allow those details to be uncovered through active gameplay. For exam-
ple, if you need the player to know that he is an orphan, have him meet someone that
he knew in the orphanage. If he is in a destroyed city that was brought down 20 years
ago in an alien attack, have clues in the environment, such as signs, posters, radio
broadcasts, city alerts, and anything that is natural within the environment. BioShock
does a good job of this in uncovering the details of what happened in the city,
Rapture, prior to the start of the game. You can also add NPCs that say things like
“Yes, ever since our city was destroyed by aliens 20 years ago, fresh water has been
hard to find.” This way, the player learns about the backstory actively and while
engaged, instead of passively absorbing it.

150 Part 2 Game Design



The Interactive Story

The aim of the interactive story is to grant the player the ability to make choices and
develop relationships within the game world [Cooper08]. With the interactive story,
no two players will have the exact same experience, and the story is essentially co-written
with the player. There are two stories: the explicit game story and the implicit player
story. The way the two come together determines how the player experiences the
game. Each person that plays the game will come to it with different desires and
expectations. Some will run through the game, trying to get to the end as quickly as
possible, while others will attempt to experience every available bit of game, exploring
every nook, performing every side quest, and talking to every NPC. There is even a
group of players that take a perverse pleasure in trying to “break” the story, and others
that will run around the world doing odd and nonsensical things just because they can. 

The game writer needs to be aware of the different types of play styles and prepare
the game world for the numerous ways players will use and abuse it. He also needs to be
aware of what actions are available to the character and how these actions can be used in
the environment. Will the character have the ability to kick? Can the character kick a
box? What happens when a character kicks a box? Can the character kick a bunny? What
happens when the character kicks a bunny? Can he kick NPCs, walls, doors, enemies,
furniture, or any other game item, and what happens when he does so? Can a character
turn on a faucet? What happens if he leaves it on? How about turning on the television or
shooting the television? What if the player shoots the television, but the television needs
to be used later to deliver game content? The writer needs to be aware of all of these pos-
sibilities and plan consequences for these game actions by the character.

Player Agency

A primary element in interactivity and immersion is player agency. Player agency is the
ability of the player to make decisions within the game world that affect the outcome
of events. Player agency can also refer to the way game content is revealed in response
to an action performed by the player [Bateman07].

With low-level agency, the player has very minor decision-making abilities. For
example, the player can choose where to move her avatar or troops, which methods to
use to fight enemies, what equipment to carry, and so on, but, these decisions do not
affect the eventual outcome of the game and as long as the player successfully achieves
the goals of the level, she will continue on the same game path as every other player
that plays the game. 

With high-level agency, the decisions a player makes in the game directly affect
the path the player will take. This can be seen in Bethesda Game Studios’ Fallout 3,
where the player can choose to either detonate or disarm a weapon of mass destruction.
The decision he makes will affect how primary NPCs will interact with him later in
the game. Obviously, the more agency that is allowed the player, the more interactive the
game will become. Therefore, the ideal in an interactive story is for the player to
decide and have control over how he experiences the story.

2.2 Game Writing and Interactive Storytelling 151



This also increases his suspension of disbelief, which means that the player will be
so immersed in the game world, that details that defy real-world logic are accepted for
truth. This is what allows us to believe that Harry Potter is capable of performing
magic. Only when someone is truly immersed in the story can he experience this.

The Spine

The spine of the game consists of all of the narrative elements that are absolutely nec-
essary for the player to experience in order to complete the game. The game can have
many side plots and subquests; however, in the spine are only the plot points that the
player must pass through to progress in the game.

With a linear game, the entire narrative is contained in the game spine. On the
other end of the spectrum is the sandbox game where there is little or no spine to fol-
low and the player chooses which plot points to experience, if any at all. In the mid-
dle are the games that have a clear spine, but the player is allowed to wander away
from the path, performing subquests, exploring, and generally interacting with the
world. For example, in Fable 2, the main character can purchase property, get mar-
ried, take jobs, and help out NPCs, but none of these actions affect the spine of the
game or the overarching plot. 

The Golden Path

Along with the spine is the golden path. The golden path is the optimum path a player
would take through the game in order to experience the game as intended and to
experience the maximum rewards. It is the duty of the writer to encourage the player
to stay on the golden path and force him to return to the spine, without making it feel
unnatural. The player needs to know the reason to move to the next area and perform
the next task. It doesn’t work to merely tell the player, “now move onto the library,” or
“now kill the emperor,” without giving him a reason to do so. The writer must pro-
vide appropriate motivation for the player to execute the next task. 

The writer must also have in place a mechanism for dealing with a character that
chooses not to execute the next task. What if the player decides he doesn’t want to go
to the library? The writer must have a plan in place for when things don’t go accord-
ing to plan, because the player’s motivation does not always match that of the motiva-
tion written for the character. In another case, what if the player somehow fails to pick
up on the directions to go to the library next. The player should not be forced to wan-
der around aimlessly. Therefore, hints need to be added to the environment clueing
the player into what he should do next, and elements need to be built into the game
writing that direct the player back to the golden path.

Keeping the Player on the Path

There are some simple methods for dealing with this issue, but most of them come at
the cost of player immersion. For instance, redirection is easily handled if the character
has an internal monologue and the character basically tells the player what his or her

152 Part 2 Game Design



desires are. This detracts from player immersion, however, and causes a rift between
player and character. It points to the obvious discrepancy in player desire vs. character
desire. Another simple method is using a map. Here, a line is drawn on a map, or
appears along the path in the game world, that physically directs the player where to
go to find the task at hand. Again, this can detract from immersion, but the player
still maintains the choice in whether to follow the path or not. 

Another less-than-subtle alternative for motivating the player is the use of NPCs.
In this case, NPCs might refuse to talk to the player about anything but their next
task. Alternately, they might offer reminders, advice, or encouragement that lead the
player in the correct direction. The more direct the NPC’s dialogue, the more effec-
tive it is in pushing the player in the right direction; however, the cost is that it feels
less interactive. Preferable are comments where the directions are cleverly embedded
in the speech, while the rest of the NPC’s speech is creating deeper meaning to the
game and its world of characters. The existence of a journal is an additional, fre-
quently employed tactic to keep the player focused. All vital information that is pre-
sented to the player is saved in a journal that the player can refer to at any time. That
way, if the player somehow misses a key plot element, the journal will document the
necessary tidbits and lead the player back to the golden path. This is also useful for
players who return to a game after a lengthy break. They can consult the journal and
pick up the story right where they left off. 

For a game to be truly immersive, more subtle means should be explored. One
method employed by theme parks is to place highly visible, intriguing items that draw
the players in and interrupt them from their aimless wander. This way, players are
guided toward the item, but are still moving toward it of their own free will
[Cook09]. Another subtle method is to keep primary objectives on a wider physical
path, while side quests are placed, literally, off to the side, with smaller roads leading
to them. The size of the road can cue a player consciously or subconsciously where the
important things will be found. Whatever methods are employed, they should be as
unobtrusive as possible.

Algorithmic Interactive Storytelling

Can a computer algorithm dynamically create unique original stories around what the
player does? It’s a compelling idea and one that has seen a great deal of exploration
from academic AI researchers in a field referred to as narrative intelligence. Certainly
algorithms can be employed to understand what the player has done and how to bend
the story slightly around them, but what is being proposed by many researchers in
this field is something much more ambitious.

A few game designers who have been working on this problem, such as Chris
Crawford, believe that algorithms can create architecturally valid stories, but that only
artists can create stories that are interesting to humans [Crawford99]. To exacerbate
the problem, there exists no rigorously objective measure of success for such an algo-
rithm, since a successful story is inherently subjective and can only be accurately

2.2 Game Writing and Interactive Storytelling 153



judged by humans. However, this might be a straw man argument since the short-term
goal at least is not absolutely unique stories, but rather varied and compelling stories
based on copious amounts of background material, structure, and pre-engineered
characters. Such algorithms can dynamically adapt characters and plan a story, sub-
story, or conclusion through recombination and randomness, all based around the
actions of the player [Ong03].

The approaches around algorithmic interactive storytelling are extremely varied
and diverse. Some approaches concentrate on plot construction while others are char-
acter-based. Plot-based systems might use story templates to guide the plot or break
the plot into many subplots that can be algorithmically planned. Character-based
construction involves changing a character’s opinions and beliefs as a result of interac-
tion with the player, thus having the characters drive the story through their modified
needs and wants. Since characters and story are inextricably linked, various
approaches must consider both, but the emphasis may be on one or the other.

One of the most successful examples of algorithmic interactive storytelling is the
game Façade, which can be downloaded and played for free [Mateas09]. In Façade,
the player is inside an interactive drama where he must engage with a couple, Trip and
Grace, who are having marital problems. The player has significant influence over the
events that unfold and how the story concludes. This is accomplished through an
algorithmic drama manager that guides the characters by adding and removing behaviors
and speaking points. The plot’s dramatic arc is constructed dynamically by sequencing
story “beats” (small segments of story) based on the moment-to-moment interactions
with the player [Mateas03, Mateas05]. As a whole, the game Façade has had a positive
impact on the game industry by proving that an algorithmic interactive story is both
feasible and compelling. However, it is still an area of active research, and most publi-
cized algorithmic solutions from researchers remain untested in large commercial games.

Story Mechanisms

In order to move the plot forward, the player must be provided with needed story
information. There are several mechanisms to achieve this goal and to ensure the
information is conveyed to the player. These include cut scenes, scripted events, arti-
facts, nonplayer characters, and internal monologues. These mechanisms are usually
prompted to occur via a triggered event.

Cut Scenes

Cut scenes have been a part of conveying story elements to the player since the mid
eighties with the eruption of the Lucas Arts adventure games. They have ranged from
short camera changes, where the player sees something happening elsewhere in the
game world, to cinematic masterpieces. They can consist of prerendered full-motion
video, created separately from the game engine, or they can directly use the game
engine and game graphics. What the various types share though, is that they take 
control of the action away from the player, and should be used with caution. 

154 Part 2 Game Design



However, there are situations where cut scenes are called for. For instance, there
are many players that enjoy a well-orchestrated cut scene, and oftentimes view them
as rewards for completing a level. They also work as a way to slow down the action and
create a rest point after a stressful boss battle. This change of pace can be refreshing. 

On the other side are the impatient sorts, which will always bypass the cut scene
if it is in any way possible. Those types of players view the cut scene as an obstacle to
move past as quickly as possible. To satisfy the latter group, it is important to allow
the player to fast forward through, or to skip the cut scene. This means that key plot
points should not be unveiled in only the cut scene, and that information necessary to
complete the game should also be available elsewhere. This could be unveiled through
the action, or simply be added to the player’s journal if they have one. Just make sure
that if you allow them to skip the cut scene, it does not hurt later gameplay.

Allowing players to skip cut scenes means that the resources devoted to them will
not be enjoyed by all players, and this could be frustrating to the team that put forth
the effort to create the masterpiece. Decide if it would be better to use those resources
to enhance gameplay rather than create an expensive and space-hogging cut scene. If
the team decides that a cut scene is worth the extra time and money to develop, by all
means, include one. Just be aware that for some people, it will detract from, rather
than add to, the immersion.

Scripted Events

Scripted events are another way of conveying necessary plot information to the player.
During a scripted event, the player generally no longer has entire control over what he
sees and does. This can be done quickly—for example, when a character enters a
scene and the camera moves to show a battleship full of enemies the player will soon
be encountering, or it can be elaborate and show entire conversations or action
sequences of NPCs. 

In Call of Duty 2, an example of a scripted game event occurs when the character
is shown carrying a teammate or kicking down a door, which are both actions that the
player interface doesn’t allow the player to perform. Half-Life and its sequel also
demonstrate good use of scripted events. As Gordon journeys through the game
world, he sees NPCs being dragged into air ducts, scientists fighting off head crabs,
and soldiers being dragged away by alien invaders. These events help to immerse the
player in the world and bring the world to life. 

Fable 2 also shows good use of scripted events. What is interesting about Fable 2
is that the player still holds control of the camera and can choose what to watch dur-
ing the event. This also adds to the player feeling more in control. Scripted events
don’t always take control away from the player. For example, in MMORPGs, in 
the case of escort missions, the player still controls the character, but the actions of the
person they are escorting are scripted and out of the player’s control. You can watch
what they do, but if you leave them and go too far away, the mission resets.

2.2 Game Writing and Interactive Storytelling 155



While a cut scene can be considered a scripted event, and there is some ambigu-
ity of terms at this time, generally, a scripted event is one that is programmed into the
scene using the game engine and shows the action that is taking place in the current
scene. Usually, a cut scene is prerendered and shows plot pieces that took place in the
past or are taking place elsewhere in the world. For the most part, scripted events have
been well received in recent games and are a good alternative to conveying story when
interactivity is not possible.

A small warning about scripted events and cut scenes: Do not force the player to
experience them repeatedly. For example, in a game where the player must restart a
level if they fail the objective, do not force them to watch the scripted event each time
through. Allow them the choice to skip it, letting them decide if they sufficiently
understand the scene. Being forced to watch the same scene each time through can be
annoying to the player and should be avoided.

Artifacts

Another way to convey the storyline to the player is through artifacts. Artifacts are
items like posters, radio broadcasts, journals, letters, photos, CDs, laptops, and other
items that contain information that advance the narrative. Leaving information on
artifacts to be discovered by the player leaves the player feeling in control. They can
choose when and for how long to view the item, and they decide what significance it
has to the plot. The trick here is to keep the player’s interaction with the item brief
and the amount of information small on each item to prevent the player from being
overwhelmed by information.

Nonplayer Characters

Well-written nonplayer characters (NPCs) are essential for creating an immersive
experience. A good NPC should possess individual desires, goals, needs, beliefs, and
attitudes and should not merely be a fountain of information [Spector07]. Even if the
player is never explicitly told what the NPC’s specific attitudes and beliefs are, by
writing them and a backstory for the NPC, the NPC becomes much more lifelike and
believable. If the player empathizes with the characters and understands their motiva-
tions, the information that is received by the player becomes much more meaningful.
The player feels more motivation to complete the given tasks.

Ideally, each time a player has an encounter with an NPC, the interaction should
be unique. In the real world, people don’t repeat themselves and respond in exactly
the same way each time they are spoken to. Characters that utter the same diatribe
each time the player encounters them can quickly put a damper on immersion.
Therefore, when a character revisits an area, the NPC should have a new script to fol-
low. Even if the information the NPC is conveying is exactly the same as the last time
the player spoke with them, they should say it in a different way. For example, the first
time a player asks a question, the NPC responds pleasantly. Each time the player

156 Part 2 Game Design



returns, the urgency of the request could increase, or the NPC might begin to exhibit
annoyance or accuse the character of having a crush on them. Keeping conversations
changing and still appropriate, isn’t easy, however, and can involve some high-level
artificial intelligence [Krawczyk06].

Some games employ the use of companion characters to join the main character
on their journey. These characters are designed to provide pertinent information to
the player and keep them on track. Far Cry 2 features very well-developed companion
characters, offering 12 in which each has a different role in the game. The player can
choose whom to spend time with, in turn influencing the path of the game. The 
companions can greatly help in the completion of missions, or might try to lead 
the hero astray. Fable 2 features a dog as a companion character. In this case, the com-
panion helps find hidden treasure and alerts the player of oncoming danger.
Companion characters can be an innovative and immersive way to transmit needed
information to a player.

Internal Monologues

The internal monologue is the self-talk that goes on inside a character’s head. If
implemented correctly, the internal monologue can be a good method of conveying
the story and essential information to the player. This only works if the voice is that of
a professional actor and the writing is top-notch. Imagine a character, upon running
into a wall, says “Ouch, that hurt” in his head. Later, the player hears the character
wonder to himself, “Hmm, what is behind that door?” prompting the player to open
the door. This tool for forwarding the story can be seen in Max Payne and the Splinter
Cell series. In Area 51, this internal dialogue is presented during load scenes and gives
the player insight into the emotional state of the character and creates more empathy
toward Ethan Cole’s character.

The internal dialogue can also be used to funnel a character back to the spine or
golden path of a game. She could say to herself, “Wow, I’m running out of time. I’d
better get that bomb disarmed.” One thing to be careful of while using this technique
is to avoid repetitive dialogue. She should not say, “Wow, I’m running out of time,”
repeatedly; instead the dialogue should change and become increasingly urgent. It
gets annoying to hear the character say the same lines of dialogue repeatedly. Also,
lengthy dialogue is to be avoided. The thoughts should be kept brief and to the point.
Nonessential thoughts can be included, but they should somehow still relate to the
gameplay. A final warning is to not have internal dialogue be triggered during heavy
action sequences, unless they directly relate to the action at hand. When a player is
heavily engaged, he or she might miss crucial elements of the speech, or find that it
distracts them from what they are currently trying to accomplish.

Triggered Events

A triggered event is one that is preplanned into the script and is prompted to occur
once the player has activated a certain mechanism in the game. For example, if the

2.2 Game Writing and Interactive Storytelling 157



character opens the kitchen door, it might trigger an onslaught of zombies that come
stumbling out of the kitchen. Or if the player kills the boss at the end of a dungeon,
it might trigger an NPC to step out of the dark and thank the hero and offer a reward.
A trigger could even be as simple as the character entering a new area. In all examples,
the event is prompted by some sort of character action.

Interactive Story Techniques

In an interactive story, it is important that a player feels empowered to make choices.
However, creating player choices can be expensive, time-consuming, and generally
outside of the scope of the project. However, there are some tricks to fool the players
into thinking they have more control than they do and to create the illusion of greater
player agency. This is similar to telling a child that she can choose to wear the red
dress or the blue dress. The child feels like she made the choice, but by placing para-
meters on the choices, the parent is the one controlling the decision and making sure
the child is attired appropriately [Krawczyk06]. By creating the illusion, the player
feels that what he is doing has an effect on the game world; however, these actions do
not have any effect on the eventual outcomes in the game.

This technique is used frequently in Fable 2. The hero can make many choices
along the way. The choices he or she makes will affect things like where they live, who
they marry, where they can shop, what they look like, how much money they have,
and who their friends are, but not the major plot points. This makes the players feel
like it was them, rather than the writers, who created this unique character that they
can now control. The open world also creates an arena for a great deal of implicit
gameplay, where the player is allowed to create stories and subplots of his own.
However, these choices don’t change where the story eventually takes the character.

An idea that can be borrowed from modular storytelling is to create a narrative
that will still make sense when encountered out of order. Think of each event as a
stand-alone component of the larger story. Take each of these events and place them
on note cards. Try shuffling the note cards and see if there are events that can occur
out of sequence. If this cannot be achieved, work with the events until you can. Once
you have some story modules that don’t need to be in sequence to further the story,
you can allow the player to access them at will. 

If the note cards fall into groups, it might be beneficial to try to use them to gate the
story. Gating the story is a method of creating the illusion of agency where the challenges
and plot points are grouped, and can be encountered in any order within their grouping
[DeMarle07]. This way, while each plot point is not encountered in a linear manner,
each group is. One way of keeping a player within a group is not giving the character a
type of skill or enough hit points until he has completed all of the challenges within a
grouping. He can go to later groupings, but will be unsuccessful in his attempts to
defeat the later challenges. A writer can go further and allow different choices to effect
what challenges the player will encounter within the grouping; however, inevitably, all
characters will wind up experiencing the same number of groupings.

158 Part 2 Game Design



Another trick to making the game world seem more interactive is to make the
world more dynamic. Allow the player to tinker with and interact with the game
world as much as possible and show the player things that are happening outside of
his own story. The story isn’t just about the character, but the story exists in a living,
breathing world. Let the player do things like flush toilets, turn on faucets, lay down
on beds, turn off lights, and mail letters. Any one of these things can be used to trig-
ger a dramatic event, that is, essentially, caused by the player.

Imagine for example, the character is allowed to break windows and intentionally
breaks a storefront window. Later, when he enters the area, it triggers him overhearing
a conversation between the shop owner and the glass repairmen that are now fixing
the broken window about “kids these days.” Alternately, he could flip a switch in an
apartment building that shuts down power to the entire building. Later, he might
hear a woman on the bus complaining that she is late to work due to the power being
turned off in her building. This type of dynamic world is seen in Grand Theft Auto IV.
It is possible to cause a car crash between two NPCs and then step back and watch the
drama unfold. The two parties involved might jump out of their cars and begin fight-
ing and then the people on the street may join in. Emergency vehicles arrive on the
scene, and it turns into utter chaos. All of this drama is caused by the main character;
however, it really doesn’t directly affect the character or the plot. It just adds to the fun
and interactivity of the game. 

The Director

Another method for making a story interactive is to employ a director entity. This
entity would perform the task of game master from a traditional pencil and paper
role-playing game. The director evaluates the current state of the game and decides
which set of obstacles to give to the player next [Cooper08]. This was the method
employed by Left 4 Dead to control pacing and enemy spawns based on the charac-
ter’s current stress level. This concept could be extrapolated to pertain to storyline.
The director would evaluate in real time what obstacle would be most appropriate to
present next to the character, based on what the player has previously accomplished.
This could also result in multiple endings.

Finally, take full advantage of implicit narrative and the types of stories people
create for their character. For example, it is possible in many games, especially the
sandbox style, to steal without a direct consequence. It doesn’t affect faction point or
alliances; however, it makes the players aware that their character is a thief. “Thief”
becomes part of the identity of the character, even though it wasn’t written into the
script. Or perhaps there are many abandoned apartments in the city and the player
chooses to make one of them a home base. They were never told to do this, but by
doing so, they have created ownership within the game. The more open a world is and
the more options a player has for creating his or her own story, the less narrative that
has to be written into the game. 

2.2 Game Writing and Interactive Storytelling 159



Characters

Character writing is another responsibility of the game writer. A well-written charac-
ter can bring a story to life and make the experience more memorable for the player,
suspending his disbelief and allowing him to become lost in the game. The goal of a
well-written character is to evoke emotion within the player and to cause him to have
strong feelings toward the characters. For example, anyone who has played Portal will
immediately recall GLaDOS, the quirky, psychopathic, robot boss and the frustration
she caused the main character. She was so well written that some of her lines of dia-
logue have reached iconic proportions. These feelings created by characters can pro-
vide a strong motivation for the player to move forward through the game. For
instance, creating a really vicious and convincing villain will make a player feel
enraged toward them, and the villain’s timely defeat will bring a much greater satisfac-
tion to the player than a ho-hum stereotypical villain.

In order for a game world to be convincing and immersive, the characters that
exist within that world need to be compelling and three dimensional [Sheldon04].
Because the characters are three dimensional, they need to be built upon a frame to
provide support, otherwise they are no more interesting than a pile of goo. A large
part of this frame is composed of the character’s backstory. This includes all the major
details that brought them to this point in their lives and explains why they are in their
current emotional state. The audience need not know all the details of the history, but
by providing one for the character, it deepens the character and makes the other ele-
ments of his character make sense [Krawczyk06]. The character needs roots, and these
roots should show in what the character says and how the character acts.

The other part of this frame is the character’s attributes, such as his motivations,
goals, aspirations, attitudes, character flaws, and temperament. Ask yourself, “Why is
this person here, and what do they want?” The more layers and depth built into the
character, the more alive and human they will seem and the more they will strengthen
the player’s feeling of immersion. Again, the audience may never overtly see these
attributes. However, by the writer knowing these attributes and taking them into con-
sideration when writing a character, the character and their dialogue become that
much more believable.

A trick for adding believability and defining and strengthening characters is to
deliberately design flaws into the characters. For example, a companion NPC might
be scared of dogs, or have a really short attention span, which might get him into a bit
of trouble. Adding character flaws can add humor, interest, and realism to the story
and further enrich the game world. Character flaws can also be beneficial to add to
the hero. A hero that is just a wee bit too arrogant could cause fun things to occur in the
storyline as his mouth gets him in trouble. As long as he is a likeable hero, his flaws
will not only be tolerated, but will also make him seem more authentic and human.

Additionally, watching NPCs perform and have a life outside of the interaction
with the character also makes them more believable. Frequently in games, NPCs seem

160 Part 2 Game Design



to just stand in one spot all day, every day, just patiently waiting to talk to the hero.
Their only job in the game is to transfer information. This is not only boring, but
neglects all sorts of possible opportunities to enhance the game [Sheldon04]. A better
alternative would be for the NPC to be busy doing things that are in character when-
ever he is not actively being spoken to. For example, the NPC could be a gossip, and
every time the hero nears him, it triggers an event, and he overhears him relaying
some juicy tidbit. Then, instead of clicking on the character to get his attention, the
NPC initiates the conversation with the player character. This is much more dynamic,
and also allows for later drama when the NPC’s gossip could get them both mixed up
in some trouble.

Having rich supporting characters can open up new storylines and help with the
game story by providing reasons for extra quests and content. This is enhanced by
writing characters that the player will feel sympathetic toward and want to help. If the
player likes the person sending her on a quest, she will feel much more motivated to
help him and will receive more satisfaction upon completing the person’s request. The
hero and player should have feelings of empathy toward the NPCs they are trying to
help and be able to understand their plight. Furthermore, the relationship between the
hero and the supporting characters should evolve over time and change upon increas-
ing interaction. If a hero repeatedly visits an NPC, the attitude toward him should
change and become increasingly friendly, or wary, depending on the relationship. 

When playing a game, the player often projects parts of himself onto the hero.
This means that the hero’s identity is made up of both the attributes written for him
and the attributes of the player. Therefore, it is important to make a hero that a player
will be able to identify with. Furthermore, because players bring so much to the char-
acter, it is not always vital to create a rich hero. Think about iconic video game 
characters such as Link, Solid Snake, Samus Aran, and Lara Croft, and you will real-
ize that while compelling, these characters are actually rather shallow and undevel-
oped in comparison to anything you would see in a novel. The characters are,
however, incredibly sympathetic and trustworthy. They possess traits that people want
to have for themselves and whatever is lacking, the player fills in with his own person-
ality. Simplicity can actually work to the advantage of the game writer when writing
for the hero, because creating traits in a hero that a player cannot identify with can
ruin the experience for the player.

The hero is often the most memorable part of a game, more so than the storyline.
In fact, the profit that a well-received character can create for a game studio through
commercial franchise can be significant. The most well-known characters are made
into all types of commercial products such as action figures, movies, lunchboxes,
posters, and even books. There have been occasions where the commercial products
produced from a gaming license have produced more profit than the game itself.
Because of the power a well-written hero can have, a writer should ensure that the
hero is one that will be well liked.

2.2 Game Writing and Interactive Storytelling 161



Dialogue

Video games have become notorious for cheesy, corny, and just plain bad dialogue.
Hopefully, this will change as studios hire more professional writers and actors. While
good dialogue writing is an art, there are some things to be aware of when creating
dialogue. For one thing, the writer needs to know if the words will be delivered via
audio or text. Spoken dialogue usually requires a different tone than written dialogue.
If voice actors are to be used, they need to be aware of the history, background, and
goals of the characters they are reading. For the writer, it is not enough that the char-
acter and delivery style of the lines is clear in his own mind, he needs to make sure this
is clearly conveyed to the actors. 

Furthermore, a video game is not a place for lengthy expositions, no matter how
well written. Dialogue should be fairly brief and to the point, while still keeping it
conversational and in character. A short delivery also makes it more likely that the
player will absorb what was said. If the dialogue is too long, much of what was said is
often quickly forgotten by the player. By keeping it brief, it maintains the pace of the
game and keeps the focus on the necessary facts. 

However, players do not usually take kindly to orders without being provided
with some sort of motivation to follow them. When giving players directions, it is
important to make sure they not only know what it is they have to do, but why it is
they have to do it. They need to know, and care, why it is so important to the NPC
that they go and find the NPC’s lost amulet. It would also be important in this situa-
tion to provide a reason for the NPC to want this amulet. Why is it so important to
him and how does getting this amulet help him or her achieve their larger goals? By
fleshing out the motivations behind an NPC’s actions, it creates a more human-like
character. It makes the game feel more compelling and authentic.

While the standard method of interacting with an NPC is to walk up to its avatar
and click a button that initiates the opening of a dialogue box, there are other methods
that can be employed. For instance, instead of the player initiating the conversation
by clicking on the NPC, some other, less obvious trigger initiates the conversation,
such as getting close to the NPC. Then the NPC is the one that initiates the dialogue.
This can be done in interesting ways, like having an NPC flag the character down or
follow them around. Or conversations can take place through other means rather
than in person, for example, through walkie-talkies, cell phones, e-mail, secret hidden
notes, or over loudspeakers. Varying the way a player receives information through
dialogue can add interest and keep the game from feeling stale. 

Dialogue Trees

The dialogue tree is a commonly used method for experiencing a conversation in a
game. Good examples of the use of dialogue trees can be seen in BioWare’s Star Wars:
Knights of the Old Republic, and Mass Effect. A dialogue tree is basically a graphical flow
chart of conversation where the player chooses what to say to an NPC from a menu.

162 Part 2 Game Design



The NPC’s response is based on the player’s choice, and this initiates a new list of
choices for the player to choose from. These can be branching, where previous choices
are lost to the player, and each exchange opens up entirely new choices, or they can
allow the player to keep options from the previous menus to ensure they don’t miss
anything. While this type of conversation method can cause a break in the pacing and
can sometimes be tedious for a player to work through, it continues to be one of the
most widely used methods for interactive conversations in games. 

Summary

While traditional writing, such as that for novels or screenplays, shares much with
game writing, game writing offers some unique challenges. It is a great deal more
complicated than traditional storytelling, with writers having to deal with things like
multiple storylines, player choice, and technical limitations. It is imperative that a
writer understands these challenges and knows techniques for dealing with them. As
more games begin to incorporate stories and genres continue to merge, the challenges
will increase. That is why it is of the utmost importance for game writers to be aware
of the target audience for the game, as well as the funding and game engine limita-
tions in order to keep their writing within the scope of the project.

Furthermore, there is a growing demand for the interactive story. While traditional
storytelling techniques should be understood and incorporated into the game, it is not
enough, and further methods for dealing with interactivity issues need to be incorporated
into the writing. There are many methods for adding interactivity to the narrative game,
and the writer needs to work with the developer to decide which methods will work best
for the type of game being developed. Currently, hybrid approaches are the best way to
grant the player the illusion of interactivity and player agency, while still keeping the
game constrained enough to fit within the limitations of a project. The future, however,
might allow for more experimental interactive storytelling techniques that combine arti-
ficial intelligence with narrative, creating entirely new gameplay experiences. 

Exercises

1. Which type of character needs more depth: the companion character or the
hero character? Explain.

2. Give an example of an inciting incident in film. Explain how this pivotal
moment changed the direction of the hero or heroine’s life. 

3. In what game genres are game stories most likely to be well received? In
what genres do you think there will be room for increased narrative elements
and how do you see them being implemented?

4. Give two reasons why the writing is often the first place developers make
budget cuts when funds start to run low.

5. Explain the difference between a branching plot and a modified branching plot. 
6. Describe player agency and explain why it is important to a story being

interactive.

2.2 Game Writing and Interactive Storytelling 163



7. What are some ways to make an NPC seem more authentic?
8. Research ways in which artificial intelligence is influencing interactive stories.

References 

[Bateman07] Bateman, Chris, “Game Writing: Narrative Skills for Videogames”
Charles River Media, 2007.

[Cook09] Cook, Daniel, “The Watery Pachinko Machine of Doom: Project Horseshoe’s
Thoughts On Story.” Gamasutra.com [Online] January, 17, 2008. [Cited April
12, 2009] http://www.gamasutra.com/view/feature/3498/the_watery_pachinko_
machine_of_.php.

[Cooper08] Cooper, Simon; El Rhalibi, Abdennour; Merabti, Majid; and Price, Mark,
“Dynamic Interactive Storytelling for Computer Games Using AI Techniques.
GDTW 2008.

[Crawford99] Crawford, Chris, “Assumptions underlying the Erasmatron interactive
storytelling engine,” AAAI Fall Symposium on Narrative Intelligence, 1999.

[DeMarle07] DeMarle, Mary, “Nonlinear Game Narrative” Game Writing: Narrative
Skills for Videogames Charles River Media, 2007.

[Dille08] Dille, Flint and Platten, John Zurr, The Ultimate Guide to Video Game
Writing and Design, Lone Eagle, 2008

[Ince07] Ince, Steve, Writing for Video Games. A&C Black 2007.
[Jeffries08] Jeffries, LB, “Play’s the Thing: The Art of Video Game Writing”

PopMatters, 2008, http://www.popmatters.com/pm/feature/plays-the-thing-the-
art-of-video-game-writing.

[Kosak05] Kosak, Dave, “Why Isn’t the Game Industry Making Interactive Stories?”
gamespy.com,, 2005, http://www.gamespy.com/articles/596/596223p2.html.

[Krawczyk06] Krawczyk, Marianne, and Novak, Jeannie, Game Development Essentials:
Game Story & Character Development, Delmar Cengage Learning, 2006.

[Mateas03] Mateas, Michael, and Stern, Andrew, “Façade: An Experiment in Building
a Fully-Realized Interactive Drama,” Game Developers Conference, 2003, avail-
able online at http://www.interactivestory.net/papers/MateasSternGDC03.pdf.

[Mateas05] Mateas, Michael, and Stern, Andrew, “Procedural Authorship: A Case-Study
of the Interactive Drama Façade,” Digital Arts and Culture (DAC), 2005, available
online at http://www.interactivestory.net/papers/MateasSternDAC05.pdf.

[Mateas09] Mateas, Michael, and Stern, Andrew, Façade, available for free online at
http://www.interactivestory.net/.

[Ong03] Ong, Teong, and Leggett, John, “A New Approach to the Design of
Interactive Storytelling Engines,” World Conference on Educational Multimedia,
Hypermedia and Telecommunications (EDMEDIA), 2003.

[Sheldon04] Sheldon, Lee, Character Development and Storytelling, Course Technology 2004.
[Spector07] Spector, Warren, “Next-Gen Storytelling,” escapistmagazine.com, 2007,

http://www.escapistmagazine.com/news/view/70852.

164 Part 2 Game Design

http://www.gamasutra.com/view/feature/3498/the_watery_pachinko_machine_of_.php
http://www.gamasutra.com/view/feature/3498/the_watery_pachinko_machine_of_.php
http://www.popmatters.com/pm/feature/plays-the-thing-the-art-of-video-game-writing
http://www.popmatters.com/pm/feature/plays-the-thing-the-art-of-video-game-writing
http://www.gamespy.com/articles/596/596223p2.html
http://www.interactivestory.net/papers/MateasSternGDC03.pdf
http://www.interactivestory.net/papers/MateasSternDAC05.pdf
http://www.interactivestory.net/
http://www.escapistmagazine.com/news/view/70852


165

P A R T

3
GAME PROGRAMMING:

LANGUAGES AND
ARCHITECTURE



This page intentionally left blank 



167

Overview

There is more to programming a game than sitting in front of a computer equipped
with your favorite editor and compiler and banging away at the keyboard all night
long. Most commercial games are created by large teams of people, ranging from just
a handful to hundreds of programmers, depending on the team size and scope of the
program. This chapter explains how programming teams are organized and what
techniques they commonly use to effectively coordinate the work of all the team
members and create a great game.

Programming Teams

Years ago, all the way to the early 1990s, programmers were often at the center of
game development and were the vision behind the game. However, as team sizes and
budgets grew and the focus of game development shifted from technical improve-
ments to gameplay itself, people realized that just because someone was a brilliant
programmer, it didn’t mean that he or she was a good game creator.

Teams and Processes3.1

In This Chapter

Overview
Programming Teams
Methodologies
Common Practices
Quality
Leveraging Existing Code
Platforms
Summary
Exercises
References



The role of programmers today is very different from what it was a few decades
ago. Today, the game is created by the content creators (artists and designers) with full
support from the programmers. Programmers are responsible for creating some of the
game code (following designers’ input), the technology on top of which the game will
run (usually called the “game engine”), and the tools that the artists and designers will
use to create the content for the game itself. 

This is by no means a less interesting or prestigious role, but it’s more oriented
toward servicing the rest of the development team and providing them with the means
to create an amazing game. The fate of the entire team rests in the programmers’ hands,
and it’s their responsibility to make sure everything runs smoothly and reliably.

Programming Areas

There are three distinct areas of programming involved when creating a game.

Game Code
Game code is the main body of code that people think about when referring to game
programming. This includes everything directly related to the game itself: how the
camera behaves when the controller is pushed, how the score is kept for a particular
game type, or how the AI entities in the world react to certain situations.

This type of programming often involves writing a large amount of code in
scripting languages (as opposed to the main language the rest of the game is written
in, such as C++). The purpose of using scripting languages at this level is to:

Produce faster iteration by avoiding time-consuming compile, link, run cycles
Allow technically inclined designers and artists to change behaviors in the game
directly
Present a more appropriate language to deal with the problem domain (e.g., a
high-level custom language to deal with AI issues is probably much easier to use
than C++)

Game Engine
Programming the game engine involves all the code that goes into the final game that
is not game specific. You can think of it as all the support code necessary to have the
game run on top of it. Sometimes, people erroneously think of a game engine as being
what draws the pretty 3D graphics, but that is only the graphics renderer (also called
the “graphics engine,” which adds to the confusion), which is one of the many parts
of the game engine.

One of the goals of a game engine is to isolate the game from the hardware on
which it’s running. It does that by creating an abstract layer between the game and the
hardware. That way, the game doesn’t have to worry about the details of the platform
and can concentrate exclusively on the game logic itself. Examples of this type of
abstraction are gathering input from the controller, putting graphics on the screen, or
playing back sounds.

168 Part 3 Game Programming: Languages and Architecture



The engine also provides common functionality that is needed by different parts
of the game. For example, the game engine will provide support for serialization
(reading and writing the state of objects), network communication and synchroniza-
tion for multiplayer games, pathfinding functionality for the AI, or collision detection
and response for physical simulation of objects in the world.

As we’ll see in a later section, effective use of middleware can reduce, or even
completely remove, the need for this type of programming.

Tools
Tools programming is an extremely important but often overlooked area. The more
data-driven game development becomes, the more crucial tools become, and the
more of a difference they make in the quality of the final game. 

The primary type of tools involves content creation: level editors, particle effect
editors, sound editors, and so forth. These tools are often written in the form of plug-
ins for existing, off-the-shelf tools, so the functionality of existing tools is extended to
provide exactly what the team requires. This has the huge advantage of allowing the
content creators to use robust, mature tools they’re already familiar with instead of
quirky in-house tools without any documentation. Some of the most popular tools used
in game development extended through the use of plug-ins are modeling tools such 
as Alias’ Maya and Autodesk’s 3ds max, and bitmap-editing tools such as Adobe®

Photoshop®.
If a tool to create a certain type of content is not available, or extending it through

a plug-in is not feasible, then it is written from scratch. This is usually the case with
very specialized types of editors, such as particle effects, or editing of game unit attrib-
utes (number of hit points, speed, animations, etc.). These tools are written in C++ or
any other high-level language that allows for quick GUI development and still inter-
faces reasonably well with the primary language in which the engine is written.

Other types of tools that are often necessary in game development are scripts to
automate repetitive tasks, converters to optimize and package data into efficient for-
mats, and testing code to verify everything is working as expected. All these are usu-
ally command-line tools without a GUI.

Team Organization

The bulk of the programming team is comprised of programmers (or software engineers).
These are the people who actually design and implement all the different systems and
bring the game art and design to life.

Game programming is a very technically challenging activity, so programmers
usually come from a computer science, engineering, or mathematics background.
Other nontechnical backgrounds are not uncommon if they were complemented
with a lot of self-instruction and independent game-related projects. 

Because games are so large and they encompass so many different areas, program-
mers often specialize in specific areas, allowing them to concentrate on a subset of

3.1 Teams and Processes 169



problems and work on solutions beyond what any generalist could do. You will often
find specialists in graphics, networking, AI, sound, and so forth. An advanced degree
can be very useful for programmers who want to specialize in a particular area.

In contrast to the specialists, some programmers are able to understand most
areas of game programming without mastering any of them. These generalists are
often crucial to a project because they’re the glue that binds all the specialists. Their
global view of the project gives them a unique perspective to pinpoint bugs and nar-
row down unexpected interactions between different systems. Generalists with a lot of
experience often make great lead programmers.

As soon as the number of programmers goes over three or four, some form of
organization is usually needed. At this point, the role of lead programmer is intro-
duced. A lead programmer coordinates the efforts of the rest of the programmers and
makes sure they all work toward the same goal. Someone in that role usually spends a
lot of his time with management duties and can only devote part of his time to actual
programming.

If a team grows even larger (over 10 programmers or more), it is common to also
have several programmers as leads for specific parts of the game. Some common posi-
tions are graphics lead, AI lead, and so forth.

Blurring the line between programming and design are the people in charge of writ-
ing the scripts that control the behavior of most things in the game. In some companies,
they’re called “technical designers,” while in others they are “gameplay programmers.”

Skills and Personalities

Some people might think that the ideal team is comprised of very experienced senior
programmers who have all worked with each other in many projects before. However,
teams comprised of team members from a variety of backgrounds and with different
levels of experience can be much more effective.

It is true a seasoned senior programmer with many battles under his belt can
bring a lot of experience and wisdom to the team. However, a smart junior program-
mer straight out of college will bring a new perspective, question decisions, and bring
a certain degree of enthusiasm to the entire team. Hopefully, all members of the team
can contribute to the project and learn from each other.

The same can be said for having different personalities. Some people are very
methodical and organized, preferring to proceed slowly and with sure footing. They
are the reliable workhorses that the team can depend on to get from point A to point
B. Other people are much more impulsive and visionary, and tend to think outside of
the established customs. They can be the spark that takes the game in new directions,
opens new doors, or inspires other people with their ideas.

Having a team with diverse levels of experience and different personality types
can present some management challenges, but with the right management, a diverse
team can accomplish truly outstanding results.

170 Part 3 Game Programming: Languages and Architecture



Methodologies

A “methodology” is just a fancy name for what procedures will be followed during
development to create the game. It can range from something completely informal to
something very structured with very specific steps. The choice of methodology will
have a great effect on how smoothly the development comes along. The larger the
team, the more important it is to have a well-defined methodology to allow everybody
to work side by side without tripping over each other.

Code and Fix

Unfortunately, the most common development methodology in game development
today is the lack of one—often referred to as a “code-and-fix” environment. It
involves very little or no planning, diving straight into implementation, and fixing
problems as they come, also referred to as “fire fighting.” Such environments are
mostly reactive, not proactive, because they’re always dealing with the latest emer-
gency situation in a hurried way as opposed to meeting new challenges head-on with
full knowledge of what’s coming ahead.

Poor quality and unreliability of the finished product are a consequence of a
code-and-fix environment. Looking at the number of games with technical problems,
incompatibility issues, or crash bugs, this is quite common in the industry today.
What is worse, the poor reliability of the game also affects the development of the
game itself. If the game and the tools are often crashing or are difficult to work with,
iteration and experimentation by content creators is going to be reduced, leading to
poorer quality of the final product.

Things can get even worse for code-and-fix environments, though. The entire
development process can quickly spiral out of control as bug counts mount faster
than they can be fixed and the creation of game content crawls to a halt. This is called
the “death spiral.” Projects at this stage are often cancelled by the publisher and put
out of their misery.

The lucky projects that manage to make it to the end usually had to survive sig-
nificant “crunch” times of extended work hours. Even though game companies often
like to boast about their long crunch times, the result is burned-out employees who
either leave the company or become far less productive in future projects.

If a code-and-fix environment has so many problems, why does the industry con-
tinue to go down that path? Mostly because of inertia. That’s the way things were done
15 or 20 years ago, and back then they probably worked fine with a team size of four
people and a project that only lasted from six months to a year. With modern team sizes,
budgets, and development cycles, such an environment is clearly not adequate. Projects
aren’t getting any smaller—quite the contrary—so things will continue to get worse.

On the positive side, many companies are concerned about this state of affairs
and are starting to look beyond code-and-fix environments for new solutions, so there
is hope that the industry will pull itself out of this rut.

3.1 Teams and Processes 171



Waterfall

A waterfall approach tries to combat the uncertainties of game development by plan-
ning all the details ahead of time [Rollings03]. Teams create detailed technical documents
(and usually thick design documents and art bibles) explaining all the details of how
they’re going to go about implementing the game.

The benefits of this approach is that it does force the team to think ahead of time
about what it’s going to do, what the challenges are going to be along the way, and
how they’re going to solve them. If done well, such an approach can also create an
accurate schedule, come up with a set of milestones for the publisher, and estimate the
delivery date of the finished game. As long as the planning was done correctly and
nothing unexpected happens, everything will go smoothly and the game will ship on
time. This approach might work well for sequels or games that attempt very little
innovation from both a technical and a gameplay point of view, like sports sequels or
expansion packs. 

However, in most situations, game development is just too unpredictable to plan
in such detail ahead of time. If there’s one thing you’re guaranteed in game develop-
ment, it is that something unexpected is going to happen: you have to support new
hardware in the middle of development, some of the most challenging technology is
delayed, or simply your game is not turning out to be as fun as you hoped for at the
beginning. As soon as that happens, the entire plan usually goes out the window.
Managers and producers might try to bring it back on track, or to come up with new
schedules, but usually this schedule is always behind the realities of development. In
the worst situation, a waterfall environment can degenerate into code-and-fix envi-
ronments as the team fumbles to try to catch up with some initial schedule and meet
the publisher’s milestones.

Iterative

Iterative methodologies encompass many different approaches. The basic idea is to do
development for a period of time (a month or two), accomplish a set of goals, get the
game to a reasonable state, and then start again with another period and add new fea-
tures to it. Each of the periods is usually made to coincide with publisher milestones.

This approach has the benefit that some planning is possible, it can be a proactive
environment instead of a reactive one, and it allows the flexibility of changing course
in midproject if it’s necessary or adjusting things based on how the development pro-
gresses.

Iterative methods can vary from extremely informal approaches to much more
formalized methodologies like the unified process, which is still iterative but recom-
mends that the team follows a set of phases and produces a set of specific documents
and deliverables for each iteration.

172 Part 3 Game Programming: Languages and Architecture



Agile Methodologies

Agile methodologies attempt to deal with an unpredictable environment, not by try-
ing to plan for every possible contingency, but by admitting that things will change
and adapting to those changes [Beck04, Larman03, Schwaber04]. The general strat-
egy is to avoid looking too far into the future. Instead, they plan for short periods of
time (a few weeks), work based on that plan, and iterate constantly on their product.
They value simplicity and the ability to change course at any time. 

These characteristics allow agile methodologies to adapt to any unexpected
events, or even to what they learn as they develop the game. If a competitor comes up
with a must-have feature, they can easily incorporate it in their game halfway through
development; if the team loses a key member, things can be scaled back or adapted
and still allow the game to ship on time.

The team is always very aware of the current state of their game, where they are
with respect to where they want to be, and what the highest-priority tasks are at any
moment. This visibility and flexibility give agile methodologies an edge in this indus-
try. When the strong winds of change blow, agile methodologies bend and follow the
wind instead of being rigid and eventually breaking under pressure.

The main drawback of agile methodologies is convincing the publishers or stake-
holders in the project that this is a reasonable development methodology, because it’s
still relatively new in game development. Agile methodologies also require that every-
one involved has a flexible mindset and is ready for things to change as necessary.
Unfortunately, some people are much more comfortable planning hard milestone
dates set months in advance even though the probability of that plan remaining
unchanged is virtually zero.

Common Practices

Every team does things differently, but the following are some of the common prac-
tices you’re bound to find in just about every development team.

Version Control

In a nutshell, a version control program is a database that contains any number of files
and, possibly, the past history for each of them. Every team nowadays has all its source
code under version control. This has several main benefits:

Team collaboration. This is the main benefit of version control. By having all source
code files under source control, it is possible for team members to work on a related
set of files without overwriting each other’s work. The version control program acts as
an arbiter and takes care of avoiding conflicts between different changes people make.

Centralized location. By using version control, there is one clear, central point that
contains all the source code for the game and tools.

3.1 Teams and Processes 173



History for each file. The history of each file in the project is preserved in the version
control database. This can be extremely useful to track down problems that started
happening at a particular date, to look at implementation decisions made in the past,
or to undo some recent changes and go back to how a certain part of the code was a
few days ago.

Branching and merging. Finally, version control programs allow you to branch a set of
files. Branching a set of files means that a new copy of those files is created. The original
files are called the “main line,” and the new files are the “new branch.” The key part is
that the version control program “remembers” when and where it was branched from,
and then uses that information to allow merging changes made to the branch or to the
main line relatively easily. Branching can be used to separate code that is almost ready to
ship, to work on complex subtasks without affecting the rest of the team, or to split the
work among several functional subteams by giving each of them a working branch.

Version control is not limited to source code. It is very common now for game
companies to put their game assets in version control as well. This includes all the
assets that artists and designers create: textures, models, shaders, levels, characters,
animations, sounds, effects, and so forth.

Coding Standards

Programming is, above anything else, a team activity. You don’t write code for the
computer to understand; you write it for other team members to understand. They’ll
need to read, modify, or debug your code at some point in the future, and you’ll prob-
ably have to do the same with theirs. It’s for this reason that many companies establish
a coding standard to facilitate collaboration between programmers.

The coding standard is a document that describes the guidelines that program-
mers must follow when writing code. It can cover layout issues such as where to put
the braces and the amount of indentation, naming conventions for variables and
classes, or even design aspects, such as when to use interface classes and what to
expose to the users of a library.

The actual coding standard varies from company to company. Its contents vary,
since everybody seems to have a different way of doing things, and even the length of
the document itself varies from a quick one-page document to a massive 50-plus-page
volume detailing every guideline. Another difference is how strict the contents of the
standard are. Some companies treat it as a suggested set of guidelines that people
might want to follow, while others treat it as the ultimate law, and code will have to be
modified to comply with those standards before it is checked in to version control.

Daily Automated Builds

Teams will often have a dedicated automated build machine. At fixed times of the day
(and night), it will automatically get the latest code from source control, build the

174 Part 3 Game Programming: Languages and Architecture



game, tools, and any other programs, and report success or failure by sending an 
e-mail to the team. If an error was encountered, the list of errors is included in the e-mail
so they can be fixed right away. If the build was successful, the code is usually labeled
in source control so programmers know about a set of source code that built success-
fully and can use it as a starting point for their work.

These builds are crucial to the progress of the project. As long as the game builds
successfully, progress is being made. If the game enters a period when it fails to build
for several builds in a row, there is no visible progress. Additionally, as long as the
game cannot build and run correctly, programmers can’t run the game to test their
changes. Having the build always pass and the game always run should be a high pri-
ority for any team.

In addition to building code, the automated build machine (or another dedicated
machine) can also build game assets: convert assets to efficient binary formats, check
for asset validity, build levels, run expensive lighting calculations, and pack the
resources into large resource files. Additionally, it can also take it one step further and
run a set of tests on the game with the code and resources that were just built to make
sure all the levels can be loaded and nothing crashes.

Quality

As projects become larger and more complex, more programmers are needed to write
code, and the resulting codebases are larger and more complicated than ever before.
At this point, the main challenge is not to do some clever hardware trick, but to make
sure all the code works as expected, reliably and robustly. This section presents some
techniques to help with the quality and reliability of the code.

Code Reviews

Two pairs of eyes are better than one: that’s the principle behind code reviews. It is
very easy for the programmer who implemented a certain feature to get too close to
the code and miss obvious mistakes or potential problems. Having another program-
mer look at the code can catch many things the original author missed.

Code reviews can vary a lot in how they’re implemented. On one end of the spec-
trum, they can be a very formal affair, presenting the code to a group on an overhead
projector and having everybody contribute comments and point out pitfalls. On the
other end, it can be very informal, with just one other programmer quickly looking
over the code on the author’s workstation. 

Code reviews can also differ in when they’re conducted. Some teams prefer to
review a different section of code once a week after it has been added to the code base,
while others prefer to do it frequently for small sections of code, often before the code
even makes it in to source control.

A side benefit of code reviews is that they make programmers aware that team
members will be reading their precious code, so they’re going to think twice before

3.1 Teams and Processes 175



taking any ugly shortcuts or becoming sloppy. Don’t underestimate the positive power
of peer pressure in a situation like this.

Asserts and Crashes

For all the care you put into making sure your game is as bug free as possible, it’s
almost sure that it will crash at some point or another during development (hopefully
not after it ships!). What’s important is that you quickly learn the reason it crashed
and that it’s fixed right away so it never crashes again. How can we do that?

The main tool at our disposal is the use of assert statements (or the language equiv-
alent if you’re not using C++) [McConnell04, Rabin00]. An assert is simply a state-
ment that checks a certain condition. If the condition is valid, then nothing happens
and the program continues executing as normal. However, if the condition is not
valid, the program is halted, printing as much information as possible about the failed
assert: what the condition that failed was, where in the code the assert was, and any
other relevant information. If the game (or tool) was running from a debugger, a
breakpoint is hit so that the programmer can quickly determine the sequence of
events that led to the failed assert.

In a way, we’re crashing the program ourselves in a controlled way to prevent a
total disaster. Think of it as an emergency landing of a plane that is running out of
fuel: we cut our trip short and try to land in a controlled way instead of continuing
our flight to spectacularly crash to the ground once all the fuel is used up. Fortunately,
hitting an assert statement is much less life threatening than an emergency landing, so
programmers can use them liberally all over the code base.

Probably the most common use of asserts is to check that pointers are not NULL
before using them. Otherwise, if we attempt to use a NULL pointer, the program will
crash right away. Other uses of asserts include checking the range of parameters passed
into a function (e.g., that an index into an array is not larger than the array itself ), or
even that the results of a calculation make sense (e.g., that the number of hit points of
an entity is never negative).

It is important that asserts are only used for detecting errors caused by code bugs,
not by unexpected things the user of the game or tool could do. So, while it’s fine to
assert if we run out of memory (clearly a technical problem that needs to be fixed), we
should avoid asserting if the user tries to open a file that doesn’t exist. Instead, we
should report those user errors in a meaningful way without stopping the program
and let the user try again. This is particularly important to improve the efficiency of
the content creators in the team; it will make them more confident in what they’re
doing, and they’ll be much happier and productive in the long run.

However, in spite of all our best efforts, we should still be ready for the game 
to crash (hopefully not very often, though). In this situation, the objective is not to
recover from the crash, but to give us as much information as possible to fix the bug
that caused it right away. To do that, we should write some code that gets called when-
ever our program crashes and try to collect as much information as possible about

176 Part 3 Game Programming: Languages and Architecture



what led us there: where in the code the crash happened, what the call stack looked
like, a dump of the CPU registers, and perhaps even a full dump of some of the hard-
ware state that could be used to diagnose the problem with a debugger.

Keep in mind that you might only want to use asserts and crash notifications like
these during development. Especially in the case of console games, which can’t easily
be patched, once the game is shipped and out of your hands it’s usually best to remove
all that code, hope all the bugs have been ironed out, and hope for the best. On the
other hand, if you’re working on a PC game or a massively multiplayer game that is
expected to be fixed and upgraded over time, you might want to leave the option in
for users to report any fatal errors they encounter.

Unit Tests

When you have a codebase as large as the one required for modern games, consisting
of hundreds of thousands or even millions of lines of code, created by an entire team
of programmers, no single person can keep all the details in his or her head. How can
anybody be sure that whatever changes he just made aren’t going to break or interfere
with existing code? Sure, we can run the game and make sure that it runs fine.
However, what if we broke a different section of code that we’re not testing? What if
we broke it in a nonobvious way? What if we broke a tool? Are we going to test them
all every time we make a change?

Unit tests are small tests that verify that a single bit of functionality is working
correctly [McConnell04]. They are usually written at a very low level and test single
systems in isolation. For example, we can have a set of unit tests that verify that our
math library works correctly: a matrix transpose does what we expect, and a vector-
matrix multiplication produces the correct result.

The real power of unit tests is that the computer is running the tests, we’re not. It
can run thousands of such tests in no time, it never gets tired of running them repeat-
edly, and it lets us know as soon as any test fails. That means that we can run all the
unit tests every time we make a change. Assuming our unit tests cover most of the
functionality in our code, if we ever cause something else to break, we’ll know it right
away, even before we run the game. Otherwise, if everything passes, we can confi-
dently go ahead and commit our changes to source control.

Two factors are crucial in how useful unit tests become for a particular project.
First, they have to be easy to write. The harder or more complicated they are to write,
the less programmers will use them. The second factor is how easy they are to run.
Ideally, they should run automatically every time any change is made to the source
code, maybe as a post-build step. If that’s not practical, then they should at least run
during the automated daily build.

People have already written test harnesses that greatly simplify the process of
adding new unit tests and running them. You should start looking at the freely avail-
able xUnit test framework, which is almost sure to have a version for the language
you’re using. Two popular C++ frameworks are CppUnit and CppUnitLite.

3.1 Teams and Processes 177



Acceptance Tests

Unit tests are able to verify that low-level functionality is working correctly. That’s
very useful, but it doesn’t tell us much about the game itself. We know that the math
library is doing all the calculations correctly, but can the player reach the end of a level
by completing all the objectives? Does the AI respond correctly to a certain path
through the dialog tree?

Acceptance tests verify that the game is working correctly at a very high level and
answer some of the previous questions. As with unit tests, the power of acceptance
tests comes from the fact that they’re automated, so they can be executed over and
over without any direct supervision and we’ll know as soon as anything breaks.

These tests are usually implemented in a simple scripting language that drives the
game. The scripts also need to interact with the game and retrieve some state to verify
the results of the test. For example, an acceptance test can be as simple as making sure
that every level loads correctly. It iterates through the list of levels, attempts to load
each, and checks that they were loaded correctly. If any errors are encountered, infor-
mation is collected and e-mailed to the relevant team members.

A different, more advanced acceptance test could automatically move the player
through all the objectives in a level and make sure the mission is completed with a
success state. Clearly, to implement this type of functionality, we need to provide
enough hooks in our game to allow all those actions to be driven from the test script.
Any time and effort spent adding such a system will pay for itself many times over
during the development cycle of the game.

Bug Database

Using a bug database is one of the most established techniques in game development.
Hardly any game development team will be without a bug database, and most pub-
lishers require that their developers use them [Chandler08].

The idea of a bug database is to document all the bugs, any steps that led to that
bug, and what the expected behavior of the game was instead. These bug reports are
filled by the QA department, other programmers, the publisher, or anybody who
plays the game during development. Bugs are usually classified based on their severity,
so it’s possible to quickly find and fix crash bugs, and put off purely cosmetic bugs
until later. As programmers fix the bugs, they are marked as resolved but remain in
the database as a record of what was done.

The bug database serves a dual purpose. The primary purpose is to make sure all
bugs are listed and that everybody is aware of them. Otherwise, in a large team, it’s far
too easy for bugs to fall through the cracks by forgetting to tell people about them or
incorrectly assuming that someone else is already working on a certain bug.

The secondary purpose of the bug database is to get an idea of how the game is
progressing. If the goal is to meet the ship date without any important bugs left, but
bugs aren’t being fixed fast enough, we can immediately tell that the target ship date is
in jeopardy and something should be done about it.

178 Part 3 Game Programming: Languages and Architecture



Unlike the other techniques for improving code quality listed in this section, a
bug database doesn’t prevent bugs from being created in the first place; it just keeps a
record of them and makes sure they get prioritized and fixed. The bug database is an
invaluable tool that no project should be without, but it should not be used in isola-
tion, and preventive quality techniques such as unit testing or code reviews should be
used in conjunction with it.

Leveraging Existing Code

Of the three programming areas we mentioned earlier (game code, engine code, and
tools), only the game code (and maybe a small part of the tools) is unique to each pro-
ject. The game engine, by definition, is mostly game-independent. The tools are also,
for the most part, independent of the game itself since models, textures, sounds, and
most content are created in similar ways across different games.

Isn’t it a waste of time and resources for every game project to write an engine from
scratch before writing the game? Engine development is a very complicated and chal-
lenging part of programming, and experts in the fields of graphics, physics, or network-
ing are often required to create production-quality game engines. Tools are also very
time consuming, and it can take years for a team of experienced programmers to come
up with robust, mature tools that the content creators can use effectively. Consequently,
not only is it duplicated effort to do that every time, but it’s also very costly.

If you’re working for a large company, you might be able to reuse the tools and
engine from earlier games, especially if you have a dedicated technology group in
charge of maintaining that code and making it available to each game group.
However, what if you’re in a small company or you’re starting from scratch? 

One possibility is to try to adopt existing code that is freely available on the
Internet. A bit of searching will usually reveal lots of source code already written for
the most general tasks, and this code will often be free for anyone to use. (Be sure to
check the license for any restrictions on commercial use, such as contacting the author
or having to release the source code to your product.) Good examples of existing code
that is ready to be used are Boost (a set of general templated C++ libraries) or zlib (a
popular compression library). However, be aware that free code usually doesn’t come
with any technical support other than mailing lists with other users, so be sure you
can handle any unforeseen problems by yourself or you have a backup plan.

If the code you wanted wasn’t freely available, or if you’re uncomfortable with the
lack of support, you may be able to buy both. Some companies specialize in providing
solutions for specific subsystems of game engines. This is called “middleware,”
because it sits in the middle between the hardware of your target platform and the
game itself. Middleware is usually available for very specific, well-defined subsystems.
For example, you’ll be able to find companies offering middleware for graphics 
rendering, collision detection and physics, animation, sound, AI, video playback, or
network connectivity. You have to pay for middleware, but it usually comes with tech-
nical support to help you in your development so it is usually well worth the money.

3.1 Teams and Processes 179



If you license middleware, you’re just buying parts of an engine. You get a renderer
or a network layer, but that’s not sufficient to write a full game. You still need to write
the rest of the game engine and tools to bind all the middleware together with your
own custom technology into a coherent game engine, so plan ahead for that time.

You can go further than that and license a full game engine. Unlike middleware,
game engines are a full package: they include all the game engine code, tools, and
often game code that you can use as a starting point for your own game. You only
have to modify the engine code if you need to implement something unique to your
own game. Otherwise, you can use it right away to start creating your own game. Full
engines are usually tailored to specific game genres (such as FPS, RTS, massively mul-
tiplayer, etc.), so as long as the engine is targeted at your type of game, it’ll make your
development much easier.

The benefits of leveraging existing code are clear. You don’t need to spend any
time designing, implementing, and debugging that code. Most of the time, even if
you have to pay to license middleware or an engine, the licensing cost is often less
than what it would have cost to pay a team of programmers to develop that same
technology (assuming you even had access to programmers with that skill set).
Therefore, not only do you often save time, but you also save money. Keep in mind
that programmers will still need some time to become familiar with the new code and
how to use it, so there will still be a certain amount of ramp-up time.

Another significant benefit of middleware is the integrated tool chain that comes
with it. While the underlying code could be reproduced by your own programmers,
the tools to manipulate the game data, build the levels, author character behavior, or
tweak animations might require just as much time to build as the base game engine
itself. In fact, mature middleware companies understand that a large part of the value
of their product comes from the tools they provide, so they spend a sizeable amount of
their resources honing this aspect. Don’t underestimate the value and contribution 
of well-integrated tools to the final game, since they can dramatically affect the effi-
ciency of your team during production.

On the other hand, there are some reasons not to use existing middleware solu-
tions. One of them is monetary. If you’re in the rare situation of having unlimited
time but not an unlimited budget, then developing the technology yourself might
make more sense. In addition, if you’re looking ahead and planning multiple titles,
developing the technology yourself might save you money in the long run. 

However, the most compelling argument for not using existing code is that you
need more control over the code or that it’s not capable of supporting the features you
want in your game. Beware of this situation, though. Programmers are notorious for
having a huge NIH (Not Invented Here) syndrome, and they will criticize and reject
any code they didn’t write. Fight that tendency and try to analyze objectively whether
the existing code will fit your needs or will be easier to modify than writing it from
scratch. That decision can have tremendous consequences for the project and even the
entire company down the line.

180 Part 3 Game Programming: Languages and Architecture



Some of the areas where existing code can fall short are dealing with new platforms
(it might take a few months or years before it fully takes advantage of new hardware),
or integration with other tools or pieces of code (such as interfacing with your own
content pipeline). Finally, always keep in mind the possibility of the middleware 
company going out of business, and be ready with a backup plan or at least make sure
that you can have access to the full source code.

There is no doubt that the focus of game development is moving to a higher level.
We’re already seeing a trend of middleware being much more common than it was a
few years ago. Few teams today consider writing their own physics system, and more
and more teams are considering licensing sound, graphics, or networking middleware.
In the future, expect licensing of middleware and full engines to become much more
common, so start getting comfortable with the idea of using other people’s code.

Platforms

Games have always been developed for a wide variety of platforms. Any type of elec-
tronic device that could support games usually did. However, it seems that today,
more than ever before, you can find an enormous variety of different platforms with
extremely varied capabilities. Your choice of platform can profoundly affect how you
decide to program the game.

Personal Computers (PCs)

PCs have been a very popular platform for games for many years. Currently, the most
popular operating system for games is Microsoft Windows, but there are games for
other operating systems as well, such as Linux or Macintosh.

Games on PCs are just another application that runs on the computer, so they
have to behave and play nicely with the operating system and other applications. For
example, games will often have an install program, must deal with switching focus
between applications, or have to put up with a virus scanner running in the back-
ground. Unlike most applications, games will often push those limits and take over as
much of the PC as possible by using the entire screen, using every hardware resource,
and possibly even requiring that other programs not be running in the background.

There is a unique characteristic to PC games that becomes both one of its most
important draws and one of its main problems: changing hardware. PC games are the
first ones to push the limits of the hardware. New video and sound cards are developed
exclusively for games, and a top-of-the-line PC can usually sport amazing audiovisuals
that dwarf anything else out there. 

The downside is that not everyone has the latest hardware, and PC games need to
make sure they run on a wide range of hardware, from several years old to the newest
thing on the market. The wider the audience the game aims for, the wider the hard-
ware range it needs to support. The problem is not only having to deal with quirky
drivers and unusual hardware combinations, but also having to support a wide range

3.1 Teams and Processes 181



of performance and functionality. It takes a lot of effort to make a game look good on
the latest hardware and on an outdated CPU with an old video card at the same time,
because the new system is easily an order or two of magnitude more powerful. Because
of that, PC games always have a set of minimum hardware requirements and they do
not support anything less powerful than that. In some cases, the performance and
capability gap between the high-end and the low-end might be so large that develop-
ers who want to fully support both ends of the spectrum must treat them as separate
platforms.

Another strength of PC games is the ability to create and distribute user-created
content. Many games ship with the tools necessary to create new content and some-
times with the source code of the game itself, so users can modify it to create new vari-
ations of the game and redistribute them (usually called mods).

Network connectivity used to be the exclusive domain of PC games, but game
consoles have been making some inroads in this area in the last few years. Access to a
network and the Internet allows for new types of multiplayer gameplay (anything
from a network link between two computers to a persistent massively multiplayer
game). It also allows for easier patching from the game companies, since the program
can be updated after it has been shipped. This can be a boon or a curse depending on
whether companies improve the game with new content after it ships, making it more
valuable to the players, or they ship it before it’s ready and fix bugs with patches. 

Game Consoles

Game consoles are closed, proprietary systems with a fixed set of hardware. The pri-
mary purpose of consoles is to play games, so there will be no issue of other programs
interfering with the games in any way. Consoles have a typical life cycle of about five
years, after which time they’re usually replaced by a newer model.

From a programming point of view, having a fixed set of hardware makes a world
of difference. Programmers don’t have to worry about supporting dozens or hundreds
of video cards, or about incompatibilities with different input devices. They can
count on one set of hardware being there and making sure their game does the best it
can with it.

Consoles will often have a different set of APIs than those on PCs. Those APIs are
customized to the console itself and are not found anywhere else, which means pro-
grammers need to become familiar with the new hardware and the APIs themselves.
In addition, because of the fixed hardware, console games can often do some pro-
gramming at a lower level than their PC counterparts. 

Overall, PCs and consoles are fairly well matched in power and capabilities, so
other than the low-level code that interfaces with the hardware, games for both 
platforms can often be written using the same language (usually C++) and same set 
of techniques. Moreover, it is usually possible to release a game on both PCs and 
consoles that uses the same high-level code and very similar game assets.

182 Part 3 Game Programming: Languages and Architecture



The flip side of having fixed hardware is that the console manufacturer tries to
keep the costs down to a minimum, so programmers are often constrained by not
having enough memory, having slow memory access, or having quirky video hard-
ware. Games aimed at consoles should take into account the limitations of the specific
console and deal with them from the beginning.

Handhelds and Mobiles

The game market for handhelds and mobiles has seen a huge boom in the past five
years. Devices for this platform trade very limited hardware capabilities for light-
weight mobility and low power consumption. Programming games for this platform
is nothing like dealing with a PC or a game console. Rather, it’s more akin to game
programming in the mid-1990s when games were making the transition from 2D
sprites to very low-polygon 3D worlds. Screen resolutions are generally rather low and
memory is often extremely tight.

This has a large impact on the programming side. C++ is not automatically the
language of choice since some devices only support particular languages. For example,
while it is common to use C or C++ on the Nintendo DS, the standard language on
Apple’s iPhone is Objective C, whereas other mobile devices might only support Java
or Python. It also becomes extremely difficult to reuse code or game assets between
game consoles and handhelds because of the differences in specs and languages.

However, games for handhelds are developed in a much smaller time frame
(months instead of years), with a much smaller team, and consequently a much
smaller budget. Some people are attracted to this type of development because it
brings back the “simplicity” of game development from 10–20 years ago. Of course,
we can expect handheld hardware to continue improving, so it will soon reach levels
comparable to the game consoles of just a few years ago.

Some of the latest handhelds to hit the market are starting to bridge that gap
already. Both the Nintendo DS and the Sony PSP are very powerful machines, com-
parable to full game consoles from just a few years ago. With enough memory and
CPU power available, development more closely resembles regular game consoles,
and many developers and libraries opt to make full use of C++.

Browser and Downloadable Games

The fourth major “platform” for game development is browser or downloadable
games. This is not a true hardware platform like the other three categories we have
seen, but it’s so different that it makes sense to think of it as a separate platform.

As with handheld games, these are often small, simple games, sporting 2D graph-
ics and simple gameplay. Instead of running on a phone or a mobile game console,
they run on the user’s Web browser on the PC and are downloaded “on the fly” every
time they’re played.

3.1 Teams and Processes 183



These games can count on having the hardware of a full PC behind them, but
they have to keep their size to a minimum to be downloaded quickly. This is particu-
larly important to attract casual gamers who prefer not to wait around for a large
download. These games are also different from regular PC games in that they do not
try to take over most of the PC’s resources. Instead, they try to play nice with the rest
of the applications and the operating system, and are often confined to running in a
window instead of taking over the full screen.

Browser games aim to be able to run in any browser, independent of the hardware
or the operating system. Some of the most popular languages for these games are Java
and Macromedia Flash, and all they need is a specific browser plug-in to be installed.
These languages can’t compete with C++ in terms of performance, but they allow
games to be developed at a higher level of abstraction, which allows for faster develop-
ment. The emphasis of these games is on gameplay, not technical innovation.

Multiplatform Development

Releasing the same game on multiple platforms has its unique set of challenges. On
paper, it sounds like a very good deal. The plan usually goes something along these
lines: we make the effort of writing one game, and then we ship it on four different
platforms, effectively making four times the money for the same development effort.
In practice, things are not so straightforward.

First, you have to make sure that all platforms you’re targeting have roughly equal
capabilities. The more they vary, the harder it’s going to be to do effective multiplat-
form development. Typically, this means targeting several consoles and PCs, or several
handhelds, and maybe a downloadable version. The hardware gap between consoles
and handhelds is more of a chasm and makes multiplatform development between
them extremely difficult.

Then there’s the fact that each platform will cost you a certain amount of time
and effort, even if all the high-level code and the game assets are the same. You will
have to write the low-level engine code for each platform (unless you license it), debug
and test your game in each platform separately, create custom code for each platform
to meet the expected standards in that platform (an installer for a PC game, special
standard menu icons for consoles, etc.), and deal with a variety of hardware, including
different input devices (keyboard and mouse versus different gamepads) and storage
devices (hard drive, memory cards, DVDs, CD-ROMs, etc.).

In practice, if everything goes smoothly, an experienced team won’t use twice the
resources to release a game on two platforms, but it might take one and a half times
the resources of just aiming at a single platform. Each new platform after that
becomes a bit easier, so releasing it for three platforms should require a bit under twice
the effort of doing it for a single platform.

To make multiplatform development as effective as possible, we should try to
maximize the amount of shared source code between the different platforms. There is
nothing worse than having the same code duplicated for each platform and having to

184 Part 3 Game Programming: Languages and Architecture



fix the same version of a bug in each. Ideally, we should have a low-level hardware
abstraction layer that unifies the access to the hardware for all our platforms. That
means we can access files in the same way, play sounds the same way, and put graph-
ics on the screen in the same way. Then we can build the rest of the engine and game
code on top of that layer.

Choosing exactly where that layer is and what operations it presents is a very del-
icate decision. It has to strike a balance between being low-level enough to minimize
the amount of platform-specific code, and high enough to maximize performance
and the ability to take advantage of each platform’s hardware. For example, if we
added a graphics-abstraction layer where the main operation was to render a single tri-
angle, we would be heading for disaster because most platforms would have horren-
dous performance. Instead, we want to have a higher level abstraction that allows us
to render entire meshes at once.

Another important aspect of multiplatform development to consider is what to
do if the platforms have slightly different capabilities, as is usually the case. One
approach is to aim for the lowest common denominator. That is, if one platform can
only deal with screen resolutions of 640 × 480, then we make our game only use that
resolution, even though our other platforms could use a higher, better-looking resolu-
tion. This approach has the advantage that it minimizes development cost and
resources, but is usually much derided by players and developers alike, and it’s one of
the reasons why multiplatform development has a reputation for creating mediocre
games.

A better approach is to try to take advantage of the capabilities of each platform.
Sometimes this will require extra programming, and sometimes extra game content. It
also requires that the engine be flexible enough to be able to easily replace or enhance
specific systems for specific platforms. In the end, unless you’re aiming for a budget
production, the resulting game will be much better received by the players.

Summary

In this chapter, we learned that there is much more to making a game than just 
coding. The composition and organization of a team has a great impact on the final
product. Equally important is the methodology that the team chooses to employ for
the development of the game: code-and-fix environments are common but not very
effective, waterfall development can be useful for very well-known genres with little
risk involved, and iterative and agile development environments are probably the best
match for the ever-changing game industry.

When it comes to writing code, we saw how some common practices such as 
coding standards or use of source control can greatly help a team to work together. In
particular, techniques that help improve the quality of the code—such as code reviews,
good use of asserts, or unit and acceptance tests—will have a direct impact on the
game itself.

3.1 Teams and Processes 185



Finally, it is very important to research what code can be reused instead of writing
your own. The game middleware industry is growing and becoming more important
every year. That, combined with our choice of platform, will determine how develop-
ment should be done and the areas on which the team should concentrate.

Exercises

1. Write a one-page coding standard document on your language of choice
based on your preferences and style.

2. Swap coding standards with another student and discuss the choices you
made. Where do you disagree? Why? Write a revised coding standard that
both of you can agree on.

3. Choose one of the major areas of middleware (graphics, AI, networking,
sound, movie, animation, physics). Research the major middleware providers
for that area and come up with a table highlighting their features, differences,
and licensing costs. Which would you choose and why?

4. Compile a list of the major commercial game engines available to be
licensed. List any games released or currently in development that are using
each engine. Do any of those engines offer an editor and capabilities for end
users to modify the game?

5. Pick a game console of your choice. Find out as many hardware specs as you
can about it: CPU, memory, bus speed and bandwidth, graphics capabilities,
and so forth. How does it compare to a current PC? Why do you think that
console games manage to look almost as good (if not better) than many 
current PC games?

References 

[Beck03] Beck, Kent, Test-Driven Development, Addison-Wesley, 2003.
[Beck04] Beck, Kent, and Andres, Cynthia, Extreme Programming Explained: Embrace

Change, Addison-Wesley, 2004.
[Chandler08] Chandler, Heather, Game Production Handbook, Charles River Media,

2008.
[Hunt00] Hunt, Andrew, and Thomas, David, The Pragmatic Programmer, Addison-

Wesley, 2000.
[Jacobson99] Jacobson, Ivar; Booch, Grady; and Rumbaugh, James, The Unified

Software Development Process, Addison-Wesley, 1999.
[Larman03] Larman, Craig, Agile and Iterative Development: A Manager’s Guide,

Addison-Wesley, 2003.
[Maguire94] Maguire, Steve, Debugging the Development Process, Microsoft Press, 1994.
[McConnell96] McConnell, Steve, Rapid Development, Microsoft Press, 1996.
[McConnell98] McConnell, Steve, Software Project Survival Guide, Microsoft Press,

1998.

186 Part 3 Game Programming: Languages and Architecture



[McConnell04] McConnell, Steve, Code Complete: A Practical Handbook of Software
Construction, Microsoft Press, 2004.

[McConnell06] McConnell, Steve, Software Estimation: Demystifying the Black Art,
Microsoft Press, 2006.

[Rabin00] Rabin, Steve, “Squeezing More Out of Assert,” Game Programming Gems,
Charles River Media, 2000.

[Rollings03] Rollings, Andrew, and Morris, Dave, Game Architecture and Design: A
New Edition, New Riders, 2003.

[Schwaber04] Schwaber, Ken, and Beedle, Mike, Agile Software Development with
Scrum, Prentice Hall, 2004.

3.1 Teams and Processes 187



This page intentionally left blank 



189

Overview

You should always choose the right tool for the job, and a programming language is
just that, a tool. Apart from a few physical limitations, you can almost get the job
done with any language you want. However, if you choose the most appropriate lan-
guage, the development will go much smoother, and you will get done faster.

This chapter outlines the major languages used in game development, explains their
strengths, and helps you decide which one to choose in which situation.

C++ and Game Development

Back in the mid-to-late 1990s, C was the language of choice for game development.
Today, C++ has clearly stepped into the limelight and taken its place as the preferred
language for games.

Strengths

Why use C++? What is the reason for the language’s popularity? There are four main
reasons.

C++, Java, and Scripting
Languages

3.2

In This Chapter

Overview
C++ and Game Development
Java
Scripting Languages
Summary
Exercises
References 



Performance
Traditionally, performance has been king in anything related to game development.
Games often push hardware to the limits and try to do the unexpected. Today, with
the advent of powerful hardware in the form of modern PCs and game consoles, this
is not as much of an issue except for a few performance-critical sections of the game.
Even so, most games must perform many computations in the time it takes to display
one frame. For games trying to maintain a constant 60 or 30 frames per second, they
need to do everything in about 16 ms or 33 ms, respectively, so performance is always
an issue. We simply can’t afford for an operation to suddenly take 100 ms, because it
would affect our constant frame rate and shatter the player’s involvement in the game.

C++ is a very efficient language, and its constructs map very closely to low-level
operating system functionality and even hardware operations. With some knowledge
of assembly language and hardware architecture, it’s relatively easy to guess what the
hardware is going to be doing for a given section of C++ code.

C++ also makes the performance cost for each operation very explicit. The gen-
eral philosophy behind the C++ design is not to force people to pay for performance
of functionality they are not using. For example, using virtual functions adds a small
performance cost, but programmers can choose not to use them whenever they are
not necessary and avoid any extra cost.

Memory management is left up to the programmer, so there is no automated
garbage collection (the process that takes care of releasing memory that is no longer
used). Garbage collection is one of the most common causes for performance woes in
high-level languages, and its potential for unexpected performance spikes makes it a
problematic match with near real-time applications such as games.

In the rare situation where the performance provided by C++ is not enough, we
always have the option to drop to C or even straight assembly language. It is a trivial
matter to integrate C and assembly with C++ on most platforms. That way, we can
always squeeze that extra bit of performance necessary in a few critical parts of the code.

High-Level Features
What makes C++ particularly well suited for games is that, in addition to sporting
top-notch performance, it is also a language rich in high-level features. C++ has the
concept of classes with different levels of encapsulation, single and multiple inheri-
tance, polymorphism, metaprogramming (templates), and exception handling. These
features allow programmers to deal with the problem at hand at a higher level than
with assembly or C, and they can be used to easily apply development techniques
such as object-oriented programming.

Using high-level language features is especially important today as project complex-
ity keeps skyrocketing. When teams are working on code bases that exceed a 
million lines of code and involve dozens of programmers, any features that help 
programmers work at a higher level are well worth it. That way, programmers can con-
centrate more on solving the problem and dealing with the architecture, and less with

190 Part 3 Game Programming: Languages and Architecture



bit-twiddling, poking registers directly, and managing memory by hand. As a result,
the code will be much less error prone and productivity will be significantly higher.

Usually, high-level languages are associated with poor performance. In the case of
C++, though, all of the high-level features are implemented efficiently (sometimes at the
cost of clarity or simplicity), so the added performance cost for those features is minimal.

C++ also provides some language features that improve code reliability and mini-
mize errors at compile time instead of runtime. C++ is a strongly typed language,
which means the compiler is going to be very attentive that we always try to use para-
meters of the correct type when passing them on to functions. Such a simple concept
can catch many potential errors that would go unnoticed otherwise and waste every-
body’s time chasing after the problems in the debugger. 

Another compile-time feature that C++ introduces is const correctness. Member
functions can be marked as being constant (with the keyword “const”), which means
that they will not modify the contents of an object or call any non-const functions on
them. Again, this is a simple concept that adds more information to the source code
about our intent and allows the compiler to catch any errors in our programs right
away at compile time.

C Heritage
C++ is not the only high-level language with promises of good performance out there,
but it’s the only one with backward compatibility with C. Since C was the main pro-
gramming language during the late 1980s and early 1990s, it is natural that the indus-
try transitioned to C++ since it was such a small and gradual step. Companies were
able to carry over some code from previous projects, and, most importantly, program-
mers were able to carry over their expertise and past knowledge. This also meant that
C++ was mostly used as a simple “C with classes” at first, but it was enough to hook
the entire industry very quickly.

It also meant that compiler makers only had to improve their existing C compiler
to deal with C++ (not a trivial task by any means, but better than creating a whole
new compiler or development environment). As a result, C++ compiler support was
quickly widespread, even for some of the game consoles’ spotty tool support.

Finally, the C backward compatibility also meant that library writers had an easy
time with the transition. Any existing libraries for C could be used from within C++,
and as the language became more popular, new libraries specifically written in C++
started to appear. 

Libraries
Most of the major middleware providers offer C++ (and sometimes plain C) libraries,
which make using them for C++ a trivial matter. All of the major graphics APIs, such
as OpenGL and DirectX, also provide C++ libraries.

In addition to commercial libraries, C++ has a very comprehensive set of standard
libraries, the STL (Standard Template Library) [Josuttis99]. The STL attempts to
provide all the major high-level functionality needed by most programs. 

3.2 C++, Java, and Scripting Languages 191



Specifically, it provides two major types of functionality:

Containers: A set of common data structures that can be used with any type. Some
of the ones included are vectors (resizable arrays), lists, deques (queues), and
sets. All containers use the concept of iterators to access the elements inside the
containers.

Algorithms: A set of basic algorithms that work on containers. Some of the most
popular are sorting algorithms, search algorithms, or copying algorithms.

Using the STL will save you lots of time and resources creating (and debugging!)
some of that code from scratch, and because it’s part of the C++ standard, program-
mers will already be familiar with it, and other third-party code could be written to
interface with it easily.

Another, very popular library is Boost [Boost09]. Even though it’s not an official
library like the STL, its usage is very extended and it’s written in a way to integrate
seamlessly with the STL. Boost contains a wider variety of functionality than STL,
and is a bit more esoteric and specialized. You’re not likely to use all of it, but there are
probably a few sections that are perfectly suited for your current project. Just a few of
the highlights from Boost include a graph container and set of algorithms to manipu-
late graphs, a set of matrix manipulation functions, several smart pointers, and a reg-
ular expression library.

What’s not to like about these libraries? For starters, sometimes they are overkill
for the task at hand. Perhaps that’s not an issue when writing a GUI tool, but it might
be if we try to add it to the game engine. While the performance of most of these
libraries is top-notch, it sometimes surprises people who are not familiar with the
libraries by causing many copies of an object or creating many dynamic memory allo-
cations. It is important to become familiar with the inner workings of the most com-
mon parts of these libraries to use them effectively.

These libraries also make heavy use of templates and some very advanced com-
piler features. Even though every C++ compiler should ideally fully implement the
entire C++ standard specification, the truth is that few do. These libraries will not
always compile in every platform, and even if they do, the code generated might be
less than optimal, so you might be limited by your choice of platforms and compilers.

Debugging can be difficult when using these libraries because their code is tem-
plated and sometimes debuggers have a hard time peeking at the contents of some of
the containers. This can usually be solved with a few debugger tricks or by making the
code that uses them take smaller steps, each of which can be examined in the debug-
ger more easily.

Weaknesses

C++ might be the most popular language for game development today, but it is far
from perfect. The following are some of the major weaknesses of C++ as it applies to
game development.

192 Part 3 Game Programming: Languages and Architecture



Too Low Level
Although C++ has many high-level features, it still forces the programmer to deal
with too many low-level issues. C++ programmers have to worry constantly about
how memory is allocated and freed, they need to deal with memory pointers and
check whether they’re NULL and worry about them pointing to an invalid memory
location, or they have to manipulate texts with char * instead of using the higher level
concept of a string.

Both the STL and Boost attempt to alleviate this problem by providing high-level
ways of dealing with those issues. For example, the STL provides the std::string class,
which is a huge step forward from dealing with char *. Boost provides a set of smart
pointers that help remove some of the burden of memory allocation from the pro-
grammer. 

This is mostly the flipside of one of the main benefits of C++: performance and
good mapping to hardware operations. C++ was designed foremost as a systems lan-
guage, so performance was chosen at the expense of high-level features. When using
C++, much of the programming effort goes into the nitty-gritty, low-level details
without providing any performance benefits. Considering that over 90 percent of the
code that goes into a game is not performance critical, C++ might not be the best
match for game development. A higher-level language would allow the programmer
to ignore many of those features and concentrate his or her efforts on writing a great
game or engine instead. Later in this chapter, we’ll see how scripting languages can be
used to complement C++ in this respect.

Too Complicated
C++ is not just too low level, it’s way too complicated. A programmer might use C++
full time for years before he can claim to be somewhat competent, and even then,
there will be many aspects of the C++ standard of which he will have no knowledge.

The main reason why C++ is so complicated is because of its C heritage. Not 
surprisingly, that was one of its major benefits. At the time, the designers of C++ 
preferred to have a more complicated, backward-compatible language, than a clean,
totally new one that nobody was going to use and support. Looking at all the casual-
ties left along the road in the evolution of programming languages in the last few
decades, it looks like their decision was the right one.

In any case, what we’re left with now is a language much more complicated than
it could have been, and we need to put up with it. Other languages, like Java or C#,
take most of the good concepts of C++ without any of the historical baggage and 
present a clean, relatively simple, high-level language.

Lacking Features
The more you use C++ for modern game development, the more you realize how
many features C++ is lacking. You will probably spend a surprisingly large amount of
time trying to implement and shoehorn features into the game engine that should
have been readily available in the programming language itself.

3.2 C++, Java, and Scripting Languages 193



Any serious, data-driven design will want to have reflection or introspection fea-
tures in its entities (meaning, the objects themselves are aware of their structure and
the type of data they contain and can query it at runtime). Implementing that in C++
usually involves a mess of preprocessor macros or other complicated trickery that gets
in the way of writing the game or the engine itself.

Object serialization (writing to and reading from some media the state of an object)
is another perfect example. Every game has to come up with some way to serialize its
state to create saved games or send its status across the network. Invariably, every game
engine implements a different custom solution, wasting time and resources.

The same is the case with message passing. Many game engines want to pass mes-
sages between objects, but since C++ doesn’t natively support that feature, they each
need to implement it from scratch. The result is a different system in every game
engine, and it’s usually not as efficient as it could have been.

Other languages offer those features and many more right out of the box, and can
be applied to a game engine right away.

Slow Iteration
The last of the big problems with C++ is that it is often very slow for programmers to
iterate and try different things. C++ is very efficient, and because of that, it’s fully
compiled into native binary format from source code. That means that for every
change, the program needs to be compiled and linked against any other modules.

When you’re dealing with just a handful of source files and a couple of libraries,
build times are probably blazingly fast. However, hundreds of thousands or even 
millions of lines of code go into making a game. Compiling all those files takes a 
significant amount of time, even upward of an hour or two in some cases, depending
on the amount of code, how it is structured, and what features it uses.

Even if you only make a few changes and only one file needs to be compiled, the
link time could easily take 30 seconds to a full minute or more. Perhaps not very
much in the grand scheme of things, but it certainly puts a damper on really fast iter-
ation times.

Some compiler vendors are attempting to get around this problem by providing
special features, such as precompiled headers, incremental linking, or distributed
builds. Unfortunately, these features are not supported across all the platforms, and
they still don’t reduce iteration times to an acceptable amount.

Waiting for faster hardware is not likely to help because program size and com-
plexity will continue growing as the hardware improves. It’s even possible that this
problem will worsen because program complexity is an exponential problem that is
going to outpace any hardware improvements.

When to Use It?

After it’s all said and done, when does it make sense to use C++?

194 Part 3 Game Programming: Languages and Architecture



C++ is a very good match for any code where performance is crucial. This used to
be all the game code just over a decade ago. Today, it’s limited to some of the low-level
code in the engine along with things like graphics, physics, or low-level, CPU-intensive
AI functions. Most of the other code could be better written in a higher level language,
even at the expense of some performance.

Tools is another area in which C++ is not a perfect fit. There are higher level 
languages that are better suited to the development of GUI tools, including Java, C#,
or Python. Writing them in C++ is a bit like painting a wall with a paintbrush instead
of a roller: you can do it, but it’ll be more time consuming, and you’ll probably do a
worse job, even though you have more control over every stroke and can reach the
corners better.

On the other hand, if your current code base is mostly C and C++, it makes sense
to continue using C++. Perhaps consider alternatives whenever you rewrite sections of
it, but don’t fix what’s not broken. 

In addition, if you have a lot of C++ expertise in-house, you might be able to be
as productive in C++ if you make good use of high-level libraries, as you would with
other languages. You’ll certainly be more productive if you count the time it would
take to get up to speed with a new language. Again, plan to look at alternatives in the
near future since your team composition is likely to change, and bring in some people
who are not quite so experienced with C++.

Java

Java has been knocking at the door of game development for several years now with
its promises of rapid development and platform independence. It seems that with the
latest features, Java is finally ready to enter the big time in game development.

Why Java?

On the surface, Java is simply a high-level language that borrows many concepts from
C++ but simplifies things greatly because it doesn’t have to worry about maintaining
any backward compatibility with C. Not only did it avoid many of the low-level fea-
tures present in C, such as pointers and explicit memory management, but it also
sidestepped some of the overly complicated features of C++, such as templates or mul-
tiple inheritance.

In addition to presenting a very clean language, Java also introduced several high-
level features that are very useful in game development. Java has a serialization mech-
anism through which objects can easily save and restore their state to the disk or even
the network. It is also possible for a Java object to query its own structure through the
functionality provided by reflection.

However, there is much more to Java than a simplified C++. One of Java’s most
noticeable features is that it is not compiled into a native binary format and executed
directly on the hardware. Instead, Java is compiled into a special bytecode, which is

3.2 C++, Java, and Scripting Languages 195



then interpreted “on the fly” by the Java Virtual Machine (JVM), which is not a real
hardware machine, but rather an abstract computing machine. An implementation of
the JVM is a program that supports all the features present in the JVM specification
and can execute the Java bytecode directly on the platform on which it runs. 

A consequence of being compiled into an intermediate bytecode is that, at least in
theory, we can run compiled Java programs on any platform that has an implementa-
tion of the JVM. This was originally touted as “develop once, run everywhere.” 

In practice, this is not always true because of slight variations between platforms,
different capabilities, screen resolutions, and input devices. In any case, it is a large
step forward for multiplatform development over C++.

Because Java programs run directly on the JVM, they are completely isolated
from the actual hardware on which they run. This has the advantage of freeing pro-
grams from having to deal with the low-level details of the hardware. However, it also
means that programs have very little control over how they run on the hardware, and
might not be able to take advantage of platform-specific optimizations. We’ll look at
performance in more detail in the next section.

Java came surrounded by a very comprehensive set of libraries that made develop-
ing applications in Java very convenient from the very beginning. Some examples of
Java libraries are I/O, graphics, both low-level networking (sockets) and high-level
networking (e.g., HTTP and FTP protocols), and even libraries for writing GUI
applications (AWT and Swing). New libraries continue to be created for Java, and 
in recent years we have seen the introduction of libraries that bind Java to OpenGL
(graphics) or OpenAL (sound), which opened the door for developing high-performance
games in Java.

Performance

Performance has traditionally been Java’s Achilles’ heel when it comes to game devel-
opment. Even if performance wasn’t very close to what could be achieved with C++, it
was usually good enough for other types of programs, such as traditional GUI appli-
cations or Web-based programs. Over the years, many simple, Web-based games for
which performance wasn’t critical were created in Java because of the relative ease of
development and the simple deployment to many platforms. However, Java wasn’t
able to make it into the big leagues of commercial, shrink-wrapped games because
developers couldn’t afford to take a 4x to 10x performance hit across the board.

However, things have changed rapidly over the years, and, while Java perfor-
mance is still not up to the level of C++, it is close enough that it has turned many
heads and made developers reconsider their choice of development language. Many
optimization techniques have been applied to the JVM, including Just-In-Time (JIT)
compiling, which takes the next section of code that is going to be executed and com-
piles it “on the fly” to native binary format, and, more recently, HotSpot virtual
machines, which look at particularly critical sections of the code and optimize them
“on the fly.” 

196 Part 3 Game Programming: Languages and Architecture



Years ago, Java was very strict about only using platform-independent code that
could run on any Java platform. The result was that programs were easy to port, but
performance was often lacking. Now, Java has taken a more open approach, and
allows access to native binary code. Java can now use hardware-accelerated 3D graph-
ics through OpenGL bindings, or have access to sound hardware operations through
OpenAL. It is also possible to write some of the high-performance parts of the code in
C++ or other language that compiles natively, and use that code from within a Java
program through the Java Native Interface (JNI). Clearly, using native code that way
restricts the range of platforms we can develop for, but it makes it possible to write
programs that would be impossible to write otherwise.

We can expect the trend of providing better and faster access to native code to
continue in the future. Java is also about to introduce some features that are crucial to
commercial game development, such as access to high-resolution timers.

One area in which Java is still lacking is memory management. Because it doesn’t
allow for explicit memory management on the part of the programmer, it needs to do
automatic garbage collection. The problem with garbage collection is that it can have
unexpected performance hits, causing unexpected pauses in the middle of the game.
There are programming techniques that people can apply to minimize the amount of
dynamic memory allocation that is going on and to try to smooth out the costs of
garbage collection. However, doing so comes with the cost of extra complexity, which
starts to detract from the original simplicity of the language in the first place.

When you consider everything together, Java can now very seriously compete
with C++ as a game development language. It can’t quite compete with C++ in pure
raw power, but it more than makes up for it with a shorter learning curve and its ease
of development and maintenance. Especially now that games are so complex, trading
some performance for robustness and easier development seems like a move in the
right direction.

Platforms

Java can be used on a wide range of platforms, but unfortunately, it’s not available for
every major gaming platform yet.

Java has a strong presence in downloadable or browser games. It is very well suited
to that platform because Java programs can be delivered very easily to many platforms
using a Web browser, and also because Java runs entirely inside its virtual machine,
which reduces the security risk of running downloadable programs.

Java started its life targeting embedded systems, so it’s not a surprise to find that
it’s a major contender in the mobile and handheld arenas. Even though the hardware
in those platforms is not nearly as powerful as full-blown PCs, Java is still a good
choice because it abstracts out all the different hardware and allows developers to
write games that can be used in many different mobile phones or handheld consoles.

Java is also well suited to create full commercial PC games, but so far, there haven’t
been many PC titles using Java as their primary language. Especially for simpler

3.2 C++, Java, and Scripting Languages 197



games that concentrate more on gameplay rather than pushing the limits of the hard-
ware, Java would be a very good fit. One area in which Java has contributed to PC
games is as an embedded scripting language. Several high-profile titles have chosen
Java to implement most of the high-level game behavior to reap the benefits of ease of
development.

However, the one area in which Java is conspicuously absent is game consoles.
None of the major game consoles for this generation has an official implementation
of the JVM; however, the Xbox 360 does support C#, a close cousin of Java.
Unfortunately, the performance and control of C# still isn’t as good as C++ on the
Xbox 360, thus resulting in virtually no shrinkwrapped C# games on the platform
(although some Xbox Live Arcade games are made with C#). As bleak as this looks for
consoles, it doesn’t mean that developers can’t write their own since the specifications
for the virtual machine are widely available, but it’s yet another obstacle for Java’s
adoption in these platforms.

It looks like Java has the game platforms very well covered, with the notable
exception of game consoles. Unfortunately, game consoles are currently the most 
popular gaming platform for full, commercial games, so that tends to put Java into a
secondary role behind C++. However, Java dominates the handheld development,
and has a strong presence in downloadable games. Do not be surprised if Java’s influ-
ence soon spreads to game consoles and PCs.

198 Part 3 Game Programming: Languages and Architecture

What Games Use Java?

The proof, as they say, is in the pudding. When all is said and done, what 
commercial games are using Java? 
First, we have all the downloadable games aimed at the casual market. Probably
the most successful company is PopCap Games, with versions of their games
fully written in Java, such as Peggle, Bejeweled, and Bookworm.
A very different market segment that also uses Java, because of its downloadable
potential, are online card games. Yahoo Games is one of the most popular por-
tals for card games, most of which use a Java client. Many online casinos also
provide Java clients to play Poker or Blackjack.
In the commercial PC games arena, we have some very popular titles that use
Java as their main scripting language. One of the first to incorporate Java was
Nihilistic’s Vampire: The Masquerade. The postmortem in Gamasutra gives more
details about how they integrated Java into their game [Huebner00].
A more recent example of a game making good use of Java is Star Wars Galaxies.
They also use a slightly simplified version of Java as their scripting language. 



Scripting Languages

It is usual for many games today to rely on scripting languages to implement some
part of their high-level game code. Some use scripting languages just for triggering a
few events and perhaps controlling a sequence during an in-game cinematic, while
others use them for all their game logic and behavior. This section looks at the role of
scripting languages in games, and the choices we have when using a scripting language
in our own projects.

Why Scripting Languages?

There are many reasons why games use scripting languages.

Ease of Development
Ease of development is one of the reasons cited most often for using scripting lan-
guages. They’re certainly easier to use than C++, but unfortunately that thought is
often followed by saying that the designers can take care of writing in the scripting
language themselves, although that is hardly ever a good idea. True, designers can
make some changes to existing code, and even some designer-programmers (also
called “technical designers”) are often up to the task without any problems. The
majority of the time, though, script code still needs to be written by a programmer,
even if a less experienced one.

It should also be faster and less error prone writing code in a scripting language
than doing it in C++. Because scripting languages are often higher level than C++,
many things are taken care of behind the scenes. For example, scripting languages
often take care of memory allocation, freeing the programmer from dealing with
pointers and managing object lifetimes.

3.2 C++, Java, and Scripting Languages 199

This is even more meaningful because Star Wars Galaxies is a massively multi-
player online game, so it is interesting to see they were willing to go in this 
direction.
What about games that were fully written in Java? Some of the most popular are
Jellyvision’s You Don’t Know Jack and Who Wants to Be a Millionaire. Both of
them were extremely popular games aimed at the casual market. A game aimed
at a more hardcore gamer market that made heavy use of Java technology was
EA’s now defunct game, Majestic, whose back end was completely implemented
using Java.



In the end, we’re trading some performance (because scripting languages are usually
significantly slower than C++) for ease and speed of development. Since high-level
game code is not usually performance critical, but it’s very feature rich and involves a
lot of programming, this is a very worthwhile tradeoff in most situations.

Iteration Time
Perhaps the most important reason for using a scripting language is iteration time, the
time elapsed between the moment we make a change to the code and the moment we
see the results in the game. If we were doing our programming in C++, the iteration
time would involve compiling the code, linking it with all the libraries, and running
the game. With a scripting language, we usually don’t need to compile anything, and
we sometimes can reload scripts “on the fly” while the game is running. Iteration time
can easily go down from one to two minutes to about 10 seconds.

Code Becomes an Asset
One interesting consequence of writing some code in a scripting language is that it
becomes possible to treat that code as a game asset instead of being part of the pro-
gram. For a data-driven game, this means it’s much easier to keep game code and the
rest of the game content in sync, since they can be modified and updated together. 

For example, consider a peon unit in a real-time strategy game. Without using a
scripting language, the behavior for the peon would be specified in code, so it would be
part of the game executable, and the rest of the peon would be game assets (textures,
sounds, animations, etc.). If we implemented all of the peon’s behavior in a scripting
language, we could add those scripts to the rest of the data and have a self-contained set
of assets that fully described how the peon looked and behaved in the game.

Another consequence of treating code written in a scripting language as a game
asset is that it can be easily modified, updated, and redistributed by end users who
want to make modifications to the game. If all code were written in C++ and com-
piled as part of the program, users would be limited to providing new textures, mod-
els, or levels. If they wanted to write new behaviors or overwrite existing ones, they
would either not be able to do it, or would need to write C++ code in the form of
DLLs, compile them, and redistribute them. This requires that people have a full
development environment, and also creates important security problems by redistrib-
uting full DLLs and executables. However, if the game code uses a scripting language,
users can edit existing scripts or write new ones and redistribute them with the rest of
their new assets as part of their mod without any difficulty.

Features
Scripting languages are easier and simpler than C++, but that doesn’t mean they are a
crippled language. Quite the contrary: many scripting languages offer features that are
not found in C++. For example, scripting languages often provide functionality to
save and restore the state of objects (serialization), ways to examine the contents and
structure of an object (reflection), or even lightweight versions of threads. If we were

200 Part 3 Game Programming: Languages and Architecture



writing the game purely in C++ and wanted to use some of those features, we would
be forced to write them from scratch.

Apart from some general language features, scripting languages can be highly cus-
tomized to the way they’re used in the game, so they might provide a lot of high-level
functionality for those tasks. For example, a scripting language that is mainly
intended to be used for AI behaviors might support finite-state machines or fuzzy
decision trees. On the other hand, a scripting language intended to sequence events
for in-game cinematics and other scripted events might have very good support for
events on a timeline. Trying to write code like that in straight C++ would be fairly
cumbersome and not very intuitive.

Drawbacks of Scripting Languages

Not everything is greener on the other side of the fence of scripting languages. For all
their advantages, they have their share of drawbacks.

Performance
You pay for all the nice features of scripting languages with performance. You just
can’t expect to achieve the same performance writing some code in a scripting lan-
guage as you would in C++. Depending on the scripting language, the performance
hit could be as much as 10 times or more the performance of an equivalent C++ pro-
gram. Don’t despair, though, because the primary use of scripting languages is high-
level game logic code, and most of the time, this should not be performance-critical
code and we can afford the extra performance hit.

Why are scripting languages so slow? Because they are usually not compiled into
a native, binary format as C++ programs are. Many scripting languages are purely
interpreted languages, which means that they are parsed and executed “on the fly,”
while the game is running. Being interpreted means that there is no need for a com-
pile step between changing the code and running it; it can also mean that we can
reload scripts even while the game is running, which might not have been possible
with a purely compiled language.

Some scripting languages take an intermediate approach and compile their source
code into an intermediate bytecode (much like Java does) and execute that bytecode
instead. The results are usually much better performance at the cost of having a short
compilation step after modifying the program.

Another area that can greatly affect performance is automatic memory manage-
ment (also referred to as “automatic garbage collection”). Unlike C++, most scripting
languages try to avoid forcing the programmer to deal with managing memory man-
ually, so they have to take care of releasing memory whenever it’s not used anymore. It
sounds like a great idea because it frees the programmer from dealing with low-level
details, but it can sometimes cause unacceptable stalls and performance problems in a
real-time application such as a game.

3.2 C++, Java, and Scripting Languages 201



Dynamic memory utilization is another problematic area that can affect perfor-
mance. Some scripting languages are not very careful about limiting how much mem-
ory they use as they parse and execute the script code. That might be fine on a PC
with large amounts of RAM and virtual memory, but will be completely inadequate
on a game console with very limited amounts of RAM.

Tool Support
It’s an unfortunate reality that tool support for most existing scripting languages is
severely lacking when compared to C++. You will find that if you have a debugger at
all, it will be rather primitive. Profiling tools might be nonexistent. Even finding an
integrated development environment with syntax highlighting and a good code
browser could be a challenge. So, count on the fact that your tools will not be as sharp
as the C++ ones. 

Unless you have many resources, writing your own scripting language is not
going to help either. It is hard enough to implement a scripting language that does
exactly what you want, but writing all the supporting tools on top of that is a huge
effort that most teams can’t afford to do. Usually, home-brewed scripting languages
end up having the worst set of tools, if any at all, unless they are reused and improved
in subsequent projects.

Catching Errors
Most scripting languages are dynamically typed. In theory, this is a good thing
because it frees the programmers from having to explicitly declare variable types and
then use them, so productivity should be higher by allowing programmers to write
the program and forget about language rules. Unfortunately, dynamic typing com-
bined with how scripting languages are often interpreted also means that scripts can
contain errors that won’t be detected until that code is executed. With strongly typed,
compiled languages like C++, the compiler is merciless and catches many mistakes at
compile time, saving much time and effort in the long run.

Interfacing with the Rest of the Game
The scripting language code sits on top of all the engine and game code, which was
probably written in C++. For those scripts to do anything useful, they need to com-
municate with the game code. It should be possible to trigger actions from the scripts,
create new objects, run calculations, or read the game state. The interfacing between
the scripting language code and the C++ code is not a trivial matter.

Different languages handle this differently, but it usually involves having to
explicitly flag C++ functions as being “exported” to the scripting language. This is
usually done with a lot of macro or template trickery to avoid all the typing involved
if it were to be done manually. Often, these functions are limited to having basic data
types for their parameters, such as integers, floats, Booleans, and strings, and very
rarely can they pass around full objects. The functions themselves are also usually
required to be global functions, so scripting languages can’t always access objects and
their member functions directly.

202 Part 3 Game Programming: Languages and Architecture



All of these restrictions make the interface between the scripting language and the
rest of the game more awkward than it should be, and leave script programmers wish-
ing for more functionality and a better interface.

Popular Scripting Languages

These are some of the most popular scripting languages in game development. You
can use this section as a starting point to finding out more about each language.

Python
Python is an interpreted, object-oriented scripting language [Beazley09, Martelli06,
Python09]. It has a host of libraries covering just about any functionality. The syntax
is clear and easy, but it stands out from a C-like syntax in that white space determines
the structure of the program. Because it’s a mature language and has been around for
a while, it has a lot of available documentation, tutorials, and reference materials. Tool
support is also fairly good, with an interactive shell and even a remote debugger. 

On the flip side, Python is quite large, so using it in memory-limited environments
might not be an option. There is a variant of Python called “Stackless Python” that attempts
to remedy this situation and is better suited for embedded systems or game consoles.

Lua
Lua is a very lightweight scripting language, designed to be embedded in other programs
[Lua09, Ierusalimschy06]. It is not natively object oriented, but it can be extended to
use many object-oriented concepts. Lua sports a small memory footprint and very
good performance, which makes it a very good candidate to embed in games, even for
game consoles with more limited hardware.

On the negative side, Lua has some performance issues with garbage collection,
causing pauses in execution at inopportune moments. Unlike Python, Lua uses only
one number type, a C double format, which causes numerical computations to be
quite slow, so those are best left to the code written in C++. In addition, Lua is a small
and simple language, but because of that, it doesn’t necessarily scale well to large pro-
jects written exclusively in Lua.

Other Off-the-Shelf Languages
Lua and Python are currently the two most popular scripting languages used in
games, but the world of scripting languages doesn’t end there. Other less popular lan-
guages that are sometimes used in a game include Ruby, Perl, and JavaScript. Before
jumping into your next project, it might be worth evaluating those languages to see if
they have some advantages given your project requirements. 

Custom Languages
Many games take the route of writing their own scripting language from scratch. You
won’t be able to use those languages in your game (unless you’re working with their
engine), but it is worthwhile to familiarize yourself with some of the most popular
languages and learn their advantages and drawbacks.

3.2 C++, Java, and Scripting Languages 203



Some of the most popular custom scripting languages are UnrealScript (Unreal
engine), QuakeC (Quake engine), and NWNScript (Neverwinter Nights). These lan-
guages are used heavily in the creation of mods (modifications) of those programs by
gamers who want to provide their own content and new games on top of those
engines. You’ll be able to find extensive documentation online, both from the compa-
nies that wrote those engines and the users themselves.

One word of warning before you decide to write your own scripting language:
writing a robust, efficient scripting language is extremely difficult. Unless you have a
lot of experience creating languages, compilers, and interpreters, it’s going to take
much longer than you thought, and it’s going to be much slower and less effective
than you hoped for. Make sure that you need to do something unique that you can’t
do with an existing language. In the end, many teams that attempt to write their own
language end up regretting it, and they’re left with a general scripting language very
similar to Python or Lua, but much less effective and without any of the support from
existing tools and documentation.

204 Part 3 Game Programming: Languages and Architecture

A Company That Did Write Its Own Language

A cautionary tale about writing your own scripting language comes from the
company Naughty Dog, which used a custom in-house scripting language
called GOAL (Game Object Assembly Lisp) for their Crash Bandicoot and Jax
and Daxter franchises during the PS1 and PS2 years. In fact, GOAL might be
one of the most unique and all-encompassing game scripting languages, since
virtually all systems in the game were written in the language. While GOAL
worked well for Naughty Dog, in general, allowing fast iteration and such, the
company had extreme difficulty hiring qualified programmers since almost no
one else in the game industry was experienced in Lisp. Once Naughty Dog
started development on the PS3, the decision was made to abandon GOAL,
primarily because Naughty Dog couldn’t leverage code from Sony’s other 
studios and vice-versa [VanLeuveren07]. Another important reason for not
transitioning GOAL to the PS3 was that the original architect and co-founder
of Naughty Dog, Andy Gavin, was no longer with the company. So while
GOAL was an asset to the company for many years, once the mastermind had
left and a major architecture transition was required, GOAL became a liability.



Choosing a Scripting Language

As discussed earlier, scripting languages are not without their set of problems.
Selecting the wrong scripting language will do more harm to a project than any bene-
fits it will provide. This section raises some questions that you should answer before
choosing what scripting language (if any) you should use for your next project.

Do You Need a Scripting Language?
We’ve been assuming all along that we want a scripting language, but this is the very
first question you should ask yourself. A scripting language is a great tool for rapid
iteration, experimentation, and future modifications. However, if you don’t need any
of those features or you can’t give up a bit of performance, a scripting language might
not be for you. If you’re working on a very well-defined genre, you know exactly what
you’re going to write, and you don’t plan to make many changes along the way, writ-
ing all the game code in C++ might even save you time.

However, most games of a reasonable complexity will greatly benefit from the use
of a scripting language to implement most of their high-level game code.

What Features Do You Need?
What do you want out of the scripting language? Do you want a general scripting lan-
guage that replaces C++ for the high-level game code, or do you want something
much more specialized? The wider the range of tasks you want to do with it, the more
general the scripting language should be. Alternatively, you could use several types of
scripting languages in the same game; for example, one for the animation system, one
for the AI decisions, and one general one for the user interface and any other miscel-
laneous code. However, you will need to go to the effort of integrating and support-
ing each scripting language in your game.

What Kind of Performance Do You Need?
Do you need to write code in a scripting language that is going to be almost as fast as
C++, or are you willing to give up some performance? Usually, the more performance
you’re willing to give up, the more features and ease of development you’ll get in return. 

Before you answer that you need top performance, keep in mind that most games
only have a few areas that are true performance bottlenecks (graphics, physics, colli-
sion), and high-level code is not usually one of them. However, if you’re planning to
move thousands of units simultaneously on the screen, you might want to use a
scripting language with high performance.

In addition to pure execution speed, you should also consider memory footprint
and the performance of garbage collection if the language you’re considering has it.

What Debugging Facilities Does the Language Have?
If all the scripting language is going to do is drive the front-end GUI, you probably
don’t need much in the way of debugging facilities. Whenever you need to verify
something, you can rely on the old-fashioned method of printing something to the

3.2 C++, Java, and Scripting Languages 205



console output whenever an event happens. However, if most of your high-level game
code is written in a scripting language, you will definitely want to have a full-blown
debugger for that language. You will want to set breakpoints, step into code, see the
state of the game, and so forth. You will also want to have robust error handling to
prevent the scripts from crashing at the first sign of trouble.

This very important aspect is often overlooked when evaluating scripting 
languages. Having adequate debugging facilities in a game that makes heavy use of
scripting can mean the difference between shipping a great game or not shipping at all.

On What Platforms Does the Scripting Language Need to Run?
If you’re using an off-the-shelf scripting language, you might be limited to the plat-
forms to which it has already been ported. Specifically, that means you might find it
difficult to find languages to run on game consoles. Sometimes, the source code for
the scripting language itself will be available and you’ll be able to port it to your plat-
form of choice, but that might be a challenging task (depending on how different
your target platform is). Also, keep in mind that by porting it to a new platform, you
might lose some of the other benefits already available such as high-performance,
debuggers, platform-specific libraries, and so forth.

What Expertise and Resources Do You Have Available?
Look around you and think about what expertise you have in your team. If everybody
is already comfortable with a certain scripting language, that is a big point in its favor,
as the team will be able to start using it effectively from the first day. On the other
hand, if you’re just putting a team together or nobody has any previous experience,
you’re free to choose a language based on other factors. In addition, if you have a lan-
guage guru on the team with a lot of previous experience, and you want to do some-
thing unique, maybe putting together a new scripting language is a possibility.

Summary

C++ is the current language of choice for most game development. It combines the
low-level control and high performance of C with the object-oriented approach and
higher productivity of high-level languages. Knowing the language well is essential to
take full advantage of it and avoid common pitfalls that are all too frequent in C++.

Java and C# have been making some inroads in game development over the years.
With some of the recent updates to the Java language and libraries, the performance
of Java programs has become much better. Combined with the fact that Java is easier
and much cleaner than C++, as well as slightly higher level (which implies more pro-
ductivity), it is easy to see why it has become a more attractive alternative.

More games every day are using scripting languages to write much of the high-
level game code. Whether it’s done by designers or programmers, it allows for very fast
development and iteration of game features. When using a scripting language, we can
use one of the popular off-the-shelf ones (Python or Lua), adopt one for an existing
game, or write our own.

206 Part 3 Game Programming: Languages and Architecture



Exercises

1. Some of the more complicated features of C++ not present in Java are multi-
ple inheritance and templates. How does Java provide similar functionality?

2. List all of the containers available in the STL and give an example of how
you would use each.

3. Select two libraries from Boost (www.boost.org/) and explain how they can
be applied to any aspect of game development.

4. Serialization and reflection are two features found in Java that are not pre-
sent in C++. Write some code that uses both features. Explain specific uses
for those features in a game.

5. Look at the top-10 list of PC games sold this month or year. For every
game, list whether it has a scripting language exposed to the end user, and if
so, which one. What conclusions can you draw from looking at the list? Is
any one language dominant?

6. Choose any PC game of your choice with a custom scripting language.
Analyze its scripting language and compare it to Python or Lua. Is it faster
or simpler? Does it have any radically different features? What kind of tool
support does it have (editors, profilers, debuggers, etc.)?

References 

C++

[Alexandrescu01] Alexandrescu, Andrei, Modern C++ Design, Addison-Wesley, 2001.
[Boost09] Boost C++ Libraries, www.boost.org/.
[Dickheiser06] Dickheiser, Mike, C++ for Game Programmers, Charles River Media,

2006.
[Josuttis99] Josuttis, Nicolai M., The C++ Standard Library, Addison-Wesley, 1999.
[Meyers96] Meyers, Scott, More Effective C++, Addison-Wesley, 1996.
[Meyers01] Meyers, Scott, Effective STL, Addison-Wesley, 2001.
[Meyers05] Meyers, Scott, Effective C++: 55 Specific Ways to Improve Your Programs

and Designs (3rd Edition), Addison-Wesley, 2005.
[Stroustrup00] Stroustrup, Bjarne, The C++ Programming Language Third Edition,

Addison-Wesley, 2000.

Java

[Bloch01] Bloch, Joshua, Effective Java Programming Language Guide, Addison-
Wesley, 2001.

[Clingman04] Clingman, Dustin; Kendall, Shawn; and Mesdaghi, Syrus, Practical
Java Game Programming, Charles River Media, 2004.

[Eckel06] Eckel, Bruce, Thinking in Java, 4th Edition, Prentice Hall, 2006.

3.2 C++, Java, and Scripting Languages 207

www.boost.org/
www.boost.org/


[Flanagan05] Flanagan, David, Java in a Nutshell, 5th Edition, O’Reilly & Associates,
2005.

[Harbour07] Harbour, Jonathan, Beginning Java Game Programming, 2nd Edition,
Course Technology PTR, 2007.

[Huebner00] Huebner, Robert, “Postmortem of Nihilistic Software’s Vampire: The
Masquerade—Redemption,” Gamasutra, 2000, available at www.gamasutra.com/
features/20000802/huebner_01.htm.

[JavaTech09] Java Technology, http://java.sun.com/.

Scripting Languages

[Beazley09] Beazley, David, Python Essential Reference, 4th Edition, SAMS, 2009.
[Ierusalimschy06] Ierusalimschy, Roberto, Programming in Lua, 2nd Edition, Roberto

Ierusalimschy, 2006.
[Lua09] Lua Programming Language, www.lua.org/.
[LuaUsers09] Lua Users Wiki, http://lua-users.org/wiki/.
[Martelli06] Martelli, Alex, Python in a Nutshell, 2nd Edition, O’Reilly & Associates,

2006.
[Python09] Python Programming Language, www.python.org/.
[VanLeuveren07] Van Leuveren, Luke, “Naughty Dog Interview Part Two,” PALGN,

2007, http://palgn.com.au/article.php?id=9226.

208 Part 3 Game Programming: Languages and Architecture

www.gamasutra.com/features/20000802/huebner_01.htm
www.gamasutra.com/features/20000802/huebner_01.htm
http://java.sun.com/
www.lua.org/
http://lua-users.org/wiki/
www.python.org/
http://palgn.com.au/article.php?id=9226


209

Overview

A firm understanding of programming fundamentals is required to program video
games. This includes rudimentary data structures, object-oriented techniques, and a
healthy repertoire of design patterns. While these topics are covered in many intro-
ductory programming books, this chapter will directly address how they apply to
games, providing many useful insights along the way.

Data Structures

Game programming, like any other type of programming, involves using data struc-
tures for just about everything. The fundamental data structures are the same as for
any other type of programming, but this section will highlight which ones are used
the most, when they are typically used, and what unusual twists you may come across. 

Arrays

Arrays are a sequence of elements occupying adjacent positions in memory. It is possi-
ble to access any element of an array from its index very quickly (in constant time).
You can’t insert new elements in an array, but you can replace existing ones by copy-
ing over them.

Programming Fundamentals3.3

In This Chapter

Overview
Data Structures
Object-Oriented Design in Games
Component Systems
Design Patterns
Summary
Exercises
References



Arrays are very attractive for their simplicity: they never grow, they don’t fragment
memory, and elements never move to a different memory location. In addition, arrays
are extremely cache-friendly because all their elements lie contiguously in memory and
as long as you’re traversing them in order, you will get great cache coherence. These
properties make them a good choice for situations with limited memory or where
dynamic memory allocations are not possible and we know the number of elements we
want to store is fixed. Arrays were probably the most used data structure in game devel-
opment during the 1980s, when memory was counted in KB instead of MB or GB.

However, those same properties make arrays unsuitable for a variety of applica-
tions. Arrays can’t really be used if the number of elements is not known ahead of time
(unless you want to check for running out of space, reallocating a new array, copying
all the elements, and fixing up any pointers—not a trivial task). In addition, inserting
or deleting elements in a specific place in the sequence requires copying all the ele-
ments after that place and shifting them over by one. That copy operation can be very
costly, so it’s better to avoid it as much as possible.

One of the main problems with arrays is trying to access an element out of bounds.
It is very easy to set up a for loop that is off by one and tries to read or write one element
past the last one in the array. In C and C++, the program will silently try to access that
element without any warnings or errors, although other languages handle this situation
better. If you are lucky, this will result in a crash, and you’ll know something is wrong
right away. Otherwise, the program could go on having read garbage data from the
nonexistent slot, causing all sorts of weird behavior, or, even worse, could write data to a
location in memory that is used by something else, causing the game to crash at a later
time or behave in very strange ways. Bugs like that are very difficult to track down, and
they have haunted programmers for many a night. There are commercial products that
check your code for out-of-bounds errors, but not everybody is using them.

A better alternative to arrays is to use a higher level data structure with many of the
same performance properties but better error checking and even the possibility for
growth. The std::vector data structure in the C++ STL [Josuttis99] is one very good
alternative to arrays: it is just as fast as an array, it has some error checking (in debug
mode) to prevent the program from accidentally going out of bounds, and it can grow if
needed. Just keep in mind that if the vector ever grows, it needs to copy all its elements
over to the new location. This means that the type of object you store in the vector must
be able to be copied (if they’re objects, they need to have a valid copy constructor), any
pointers or iterators you had from before the copy will be invalidated, and the copy
operation itself might be a significant expense. You should consult the documentation
or a good book on STL for the exact behavior of the std::vector data structure. 

Linked Lists

Lists are extremely common in game programming. It seems that just about everything
ends up stored in a list at one point or another: game entities in the world, projectiles

210 Part 3 Game Programming: Languages and Architecture



3.3 Programming Fundamentals 211

in the air, players in the game, items in the inventory, and so forth. Their main advantage
is that, unlike arrays, it’s really fast to add or remove any element. The drawbacks are
that lists require a bit more memory (a pointer or two per element), and they’re not stored
consecutively in memory, so we won’t get as good a cache consistency as with arrays.

Linked lists can be either singly linked or doubly linked. Singly linked lists only
have one pointer per node, going from each element to the next one in the list. This
reduces the memory overhead of the list, but prevents us from efficiently traversing
the lists backward, or adding an element at any arbitrary point in the list unless we
already have a pointer to the previous element. Doubly linked lists don’t have any of
those problems, but require two pointers per element.

Since linked lists are used so frequently, there is no excuse to write code for a new
linked list in every situation. Even though lists are a very simple data structure, it’s
always a bit tricky to get all the cases right when removing elements from the end or
the beginning of a list, and it’s easy to introduce bugs. You should be using an existing
linked-list implementation, such as std::list in C++ STL (or std::slist for a singly
linked list). Java and other languages all offer a version of a linked list in their libraries.
If those implementations of linked lists for some reason are not acceptable, consider
rolling your own once and using it everywhere you need it.

Dictionaries

It might come as a surprise that dictionaries are one of the most common data struc-
tures used in games, but that’s due to the interactive nature of games. In a modern
game, game entities are constantly interacting with each other: they send messages to
other entities (as they collide or as the result of a trigger), they create new entities
(spawning new enemies or creating debris during an explosion), and they are on the
lookout for the presence of other entities (AI scanning for enemy presence or a trap
waiting for the player to walk into). During these interactions, we often need a way to
go from some sort of unique entity ID to the actual game entity it represents, and
that’s exactly what a dictionary does.

A dictionary efficiently maps one set of keys to a set of data. This can be imple-
mented in many different ways: as a balanced tree, as a hash table, or as an ordered list
of pairs. The important part is that the translation from key to data happens effi-
ciently. The C++ STL provides several types of dictionaries: std::map, std::multimap,
and, in some versions, std::hash. Which one you use will depend on your data set and
your performance and memory requirements. 

These dictionary structures will often have an algorithm complexity of O(log n)
or even O(1). However, don’t be lured by the algorithmic complexity alone; keep in
mind that for small data sets (less than one hundred or even a few hundred), it is often
faster to do a linear search through all the elements in an array than try to use a fancy
dictionary data structure. When in doubt, run some tests to decide if you should be
using a dictionary for your queries.



Dictionary data structures are not limited to mapping entity IDs to pointers.
Other frequent uses of dictionaries in games are mapping between entity names and
their code definition, between filenames for resources and the actual loaded resource,
or between sound names and their offset in the sound bank.

Other

Other types of data structures often crop up in game development. Some of the most
common are stacks and queues. As you can imagine, the C++ STL provides templated
implementations for both of them: std::stack, which is an adapter that sits on top of
another container, and std::deque or std::queue.

Stacks are used for anything that needs to be processed in first-in, last-out order.
They will often be used internally with functions that traverse a hierarchy of elements,
using a stack to store information about each level visited and then unwinding the
stack to combine the results (e.g., updating rotations and translations through a hier-
archy of nodes). Other uses of stacks could involve applying damage or effect rules if
the design requires them to be added all at once and then resolved in reverse order.

Queues, which implement a first-in, first-out order, are perhaps used more fre-
quently than stacks. The most common use of a queue is to store messages between
entities for a frame. In one phase, all messages are stored, and then they’re distributed
in the same order in which they were received. Queues are also used for network pack-
ets (incoming and outgoing), to store all collisions affecting an object, and so forth. 

A variation on a queue is a priority queue, in which the exit order is not deter-
mined just by the order in which it was added, but by some other factor. Priority
queues are extremely useful for optimizing access to a set of elements. For example, if
there were 1,000 entities in the world, it would be a waste of performance to visit
every entity every frame and ask it if it needs to update anything for this frame. Even
if they did nothing, traversing all entities that way would slow things down signifi-
cantly because of the constant cache misses. A better strategy would be to store all the
entities in a priority queue, and the priority factor would be at what time in the future
they need to be executed. The sooner they have to be executed, the more toward the
front of the queue they are. That allows us to pop entities from the top, execute them,
and put them back in the queue until we find that the top entity does not need to exe-
cute this frame, which can mean that maybe we only executed a handful of entities
and didn’t touch the rest.

There are many other types of data structures used in game development, but
they’re usually very specialized ones that apply to a specific domain. For example, one
of the most crucial ones to the performance of a game is a spatial data structure; that
is, a data structure that gives us good performance in spatial queries such as “what
entities are nearby,” “what am I seeing in front of me,” “what am I colliding against,”
and so on. Some types of spatial data structures are hierarchical grids, quadtrees, or
octrees, and you would pick which one to use based on the requirements for your par-
ticular game. Computer graphics also has its share of specialized data structures, such

212 Part 3 Game Programming: Languages and Architecture



as BSP trees for visibility or adjacency data structures to quickly traverse the edges of
a mesh and create shadow volumes. Various collision and graphics data structures are
discussed in detail in Chapter 4.2, “Collision Detection and Resolution,” and in
Chapter 5.1, “Graphics.”

Bit Packing

Bit packing is one of those very useful tricks that are not usually taught in computer
science courses. Perhaps it’s not all that necessary for general software development, but
it certainly comes up a lot in game development and embedded systems programming.

Basic data types, such as integers or floats, are of a fixed size, independent of the
value of the number they represent. For example, an unsigned integer could be repre-
sented with 32 bits and have values ranging from 0 to 232–1. Bit packing allows you
to use less space when you know you don’t have the need for so many bits to represent
the range of values in which you are interested.

Flags

Let’s look at a simple example. Imagine that every item in the game has a set of flags
indicating some of its properties. Since each property is just a true or false, we can use
Boolean variables to represent each state. The corresponding C++ code could look
like this:

bool isWearable;

bool isMagical;

bool isCursed;

bool isPoisoned;

bool isLightSource;

//... more properties here

In theory, we just need one bit to represent each Boolean: it can only be either
true or false. However, if you actually look at the memory layout of such a structure,
you will find that the compiler probably set aside more bits than that for each vari-
able. In most current platforms, it probably used up 32 bits for each Boolean,
although sometimes, depending on the platform and the compiler, it will allocate as
few as 8 bits and as many as 64 bits. Why would it do that? In the name of optimiza-
tion. Because processors deal in sets of multiple bits at a time, it is usually much faster
to access a set of data if it’s aligned on a certain bit boundary.

However, in our case, this is unnecessary. Not only does the compiler layout take
up more memory than we want, but by making each object larger, it can significantly
reduce performance by increasing the amount of data cache misses, which is one of
the major bottlenecks with today’s hardware architectures.

3.3 Programming Fundamentals 213



How much memory are we wasting? Let’s say each Boolean is 32 bits, so we’re
using 160 bits instead of only 5 bits that we need to represent five states. That’s not
much memory at all, so why all the fuss? Now imagine we have 30 different states.
Also, remember that each game entity in the world is going to have all those 30 states.
If we have a world with 5,000 of those entities, the Booleans will take 585KB. That’s
over half a megabyte! Now it starts being significant.

The most common way to bit pack those flags is to put all the bits in the same 
32-bit value and use a series of bit masks to query whether a certain bit is present.
Even though this sounds low level and very error prone, it’s actually very readable:

#define IS_WEARABLE      0x0001

#define IS_MAGICAL       0x0002

#define IS_CURSED        0x0004

#define IS_POISONED      0x0008

#define IS_LIGHTSOURCE   0x0010

// other flags 0x0020, 0x0040, 0x0080, 0x0100, etc

int flags;

if (flags & IS_MAGICAL) //... do something

In this case, we managed to pack all the Booleans into a single integer value that
is 32 bits. We could have packed up to 32 of these Booleans before needing another
integer variable. Notice the value we’ve assigned to each of the constants. The num-
bers are represented in the hexadecimal system, but are chosen so each is just a single
bit so there is no overlap between them.

Going back to our previous example, all the status bits of a single entity would fit
in 32 bits, and with 5,000 entities in the world, that makes for a grand total of about
20KB. We have saved over 550KB of memory by doing this bit-packing operation on
the flags alone.

It is worth becoming familiar with this approach to storing flags because you will
see it used everywhere in game programming. However, it has its share of disadvan-
tages. The first one is that you lose any pretense of being type safe. Anyone could
assign any integer to the flags variable and the compiler wouldn’t know there was any-
thing wrong. In addition, we could accidentally check the flags variable against other
sets of constants intended to be used in another context and the program would con-
tinue to work fine. This is a significant problem with libraries that rely on this type of
mechanism for many different things, such as Direct3D, and sometimes it’s too easy
to get two sets of constants confused.

A better implementation for bit packing flags in C++ would take advantage of the
bit fields feature of the language itself. This is a possible way of implementing the pre-
vious example using bit fields:

214 Part 3 Game Programming: Languages and Architecture



union EntityFlags {

int isWearable : 1;

int isMagical : 1;

int isCursed : 1;

int isPoisoned : 1;

int isLightSource : 1;

}

EntityFlags flags;

if (flags.isMagical) // ... do something

By using bit fields, we still achieve the same memory savings, but we remain type
safe and don’t have any constants that can be mixed up. The optimized code generated
by the compiler should be exactly the same as the one produced with the previous
approach, so it should have the same efficiency.

Network Communication

Another common use for bit packing is network communication. In online games,
network bandwidth is usually a scarce resource. Even with broadband becoming more
popular, the uplink bandwidth remains very limited, and we want to keep it as small
and constant as possible to avoid hiccups in the game.

A common approach is to use bit packing even for types other than Booleans. For
example, when passing messages around, we’ll constantly need to pass entity IDs.
These IDs are unique to each entity in the world. Normally, the ID would be stored
in an integer, and we would send all 32 bits down the network. However, if we know
that an ID number can never get any larger than 20,000, we can bit pack it to 15 bits,
to give us a range between 0 and 32,768. That leaves us with 17 bits to use for other
purposes in every message that contains an entity ID. 

Clearly, the code on the receiving side needs to be aware of exactly how we’re
packing our values and needs to go through the reverse process to unpack them and
interpret them correctly.

The following code packs three values and a status bit into a single 32-bit integer:

unsigned int packed = ID; // This uses up 15 bits

packed |= ((int)coordX << 15); // This uses up 8 bits

packed |= ((int)coordY << 23); // This uses up another 8 bits

packed |= ((int)status << 31); // Last bit

// send packed value over the network

3.3 Programming Fundamentals 215



The following code unpacks them at the receiving end:

int ID = (packed & 0x7FFF); //Get the lower 15 bits

packed = packed >> 15;

int coordX = (packed & 0xFF); // Get the next 8 bits

packed = packed >> 8;

int coordY = (packed & 0xFF); // Get the next 8 bits

packed = packed >> 8;

bool status = (packed & 0x01); // Last bit

You can apply the same principle to any value that you know is going to be
bounded: maximum health, hit points, velocity, world coordinates, and so forth.
Considering how many messages are sent every second, and how many of those fields
we can be transmitting over the network, the savings can add up very rapidly.

Floating-Point Numbers

Packing other numerical data types such as floats is more complicated. We can’t reduce
the number of bits like we did with integers because floats typically use the IEEE-754
floating-point format, which involves a sign bit, a mantissa, and an exponent. However,
if we’re willing to accept a smaller range of numbers and some possible loss of preci-
sion, we can store them using fewer bits.

One such technique uses fixed-point numbers, and is different from floating-
point numbers in that it has a fixed number of bits that represent the integer part of
the number, and a fixed number of bits that represent the fractional part of the num-
ber. For example, a 16-bit fixed point could use 4 integer bits and 12 fractional bits.
That would allow us to represent numbers from 0 to almost 16 in increments of
0.00024 units. It’s not a very large number, and it doesn’t have great precision, but it
fits nicely in 16 bits. Depending on your requirements, you could try using a differ-
ent fixed-point format, such as using 6 integer bits and 10 fractional bits. The impor-
tant part is that, as long as those restrictions don’t affect the results of what we’re
trying to accomplish, we have reduced the amount of memory required by those
numbers by half.

Fixed-point numbers used to be extremely popular to perform fast arithmetic
operations back when floating-point operations used to be very slow compared to
integer operations. For example, id’s popular game Doom made heavy use of fixed-
point arithmetic. Nowadays, floating-point operations are often faster than integer
operations, and they can be parallelized better with the rest of the program, so there
would be no benefit in trying to perform arithmetic operations directly on the fixed-
point numbers, but they still remain a viable solution to store fractional numbers in
fewer bits. Also, handheld platforms such as the Nintendo DS don’t have floating-
point hardware, so fixed-point is still necessary on these devices.

216 Part 3 Game Programming: Languages and Architecture



Other Uses

If bit packing is so great and saves so much memory, should we use it everywhere? The
answer is a resounding “no.” Bit packing should be saved as a last resort to get some
significant memory or bandwidth savings. Other than the case of flags, we should
avoid using it in everyday programming as much as possible. 

A drawback of bit packing is that accessing packed values is generally slightly
slower than accessing nonpacked values. However, that’s not the big problem. The real
reason to avoid bit packing as much as possible is that it is error prone, it prevents the
compiler from doing type-safety checks, and it is highly dependent on the exact size of
each data type. You can reap significant gains by packing flags, and you can even make
it fairly safe to use. Anything else is usually not worth the effort and the complication
unless it’s something so common that you’ll save significant amounts of memory.

Object-Oriented Design in Games

Games are often all about interacting with objects or entities in some virtual world:
you control an avatar, pick up keys, smash crates, slay monsters, and open doors.
Look at the previous sentence and count the number of nouns we used there: avatar,
keys, crates, monsters, and doors. The rest of the sentence is made up of the actions
we can perform on those objects: control, pick up, smash, slay, and open. It is no
wonder that so many games today are developed using object-oriented design, since it
maps very closely to the concepts we’re trying to represent.

Object-Oriented Concepts

Back in the 1980s and early 1990s, games were mostly implemented using procedural
programming. The emphasis of procedural programming is on the code itself: on the
scope of the code (divided in modules) and on the procedures (or functions) provided
in each module. Conceptually, a procedural program is simply a sequence of proce-
dure calls that perform some operations, which might change some data in some parts
of the system.

Object-oriented programming, on the other hand, emphasizes the concept of the
object, which is a collection of data along with a set of operations that work on that
data. The key to object-oriented programming is that the data and the code are
treated as a unit, as opposed to the data just being a consequence of running the code
as was the case with procedural programming. That data is usually encapsulated and
can only be accessed through the defined operations on the object itself. 

Before we go any further, it’s important to define some basic terms that are going
to be used constantly when talking about object-oriented development:
Class: The abstract specification of a user-defined type. It includes both the data and

the operations that can be performed on that data.
Instance: A region of memory with associated semantics used to store all the data

members of a class. There can be multiple of these for each class.

3.3 Programming Fundamentals 217



Object: Another name of an instance of a class. Objects are created by instantiating
a class. 

Inheritance

Inheritance allows us to easily create new classes that extend the behavior of existing
classes, just by adding a bit of code, and without having to modify the original class in
any way.

This ability comes in handy to represent concepts in a very intuitive way. For
example, we might have just finished creating a class that represents a normal enemy
character in our game. The class takes care of animating the character on the screen,
keeping track of its hit points, running the AI for that character, and so forth. 
class Enemy

{

public:

void SelectAnimation();

void RunAI();

// Many more functions

private:

int m_nHitPoints;

// Many more member variables here

};

At the end of the level, we’d like to add a “boss” enemy. Bosses are going to have
much of the basic functionality in common with a regular enemy unit: they have hit
points, they move around and play animations, they shoot, they take damage, and
they (hopefully) die. However, they’re going to have very different AI to make them
much smarter and tougher to kill.

How do we go about implementing a boss enemy? We have already written much of
the functionality for the enemy that can be used in the bosses. One possible solution is to
cram any extra functionality in the Enemy class and ignore it when it’s a regular enemy
unit. This approach leads to bloated classes that are hard to maintain and understand
because we end up adding everything and the kitchen sink. An alternative would be to
refactor many of the functions out of the Enemy class and have a new Boss class that also
used them. Unfortunately, that would mean breaking up the nice, encapsulated class that
we just created, which will result in more maintenance headaches down the line.

Fortunately, there’s a better way—using inheritance. We can create a new Boss
class that inherits from the Enemy class. That means that it’s going to adopt all the
functionality of the Enemy class by default, but in addition, we can override particular
sections to give the boss the unique behavior we want. In this case, we can override
the AI to do something completely different and give the boss his unique character.

218 Part 3 Game Programming: Languages and Architecture



This is how the Boss class would look using inheritance:

class Boss : public Enemy

{

public:

void RunAI();

};

In a situation like this, Enemy would be called a “parent” class, and Boss would be
a “child” class, because it inherits from Enemy.

You can continue inheriting from a child class to create a new child class. For exam-
ple, we might want to create a special boss for the end of the game, so we create the
SuperDuperBoss. A derived class is not limited to overriding functions from its imme-
diate parent class; it can override public and protected functions from any of its parent
classes. In this case, we will override another function from the Enemy parent class:

class SuperDuperBoss : public Boss

{

public:

void RunAI();

};

It quickly becomes cumbersome to talk about classes inheriting from each other
and from other classes in turn just by trying to describe how they are connected.
Sentences quickly become a mouthful of the words parent, child, and derived mentioned
over and over making very little sense. Not much different from trying to explain a
distant family relation: “It was my stepsister’s twice-removed cousin’s brother who....”
Just like a good family tree, class diagrams can be used to give the same information in
a much more concise way. The diagram in Figure 3.3.1 shows the relation between
the three classes we have constructed so far.

We’ll be using that type of diagram throughout this chapter. You’ll also find similar
diagrams used extensively in game development and in general software development.

3.3 Programming Fundamentals 219

FIGURE 3.3.1 Inheritance relationship between our three enemy classes.



220 Part 3 Game Programming: Languages and Architecture

Polymorphism

Inheritance might be the most popular trait of object-oriented development, but
polymorphism is what really allows us to make good use of object-oriented design in
our programs.

Consider the following situation. We have a game with units as described in the
previous section, but we have 20 different types of enemies and five different bosses,
and we want to call the ExecuteFrame() function once for all the enemies currently
in the level. To do so, we need to keep track of the type of each enemy unit, so we
have to keep a list for each type of enemy and boss, and then iterate through each list.
Every time we add a new unit type, we have to remember to add a new list, iterate
through it, and so on. This sounds quite cumbersome. Wouldn’t it be nice if there
were a way to just keep a list of enemy units and call the RunAI() function in all of
them independently of what type they really were?

That is exactly what polymorphism gives us: the ability to refer to an object
through a reference or a pointer of the type of a parent class of the object itself. That
is quite a mouthful, but it sounds far scarier than it really is. Read it again, and you
will see it starts to make sense. It is a fundamental concept, and it is extremely impor-
tant that you understand it to be able to follow this chapter and the rest of the book,
as well as for any game development work.

Here is a quick example of what polymorphism allows us to do:

class A {

//...

};

class B: public A {

//...

};

// We create an object of type B

B * pB = new B;

// But now we use a pointer of type A to refer to it

A * pA = pB;

Polymorphism allows us to forget about the true type of the object we are manip-
ulating, and decouple the code that deals with those objects from the specific imple-
mentations of each derived class. For instance, we could have a function that takes an
enemy as a parameter and figures out whether we can shoot at it. This function could
look something like this:

bool CanShootAt (const Enemy & enemy) const;



As soon as we add a boss to the game, we want to know whether we can shoot at
it. Without polymorphism, we are either forced to write a similar function taking an
object of type Boss as a parameter, or do something very dangerous like passing a
void pointer and a flag indicating what type of variable it is. Things can only get
worse once we add new types of enemy classes. Polymorphism helps us with that by
allowing us to have only one function that takes a reference to an enemy class inde-
pendently of exactly what type of enemy it is.

Going back to the enemy example, we can take advantage of polymorphism to
make our program much simpler by keeping all the enemy units in one array, inde-
pendently of whether they are plain enemies, bosses, or the final special boss. That
way, we can treat them all the same way.

In C++, we have to remember to flag functions that are going to be used poly-
morphically as virtual. A function marked as virtual indicates that the type of the
object, not the type of the reference, should be used to determine which function
should be called in case inherited classes override that function. Otherwise, the type
of the pointer or reference will always be used.

In our example, we want the bosses running the boss AI, and each enemy run-
ning the correct type of AI based on its object type, so we should make the RunAI()
function virtual. Here is the revised Enemy class:

class Enemy

{

public:

void SelectAnimation();

virtual void RunAI();

// Many more functions

private:

int m_nHitPoints;

// Many more member variables here

};

Now we can finally treat all the enemies with the same code, independently of
whether they are a boss:

Enemy * enemies[256];

enemies[0] = new Enemy;

enemies[1] = new Enemy;

enemies[2] = new Boss;

enemies[3] = new FlyingEnemy;

enemies[4] = new FlyingEnemy;

3.3 Programming Fundamentals 221



// etc...

{

// Inside the game loop

for ( int i=0; i < nNumEnemies; ++i )

enemies[i]->RunAI();

}

Multiple Inheritance

Not all object-oriented languages support multiple inheritance, but since it’s a feature
of C++, it is important to know when to use it, and, even more importantly, when not
to use it.

Multiple inheritance, as the name indicates, allows a class to inherit from more
than one base class at the same time. As in the case of single inheritance, the derived
class adopts all the public and protected functionality of all the base classes. It can also
be treated polymorphically as if it were of the type of any of its base classes.

Logically, it should be used just like single inheritance since it still models the 
“is a” relationship. For example, when we design our game entity class, we want to
make sure that it can receive messages (so it must be a MessageReceiver) and be
inserted in any tree (so it must be a TreeNode). We could use multiple inheritance to
model that relationship. 

This is how we would do it in code:

class GameEntity : public MessageReceiver, public TreeNode {

public:

// Game entity functions...

};

The corresponding inheritance diagram is shown in Figure 3.3.2.
Even though multiple inheritance sounds great on paper, it has its fair share of

problems and limitations. The C++ language attempts to solve some of these problems
by providing new features in the language itself, but at the cost of further complicat-
ing things.

The first problem introduced by multiple inheritance is ambiguity. What happens
if two classes we inherited from contain a member function with the exact same name
and parameters? In our previous example, imagine that both MessageReceiver and
TreeNode have a public member function called IsValid(), used for debugging, that
checks whether the object is in a correct state. What is the result of calling IsValid()
on a GameEntity object? It turns out that you need to explicitly disambiguate the call
by saying which parent class you want to call.

222 Part 3 Game Programming: Languages and Architecture



An even larger problem is the topography of some of the possible inheritance
trees that can be created with multiple inheritance. It is possible for a class D to
inherit multiply from classes B and C, and have those classes in turn inherit from class
A. This arrangement is what is often called the DOD (Diamond Of Death), and it
has all sorts of problems: the contents of base class A will appear twice in the structure
of class D, it will be ambiguous to try to use any of the contents of class A from class
D, and so forth. C++ attempts to solve this by introducing virtual inheritance (not to
be confused with virtual functions), but it just complicates matters further. You’re 
better off avoiding the diamond inheritance hierarchy at all costs. Usually, it is the sign
of a bad class design, and will cause more problems in the long run than it will solve.

There is one situation in which multiple inheritance is more acceptable and less
error prone: when we multiply inherit from interface classes (also known as pure 
virtual classes). Interface classes are classes that declare a set of member functions but
don’t have any implementation of their own. A class that inherits from an interface
class commits to implementing the interface by providing implementations to all the
member functions.

Why would you want to inherit from an interface without implementation? So
you can treat a class polymorphically on any of the interfaces from which it inherits.
However, since those interface classes have no implementation of their own, it side-
steps some of the most serous problems of general multiple inheritance. 

In C++, you can create a pure virtual function by adding = 0 to the end of its dec-
laration. That tells the compiler that you’re not providing an implementation and that
other classes that inherit from it must implement it. Here is an example of an inter-
face class in C++:

class MessageReceiver {

public:

bool HandleMessage(const Message & msg) = 0;

};

3.3 Programming Fundamentals 223

FIGURE 3.3.2 GameEntity modeled with multiple inheritance.



The Java designers made the wise decision to leave multiple inheritance out of the
language to avoid complicating things too much. However, since inheriting from
interface classes is very useful, they provided the Interface type and the implements
keyword, so a class can inherit from one full-blown parent class and implement as
many interfaces as necessary.

Component Systems

Using object-oriented design doesn’t mean that everything needs to be represented as
part of a large inheritance class hierarchy. A component system is a different approach
that uses independent components and aggregation to create complex behavior and
reuse common code while retaining flexibility and the ability to change properties
dynamically at runtime.

Limitations of Inheritance

When all you have is a hammer, everything looks like a nail. It is easy for programmers
who started using object-oriented design recently to be carried away with enthusiasm.
Usually, it results in complicated tangles of class hierarchies that use inheritance for
everything. 

Yes, inheritance is very useful, there’s no denying that, but it is also easy to overuse
and it’s not particularly flexible. Let’s examine the potential problems of using inheri-
tance before we present some alternative approaches.

Tight Coupling
The first problem with inheritance is the coupling it introduces between classes.
Coupling is a measure of how much two classes know about and depend on each
other. You should always strive to have very loose coupling between classes, which
means they’re very modular and easy to change, and modifications to one don’t affect
the other. Tight coupling, on the other hand, means that two classes are very tied
together, and it’s hard to do anything with one class without affecting the other. In
real life, you need to strike a compromise between low coupling and efficiency and
ease of development, but it should always be a concern. The larger and more compli-
cated the project, the more important loose coupling becomes.

Inheritance happens to be the tightest form of coupling between two classes. The
base class knows about all the public and protected members of its parent class and
relies on them being exactly the way they are. Changes to the parent class often result
in changes to the derived classes as well.

Unclear Flow of Control
The main reason for using inheritance is to be able to override a few functions to pro-
vide new functionality for a base class without affecting its parent class. This is a great
solution for simple situations, but quickly becomes unmanageable for deep and com-
plex class hierarchies.

224 Part 3 Game Programming: Languages and Architecture



All too often, you’ll find a class hierarchy that has many different levels. Not only
is class B inheriting from A, but C inherits from B, D from C, E from D, and so on.
If you now make a call to a virtual function, which one will be called? B might over-
ride A’s function, but so might C, and perhaps E as well. Trying to find the flow of
execution can be very tricky.

Things get even more complicated when the base class just wants to add some
functionality instead of completely overriding it, so it implements a virtual function,
does some computations, and then calls the parent’s version of that function. For
every class, you need to remember whether it calls the parent function before or after
its own code, and whether it calls it at all. The code eventually becomes completely
dependent on the order in which it’s executed, and attempting to make a small change
to a class toward the top of the hierarchy often results in the program’s behavior
changing completely.

Not Flexible Enough
This is a particularly important drawback for game development. Say you’ve decided
to model all the entities in your world using inheritance. After all, it makes sense this
way. Figure 3.3.3 shows part of the class hierarchy of this organization.

In this example, the Sword class inherits from Weapon. However, what if later on,
the designers wanted to make a talking sword? To be able to have dialogue and allow
normal interactions, it would have to be an AIEntity, which is in a separate branch of
the hierarchy. Multiple inheritance is not the correct solution because it introduces
the dreaded DOD and will cause more problems than it solves in the long run. 

3.3 Programming Fundamentals 225

FIGURE 3.3.3 Part of a potential game entity class hierarchy.



We could add a new Weapons class under AIEntity or a new AI class under Weapons,
but that would have a lot of duplicated code that would be hard to maintain, easy to
get out of date, and have slightly different behaviors than the corresponding code on
the other branch of the tree.

This is not just a contrived example; it happens all the time. There are many dif-
ferent ways to organize a class hierarchy given a set of object types, so that means there
are many different ways of looking at the same set of data. Having a single, static class
hierarchy is just too inflexible for what we’re trying to accomplish in games.

Static Hierarchy
A class inheritance hierarchy is completely static, at least in most commonly used lan-
guages in game development such as C++ and Java. 

The Dragon class is under AIEntity, but what if you get to tame the dragon and
you can ride on its back later? At that point, the Dragon would need to be under
Vehicles. Using class inheritance, you’ll probably have to have a DragonVehicle
class, create a DragonVehicle object, transfer all the data from the Dragon to the
DragonVehicle before you ride it, and destroy the original Dragon while making sure
that everything on the screen looks exactly the same so the player is under the impres-
sion that nothing changed. Hardly a clean solution, and it introduces a very tight cou-
pling between the Dragon and DragonVehicle classes, which will make future
maintenance a headache.

Component System Organization

By now, you should be starting to question how wise it is to model all your game objects
using inheritance. What is the alternative? After all, isn’t inheritance the “object-oriented
way” of doing it? That’s the first concept we need to get rid of. Just because something is
object-oriented, it doesn’t mean it needs to use inheritance everywhere. 

A component system is an alternate, much more flexible solution that relies on
composition (or aggregation) rather than inheritance for most of its modeling. The
idea is that we don’t create a separate class for every game object type. Instead, we just
have one class, called GameEntity, which represents every object in the game. This
entity contains a series of components, each of which adds a new type of behavior 
or functionality to the entity itself. For example, we can have a RenderComponent,
which displays the representation of the entity on the screen; a BrainComponent, which
takes care of doing AI decision making; or a HealthComponent, which keeps track of
how many hit points an entity has left.

Figure 3.3.4 shows a possible organization for a sword entity. Notice how easy it
is to make changes to it without affecting any other entities. If we want the sword to
talk, we add a BrainComponent to it. And if we want to be able to ride it like a witch
on a broom, we just have to add a special VehicleComponent without having to twist
the inheritance hierarchy in any way.

226 Part 3 Game Programming: Languages and Architecture



The sword itself could be created in C++ this way:

GameEntity * pSword = new GameEntity;

pSword->AddComponent(new DamageComponent(...));

pSword->AddComponent(new RenderComponent(...));

pSword->AddComponent(new CollisionComponent(...));

//... and any other components necessary

Notice that we can even add and remove components at runtime, so it is possible
to radically modify an entity’s properties without affecting the rest of the game or hav-
ing to make copies of the object and substitute references to it everywhere as we had
to do before.

Since the entity class knows nothing about what it is trying to represent, its exe-
cution code will just give each of its components a chance to execute. The animation
component will move the animations one frame forward, the render component will
render the object to the screen, and so forth. 

Interactions between entities are a bit more difficult to handle than they were in
the case of the static class hierarchy, because entities know nothing about what they
are, and all the logic is in the components themselves, so interaction needs to happen
at the component level as well. Conceptually, it is easiest to think of the interactions
as messages being passed around (although they could be implemented as function
calls or some other method that might be more efficient).

For example, consider the situation in which a bullet is flying through the air. The
bullet itself might be an entity (again, as an optimization, if you have many bullets as
in the case of a machine gun, you could model the “stream” of bullets as a single entity
instead). In this frame, the bullet collides with a crate, so when we execute the bullet
this time, a CollisionComponent executes and detects the collision. The bullet also
has a DamageComponent that, as it learns about the collision, sends a package of dam-
age to the entity it collided with, including information such as type of damage,
amount of damage, location, and so forth.

3.3 Programming Fundamentals 227

FIGURE 3.3.4 Organization of a SwordEntity using a component system.



On the receiving end, the crate will receive a damage message from the entity 
bullet. It turns out the crate has a HealthComponent, so it accepts that message and
starts processing it. If it didn’t have a HealthComponent, the message would have been
ignored and nothing would have happened. The component parses the content of the
message and realizes that the bullet dealt so much damage that the health is brought
to zero, so it sends a death message to the other components in the entity. The
DestructionComponent catches that message, plays an effect of the crate being shat-
tered, and replaces the mesh from the RenderComponent with the destroyed state.

Data-Driven Composition

We can take the idea of the component system even further and actually define the
structure of each of our game entities in a data file instead of in the code itself
[Bilas02]. This gives us extreme flexibility and pushes the entity structure to be a piece
of data instead of part of the code. That means that many changes to the entity 
structure will not affect the code and will not require us to do full recompiles of the
game and tools. We have effectively decoupled the code from the data.

For example, here is how the data for the sword entity might look like in an 
XML file:

<entity name=”sword” full_name=”Great sword of Pelayo”>

<component type=”weapon”

damage=”slashing”

damage_range=”5-10”

magical=”true”

range=”1.5” />

<component type=”render”

mesh=”meshes/weapons/great_sword.mesh”

attributes=”glow”/>

<component type=”collision”

collision_type=”tight_volume”

attributes=”standard”/>

<!— Any other components go here —>

</entity>

If you write a tool to represent the different components as visual units, you can
give the designers on your team the power to create totally new entity types without
any intervention from a programmer. You will most likely be surprised at the creative
uses they come up with given the freedom of experimenting with such a flexible, data-
driven system.

228 Part 3 Game Programming: Languages and Architecture



Drawbacks and Analysis

Even though we have been singing the virtues of a component-based system in this
section, it has its share of drawbacks, and you should be aware of them before decid-
ing what approach to take for your next game.

The first drawback of a component-based system is that it’s hard to debug. If you
break in the middle of a game with the debugger, in the case of a class hierarchy, you
will see things like a Sword class in your debugger, and you can easily access all its
member variables and examine their contents. On the other hand, with a component
system all you’ll see are lists of entities, each with a set of components. It will take
more work to dig into each of them and find out what they represent. That arrange-
ment also makes it harder to use breakpoints, since the only unique code you have is
the one in the components, not in the entities themselves.

Performance can also be a problem if you’re not careful. Instead of having straight
function calls within a class, we are passing messages around, both within the entity
and to other entities. This is the price we pay for decoupling the parts of an entity.
Also, keep in mind that a deep class hierarchy might pass function calls up and down
the hierarchy tree, so it’s not just the components that are having chains of messages
and function calls. With a bit of care and a good eye toward optimizations, it should
be possible to have performance very close to that of a static class hierarchy. 

If you use a data-driven approach and move the structure of the entities to a data
file, it can be difficult at times to keep the code and the data in sync. Ideally, they
should be completely independent of each other, but in practice, they will depend on
specific variables or functions being there. What happens if the code relies on a variable
that is not defined in the data file? Conversely, what if there’s a variable in the data file
that the code knows nothing about? Deciding what to do in those situations and 
handling it well is key to having an efficient workflow and avoid breaking the game.

Finally, a problem with the component-based design is its own flexibility. For
larger systems, an entity could have several dozen components. They have been so
modularized and decoupled that it’s hard to see at a glance how they’re going to inter-
act with each other. Sometimes, even the order in which messages are processed could
affect the result of operations and the behavior of the entities in the game, so it is
important to try to keep things simple and enforce some strict order rules if this
becomes a problem.

Having said all that, which approach should you use for your next game? A class-
inheritance structure or a component-based one? The answer, as is often the case,
depends on the exact nature of your game and how you’re planning to use it. 

Imagine you’re writing the fourth iteration of a successful tennis franchise. You
know you’re going to have a court, net, players, rackets, and a ball. You know how the
games will be scored, what type of matches you’ll have, and what the multiplayer
games will involve. You also know that the designers aren’t going to ask for a net that
starts talking in the middle of the match, or a racket that can be ridden like a vehicle

3.3 Programming Fundamentals 229



on the court during the game. Since everything in the game is known ahead of time
and you know exactly how you’re planning to deal with it, a class-inheritance structure
might be perfectly adequate. 

However, if you’re writing a game where the player will visit a variety of environ-
ments (only a few of which are known ahead of time) and will have to interact with
many different characters and items, a component-based approach will probably give
you the best results. It will let designers experiment with new entity types and create
new and challenging situations much more easily than if they were constricted by a
static class hierarchy.

Design Patterns

Design patterns are general solutions to specific situations and problems that come up
often in software development. Because design patterns deal with high-level concepts
of organization and architecture, they are not usually presented by providing libraries
of code that can be dropped straight into a project, but are defined instead in more
abstract terms of classes, objects, and their interactions. 

There are many design patterns listed and cataloged in books and on the Internet.
In this section, we will see some of the most important patterns that come up fre-
quently in game development. Patterns are often listed as having four elements: pat-
tern name, problem they solve, solution, and consequences. In addition, here we will
describe how each pattern applies to game development and what some of its most
common uses are. Refer to some of the references listed at the end of the chapter for a
more detailed discussion of each pattern [Gamma95].

Singleton

Problem
Some classes need to have exactly one instance and be globally available to all parts of
the program. For example, hardware resources such as a graphics device or a file sys-
tem are unique and need to be used from many different parts of the program. How
can we create such an organization?

Solution
Singletons are usually implemented so they have a single point of creation and access.
That gives us the control to just create a single instance and make it available to the
rest of the code. 

Some implementations have a set of separate creation and destruction functions,
while others automatically create the instance the first time it’s requested. The advan-
tage of having separate creation and destruction functions is that it is easier to control
the lifetime of a singleton object, which allows us to create it after other systems are
initialized or to destroy it before reporting memory leaks. A class diagram for the sin-
gleton pattern is shown in Figure 3.3.5.

230 Part 3 Game Programming: Languages and Architecture



Application to Game Development
There are plenty of opportunities in game development to use singletons. Unique
hardware resources are a clear target for singletons: graphics devices, sound systems,
file and memory managers, network interfaces, and so forth. However, not all hard-
ware resources are unique, such as gamepads or memory cards, so they would be best
implemented as regular objects.

There are also plenty of other unique objects in the game that can benefit from
having global access, even if they’re not related to hardware resources: a logging sys-
tem to keep a log of all activity, warnings, and errors in the game; a messaging queue
to distribute messages between game entities; or even an object that represents the
game itself.

Consequences
Singletons give us two main things: a single instance, and global accessibility. How is
that different from a global variable? It’s not very different. Actually, the only benefit
over a global variable is that we retain more control over how it is created and
destroyed. As far as everything else goes, it can be considered a global variable.

What do we know about global variables? They don’t lead to modular code, and
can be a serious problem in large code bases to understand and maintain existing
code. The same warnings about global variables apply to singletons, so don’t use them
unless you have to.

Overuse of singletons is a common situation in teams that recently switched to
C++ and started using design patterns. Singletons are unique patterns, and it’s easy to
see everything as a singleton. Resist that temptation as much as possible. Avoiding
singletons will produce more modular code, better logical and physical structure of
the program, and will make the code easier to test and maintain.

Some things, such as a logging system, might make sense as a singleton, but other
things, such as a messaging queue, should probably be implemented as member 
variables of the game object system. The game object system can ensure that only one
instance of the messaging queue is created, but it restricts access to only the code 
that deals with the game object system directly instead of exposing it to the entire
game engine.

3.3 Programming Fundamentals 231

FIGURE 3.3.5 Class diagram of a singleton.



Object Factory

Problem
Sometimes we need to create an object of a class we don’t know at compile time. We
need a way to defer the decision of what type of object to create until runtime.

Solution
Instead of dynamically creating instances of a class by using new (or whatever mecha-
nism your favorite language uses), we use a factory object that takes care of creating
other objects. We call a member function with a parameter to specify which type of
object to create, and it returns a new object of that type. A class diagram for the object
factory pattern is shown in Figure 3.3.6.

Application to Game Development
Object factories play a crucial role in game development and are essential to data-

driven programming, as we are constantly creating new objects of all sorts of different
types that we can’t predict ahead of time.

For example, when we first load a level in a game, we need to know what type of
objects are in the world, where they are located, and what their initial properties are.
Clearly, we’re not going to have a function called PopulateLevel1() that explicitly
creates every object in the level. Instead, we typically have a data file that contains all
that information. The level-loading code parses that file, and for every object, it deter-
mines what type of object it needs to be, calls the object factory with that type, reads
all its data from the file, and adds it to the world.

We often use the object factory when we create objects at runtime as well, since
many of the decisions about what objects are created are stored in data, not in the code
itself. So, for example, the type of creature a spawn point creates is stored in a data file,
and the type is fed to the object factory, which creates a creature of the desired type.

232 Part 3 Game Programming: Languages and Architecture

FIGURE 3.3.6 Class diagram of an object factory.



Object factories can also be used to easily extend the game and add new object
types by making minor modifications, or even no modifications at all if we load code
dynamically. Once we have an object factory in place, it is very easy to add new object
types, which can be created just by supplying new data.

Consequences
A straightforward implementation of an object factory could be done like this:

enum GameObjectType {

PLAYER,

ENEMY,

POWERUP,

WEAPON,

// ... rest of the objects...

}

GameObject * ObjectFactory::Create(GameObjectType type) {

switch (type) {

case PLAYER: return new Player();

case ENEMY: return new Enemy();

case POWERUP: return new Powerup();

case WEAPON: return new Weapon();

}

return NULL;

}

That would work fine, but it has the drawback that the object factory class needs
to know ahead of time about all the object types it can possibly create. Adding new
object types requires adding another enum and another entry in the Create() function.
Worse, it makes it impossible to add new object types without modifying the code, so
it restricts the power available to users who want to “mod” the game.

A good solution is to use an extensible object factory. Instead of having the object
types hardwired in a code file, every class that wants to be created through an object
factory needs to register itself with a unique ID and a way to create the object. The
factory itself is just a dictionary that associates type IDs with object creators and looks
up that dictionary every time a request for a new object comes in. The companion
CD-ROM contains an example of an extensible object factory that you can start
using in your projects right away.

3.3 Programming Fundamentals 233



Observer

Problem
Objects often need to know when certain things happen or when the state of other
objects changes. We want to have a way to notify objects of different types with min-
imal coupling.

Solution
The observer pattern involves two classes: a subject, and many observers. Observers
register themselves with a subject at runtime and the subject adds all the observers 
to a list. Whenever any event that would trigger a notification happens, the subject
iterates through all the observers in the list and calls their Update() function. A class
diagram for the observer pattern is shown in Figure 3.3.7.

Application to Game Development
It is extremely common in games to notify other objects when certain events happen.
For example, if the graphics device changes color depth or resolution, we probably want
to notify all the objects that hold some graphics buffer so they can update themselves.

This situation is even more common at a higher level, among game entities.
Entities don’t live isolated from each other; rather, they interact with each other as
they would in the real world. If a knight drops a sword on the ground, the sword
might need to be notified so it can update its status. If the player steps on a pressure
plate, the trapdoor should be notified so it can open. 

We can hardwire those situations by having the knight explicitly update the
sword after he drops it, but that is tedious and error prone. How many things should
be notified in each event? It’s much better to let each object decide what events it is
interested in, and subscribe itself as an observer in the subjects it cares about.

234 Part 3 Game Programming: Languages and Architecture

FIGURE 3.3.7 Class diagram showing the relation between a subject and an observer.



Another common use of observers in game development involves notifying other
objects that a certain object was destroyed. For example, the player might keep a
pointer to the enemy that is currently locked in the weapons targeting system. If that
enemy is destroyed for some other reason, we want to make sure the player knows it
right away so it can reset its pointer. Otherwise, it might still try to access the invalid
pointer and cause the game to crash.

Consequences
The observer pattern is great because it allows the subject to be completely decoupled
from the observers, so it seems like an excellent solution for most object interactions.
However, you need to be careful with performance and memory utilization. 

If the subject has a long list of observers it needs to notify, it needs to traverse it
linearly, call the update function in each observer, and let them deal with the update.
For events that occur multiple times per frame, this can be a considerable perfor-
mance drain, especially because traversing through the list and accessing a set of unre-
lated objects is very cache unfriendly. 

A possible improvement, if you have large lists of observers and many different
types of notifications (so only a small subset of the observers actually cares about a
specific update), is to have the observers register themselves for specific update
changes. For example, one observer can be notified every time an object moves, but
another one just wants to know when the object is destroyed.

Memory use can also be an issue. Each subject is going to store a list of pointers
to objects. As a plain linked list, that’s going to take two pointers per node, plus what-
ever overhead there is for a dynamic memory allocation. If we plan to have thousands
of these subjects with thousands of possible observers, the memory count is going to
add up rapidly.

In cases of very frequent events or very large numbers of them, we might want to
consider not using the observer pattern, and use tighter coupling by integrating the
subject and the observer more closely and obtain better performance and less memory
overhead.

Composite

Problem
We often want to group a set of objects and treat that set as a single object everywhere
in the code. We want to avoid having special cases for a set of objects and for a single
object.

Solution
We can create a new type of object that is a collection of objects. We then implement
all the functions that the regular object type would expose by iterating through all its
objects and performing that operation. A class diagram for the composite pattern is
shown in Figure 3.3.8.

3.3 Programming Fundamentals 235



Application to Game Development
The composite pattern shows up frequently in game development. The most common
example happens in the user interface of the menus for the game and the elements of
the in-game HUD. For example, we have a widget class, and we inherit from it and
create a button class, a text pane class, and a picture class. Now we can group sets
of those widgets together and treat it as any other widget, which means it can be
moved on the screen, can have focus, and so forth.

We also use the composite pattern on game entities and scene nodes. That way,
any operations performed on the set of nodes are applied to all of them. If they are
arranged hierarchically, the operation can be performed in a specific order while we
traverse the tree. For example, if we have a set of nodes arranged hierarchically, and 
we used the composite pattern to make the set of nodes look like a single node to the
rest of the code, when we apply a transform, the composite node will traverse the tree
hierarchically and update the matrices correctly as it combines the transform down
the tree.

Consequences
Composite patterns are very useful and have few drawbacks. Probably the largest
drawback is that you need to manually write code for every function exposed in the
base class and create a new implementation that iterates through the set of objects
applying the same operation.

To use the composite pattern, the functions need to be virtual, which can have a
slight performance impact, but if you were using polymorphism, they were already
virtual anyway, so it shouldn’t cause any performance penalties.

236 Part 3 Game Programming: Languages and Architecture

FIGURE 3.3.8 Class diagram of the composite pattern.



Other Patterns

Many more design patterns are used in game development. Some of them are
more applicable to certain areas than others, so you’ll find that some patterns are more
used in the high-level game code than in the engine, and some are used in the physics
calculations, but not in AI. 

The best way to learn about patterns is to learn some of the most popular patterns
and then read through existing source code for games and see how many you can find.
Sometimes, just doing a search for a particular pattern name will be enough to find it
because it will be named that way or there will be a comment explaining what pattern
is implemented.

Here are some of the other patterns you will likely come across in game development:
Decorator: Provides a way to attach new functionality to existing objects “on the fly”

without the need to inherit from the original class.
Facade: Combines a complex set of interfaces involving many objects and functions

into a single, unified interface.
Visitor: Allows us to define new operations to be performed on a set of objects without

having to modify any existing code.
Adapter: Lets classes work together that would not be able to communicate otherwise.
Flyweight: Allows sharing of memory among a large number of small objects.
Command: Encapsulates a request or message, which can then be stored, passed

around between objects, and so forth.

Summary

To become an effective programmer, you need to know more than the specifics of a
computer language. Data structures are fundamental to any structured program, and
every game programmer should be well acquainted with the basics: arrays, lists, dictio-
naries, stacks, queues, and so forth. Additionally, a firm grasp of the object-oriented
fundamentals should be considered essential in today’s game development, with
object-oriented languages such as C++ and Java being the norm.

Being familiar with the basics of object-oriented programming is not enough. It
is important to apply it correctly and know when to choose a class inheritance hierar-
chy and when to use composition. Correctly identifying and using design patterns
will also lead to faster development and a clearer architecture.

Exercises

1. Exactly how much memory is required by an std::list with N elements?
Look through the header files for your implementation of STL or write a
program to verify it. Make sure to take into account both the memory for
the list itself and the memory used by the nodes.

3.3 Programming Fundamentals 237



2. The STL provides several types of associative containers: sets, maps, and, in
some implementations, hashes, as well as their “multi” counterparts. Explain
what each container does, how they differ from each other, and give one
example of how each could be used.

3. Write a program that adds 20 integers (values 1 through 20) to a vector
using std::vector. Search the vector linearly for each of the elements. Time
how long all the searches took (if you don’t have a high-resolution timer,
loop the searches several times). Now add the same set of integers to an
std::set and search for all of them. Which approach was faster? What about
for 100 or 1,000 integers? Make sure you compile your program with all
optimizations turned on.

4. Draw a class diagram of a possible class hierarchy for a game like Pac-Man.
5. Organize the same game using a component-based approach. Draw a 

diagram showing what components some of the major entities would have
(player, enemy, pill, power-up).

6. Choose two patterns from a patterns catalog (other than singleton, object
factory, observer, and composite) and explain how they can be applied to
game development.

References

[Alexandrescu01] Alexandrescu, Andrei, Modern C++ Design, Addison-Wesley, 2001.
[Bilas02] Bilas, Scott, “A Data-Driven Game Object System,” Game Developers

Conference 2002, available online at www.drizzle.com/~scottb/gdc/game-objects.htm.
[Dickheiser06] Dickheiser, Mike, C++ for Game Programmers, Charles River Media,

2006.
[Gamma95] Gamma, Eric, et al., Design Patterns, Addison-Wesley, 1995.
[Josuttis99] Josuttis, Nicolai M., The C++ Standard Library, Addison-Wesley, 1999.

238 Part 3 Game Programming: Languages and Architecture

www.drizzle.com/~scottb/gdc/game-objects.htm


239

Overview

The code necessary to create modern games is anything but simple. Gone are the days
when the source code for a full game was just a couple of files and we didn’t have to
worry about overall structure and architecture. In today’s games, with code bases exceed-
ing a million lines of code, it is vitally important to have a well-defined architecture in
order to understand the source code, add new features, and ship the game on time.

Main Structure

Most games make a distinction between game-specific code and game-engine code.
Game-specific code is, as the name implies, tailored to the current game being

developed. It involves the implementation of specific parts of the game domain itself,
such as the behavior of zombies or spaceships, tactical reasoning for a set of units, or
the logic for a front-end screen. This code is not intended to be generically reused in
any other game in the future other than possibly direct sequels.

Game-engine code is the foundation on top of which the game-specific code is
built. It has no concept of the specifics of the game being developed, and deals with
generic concepts that apply to any project: rendering, message passing, sound playback,
collision detection, or network communication.

Game Architecture3.4

In This Chapter

Overview
Bird’s-Eye View of a Game
Initialization/Shutdown Steps
Main Game Loop
Game Entities
Summary
Exercises
References



Both game-specific code and game-engine code are large enough that they are
often split into several modules. Depending on how the project is organized, these
modules can be static libraries, dynamically linked libraries (DLLs), or sometimes
simply subdirectories in a project.

Architecture Types

When discussing different architectures, we will often talk about coupling. Coupling is
a measure of how tightly two parts of the code are connected to each other. Loose
coupling means that there’s only a slight connection between the two sets of code,
which is the ideal situation because it makes it possible to change one without affecting
the other. The greater the coupling, the harder it is to modify or replace one without
affecting the other. Really tight coupling means that the two sets of code are highly
dependent on each other.

Game code is often organized in one of the following ways, which are discussed in
order of increasing structure and complexity.

Ad-Hoc Architecture 
Code bases developed this way don’t have any apparent organization. They often grow
organically, with code being added as needed without looking at the big picture.
Different subsystems are not identified, let alone isolated, which leads to extremely
tight coupling between all parts of the code. This approach works fine for projects
with very small code bases (a few dozen files), but is very limiting in large projects,
making development difficult and costly, and making it virtually impossible to reuse
the code in future projects (see Figure 3.4.1). 

240 Part 3 Game Programming: Languages and Architecture

FIGURE 3.4.1 Code base with an ad-hoc architecture.



Modular Architecture
In a modular architecture, specific subsystems are clearly identified and separated into
modules or libraries. Modules can vary in how they interface with the rest of the
game. On one extreme, they can just be a group of related objects or functions that
anybody can use, and on the other extreme, they can present a unified facade to the
rest of the system. 

Reuse and maintainability of code are greatly improved over an ad-hoc architec-
ture. This approach also allows easier integration of middleware packages since mod-
ules can be more easily replaced or even wrapped to present a unified interface to the
rest of the engine. However, dependencies between modules are not controlled, so
over time, things often degenerate into a situation where every module communicates
directly with almost every other module, leading to tighter coupling than we would
ideally want (see Figure 3.4.2).

Directed Acyclic Graph (DAG) Architecture
A DAG architecture is a modular architecture in which the dependencies between
modules are tightly controlled. Think of modules as nodes in a graph and their
dependencies as the edges. A DAG architecture requires that there be no loops in 
the dependencies. Therefore, if Module A depends on Module B, Module B cannot
depend on any module that directly or indirectly depends on Module A. 

This arrangement allows us to classify some modules as being higher or lower
level than others, and has the advantage that it keeps modules ignorant of any mod-
ules that are higher level than they are, which reduces the overall coupling between

3.4 Game Architecture 241

FIGURE 3.4.2 Code base with a modular architecture.



modules. Typically, the game-specific code will be the highest level module since it
depends on all of the high-level engine modules. It also makes it easy to decide to use
only part of the code base, since by selecting any branch of the DAG, we’re guaran-
teed to get all the necessary modules. This is particularly useful when creating tools
that only need specific parts of the engine, or that are completely game independent
and don’t need any game code. 

Ideally, we’d like the DAG to be as wide (or as shallow) as possible, which means
that the chain of dependency between modules is relatively short. That makes it easier
to add, replace, or remove modules without affecting the rest of the program. The
worst case is when all the modules are lined up, each of them depending on the previ-
ous one (see Figure 3.4.3).

Layered Architecture
A layered architecture is an arrangement like the DAG architecture in that there can-
not be any cyclic dependencies between modules, but it takes it a step further. While
the DAG architecture allowed a module to access any other module underneath itself,
here modules are arranged in rigid layers, and a module can only interact with mod-
ules in the layer directly below. 

This type of architecture is more heavyweight than a simple DAG arrangement,
and it can sometimes lead to duplication of code or interfaces in order to expose certain
functionality available in a lower layer to a layer that is several levels above. Some
domains are very well suited to a layered architecture, such as network communication,
because, by their nature, they perform many serial operations from layer to layer.
However, the code base of a game is not as rigidly structured, so it might not be a per-
fect match for a layered approach. 

242 Part 3 Game Programming: Languages and Architecture

FIGURE 3.4.3 Code base with a DAG architecture.



This type of architecture is more desirable when the number of modules grows to
be quite large and keeping track of individual dependencies between modules becomes
too difficult. At that point, the layers can act as another level of organization on top of
the DAG arrangement of the modules within each layer (see Figure 3.4.4).

In-House Tools

In-house development tools always warrant special consideration. These are the tools
we create for the artists and developers so they can create awesome worlds and fill
them with amazing content. How do these tools fit into the overall architecture?

One of the first things we need to decide is how much functionality will be in
common between the game engine and the tools. Perhaps the only way the tools and
the game interact is by creating a series of XML files that can be parsed in the game.
In that case, they don’t need to have any common code, and keeping them as two 
separate code bases would be a good idea.

Another possibility is that tools require some of the game functionality, but not
all of it. For example, they might need to load resources and write files back out. Or
they might need to render some 3D graphics, but they have no need for any of the AI,
collision, or networking code. In that case, ideally we should use only the parts of the
game code that are necessary for the tool. If we have a DAG or layered architecture, it
should be very easy to grab only the parts in which we’re interested. After all, nobody
wants to initialize the graphics renderer just to run a command-line tool.

3.4 Game Architecture 243

FIGURE 3.4.4 Code base with a layered architecture.



Finally, our last option is full integration. If the tools need full access to all areas
of the game (which is a suspicious situation that might indicate an ad-hoc or modular
architecture), then we can make it so the tools use all of the game code. Or take it
even further, and make it so the tools are part of the game engine itself, and you just
have one executable for everything.

As with the overall architecture, thinking about this ahead of time and deciding
which approach to use will make it easier to develop the tools and ensure they inte-
grate well with the game engine itself.

Bird’s-Eye View of a Game

Before we go any further and start getting into details, let’s have a quick look at what
the game does at the highest level.

Here is a sequence of events that a typical game will go through from the moment
it starts until the moment it exits:

1. Game initialization
2. Main game loop

a. Front-end initialization
b. Front-end loop

i. Gather input
ii. Render screen

iii. Update front-end state
iv. Trigger any state changes

c. Front-end shutdown
d. Level initialization
e. Level game loop

i. Gather input
ii. Run AI

iii. Run physics simulations
iv. Update game entities
v. Send/receive network messages

vi. Update time step
vii. Update game state

f. Level shutdown
3. Game shutdown

As you can see, there are some patterns in this sequence of events. We repeatedly
see initialization and shutdown events for a variety of phases. These events are always
paired together, and there’s a matching shutdown for each initialization. We also see
several game loops that run through a sequence of operations every frame. The next
two sections cover each of these features in detail.

244 Part 3 Game Programming: Languages and Architecture



Initialization/Shutdown Steps

Initialization and shutdown of different systems and phases of the game is a very
important step, yet it is often overlooked. Without a clean and robust way of initializ-
ing and shutting down different parts of the game, it becomes very difficult and error
prone to switch between levels, to toggle back and forth between the game and the
front end, or to even run the game for a few hours without crashes or slowdowns.

Overview

The purpose of an initialization step is to prepare everything that is necessary to start
a certain part of the game. For example, the front-end initialization step could take
care of initializing the GUI system, loading some common art resources, and setting
the correct state into the player profile.

void FrontEnd::Initialize() {

GUI::Initialize();

LoadCommonResources();

PlayerProfile::Set(LoadPlayerProfile());

}

The shutdown step usually has a set of statements to undo everything the initial-
ization step did, but in the exact reverse order they were listed in the initialization
step. Every system that was initialized is shut down, every object that was created is
destroyed, and every resource that was loaded is freed. 

It is very important that the shutdown step undoes everything that was done in
the initialization step. Failure to do so will result in memory leaks, subsystems that are
never shut down, and plenty of other subtle bugs. In addition, to minimize the poten-
tial for bugs, it is recommended that it does everything in the opposite order than the
initialization step. That way, we can be sure that we don’t free a resource or shut down
some system that is required by a later part of the program.

void FrontEnd::Shutdown {

// Nothing to free for the player profile

ReleaseCommonResources();

GUI::Shutdown();

}

3.4 Game Architecture 245



This is how the initialization and shutdown functions would be called from the
game program:

{

FrontEnd frontEnd;

frontEnd.Initialize();

frontEnd.Loop();

frontEnd.Shutdown;

}

Notice the conspicuous absence of any error handling in the previous functions.
In practice, you will want to check for errors in initialization and loading and deal
with them following the game’s policy for error handling: perhaps displaying the
error, logging it and continuing as normal, trying to recover gracefully, or just by
using the assert() function and letting a programmer fix it right away.

Resource Acquisition Is Initialization

A good rule to follow to minimize mismatch errors in initialization and shutdown
steps is to use the Resource Acquisition Is Initialization philosophy (often abbreviated
as RAII). That means that creating an object will acquire and initialize all the neces-
sary resources, and destroying it will take care of destroying and shutting down all
those resources. The advantage of this approach is that the initialization and shutdown
calls are automatically called as the objects themselves are created and destroyed, so
there’s no potential to forget to call them or to have mismatched calls.

Continuing the previous example, if we used RAII with the FrontEnd class, its
initialization will be done in its constructor, and all its shutdown operations in 
its destructor. The functions Initialize() and Shutdown() shouldn’t even be listed 
as public because nobody should call them directly. If an object of the class FrontEnd
is around, we can be sure it has gone through the initialization phase successfully.
Now we can use the FrontEnd class in the following way, and all the bookkeeping
happens behind the scenes:

{

FrontEnd frontEnd;

frontEnd.Loop();

}

How do we check for errors now? Earlier, we could just have the Initialize()
function return a Boolean variable indicating whether it had succeeded or failed. Now
we’re doing the initialization in the constructor, which doesn’t return any values. The
shutdown step happens in the destructor and can’t return any values.

246 Part 3 Game Programming: Languages and Architecture



The cleanest way of handling it is to use exception handling. Instead of cluttering
all the source code with statements checking for errors, and returning out of a func-
tion as soon as they find a problem, we can just wrap the previous front-end creation
into a try-catch statement:

try {

FrontEnd frontEnd;

frontEnd.Loop();

}

catch (...) {

// Handle any problems here

}

It’s a clean solution, but unfortunately not always practical. Dealing with excep-
tions can be a tricky issue, especially in C++. It requires writing exception-safe code,
which requires that all resources are freed correctly whenever an exception is triggered,
even if it happens in the middle of a constructor. At the very least, it will require the
use of smart pointers (which is mostly a good thing) and that some programmers
brush up on the consequences of dealing with exceptions.

Another issue is the support for exception handling in different languages and
compilers. Unfortunately, in C++ not every compiler will deal with exceptions very
well. Some of them will generate very inefficient code that might affect the perfor-
mance of the game. Some console manufacturers even admit that their compiler does-
n’t really generate good exception-handling code and that you shouldn’t count on it
for your games.

Even if you can’t use exception handling, it’s still worth using the RAII approach
whenever possible. You will have to check manually whether the initialization was suc-
cessful, but you will still benefit from knowing that the object is always in a well-known
state and not having to worry about calling the matching shutdown step by hand.

Optimizations

The following are some techniques sometimes used in games to make the shutdown
phase faster or more reliable.

Fast Shutdown
Ideally, we want to be able to transition between levels or between the game and the
front end as quickly as possible. During the initialization step, we need to load some
resources, so we try to do that as quickly as possible, but sometimes, we’ll be surprised
to see that we spend a second or two in the shutdown step for the game level before
we start loading anything. Reducing that time to a minimum would definitely
improve the user experience and keep players happier and more engaged in your game.

3.4 Game Architecture 247



What exactly are we doing that takes so long? Usually, the shutdown step for the
game is not trivial; after all, we need to destroy the entire world we had loaded in
memory and bring everything back to its initial, pristine state. Games will usually
iterate through all the game entities in the world and free them one at the time. Then
they will do the same with each of the resources that were loaded (textures, geometry,
etc.). They’ll reset or destroy complicated data structures with many nodes and edges,
and do a lot of general cleanup, most of which involves freeing memory that was allo-
cated dynamically.

If we’re just going to wipe the entire level, do we really need to be so careful and
meticulous by deleting each little piece one bit at a time? It’s like taking down a house
by carefully removing each brick and placing it neatly in a pile. An alternative is to
make sure all dynamic memory allocations for the game level happen in a set of mem-
ory pools dedicated exclusively to that level. At the end, when it’s time to shut down
the level, all we have to do is to reset those memory pools to an empty state, which is
a very fast operation. As long as no code ever tries to access any objects or memory
that was allocated in those memory pools, we have safely reduced the shutdown time
for a level from a second or two to virtually nothing.

Warm Reboot
Your game should be able to run for hours on end without crashing. That’s more diffi-
cult than it sounds. Just because it runs fine for a few levels doesn’t mean that it can last
for three days of nonstop play (some publishers require that the game runs for that
long without any problems before they approve a game). Even if the game doesn’t crash
after several days of play, it often develops annoying side effects, such as a choppy frame
rate caused by memory leaks, memory allocation problems caused by memory frag-
mentation, or jittery animations produced by loss of precision in the game timer.

One drastic but very effective way to avoid these problems is to do a warm reboot
of the machine after each level. Clearly, this is not something we can do on a PC, but
it will work fine on a game console since it’s fully dedicated to the game. As long as
the warm reboot is fast enough and the game loads immediately and preserves all its
state, the player won’t notice the difference, but the machine will be reset to its initial
state, without developing any long-term problems. To make this even more seamless
for the player, some game consoles provide functions to display an image on the
screen while the machine is rebooting instead of going blank or flickering.

Main Game Loop

At their heart, games are driven by a game loop that performs a series of tasks every
frame. By doing those tasks every frame, we put together the illusion of an animated,
living world. Sometimes, games will have separate loops for the front end and the game
itself, since the front end usually involves a smaller subset of tasks than the game.
Other times, games are organized around a unified main loop. This section describes in
detail the different tasks done during a game loop and ways of implementing them.

248 Part 3 Game Programming: Languages and Architecture



Tasks

The tasks that happen during the game loop perform all the actions necessary to have
a fully interactive game, such as gathering player input, rendering, updating the
world, and so forth. It is important to realize that all of these tasks need to run in one
frame. In the case of a game that runs at 30 frames per second, that means all the tasks
for a frame have to be done in less than 33.3 ms. If we choose to run the game at 60
frames per second, then we have half that amount of time: 16.6 ms. A task can’t
decide to take an unusually long time in one frame and run over its allotted time,
because it would affect the overall frame rate and detract from the game experience. If
a task really needs a long time to complete, it has to be broken down into multiple
steps and executed across several frames. Even in games that allow for a variable frame
rate, it is desirable to avoid sudden changes in frame rate to provide smooth gameplay.

The following are the main tasks just about every game needs to perform in its
game loop at one point or another.

Time Step
Once upon a time, in the dark ages of game development, games didn’t bother using
clocks. They just did as many things as they could in one frame (which was deter-
mined either by how much the CPU could do, or until the next vertical sync signal of
the monitor). That worked fine as long as the game only ran on that same hardware.
As soon as somebody with a faster CPU tried to run it, the game became faster. Not
only did the game run at a faster frame rate, but also everything actually moved faster
on the screen, causing the game to quickly become unplayable.

Today, things are different. Most contemporary games use some form of clock to
drive the game and make it independent of the speed of the system on which they are
run. Even console games that can always count on running on the same hardware
usually benefit from using a clock to deal with updating the game at different video
frequencies for PAL and NTSC video systems.

Most of the computations done during the game loop involve updating objects to
reflect all the changes that happened since the last frame (or since the last time they
were updated). Since we want to avoid our game changing speed depending on the
actual frame rate, we use the duration of time since the last pass through the game
loop as the amount of time to move our simulation forward for this frame. 

The time step in the game loop updates the game clock to match the hardware
clock and computes how many milliseconds elapsed since the last time step. These are
the only two sources of time information we will use during this frame. If we went
back and read the hardware clock every time we needed to know the time elapsed, we
would get slightly different readings throughout the frame because the hardware clock
never stops. Instead, we just read the time values once at the beginning of the frame,
and use them throughout the entire simulation for this frame.

There are two ways of handling time in games: variable frame duration and fixed
frame duration. Most games on PCs, as well as many console games, use variable frame

3.4 Game Architecture 249



duration. That means that frames can last any amount of time depending on what is
displayed on the screen, what the player is doing, or any number of factors. Sometimes,
frames will be blazingly fast and only take 10 ms (100 frames per second), and some-
times they can slow down and take 50 ms (20 frames per second). This approach has
the advantage that it scales very well to different hardware configurations, different
content, and different game loads. It also lets players tweak the game settings to
achieve a quality versus speed tradeoff.

Fixed-frame duration games are most commonly found on consoles, where the
hardware is unchanging and frames can always be assumed to be of the same duration
(which will usually coincide with a multiple of the vertical sync, or v-sync, signal on
the display). Fixed-frame duration has some nice properties, such as more predictable
behavior, easier physics simulation, and more reliable network behavior. Even if you
plan to have fixed-frame duration, it’s still a good idea to make sure your game mea-
sures and uses the actual time duration of each frame for its simulation instead of
assuming a fixed time per frame. That way, the game will be able to react correctly to
a hitch in the frame rate (a much bigger explosion than you had anticipated, for
example), and it will make it easier to run at a different fixed frame rate, such as on a
PAL video system (which runs at 25 or 50 frames per second instead of 30 or 60
frames per second on an NTSC system).

Input
A game is an interactive experience, so one of the most important tasks is to gather the
player input and react accordingly. We get input through a variety of input mecha-
nisms: gamepad, mouse, keyboard, driving wheel, video camera, or any of a myriad of
custom input devices. The important thing is that the input be consistent and as close
as possible to instantaneous.

To provide the user with consistent input, it is best to sample the input device
once per frame and save those values for the rest of the frame. Otherwise, if we sam-
ple the input device every time we need to know its state, we could end up with very
inconsistent results within the same frame.

It is important to minimize the amount of time elapsed between the moment we
sample the input from the device and the moment our game reacts to the input. This
will give the player a better impression of responsiveness and control. To minimize
that time, we typically get the input at the beginning of the game loop, right before
the simulation step. Otherwise, if we left the input task for the end of the loop, we
would be reacting to the player a frame behind, and everything would feel lagged by
about 30 ms (or less in the case of higher frame rates).

Networking
Another aspect of input is the input we receive from the network. At some point in
the game loop, we need to collect all the new messages we received from the network
and deal with them accordingly, by updating game entities or providing new input.

250 Part 3 Game Programming: Languages and Architecture



Simulation
This is a huge task that encompasses all sorts of subtasks, and it is where the world
really comes alive. The simulation step takes care of running any AI behavior code so
AI entities decide what to do next and where to go. It runs any game code or scripts
that update the game state or trigger new events. It runs physics simulations to make
sure objects move correctly on the screen. It updates particle systems to make the
misty waterfalls and the fiery explosions come alive. It moves the animations forward
for all the visible characters. It updates the player’s position and camera based on the
input recorded in an earlier task.

Because of the sheer number of computations to do and the entities to update,
this is often the most expensive of all the tasks we do in a game loop. So much, that
for a game to run at a reasonable frame rate, it is important that we limit the number
of entities and the type of updates we do every frame. We don’t need to waste any time
with an AI entity that isn’t activated, and we don’t need to continually update an
enemy that is moving inside a building three blocks down the street. Deciding what
to update and when to update it is one of the largest performance boosts we can do in
some of today’s games with large worlds filled with lots of game entities.

Collision
In the previous task, when we did the simulation step, we just moved everything to
the position where it would ideally like to be. In this phase, we check for collisions
between entities and deal with them accordingly. This is done in two separate phases:
collision detection and collision response.

Collision detection is the simpler of the two phases. For each entity, we need to
detect whether it’s colliding with another entity. By entity, we really mean anything in
the world: another character, an arrow, or even the ground. This is relatively straight-
forward, but it’s not a cheap operation. We usually try to speed it up by providing
simplified volumes to collide against, and we only check for collisions for the entities
we care about (the ones that are directly in view or nearby).

The second phase is collision response. This can be much more complicated than
the detection part. The response phase deals with correctly updating the entities that
have collided (correct being defined by the consistent laws of the game, not necessarily
by reality). If a character collides with an arrow, we need to assign damage and notify the
character that it has been hit. If a car collides with a wall, we need to crumple the car and
change its position and velocity to account for the collision. Making sure that those
things look realistic requires a solid physics simulation and some good game tuning.

Object Updates
Now that we have run the simulation and dealt with any collision issues, it’s time to
update the objects to their desired position. Here we’re applying the correct transform to
the objects, updating all their children, applying animations to a skeleton, and so forth.

If we have our world structured as a scene graph, this is when we propagate states
up and down the tree such as render or game states.

3.4 Game Architecture 251



Rendering
Finally, the moment we’ve been waiting for during this entire frame. Now that every-
thing is in place, we finally get to display it on the screen. 

Again, because of the large worlds in today’s games, we can’t just throw the entire
world at the graphics hardware and expect to have decent performance. We first need
to identify all the objects that could be potentially visible and then pass down only
those objects to the graphics hardware. To do that, we can use a variety of spatial par-
titioning techniques, such as portals or BSP trees, and perhaps combine them with a
simple frustum cull against the frustum defined by the camera.

This operation needs to be repeated once for every camera we’re displaying on the
screen, as would be the case in a split-screen game or for a rear-view mirror in a dri-
ving game. Sometimes we need to render the scene more times if we have any real-
time reflections or environment maps.

Many techniques are applied at this time to achieve realistic shadows, complex
lighting models, full-screen processing, and so forth. Rendering is an active area of
research, and every year new techniques are being developed to create new effects and
more realistic visuals. The graphics hardware also keeps advancing at a breakneck
pace, which contributes to the improvement of game visuals every year.

Other
There are plenty of miscellaneous tasks that have to be done during each frame, so it’s
important that they are included in the game loop. For example, we might need to
tend to the sound system and update it once per frame to keep all the sounds loading
and mixing correctly, or perhaps we batched all the outgoing network packets created
during the frame and we need to send them at once at the end. 

Structure

We now know what a game loop does, but how exactly is it structured? The most
straightforward approach is to simply have a while loop with all the steps included in
the loop. The following code is a typical game loop:

while (!IsDone()) {

UpdateTime();

GetInput();

GetNetworkMessages();

SimulateWorld();

CollisionStep();

UpdateObjects();

RenderWorld();

MiscTasks();

}

252 Part 3 Game Programming: Languages and Architecture



Such a game loop has the virtue that it’s simple, straightforward, and very clear.
The steps are clearly spelled out, and it’s very easy to add new steps or remove existing
ones. However, the steps are hardwired in the loop itself, so what if we want to have
different steps depending on the state of the game? For example, if we’re not playing a
game on the network, we don’t need to have a network step. We can easily fix that by
doing a check at the beginning of the GetNetworkMessages() function itself, but
there might be other similar situations. 

One of the most common places where we need a very different game loop is the
front end. Conceptually, it is very similar: we want to loop, get player input, update
the state of the menus, and render them, but unless we have some sort of 3D front
end, we probably don’t want to do collision detection, network updates, or many
other game-specific tasks. The same applies for other game states such as the loading
screen while we’re loading level data or special transitions between levels.

A possible solution is to have multiple game loops, one for each major game state.
However, that solution involves duplicating a lot of code, and is error prone and hard
to maintain. Every time we make a change to one of the game loops, we need to think
about how it could affect all the other loops, or suffer subtle bugs that could be hard
to track down.

A more flexible alternative is to consider each of the steps in a game loop as
generic tasks, and have the game loop simply iterate through all the tasks and call the
Update() function in each:

while (!IsDone()) {

for (Tasks::iterator it=m_tasks.begin(); 

it != m_tasks.end(); ++it) {

Task * task = *it;

it->Update();

}

}

Now we can control exactly what steps we want to perform in the game loop
from the game code itself. That means that we can have a single game loop for all the
states of the game, including the front end itself. Whenever we transition from the
front end to the game, we just add the correct tasks to the main loop and continue
running as usual.

Coupling

So far, the game loop we have seen has been extremely simple. Every pass through the
loop corresponds to a frame, and at every frame, we perform the same set of opera-
tions. Not all game loops are structured like this, however. A common technique is to
decouple the rendering step from the expensive simulation and update steps. This

3.4 Game Architecture 253



technique allows a game to run the simulation at a fixed rate (e.g., 20 times per 
second), while still rendering as fast as possible. It combines the advantages of a fixed
time step simulation with the scalability and improved frame rates of a variable time
step game.

For a decoupled main loop to work effectively, we can’t just run the simulation 20
times per second and render the graphics 100 times per second. If we did that, many
of the frames we would render on the screen would be duplicates of the previous
frame because the game state didn’t change. To solve this problem, before rendering
the screen, we interpolate any position and rotation values based on their previous
position and known velocity. This arrangement can result in higher frame rates, smoother
animation, and better overall responsiveness than a fully coupled game loop.

We can implement a decoupled game loop by using two threads: one for the 
simulation, and one for the rendering. It seems like a good idea on paper, but unfor-
tunately, multithreading programming can be a tricky business, and it’s much more
prone to errors than single-threaded approaches are. The performance cost of context
switches between the threads and synchronization to the same set of data can also add
up and become a significant drain on performance.

Since we have a tight game loop that repeats every 30 ms or so, we can do the
scheduling ourselves without much trouble. The main loop would look something
like this:

while (!IsDone()) {

if (TimeToRunSimulation())

RunSimulation();

InterpolateState();

RenderWorld();

}

The function RunSimulation() could be implemented using the flexible task
approach described in the previous section. RunSimulation() only gets executed at
fixed intervals, and the rest of the loop runs as fast as possible.

Execution Order

When we talked about the different steps involved in a game loop, we didn’t really
address the order in which they were executed. For the most part, it doesn’t matter too
much, and the game will run fine whether we do network message gathering at the
beginning or toward the end. We’re going around the game loop constantly anyway.
However, there are a few situations in which execution order of the different tasks is
important.

254 Part 3 Game Programming: Languages and Architecture



In a game, the player is constantly interacting with the world. One of the goals we
want to achieve is to keep that interaction as seamless as possible, which means reduc-
ing the delay between the time the player interacts with the world and the time the
game is updated to reflect that interaction. For example, if the player moves the mouse,
we want to move the camera as soon as possible, not 100 ms from now. If we waited
that long, the game would feel sluggish even if it had a very high frame rate.

To achieve this, we want to minimize the time between the input gathering step
and the time the rendering happens with those changes taken into account. A natural
arrangement would be to gather input, perform simulations, and render the frame in
that order. After rendering, we can take care of noncritical tasks such as updating the
sound system. 

We also want to reduce the time between receiving network messages and the
time we process them in the game. If we were to delay them for a few frames, we
would add another 30–60 ms delay to the messages, which is a significant percentage
of the 100–200 ms that they spent traveling through the network already.

Another reason to be careful with the execution order of the different steps in the
game loop is to maximize the parallelism we can achieve between the graphics hard-
ware and the CPU. Most video cards in PCs nowadays, and all modern game con-
soles, have dedicated graphics hardware. This hardware can work in parallel without
affecting the CPU, so we want to maximize this parallelism. 

The best ordering of steps will depend on your specific hardware. Most graphics
hardware have buffers to queue instructions, so they can be somewhat forgiving about
when the data was sent to them, and they’ll work at full efficiency as long as this
buffer is always full. Ideally, we want to keep this buffer full while the CPU is busy
working on the simulation for the next frame. This is represented in Figure 3.4.5a.
Contrast that with the worst situation shown in Figure 3.4.5b, where the CPU sends
a bunch of graphics data to the graphics hardware, and then waits until it’s all done
before continuing on to the next frame. In the first case, our game will run twice as
fast and smoothly as in the second one.

Several years ago it was announced that “the free lunch is over” and computer
programs would have to be rewritten for concurrency in order to keep getting faster
(in the past, programs naturally ran faster on newer hardware, but those “free” speed
gains are now gone) [Sutter05]. The reason is that individual cores have not become
much faster, so processor companies such as Intel, AMD, and IBM have compensated
by putting more cores per chip. Unfortunately, the result is that newer computers and
consoles don’t run single-threaded programs much faster than before.

Current-day PC CPUs are typically multicore, with either two or four cores each
executing several threads at a time. Current-day consoles are also multicore, such as
the Xbox 360, which has three cores, each capable of running two threads, and the
PS3, which has one primary core (the PPU) with seven slightly less powerful cores
(known as SPUs). In the future, we will see a trend toward many-core architectures,
which promise to put dozens of cores per chip.

3.4 Game Architecture 255



The key to working with these multicore architectures is breaking down tasks
into both code and data that can be farmed out to each of the cores. While in theory
the concept is simple, in practice it’s difficult to find and schedule work to keep all
available cores busy all of the time. For example, it has taken game studios such as
Insomniac Games (developer of Resistance 2) three generations of games on the PS3 to
fully exploit the PS3’s power [Acton08].

To understand and develop for a particular multicore platform, you must fully
appreciate the underlying hardware and memory architecture. For example, with the
PS3, each of the SPU cores has 256KB of dedicated memory associated with it. When
you want an SPU core to do some work, you must DMA the code and the data to the
SPU. When the SPU task is complete, the result usually must be moved back to main
memory. With this type of an architecture, the epiphany is that the work needs to be
focused around the data (and not focused around the code), since moving data
between main memory and the SPUs is the bottleneck. However, this is somewhat
unique to a nonunified memory architecture where each core only has access to a
small pool of memory.

Conversely, the Intel Core i7 architecture has a unified main memory and unified
L3 cache, but each of the cores has its own L1 and L2 cache [Intel09, Swinburne08].
In this architecture, data doesn’t have to be purposely shuttled around as with the
PS3, but care must still be taken to synchronize data access as with any concurrent
thread-based system. In particular, data written to one core’s L1 or L2 cache is invisi-
ble to the other cores and must be purposely flushed out to L3 cache in order to be
seen and shared.

256 Part 3 Game Programming: Languages and Architecture

FIGURE 3.4.5 a) A well-parallelized game loop. b) A game loop not taking advantage 
of the parallelism between the graphics hardware and the CPU.



Once you understand a particular platform architecture, it comes down to divid-
ing up systems (code and data) that can be run in parallel, yet remain perfectly 
synchronized so that the end result is a series of coherently rendered frames.
Unfortunately, the choice of what gets run on each core will largely depend on the
type of game and the platform it is running on. Candidates for work to be done on
secondary cores include physics and collision calculations, animation processing,
agent updates, and pathfinding. Unfortunately, specific architectures for individual
platforms is beyond the scope of this chapter. 

Concurrent programming in games is still an active area of research. Expect that
it will evolve and change in the coming years as various multicore and many-core
architectures are explored by each chip maker. It’s actually an exciting time for chip
architecture to watch how it all unfolds.

Game Entities

A game is all about interacting with the world, but it’s the smelly orcs and telepathic
aliens, the faster-than-light spaceships and the all-terrain vehicles, the rocket launcher
and the magical sword that inhabit the world and make it an unforgettable experience for
the player. Those are the game entities and those are what ultimately make a game. This
section describes how game entities are handled in a game: how they are organized, how
they interact with each other, and how they can be put together to create a full game.

Definition

Up until now, we’ve been talking about game entities without ever defining them rig-
orously. We have been relying on an intuitive understanding of what a game entity is.
Frankly, that’s because a game entity is a very fuzzy and slippery beast. It can really
refer to anything in a game world that can be interacted with. 

Some examples of game entities are obvious: an enemy unit is a game entity, a
sword you can pick up is a game entity. Others are a bit fuzzier, because we don’t think
of interacting with them so much, but the sky dome is probably a game entity as well
since it needs to be rendered, animated, and moved along with the player. In addition,
possibly so are effect-rich objects like fires and waterfalls; even the level geometry or
height field itself might be considered a game entity. Other game entities that people
sometimes forget about include triggers that generate some action when the player
enters an area, or even the camera that is controlled by the player; they don’t have any
physical representation in the world, but they’re still an essential part of the game.

Looking back over those examples, a good definition of game entity might be “a
self-contained piece of logical interactive content.” It is broad enough to cover all the
previous examples, but fuzzy enough to deal with just about any type of game entity.
The most important part of that definition is the self-contained aspect. A piece of
clothing might be a game entity if it can be picked up in the world and equipped, but
it wouldn’t be considered a game entity if it’s just decoration on a player avatar and
can’t be changed.

3.4 Game Architecture 257



Deciding what is and what is not a game entity is not an arbitrary decision. As
we’ll see in the rest of this section, a game entity has a certain memory footprint and
performance cost associated with updating it and traversing it. Only those things that
we really are going to interact with should become game entities.

Organization

Conceptually, all the game entities in the world are stored in a list. We then iterate
through the list to update the entities every frame, to render them, or to perform any
other operations. It is important that entities be stored in a list, and not in an array or
vector, because some game entities tend to be very volatile and new entities are con-
stantly being created (bullets, spawned enemies, dropped items), while others are being
destroyed (fading corpses, finished explosions, and projectiles after hitting a target). 

In practice, keeping all of the entities in a list and traversing them linearly is 
probably too much of a naive and slow approach for anything but games with just a
handful of entities in the world. We usually want some better organization that allows
the game to perform its simulation and rendering steps as quickly as possible.

Here’s where games vary a lot. A real-time strategy game will have a very different
organization of game entities than an indoor first-person shooter or a fighting game.
In general, entities will be stored in data structures that allow the game to do whatever
operations it needs to do most efficiently. For example, a real-time strategy game could
use a grid structure to quickly have access to all entities in a particular region of the
world since the world can be easily projected on a 2D plane. However, a first-person
shooter might use BSP trees or portals as a more efficient method given the type of
environments it has to deal with.

However, we might want to perform different operations with conflicting
requirements on the game entities. One interesting approach to solving this is not to
limit ourselves to a single arrangement of game entities, but to use as many data struc-
tures as are necessary for the different operations we want to perform. That way, 
collision detection can use a type of data structure that is highly optimized to find
contact between objects, but the rendering code can use one that can quickly cull
objects that are outside of the camera frustum and occluded by other objects. To do
that, we would go back to the original idea of keeping all entities in a single list, and
then each type of data structure would keep a reference to an entity in the list. 

If we’re going to have the same entity referenced in many different data struc-
tures, it is crucial that all data structures remain in sync. If the entity is moved or
deleted, all data structures need to be automatically updated. The observer design pat-
tern is a very clean solution to this situation.

Updating

One of the operations we want to perform very frequently on game entities is to
update them. Normally, we give each game entity a chance to do all the updates it

258 Part 3 Game Programming: Languages and Architecture



needs to do once a frame during the simulation step. This involves running any AI,
scripts, physics simulations, triggering events, or sending messages to other entities. 

We usually want every entity to have a chance to run its update code once per
frame, but unfortunately that is often too expensive with large worlds and complex
entities. Instead, we can try being smart about what entities we update, and only deal
with those that are near the player or are important to the game in some way. The
ones that are out of sight and not currently having a direct effect on the game can be
left for later when we have a few CPU cycles to spare.

Game entities are sometimes organized hierarchically, so instead of storing them
in a straight list, we store them in a tree structure. This allows us to impose some type
of hierarchy on the entities: if the parent entity doesn’t need to be updated, we can
skip updating all the children. This can cut down the number of updates we need to
do per frame if the tree is deep and well populated. Sometimes, this approach will be
mixed with a logical spatial partitioning by having all entities in a room or sector in
one branch of the tree, so we can ignore them if we’re nowhere near the room.

A more general technique involves using a priority queue of game entities to
decide which ones to update every frame. The idea is that entities are added to the pri-
ority queue and sorted based on the time when they next need to be updated.
Therefore, an entity that is right in front of the player would be sorted toward the
front of the queue, while an entity that is very far away would remain at the back. 
The importance of the entity would also affect the time of update, so a very important
entity would be updated frequently, even if it is far away.

The key concept is that now we can just start popping entities off the front of the
queue, calling their update functions, and putting them back in the queue. Whenever
the entity at the front of the priority queue doesn’t need to be updated this frame, we
can stop all the processing of entities. The biggest win is not so much reducing the
number of entities that are updated, but not even having to traverse the full list of
entities asking them one at the time whether they need to be updated or not. In mod-
ern hardware, traversing a list with many elements and accessing each can be painfully
slow due to the constant cache misses. In contrast, the priority queue method only
needs to access the exact number of entities we updated this frame and not one more.

Creation

There’s more to creating game entities than meets the eye. At first, we might think it’s
a trivial operation: there is a class that corresponds to every game entity, and we 
simply do a new on that class to create an object of that time. That was easy.

It turns out that things aren’t that simple. Depending on how you structure your
game entities, you might not have one class per game entity (see the “Component
Systems” section in Chapter 3.3), so you can’t new an object whenever you want. In
addition, we will need to create game entities by name (or ID) when we initially load
a game level or a saved game, so using new directly is out of the question.

3.4 Game Architecture 259



From the requirements we just listed, the creation of game entities is a perfect
match for an object factory. An object factory will take care of creating the correct
game entity on request. It is not limited to simply creating one specific object, but can
create any other objects it needs if it uses a component approach. 

In Chapter 3.3, we presented a simple object factory that created game entities.
Here we will describe a more complex version, called an extensible object factory, which
allows us to register new object types to be created at runtime. The advantages of an
extensible object factory are many. One of the immediate consequences is that the
factory itself doesn’t have to know about every item it can create, so the coupling (and
physical dependencies) between the factory and the items it produces is greatly reduced. 

A second consequence is that it is much easier to add new object types to the
factory, just by registering them at runtime. This makes it easier to add new objects
during development and opens the door to extending our game after it ships by hav-
ing DLLs or some other dynamically loaded code register any new object types with
the factory.

Let’s start with a simple implementation of an extensible object factory. Our fac-
tory needs a Create() call and a way to have the program register (and unregister)
new object types:

class ExtensibleGameFactory {

public:

GameObject * Create(GameObjectType type);

void Register (FactoryMaker * pMaker, GameObjectType type);

void Unregister (GameObjectType type);

private:

typedef std::map<GameObjectType,FactoryMaker*> TypeMap;

TypeMap m_makers;

};

Every time we register a new maker type, we add it to the map structure that gives
us very fast mapping between the type of an object and a pointer to its maker.
Creating new objects is just a matter of looking up the map and calling the creation
function on the maker if we find one:

GameObject * ExtensibleGameFactory::Create(GameObjectType type) {

TypeMap it = m_makers.find(type);

if (it == m_makers.end())

return NULL;

FactoryMaker * pMaker = (*it).second;

return pMaker->Create();

}

260 Part 3 Game Programming: Languages and Architecture



As you can see, the game factory knows absolutely nothing about what object
types it is creating this time around. That detail is totally left up to the maker itself.

What steps do we have to take to add a new object to this factory? 

1. Define a new object type (which is just an enum at the moment).
2. Create a maker class that creates the object we want.
3. Register it with the factory at the beginning of the program.
4. Unregister it at the end of the program.

So, there’s a fair amount of work involved. If we’re going to have hundreds of such
object types, it could get cumbersome taking all those steps every time we need to add
a new object type. It turns out that we can automate quite a few things in that process.

First, the object type can be changed so it’s not an enum, but a unique ID that
every object type has. This avoids having to explicitly add an entry to an enum list,
and also means we don’t have to have a centralized list of all object types, which would
make it harder to extend from other sections of the code or from a DLL. 

If we have some sort of runtime type identification in our engine, we could use a
unique ID from that system for every class. Otherwise, we could simply create a class
static variable in the classes we’re interested in and use its memory address as the
unique ID into the map since it would never change and would be guaranteed to be
unique. The only drawback is that it might not be the same between different execu-
tions of the program, so we should make sure we use a type ID that will not change
for saved games and level files.

Another approach is to simply use a unique string for every new object type. It
won’t be as efficient as a 32-bit unique ID, but it will be easy to debug and can be
saved to disk without any problems because it will never change.

If all the objects are going to be created in more or less the same way, taking the
same type and number of parameters in their constructors, and performing the same
set of operations, we can wrap the maker class in a template so they’re automatically
generated.

Finally, since the game factory doesn’t know anything specific about the type of
objects it creates, other than their base type, we can also create a template for the fac-
tory and reuse it in other places of the game where we need to create objects by type.
The companion CD-ROM includes the source code for a fully templated extensible
factory you can start using right away in your projects.

This is how we would use the templated extensible factory in the game:

ExtensibleObjectFactory<GameObject> m_factory;

m_factory.Register(new FactoryMaker<GameClass_1>);

m_factory.Register(new FactoryMaker<GameClass_2>);

m_factory.Register(new FactoryMaker<GameClass_3>);

//... etc...

3.4 Game Architecture 261



As you can see, it takes virtually no effort to register new objects with the factory.
One technique you might come across is the automatic registration of object types

with factories. Automatic registration makes it unnecessary to register object types by
hand or even to have any sort of registration step. All that happens behind the scenes
for you, taking advantage of constructors and global object creation. The idea is to
create a global object that deals with the registration in its constructor when it’s first
created. Since it’s a global object, its constructor will be called during the static initial-
ization phase, which happens even before main() is called.

You could create a template to make creating registration objects as simple as 
possible:

template <class Factory, class Type>

class Registrar {

Registrar(Factory & factory) {

factory.Register(new FactoryMaker<Type>);

}

};

Now, all you need to do to register your object types automatically is create a
global Registrar object:

Registrar<ExtensibleObjectFactory<GameObject>, GameClass_1>

registrarGameClass_1;

If that’s too cumbersome to type every time, just wrap it up in a macro (or com-
bine it in a class definition macro if you already have one), so you can just type:

FACTORY_REGISTER(GameClass_1)

However, as convenient as this technique might sound, it has its share of draw-
backs. One of the most annoying ones you’re bound to run into sooner or later is that
the compiler could very well strip out the registration code when optimizations are
turned on. We’re creating a global object for the sole purpose of executing its con-
structor, but nothing in the rest of the program references it anywhere. Consequently,
many compilers with aggressive dead-code reduction will remove it from the final exe-
cutable, and none of our object types will be registered. 

You might be able to trick the compiler into not stripping that code, but there are
other drawbacks as well. One of the biggest problems with this approach, and with
anything that relies on static initialization, is that you don’t have much control over
exactly when it happens. You can’t control the order of initialization (unless the
objects are in the same file), and you can’t ensure that other subsystems have been ini-
tialized before. What if we wanted to initialize the factory before we register anything?

262 Part 3 Game Programming: Languages and Architecture



We’re out of luck, or we have to check in the Register() function whether it’s already
initialized, and do it if it isn’t, which is just ugly and asking for trouble. What if we
need to call a different function or a totally different subsystem? 

As if that weren’t enough, automatic registration doesn’t allow us to customize
which objects get registered at runtime. For example, if a tool is running in “artist
mode,” we might want to only register and make available certain object types, but if
it’s running in “programmer mode,” we might register a different set of objects. Even
in the game, we might have different object types for a mod than for the regular game.

Once we consider what we gain by automatic registration of types and all the pos-
sible drawbacks, explicit registration sounds more and more appealing. Especially if
you can get it down to one line as we did in the previous example, there’s very little
reason not to do it that way and save ourselves many headaches down the line.

Level Instantiation

Before we can play a level, we need to load it from disk. We aren’t just loading the
assets, but the actual game state. Whether this is our first time playing the level, or
we’re loading a previously saved state, we need to create the game entities that are in
the world at this point and set the correct state for each.

The creation part is easy now that we have an extensible object factory that cre-
ates game entities. The level file will contain a list of entities in the world, listed by
name or ID. All we have to do is read through that list and repeatedly call the object
factory with each of the object types, and we’ll end up with the correct amount and
type of game entities.

What we haven’t talked about is the state of the game entities themselves. Just cre-
ating a game entity of the class Orc isn’t enough. We need to set its correct position,
orientation, amount of health, what weapons it is carrying, and so forth. Otherwise,
we would have many, completely identical orcs in the world, and that’s probably not
what we want. 

This situation is even clearer if we have more general classes like Enemy. It’s not
enough to just create an enemy; we need to load the correct textures, geometry, ani-
mation, AI state, scripts, and so forth for each type of enemy that we want to create.

One straightforward way of doing this is to store all necessary state data with each
entity in the level file, so it can be restored as we create each entity. This approach will
work, but it has one major drawback: similar entities will have the same data loaded
repeatedly, and, even worse, they will take the extra memory to store all that informa-
tion. If we have 200 orcs in our level, all 200 orc objects are going to contain most of
the same data (geometry, animations, etc.), and are only going to differ in a handful
of values (current health, position, and state). So, not only are our load times slower,
but we’re wasting memory in the game. Figure 3.4.6 shows this situation with several
similar entities that have a lot of data in common.

3.4 Game Architecture 263



To solve this, we divide the data that is associated with each entity into instance
data versus template data. Instance data are the values that differ from entity to entity:
position, rotation, current AI state, current health, and so forth. Template data are the
values that apply to all entities of that type: animation, textures, geometry, scripts, and
so forth. Notice that we’re using the word template in the general sense of a template
to create a particular entity with some specific attributes, not in the C++ sense of code
template. With this approach, we can load the template data just once, and have the
entities themselves contain only the instance data, which should be much smaller.
Figure 3.4.7 shows several entities sharing the same template data.

264 Part 3 Game Programming: Languages and Architecture

FIGURE 3.4.6 Several similar entities with a lot of duplicate data.

FIGURE 3.4.7 Entities of the same template type share common data 
and only have per-instance data.



This is a particularly powerful approach because it means we can have multiple
entity templates that use the same C++ class, but have different sets of template data.
Expose these values to your designers, and they’ll be able to create a large variety of
entities with minimal code changes. For example, we could have the regular “Orc”
template, which loads the standard orc values. However, it would be trivial to add an
“OrcChieftain” template that uses values very similar to the Orc, but has twice the
health, better armor, a slightly different appearance, and perhaps a different weapon.
All those values are part of the template, not of the instance, and a designer could cre-
ate them just by editing a text file or through the game editor.

Identification

Before we can deliver a letter, we need to know the name and address of the person to
whom we’re sending it. It’s the same thing with interaction between game entities.
Before two entities can interact with each other, they need to know how to find each
other and address each other by name.

A naive approach would be to use strings to identify game entities. We could
make sure entities are created with a unique string based on their template or class
name plus a timestamp or a sequential number. However, strings will take too much
memory and be too slow to process at runtime unless you have a tiny level with just a
handful of entities.

Another approach is to use pointers to the entities themselves. Unfortunately,
pointers are error prone, and there’s no way to know if the entity referred to by the
pointer is still there. This is a particularly insidious problem because of how dynamic
most modern games are. You can interact with many objects in the environment,
move them, pick them up, and even destroy them. Things are constantly being cre-
ated and destroyed, so there are no guarantees that just because you have a pointer to
something that you saw a few frames ago, that object is still around now.

Consider the following example: Right after a turret fires a volley of projectiles in
the air, it is destroyed by a nearby tank. A few seconds later, the projectiles land and
destroy some other unit. Usually, when a projectile hits, we want to notify the entity
that shot that projectile so it can gain experience, or get upgrades, or simply keep stats
of hit ratios and accuracy. If the projectiles had a pointer to the turret that generated
them, the game is about to crash as they try to access an invalid pointer since the tur-
ret doesn’t exist anymore. Clearly, we need a better approach.

Most games use a system of unique IDs (often referred to as UIDs) or handles.
This means that entities refer to each other not through pointers, but through some
value that uniquely represents each entity in the world. When necessary, the game
itself takes care of translating between handles and pointers. The advantage of this
approach is that if somebody tries to communicate with an entity after it has been
destroyed, the game will detect that the handle is no longer valid and ignore the mes-
sage or even indicate that the entity is no longer around.

3.4 Game Architecture 265



Many schemes allow us to map handles to game entities. The only requirement is
that each handle maps uniquely to a game entity, and that the translation is as effi-
cient as possible because it could be done hundreds or even thousands of times per
frame. The most straightforward approach is to create a hash table in which the han-
dles are the keys and the buckets contain pointers to game entities. 

As for generating unique handles, usually a globally increasing 32-bit integer will
do the job nicely. Every time a new entity is created, the entity is given the next larger
number. This approach will work fine for most games. However, if your game is
expected to come close to generating 232 entities in one run (as a persistent online
world might do), then you need to use more bits or come up with a way to reuse old,
unused IDs.

Communication

We have created a bunch of entities to populate the level, we update them every
frame, and they do their own thing. Even though it might be fun to wander aimlessly
through the world for a bit, in order to have a full game we need some way to interact
with those entities (and have them interact with each other). Communication
between entities allows that interaction.

Communication between entities can be very straightforward through the use of
function calls, or it can be slightly more complicated by using a full messaging system.

In the simplest case, when an entity needs to communicate with another entity, it
gets the pointer to the entity it wants to talk to (through the handle to pointer transla-
tion we discussed in the previous section), and it calls a function directly on the receiv-
ing entity. This approach is simple and straightforward, but it has several drawbacks.

The first problem is that it might require that the sending entity knows a fair
amount of things about the receiving entity in order to know what functions to call.
For example, if entity A attempts to pick up entity B, it first needs to find out if B can
be picked up, and then it needs to know what sequence of functions to call in B to
make sure its status is updated to reflect that it has been picked up. Much of this type
of code leads to entities finding out what specific type of entity other entities are, cast-
ing them to their real type, and doing conditional operations on them based on their
type (usually with a long switch statement). This leads to brittle code that is hard to
maintain with lots of potential for bugs with entity interactions. 

The second problem is that if we call a function on an entity directly, the entity
will deal with it right away. This is fine sometimes, but other times we want to make
sure we update entities in a certain order, or that we update them all in lockstep (i.e.,
we first run the simulation in all of them, and only when they’re all finished do we
want them to deal with any messages they received this frame). To do that, we need to
buffer the communication between them.

A common approach in many games is to use a messaging system. Entities, instead
of calling functions directly, send messages to each other. An entity then creates a mes-
sage, fills it with the information it wants to pass to another entity, and sends it to the

266 Part 3 Game Programming: Languages and Architecture



messaging delivery system. The message is queued there until we want to deliver it, and
only then do we pass it to the receiving entity (assuming it’s still around).

This approach solves the problem of being able to buffer messages (since they can
stay in the queue as long as we want), and it minimizes the coupling between entities.
Now an entity can send a message to another entity without knowing anything about
it. If the other entity doesn’t know how to handle that message, nothing happens. For
example, entity A can go around sending “pick-up” messages to entities it encounters
without knowing what they are. An enemy unit will ignore a pick-up message, but a
weapon entity will react correctly and initiate a pick-up sequence.

The messages themselves can be implemented in a variety of ways. If you’re plan-
ning on only having about half a dozen different messages, you might want to consider
coming up with a single struct that can hold all the data you need, along with a type ID
that indicates what type of message this is. As long as you manage to keep your message
size small (since it’s going to have to be filled, passed around, and read), this has the
advantage of making all your messages exactly the same type and exactly the same size,
which means you can easily optimize how they get created and passed around.

If you’re going to have many different types of messages, and modern games can
easily have hundreds of different messages to model all the different ways entities and
players can interact with each other, then a different approach might be beneficial. We
could create an interface Message class that could be used to send and receive any type
of message, and then implement specific messages as classes (or structs) that inherit
from Message and add their own set of data. This allows us to have very different mes-
sages, requiring completely different sets of data, without bloating the size of the mes-
sage or having to resort to reusing the same memory space with multiple variables
(through unions or by casting directly). With this approach, you don’t even need to
have a type ID indicating what type of message it is. Instead, you can use your sys-
tem’s runtime type identification (either the standard C++ one or a custom-made one)
to find out the type of a particular message and handle it accordingly.

Messages are being created and destroyed constantly. For every interaction
between a pair of entities, there will be at least one message created and sent. It can
easily be followed by a response message, or perhaps the message itself triggers a cascade
of events that creates more messages. In any case, we should be ready for potentially
hundreds or even thousands of messages per frame. 

What does all this mean to us? We should be very careful about how we pass these
messages. The messages themselves usually aren’t very large, but they aren’t a plain 
32-bit number either. We should avoid copying them as much as possible, and instead
prefer to create them once and then pass pointers (or references) to them during their
lifetime.

We also need to be careful about how we allocate these messages, especially in
game consoles. If we simply did a new/delete every time we wanted to create or
destroy a message, performance would be suboptimal (new is hardly a fast operation
that you want to do thousands of times per frame), and it could potentially fragment

3.4 Game Architecture 267



memory in no time. To solve this, we should take care to allocate messages from a set
of memory pools, which avoids fragmentation and makes allocation faster. By over-
riding operators new and delete, we make it so the fact that we’re using memory
pools is totally transparent to the rest of the program, which keeps the code cleaner
and allows us to change how we implement it. However, if we take the approach of
using several different message classes, message objects are going to be of all different
sizes, which makes using a memory pool a bit less straightforward. See Chapter 3.5
for more details on memory pools.

One word of caution: just because we’re passing messages between entities, it
doesn’t mean that we can pass those messages across the network and implement an
online game that way. Usually, we only want to pass a subset of those messages across
the network, and they often need to contain different data (using timestamps, special
network IDs, etc.) and be treated in different ways. (They might need to be com-
pressed, or their results might need to be interpolated or ignored.) For these reasons,
it is usually better to have a completely different set of messages for network commu-
nication.

Summary

As projects grow in size and complexity, carefully considering the architecture of a
game code base is becoming increasingly important, especially if you plan to reuse
some of the code in future projects.

At the highest level, games are usually a set of initialization/shutdown steps and
one or more game loops. Each initialization step takes care of setting up any resources
or systems needed by the game, and the corresponding shutdown step cleans up any-
thing done by the initialization step. The game loop is executed once per frame, and
it does all the tasks that have to be done each frame to make the game respond to the
player: input gathering, simulation, collision, rendering, and so forth. This becomes
increasingly complex with multicore architectures, as work must be divided up to be
run in parallel, paying close attention to data access and synchronization.

Every game has some form of game entity. These are self-contained units of game-
play logic. They can be enemy units, animated scenery, the player avatar, or even just
a trigger. Creating, managing, and updating these entities efficiently is very important
for the smooth functioning of the game.

Exercises

1. Why exactly does the shutdown phase need to mirror the order in which
items were initialized? Write a program with an initialization and a shutdown
phase that demonstrates why using a different shutdown order can cause
problems.

268 Part 3 Game Programming: Languages and Architecture



2. Most game engines will have a memory manager that, among many other
things, will report memory leaks. However, many C++ libraries provide spe-
cial functions to display memory leaks. Learn what functions are available
in your platform and write a quick program with memory leaks to demon-
strate all the information you can gather about them. Are you able to 
display the number of memory leaks? Their address? What part of the code
allocated them? Their content?

3. Implement a simple main game loop that calls each of the tasks described in
this chapter. Each task function simply prints out its name to the screen and
returns. Now, modify the game loop to decouple simulation and rendering.
Run it again and compare the outputs.

4. Reimplement the game loop from the previous exercise by using tasks that
are registered in a generic game loop. Set up two sets of tasks: one set for the
front end, and one set for the main game loop. Add the capability to toggle
between the two sets of tasks by pressing a key.

5. Choose a game you have played recently. Create a list with all the possible
game entities you see and interact with in the first few minutes of play.
Remember to look out for entities without physical representations such as
triggers or timers.

References

[Acton08] Acton, Mike, and Christensen, Eric, “Insomniac’s SPU Best Practices,”
Game Developers Conference, 2008, http://www.insomniacgames.com/tech/
articles/0208/insomniac_spu_programming_gdc08.php.

[Alexandrescu01] Alexandrescu, Andrei, Modern C++ Design, Addison-Wesley, 2001.
[Bilas02] Bilas, Scott, “A Data-Driven Game Object System,” Game Developers Conference

2002, available online at www.drizzle.com/~scottb/gdc/game-objects.htm.
[Duran03] Duran, Alex, “Building Object Systems: Features, Tradeoffs, and Pitfalls,”

Game Developers Conference 2003, available online at www.gdconf.com/archives/
2003/Duran_Alex.ppt. 

[Intel09] Intel, “Intel Core i7 Processor,” Intel.com, 2009, http://www.intel.com/
products/processor/corei7/index.htm.

[Lakos96] Lakos, John, Large-Scale C++ Software Design, Addison-Wesley, 1996.
[Laramée01] Laramée, François, “A Game Entity Factory,” Game Programming Gems

2, Charles River Media, 2001.
[Llopis04] Llopis, Noel, “The Clock: Keeping Your Fingers on the Pulse of the Game,”

Game Programming Gems 4, Charles River Media, 2004.
[Rabin00] Rabin, Steve, “The Magic of Data-Driven Design,” Game Programming

Gems, Charles River Media, 2000.

3.4 Game Architecture 269

http://www.insomniacgames.com/tech/articles/0208/insomniac_spu_programming_gdc08.php
http://www.insomniacgames.com/tech/articles/0208/insomniac_spu_programming_gdc08.php
www.drizzle.com/~scottb/gdc/game-objects.htm
www.gdconf.com/archives/2003/Duran_Alex.ppt
www.gdconf.com/archives/2003/Duran_Alex.ppt
http://www.intel.com/products/processor/corei7/index.htm
http://www.intel.com/products/processor/corei7/index.htm


[Ranck00] Ranck, Steven, “Frame-Based Memory Allocation,” Game Programming
Gems, Charles River Media, 2000.

[Rollings03] Rollings, Andrew, and Morris, Dave, Game Architecture and Design: 
A New Edition, New Riders, 2003.

[Sutter00] Sutter, Herb, Exceptional C++, Addison-Wesley, 2000.
[Sutter05] Sutter, Herb, “The Free Lunch Is Over: A Fundamental Turn Toward

Concurrency in Software,” Dr. Dobb’s Journal, 30(3), March 2005,
http://www.gotw.ca/publications/concurrency-ddj.htm.

[Swinburne08] Swinburne, Richard, “Intel Core i7—Nehalem Architecture Dive,”
bit-tech.net, 2008, http://www.bit-tech.net/hardware/cpus/2008/11/03/intel
-core-i7-nehalem-architecture-dive/1.

270 Part 3 Game Programming: Languages and Architecture

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.bit-tech.net/hardware/cpus/2008/11/03/intel-core-i7-nehalem-architecture-dive/1
http://www.bit-tech.net/hardware/cpus/2008/11/03/intel-core-i7-nehalem-architecture-dive/1


271

Overview

Every game needs to deal with the low-level details of the platform on which it runs.
It needs to decide how memory will be used, how to load data from some type of stor-
age, how to deal with the game resources, and so forth. Usually, that type of function-
ality is buried deep in the low-level systems of the game engine itself. Knowing how
those systems work and the tradeoffs involved will make you a much more effective
game programmer, even if you never have to implement them yourself. In this chap-
ter, we’ll look at memory management, handling file I/O, organizing game resources,
and the process of saving and loading game states. 

Memory Management

High-level languages such as Java or Python take care of the memory management for
the programmer. In C++, it is completely up to us to manage the memory we use.
Having full control over memory management gives us an extremely powerful tool
that, when used well, can improve a program’s performance by an order of magnitude.
It also allows us to take control over all available memory in game consoles to make
sure our game uses every available byte, but no more than that. 

Memory and I/O Systems3.5

In This Chapter

Overview
Memory Management
File I/O
Game Resources
Serialization
Summary
Exercises
References



On the flip side, explicit memory management is an area where errors are con-
stantly introduced, causing bugs, crashes, and unexpected behaviors. The problems
caused by errors in memory management can also be very difficult and time consum-
ing to debug.

This section will explain how we can best use memory management in C++ while
still remaining as safe as possible and minimizing the number of problems. Later in
the section, we will see these ideas in action as we develop a custom memory manager.

Working with Memory

We have three main objectives when managing our own memory: safety, knowledge,
and control.

Safety
Safety should always be the number-one priority when dealing with memory. It is too
easy to make mistakes and cause the entire program to crash in ways impossible to
reproduce or debug, or to slow down over time and fail after hours of play. 

We always want to keep an eye out for memory leaks and fix them right away. A
memory leak is an allocation of memory that is “forgotten” by the program and never
used again. One small memory leak by itself is no big deal. The problem is that when
some part of our program starts creating memory leaks, it means there is a logic error,
and chances are it is going to happen again, and again, and again. Before you know it,
a good chunk of your overall memory will be used up by leaked memory, and you
won’t have room for your game. In a console, you will simply run out of memory and
crash (although it could be after many hours of playing, depending on the severity of
the leak); on a PC with virtual memory, performance will slowly get worse as memory
starts being swapped to the hard drive more and more frequently. Keeping on top of
memory leaks and fixing them as soon as they occur should be a top priority.

The other safety issue is dealing with corrupt memory. This situation happens
when some part of the program starts overwriting memory locations that it’s not sup-
posed to. This can be one of the hardest problems to debug since the cause (program
overwriting memory) and the effect (crash or strange behaviors) can be very far
removed from each other. Immediately detecting when a program starts corrupting
memory will save many hours down the line.

Knowledge
If we’re going to take it upon ourselves to manage memory (not like we have much
choice in C++), we’d better have a good idea where that memory is, what parts of the
program are using it, exactly how it is being used, and how much memory is left at all
times. This knowledge will allow us to decide what to trim when it comes time to
squeeze in all the content for the game, as well as to tune our memory allocation
strategies.

Knowing how much memory we have allocated, and possibly how much memory
we have left, is also crucial in case we want to do some emergency feedback to avoid

272 Part 3 Game Programming: Languages and Architecture



using too much memory. For example, if particles cause memory allocations, we
could throttle back the particle effect systems if we know we’re running dangerously
low on memory.

Control
Finally, we want control over memory allocations. That control can give us a big per-
formance boost.

One aspect of control is to determine where something is allocated. If we have
full control, we can choose to allocate closely related objects together in memory. That
will give us much better cache efficiency because both objects might be in the data
cache at the same time. This is the perfect strategy to apply to long lists of objects 
that will be traversed sequentially by the program, and it can net us a very significant
performance boost.

The other aspect of control comes from how memory is allocated. For some spe-
cific types of objects, we might want to allocate memory in a much faster but also more
limited way. This is particularly true for small objects of the same size that are allo-
cated during runtime. In that case, the performance gained over those fast allocations
can also add up to a very noticeable improvement.

Memory Fragmentation

Memory fragmentation is an insidious problem that rears its ugly head on most plat-
forms with a limited amount of memory. This is one thing that PC developers don’t
usually have to worry about, but it is an issue in most other game platforms.

Let’s look at what happens in memory as a game starts allocating dynamic mem-
ory. At first, before any allocation takes place, all memory is one big block of contigu-
ous free memory. No matter what allocation size we request (as long as it is under the
memory total), it will be almost trivial to allocate. As more memory is allocated and
freed, things start looking a bit uglier. Blocks of memory of wildly different sizes are
allocated and freed in almost random order. After a while, the large, contiguous mem-
ory block has been shredded to pieces, and while there might be a large percentage of
free memory, it is all scattered in small pieces.

Eventually, we might request an allocation for a single block of memory, and the
allocation will fail, not because there isn’t enough free memory, but because there is
no single block large enough to hold it. Because of the random nature of memory
fragmentation, there is no easy way to predict when this will happen, so it could cause
one of those really hard-to-track-down bugs that are almost impossible to reproduce
when you need to.

A virtual addressing system will greatly help reduce this problem. Virtual address-
ing is an extra level of indirection offered by the operating system or the memory 
allocation libraries, usually relying on hardware features to make its performance cost
almost free. Physical memory is divided into equally sized blocks (4KB, for example),
and each block is given a different virtual address, which is what the program sees.

3.5 Memory and I/O Systems 273



Any time we try to use a virtual address, it is translated into a real physical address by
looking it up in a table. All that is done transparently to the user of the memory allo-
cation functions. The key point is that, under such a scheme, two separate memory
blocks, in completely different parts of the physical memory, could be made to map
to two contiguous blocks in the virtual address (see Figure 3.5.1). All of a sudden, one
of the major problems with memory fragmentation has almost disappeared, since we
can always piece together a larger memory block from several scattered ones.

On the PC, when memory is tight, some of the least recently used memory
blocks are saved to the hard drive to make room for new allocations. This is called a
“virtual memory system.” Needless to say, that is usually not an acceptable situation
for games, because it causes major slowdowns in the game while memory is being read
from or written to the hard drive.

The other major gaming platforms don’t have virtual addressing to rely on, so
they need to deal with the issue of memory fragmentation explicitly.

Static Allocation

One of the oldest solutions to all memory allocation problems is to avoid it altogether.
A program could be designed so it never uses new and delete (or malloc and free),
and relies exclusively on statically allocated objects or objects created on the stack. 

Here are some examples of static allocation:

274 Part 3 Game Programming: Languages and Architecture

Virtual
Address Table

Block 2

Block 4

Block 3

Block 5

Block 1

Physical Memory

Block 1

Block 4

Virtual
Memory View

FIGURE 3.5.1 Virtual addressing mapping two disjointed physical memory 
blocks into one consecutive virtual address block.



// Create a fixed number of AI path nodes

#define MAX_PATHNODES      4096

AIPathNode  s_PathNodes[MAX_PATHNODES];

// Create a fixed-size buffer for geometry

// 8 MB

#define GEOMSIZE       (8*1024*1024)

byte *  s_GeomBuffer[GEOMSIZE];

This approach has some definite advantages. Clearly, memory allocation perfor-
mance is not an issue since it never happens during runtime. In addition, since every-
thing is statically allocated by the compiler and nothing changes during the execution
of the game, neither memory fragmentation nor the potential to run out of memory
is an issue. 

Another advantage of static initialization is that it is very straightforward to keep
track of where memory goes and how much each type of data takes. We explicitly
decide how large each array and buffer will be at compile time, and we know they will
never grow, so just glancing at the source code is enough to know the memory distri-
bution. In the previous example, it is clear we are reserving 8MB for geometry and
4096 times the size of a path node of pathfinding memory. 

So far, we have addressed all the safety, knowledge, and control issues we men-
tioned earlier. Does that mean that static allocation is the answer we were looking for?
Perhaps, but it also has its share of drawbacks.

The first major drawback of static allocation of memory is wasted memory. We are
forced to decide ahead of time how much memory will be dedicated to each aspect of the
game, and all that memory is allocated at once. This means that, for a game with many
things happening on the screen and changing over time, we are wasting large amounts of
memory. Think of all the explosions, particle effects, enemies, network messages, projec-
tiles in the air, temporary search paths, and so forth. All those things would have to be
created ahead of time, while with dynamic memory allocation only the ones that we cur-
rently need would be allocated, and we would allocate more only as we require them. It is
unlikely we would ever need as much memory at once as with static allocation.

It is important to note that it is not enough to decide ahead of time how many
objects of a whole hierarchy branch we want allocated. We must decide exactly how
many we need of each individual class type. For example, if we have a game object
hierarchy, from which other more concrete object types derive (such as enemy, player,
projectile, trigger, etc.), it is not enough to say that we will have 500 game objects;
instead, we need to decide exactly how many enemies, how many projectiles, and so
forth. The more detailed the class hierarchy, the more difficult it becomes, and the
more wasteful of memory it becomes. On the other hand, having a complex inheri-
tance hierarchy is probably not the best of designs, so it is not such a bad thing that
static allocation discourages that approach.

3.5 Memory and I/O Systems 275



One apparent advantage of static allocation is that it seems to reduce the chances
of dangling pointers, since the memory referred to by a pointer will never be freed. It
is very possible, though, to have the contents of that memory become invalid (e.g.,
after a projectile explodes and its object is marked invalid), at which point the pointer
will still be valid, but it will access meaningless data. That is an even more difficult
bug to track down than a dangling pointer to an invalid memory location, because
using the dangling pointer would most likely result in an immediate access violation
exception with dynamic memory allocation, but under this scheme the program will
silently continue to run with bad data and possibly crash at a later point.

Finally, another disadvantage of static allocation is that objects need to be pre-
pared to be statically initialized, with all its consequences. When dealing with dynamic
allocation of objects, it is a good practice to make sure the object is fully initialized
when it is first constructed, and it is correctly shut down when it is destroyed. With
static allocation, objects will be constructed ahead of time, but will not be initialized
until some time later. This means we need to add extra logic to all our objects to ini-
tialize and shut down correctly multiple times without ever being freed. 

In addition, we need to be extremely careful with any initialization done in the
constructor. We are planning to create static arrays of those objects, and, as you may
recall, static initialization is a sticky issue with C++. The long and the short of it is,
you have very little control in what order things become initialized, so we cannot rely
on our pathfinding data being ready when the enemy objects are initialized, or the
effects system being ready when the special effects objects are created. In fact, in a 
situation like this, it is probably best to leave all initialization until later, and not do
anything at all in the constructor, other than set default values and mark the object as
uninitialized.

Dynamic Allocation

When static allocation is not enough, we need to turn to the flexibility offered by
dynamic allocation. We want to find a solution that is safe and gives us enough
knowledge of how memory is allocated and the control necessary to optimize alloca-
tions when we decide it’s necessary.

Dynamic memory allocation can be a messy business. Allocations happen at
seemingly random times, for random amounts of memory. Our first goal is to gather
enough information about the memory allocations of our program to understand
how we’re spending our memory and what we can do to improve it.

Before we can come up with a solution, we need to understand what happens as
a result of a memory allocation request.

1. Everything starts with an innocent-looking object creation in the code:

SpecialEffect * pEffect = new SpecialEffect();

276 Part 3 Game Programming: Languages and Architecture



2. The compiler, internally, substitutes that call with two separate calls: one to
allocate the correct amount of memory, and one to call the constructor of
the SpecialEffect class:

SpecialEffect * pEffect = __new (sizeof(SpecialEffect));

pEffect->SpecialEffect();

3. The global operator new must then allocate the amount of requested mem-
ory. In most of the standard implementations, the global operator new sim-
ply calls the malloc function:

void * operator new ( unsigned int nSize ) {

return malloc(nSize);

}

The call sequence does not end there; malloc is not an atomic operation. Instead,
it will call platform-specific memory-allocation functions to allocate the correct
amount from the heap. Often, this can result in several more calls and expensive algo-
rithms to search for the appropriate free block to use.

Global operator delete follows a similar sequence, but calls the destructor and
free instead of the constructor and malloc. Fortunately, the amount of work needed
to return memory to the heap is usually much less than the work done allocating it, so
we will not look at it in detail.

Custom Memory Manager

To take full advantage of dynamic memory allocation, we need to create our own custom
memory manager. When we’re done with it, we will have addressed the issues of safety,
knowledge, and control, and it will be ready to drop straight into a commercial game.

Global Operators New and Delete
We need to start by overriding the global operators new and delete. We won’t change
the allocation policy yet, so we will continue calling malloc and free. However, we
will add some extra logic to allow us to keep track of what system the allocated mem-
ory belongs to.

To specify our memory allocation preferences, we will create a Heap class. For
now, this Heap does not correspond to a fixed amount of memory or even to a set of
contiguous memory. It is just a way for us to logically group some memory allocations
together. To start, all the Heap class needs is a name:

class Heap {

public:

Heap (const char * name);

const char * GetName() const;

3.5 Memory and I/O Systems 277



private:

char   m_name[NAMELENGTH];

};

Now we are ready to provide our first version of the global new and delete operators:

void * operator new (size_t size, Heap * pHeap);

void operator delete (void * pMem);

In addition to those, we will need one version of operator new that does not take
a Heap parameter. That way, all the code that does not explicitly pass a heap will still
work correctly. Because there is only one operator delete, it always needs to correctly
free the memory allocated by any of the different operator new functions. In effect,
that means that if we create any operator new, we need to override all of them and the
operator delete:

void * operator new (size_t size) {

return operator new (size,

HeapFactory::GetDefaultHeap() );

}

Before we look at how operator new will be implemented, let’s see how it will be
used first. To call our special version of operator new, we need to explicitly pass a heap
reference as a parameter to the new call:

GameEntity * pEntity = new (pGameEntityHeap) GameEntity();

Our implementation of operator new is going to start very simply. For now, all we
want is to keep the association between the heap it was allocated from and the allo-
cated memory itself. Notice that the delete operator only takes a parameter as a
pointer, so somehow, we need to be able to go from a pointer to its information.

For now, we will allocate a little bit more memory than was requested, enough to
fit a header for each memory allocation with the information we need. For simplicity,
this header will just contain a pointer to the correct heap:

struct AllocHeader {

Heap * pHeap;

int    nSize;

};

278 Part 3 Game Programming: Languages and Architecture



The functions operator new and operator delete now look something like this:

void * operator new (size_t size, Heap * pHeap) {

size_t nRequestedBytes = size + 

sizeof(AllocHeader);

char * pMem = (char *)malloc(nRequestedBytes);

AllocHeader * pHeader = (AllocHeader *)pMem;

pHeader->pHeap = pHeap;

pHeader->nSize = size;

pHeap->AddAllocation (size);

void * pStartMemBlock = pMem + 

sizeof(AllocHeader);

return pStartMemBlock; 

}

void operator delete (void * pMem) {

AllocHeader * pHeader =

(AllocHeader *)((char *)pMem –

sizeof(AllocHeader));

pHeader->pHeap->RemoveAllocation (pHeader->nSize);

free(pHeader);

}

These two functions are doing the bare minimum to get the job done. Even so,
they are already quite useful. At any point in time, we can look at how much memory
we have allocated in each heap, which gives us a good idea of the overall memory usage.

So far, we have been purposefully ignoring the close relatives of operator new

and operator delete: operator new[] and operator delete[]. Their job is to allo-
cate and free memory for a whole array of objects. For the moment, we can just treat
them like their nonarray counterparts and call operator new and operator delete

from them.

Class-Specific Operators New and Delete
Even though this system starts being useful, it is still quite cumbersome to have to
explicitly pass the heap to every allocation we care about. Overriding the class-specific
new and delete operators will automate this task and finally make it useful enough to
use in our game and tools.

3.5 Memory and I/O Systems 279



We can use the class-specific operator new to automate some of the complexities
of our memory management scheme. Since we usually would like to put all objects
from a certain class in a particular heap, we can have the class operator new deal with
calling the global operator new with the extra parameters:

void * GameObject::operator new (size_t size) {

return ::operator new(size, s_pHeap);

}

Now, every time an object of the class GameObject is created with new, it will
automatically be added to the correct heap. That certainly starts making things easier.
What exactly do we need to add to each class to support that? An operator new, an
operator delete, and a heap static member variable:

// GameObject.h

class GameObject {

public:

// All the normal declarations...

static void * operator new(size_t size);

static void operator delete(void * p,

size_t size);

private:

static Heap * s_pHeap;

};

// GameObject.cpp

Heap * GameObject::s_pHeap = NULL;

void * GameObject::operator new(size_t size) {

if (s_pHeap==NULL) { 

s_pHeap = HeapFactory::CreateHeap(

“Game object”); 

}

return ::operator new(size, s_pHeap);

}

280 Part 3 Game Programming: Languages and Architecture



void GameObject::operator delete(void * p,

size_t size)

{

::operator delete(p);

}

By the third time we add those same functions to a class, we realize that there has
to be an easier way instead of doing all that error-prone typing—and there is. We can
easily provide the same functionality with two macros or even with templates if you
really must. Here we will show the simpler macro version. The same GameObject class
would now look like this:

// GameObject.h

class GameObject {

// Body of the declaration

private:

DECLARE_HEAP;

};

// GameObject.cpp

DEFINE_HEAP(GameObject, “Game objects”);

One important observation: any derived classes from a class that has custom new
and delete operators will use its parent operators unless it has its own. In our case, if
a class GameObjectTrigger is inherited from GameObject, it will also automatically
use GameObject’s heap.

Now it is really simple to use, to the point that it should be worthwhile adding it
to all the most important classes.

An object could also do raw memory allocation from the heap during execution.
A raw memory allocation means allocating a certain amount of bytes straight from
memory, not allocating new objects. If that is the case, the allocation can be redirected
to point to that object class’ heap to keep better tabs on memory usage:

char * pScratchSpace;

pScratchSpace = new (s_pLocalHeap) char[1024];

At this point, we have the basis for a simple, but fully functional memory man-
agement system. We can keep track of how much memory is used by each class or
each major class type at any time during the game execution, as well as some other
useful statistics (peak memory consumption, etc.). With a few more features, it will be
ready for use in a commercial game.

3.5 Memory and I/O Systems 281



Error Checking
To make the memory manager truly something that can be used in commercial soft-
ware, we need to consider the possibility of error and misuse. The way the memory
manager was described in the last two sections, there was no provision for any errors:
we couldn’t detect memory leaks, we could attempt to delete a pointer that wasn’t
allocated by us, and we didn’t have any mechanism to trap memory corruptions.

The first thing to do is make sure the memory we are about to free was allocated
through our memory manager. The way operator new and delete are implemented,
it should always be the case, but there is the possibility of another library allocating
the memory, or perhaps some part of the code calling malloc directly. In addition,
this check will catch any stray pointers that are referring to other parts of memory, as
well as problems with memory corruption, where allocated memory was later over-
written by something else.

To accomplish all that, we will add a unique signature to our allocation header:

struct AllocHeader {

int    nSignature;

int    nSize;

Heap * pHeap;

};

Of course, there is no “unique” number we can add, or even combination of
numbers. There is always the possibility that somebody will allocate memory with
that same number, but the possibility of it occurring at exactly the place we are look-
ing at is pretty slim. Depending on how paranoid we want to be, we can add more
than one integer at the cost of higher overhead, but one will be enough for this exam-
ple and for most purposes.

What should that unique number be? Anything that is not a common occur-
rence. For example, using the number zero is not a good idea, as it happens too much
in real programs. Same thing with 0xFFFFFFFF, common assembly opcodes, or
addresses to virtual memory. Just typing any random hexadecimal number will usu-
ally be good enough. One of the old favorites is 0xDEADC0DE.

One common mistake when dealing with dynamically allocated memory, especially
in the form of an array, is to write past the end of the allocated block. To check for this
situation, we can add a guard number at the end of the allocated memory. Just another
magic number will do for now. Additionally, we will also save the size of the allocated
memory block to double check against it when we attempt to free the memory:

void * operator new (size_t size, Heap * pHeap) {

size_t nRequestedBytes = size + 

sizeof(AllocHeader) + sizeof(int);

282 Part 3 Game Programming: Languages and Architecture



char * pMem = (char *)malloc (nRequestedBytes);

AllocHeader * pHeader = (AllocHeader *)pMem;

pHeader->nSignature = MEMSYSTEM_SIGNATURE;

pHeader->pHeap = pHeap;

pHeader->nSize = size;

void * pStartMemBlock = pMem + 

sizeof(AllocHeader);

int * pEndMarker = (int*)(pStartMemBlock + size);

*pEndMarker = MEMSYSTEM_ENDMARKER;

pHeap->AddAllocation (size);

return pStartMemBlock; 

}

void operator delete ( void * pMemBlock ) {

AllocHeader * pHeader =

(AllocHeader *)((char *)pMemBlock -

sizeof(AllocHeader));

assert (pHeader->nSignature ==

MEMSYSTEM_SIGNATURE);

int * pEndMarker = (int*)(pMemBlock + size);

assert (*pEndMarker == MEMSYSTEM_ENDMARKER);

pHeader->pHeap->RemoveAllocation(pHeader->nSize);

free (pHeader);

}

Finally, as another safeguard, a good strategy is to fill the memory we are about to
free with a fairly distinctive bit pattern. That way, if we accidentally overwrite any part
of memory, we will immediately see that it was caused by attempting to free a pointer.
As an added advantage, if that pattern is also the opcode for an instruction indicating
a halt of program execution, our program will automatically stop if it ever tries to run
in a section that was supposed to be freed.

3.5 Memory and I/O Systems 283



All these safety features are great, but they come at a price. Doing all that extra
bookkeeping takes some time, especially filling freed memory with a certain bit pat-
tern. One of the original goals of creating our custom memory-management system
was to achieve better performance, so we do not seem to be heading in the right direc-
tion. Fortunately, most of what we are doing here will only be enabled for debug
builds, and we can turn it off in release builds for optimal performance.

Detecting Memory Leaks
The concept of finding memory leaks is simple: at one point in time, we take a book-
mark of the memory status, and then later we take another bookmark and report all
memory allocations that were present the second time but not the first time.
Surprisingly, the implementation will be almost trivial.

All we have to do is keep an allocation count. Every time we have a new allocation,
we increase the allocation counter and mark that allocation with its corresponding
number. In this example, let’s assume that we will never have more than 232 alloca-
tions. If that is a problem, we need to keep 64 bits for the allocation count or devise a
scheme to wrap around. In either case, it is reasonably easy to implement.

Our allocation header now looks like this:

struct AllocHeader {

int           nSignature;

int           nAllocNum;

int           nSize;

Heap *        pHeap;

AllocHeader * pNext;

AllocHeader * pPrev;

};

And operator new is just like before, except that it fills in the nAllocNum field.
Next, we create a trivial function, GetMemoryBookmark. All it does is return our

current allocation number.

int GetMemoryBookmark () {

return s_nNextAllocNum;

}

Finally, the function that will do a bit more work is ReportMemoryLeaks. It takes
two memory bookmarks as parameters and reports all memory allocations that are
still active that happened between those two bookmarks. It is implemented simply by
traversing all allocations in all heaps, looking for allocations that have a number
between the two bookmarks. Yes, it is potentially very slow to traverse all allocations

284 Part 3 Game Programming: Languages and Architecture



in all heaps, but this is a luxury we can permit ourselves this time since this function
is used purely for debugging, and we do not really care how fast it executes.

Notice that we also added a pPrev and pNext field to the allocation header. Those
pointers are going to allow us to traverse all the allocations for a certain heap.
Operators new and delete will take care of correctly updating the list pointer for each
allocation and each free call. Since we are maintaining a doubly linked list, the per-
formance overhead for maintaining the list is trivial.

The memory leak reporting function is shown next in pseudocode form.

void ReportMemoryLeaks (int nBookmark1,

int nBookmark2) 

{

for (each heap) {

for (each allocation) {

if (pAllocation->nAllocNum >= nBookmark1 &&

pAllocation->nAllocNum < nBookmark2) {

// Print info about pAllocation

// Print its alloc number, heap, size...

}

}

}

}

Memory Pools
So far, we have addressed two of the goals for a memory management system: safety
and knowledge. We still haven’t seen how to gain control over memory allocations to
improve performance. The solution to most allocation performance problems is
memory pools. 

Recall that the expensive part of the default implementation of heap memory
allocation was finding the block of memory to return. Especially when the memory is
heavily fragmented, the search algorithm might have to look through many different
blocks before it can return the appropriate one.

Conceptually, a memory pool is a certain amount of preallocated memory that
will be used to allocate objects of a particular size at runtime. Whenever one of those
objects is released by the program, its memory is returned to the pool, not freed back
to the heap. 

This approach has several advantages:
No performance hit. As soon as somebody requests memory from the pool, we return

the first free preallocated block. There are no calls to malloc and no searching.

3.5 Memory and I/O Systems 285



No fragmentation. Those memory blocks are allocated once and never released, so
the heap does not get fragmented as program execution progresses.

One large allocation. We can preallocate those blocks in any way we want. Typically,
this is done as one large memory block, from which we return small subsections.
This has the advantage of reducing even further the number of heap allocations,
as well as providing spatial coherence for the data being returned (which might
improve performance even more by improving data cache hits).

The only disadvantage is that pools will usually have some unused space (slack
space). As long as the pools are reasonably sized and only used for dynamic elements,
the extra space is well worth the benefits we will reap.

The first thing that the memory pool needs to know is how large the allocated
objects are going to be. Since that will never change, we will pass it to the constructor.
In addition, the two fundamental operations we will perform on a pool will be allo-
cating and freeing memory. Here is the first, bare-bones version of a memory pool class
declaration:

class MemoryPool {

public:

MemoryPool (size_t nObjectSize);

~MemoryPool ();

void * Alloc (size_t nSize);

void   Free (void * p, size_t nSize);

};

We need to come up with a scheme to be able to manage many similarly sized
memory blocks, return one in the Alloc call, and put it back to be managed when it
is returned in the Free call.

We could preallocate all those memory blocks and keep a list of pointers to them;
get the first one in the list in the Alloc call and return it back to the list in the Free
call. Conceptually, that is very simple, and it avoids doing dynamic heap allocations at
runtime, but it also has several problems. The main one is that we are increasing the
memory overhead per allocation. Now an allocation requires an entry in the list of
free objects. It also means that all the preallocated objects are allocated individually,
not as a large memory block, so we also incur whatever overhead the operating system
requires for multiple, small allocations.

There is a solution that solves all these problems, but it requires that we get our
hands a bit dirty: handling memory directly, casting memory addresses to specific
data, and other unsightly things. It is well worth the trouble, though, and in the end,
it will require no extra overhead, and all the memory will be allocated out of large,

286 Part 3 Game Programming: Languages and Architecture



contiguous memory blocks—exactly what we were looking for. Besides, all that com-
plexity will be hidden under the memory pool class, so nobody using it will have to
know how it is implemented to use it correctly. In fact, once we are done, if we have
done our job correctly, nobody will even need to know there is a memory pool class at all.

Let us start by allocating one large memory block. Conceptually, we will think of
that block as made up of contiguous, similarly sized slices of memory. Each slice will be
exactly the size of the allocations we will be requesting from this pool (see Figure 3.5.2a). 

At the start, before any allocations are done, all memory in the block is available,
so all slices can be marked as free. To do that, we will create a linked list of free slices.
Since the memory block has already been allocated, but we have not given any of that
memory to the program, we have a lot of unused memory lying around, so we might
as well put it to good use. Instead of wasting memory with a separate list, we will double
up the first two double words from each slice as the next and previous pointers for a
list element, and we will link all the slices in one doubly linked list (see Figure 3.5.2b).

The rest is simple. Any time a new request comes to the pool class, we grab the
first element in the free slice list, fix up the list, and return a pointer to that slice.
Whenever memory is freed, we add that memory to the head of the free slice list.
After a few allocations, the slices will be out of order in the list, but it does not matter.
We are not causing any memory fragmentation, and we allocate and free memory
blazingly quick (see Figure 3.5.2c).

3.5 Memory and I/O Systems 287

FIGURE 3.5.2 a) A newly allocated pool object. b) A pool object with the 
linked list connections. c) A pool object after being used for a while.

a b c

Empty block
Empty block header
Block with data



What if we need more memory than the original amount we allocated? That’s up
to you. Perhaps you want to make sure that memory pools never grow beyond a cer-
tain size, in which case, if they ever get filled up, you can throw an assert and stop.
Otherwise, if you want them to grow, you can allocate another memory block and
link them together along with the rest of the free blocks.

How big should those memory blocks be? It will totally depend on the type of
allocations we are performing, and on the behavior of the program that uses the mem-
ory pool. On one hand, we do not want to waste lots of space by having a really large
block that will never be completely used, but on the other hand, we do not want to
have lots of little memory allocations all the time. 

The best course of action is to pick some default. For example, each pool will cre-
ate a block that can hold 512 slices. Once we have memory pools hooked up to our
memory manager, we can report how much wasted space there is and tweak them
accordingly. We might also want to make sure that the allocated blocks of memory are
multiples of the size of a memory page size or some other significant size that might
make our life easier and the allocations faster. In Win32, it makes sense to make each
block a multiple of 4KB and allocate that memory directly, bypassing malloc and all
its overhead.

To make sure all objects of a particular class use the pool for their allocation, we
need to create a static member variable that holds the memory pool and then override
operator new and operator delete to use the memory pool to allocate the memory
they need. 

// MyClass.h

class MyClass {

public:

// All the normal declarations...

static void * operator new(size_t size);

static void operator delete(void * p,

size_t size);

private:

static MemoryPool * s_pPool;

};

// MyClass.cpp

MemoryPool * s_MyClass::pPool;

288 Part 3 Game Programming: Languages and Architecture



void * MyClass::operator new(size_t size) {

if (s_pPool==NULL) { 

s_pPool = new MemoryPool(sizeof(MyClass)); 

}

return s_pPool->Alloc(size); 

}

void MyClass::operator delete(void * p, size_t size) {

s_pPool->Free(p, size); 

}

We can clean this up as well and wrap it up in a couple of macros (see macro 
definition in the source code on the companion CD-ROM). Now we can write the
class as follows:

// MyClass.h

class MyClass {

public:

// All the normal declarations...

MEMPOOL_DECLARE(MyClass)

};

// MyClass.cpp

MEMPOOL_IMPLEMENT(MyClass)

Finally, to integrate pools with the memory manager, each pool can contain a
heap and register all its allocations through the heap. Now all the allocations, pooled
or not, will appear correctly in the pool display. 

File I/O

Every language comes with its own standard set of library calls to open files and to
read and write data, so why do we need to worry about file I/O in game development?
There are several reasons. 

One of the most important reasons is that we want to load files very quickly.
There are few things more frustrating than having to wait a long time for a level to
load, so we need to make sure we can minimize load times, and loading files one at a
time from the default file system usually doesn’t cut it. In addition, if we do any type
of multiplatform development, we want to be able to access and manipulate files in
the same way across all different platforms. 

3.5 Memory and I/O Systems 289



Creating our own custom file system lets us address those issues. It also gives us
the opportunity to extend the file system to access files in different media, such as a
DVD drive, a memory card, or even the network, in a uniform way, further simplify-
ing any file I/O operations in our game and tools. 

Unified, Platform-Independent File System

Before we can manipulate any files, we need to find them and open them. At the very
least, our platform-independent file system should let us open a file and retrieve a
handle or an object to do any further operations on it. The declaration for this mini-
malist file system looks like this:

class FileSystem {

public:

File * Open (cons std::string & filename);

};

However, for a full game, we probably want to add more operations. For instance,
we might want to check whether a file exists before we open it (for performance rea-
sons and to avoid cluttering the log with errors if we’re just checking to see if a file
exists and we have no intention of opening it). 

We might also want to be able to mount and unmount parts of the file system,
such as a memory card or the contents of a game pack file (which we’ll cover in detail
in a moment). If we’re going to mount parts of the file system, we might also treat the
local file system just like any other type of file and explicitly mount it. This gives us
the extra flexibility of being able to have different mappings in our game and tools than
the exact paths in our computers, which will come in handy during development.

It may also be useful to manipulate the concept of current path. Some file systems
support this concept natively, whereas some of the minimalist ones in some game
consoles don’t. If you decide that you’d like to support it, you should add functions to
retrieve and set the current directory, as well as internal functions to translate relative
directories and incomplete path names into full paths. Otherwise, you can just make
sure you deal with absolute paths, which might take some getting used to, but might
save a few headaches down the line by making things easier to debug.

A more fleshed-out file system interface might look like this:

class FileSystem {

public:

File * Open (const std::string & filename);

bool DoesFileExist (const std::string &

filename) const;

290 Part 3 Game Programming: Languages and Architecture



bool Mount (const std::string & src,

const std::string & dest);

bool Unmount (const std::string & src);

};

To start implementing this file system, we need a way to map filenames to the files
themselves so they can be queried and opened. We also want this operation to be very
efficient because we will probably be opening thousands of files during a level load. 

The other major requirement is to minimize the amount of memory used by the
file system itself, so we want to avoid keeping a list of all the files’ full names. This
might seem like a trivial memory optimization, but filenames can quickly add up to
significant amounts of memory. Imagine that our game has 10,000 files, and on the
average, each of those files is about 60 characters long (because we’re keeping full
paths with the filenames): we’d be spending about 600KB on the filenames alone. 

A hash table is the perfect data structure to meet our needs. We can achieve very
efficient (constant time) access to any file in a large set, and we don’t need to store the
filenames themselves. Every time we ask for a filename, we run the string through the
hash function, and then access the hash table itself. A CRC function does the job
nicely by allowing us to map an arbitrary string into 32- or 64-bit numbers very effi-
ciently.

Files

We’ll operate on the files themselves through a File class. We could have chosen to
use a handle system, where the Open() call returns a handle instead of a pointer to an
object, but the resulting code is less readable and more cumbersome. Instead, we can
use the nice object-oriented syntax to treat a file as an object. As an added benefit,
whenever a file object is destroyed, we can automatically close the file, so there’s no
need to explicitly close it.

The basic operations we want to perform on a file are to read from it, write to it,
and possibly seek to some other part of the file. Here is the basic interface for a File
class:

class File {

public:

File (const std::string & filename);

int Read(byte * pData, int bytesToRead);

int Write(byte * pData, int bytesToWrite);

int Seek(int desiredPosition);

};

3.5 Memory and I/O Systems 291



Internally, the read, write, and seek functions just call the native platform func-
tions pretty much straight.

With a simple file class like that, we’re ready to start reading and writing data:

int number;

if (pFile->Read((byte *)&number, sizeof(number)) != 

sizeof(number))

{

return false;

}

That’s some pretty ugly code with all that casting and sizeof() calls everywhere.
We can make it much easier to use and understand using the following member func-
tion templates:

class File {

public:

File (const std::string & filename);

int Read(byte * pData, int bytesToRead);

int Write(byte * pData, int bytesToWrite);

int Seek(int desiredPosition);

template<typename T>

int Read (T * pData, uint nCount = 1) {

uint nRead = ReadRaw((byte *)pData, 

uint(nCount * sizeof(T)));

return nRead/sizeof(T);

}

};

Now we can write the same example in a much simpler way:

int number;

if (!pFile->Read(&number))

return false;

Buffering

One of the goals we had for creating our own file system was to achieve great perfor-
mance. Buffering is a key element toward achieving that goal.

292 Part 3 Game Programming: Languages and Architecture



Consider the following innocent-looking code that simply tries to read a
sequence of numbers from a file:

int attribute[NUM_ATTRIBUTES];

for (int i=0; i<NUM_ATTRIBUTES; ++i) 

if (!pFile->Read(&attribute[i]))

return false;

We’re just reading a series of numbers sequentially in the same file. Ideally, the
preceding code should execute very quickly, only requiring one or two actual reads
from the physical disk that buffers all the results. In the worst case, a system with no
buffering will hit the disk for every value read, bringing the loading code to its knees. 

A similar situation happens if we want to read from many different parts of the
file. Our code would seek to different locations and read some data, but that could
cause horrible performance. In this situation, we might want to buffer the entire file
into memory before we start reading from different parts of it. Having control over
the buffering, the file system gives us the ability to improve our loading performance
and memory consumption by tweaking it to fit what we know we’re about to do.

The cleanest way to implement a buffering scheme is by using a layered approach.
Once we start thinking about it, we realize that buffering and file reading/writing are
totally orthogonal concepts. Buffering describes what we do with the data we just read
(or we’re about to write), nothing else. 

If we could add a buffering layer on top of a file and make it look like a regular file
to the rest of the world, we could achieve control over the buffering while still looking
like the same file interface. We can achieve exactly this effect by using polymorphism,
creating an interface class DataStream and a set of derived classes, FileSource and
BufferingLayer. Figure 3.5.3 shows the class inheritance diagram that describes this
arrangement.

3.5 Memory and I/O Systems 293

BufferingLayerFileSource

DataStream

FIGURE 3.5.3 Class inheritance diagram for some DataStream classes.



The BufferingLayer class looks like this:

class BufferingLayer : public DataStream {

public:

BufferingLayer (DataStream & sourceStream, 

int bufferSize);

virtual int Read(byte * pData, int bytesToRead);

virtual int Write(byte * pData, int bytesToWrite);

virtual int Seek(int desiredPosition);

private:

DataStream & m_stream;

byte * pBuffer;

};

Notice that BufferingLayer needs a DataStream passed to it in its constructor.
That is where it gets all the data to buffer since the buffer itself doesn’t read data from
any physical device. That’s the job of the FileSource class. We also need to specify
how big a buffer we want to use. Sometimes, we don’t know how big we want the
buffer to be; we just want to make sure that the entire file is buffered into memory. In
that case, we could pass –1 as the size of the buffer, and we would interpret that to be
of the correct size.

By default, for optimal performance, we should make our buffer size match some
multiple of the sector size of the physical media we’re reading from. That way, one
buffer read corresponds exactly to one (or several) whole sector read. We also have 
to take some care to always start the buffer at multiples of that physical sector size to
avoid straddling two physical sectors and causing two physical reads for every single
one of our own reads.

We also need to change the FileSystem Open function to take an optional buffer
size parameter. So, if we know we’re going to need a buffer of at least 32KB for a par-
ticular file, we can call it this way:

DataStream * pStream =

fileSystem.Open(“myfile.txt”, 32);

And if we wanted to fully buffer the file’s contents into memory, we could call it
this way:

DataStream * pStream =

fileSystem.Open(“myfile.txt”, FULL_BUFFER);

294 Part 3 Game Programming: Languages and Architecture



Pack Files

So far, this custom file system looks like a fairly generic reimplementation of the file
systems in most platforms. It’s nice to have the added flexibility over the buffering
aspect, but we can sometimes achieve the same effect by using platform-specific file
I/O functions. However, pack files are what makes this file system unique and
extremely useful to game development.

If you were to develop a game without worrying about the file system, you would
probably notice excruciatingly slow loading times, especially if you were loading
directly from a DVD or Blu-ray disc like many of the game consoles. We would then
take our profiler to try to find out what was causing the poor performance, and after
some investigation, we would see that most of our time was spent seeking to different
places on the disc. “Seeking? But we took care not to do any seeking during the 
loading of each file,” you might say. This seeking doesn’t come from moving around
during a single file load, but rather from loading files that are located in different
physical locations on the disc. 

Usually, when we use the default file system, we have no control over where files
are physically located. Most applications don’t need to know that, so that would be a
useless complication. Unfortunately, games do need to know, and this is where pack
files come in.

Another large performance hit would probably show up in the form of file open
and close operations. File systems in most platforms have a fairly large overhead for
opening and closing files. If we’re planning on 1,000 files during a level load, even an
extra 10 ms per file adds up to 10 more seconds.

A pack file is simply a large file that contains other files. It probably contains
some header information with a list of all the files contained inside and where they are
located (their offset from the origin of the file), plus a large chunk of data with the
contents of every file. Because we created this file ourselves, we have full control over
where different files are located, so we can minimize seek times. In addition, because
it is a single, large file, we also completely remove the overhead associated with open-
ing and closing files as long as we keep reading from this pack file.

The actual format of the pack file doesn’t really matter. We can adopt an existing 
format and get the benefit of existing tools to create and view their contents. Some of the
popular pack file formats are cab files, or even zip files (with or without compression). If
for some reason an existing format doesn’t meet our needs, we can always roll our own
very easily, but keep in mind that it will also require writing several support tools.

Before we can use a pack file, we need to mount it on our file system, so the
FileSystem needs to be extended to handle pack files. Whenever a pack file is
mounted, we can hand it over to the PackFileSystem object, which takes care of
parsing its contents and adding all the entries to the file system map. 

What happens when we try to open a file that is contained in a pack file? Clearly,
we can’t use the standard file open and close calls we used for files in the local file system.

3.5 Memory and I/O Systems 295



Instead, we pass the request to the PackFileSystem, and it creates a DataStream that
starts at the correct offset into the large pack file. We also have to take care that the
length of this new DataStream matches the file we are opening and not the length of
the pack file itself. The cleanest way to implement this is to add a new layer to use a
smaller range from an existing stream. 

class RangeLayer : public DataStream {

public:

RangeLayer (DataStream & sourceStream, int offset,

int length);

virtual int Read(byte * pData, int bytesToRead);

virtual int Write(byte * pData, int bytesToWrite);

virtual int Seek(int desiredPosition);

private:

DataStream & m_stream;

int m_offset;

int m_length;

};

The pack file system can return the new data stream this way, and the rest of the
code will just see a normal DataStream with the correct data and length.

return new RangeLayer(packFileStream,

file.Offset, file.Length);

Now that we have a working pack file, load times should already be faster because
we only make one native open call to open the pack file itself, and all other open oper-
ations on the contents of the pack file are very fast. At this point, we can also try to
rearrange the contents of the pack file so that files that are read consecutively are posi-
tioned next to each other. This will further reduce load times by avoiding seeks as
much as possible. 

Other possible optimizations we can do are to align files on some particular
boundary (such as 4KB), which wastes a bit of space, but might give us even faster
load times by aligning the files with sectors on the physical medium where the pack
file is stored. Some other media have strict requirements on read operation align-
ments, especially for asynchronous, low-level read calls, so we can change the align-
ment of our files to match those requirements very easily.

296 Part 3 Game Programming: Languages and Architecture



Extensions and Advanced Uses

With a custom file system like this in place, you can add any features that you need
for the game or even during development.

You will probably want to offer a file-like interface to a section of memory instead
of a physical file on disk. All you need to do is implement a new DataStream class that
reads to and writes from a section of RAM. You can even make it so the area of RAM
can grow as you write to it, just as a real file would. The ability to read from RAM as
if it were a file will come in very handy if we attempt to do any asynchronous loading,
in which we first load the contents of a file asynchronously into memory, and then we
create the appropriate objects from the contents of that file.

Another extension that can be very useful, especially during development, is a
DataStream that accesses files over the network. It lets you operate on any file over the
network just as if it were local, and it makes it really convenient to work with the lat-
est game resources stored on a network drive, or, in the case of a game console, to get
files directly off a PC to make iteration time even faster for artists and designers.

Compression can be an extremely useful feature to add to our file system.
Especially in hardware with slow data access (DVD drives) and relatively fast CPUs, a
reasonable compression algorithm could cut the data size in half while having little
impact on the CPU, which could translate into almost halving load times. We could
easily add compression by implementing a new DataStream layer that would sit
between the file layer and the game. As in the case of the buffering layer, it would be
totally transparent, but it would take care of doing all the decompression. If we also
want to save out compressed data (e.g., to fit in a small memory card), we can also
implement the write operations in this layer and make it work both ways. If we use a
standard compression algorithm, we get a lot of source code that we can use when
implementing that layer, and also get tools to compress and uncompress files. Some
popular compression algorithms are gzip (zlib library [Gailly05]) and bzip2. Both of
them are very effective, lightweight algorithms, and they’re free, so you can use them
in any commercial game.

It is important that all file I/O calls be handled by our custom file system. If parts
of our program use the regular OS file I/O calls, and the other half uses the custom
file system, we’re headed for disaster. We can easily control what we do in our code,
but we have to be particularly careful about middleware and third-party libraries. Any
decent middleware should have file I/O hooks, so we can point them to our custom
functions to ensure all operations are done through the same file system. Otherwise,
the middleware library wouldn’t be able to take advantage of all the great features we
implemented, such as pack files or custom buffering.

Game Resources

A game resource, also called a “game asset,” is anything that gets loaded from a disc
and could be shared by several parts of the game: a texture, an animation, a sound,

3.5 Memory and I/O Systems 297



and so forth. Game resources are created by artists and designers; they are usually
quite big and take up a large percentage of all available memory in modern games.
This section explains how to organize resources effectively in the game engine.

Working with Game Resources

Let’s imagine for a moment that we don’t have any particular system in place to deal
with game resources. Do we really need one? What happens if we don’t?

We’re in the middle of loading a game level. From the level description file, we are
told we need to create an orc and place it in the corner of the dungeon. That should
be easy. We look up the definition of an orc, and we load its mesh, textures, anima-
tions, and sounds from a disk. So far, so good. As we keep loading the level, we
encounter that there’s another orc that needs to be placed nearby. This orc is exactly
like the previous one: same textures, same animations, same everything. Unfortunately,
our dumb loading code doesn’t know how to take advantage of that, and simply hits
the disk again and loads and creates all those resources. Imagine that there are not just
two orcs, but dozens. It will take forever to load the level, and it’s a monumental waste
of memory, which is one of the most precious resources game developers have.

As if that were not enough, imagine that we go ahead and load the level anyway.
The player starts going through the dungeon and kills some orcs. At some point, the
game logic decides that it wants to spawn a few more orcs. How can we do that? All
the information we have are the filenames of the different resources of the orc, so we
go to the disk again and load those resources. However, this time the load happened
during gameplay, causing the game to freeze for a short period of time, or maybe stut-
ter badly over several frames.

Clearly, this is not an acceptable situation. We definitely need a system to deal
with game resources more effectively.

Resource Manager

We could try being a bit smarter about how we load resources. For example, the code
that loads textures could try to remember each texture that was loaded. If we try to
load the same texture again, we just return a reference to the one we have in memory.
The game code will get the resource it needs, and we don’t even have to hit the disk.

It seems perfect, except that then we realize we need to write the same code for
animations (and for meshes, and sounds, and movies, and level geometry, etc.). We’re
likely to have dozens of different types of resources, so writing the same code every-
where doesn’t seem like an appealing idea.

The solution was a good one; we just need a way to generalize it into something
that can be used with any type of resource. The first thing that we need is to create the
concept of a generic game resource. That’s the perfect use for an interface class. Any
specific resources that we need to deal with will inherit from this interface class.
Additionally, there are probably a few operations we want to do on any type of
resource, so we can add them to the interface class.

298 Part 3 Game Programming: Languages and Architecture



class IResource {

public:

virtual ~IResource() {};

virtual const std::string & GetName() const = 0;

virtual ResourceType GetType() const = 0;

};

Now we can finally create a resource manager, which will be in charge of loading
resources, remembering all resources currently loaded, and returning references to
them whenever anybody asks [Bilas00, Boer00]. A first pass at the resource manager
looks like this:

class ResourceManager {

public:

Texture * CreateTexture(const std::string & 

filename);

Animation * CreateAnimation(const std::string & 

filename);

Mesh * CreateMesh(const std::string & filename);

//...

private:

IResource * CreateResource(const std::string & 

filename);

typedef std::map<std::string, IResource *> 

ResourceMap;

ResourceMap m_resources;

}

Each of the creation functions simply calls CreateResource() and does some
simple error checking. The heart of the resource manager is in the CreateResource()
function. It first looks to see if the resource is in the map, and if so it returns it right
away. Otherwise, it creates it and adds it to the map. That’s all there is to it.

IResource * ResourceManager::CreateResource(

const std::string & filename) 

{

ResourceMap::iterator it = 

3.5 Memory and I/O Systems 299



m_resources.find(filename);

if (it != m_resources.end())

return (*it).second;

IResource * pResource = LoadResource(filename);

if (pResource == NULL)

return NULL;

m_resources[filename] = pResource;

return pResource;

}

The resource manager will work fine as implemented so far, but there’s a certain ugli-
ness about it. Having to create a function for every resource type is rather cumbersome. It
also means that if the game needs to load custom resource types, it needs to modify the
resource manager itself, which is part of the low-level systems of the game engine. 

A much better approach is to use a registering system, just like the registering
object factories we saw in Chapter 3.4. For any resource type we want our resource
manager to support, we need to create a class that derives from the interface
IResourceMaker and register it with the resource manager. The manager then keeps
the association between file extensions (or header bytes, or however you prefer to
identify your resources) and resource makers. Whenever the game tries to load a
resource of one of those types, if it hasn’t already been loaded, it lets the ResourceMaker
itself load it and return a pointer to it. Otherwise, we return the pointer to the one
that was already loaded in memory. See  the low_level_memory_mgr files on the
companion CD-ROM for a full implementation of a registering resource manager.

Resource Lifetime

So far, we’ve been completely glossing over the issue of what happens when resources
are destroyed. Is the resource manager notified so it can remove the resource from its
list? What happens if we then try to create the same resource again? Before we answer
those questions, we really should think about how we want to deal with resources in
our situation. 

All at Once
For many games, we simply want to load all the resources for a level at the beginning
of that level and keep them around until we exit the level. We don’t want to destroy or
create any resources while the level is being played. The simplest way to handle that is
to destroy all resources and wipe the resource manager clean at the end of every level.
Then we load any new resources needed for the front end or the next level. 

300 Part 3 Game Programming: Languages and Architecture



This approach has the advantage of being very simple: there is no dynamic cre-
ation of resources, and we never need to worry about a resource not being there when
we need it or having to keep track of how many places are using a particular resource
at the moment. 

It is also very limiting because it doesn’t allow us to implement any type of on-
demand loading to bring in high-resolution models or textures when needed during
gameplay. It also makes it difficult to update individual resources during develop-
ment, which would really improve iteration time for artists and designers. Finally,
throwing away all resources at the end of each level might be a bit too much. There
might be resources that we want to reuse from level to level, or maybe some front-end
resources that we simply never want to unload. It also requires that all parts of the
code that held pointers to resources be aware that those resources are gone. This
approach seemed very appealing due to its simplicity, but now it’s starting to appear
too limiting.

Explicit Lifetime Management
We could take it upon ourselves to manage the lifetime of each resource manually.
Whenever we don’t want a resource anymore, we make an explicit call to delete it.
This solves some of the drawbacks of the previous approach in that we can easily swap
resources and load new ones “on the fly.” 

However, we have to be extremely careful with how we destroy existing resources.
The whole point of resources is that they can be shared. If we’re destroying an orc and
we decide to destroy all its textures and animations, what happens if there is another
orc out there that is using the same resources? We could try to keep track of everybody
that holds a pointer to resources and notify them when a resource is destroyed, but
that could take a lot of memory, and it wouldn’t solve the problem of what other parts
of the code will do when a resource is destroyed out from under them.

Reference Counting
Reference counting attempts to address the problem of shared ownership of resources.
Each resource keeps track of how many parts of the code are holding a reference to it.
As long as that reference is greater than zero, the resource is needed somewhere.
Whenever it reaches zero, it means that nobody is using it, and it can be safely deleted
if we want to.

Reference counting can be done explicitly. That is, every time something holds a
new reference to a resource, it has to call the AddRef() function, which simply incre-
ments the current reference count. Whenever something doesn’t need a resource any-
more, it calls the Release() function, which decrements the reference count. This
approach works reasonably well for dealing with shared resources, but having to call
AddRef() and Release() manually is usually too error prone, and it’s common for
resources to get mismatched calls, which throws off reference counting completely.

A safer approach is to use smart pointers [Colvin02, Hawkins03]. These smart
pointers can be used almost like a regular pointer by the rest of the code, but they take

3.5 Memory and I/O Systems 301



care internally of calling AddRef() and Release() on the resource as they are created
or deleted. When dealing with smart pointers, we have many choices: intrusive or
nonintrusive reference counting, deletion policy, copy on write, and so forth. Refer to
the references at the end of the chapter for a detailed discussion of smart pointers
applied to game resources as well as several off-the-shelf implementations.

Reference counting is very convenient. It deals neatly with the sharing problem,
the previous objections about swapping resources in and out, and updating single
resources during development. However, sometimes we need to be careful how we use
reference counting inside a game. We want to make sure that if we kill the last of the
orcs, the resources needed by the orc aren’t released, because we might create a few more
orcs in the next dungeon room. In situations like these, we might want to have the
game itself hold an extra reference to each resource needed in the level and release
them when the level is over to prevent any resources from being freed ahead of time.

Resources and Instances

When dealing with resources, it’s important to make a clear distinction between
resources and instances. Resources are all the data that could be shared among different
parts of the game. An instance is any data associated with the resource that is unique
for each occurrence of the resource in the game. Keeping the two concepts clearly 
separated will help us use resources correctly.

Sometimes, the distinction between resources and instances is very clear. For
example, a skeletal mesh is a resource, but its position and orientation are part of the
instance. We usually don’t even think about this because position and orientation are
often associated with a higher level concept of the entity rather than with the resource
itself.

Other times, the distinction between resources and instances is not as clear-cut.
Consider a texture with multiple frames (depicting the flame of a torch, for example).
The resource contains the number of frames and the data in each of the frames them-
selves. However, the speed at which these frames animate and the current frame is
probably part of the instance data. Otherwise, all meshes in the world that use this
texture would cycle through the frames at the same time.

Similar situations happen with parameters that are initially part of the resource,
but that we end up wanting to modify during gameplay. For example, consider the
transparency value of a material applied to a force field. Unless we move it to the instance
part, whenever we change it to make it more or less opaque, all the force fields in the
game will change at the same time.

If you find that most of your resources have some data that has to change per
instance, you might want to consider dividing resources into two parts: an instance
and the resource itself. The instance would be a very lightweight object with just the
values necessary to describe the instance and a pointer to the expensive resource.
Every time we use the resource in the game, we create a new resource instance with
the default instance values.

302 Part 3 Game Programming: Languages and Architecture



Resource Precaching

We’ve been assuming that to load all resources necessary for a particular game level, all
we have to do is go through the file that describes the level and load all the resources
for all the entities that appear in that level. It turns out this is not enough. We 
also need to deal with the resources of the objects that will be spawned during game-
play, but are not necessarily part of the original layout of the level. This is called 
“precaching.”

Precaching involves loading resources for objects that we don’t need right away,
but we know we will need later. For example, an explosion needs a set of sounds and
textures, but we certainly don’t want to wait until an explosion happens for the first
time to actually load those resources, or we risk having our game pause for several
frames while we access the disk, totally disrupting the player’s experience. 

How do we know what resources we’ll need in the future? We certainly don’t want
to hardwire any resource names in the code itself. Otherwise, every time we need a
new resource, designers or artists would have to come to the programmers to ask them
to add or change a resource. 

An important observation is that any resources that will be needed in the middle
of the game are going to be requested by entities that are already in the level. For
example, a barrel containing flammable gases knows that if it explodes, it will need to
play certain explosions. A spawn point knows that it might need to create new orcs if
triggered. Or a player avatar knows about all possible weapons it can cycle through.
The cleanest way of dealing with precaching is to simply allow every entity a chance
to precache anything it will need to use later. The entity doesn’t need to hold on to the
resource, it simply needs to tell the system to keep it around in case we use it later.
The game can keep a list of all the precached resources for the level, which, if we use
reference counting, will also keep the reference count positive, so we know they won’t
be destroyed before the end of the level.

During gameplay, we can create new resources as we would do with any other
resource, through the resource manager itself. In this case, however, resources will
already be loaded in memory so we won’t hit the disk and disrupt the game. We might
want to take the extra precaution of disabling disk access during the level itself. At the
least, we can print an obvious warning or error if any entity in the game attempts to
create a resource that hasn’t already been precached; that way, we’ll get a notification
right away, and we’ll know to fix it by adding it to the precache list.

Serialization

Just about every game needs to deal with saving and loading game states. Even if your
game only supports checkpoint saving, you probably still need to implement a full
save feature to export the initial state of the level from the level editor, or at least a
simplified version of a game state for each checkpoint save and load.

3.5 Memory and I/O Systems 303



Saving

When it comes time to save game entities, it is best if each entity decides for itself 
how to best save itself to the stream. To this end, we will make a pass through all the
entities we are interested in saving and give them the chance to serialize themselves
[Brownlow03, Eberly06].

ISerializable Interface
We can call the Write function for each entity we want to serialize. We could just
make that function part of the base GameEntity class and everything would work
fine. Entities that did not want to be serialized could just leave it blank, and every-
body else would implement the function depending on their contents.

A better approach is to make the serialization-related functions part of an abstract
interface, ISerializable. Then, the GameEntity base class can inherit from it, and
everything would work the same way. However, splitting those functions into a sepa-
rate interface allows us to easily serialize other types of objects that are not necessarily
game entities. The ISerializable interface is very simple:

class ISerializable 

{

public:

virtual ~ISerializable() {};

virtual bool Write(IStream & stream) const = 0;

virtual bool Read(IStream & stream) = 0;

};

As you can see from the Read function, we’ll also use the ISerializable inter-
face during the load process.

Implementing Write
Implementing the Write function for each entity is a straightforward task. We need to
decide what exact data we want to save. Then, for each member variable that we want
to save, we serialize it to the stream. 

For integers, floats, and other standard data types, we just stream them directly.
However, what if our entity contains a member variable of its own that we need to seri-
alize? Easy. We have to ensure that the variable also implements the ISerializable
interface, and we just call its Write function, which in turn will be implemented in the
same way. That way, we can save any amount of nested objects without any difficulty.

If the entity contains pointers or references to other objects instead of the object
itself, we need to deal with them in a different way. We will see how in the next section.

If our entity classes use inheritance, we might want to let the parent classes deal
with the serialization for their own data. Derived classes only have to worry about the
new variables they add.

304 Part 3 Game Programming: Languages and Architecture



Here is some potential code for the Write function of a camera class:

bool GameCamera::Write(IStream & stream) const

{

// Let the parent class write common things like 

// position, rotation, etc.

bool bSuccess = GameEntity::Write(stream);

// These are basic data types, serialize 

// them directly

bSuccess &= WriteFloat(stream, m_FOV);

bSuccess &= WriteFloat(stream, m_NearPlane);

bSuccess &= WriteFloat(stream, m_FarPlane);

// This is an object that needs to be 

// serialized in turn

bSuccess &= m_lens.Write(stream);

return bSuccess;

}

What we have implemented so far is a pure binary format—no headers, no extra
information, just the raw data. It might be a fine format for whenever we need to load
entities as fast as possible, as in the released game, but it is not a very friendly format
with which to develop the game. As soon as a minor change is made to an entity class,
all the previously saved games become unusable. Worse, there is no way to detect
when something is wrong, and we will most likely read garbage data.

For this reason, it is a good idea to implement at least two types of formats: a fast,
binary format like the one we saw previously, and a slower, text-based one that is eas-
ier to debug, and will still work when the format changes.

Unique Identifiers
We still have not solved one of the major problems: what to do about saving pointers.
It turns out we have several choices.

The first possibility is to completely avoid pointers, or at least pointers to other
game entities. Instead of a pointer, we could refer to any other game entities through
unique IDs (or UIDs). If every game entity has a UID that is guaranteed never to be
repeated, then we can just keep that number. Any time we need to work directly with the
entity, we ask the game entity system to give us a pointer to the entity corresponding

3.5 Memory and I/O Systems 305



to that number. As we saw in Chapter 3.4 about game entities, this is a reasonable
approach that we might want to adopt just to make it easier to communicate between
game entities.

For example, the following code updates the position of a homing projectile that
has locked on to some target, all using the UID method.

void HomingProjectile::Update() 

{

if (!m_bLocked)

return;

GameEntity * pTarget = 

GetEntityFromUID(m_targetUID);

if (pTarget == NULL) {

m_bLocked = false;

return;

}

// Do whatever course correction 

// is necessary here...

// ...

}

This is exactly like the solution to the shared-object problem using handles that
we saw in Chapter 3.4. The same comments about the construction of handles and
how the translation is implemented applies.

Resources
What about pointers to game resources instead of entities? Usually, that is less prob-
lematic. Entities point to resources because they were created that way, and their data
was set up that way from the beginning. For example, one of the properties of a cer-
tain player avatar entity is the mesh it will use to be rendered, along with all its anima-
tions and textures. Usually, entities will refer to resources by filename, or by some
resource ID, and that is all we need. If the resource it points to is going to change dur-
ing the program, the entity should save that filename or ID to be restored later.
Otherwise, it will always remain the same so there is no need to save it.

306 Part 3 Game Programming: Languages and Architecture



Saving Pointers
What if we decided not to use UIDs to identify our game entities, and we just use
straight pointers instead? Changing an existing code base from using pointers to using
UIDs can be quite a task. Imagine wading through hundreds or thousands of classes
changing all the pointers and the code that uses them to UIDs. If all we want is a
quick way of serializing entities, there is a better alternative: we can save the pointers
straight to disk.

We know that the memory address contained in the pointer will not point to the
correct memory location when we load the game again. Clearly, something has to be
done when we load the game entities to solve that problem. For now, we will save the
raw pointers and leave it at that. The next section covers what needs to be done at load
time to get everything to work.

Loading

Here comes the moment of truth. All we have done so far are preparations for loading
the game entities and restoring the game state. 

Creating Objects
A requirement when restoring different types of objects is to be able to create any
object type based on the data we read from the stream. It is not enough to be able to
read the data that should go in a GameCamera class; we need to know that it belongs to
a GameCamera class, and we need to actually create an object of that type.

If that problem sounds familiar, it should be. We covered it in detail when we
talked about object factories. A good game entity factory should be able to create any
entity type we want just by passing the class name or a type identifier. Then we can
call Read on the object we just created to load all its data from the stream.

string strClassName = ReadString(stream);

GameEntity * pEntity = 

EntityFactory::Create(strClassName);

// ... Some bookkeeping here ...

pEntity->Read(stream);

Depending on what type of factory system we have, we can save full strings for
the class name of our entities and create them again by passing the strings to the fac-
tory system. Using strings has the usual tradeoffs: it is easy to debug and clear to see
what we are trying to do, but it is slower and takes more memory than using simpler
identifiers. For example, 32-bit identifiers will be more efficient, but it will not be
immediately obvious what type of object we are trying to create by looking at the
identifier in the debugger. 

3.5 Memory and I/O Systems 307



Loading Pointers
How do we deal with the thorny issue of pointers? We mentioned earlier that we could
just save them straight, and we would restore them correctly. Here is how to do it.

We know that every memory address is unique. By storing the memory address of
the entity we are interested in, we are uniquely identifying it. If, along with every
entity, we also store its memory location when it was saved, we can construct a trans-
lation table at load time that can allow us to go from the old memory addresses to the
new memory addresses. 

For the translation to work correctly, it will need to be done once all the entities
are loaded; otherwise, we might try to look up a memory address that we have not
loaded yet. The load process is as follows: First, we load all the entities and construct
a table mapping old addresses to new ones; then we make a “fix-up” pass through all
the entities and give them a chance to fix any pointers they have to point to the new,
correct memory locations.

To accomplish this fix-up of addresses, we need a bit more support from the load-
ing system and the ISerializable interface itself, so we extend the ISerializable
interface to include a Fixup function.

class ISerializable 

{

public:

virtual ~ISerializable() {};

virtual bool Write(IStream & stream) const = 0;

virtual bool Read(IStream & stream) = 0;

virtual void Fixup() = 0;

};

Just as the entities implemented their own Write and Read functions, they will
implement a Fixup function that takes care of translating old pointer addresses to cor-
rect addresses for each pointer they saved. If an entity saved no pointers, it does not
need to implement the Fixup function, since the base GameEntity class implemented
an empty one. As with the other serialization functions, an entity must call its parent’s
version of Fixup in addition to doing its own pointer translations.

To make this fix-up step possible, each entity needs to be associated with its old
address when it is loaded back in memory. We can do that simply by saving the
address of each entity when it is written out to the stream.

With all this information in hand, we are ready to deal with pointers correctly.
Whenever an object is created from the stream, we also read what its old address 
was and enter it in the translation table along with the new address. The class
AddressTranslator will be in charge of keeping track of all the addresses and provid-
ing us with a translation during the fix-up pass.

308 Part 3 Game Programming: Languages and Architecture



GameEntity * LoadEntity(IStream & stream)

{

string strClassName = ReadString(stream);

GameEntity * pEntity = 

EntityFactory::Create(strClassName);

void * pOldAddress = (void *)ReadInt(stream);

AddressTranslator::AddAddress(pOldAddress,

pEntity);

pEntity->Read(stream);

return pEntity;

}

The AddAddress function puts the new address in a hash table, indexed by the
old address, so it will be very efficient to translate from old address to new address.

To implement the Fixup function, we need to use the other function provided in
the AddressTranslator class, which is TranslateAddress. That function will look
through the hash table for an old pointer value and fetch the new value. Here is how
the Fixup function for our HomingProjectile class might look:

void HomingProjectile::Fixup()

{

m_pTarget = (GameEntity *)

AddressTranslator::TranslateAddress(

m_pTarget);

}

After the loading is complete and all the pointer fix-ups are done, we should reset
the translation table to save memory since it will not be needed any longer.

One important thing to notice is that this method will only work for pointers
that we explicitly saved and then added to the table. In this case, it happens automat-
ically for all game entities. If we were to attempt to do this with a pointer that had not
been added to the translation table, it should assert or print a big warning to let us
know something went wrong in the translation process. Otherwise, the problem
might go unnoticed, and the bug might not be found until after exhaustive testing.

There’s a fair amount of typing involved for every variable that we want to serial-
ize. We need to add it to the Write() function, to the Load() function, and perhaps
to the Fixup() function. It’s easy to forget to add it to one of those places, and then

3.5 Memory and I/O Systems 309



the serialization will fail in subtle ways. What we have seen is the basic way of doing
serialization. A full game engine should have a way to automate all that typing with a
few simple macros or templates that do the same thing under the hood as our serial-
ization functions.

Refer to the companion CD-ROM for the full source code for a serialization
system with all the features described in this section.

Summary

In this chapter, we saw what to expect from low-level systems such as memory man-
agement and file I/O. 

Memory allocation is often the cause of many bugs and crashes in games. In this
chapter, we implemented a dynamic memory allocation system that gave us knowl-
edge, safety, and control over memory allocations.

We then saw how naive file I/O could really slow down game loads with lots of
file open and seek calls. We created a full file management system that allowed us to
access different resources in a consistent way, as well as give us enough control to allow
for much faster performance.

Game resources are large sections of data that are loaded from disk and shared
among different parts of the game. We saw different strategies to deal with that sharing,
how to separate resources and instances, and how to precache resources to avoid pauses
in the middle of the game as new entities are created. 

Finally, we looked at a simple serialization system that allowed us to save and load
the game state at any point. Such a system can be used for in-game saves, or even to
export the initial level state from the level editor.

Exercises

1. Consider the situation in which you have to manage a contiguous block of
RAM to allocate textures at runtime. You can’t rely on virtual addressing
because it’s either not supported, or because you need to ensure that the
memory is physically contiguous (this is often the case with memory that
the graphics processing unit accesses directly). Research the topic in the ref-
erences and describe a good and simple algorithm you can use to minimize
memory fragmentation.

2. Look at three or more PC games from the last couple of years. (You can use
demos that you can download for free.) Install them and look at the files
they’re using. Do they use pack files, or do they have thousands of single
files? Time how long it takes to load a level in each of those games. Is there
any correlation between load times and pack-file usage?

3. Implement a MemoryDataStream class that works by getting data from a
memory location instead of a file. Make sure it remains fully compatible
with the DataStream interface and the rest of the stream layers.

310 Part 3 Game Programming: Languages and Architecture



4. Implement a simple reference-counted class that other classes can derive
from. Implement the following member functions: AddRef(), Release(),
and GetRefCount(). Write a simple program that shows how the reference
class works.

5. Rewrite the same program you wrote in the previous exercise, but instead of
using the reference-counting class, use the boost::shared_ptr pointers
from the Boost library, which use nonintrusive reference counting. (The
reference count is in the smart pointer itself, not in the object being refer-
ence counted.)

References

Memory Management

[Dickheiser06] Dickheiser, Mike, C++ for Game Programmers, Charles River Media,
2006.

[Hixon02] Hixon, Brian, et al., “Play by Play: Effective Memory Management,”
Game Developer Magazine, February 2002.

[Meyers05] Meyers, Scott, Effective C++: 55 Specific Ways to Improve Your Programs
and Designs (3rd Edition), Addison-Wesley, 2005.

[Ravenbrook01] Ravenbrook Limited, The Memory Management Reference,
www.memorymanagement.org/, 2001.

File I/O

[Gailly05] Gailly, Jean-loup, and Adler, Mark, “zlib,” http://www.zlib.net/, 2005.
[PKWARE04] PKWARE, “Application Note: .ZIP File Format Specification,”

www.pkware.com/company/standards/appnote/, 2004.
[Sousa02] Sousa, Bruno, “File Management Using Resource Files,” Game

Programming Gems 2, Charles River Media, 2001.

Resource Management

[Bilas00] Bilas, Scott, “A Generic Handle-Based Resource Manager,” Game
Programming Gems, Charles River Media, 2000.

[Boer00] Boer, James, “Resource and Memory Management,” Game Programming
Gems, Charles River Media, 2000.

[Colvin02] Colvin, Greg; Dawes, Beman; and Adler, Darin, “Boost: Smart Pointers,”
http://boost.org/libs/smart_ptr/smart_ptr.htm, 2002.

[Hawkins03] Hawkins, Brian, “Handle-Based Smart Pointers,” Game Programming
Gems 3, Charles River Media, 2003.

[Llopis04] Llopis, Noel, “The Beauty of Weak References and Null Objects,” Game
Programming Gems 4, Charles River Media, 2004.

3.5 Memory and I/O Systems 311

www.memorymanagement.org/
http://www.zlib.net/
www.pkware.com/company/standards/appnote/
http://boost.org/libs/smart_ptr/smart_ptr.htm


Serialization

[Brownlow03] Brownlow, Martin, “Save Me Now!” Game Programming Gems 3,
Charles River Media, 2003.

[Eberly06] Eberly, David H., 3D Game Engine Design, Second Edition, Morgan
Kaufmann, 2006.

312 Part 3 Game Programming: Languages and Architecture



313

Overview

Debugging a game, or any other piece of software, can be an extremely difficult task.
For the most part, an experienced programmer can quickly identify and correct even
the most baffling bug, but for the novice, it can quickly become a frustrating experi-
ence. To make matters worse, when you start looking for the source of a bug, you never
know how long it will take to find. The key is not to panic and instead be disciplined
and remain focused on the bug-finding process. This chapter will arm you with tech-
niques and knowledge to methodically find and prevent even the toughest bugs, while
paying special attention to debugging issues and methods that are unique to games.

Since chasing down a bug can often be confusing and haphazard, this chapter
starts off with a structured “Five-Step Debugging Process” that attempts to lend some
structure to debugging. While not foolproof by any means, the disciplined use of such
a process will keep you from spinning your wheels and hopefully minimize your time
spent searching for each bug. Since it is also important to have some expert tricks up
your sleeve when approaching an especially tough bug, this chapter includes some
valuable time-tested tips, as well as a list of tough debugging scenarios explaining
what to do when dealing with particular bug patterns. Good tools are essential to
debugging any game, so we will also discuss specific runtime tools that you can embed
within your game to help debug problems that are unique to game programming.
Finally, we will review some simple techniques for preventing bugs in the first place.

Debugging Games3.6

In This Chapter

Overview
The Five-Step Debugging Process
Expert Debugging Tips 
Tough Debugging Scenarios and Patterns
Understanding the Underlying System
Adding Infrastructure to Assist in Debugging
Prevention of Bugs
Summary
Exercises
References



The Five-Step Debugging Process

Expert programmers have the uncanny ability to quickly and masterfully track down
even the toughest bugs. The magical way in which they instinctively know where to
find the flaw can be awe-inspiring. While experience plays a significant role in this
apparent talent, they have also internalized a disciplined method for investigating and
narrowing down possible causes. The following five-step process aims to reproduce that
discipline and will help you track down bugs in a methodical and focused manner.

Step 1: Reproduce the Problem Consistently

No matter what the bug, it is important that you know how to reproduce it consis-
tently. Trying to fix a bug that shows up randomly is frustrating and usually a waste of
time. The fact is, almost all bugs will consistently occur given the right circumstances,
so it is the job of either you or your testing department to discover those circumstances.

Given a fictional game bug, a tester might report, “Sometimes the game crashes
when the player kills an enemy.” Unfortunately, this type of bug report is too vague,
especially since the problem doesn’t seem to happen consistently. The player might
regularly blast away enemies, so there must be some other correlation to when the
game crashes. 

For bugs that are nontrivial to reproduce, the ideal situation is to create a set of
“repro steps” that show how to reproduce the bug every time. For example, the fol-
lowing steps greatly improve on the previous bug report:

Repro steps:

1. Start a single-player game.
2. Choose Skirmish on map 44.
3. Find the enemy camp.
4. From a distance, use projectile weapons to attack the enemies at the camp.
5. Result: 90 percent of the time the game crashes.

Obviously, repro steps are a great way for a tester to help others reproduce a bug;
however, the process of narrowing down the chain of events that lead to a bug is also
critical for three other reasons. First, it provides valuable clues as to why the bug is
happening in the first place. Second, it provides a systematic way to test that the bug
has been fixed. Third, it can be used in regression testing to ensure that the bug doesn’t
reappear.

While this information doesn’t tell us the direct cause of the bug, it does let us repro-
duce it consistently. Once you are sure of the circumstances that cause the bug to occur,
you can comfortably move forward to the next step and begin to gather useful clues.

Step 2: Collect Clues

Now that you can reliably force the bug to occur, the next step is to put on your detec-
tive hat and collect clues. Each clue is a chance to rule out a possible cause and narrow

314 Part 3 Game Programming: Languages and Architecture



the list of suspects. With enough clues, the source of the bug will be obvious, so it’s
worth the effort to keep track of every clue and understand its implications. 

One word of caution: in the back of your mind you should always consider that a
gathered clue may be misleading or incorrect. For example, maybe we were told that
a particular bug always followed an explosion. While it might be a vital clue, it could
be a red herring. Be prepared to discard clues that end up conflicting with other infor-
mation you gather.

Continuing with the example bug report, we now know that the game crashes
during a projectile attack on a particular enemy camp. What is so special about projec-
tiles or fighting from a distance? These are important points to ponder, but don’t spend
too much time doing so. Get in there and observe exactly how it fails. We need more
hard evidence, and mulling over superficial clues is the least efficient way to get it.

In the example, when we get into the game and actually watch the failure, we will
notice that the crash occurs in an arrow object when it references a bad pointer.
Further inspection shows that the pointer should point to the character that shot the
arrow. In this case, the arrow was trying to report back that it hit an enemy and that
the shooter should receive experience points for the successful attack. While it might
appear that we found the cause, the real cause is still unknown. We must discover
what made the pointer bad in the first place. 

Step 3: Pinpoint the Error

When you think you have enough clues, it’s time to focus your search and pinpoint
the error. There are two main ways to do this. The first is to propose a hypothesis for
what is causing the bug and try to prove or disprove that hypothesis. The second more
methodical way is to use the divide-and-conquer method.

Method 1: Propose a Hypothesis
With enough clues, you will begin to suspect what is causing the bug. This is your
hypothesis. Once it is clearly stated in your mind, you can begin to design tests that
will either prove or disprove it.

In the game example, our detective work has produced the following clues and
information about the game design:

When an arrow is shot, it is given a pointer to the character who shot it.
When an arrow hits an enemy, it gives credit back to the shooter.
The crash occurs when an arrow tries to use a bad pointer to give credit back to
the shooter.

Our first hypothesis might be that the pointer becomes corrupted sometime dur-
ing the arrow’s flight. Armed with this hypothesis, we now need to design tests and
collect data to prove or disprove this cause. One method might involve having every
arrow register the shooter’s pointer in a backup location. When we catch the crash
again, we can check the backup data to see if the pointer is different from when it was
originally given to the arrow.

3.6 Debugging Games 315



Unfortunately, in this particular game example, this hypothesis turned out not to
be correct. The backup pointer was equal to the pointer that caused the game to crash.
Thus, we have to make a decision. Do we want to come up with another hypothesis
and test it, or revert to looking for more clues? Let’s try one more hypothesis.

If the arrow’s shooter pointer never became corrupted (our new clue), perhaps the
shooter was deleted after the arrow was shot but before the arrow hit an enemy. To
check for this, let’s record the pointer of every character who dies in the enemy camp.
When the crash occurs, we can compare the bad pointer to the list of enemies who
died and were deleted from memory. With a little work, it turns out that this was the
cause. The shooter died while his arrow was in midflight!

Method 2: Divide and Conquer
The two hypotheses that led to finding the bug also demonstrate the concept of
“divide and conquer.” We knew the pointer was bad, but we didn’t know if it actually
changed values as a result of being corrupted, or if the pointer became invalid at some
earlier point. By testing the first hypothesis, we were able to rule out one of the two
possibilities. As Sherlock Holmes once said, “. . . . when you have eliminated the
impossible, whatever remains, however improbable, must be the truth.”

Some people might describe the divide-and-conquer method as simply identify-
ing the point of failure and backtracking through the inputs to discover the error.
Given a noncrashing bug, there is a certain point at which an initial error cascaded
and eventually caused the failure. Identifying the initial error is usually accomplished
through setting breakpoints (conditional or not) at all of the input paths until you
find the input that breaks the output, thus causing the bug.

When backtracking from the point of failure, you are looking for any anomalies
in local variables or in functions higher in the stack. With a crash bug, you should be
looking for NULL values or values with extremely high numbers. If it’s a bug with
floating-point numbers, look for NANs or really large numbers further up on the stack.

Whether you make educated guesses at the problem, test a hypothesis, or hunt
down the culprit through a methodical search, eventually you will find the problem.
Trust yourself and keep your wits about you during this stage. Further sections in this
chapter will elaborate on specific techniques that can be used during this step.

Step 4: Repair the Problem

Once the true cause of the bug has been identified, a solution must be proposed and
implemented. However, the fix must also be appropriate for the particular stage of the
project. For example, in the latter stages of development, it’s generally not reasonable
to change the underlying data structures or architecture to fix a bug. Depending on
the stage of development, the lead or system architect should make the decision about
what type of fix should be implemented. At critical times, often individual engineers
(junior or midlevel) can make poor decisions because they aren’t looking at the big
picture.

316 Part 3 Game Programming: Languages and Architecture



Another important issue is that the programmer who wrote the code should ide-
ally fix the bug. When this is not possible, try to discuss the fix with the original
author before implementing any remedies. This will give you insight into what might
have been done in the past about similar problems and what might break as a result of
your proposed solution. It is dangerous to change other people’s code without thor-
oughly understanding the context.

Continuing along in our game example, the source of the crash was a bad pointer
to an object that didn’t exist anymore. A good solution for this type of game pattern is
to use a level of indirection so that this type of crash can’t happen. Often, games use
handles to objects instead of direct pointers for this very reason (as described in
Chapter 3.4, “Game Architecture”). This would be a reasonable fix. 

However, if the game must be ready for a milestone or an important demo, you
might be tempted to implement a more direct fix for this special situation (like having
the shooter invalidate his pointer in the arrow when he gets deleted). If this kind of quick
hack is made, be sure to make a note of it so that it can be reevaluated after the deadline.
It’s a common problem to see quick fixes forgotten only to cause trouble months later.

While it seems we’ve found the bug and identified a fix (using handles instead of
pointers), it is crucial to explore other ways that might make the same problem occur.
This can take extra time, but it’s worth the effort to make sure that the underlying bug
was fixed, and not just one particular manifestation. In our game example, it’s proba-
bly the case that other types of projectiles will also cause the game to crash, but other
nonweapons or even character relationships might also be vulnerable to the same
design flaw. Find these related cases so that your solution addresses the core problem
and not just one symptom.

Step 5: Test the Solution

Once the solution has been implemented, it must be tested to verify that it actually
repaired the bug. The first step is to make sure that the original repro steps no longer
cause the bug. It is also a good idea to have someone else, like a tester, independently
confirm that the bug is fixed.

The second step in fixing the bug is making sure that no other bugs were intro-
duced. You should run the game for a reasonable amount of time and ensure that
nothing else was affected by the fix. This is very important since many times a bug fix,
especially toward the end of the development cycle, will cause other systems to break.
At the very end of a project, you’ll also want every bug fix to be reviewed by the lead or
another developer as an additional sanity check that they won’t adversely affect the build.

Expert Debugging Tips 

If you follow the basic debugging steps, you should be able to find and repair most
bugs. However, when you attempt to come up with a hypothesis, prove/disprove a cause,
or try to find the point of failure, you might want to consider the following tips.

3.6 Debugging Games 317



Question Your Assumptions

It is important to keep an open mind when debugging and not make too many
assumptions. If you assume that the simple stuff works, you could be prematurely
narrowing down your search and missing the cause completely. For example, don’t
always assume that you are running with the most up-to-date software or libraries. It
often pays to make sure your assumptions are valid.

Minimize Interactions and Interference

Sometimes, systems interact with each other in ways that complicate debugging. Try
to minimize this interaction by disabling subsystems that you believe are not related
to the problem (e.g., disable the sound system). Sometimes, this will help identify the
problem since the cause might be in the system that you disable, thus indicating that
you should look there next.

Minimize Randomness

Often, bugs are hard to reproduce because of variability introduced by the frame rate
or from actual random numbers. If your game has a variable frame rate, try locking
the “time elapsed per frame” to a constant. For random numbers, either disable your
random number generator or seed your random number generator with a constant so
that it always produces the same sequence. Unfortunately, the player introduces a sig-
nificant source of randomness that you can’t control. If the player randomness must
be controlled, consider recording player input so that it can be fed back into your
game in a predictable manner [Dawson01].

Break Complex Calculations into Steps

If a particular line of code combines many calculations, perhaps breaking the line into
multiple steps will help identify the problem. For example, perhaps one piece of the
calculation is being cast badly, a function doesn’t return what you thought it did, or
the order of operations is different from what you expected. This also allows you to
examine the calculation at each of the intermediate steps.

Check Boundary Conditions

The classic off-by-one problem has bitten all of us at one time or another. Check algo-
rithms for these boundary conditions, especially in loops. 

Disrupt Parallel Computations

If you suspect a race condition, serialize the code to check if the bug disappears. In
threads, add extra delays to see if the problem shifts. The problem can be narrowed
down if you can identify it as a race condition and use experiments to isolate it.

318 Part 3 Game Programming: Languages and Architecture



Exploit Tools in the Debugger

Understand and know how to use conditional breakpoints, memory watches, register
watches, stack, and assembly/mixed debugging. Tools help you to find clues and the
hard evidence that is key to identifying the bug.

Check Code that Has Recently Changed

It’s amazing the debugging that can be done with source control. If you know a date
when it worked and the date when it stopped working, you can look at which files
changed and quickly find the offending code. This will at least narrow your search to
particular subsystems or files.

Another way to exploit source control is to create a build of the game before the
bug was introduced. This is helpful if you can’t eyeball the problem. Running the old
and new versions through a debugger and comparing values might be the key to find-
ing the problem.

Explain the Bug to Someone Else

Often, when explaining a bug to someone else, you’ll retrace your steps and realize
something you missed or forgot to check. Other programmers are also great for sug-
gesting alternate hypotheses that can be explored. Don’t underestimate the power of
talking to other people, and never be embarrassed to seek advice. The people on your
team are your allies and one of your best weapons against truly difficult bugs.

Debug with a Partner

This usually pays off since each person carries different experiences and tactics for
dealing with bugs. You’ll often learn new techniques and attack the bug from an angle
you might not have considered. Having someone looking over your shoulder can be
one of the very best ways to track down a bug.

Take a Break from the Problem

Sometimes, you’re so close to the problem that you can’t look at it clearly anymore.
Try removing yourself from the situation and take a stroll outside of your environment.
When you relax and come back to the situation, you will have a fresh perspective.
Once you’ve given yourself permission to take a break, sometimes your subconscious
mind will work on the problem and the solution will simply dawn on you.

Get Outside Help

There are many great resources for getting assistance. If you are making a game for a
console, each console manufacturer has a full team of people ready to assist you when
you run into trouble. Know their contact information. The big three console makers
all provide phone support, e-mail support, and newsgroups where developers can help
each other.

3.6 Debugging Games 319



Tough Debugging Scenarios and Patterns

Bugs often follow patterns in which they give themselves away. In tough debugging
scenarios, the patterns are the key. This is where experience pays off. If you’ve seen the
pattern before, you have a good chance of quickly finding the bug. The following sce-
narios and patterns will give you some guidance.

The Bug Exists in Release but Not Debug

A bug that only exists in a release build usually points toward uninitialized data or a
bug in optimized code. Often, debug builds will initialize variables to zero even though
you wrote no code to do so. Since this invisible initialization doesn’t happen in release
builds, the bug shows up.

Another tactic for tracking down the cause is to take your debug build and slowly
turn on optimizations one by one. By testing with each optimization level, you can some-
times find the culprit. For example, in debug builds, functions are usually not inlined.
When they become inlined for optimized builds, sometimes a bug will show up.

It is also important to note that debug symbols can be turned on in release builds.
This allows limited (albeit often frustrating) debugging of optimized code and even
allows you to keep some debugging systems enabled. For example, you could have
your exception handlers perform a full-blown stack trace (which requires symbols) to
the crash site. This can be especially helpful for when testers must run an optimized
version of the game, yet are able to trace crashes.

The Bug Exists on Consumer Console 
Hardware but Not on the Dev Kit

When developing games for consoles, the hardware manufacturers (Sony, Microsoft,
and Nintendo) provide developers with dev kits. These dev kits are almost identical to
the consumer production hardware that sells in stores, but they usually have added
memory for debugging, extra hardware for communicating to a PC, and emulate the
disc-based media access times (since all loads off the disc actually come from the PC’s
hard drive). These differences are important when the game has a bug or crashes on
consumer hardware but not on the dev kit. This usually points toward a problem with
using too much memory, a timing problem involving loading data off the disc, or
some other esoteric difference between the dev kit and the production hardware.

The Bug Disappears When Changing Something Innocuous

If a bug goes away by changing something completely unrelated, like adding a harm-
less line of code, then it is likely a timing problem or a memory overwrite problem.
For example, by adding or removing a line of code, all subsequent code and data
changes its location in memory. If the problem is a memory overwrite bug, then any
changes in code size might affect what is being overwritten. Therefore, even if it looks
like the bug has disappeared, it probably has just moved to a different part of your

320 Part 3 Game Programming: Languages and Architecture



code where the problem might sit dormant (not overwriting anything important)
until memory shifts again. Don’t lose this opportunity to find the bug. It’s still there,
and it will most certainly bite you in the future in a subtle or nearly undetectable way.

Truly Intermittent Problems

As mentioned previously, most problems will occur reliably given the correct circum-
stances. If you truly can’t control the circumstances, you must catch the problem
when it rears its ugly head. The key here is to record as much information as you can
when you do catch the problem so that you can examine the data later, if needed. You
won’t get many chances, so make the most out of each failure. Another helpful tip is
to compare the data collected from the single failure case to data collected from when
it worked properly and then identify the differences.

Unexplainable Behavior

There are cases when you will step through code and variables will change without
anything touching them. Truly bizarre behavior such as this usually points toward the
system or debugger becoming out of sync. The solution is to try to resync the system
with “increasing levels of cache flushing.”

The following four Rs of cache flushing are courtesy of Scott Bilas:

Retry (flush the current state of the game and run again)
Rebuild (flush the intermediate compiled objects and do a full rebuild)
Reboot (flush the memory of your machine with a hard reset)
Reinstall (flush the files and settings of your tools/OS by reinstalling)

Of these four Rs, the most important is rebuild. Sometimes, compilers don’t
properly track dependencies and will fail to recompile affected code. The symptoms are
usually general weirdness and instability. A complete rebuild often fixes the problem.

When dealing with unexplainable behavior, it is important to second-guess the
debugger. Verify the real value of variables with printfs, since sometimes the debug-
ger becomes confused and won’t accurately reflect the true values.

Internal Compiler Errors

Every once in a while, you’ll run into a situation in which the compiler itself has given
up on your code and complains of an internal compiler error. These errors could 
signal a legitimate problem in your code, or they could be entirely the fault of the
compiler software (for example, if it exceeded its memory limit or can’t deal with your
fancy templates). When faced with an internal compiler error, here’s a good series of
first steps to follow:

1. Perform a full rebuild.
2. Reboot your machine and then perform a full rebuild.
3. Check that you have the latest version of the compiler.

3.6 Debugging Games 321



4. Check that you have the latest version of any libraries you’re using.
5. Check if the same code compiles on other machines.

If these steps don’t fix the problem, attempt to identify what piece of code is caus-
ing the error. If possible, use the divide-and-conquer technique to pare down the code
until the internal compiler error goes away. Once it’s identified, examine the code
visually and ensure that it looks correct. (It might help to have several different people
look at it.) If the code looks reasonable, the next step is to try rearranging the code to
see if you can get a more meaningful error message from the compiler. One last step
you might want to try is compiling with older versions of the compiler. It’s quite pos-
sible that a bug was introduced into the newest compiler version, and an older com-
piler will compile the code correctly.

If none of these solutions helps, search Web sites for similar problems. If nothing
turns up, contact the compiler maker for additional assistance.

When You Suspect It’s Not Your Code

Shame on you—you should always suspect your own code! However, if you’re con-
vinced it’s not your code, the best course of action is to check Web sites for patches to
libraries or compilers that you’re using. Study the readme files or search Web sites for
known bugs with your libraries or compiler. Often, other people have run into simi-
lar problems, and workarounds or fixes do exist.

However, there is always a remote possibility that your bug is a result of someone
else’s library or even faulty hardware (and you happen to be the first person to find it).
While this is usually not the case, it certainly happens. The fastest way to deal with
this is to make a tiny sample program that isolates the problem. You can then e-mail
that program to the makers of the libraries or the hardware vendor so that they can
investigate the problem further. If it really is someone else’s bug, you can get it fixed
the fastest by helping these other people identify and reproduce the problem.

Understanding the Underlying System

To find really tough bugs, you must understand the underlying system. Thoroughly
knowing C or C++ simply isn’t enough. To be a really good programmer, you must
understand how the compiler implements higher level concepts, you must under-
stand assembly, and you must know the details of your hardware (especially for con-
sole development). It’s nice to think that high-level languages mask all of these
complexities, but the truth is that when something really breaks, you’ll be clueless
unless you understand what lies beneath the abstractions. For more discussion on how
high-level abstractions can leak, see “The Law of Leaky Abstractions” [Spolsky02].

So, what underlying details should you know? For games, you should understand
the following:

322 Part 3 Game Programming: Languages and Architecture



Know how a compiler implements code. Be familiar with how inheritance, virtual
function calls, calling conventions, and exceptions are implemented. Know how
the compiler allocates memory and deals with alignment.

Know the details of your hardware. For example, understand a particular hardware’s
caching issues (when memory in the cache might differ from main memory), 
address alignment constraints, endianness, stack size, and type sizes (such as int,
long, and bool).

Know how assembly works and be able to read it. This can help track down 
problems with optimized builds where the debugger has trouble tracing through
the source.

Without a firm grasp of these issues, you will have an Achilles’ heel when it comes
down to fighting the really tough bugs. You must understand the underlying system
and intimately know its rules.

Adding Infrastructure to Assist in Debugging

Debugging in a vacuum without the right tools can be frustrating. The solution is to
swing the pendulum in the other direction and build great debugging tools directly
into your game. The following tools will help greatly when tracking down bugs.

Alter Game Variables During Gameplay

A valuable tool in debugging and reproducing bugs is the ability to change game vari-
ables at runtime. The classic interface for doing this is to use a keyboard to alter variables
through a debug command-line interface (CLI) in your game. With the press of a
button, debug text is overlaid onto your game screen and a prompt lets you enter
input via the keyboard. For example, if you want to change the weather in your game
to stormy, you might type “weather stormy” at the prompt. This kind of interface is
also great for tuning and checking the value of variables or particular game states.

Visual AI Diagnostics

Good tools are invaluable to debugging, and standard debuggers are simply inefficient
for diagnosing AI problems. Debuggers give great depth at a moment in time, but
they are lousy at showing how an AI system evolves during gameplay. They are also
poor at showing spatial relationships in the game world. The solution is to build visu-
alization diagnostics directly into the game that can monitor any given character. By
using a combination of text and 3D lines, important AI systems like pathfinding,
awareness boundaries, and current targets can be easily tracked and checked for errors
[Tozour02, Laming03].

3.6 Debugging Games 323



Logging Capability

Often, in games, we make dozens of characters interact and communicate with each
other, resulting in very complex behavior. When these interactions break down and a
bug arises, it becomes crucial to be able to log the individual states and events from
each character that led to the bug. By creating separate logs for each character, with
key events time-stamped, it becomes possible to track down the failure by examining
the logs [Rabin00a, Rabin02].

Recording and Playback Capability

As mentioned before, the key to tracking down bugs is reproducibility. The ultimate
in reproducibility would entail recording and playing back player input [Dawson01].
For very rare crashes, this can be a key tool in pinpointing the exact cause. However,
to support this capability, you must make your game predictable so that an initial
state coupled with player input produces the same result each time. That doesn’t mean
your game is predictable to players, it just means that you have to carefully deal with
random number generation [Lecky-Thompson00, Freeman-Hargis03], initial state,
input, and be able to save the input when a crash happens [Dawson99].

Track Memory Allocation

Create memory allocators that can perform a full stack trace on every allocation. By
keeping records of exactly who is requesting memory, you’ll never again have to chase
down memory leaks.

Print as Much Information as Possible on a Crash

Postmortem debugging is very important. In a crash situation, ideally you’ll want to
capture the call stack, registers, and any other state information that might be rele-
vant. This information can be printed to the screen, written to a file, or automatically
e-mailed to a developer’s mailbox. This kind of tool will help you find the source of
the crash in a couple of minutes instead of a few hours. This is especially true if the
crash happens on an artist or designer’s machine, and they don’t remember how they
triggered the crash.

Educate Your Entire Team

While this is not infrastructure that you can program, it’s mental infrastructure that
must be in place so that your team uses the tools you’ve created. Train them not to
ignore error dialogs, and make sure they know how to gather information so that a
found bug is not lost. Spending the time to educate testers, artists, and designers is
well worth the investment.

324 Part 3 Game Programming: Languages and Architecture



Prevention of Bugs

A discussion of debugging wouldn’t be complete without a small guide on how to
avoid bugs in the first place. By following these guidelines, you’ll either avoid writing
some bugs, or stumble upon bugs you didn’t know you had. Either way, this will help
you eliminate bugs in the long run.

Set your compiler to the highest warning level and enable warnings as errors.
Try to fix as many of the warnings as possible and then #pragma the rest away.
Sometimes, automatic casts and other warning-level issues will cause subtle bugs.

Make your game compile on multiple compilers. If you make sure your game
builds with multiple compilers and for multiple platforms, the differences 
between the warnings and errors of both compilers will usually ensure better
code all around. For example, people writing Wii or PS3 games can make sure 
a crippled version also runs in Win32. This can also allow you to see if a bug is
platform specific.

Write your own memory manager. This is crucial for console games. You must 
understand what memory you’re using and shield against memory overruns.
Since memory overruns cause some of the toughest bugs to track down, it is 
important to make sure they never happen in the first place. Using overrun and
underrun guard blocks in debug builds can make bugs show up before they can
manifest themselves. For PC developers, writing your own memory manager
might not be necessary since the memory system in VC++ is quite powerful, and
good tools like SmartHeap can be exploited to identify errors with memory.

Use asserts to verify your assumptions. Add asserts to the beginning of functions 
to verify assumptions about arguments (such as non-NULL pointers or ranges).
In addition, if the default case of a switch statement should never be reached, 
add an assertion for that case. Additionally, the standard assert can be expanded
to give you much more debugging power [Rabin00b]. For example, it can be 
extremely helpful if your assertions print out a call stack.

Always initialize variables when they are declared. If you can’t assign a variable a
meaningful value when it’s declared, then assign it something recognizable so
that you can spot that it was never properly set. Some ideas for values are
0xDEADC0DE, 0xCDCDCDCD, or simply zero. 

Always bracket your loops and if statements. This keeps you honest by making you
explicitly wrap the intended code, making it more obvious what was intended.

Use variable names that are cognitively different. For example, m_objectITime
and m_objectJTime look almost the same. The typical example of this problem is
the use of “i” and “j” as loop counters. The characters “i” and “j” are very similar
looking, and you could easily mistake one for the other. As an alternative, you
could use “i” and “k” or simply use more descriptive names. More information
on cognitive differences in variable naming can be found in [McConnell04].

3.6 Debugging Games 325



Avoid having identical code in multiple places. Having the same code in several
different places is a liability. If the code is changed in one place, it is unlikely it
will also be changed in the other locations. If it seems necessary to duplicate
code, then rethink the core functionality and try to centralize a majority of the
code in one place.

Avoid magic (hard-coded) numbers. When a unique number appears in code, its
meaning and significance can be completely lost. If there is no comment, it is 
unclear why that particular value was chosen and what it represents. If you must
use magic numbers, declare them as constants or defines that give a meaningful
label to the number.

Verify code coverage when testing. When you write a piece of code, verify that it 
executes correctly down every branch. If you have never seen it execute a particular
branch, there’s a good chance it contains a bug. One possible bug that you might
catch from this process is discovering that it’s impossible to take a particular
branch. The sooner this is discovered, the better.

Summary

This chapter gave you the tools you need to debug games effectively. Debugging is
sometimes described as an art, but that’s only because people get better at it with
experience. As you internalize the suggested Five-Step Debugging Process, learn to
spot bug patterns, integrate your own debugging tools into your game, and build up
your repertoire of debugging techniques. You’ll quickly become adept at methodically
tracking down and squashing tough bugs. With an ounce of prevention, hopefully
your game will be smooth sailing and nary a bug will bite you.

Exercises

1. Recount a tough bug that took several hours to track down and fix. What
steps did you take to find it? What steps could you have taken to find the
problem more quickly?

2. A release version of a console game only crashes when it is burned to disc
and played on consumer hardware. What steps should be taken to trouble-
shoot this problem? Propose several hypotheses of what the problem might be.

3. When debugging game AI, it helps to represent visually what game agents
are thinking or moving toward. What graphical drawing services must be in
place to support this functionality?

4. Why might it be a poor choice to use the variable names
distanceSquaredToObject and distanceSquaredToOrigin within the
same function?

5. How might a profiler help find bugs you didn’t know about?

326 Part 3 Game Programming: Languages and Architecture



6. Write a tutorial on how to use conditional breakpoints in your debugger.
How is a conditional breakpoint better or worse than testing for the condi-
tion directly in the code (using an if statement and a normal breakpoint)?

References

[Agans02] Agans, David, Debugging: The 9 Indispensable Rules for Finding Even the
Most Elusive Software and Hardware Problems, Amacom, 2002.

[Dawson99] Dawson, Bruce, “Structured Exception Handling,” Game Developer
Magazine (Jan 1999), pp. 52–54.

[Dawson01] Dawson, Bruce, “Game Input Recording and Playback,” Game
Programming Gems 2, Charles River Media, 2001.

[Freeman-Hargis03] Freeman-Hargis, James, “The Statistics of Random Numbers,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Laming03] Laming, Brett, “The Art of Surviving a Simulation Title,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Lecky-Thompson00] Lecky-Thompson, Guy, “Predictable Random Numbers,”
Game Programming Gems, Charles River Media, 2000.

[McConnell04] McConnell, Steve, Code Complete: A Practical Handbook of Software
Construction, Second Edition, Microsoft Press, 2004.

[Rabin00a] Rabin, Steve, “Designing a General Robust AI Engine,” Game
Programming Gems, Charles River Media, 2000.

[Rabin00b], Rabin, Steve, “Squeezing More Out of Assert,” Game Programming
Gems, Charles River Media, 2000.

[Rabin02], Rabin, Steve, “Implementing a State Machine Language,” AI Game
Programming Wisdom, Charles River Media, 2000.

[Spolsky02] Spolsky, Joel, “The Law of Leaky Abstractions,” Joel on Software, 2002,
available online at www.joelonsoftware.com/articles/LeakyAbstractions.html.

[Telles01] Telles, Matt, and Hsieh, Yuan, The Science of Debugging, The Coriolis
Group, 2001.

[Tozour02] Tozour, Paul, “Building an AI Diagnostic Toolset,” AI Game Programming
Wisdom, Charles River Media, 2002.

3.6 Debugging Games 327

www.joelonsoftware.com/articles/LeakyAbstractions.html


This page intentionally left blank 



329

P A R T

4
GAME PROGRAMMING:

MATH, COLLISION
DETECTION, AND

PHYSICS



This page intentionally left blank 



331

Overview

Mathematics has become an essential component of modern game development. As
both the main processors and graphics processors in our gaming hardware become
more powerful, the complexity of the mathematics used to model realistic environ-
ments and physical simulations increases without bound. This chapter provides an
introduction to several fields of mathematics that are vital to today’s game engines.

Trigonometry is a ubiquitous tool used extensively by game programmers and
serves as this chapter’s opening topic and prerequisite for the indisputably important
topic of linear algebra. The bulk of this chapter discusses vectors and matrices, the
indispensable tools of linear algebra with which every 3D game developer needs to be
familiar. We also introduce mathematical representations of geometrical entities, such
as lines and planes, and describe how to perform certain routine calculations with
them.

Mathematical Concepts4.1

In This Chapter

Overview
Applied Trigonometry
Vectors and Matrices
Transformations
Geometry
Summary
Exercises
References



Applied Trigonometry

Modern game development usually involves a considerable amount of geometrical
computation. A 3D environment and the objects that reside within it are composed
entirely of vertices, edges, and faces that all carry the geometrical information neces-
sary to produce a rendered image. Furthermore, visibility determination, collision
detection, physics, and many more components of a game rely on the ability to per-
form useful calculations with geometrical data. Many of such calculations depend
either directly or indirectly on trigonometric relationships.

Trigonometric Functions

Consider the right triangle shown in Figure 4.1.1. For the angle labeled α, we call 
the side whose length is x the adjacent side, and we call the side whose length is y the
opposite side. The side opposite the right angle, whose length satisfies the Pythagorean 
theorem , is called the hypotenuse. The six trigonometric functions are
defined for the angle α as the ratios of side lengths shown in Table 4.1.1.

h x y2 2 2= +

332 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.1 The trigonometric functions are 
defined as ratios of side lengths in a right triangle.

Table 4.1.1 Trigonometric Functions

Function Name Symbol Definition

sine sin

cosine cos

tangent tan

cosecant csc

secant sec

cotangent cot cot
tan

α
α

= =
x
y

1

sec
cos

α
α

= =
h
x

1

csc
sin

α
α

= =
h
y

1

tan
sin
cos

α
α
α

= =
y
x

cosα =
x
h

sinα =
y
h



The cosecant, secant, and cotangent functions are rarely used in computer pro-
gramming and don’t even have standard library implementations. We will therefore
focus exclusively on the sine, cosine, and tangent functions, which are available to C
and C�� programs as the sin(), cos(), and tan() functions.

What makes the trigonometric functions useful is that for a given angle α, the
ratios of side lengths in a right triangle containing the angle α are always the same.
Thus, the sine, cosine, and tangent functions depend only on the angle α, and not on
the actual size of the triangle. The values of these functions are listed in Table 4.1.2 for
several common angles.

Table 4.1.2 Values of Trigonometric Functions for Common Angles

Angle �, in radians Angle �, in degrees sin � cos � tan �

0 0° 0 1 0

�/6 30° 1/2

�/4 45° 1

�/3 60° 1/2

�/2 90° 1 0 undefined

The standard sin(), cos(), and tan() functions require that the angle be speci-
fied in radians. One radian is the angle α for which the circular arc subtended by α in
a circle of radius r has a length equal to r itself, as shown in Figure 4.1.2. Since the
circumference C of a circle of radius r is given by , there are precisely 
radians in a full circle, and this corresponds to 360 degrees. We thus have the follow-
ing formulas for converting between radians and degrees.

(4.1.1)radians degrees degrees radians= ( ) = ( )π
π180

180

2πC r= 2π

33 2

2 22 2

3 33 2

4.1 Mathematical Concepts 333

FIGURE 4.1.2 In a circle of radius r, one radian is the angle α for
which the circular arc subtended by α has a length equal to r itself.



The trigonometric functions are often used to decompose a line segment having
a known length and making a known angle with the x-axis into components that are
aligned with the coordinate axes. Consider the line segment shown in Figure 4.1.3
that begins at the origin and extends to some point P a distance r from the origin.
Given that this line segment forms an angle α with the x-axis, we can treat it as the
hypotenuse of a right triangle whose remaining two sides are aligned to the x- and 
y-axes. Using the definitions of the sine and cosine functions, we can calculate the 
x and y coordinates of the point P as follows:

(4.1.2)

x r

y r

=

=

cos

sin

α

α

334 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.3 The sine and cosine functions can be used to
decompose a point on a circle into its x and y components.

The relationships given by Equation 4.1.2 also allow us to make a natural exten-
sion of the trigonometric functions to angles beyond 90 degrees. The cosine function
is associated with the x-coordinate of a point on a circle centered at the origin, and
thus is negative for angles between 90 degrees and 270 degrees, or in quadrants II and
III. The sine function is associated with the y-coordinate, and thus is negative for
angles between 180 degrees and 360 degrees, or quadrants III and IV. This is summa-
rized in Figure 4.1.4. Note that the tangent function is positive in quadrants I and III
where the sine and cosine functions have the same sign, and is negative in quadrants
II and IV where the sine and cosine functions have opposite signs.



4.1 Mathematical Concepts 335

A few more identities can be found by recognizing that the sine and cosine func-
tions have the same shape and that one is simply offset by radians relative to the
other. The cosine function produces the same value at an angle α that the sine function
produces at the angle . This allows us to formulate the following identities:α π+ 2

π 2

FIGURE 4.1.4 The sine, cosine, and tangent functions
change sign only at the angles 0, 90, 180, and 270
degrees, where a point on a circle centered at the origin
moves from one quadrant to another.

Trigonometric Identities

There is a multitude of relationships among the trigonometric functions that allow
calculations involving them to be simplified in many situations. These relationships
are expressed as formulas called identities. Some of the simplest identities come from
recognizing symmetries in the trigonometric functions. The cosine function is an even
function, meaning that it is symmetric about the y-axis. The sine and tangent func-
tions are odd functions, meaning that they are symmetric about the origin. These
symmetries provide us with the following identities:

(4.1.3)

sin sin

cos cos

tan tan

−( ) = −

−( ) =

−( ) = −

α α

α α

α α



336 Part 4 Game Programming: Math, Collision Detection, and Physics

(4.1.4)

Using the symmetry properties given by Equation 4.1.3, we can further deduce
the following identities:

(4.1.5)

Shifting the sine or cosine function by a value of π simply negates the values of
the function. This property gives us several more simple identities.

(4.1.6)

A more powerful set of trigonometric identities can be derived from the simple
fact that in the right triangle shown in Figure 4.1.1. Dividing both sides
of this equation by gives us

(4.1.7)

Replacing the ratios and with the functions that they define, we have

(4.1.8)

This identity is true for any angle α. We can also solve for the sine or cosine func-
tion in terms of the other as follows, but we must be careful to account for sign when
we take square roots.

(4.1.9)

Inverse Trigonometric Functions

It is sometimes the case that we know certain lengths in a geometrical arrangement,
and we need to determine an angle. If we can establish a trigonometric relationship,

sin
cos ,

cos ,
α

α α π

α π α π
=

− ≤ ≤

− − ≤ ≤

⎧
⎨
⎪

⎩

1 0

1 2

2

2

if 

if ⎪⎪

=
− ≤ ≤ ≤ ≤

− −
cos

sin ,

sin
α

α α α ππ π1 0 2

1

2
2

3
2

2

if  or 

αα απ π, if 2
3
2≤ ≤

⎧
⎨
⎪

⎩⎪

sin cos2 2 1α α+ =

y hx h

x

h

y

h

2

2

2

2
1+ =

h2

x y h2 2 2+ =

sin sin sin

cos cos cos

α α π α π

α α π

= − +( ) = − −( )
= − +( ) = − αα π−( )

cos sin

sin cos

α α π

α α π

= − −( )
= − +( )

2

2

cos sin

sin cos

α α π

α α π

= +( )
= −( )

2

2



4.1 Mathematical Concepts 337

such as , then we can solve for the angle α by applying the appropriate
inverse trigonometric function. The inverses of the sine, cosine, and tangent function
are called the arcsine, arccosine, and arctangent functions, respectively, and are available
in C and C�� as the asin(), acos(), and atan() functions.

The inverse trigonometric functions are often written using the superscript –1
notation. For example, arcsine can be written sin–1, arccosine can be written cos–1,
and arctangent can be written tan–1. In these cases, the –1 denotes an inverse function
and not an exponent. Applying an inverse trigonometric function to its ordinary
counterpart undoes the trigonometric operation. For instance, in the equation

, we solve for α by applying the arcsine function to both sides to obtain
. Because the trigonometric functions are periodic, there are always infi-

nitely many angles that satisfy an equation such as . The inverse functions
return the angle that is closest to zero, preferring the positive angle for the cosine
function. This results in the ranges listed in Table 4.1.3.

Table 4.1.3 Domains and Ranges of Inverse Trigonometric Functions

Function Domain Range (radians)

sin–1z [–1, 1] [–�/2, �/2]
cos–1z [–1, 1] [0, �]
tan–1z R [–�/2, �/2]

The Laws of Sines and Cosines

Everything that we have discussed so far has pertained only to right triangles, but
many problems do not lend themselves to the construction of right triangles. In this
section, we examine two trigonometric laws that apply to arbitrary triangles, not just
those that contain a right angle.

Consider the triangle with side lengths a, b, and c shown in Figure 4.1.5 and observe
the following relationships derived directly from the definition of the sine function.

(4.1.10)

Solving both of these for c allows us to form the equality

(4.1.11)
z y

sin sinα β
=

sin

sin

α

β

=

=

z
c
y
c

sinα = z
α = −sin 1 z
sinα = z

sinα = z



338 Part 4 Game Programming: Math, Collision Detection, and Physics

The following observations may also be made.

(4.1.12)

Thus, . Multiplying the left side of Equation 4.1.11 by and the
right side of Equation 4.1.11 by yields the law of sines.

(4.1.13)

The same relationship can be derived for the pair of angles α and γ or the pair of
angles β and γ, so we can write

(4.1.14)

What this means is that the ratio of a side’s length to the sine of the angle oppo-
site that side is the same for all three sides of any particular triangle.

a b c
sin sin sinα β γ

= =

a b
sin sinα β

=

b y
a zz a y b=

sin

sin

π γ

π γ

−( ) =

−( ) =

z
a
y
b

FIGURE 4.1.5 For the triangle having sides of
lengths a, b, and c, the law of sines is given by
Equation 4.1.14, and the law of cosines is given
by Equation 4.1.19.



Now observe the following Pythagorean relationships existing within the triangle
shown in Figure 4.1.5:

(4.1.15)

Solving the first equation for and substituting into the second equation gives
us:

(4.1.16)

The value of x can be replaced by observing:

(4.1.17)

Since , we have

(4.1.18)

Plugging this into Equation 4.1.16 produces the law of cosines.

(4.1.19)

The law of cosines is a generalization of the Pythagorean theorem to arbitrary tri-
angles. When γ is a right angle, Equation 4.1.19 reduces to the Pythagorean theorem,
since .

Vectors and Matrices

Numerical quantities arising in geometry, physics, and many other fields employed by
game developers generally fall into two broad categories. Quantities such as distance,
time, and mass can be fully described using a single numerical value, and these types of
quantities are called scalars. Other quantities can only be fully described by associating
a direction with an ordinary magnitude, as illustrated by the following examples:

• The difference between two points in space is represented by both the distance
between the points (the magnitude) and the direction pointing from one of the
points to the other.

• The velocity of a projectile is represented by both its speed (the magnitude) and
the direction in which it is traveling.

• A force acting on an object is represented by both its magnitude and the direction
in which it is applied.

cosπ 2 0=

c a b ab2 2 2 2= + − cosγ

x b= − cosγ

cos cosπ γ γ−( ) = −

cos π γ−( ) = x
b

c a x b x

a b ax

2 2 2 2

2 2 2

= +( ) + −

= + +

y2

x y b

a x y c

2 2 2

2 2 2

+ =

+( ) + =

4.1 Mathematical Concepts 339



340 Part 4 Game Programming: Math, Collision Detection, and Physics

Such quantities, carrying information about both a magnitude and a direction,
are called vectors. Vectors are used extensively throughout many facets of modern
game development, particularly 3D graphics, 3D audio, physics simulation, and arti-
ficial intelligence.

Vector Arithmetic

A vector is often visualized by drawing a line segment with an arrowhead at one end,
as shown in Figure 4.1.6. The length of the line segment corresponds to the magni-
tude of the vector, and the angle at which the line segment is drawn corresponds to
the direction of the vector. Multiplying a vector V by a scalar quantity a changes the
length of the line segment by the factor a, thus modifying its magnitude by the same
factor. If the quantity a is negative, then the direction in which the vector V points is
also reversed by the multiplication, which amounts to moving the arrowhead to the
opposite end of the line segment representing V.

FIGURE 4.1.6 Vectors can be visualized using line
segments whose lengths correspond to their magnitudes,
and whose angles correspond to their directions.

Two vectors V and W are added by placing the beginning of W at the end of V
and forming a new vector that begins where V begins and ends where W ends as
shown in Figure 4.1.7. If we think of each vector as a distance and direction along
which we can travel, then the sum represents the cumulative distance and direction
that we would travel if we first traveled along the vector V and then traveled along the
vector W. If one vector is subtracted from the other, then we travel along the sub-
tracted vector in the opposite direction. 



Whereas a scalar is represented by a single numerical value, a vector requires a rep-
resentation composed of multiple numerical values called components. The number of
components corresponds to the dimension of a vector, and we write the components of
an n-dimensional vector as an ordered n-tuple. For example, a three-dimensional vec-
tor V whose components are 1, 2, and 3 is written as

(4.1.20)

The first, second, and third components of a vector are usually referred to as the
x, y, and z components of the vector. We represent an individual component of a vec-
tor by writing x, y, or z as a subscript following the symbol representing the vector.
For the vector V shown in Equation 4.1.20 we have

(4.1.21)

Notice that the symbol for the vector is now written in italics instead of the bold-
face type used earlier. To distinguish between scalars and vectors, the widely adopted
convention is to print scalars in italic type and vectors in boldface type. This conven-
tion extends to the case in which we are referring to individual components of a 
vector, as in Equation 4.1.21. The vector V by itself is printed in boldface type, but 
a component of V is a scalar, so we print the subscripted symbol in italic type as done
in Equation 4.1.21.

We add or subtract two vectors V and W by simply adding or subtracting their
individual components. (To do this, the two vectors must have the same dimension.)
If V and W are both n-dimensional, then we can write their sum and difference as:

V

V

V

x

y

z

=

=

=

1

2

3

V = 1 2 3, ,

4.1 Mathematical Concepts 341

FIGURE 4.1.7 The sum is formed by concatenating W and V and drawing a
new vector that points directly from the beginning of V to the end of W. The difference

is formed by reversing the direction in which W points.V W−

V W+



(4.1.22)

Here, we use an integer subscript to refer to each component of the vector V as a
notational necessity. In three dimensions, the subscripts 1, 2, and 3 have the same
meaning as the subscripts x, y, and z.

The magnitude, or length, of an n-dimensional vector V, written , is defined
as:

(4.1.23)

For a three-dimensional vector V, this becomes

(4.1.24)

If we consider the components of a vector to be the coordinates of a
point in three-dimensional space, then the magnitude of P can be thought of as its
distance from the origin. The formula given by Equation 4.1.24 is simply the
Pythagorean theorem in three dimensions. The distance between two points P and Q
is equal to the magnitude of , since this difference is the vector whose direction
and magnitude represent the direct path starting at P and finishing at Q.

As mentioned before, multiplying a vector V by a scalar a changes its magnitude
by the factor a. To make this work with the definition of magnitude given by Equa-
tion 4.1.23, we define the product of an n-dimensional vector V and a scalar a so that
each component of V is multiplied by a as:

(4.1.25)

A vector whose magnitude is exactly 1 is said to be normalized or to have unit
length. (The term normal vector also exists and refers to the unrelated property that a
vector’s direction is perpendicular to a surface.) A normalized vector is often treated as
if it no longer carries information about magnitude, but only represents a pure direc-
tion. Any vector V can be normalized by simply dividing it by its magnitude as:

(4.1.26)

The hat added to the V on the left side of the equation is a common notation
used to indicate that a vector has unit length.

The vectors , , and are often used as a shorthand notation for the unit vec-
tors aligned to the three coordinate axes. They are defined by the following equalities:

k̂ĵî

V̂
V
V

=

a a aV aV aV
n

V V= =
1 2
, , ,…

P Q−

P = x y z, ,

V = + +V V V
x y z
2 2 2

V =
=
∑V

i
i

n
2

1

V

V W

V W

+ = + + +

− = − −

V W V W V W

V W V W V
n n

n

1 1 2 2

1 1 2 2

, , ,

, , ,

…

… −−W
n

342 Part 4 Game Programming: Math, Collision Detection, and Physics



(4.1.27)

This notation allows us to write any three-dimensional vector in
the form

(4.1.28)

Matrix Arithmetic

A matrix is a rectangular array of individual numerical quantities arranged as a set of
rows and columns. When describing the size of a matrix, the number of rows comes
first and the number of columns follows. Thus, a matrix having n rows and m
columns is called an matrix. For example, the following matrix is a 2×3 matrix.

(4.1.29)

If (i.e., the number of rows equals the number of columns), then the
matrix M is called a square matrix.

The individual components of a matrix are called entries. The single entry of a
matrix M residing in row i, and column j is denoted by . Note that we have again
used the convention that the matrix itself is printed in boldface type, and an entry of
the matrix is printed in italic type. For the matrix shown in Equation 4.1.29, we can
write

(4.1.30)

The entries are called the main diagonal entries of the matrix M. A square
matrix having nonzero entries only on the main diagonal is called a diagonal matrix.

The transpose of a matrix M, denoted by , is the matrix for which the entry
residing at the position is equal to . That is, the transpose of a matrix is
obtained by exchanging the meanings of rows and columns and effectively reflecting
the entries through the main diagonal. The transpose of the matrix M shown in Equa-
tion 4.1.29 is

M
jii j,( )
MT

M
ii

M M

M M

M M

11 21

12 22

13 23

1 4

2 5

3 6

= =

= =

= =

M
ij

n m=

M =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2 3

4 5 6

n m×

V i j k= + +a b cˆ ˆ ˆ

V i j k= + +a b cˆ ˆ ˆ

ˆ , ,

ˆ , ,

ˆ , ,

i

j

k

=

=

=

1 0 0

0 1 0

0 0 1

4.1 Mathematical Concepts 343



(4.1.31)

A matrix that is equal to its own transpose (and therefore must be square) is called
a symmetric matrix.

Two matrices of the same size can be added or subtracted component wise,
although the need for doing so does not often arise. As with vectors, multiplying an

matrix M by a scalar a simply distributes the factor a to each of the entries of
the matrix as follows:

(4.1.32)

An n-dimensional vector V can be considered an matrix, so we could write

(4.1.33)

When a vector is written as a single column of entries like this, we usually call it a
column vector. Sometimes, it will be convenient to write the components of a vector
as a single row of entries, in which case we can transpose the matrix shown in Equa-
tion 4.1.33 to obtain

(4.1.34)

When a vector is written as a matrix having a single row, we usually call it a row
vector. Whether a vector is written as a column vector or row vector really depends on
how we want to transform it using matrix multiplication.

Two matrices A and B can be multiplied together whenever the number of
columns of A is equal to the number of rows of B. If A is an n � m matrix, then it can
be multiplied by B only if B is an matrix, where m is the same for both A and
B. The product is an matrix for which the entry in the position is
given by the following equation.

i j,( )n p×AB
m p×

VT = [ ]V V V
n1 2

�

V = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

V V V

V

V

V

n

n

1 2

1

2
, , ,…

�

n ×1

a a

aM aM aM

aM aM aM

aM aM

m

m

n n

M M= =

11 12 1

21 22 2

1

�

�

� � � �

22
� aM

nm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

n m×

MT =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 4

2 5

3 6

344 Part 4 Game Programming: Math, Collision Detection, and Physics



(4.1.35)

The entry of is derived only from the entries in the i-th row of A and
the j-th column of B. What Equation 4.1.35 tells us is that to calculate the entry
of , we multiply every k-th entry in row i of A by the k-th entry in column j of B
and add all of the individual products together. For example, consider the following
product of two matrices.

(4.1.36)

The individual entries of M were calculated using Equation 4.1.35 as follows:

(4.1.37)

Matrix multiplication is not generally a commutative operation. Not only might
it be the case that , but it may not even be possible to form one of the prod-
ucts or because the numbers of rows and columns do not match correctly.
We will almost always be working with square matrices, so it will always be possible to
form both the products and , but it should be noted that the order of multi-
plication is important.

It is often the case that we need to multiply an matrix M by an n-dimensional
vector V. As we will see later, such an operation is used to transform a vector from one
coordinate system to another. If V is expressed as an column vector, then we can
only form the product , and we say that V is multiplied by the matrix M on the
left. If we express V as the row vector , then we can form the product ,
and we say that is multiplied by the matrix M on the right. Ordinarily, either
column vectors or row vectors are chosen to be the convention and are consistently used
throughout a project. In this chapter, we use column vectors as the convention, and 
in three dimensions, we thus have the following product between a matrix M and a
three-dimensional vector V.

(4.1.38)

M M M

M M M

M M M

V

V

x

y

11 12 13

21 22 23

31 32 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥ VV

M V M V M V

M V M V

z

x y z

x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

+ +

+

11 12 13

21 22 yy z

x y z

M V

M V M V M V

+

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

23

31 32 33

3 3×

VT
V MTVT1× n

MV
n ×1

n n×

BAAB

BAAB
AB BA≠

M

M

M

11

12

21

2 2 3 4 8

2 1 3 5 13

1 2

= ⋅ −( ) + ⋅ =

= ⋅ + ⋅ −( ) = −

= ⋅ −( )) + −( ) ⋅ = −

= ⋅ + −( ) ⋅ −( ) =

1 4 6

1 1 1 5 6
22

M

M =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−

−

⎡

⎣
⎢
⎢

⎤

⎦

2 3

1 1

2 1

4 5

8 13

6 6
⎥⎥
⎥

2 2×

AB
i j,( )

ABi j,( )

AB( ) =
=
∑ij ik kj
k

m

A B
1

4.1 Mathematical Concepts 345



An square matrix having entries of 1 along the main diagonal and entries of
0 everywhere else is given a special name, the identity matrix, and is sometimes
denoted by . When the matrix is multiplied by another matrix M on the left or
right, the result is M itself. Multiplying by the identity matrix in the context of matrix
multiplication is the analog of multiplying by one in the context of ordinary scalar
multiplication.

The importance of the identity matrix lies in our ability to take a square 
matrix M and find another matrix, that we denote , whose product with M pro-
duces the identity matrix. The matrix is called the inverse of the matrix M and
satisfies both and . Using the inverse matrix allows us to solve
equations such as for which we know the values of M and W, and we need
to determine the value of V. If we multiply both sides of the equation by on the
left, we have .

Not every matrix has an inverse, and those that are noninvertible are called singu-
lar. Whether a matrix M is singular can be determined by examining a quantity called
the determinant of M, denoted by or . The determinant of a matrix
is defined as

(4.1.39)

and the determinant of a matrix is given by:

(4.1.40)

Determinants of larger matrices can be found by using a recursive formula, as
described in [Lengyel04].

A matrix is invertible if, and only if, its determinant is not zero. There are numer-
ous methods for calculating matrix inverses, but we restrict ourselves to explicit 
formulas for the types of matrices commonly used during game development.
(Descriptions of more general algorithms can be found in [Press92].) The inverse of a

matrix M is given by

(4.1.41)M
M

− =
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 22 12

21 11

1
det

M M

M M

2 2×

m m m

m m m

m m m

m
m m

m m

11 12 13

21 22 23

31 32 33

11

22 23

32 33

= −− +

=

m
m m

m m
m

m m

m m

m m m

12

21 23

31 33

13

21 22

31 32

11 22 33
−−( ) − −( )

+ −

m m m m m m m

m m m m
23 32 12 21 33 23 31

13 21 32 22
mm

31( )

3 3×

det
a b

c d

a b

c d
ad bc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= = −

2 2×Mdet M

V M W= −1
M−1

MV W=
M M I− =1

n
MM I− =1

n

M−1
M−1

n n×

I
n

I
n

n n×

346 Part 4 Game Programming: Math, Collision Detection, and Physics



and the inverse of a matrix M is given by

(4.1.42)

In computer graphics, a special type of matrix is commonly used to trans-
form between coordinate systems. Such matrices have the form

(4.1.43)

where the entries correspond to a rotation matrix R, and the vector T repre-
sents a translation. The fourth row of the matrix is always . The inverse of
this matrix is given by

(4.1.44)

The Dot Product

The dot product of two vectors, also known as the inner product or scalar product, is
arguably one of the most important vector operations used in computer game devel-
opment. The dot product gets its name from the symbol used to denote the opera-
tion—a single dot between two vectors. (In the next section, we examine the cross
product, which is denoted by a crosslike symbol.) The dot product is also called the
“scalar product” because is combines two vector quantities to produce a scalar result.

The dot product between two n-dimensional vectors V and W produces
the scalar quantity given by the formula

(4.1.45)V W⋅ =
=
∑VW

i i
i

n

1

V W⋅

M
R R T

0

−

− −

− −

=
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=1

1 1

11
1

12
1

1

1

R R R
33
1 1

21
1

22
1

23
1 1

31
1

32

− −

− − − −

−

−( )
−( )

R T

R T

x

y
R R R

R R−− − −−( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
33

1 1

0 0 0 1

R
z

R T

0 0 0 1, , ,
3 3×R

ij

M =

⎡

⎣

⎢
⎢

R R R T

R R R T

R R R T

x

y

z

11 12 13

21 22 23

31 32 33

0 0 0 1

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

4 4×

M
M

− =

− − −

1

22 33 23 32 13 32 12 33 12 23

1
det

M M M M M M M M M M M
113 22

23 31 21 33 11 33 13 31 13 21 11

M

M M M M M M M M M M M M− − −
223

21 32 22 31 12 31 11 32 11 22 12 21
M M M M M M M M M M M M− − −

⎡

⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3 3×

4.1 Mathematical Concepts 347



That is, we calculate the n products of corresponding components of the two vec-
tors and add them all together. In three dimensions, the dot product becomes

(4.1.46)

The dot product can also be expressed as the matrix product

(4.1.47)

which yields a 1×1 matrix (that we treat as a scalar) whose single entry is equal to the
sum given by Equation 4.1.45.

The dot product earns its place of importance through the following equation:

(4.1.48)

Here, the angle α is the planar angle between the two directions in which the vec-
tors V and W point. If both V and W are normalized, the dot product yields the
cosine of the angle between the two vectors. This fact is particularly useful for lighting
and shading calculations performed by 3D graphics applications.

Equation 4.1.48 can be verified by applying the law of cosines to the triangle
shown in Figure 4.1.8 to obtain

(4.1.49)

Using the definition of magnitude given by Equation 4.1.23, we can rewrite this as

(4.1.50)

After expanding the left-hand side of the equation, all of the and terms
cancel, and we have

(4.1.51)

Dividing both sides by brings us to Equation 4.1.48.−2

− = −
=
∑ 2 2

1

VW
i i

i

n

V W cosα

W
i
2V

i
2

V W V W
i i

i

n

i
i

n

i
i

n

−( ) = + −
= = =
∑ ∑ ∑2

1

2

1

2

1

2 V W cosα

V W V W V W− = + −
2 2 2

2 cosα

V W V W⋅ = cosα

V W V W⋅ = = [ ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

T V V V

W

W

W

n

n

1 2

1

2
�

�

V W⋅

V W⋅ = + +V W V W V W
x x y y z z

348 Part 4 Game Programming: Math, Collision Detection, and Physics



4.1 Mathematical Concepts 349

A couple of important facts follow immediately from Equation 4.1.48. The first
is that two vectors V and W are perpendicular if, and only if, . This follows
from the fact that the cosine function is zero at an angle of 90 degrees. Vectors whose
dot product yields zero are called orthogonal. We define the zero vector, ,
to be orthogonal to every vector V, since always equals zero.

The second fact is that the sign of the dot product tells us how close two vectors
are to pointing in the same direction. For any vector V, we can construct a plane that
passes through the origin and is perpendicular to the direction that V represents, as
shown in Figure 4.1.9. Any vector lying on the same side of the plane as V yields a
positive dot product with V, and any vector lying on the opposite side of the plane
from V yields a negative dot product with V.

The dot product of a vector with itself always produces a positive number that is
equal to the squared magnitude of the vector. Because the angle between a vector and
itself is zero, the cosine term in Equation 4.1.48 is 1, and we have

(4.1.52)

The shorthand notation is often used in place of or , and all three
expressions have identical meanings. In the shorthand case, the vector is printed in
italics because its square is a scalar quantity.

The situation often arises in which we need to decompose a vector V into compo-
nents that are parallel and perpendicular to another vector W. As shown in Figure
4.1.10, if we think of the vector V as the hypotenuse of a right triangle, then the per-
pendicular projection of V onto the vector W produces the side adjacent to the angle
α between V and W.

V
2

V V⋅V 2

V V V V V⋅ = =
2

0 V⋅
0 ≡ 0 0 0, , ,…

V W⋅ = 0

FIGURE 4.1.8 The dot product is related to the
angle between two vectors V and W by the equation

. This can be verified by applying
the law of cosines to the angle α.
V W V W⋅ = cosα



Basic trigonometry tells us that the length of the side adjacent to α is given by
. Equation 4.1.48 gives us a way to calculate the same quantity without

knowing the angle α.
V cosα

350 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.9 The sign of the dot product tells us whether two 
vectors lie on the same side or on opposite sides of a plane.

FIGURE 4.1.10 The length of the projection of the vector
V onto the vector W is given by because

.V W V W⋅ = cosα
V W W⋅



(4.1.53)

To obtain a vector that has this length and is parallel to W, we simply multiply by
the unit vector . We now have the following formula for the projection of V
onto W, which we denote by .

(4.1.54)

The projection of V onto W is a linear transformation of V and can thus be
expressed as the following matrix product. In three dimensions, can be com-
puted using the alternative formula

(4.1.55)

The perpendicular component of V with respect to W, denoted by , is
simply the vector left over when we subtract the parallel component given by Equa-
tion 4.1.54 from the original vector V.

(4.1.56)

This operation is the basis for an algorithm called Gram-Schmidt orthogonalization.
At various points in game development, there arise situations in which a set of vectors
that is almost pairwise orthogonal needs to be corrected so that each vector in the set is
orthogonal to all of the other vectors in the set. Gram-Schmidt orthogonalization per-
forms this correction by putting the vectors in a particular order and then subtracting
from each vector the projection of that vector onto all of the preceding vectors. For
example, the set of three vectors is orthogonalized by leaving U alone, sub-
tracting from V, and subtracting both and from W (where
the projection of W onto V uses the already-orthogonalized vector V). For many appli-
cations, it is further necessary to renormalize each of the vectors to unit length.

The Cross Product

The cross product of two vectors, also known as the vector product, produces a vector
that is perpendicular to both of the vectors being multiplied together. This product
has many uses in computer graphics and physics, and one such application is the

proj
V

Wproj
U

Wproj
U

V
U V W, ,{ }

perp proj
W W

V V V

V
V W

W
W

= −

= −
⋅

2

perp
W

V

proj
W

V
W

=
1

2

2

2

2

W W W W W

W W W W W

W W W W W

x x y x z

x y y y z

x z y z z

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

V

V

V

x

y

z

proj
W

V

proj
W

V
V W

W
W=

⋅
2

proj
W

V
W W

V
V W

W
cosα =

⋅

4.1 Mathematical Concepts 351



calculation of a surface normal at a particular point by evaluating the cross product of
two distinct tangent vectors. The cross product between two vectors V and W is writ-
ten , and therein lays the source of its name—the crosslike symbol placed
between the two operands.

The cross product applies only to three-dimensional vectors and is defined as:

(4.1.57)

A tool that is often used to remember this formula is to calculate the cross prod-
uct by evaluating the following expression, which resembles a matrix determinant:

(4.1.58)

The symbols , , and represent the unit vectors aligned to the coordinate
axes as defined by Equation 4.1.27. This expression is sometimes called a pseudodeter-
minant since it is not technically a real matrix (because the entries in the top row are
vectors). Nevertheless, the usual method for evaluating the determinant does produce
the correct value for the cross product, as shown here:

(4.1.59)

The cross product can also be expressed as the following matrix product:

(4.1.60)

As mentioned previously, the cross product produces a vector that is per-
pendicular to both V and W. For this to be true, it must be the case that

and . We can verify these equations by simply writ-
ing out the individual components, as we do for the dot product with V here:

(4.1.61)

V W V V×( ) ⋅ = − − − ⋅

=

V W V W V W V W V W V W

V W

y z z y z x x z x y y x

y

, ,

zz x z y x z x y x z y x y z y x z
V V W V V W V V W V V W V V W V− + − + −

= 0

V W W×( ) ⋅ = 0V W V×( ) ⋅ = 0

V W×

V W× =

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
0

0

0

V V

V V

V V

W

W

W

z y

z x

y x

x

y

z

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

V W×

ˆ ˆ ˆ

ˆ ˆ

i j k

i jV V V

W W W

V W V W V W V W
x y z

x y z

y z z y z x x
= −( ) + −

zz x y y x
V W V W( ) + −( )k̂

k̂ĵî

V W

i j k

× =

ˆ ˆ ˆ

V V V

W W W

x y z

x y z

V W× = − − −V W V W V W V W V W V W
y z z y z x x z x y y x

, ,

V W×

352 Part 4 Game Programming: Math, Collision Detection, and Physics



Like the dot product, the cross product has trigonometric significance. The mag-
nitude of the cross product between two vectors satisfies the following equation:

(4.1.62)

As with the dot product, the angle α corresponds to the planar angle between the
two directions in which the vectors V and W point. Equation 4.1.62 can be proven by
first recognizing that the square of can be written as:

(4.1.63)

Replacing the dot product with the right side of Equation 4.1.48, we have

(4.1.64)

Taking the square root of both sides brings us to Equation 4.1.62.
As shown in Figure 4.1.11, Equation 4.1.62 demonstrates that the magnitude of the

cross product is equal to the area of the parallelogram whose sides are formed by
the vectors V and W. As a consequence, the area A of an arbitrary triangle whose vertices
are given by the points , , and can be calculated using the formula

(4.1.65)A = −( ) × −( )1
2 2 1 3 1

P P P P

P
3

P
2

P
1

V W×

V W× = −

= −( )
=

2 2 2 2 2 2

2 2 2

2 2 2

1

V W V W

V W

V W

cos

cos

sin

α

α

α

V W× = + +( ) + +( ) − + +2 2 2 2 2 2 2V V V W W W V W V W V
x y z x y z x x y y zz z

W

V W

( )
= − ⋅( )

2

2 2 2V W

V W×

V W V W× = sinα

4.1 Mathematical Concepts 353

FIGURE 4.1.11 This parallelogram has base width and
height . The product of these two lengths is equal to

and gives the area of the parallelogram.V W×
V sinα

W



We know that any nonzero result of the cross product must be perpendicular to
the two vectors being multiplied together, but two possible directions satisfy this
requirement. It turns out that the cross product follows a pattern called the right-
hand rule. As shown in Figure 4.1.12, if the fingers of the right hand are aligned with
a vector V, and the palm is facing in the direction of a vector W, then the thumb
points along the direction of the cross product .V W×

354 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.12 The right-hand rule provides a way for determining
in which direction the cross product points. When the vectors V
and W are interchanged, their cross product is negated.

The unit vectors , , and , which point in the directions of the positive x-, y-,
and z-axes, behave as follows. If we order the axes in a circular fashion so that 
precedes , precedes , and precedes , the cross product of two of these vectors
in order yields the third vector as:

(4.1.66)

The cross product of two of the vectors in reverse order yields the negation of the
third vector as:

(4.1.67)

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

j i k

k j i

i k j

× = −

× = −

× = −

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i j k

j k i

k i j

× =

× =

× =

îk̂k̂ĵĵ
î

k̂ĵî



In general, the cross product is not a commutative operation, but it is always true
that reversing the order of the operands negates the result. That is,

(4.1.68)

For this reason, the cross product is referred to as an anticommutative operation.
Additionally, it should be noted that the cross product is not an associative operation. For
any three vectors U, V, and W, it may be the case that .

Transformations

Game engines usually need to perform calculations involving an array of different
types of objects such as geometrical models, light sources, and cameras. It is often
convenient to perform these calculations in a coordinate system that is aligned to the
object in a natural way. For example, a camera may possess a local coordinate system
in which the origin coincides with the camera’s position, one axis is aligned along 
the direction in which the camera is facing, and the other two axes are aligned to the
viewer’s horizontal and vertical directions. Since different objects can use different
coordinate systems, a game engine needs to be able to transform vectors from 
one coordinate system to another.

Coordinate System Transformations

Suppose that the coordinate axes in three-dimensional coordinate system A corre-
spond to the directions given by the vectors R, S, and T in coordinate system B. That
is, the coordinate axes are different in coordinate system B, so even though the vector

in system A and the vector R in system B point in the same direction, they have dif-
ferent x, y, and z coordinates. A vector V specified in the coordinates of system A is
transformed into a vector W that has coordinates in system B by performing the
matrix multiplication

(4.1.69)

This operation simply replaces the vectors , , and with the vectors R, S, and
T. In coordinate system A, we can write any vector V as

(4.1.70)

After transforming into coordinate system B, the vector W can be written as

(4.1.71)W R S T= + +a b c

V i j k= + +a b cˆ ˆ ˆ

k̂ĵî

W R S T V= [ ] =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

R S T

R S T

R S T

V

V

x x x

y y y

z z z

x

y

VV
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

î

U V W U V W×( ) × ≠ × ×( )

W V V W× = − ×

4.1 Mathematical Concepts 355



We transform in the reverse direction from system B to system A by inverting
Equation 4.1.69 to obtain the following:

(4.1.72)

A certain subset of invertible matrices satisfies the property that . Such
matrices are called orthogonal. If a matrix is orthogonal (which is often the case in
computer graphics), its inverse is equal to its transpose, and the matrix that trans-
forms vectors from system B to system A is the one whose rows are simply the vectors
R, S, and T. In this case, we can express the vector V as .

Equation 4.1.69 can reorient the coordinate axes in any manner we wish, but it
leaves the origin fixed. To move the origin, we need to incorporate an additional vec-
tor D that represents the difference between the origin in coordinate system A and
coordinate system B. The general transformation from one three-dimensional system
to another now becomes

(4.1.73)

Homogeneous Coordinates

There are two significant drawbacks to the form of Equation 4.1.73. The first is that
the full transformation is represented by two different parts: the matrix that
reorients the coordinate axes, and the vector D that offsets the origin. The second
drawback is that the full transformation cannot make a distinction between a vector V
that represents a point in space and a vector V that represents a direction. In the case
that V is a direction, we do not want to add the offset D because doing so changes the
direction in which V points.

Fortunately, there is an elegant solution that allows us to represent the transforma-
tion in Equation 4.1.73 as a single matrix and to make a natural distinction between
position vectors and direction vectors. Most 3D graphics systems in use today employ
what are called four-dimensional homogeneous coordinates. Three-dimensional vectors
are expressed in homogeneous coordinates by adding a fourth component labeled w.
For vectors representing a direction, the w-coordinate is zero. A nonzero w-coordinate
indicates that a vector represents a position instead of a direction. Normally, a position
vector is given a w-coordinate of 1.

3 3×

W =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

R S T

R S T

R S T

V

V

V

x x x

y y y

z z z

x

y

z
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

D

D

D

x

y

z

R W S W T W⋅ ⋅ ⋅, ,

M M− =1 T

V W=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
R S T

R S T

R S T

x x x

y y y

z z z

1

356 Part 4 Game Programming: Math, Collision Detection, and Physics



In homogeneous coordinates, the 3×3 matrix and offset vector in Equation 4.1.73
are combined into a single 4×4 matrix so that the transformation assumes the follow-
ing form:

(4.1.74)

The w-coordinate of V determines whether the offset vector D takes part in the
transformation because it is the coordinate by which each of the entries in the fourth
column of the matrix is multiplied. If , the vector D is added to the trans-
formed vector, but if , the vector D is effectively ignored.

It is possible for a vector V to have a w-coordinate that is neither 0 nor 1. Such a
vector may be explicitly specified or may be produced by a transformation
matrix whose fourth row is not . The corresponding three-dimensional vec-
tor is always determined by dividing the x-, y-, and z-coordinates by the w-coordinate
as follows:

(4.1.75)

Thus, in homogeneous coordinates, the vectors and 
both represent the same point in three-dimensional space.

Common Transformations

Some common transformations, such as translations, scales, and rotations, have sim-
ple matrix representations. A translation simply moves the origin of the coordinate
system without reorienting or stretching the axes in any way. As a transforma-
tion matrix, a translation has the form

(4.1.76)

where the vector T is the difference between the old origin and the new origin. A scale
stretches or shrinks each of the coordinate axes and is represented by a matrix having
the form

M
translate

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

0 0 0 1

T

T

T

x

y

z
⎥⎥
⎥
⎥

4 4×

aV aV
z w
,

aV aV
x y
, ,V V V V

x y z w
, , ,

V
3D
=

V

V

V

V

V

V
x

w

y

w

z

w

, ,

0 0 0 1, , ,
4 4×

V
w
= 0

V
w
= 1

W =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

R S T D

R S T D

R S T D

x x x x

y y y y

z z z z

0 0 0 1

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

V

V

V

V

x

y

z

w

4.1 Mathematical Concepts 357



(4.1.77)

The scalars a, b, and c are the factors by which each of the x-, y-, and z-axes are
scaled, respectively. If all three scale factors are the same, the matrix is called a
uniform scale; otherwise, it is a nonuniform scale.

For rotations, we first examine a general method for rotating a point about the
origin in two dimensions. Let be a point lying in the x-y plane. As shown
in Figure 4.1.13a, the point P is rotated counterclockwise through an angle of 90
degrees by exchanging its x- and y-coordinates and negating the new x-coordinate to
construct the point . The result of rotating P through any other angle
can be expressed as a linear combination of the original P and its 90-degree rotation
Q. As illustrated by Figure 4.1.13b, the result of rotating the point P through an
angle θ is given by

(4.1.78)′ = +P P Qcos sinθ θ

′P

Q = − y x,

P = x y,

M
scale

M
scale

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a

b

c

0 0 0

0 0 0

0 0 0

0 0 0 1

358 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.13 (a) A point is rotated counterclockwise by 90 degrees in the 
x-y plane by exchanging its coordinates and negating the new x-coordinate. 
(b) The result of rotating the point through an arbitrary angle θ is expressed 
as a linear combination of the original point P and the 90-degree rotation Q.

′P

Using the fact that , the two components of can be written as

(4.1.79)

′ = −

′ = +

P P P

P P P

x x y

y y x

cos sin

cos sin

θ θ

θ θ

′PQ = −P P
y x
,

a b



4.1 Mathematical Concepts 359

This can also be written as the equivalent matrix product

(4.1.80)

The rotation performed by the matrix in Equation 4.1.80 occurs in the x-y plane
and is thus equivalent to a rotation in three dimensions about the z-axis. We can
express this rotation using the following transformation matrix:

(4.1.81)

Rotations about the x- and y-axes have the following similar forms:

(4.1.82)

(4.1.83)

A rotation through the angle θ about an arbitrary axis A is given by the following
transformation matrix, in which we have made the abbreviations and

. (For a derivation of this matrix, see [Lengyel04].)

(4.1.84)M
rotate

=

+ −( ) −( ) − −( ) +c c A c A A sA c A A sA
x x y z x z

1 1 12
yy

x y z y y z x
c A A sA c c A c A A sA

c

0

1 1 1 0

1

2−( ) + + −( ) −( ) −

−(( ) − −( ) + + −( )

⎡

⎣

⎢
⎢

A A sA c A A sA c c A
x z y y z x z

1 1 0

0 0 0 1

2
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

s = sinθ
c = cosθ

M
y-rotate

=
−

⎡

⎣

⎢
⎢

cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

M
x-rotate

=
−

⎡

⎣

⎢
⎢

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

θ θ

θ θ
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

M
z -rotate

=

−⎡

⎣

⎢
⎢

cos sin

sin cos

θ θ

θ θ

0 0

0 0

0 0 1 0

0 0 0 1

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

4 4×

′ =
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P P
cos sin

sin cos

θ θ

θ θ



Plugging in the values , , and brings us back
to the matrices , , and , respectively.

Transforming Normal Vectors

In addition to its position in space, a vertex belonging to a polygonal model usually
carries additional information about how it fits into the surrounding surface. In par-
ticular, a vertex may have a tangent vector and a normal vector associated with it that
represents a direction parallel to the surface and a direction perpendicular to the sur-
face, respectively. When we transform a model, we often need to transform not only
the vertex positions, but the tangent and normal vectors as well.

A tangent vector can usually be calculated by taking the difference between one
vertex and another, and thus we would expect that a transformed tangent vector could
be expressed as the difference between two transformed points. If M is a matrix with
which we transform a vertex position, the same matrix M can be used to correctly
transform the tangent vector at that vertex. Some care must be taken when transform-
ing normal vectors, however. Figure 4.1.14 shows what can happen when a
nonorthogonal matrix M, such as a nonuniform scale, is used to transform a normal
vector. The transformed normal can often end up pointing in a direction that is no
longer perpendicular to the transformed surface.

M
z -rotate

M
y-rotate

M
x-rotate

A = 0 0 1, ,A = 0 1 0, ,A = 1 0 0, ,

360 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.14 Transforming a normal vector using a
nonorthogonal matrix can cause the vector to no longer
be perpendicular to the transformed surface.

Since tangents and normals are perpendicular, the tangent vector T and the nor-
mal vector N associated with a vertex must satisfy the equation . We must
also require that this equation be satisfied by the transformed tangent vector and
the transformed normal vector . Given a transformation matrix M, we know that

. We would like to find the transformation matrix G with which the vector
N should be transformed so that
′ =T MT

′N
′T

N T⋅ = 0



(4.1.85)

Recall that the dot product can also be written as the matrix product
. Applying this to Equation 4.1.85, we can write

(4.1.86)

Since , the equation is satisfied if . We there-
fore conclude that . This tells us that a normal vector is correctly trans-
formed using the inverse transpose of the matrix used to transform points. Vectors that
must be transformed in this way are called covariant vectors, and vectors that are
transformed in the ordinary fashion using the matrix M (such as points and tangent
vectors) are called contravariant vectors.

If the matrix M is orthogonal, then , and thus . There-
fore, the inverse transpose operation required to transform normal vectors can be
avoided when M is known to be orthogonal, as is the case when M is equal to one of
the rotation matrices discussed earlier in this section.

Geometry

Games nearly always need to provide some kind of virtual environment in which all
of the action occurs. This environment and the objects that interact with it are repre-
sented inside the computer as geometrical structures. Game engines invariably need
to be able to mathematically manipulate these structures as well as create additional
geometrical objects during gameplay. In this section, we examine the basic mathemat-
ical properties of lines and planes in three-dimensional space because they are funda-
mental geometrical entities upon which many game engine calculations are based.

Lines

In three-dimensional space, a line is usually described by two quantities: any point S
lying on the line and the direction V along which the line runs. The set of all points
belonging to the line is then generated by the parametric function

(4.1.87)

A line can be thought of as the path traced out by starting at the point S and trav-
eling along the direction V over time t. (Allowing t to be negative enables us to travel
both directions.)

Two lines and are parallel if their directions and are par-
allel (i.e., for some scalar a). In three dimensions, lines that are not parallel
do not necessarily intersect, as they must in two dimensions. Nonparallel lines that do
not intersect are called skew lines.

V V
1 2
= a

V
2

V
1

S V
2 2
+ tS V

1 1
+ t

P S Vt t( ) = +

M M−( ) =1 TM M− =1 T

G M= ( )−1 T
G M IT =N G MTT T = 0N TT = 0

GN MT GN MT

N G MT

( ) ⋅( ) = ( ) ( )
=

T

T T

V WT
V W⋅

′ ⋅ ′ = ( ) ⋅( ) =N T GN MT 0

4.1 Mathematical Concepts 361



Planes

Given a 3D point P and a normal vector N, the plane passing through the point P
and perpendicular to the direction N can be defined as the set of points Q such that

. As shown in Figure 4.1.15, this is the set of points whose difference
with P is perpendicular to the normal direction N. The equation for a plane is com-
monly written as

(4.1.88)

where A, B, and C are the x-, y-, and z-components of the normal vector N, and
. As shown in Figure 4.1.16, the value is the distance by which

the plane is offset from a parallel plane that passes through the origin.
D ND = − ⋅N P

Ax By Cz D+ + + = 0,

N Q P⋅ −( ) = 0

362 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.1.15 A plane is defined by the set of points Q
whose difference with a point P, known to lie in the
plane, is perpendicular to the normal direction N.

The normal vector N is often normalized to unit length because in that case the
equation

(4.1.89)

gives the signed distance from the plane to an arbitrary point Q. If , then the
point Q lies in the plane. If , we say that the point Q lies on the positive side of
the plane since Q would be on the side in which the normal vector points. Otherwise,
if , we say that the point Q lies on the negative side of the plane.

It is convenient to represent a plane using a four-dimensional vector. The short-
hand notation is used to denote the plane consisting of points Q satisfying

. If we treat our three-dimensional points instead as four-dimensional
homogeneous points having a w-coordinate of 1, Equation 4.1.89 can be rewritten as

, where . A point Q lies in the plane if .L Q⋅ = 0L N= , Dd = ⋅L Q

N Q⋅ + =D 0
N, D

d < 0

d > 0
d = 0

d D= ⋅ +N Q



Like normal vectors, planes are covariant vectors that must be transformed from
one coordinate system to another using the inverse transpose of the matrix ordinarily
used to transform points. If the matrix M is the transformation matrix used to
transform points, a plane L is transformed by M using the formula

(4.1.90)

Distance from a Point to a Line

The distance d from a point P to a line defined by the endpoint S and the direction V
can be found by calculating the magnitude of the component of that is perpen-
dicular to the line, as shown in Figure 4.1.17.

Using the Pythagorean theorem, the squared distance between the point P and
the line can be obtained by subtracting the square of the projection of onto the
direction V from the square of . This gives us

(4.1.91)

d

V

2 2 2

2
2

= −( ) − −( )[ ]

= −( ) − −( ) ⋅⎡

⎣

P S P S

P S
P S V

V

V
proj

⎢⎢
⎤

⎦
⎥

2

P S−
P S−

P S−

′ = ( )−L M L1 T

4 4×

4.1 Mathematical Concepts 363

FIGURE 4.1.16 The value of D in Equation 4.1.88 is propor-
tional to the perpendicular distance from the origin to the plane.



364 Part 4 Game Programming: Math, Collision Detection, and Physics

Simplifying a bit and taking the square root gives us the distance d that we desire:

(4.1.92)

If the vector V is normalized, the division by can be removed.

Intersection of a Line and a Plane

Let represent a line containing the point S and running along the
direction V, and let be a plane with normal direction N. For any point P lying in
the plane L, we must have , so to find the point at which the line inter-
sects the plane, we simply need to solve the equation for t and plug it
back into the equation for the line. The value of t is given by

(4.1.93)

We must be careful when evaluating four-dimensional dot products in this
expression. Since S represents a point, its w-coordinate is 1, and since V represents a
direction, its w-coordinate is 0. Thus, Equation 4.1.93 should be expanded into the
following form:

(4.1.94)t
L S L S L S L

L V L V L V
x x y y z z w

x x y y z z

= −
+ + +

+ +

t = −
⋅
⋅

L S
L V

L P⋅ ( ) =t 0
P t( )L P⋅ = 0

ĵ
P S Vt t( ) = +

V 2

d
V

= −( ) − −( ) ⋅[ ]
P S

P S V2
2

2

FIGURE 4.1.17 The distance d from a point P to the line 
is found by calculating the length of the perpendicular component
of with respect to the line.P S−

S V+ t



4.1 Mathematical Concepts 365

If , the line is parallel to the plane, and no intersection occurs. Other-
wise, the point of intersection is given by

(4.1.95)

Summary

This chapter introduced several mathematical aspects of computer game development,
including trigonometry, vector and matrix arithmetic, coordinate transformations, and
basic three-dimensional geometry. These concepts represent the foundations of many
more advanced mathematical applications in game programming. Because they are so
heavily relied upon in modern game making, a familiarity with such concepts can ben-
efit both programmers and all members of a game development team.

Exercises

1. Convert the following radian angle measurements to degrees: (a) , 
(b) , (c) , (d) , (e) .

2. Convert the following degree angle measurements to radians: (a) , 
(b) , (c) , (d) , (e) .

3. Calculate the measurements of the acute angles of a right triangle whose
side lengths are 3, 4, and 5.

4. Let and . Calculate (a) , (b) , and
(c) .

5. Find the planar angle between the vectors and .
6. Show that for an n-dimensional vector V and a scalar a.
7. Calculate the area of the triangle whose vertices lie at the points ,

, and .
8. Calculate the determinants of the following matrices.

(a) (b) (c)

9. Show that the set of all matrices whose fourth row is is
closed under matrix multiplication. That is, show that the product of any
two such matrices is also a matrix whose fourth row is .0 0 0 1, , ,

0 0 0 1, , ,4 4×

1
2

3
2

3
2

1
2

0

0

0 0 1

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 1

0 1 0

1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 7

3 1
2−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

8 7 1, ,−−1 3 5, ,
2 3 4, ,

a aV V=
W = −1 2 0, ,V = 0 1 2, ,

proj
V

W
V W×V W⋅W = −1 2 0, ,V = 2 2 1, ,

3°− °315330°18°
135°

7 6π4ππ 103 2π
7 8π

P S
L S
L V

Vt( ) = −
⋅
⋅

L V⋅ = 0



10. Construct matrices that represent a rotation of radians about 
(a) the x-axis, (b) the y-axis, (c) the z-axis, and (d) the axis .

11. Determine a plane that contains the three points ,
, and .

12. Classify the following points with respect to the plane and
tell whether each lies on the positive side of the plane, the negative side of
the plane, or in the plane: (a) , (b) , (c) .

13. Let and . Calculate the perpendicular distance
between the line and the point .

14. Let and . Find the point at which the line
intersects the plane .

References

[Lengyel04] Lengyel, Eric, Mathematics for 3D Game Programming and Computer
Graphics, 2nd ed., Charles River Media, 2004.

[Press92] Press, William H., et al., Numerical Recipes in C, 2nd ed., Cambridge 
University Press, 1992.

L = 1 1 0 5, , ,P S Vt t( ) = +
V = −2 1 1, ,S = 1 0 3, ,

Q = 3 4 5, ,P S Vt t( ) = +
V = −1 2 3, ,S = 2 2 2, ,

6 12 6, ,−−5 0 8, ,1 2 3, ,

L = 1 1 0 5, , ,
3 2 1, ,−2 0 1, ,−

1 2 0, ,L N= , D
A = 2

2
2

2 0, ,
π 44 4×

366 Part 4 Game Programming: Math, Collision Detection, and Physics



367

Overview

In the virtual world of a game, physical simulation must be painstakingly added
through programming. Initially there is no gravity, no inertia, no friction, and most
disconcerting, no concept of solidness. Objects will pass through each other without
any hesitation, as if they were ghosts drifting through walls. Solidness is the property
that is missing, and it is implemented through collision detection and collision resolution.

Collision detection will determine if and when two objects collide. Since it is not
enough to merely detect the collision, collision resolution will figure out where each
object should be once a collision is detected. Effectively, collision detection and reso-
lution together will make objects solid so that they will never pass through each other.
Calculating how objects move after the collision is the job of the physics, which is
described in Chapter 4.3, “Real-Time Game Physics.”

Collision Detection and
Resolution

4.2

In This Chapter

Overview
Collision Detection
Overlap Testing
Intersection Testing
Dealing with Complexity
Simplified Geometry
Bounding Volumes
Achieving O(n) Time Complexity
Terrain Collision Detection
Collision Resolution
Summary
Exercises
References



Collision Detection

Determining if and when two objects collide is not as simple as it might initially seem.
Some objects can move very fast (e.g., bullets), and some objects can have very compli-
cated geometry (e.g., characters). In addition, collision detection is very costly because,
fundamentally, every object should be tested against every other object for a possible
collision, which is O(n2) time complexity (in that for n objects, the amount of work is
n*(n – 1), which is proportional n2). Because of these difficulties, many strategies have
been devised to perform collision detection in real time during gameplay.

For detecting a collision, there are basically two techniques that can be employed:
overlap testing and intersection testing. The main difference is that overlap testing detects
whether a collision has already occurred, and intersection testing predicts if a collision
will occur in the future.

Overlap Testing

Overlap testing is the most common technique, yet exhibits the most error. The idea
is that at every simulation step, each pair of objects will be tested to determine if they
overlap with each other. If two objects overlap, they are in collision. This is known as
a discrete test since only one particular point in time is being tested.

Overlap testing is actually a containment problem. The goal is to test if any part of
an object is inside any part of another object. This can be simple with volumes, such as
spheres and boxes, but with polygons, it can be more difficult. One imperfect tech-
nique for polygons is to test whether the vertices of one object lie in the area of the
other object, and vice versa. At some point, the volume of polygonal objects must be
approximated by simpler geometric shapes to make the problem tractable in real time.

Results

If a collision is detected, two helpful results can be calculated. The first is the time the
collision took place. The second is the collision normal vector. This normal vector is
needed to later compute the collision response that prevents the objects from further
interpenetrating. Depending on the technique used, the accuracy of the results may
not be important as long as the objects are separated so that a collision doesn’t occur
again on the next simulation step.

To determine exactly when the collision took place, the two objects must be
moved back in time to the last simulation step when they were not in collision. Using
a technique called bisection, the simulation should be moved forward or backward by
half of the last simulation step, in order to converge on the exact time of collision. For
example, once the collision is detected, the simulation is moved back to the last simu-
lation time. Then, the simulation should be moved forward by half. If that is in colli-
sion, the simulation should be backed up and moved forward by one-quarter. If that’s
not in collision, the simulation should be moved forward by one-eighth, and so on.

368 Part 4 Game Programming: Math, Collision Detection, and Physics



4.2 Collision Detection and Resolution 369

This is demonstrated in Figure 4.2.1. In practice, a reasonably close solution will be
found within five iterations. By calculating the exact time before collision, we know
the correct, nonoverlapping positions where the objects should be placed for collision
resolution.

B B

t1

t0.375 

t0.25 

B

t0

Iteration 1 
Forward 1/2 

Iteration 2 
Backward 1/4 

Iteration 3 
Forward 1/8 

Iteration 4 
Forward 1/16 

Iteration 5 
Backward 1/32 

Initial Overlap 
Test 

t0.5 
t0.4375 t0.40625 

BB B

A

A

A

A
A A 

FIGURE 4.2.1 Using overlap testing, it has been detected that the moving object A collides
with the stationary object B at time t1. To find the exact time before intersection, five 
iterations of bisection are performed in order to converge on the time right before collision.

Limitations of Overlap Testing

Overlap testing seems reasonable, but it fails horribly when objects move a little too
fast. For example, imagine that a bullet is fired at a glass window. We want to detect
this collision, but since the bullet is small and traveling very fast, it is unlikely the bul-
let will ever overlap the thin window during one of the simulation steps. The result is
that the bullet will fly right through the window without a collision being detected, as
shown in Figure 4.2.2.

For overlap testing to always work, the speed of the fastest object in the scene mul-
tiplied by the time step must be less than the size of the smallest collidable object in the
scene. This implies a design constraint on the game to keep objects from moving too
fast relative to the size of other objects. Optionally, the simulation step size can be
reduced to satisfy the constraint, but this might result in stepping the simulation
dozens or hundreds of times a frame. Since both of these options might be undesirable,
there is an alternative collision detection technique called “intersection testing.”



370 Part 4 Game Programming: Math, Collision Detection, and Physics

Intersection Testing

The defining characteristic of intersection testing is that it predicts future collisions
before they happen. They are predicted and thus the simulation can be carefully
moved forward to the time of impact, often more accurately and efficiently than over-
lap testing. For example, if two objects will collide in 1/60th of a second and the sim-
ulation step size is 1/30th of a second, the simulation can be moved forward by 1/60th

of a second (up to the time of collision), the collision can be resolved, and then the
remaining 1/60th of a second can be simulated. If multiple collisions occur within a
simulation step, each must be resolved with the clock advancing in time for each of
those intervals.

If overlap testing can be viewed as a containment problem, intersection testing
can be viewed as a visibility problem. Intersection testing must test the geometry of an
object swept in the direction of travel against other swept geometry. Whatever geome-
try the object is composed of, it must be extruded over the distance of travel during
the simulation step and tested against all other extruded geometry. For example, an
extruded sphere becomes a capsule shape (a sphere on each end of a cylinder), as
shown in Figure 4.2.3.

t0t-1 t1 t2

bullet

window

FIGURE 4.2.2 Overlap testing is problematic for small,
fast-moving objects such as bullets.

t0

t1

FIGURE 4.2.3 A sphere extruded over the distance of travel becomes a capsule shape,
between the simulation time t0 and t1.



In the specialized case of a sphere-sphere collision, there is a direct formula that
will provide the exact time of impact, as shown in Equations 4.2.1 and 4.2.2
[Lengyel04]. The sphere of radius rP moving from the point P1 at time to the
point P2 at time collides at time t with another sphere of radius rQ moving from
the point Q 1 to the point Q 2 (see Figure 4.2.4). 

t = 1
t = 0

4.2 Collision Detection and Resolution 371

Q1

Q2

P1

P2

P

Q

t=0

t=0

t=1

t=1

t

FIGURE 4.2.4 Detecting a collision between two moving spheres.

A collision occurs if t falls into the interval (0,1). However, two special cases also
indicate no collision. If the value inside the radical is negative, there is no collision.
Additionally, in the case that , either both spheres are stationary or both are
traveling in the same direction at the same speed and cannot collide.

(As a reminder from Chapter 4.1, “Mathematical Concepts,” bolded variables are
vectors and italicized variables are scalars. For example, is the dot product of the
vectors A and B, while B2 is the squared magnitude of vector B.)

(4.2.1)t
B A r r

B

P Q
=
− ⋅ − ⋅ − − + )(( ) ( ) ( )

,
A B A B 2 2 2 2

2

A B⋅

B2 0=



where

(4.2.2)

As a simpler test of whether the spheres collide at all, Equation 4.2.3 can be used
to determine the smallest distance ever separating the centers of the two spheres.

(4.2.3)

If , we can quickly know if there is a collision.
Finally, note that there is a numerically stable method to solve the quadratic equation

detailed in the book Numerical Recipes in C (available for free on the Internet)
[Press92].

Limitations of Intersection Testing

Initially, it appears that intersection testing might not have any design constraints
other than striving to use simple collision-detection geometry. However, one impor-
tant problem arises in networked games. The issue is that future predictions rely on
knowing the exact state of the world at the present time. Due to packet latency in a
networked game, the current state is not always coherent, and erroneous collisions
might result. Therefore, predictive methods aren’t very compatible with networked
games because it isn’t efficient to store enough history to deal with such changes and,
in practice, running clocks backward to repair coherency issues rarely works well.

One more potential problem for intersection testing is that it assumes a constant
velocity and zero acceleration over the simulation step. This might have implications
for the physics model or the choice of integrator, as the predictor must match their
behavior for the approach to work.

Dealing with Complexity

Regardless of which technique is used, overlap testing or intersection testing, there are
two significant challenges in performing these calculations in real time. The first
problem is that testing complex geometry for containment or visibility is complicated
and computationally costly. The potential solution is to substitute simpler geometry,
and initially test rough approximations of each object. The second problem is that a
naïve collision-detection implementation is O(n2) time complexity, since every object
must be tested with every other object. Fortunately, there are techniques that can
achieve nearly linear time complexity in the number of objects. We will take each of
these problems in turn.

d r r
P Q

2
2

> +( )

d A
B

2 2

2

2
= −

⋅( )A B

A P Q

B P P Q Q

= −

= −( ) − −( )
1 1

2 1 2 1

372 Part 4 Game Programming: Math, Collision Detection, and Physics



4.2 Collision Detection and Resolution 373

Simplified Geometry

The first way of dealing with complexity is to simplify the geometry. If a complex
object can be roughly approximated with a simpler shape, testing will be cheaper. For
example, Figure 4.2.5 shows how a spiky object can be simplified as an ellipsoid. Note
that the ellipsoid does not encompass the object; it just approximates its shape. Using
this rough approximation, some parts of the object might come into collision without
being able to detect it, but for a given game, this might be acceptable.

FIGURE 4.2.5 Spiky object approximated with an ellipsoid.

Minkowski Sum

In an effort to simplify geometry for cheaper overlap and intersection testing, there is
a powerful geometric operation called the Minkowski sum [VanDerBergen03]. By tak-
ing the Minkowski sum of two convex volumes and creating a new volume, it is pos-
sible to determine overlap by testing if a single point is within this new volume.
Equation 4.2.4 shows the Minkowski sum.

(4.2.4)

The Minkowski sum of X and Y can be created by sweeping the origin of X over all
points within Y. This can best be visualized in Figure 4.2.6. If one convex volume is a
circle and the other is a square, the Minkowski sum appears to be a “bloated” square.

Once the new volume is created, we can determine overlap by taking the origin of
the sphere and testing if it is within the new volume. If it is, the sphere is in collision
with the box. To perform the intersection test, the point becomes a line, going from
the center of the sphere at time t0 to the center of the sphere at time t1. We then test
this line to see if it intersects with the new volume, as shown on the right side of 
Figure 4.2.7.

X Y A B A X⊕ = + ∈ ∈{ :  and B Y}



374 Part 4 Game Programming: Math, Collision Detection, and Physics

X ⊕ Y⊕ =YX X ⊕ Y =

FIGURE 4.2.6 The Minkowski sum of a circle and a square.

In the case that all moving objects in a game can be approximated by their
bounding spheres, this method can serve as the main collision test for objects with a
static polygonal environment [Lengyel04]. Once these bounding volumes are deter-
mined to be in collision, a secondary test can be activated on more detailed geometry.

Bounding Volumes

Containment and visibility testing can be costly if the geometry is complex. In mod-
ern 3D games, each game object is constructed with hundreds or thousands of poly-
gons. Consequently, an object’s volume is defined by these polygons, but testing this
complex volume is too expensive in most cases. The solution is to use bounding
volumes when approximate collision detection suffices, or use increasingly complex
bounding volumes when accuracy matters.

t0

t1

t0

t1

FIGURE 4.2.7 Performing an intersection test as a sphere moves during the simulation
step. On the left, the swept sphere is tested against a stationary box. On the right, the line
from the center of the sphere at  t0 to the center of the sphere at  t1 is tested against the
Minkowski sum of the sphere and box.



A bounding volume is a simple geometric shape, like a sphere, that fully encapsu-
lates an object. In this way, the bounding volume is an approximation of the object’s
shape. The advantage is that if there is no collision with the bounding volume, it is
known that there is no collision with the object. Since the test with the bounding vol-
ume is cheaper, and since most objects are not in collision, many potential collisions
can be dismissed with little computational work.

If the bounding volumes of two objects collide, this indicates that there could be
a collision. If the bounding volumes are very good approximations of the objects, this
might suffice for determining that the objects collided. Otherwise, more detailed tests
can be performed on tighter fitting bounding volumes until you get down to the level
of testing individual polygons.

The simplest bounding volume is a sphere. What makes spheres convenient is
that they are represented by a position and a radius, with no need for an orientation.
This makes containment and visibility calculations particularly simple to perform.
For example, two spheres overlap each other if the distance between their centers is
less than the sum of their radii. In the case of visibility, an extruded sphere is a capsule,
as mentioned before. A capsule is composed of two spheres and one cylinder, so each
of these objects can be tested against the other extruded objects to determine overlap.

The next most common bounding volume is a box. There are two types: an axis-
aligned bounding box (AABB) and an oriented bounding box (OBB). An AABB is
built so that the faces line up with the three axes. This restriction usually results in a
loose fit around an object, but the resulting tests against the box are simplified and
cheaper to perform. An OBB is a tighter fitting box that is oriented in a manner to
best encapsulate the object. Figure 4.2.8 shows examples of each.

4.2 Collision Detection and Resolution 375

Axis-aligned Bounding Box Oriented Bounding Box

FIGURE 4.2.8 An axis-aligned bounding box and an oriented
bounding box.

If an object is complex, it is often possible to fit several bounding volumes around its
unique parts. For example, a character model might have individual OBBs around 



376 Part 4 Game Programming: Math, Collision Detection, and Physics

its arms, torso, and legs, while its head might be encapsulated by a sphere. In addi-
tion, there might be several levels of bounding volumes. For example, the character
model with multiple OBBs and spheres around its parts might have a higher level
bounding volume of a single sphere around the entire character. Therefore, the first
collision test is with the large sphere, and if that indicates a collision, the individual
bounding volumes can be tested next.

Achieving O(n) Time Complexity

Collision detection can be fairly complex simply because every object must be
checked against every other object. One solution to this O(n2) time complexity is to
partition space. Figure 4.2.9 shows an example. If there are 15 objects and the world
is partitioned with a simple grid, each object must only be tested against objects in the
same or neighboring grid cells.

FIGURE 4.2.9 Partitioning space with a simple grid.

While this seems to have greatly reduced the complexity, there are some prob-
lems. First, what if objects vary in size and don’t fit inside a single grid cell? In this
case, the grid cell size might need to be increased or more grid cells “further out” must
be tested. A second problem is if all of the objects move into the same grid cell, then
the time complexity has reverted back to O(n2), since each object must be tested
against all others. Depending on the game, this worst-case condition might not be
probable or even possible.

If there are N collidable objects, a 2D grid will need to be at least in
size, and a 3D grid will need to be at least . This will on average result
in one object per grid cell, which should support linear time complexity (on average).

N N N3 3 3× ×
N N×



Plane Sweep

The plane sweep algorithm is an alternative method for reducing the time complexity
of collision detection between objects. This method leverages the temporal coherence
of objects to roughly stay in the same location from frame to frame, thus reducing the
problem to linear O(n) time complexity.

The idea is to record the bounds of every object on each of the three axes, as illus-
trated in two dimensions in Figure 4.2.10. Any objects that have overlapping bounds
in all axes should be examined more closely for a collision. However, the time-
consuming aspect of this algorithm is collecting and then sorting the bounds on each
axis every frame. The best sorting algorithm, quicksort, will sort a list in O(nlog(n))
time, but it turns out we can do much better. Since objects display coherence from
frame to frame, we can sort each axis boundary list once, and then use bubblesort to
quickly repair any of the bounds that became slightly out of order during the last
frame. The result is nearly linear time collision detection.

4.2 Collision Detection and Resolution 377

C

B

R

A

x

y

A0 A1 R0 B0 R1 C0 C1B1

B0

B1
A1

A0

R1

R0

C1

C0

FIGURE 4.2.10 Marking boundaries of objects for the
plane sweep algorithm. In this example, the rocket R and
object B are the only two objects whose boundaries overlap
in both axes, indicating they might be in collision.

Terrain Collision Detection

Collision detection with terrain is often a special case. Particular objects, like charac-
ters, must usually stay in contact with the terrain, so detecting the collision of each
foot with the ground is very important. However, there are many opportunities to
simplify the problem.



378 Part 4 Game Programming: Math, Collision Detection, and Physics

First, let’s start with a flat plane as the ground. This is the simplest type of terrain,
since it is defined by a single y height coordinate. If the character is standing, the 
bottom of each foot should rest at the terrain’s y coordinate. If the character jumps
into the air and falls to the ground, the character will hit the ground when his foot
attempts to go below the terrain height, thus piercing the terrain. If it does go below,
the foot is in collision with the terrain and should be placed at the terrain height.

In most games, the terrain is defined as a polygonal mesh, sometimes represented
as a height field. A height field is a uniform triangle mesh where the x- and z-coordinates
of each vertex are fixed in a grid, but the y-coordinate (height) of each vertex can vary,
thus creating 3D terrain in a simple manner. Figure 4.2.11 shows an example of a
height field.

Top-down View

Perspective View

Top-down View (heights added)

Perspective View (heights added)

FIGURE 4.2.11 A height field before and after the heights have been added. Notice how
the surface is essentially 2D. Also, notice how it is not possible to represent vertical walls,
overhanging ledges, or caves with this representation.

In the case of a height field, it is fairly trivial to determine which triangle the char-
acter is standing on, since it is essentially a 2D problem. First, we must represent the
colliding object with a single point Q that represents the point of the object that
should rest on the terrain. For a character’s foot, this might be the heel or tip of the
foot. We then treat the terrain mesh as a 2D planar mesh and use the nature of the 2D
uniform grid (uniformly spaced rows and columns) to locate the exact rectangular cell
that contains point Q.

Once we have identified the rectangular cell, we must determine which triangle
contains point Q. The point can be on one of two triangles depending on the triangu-
lation, but a simple comparison with the dividing line can give us the exact triangle.
This is shown in Figure 4.2.12.



With the triangle known, the height inside the triangle at the point Q must be
found. This can be done by creating the plane equation for the triangle, plugging in
the x- and z-components of point Q and solving for y. Let’s begin with the plane
equation

(4.2.5)

where A, B, and C are the x-, y-, and z-components of the plane’s normal vector N,
, and P0 is one of the triangle’s vertices. This gives us

(4.2.6)

The normal N of the triangle can be constructed by taking the cross product of
two sides, as follows:

(4.2.7)

Given Equation 4.2.6, we can solve for y and insert the x- and z-components of
point Q, obtaining the final equation for the height of point Q within the triangle,

(4.2.8)

Triangulated Irregular Networks (TINs)

If the terrain is a nonuniform polygonal mesh, built by displacing vertically the ver-
tices of a 2D mesh, we can still simplify the problem by treating the terrain as a 2D
mesh projected into the xz plane. Given a point Q with a fixed x- and z-component,
it can only lie on a single triangle of the terrain. The problem is identifying the correct

Q
N Q N Q N P

Ny

x x z z

y

=
− − + ⋅( )0

N P P P P= −( ) × −( )1 0 2 0

N N N N P
x y z

x y z( ) + ( ) + ( ) + − ⋅( ) =
0

0

D = − ⋅N P
0

Ax By Cz D+ + + = 0

4.2 Collision Detection and Resolution 379

Q

R

Q

Qz > Qx

Qz <= Qx

z

x

Rz > 1 - Rx

Rz <= 1 - Rx

R

FIGURE 4.2.12 Finding the colliding triangle on a height field.



380 Part 4 Game Programming: Math, Collision Detection, and Physics

triangle. Once the correct triangle is found, Equation 4.2.8 can be used to determine
the height at that point.

Using spatial partitioning techniques, such as octrees, it is possible to narrow
down what part of the terrain we’re interested in, producing a subset of candidate
polygons. Given this bag of polygons that represent the terrain, we have no choice but
to test each polygon until one is found that contains point Q. An efficient method of
testing if point Q lies in a triangle is to compute the barycentric coordinates of the
point. The barycentric coordinates represent point Q in terms of a weighted sum of
each triangle vertex. Figure 4.2.13 shows an example.

P1

P2

P0

Q

Point = w0P0 + w1P1 + w2P2

Q = (0)P0 + (0.5)P1 + (0.5)P2

R = (0.33)P0 + (0.33)P1 + (0.33)P2
R

FIGURE 4.2.13 An example representing points in terms of barycentric
coordinates. The values w0, w1, and w2 are the barycentric coordinate
weights. Note that a negative weight would indicate the point is not
inside the triangle.

Equations 4.2.9 and 4.2.10 show how to calculate the barycentric coordinates for
a point Q that is in the triangle’s plane [Lengyel04]. In the case of nonoverlapping 
terrain, we can ignore the y-coordinate and make point Q and all triangles lie in the same
plane. Otherwise, Equation 4.2.8 could be used to obtain point Q in the triangle’s
plane.

(4.2.9)

where

(4.2.10)

Since the three weights must add up to 1.0, w0 can be calculated with
. If any of the weights are negative, point Q does not lie within the

triangle.
w w w

0 1 2
1= − −

S Q P

V P P

V P P

= −

= −

= −

0

1 1 0

2 2 0

w

w V V

V1

2 1
2

2
2

1 2

2
2
2

1 2

1

1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− ⋅( )

− ⋅

− ⋅V V

V V

V V
22 1

2

1

2V

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅

⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S V

S V



Once the weights are calculated, they can be used to determine the texture coor-
dinate of point Q. This might be valuable if the terrain triangles are very large and
part of the texture implies special conditions, such as water. For example, a check can
be performed whether point Q translates to a water pixel or a land pixel. If the texture
coordinates , , and are associated with vertices P0, P1, and P2,
the texture coordinates at the point Q are given by

(4.2.11)

Collision Resolution

Once a collision is detected, some action must be taken to resolve the collision. This
collision resolution can take on many forms.

In the simplistic case of two billiard balls striking each other, the position of the
balls at the time of collision must be calculated, to place them in the correct location
at the time of impact. In addition, new resulting velocities must be imparted onto the
balls, and a “clinking” sound effect would likely be played.

However, consider a second collision scenario: If a rocket slams into a wall, the
rocket should disappear, an explosion with sound effect should be spawned at the point
of impact, the wall should be charred, and area damage should be inflicted on all
game characters that are near. In a third collision scenario, perhaps a character can
walk through a particular wall triggering a magical sound effect, in which case the
detection of certain wall collisions must be recognized, but the positions and trajecto-
ries of the objects should not be affected.

For collision resolution to meet these very different needs, there must be a proce-
dure for the resolution. This procedure has three parts: a prologue, the collision, and
an epilogue.

Prologue

When collision resolution begins, the collision is known to have occurred, but there is
a chance that it should be ignored. This is verified in a prologue callback function. If
the prologue determines that the collision shouldn’t affect the position or trajectories
of the objects, the function will return false so that the collision resolution doesn’t
continue. The prologue may also trigger other events, such as sound effects, by send-
ing a collision notification to the objects themselves. In true object-oriented style, the
objects would deal with the prologue collision notification as they see fit.

Collision

In the collision step of the procedure, the objects will be placed at the point of impact
and new velocities will be assigned using physics or some other decision logic. The

s w s w s w s

t w t w t w t

= + +

= + +
0 0 1 1 2 2

0 0 1 1 2 2
.

s t,

s t
2 2
,s t

1 1
,s t

0 0
,

4.2 Collision Detection and Resolution 381



382 Part 4 Game Programming: Math, Collision Detection, and Physics

exact steps will depend on which method, overlap testing or intersection testing, was
employed. This will be discussed shortly.

Epilogue

In the epilogue, any post-collision affects must be propagated. These might include
destroying one or both objects, playing a sound effect, inflicting damage, and so on.
This can generally be done by sending a collision epilogue event notification to each
object, with the object determining what effects to trigger. Whether these effects take
place in the prologue or epilogue is somewhat arbitrary and will depend on the game
design and circumstance.

Resolving Overlap Testing

Moving back to the collision step of the procedure, there are four steps to resolving
the collision when overlap testing is used:

1. Extract the collision normal.
2. Extract the penetration depth.
3. Move the two objects apart to a penetration depth of zero, if needed.
4. Compute the new velocities.

The first step is to extract the collision normal. One method that works particu-
larly well is to first find the position of each object immediately before collision
(preferably with the bisection technique as previously discussed). Knowing the object
positions prior to contact, the collision normal can be constructed using the two clos-
est points on each surface. This technique is shown in Figure 4.2.14. As long as the
objects can be located very close before impact and neither has a large angular
momentum, the results will be fairly good.

FIGURE 4.2.14 A collision normal constructed using the two closest points 
immediately before impact.



Calculating the two closest points on the surface of each object can be tricky. Lin-
Canny is an incremental algorithm that can find the two closest features for general
convex polygonal volumes [VanDerBergen03]. With spheres, the collision normal
can be directly defined as the difference between the centers of each sphere at the
point of impact, as shown in Figure 4.2.15.

4.2 Collision Detection and Resolution 383

t0

t0

t0.25

t0.5

t0.25

t0.5

t0.75

t0.75

t1

t1

         Collision

         Normal

FIGURE 4.2.15 In a sphere-sphere collision, the difference between the centers of each
sphere, at the point of collision, can be used as the collision normal.

In the second step of resolving a collision, the penetration depth must be calcu-
lated to move the objects apart. For this purpose, an alternate algorithm to that of
bisection is Gilbert-Johnson-Keerthi (GJK), which is particularly good at extracting
the penetration depth from convex objects [VanDerBergen03]. GJK builds dividing
planes between the objects using what are known as the Minkowski supporting lines.
An example is shown in Figure 4.2.16.

FIGURE 4.2.16 GJK dividing planes between 
two objects, used to extract penetration depth.



With the collision normal vectors and the penetration depth in hand, the third step
is to move the objects apart (i.e., move them to their locations at the time of collision
when there is zero interpenetration depth). Once this is done, the fourth step is to
compute each object’s new velocity using Newtonian physics, as discussed in Chapter
4.3, or using some other decision logic.

Resolving Intersection Testing

Collision resolution with intersection testing is much simpler since the objects never
actually penetrate. Without overlap, there is no need to detect the penetration depth
and move the objects apart (steps 2 and 3). All that is required is to extract the colli-
sion normal vector at the time of collision and then calculate the new velocities of
each object.

Summary

Collision detection and collision resolution enable game objects to behave as solid
masses. Through either overlap testing or intersection testing, collisions can be
detected. When a collision is detected, there is a prologue, collision, and an epilogue
that help produce the many different behaviors of colliding objects. Once a collision
has been detected, collision resolution corrects each object’s position and imparts
appropriate velocities based on physical simulation.

The complexity in collision detection comes from two primary sources. First, 
collisions between arbitrarily complex polygonal models are expensive to test. Second,
each object could potentially collide with any other object. Fortunately, using simpli-
fied geometry, bounding volumes, and the partitioning of space, these complexities
can be mitigated.

Exercises

1. Compute the time of collision for two spheres, each of radius 0.25, that start
at t � 0 at the positions (0,0) and (1,1), respectively, and both end up at
(1,0) at t � 1.

2. For the collision in the preceding exercise, compute the collision normal for
each sphere.

3. Draw the Minkowski sum of a circle and a triangle.
4. Devise three levels of bounding volumes for a character model.
5. Given a triangle with vertices at (1,0,0), (0,0,1), and (0,1,0), find the point

where a character’s foot located at (0.2,0,0.2) should be placed.
6. Given a triangle with vertices at (0,0,0), (1,0,0), and (0,0,1), calculate the

barycentric coordinates of the points (0.5,0,0) and (1,0,1). Please show your
work.

384 Part 4 Game Programming: Math, Collision Detection, and Physics



7. In games, collisions between characters are usually not very precise, as often
times the arm or leg of one character will penetrate another character. If
precise collision detection is employed, what problems or issues might arise?
What advantage does modeling character-character collisions with spheres
or cylinders offer?

References

[Lengyel04] Lengyel, Eric, Mathematics for 3D Game Programming & Computer
Graphics, 2nd ed., Charles River Media, 2004.

[Press92] Press, William H.; Flannery, Brian P.; Teukolsky, Saul A.; and Vetterling,
William T., Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge University Press, 1992, available online at www.nr.com/.

[VanDerBergen03] Van Der Bergen, Gino, Collision Detection in Interactive 3D 
Environments, Morgan Kaufmann, 2003.

4.2 Collision Detection and Resolution 385

www.nr.com/


This page intentionally left blank 



387

Overview

Physics is part of our life experience. Our brains are conditioned through life to 
recognize physically based motion as being correct motion. It makes sense, then, that
game players become more immersed in some types of games when objects move in a
realistic manner. When appropriate, there are a number of ways to create realistic
motion for a game. One common approach is for artists to author keyframe anima-
tions that give the appearance of being physically based. Another common approach,
which is popular for character animation in particular, is to use motion capture tech-
nology to record real-life motions and then apply those recorded motions to game
models. Both of these approaches are extremely labor intensive, and expensive. 

Simulation of physics represents a third approach to generating realistic motion
for games. Physics simulation can provide at least two benefits that are significant to
publishers, developers, and game players. The first benefit is a cost savings to develop-
ers and publishers. Physics simulation has the potential to be far less expensive than

Real-Time Game Physics4.3

In This Chapter

Overview
Rewind: A Fresh Look at Basic Physics
Introduction to Numerical Physics Simulations
Beyond Particles
Third-Party Physics Engines
Summary
On the CD-ROM
Exercises
References



keyframe or motion capture animation, since (ideally) the artist only needs to config-
ure the physical properties of a game model. The simulation rather than an artist or
actor determines the actual motion, and does so without charging an hourly rate!

In game physics simulation, there is the possibility of simulating an object’s
motion within digital content creation software, thus creating a preprocessed solution
that is fixed at runtime, just as with keyframe or motion capture animation. There is
also the possibility of simulating motion at runtime. The latter case provides the sec-
ond benefit of physics simulation. By simulating physics at runtime, the game engine
can create emergent behavior, leading to a richer game experience for the game player.

This chapter contains a whirlwind introduction to physics simulation, with a
focus on techniques that can run in real time. Following a technical discussion of a
few fundamental algorithms that you can implement to add physics-based effects to
your game, such as physics for particle systems, the chapter concludes with an
overview of third-party physics engines that enable you to put sophisticated physics
into your game without having to build a full custom physics engine. The concepts
presented herein are not comprehensive, but are intended to provide sufficient infor-
mation to enable you to begin developing your own physics engine and to understand
the wide variety of realistic behaviors that are possible using third-party engines. The
entire chapter can be useful in generating physics simulation within a runtime game
engine, as well as within digital content creation tools. 

Rewind: A Fresh Look at Basic Physics

Let’s begin slowly. Chances are good that you’ve already attended a science course,
perhaps in high school or during the first year at a university, that introduced you to
the fundamentals of physics. It makes sense to reflect back on what you may already
know. Those basic equations are easy to code, and can actually be useful in real games.
Further, they are a building block upon which we will develop more sophisticated
effects.

The Importance of Consistent Units

Throughout this chapter, as new variables or quantities are introduced, we will identify
units in which the quantity can be measured, from the International System of Units
(SI). For example, position can be measured in meters, and time can be measured in
seconds. You can choose to use a different system of units, such as the English System
of Units, if you wish. However, make no mistake about this: It is necessary that you use
consistent units in your equations. Equations will produce the wrong results if you use
values with inconsistent units! An example of using inconsistent units would be to use a
force measured in pounds (English Units) and an object mass measured in kilograms
(SI Units) in the same equation. To correct the inconsistency, convert the force to
Newtons, which is consistent with a mass measured in kilograms. Conversion factors
are readily available on the Internet, and can be found using any search engine.

388 Part 4 Game Programming: Math, Collision Detection, and Physics



Particle Kinematics

Every introduction to physics begins by defining several fundamental properties of
motion. It is likely that you already understand these properties implicitly and find
them to be second nature. Nevertheless, we begin our review by formally defining the
properties of particle motion, or particle kinematics. They are the basis for everything
that follows.

From the point of view of theoretical physics, a particle is an object that has no
volume; for example, a particle is a mass concentrated into an infinitely small sphere.
For our purposes, however, we define a particle to be a perfectly smooth, frictionless
sphere with a finite radius. We choose this definition solely to avoid the need to con-
sider rotational motion, which is an advanced topic beyond the scope of this discus-
sion. Perfectly smooth, frictionless spheres will never begin to rotate due to normal
interactions with other objects. Figure 4.3.1 illustrates a particle in motion along a
curved path.

At any moment in time, t, the particle is located at a position, p, measured in 
an inertial reference frame. For our discussion in this chapter, we will simply choose to
measure position and other properties relative to a game’s world coordinate system.
The position can be written in vector form as . Position is measured in
units of type distance or length. The SI units for position are meters (m).

If the particle is moving, its position is a function of time, p(t). Figure 4.3.2 illus-
trates the particle at time t and at a later time, t � Δt. The symbol, Δ, is the Greek
letter Delta, commonly used to indicate a change in value. The quantity, Δt, indicates
an incremental change in time. The SI units for time are seconds.

The vector quantity, velocity, is defined to be the change in position over time.
The magnitude of velocity is the particle’s speed. Velocity and speed are measured in units
of type distance over time. The SI units for velocity and speed are meters per second (m/s).
Given the position of a particle at two different times, the average velocity between the
start and end time can be computed as . It is possible that 
the particle’s velocity changes significantly between time t and t � Δt. The average
velocity is not necessarily the particle velocity at time t. From calculus, the true, instan-
taneous velocity at time t is the time derivative of position, shown in Equation 4.3.1.
Note also that the inverse is true: position is the integral of velocity over time. (If you
are unfamiliar with calculus and the meaning of the terms derivative and integral,
please refer to any introductory calculus text, such as [Munem78].)

(4.3.1)V
p p

p( ) lim
( ) ( )

( )t
t t t

t

d

dt
t

t
=

+ −
=

→Δ

Δ

Δ0

V p p
avg

t t t t= + −( )( ) ( )Δ Δ

p = p p p
x y z
, ,

4.3 Real-Time Game Physics 389



There is one more fundamental property of particle kinematics that we require.
The vector quantity, acceleration, defined in Equation 4.3.2, is the time derivative 
of velocity. Note that the inverse is also true: velocity is the integral of acceleration
over time. Acceleration can also be defined as the second time derivative of position.
Acceleration is measured in units of type distance over the square of time. The SI units for
acceleration are meters per second squared (m/s 2).

(4.3.2)

Newton’s Famous Laws

We begin our review of basic physics by considering Sir Isaac Newton’s First and 
Second Laws of Motion. Newton’s First Law of Motion, paraphrased, states that an
object will move at a constant velocity until compelled to change its velocity by forces
imposed upon the object. From this, we can make a profound observation from the
history of video games: If we ignore gravity and friction, the classic arcade and console
game, Atari’s Breakout, actually had a realistic physics model.

Newton’s Second Law of Motion is important to us, as we can use it to implement
physics simulations in the presence of forces that cause an object’s velocity and position
to change in interesting ways. This law, paraphrased, states that an object’s change in
velocity is proportional to an applied force. Stated in equation form, the law is the infa-
mous F = ma, shown in vector form as Equation 4.3.3 (assumes mass is constant).

(4.3.3)

Here, the force, F(t), may change over time, resulting in an acceleration that
changes over time. The quantity, m, is called the mass of the object. The SI units for
mass are kilograms (kg). Force is measured in units of type mass times distance over the
square of time. The SI units for force are called Newton’s (N). By definition, 1 Newton is

F at m t( ) = ( )

a V p( ) ( ) ( )t
d

dt
t

d

dt
t= =

2

2

390 Part 4 Game Programming: Math, Collision Detection, and Physics

p

FIGURE 4.3.1 Position of a particle
in a world coordinate system.

p(t)

p(t+
t)

FIGURE 4.3.2 Time-dependent position
of a particle moving along a path.



equal to 1 kg-m/s2 (note the consistency). Note that mass is not the same as the
object’s weight (which is a force)!

The Cycle of Motion

You should be able to see a cycle of motion in Equations 4.3.1 through 4.3.3. A force
causes acceleration. Acceleration causes a change in velocity. Velocity causes a change
in the position of a particle. By integrating the equations in reverse order from 4.3.3
to 4.3.1, we can determine the motion of the particle. This is what physics simulation
is all about.

The Effect of a Constant Force on 
Particle Motion

As described by Newton’s First Law of Motion, the simplest possible motion is that of a
particle experiencing no force and therefore continuing to move at a constant velocity
(zero for a particle at rest). We continue our review by analyzing a slightly more com-
plex case: a particle experiencing a constant force. Consider Equation 4.3.3, when F is
constant. Since the right-hand side is constant in time, acceleration also is a constant,
a. Constants are easy to integrate (even vector constants), and by integrating Equation
4.3.3, we derive Equation 4.3.4, a closed-form equation for the velocity of a particle
experiencing a constant force. Note that the integration was performed using a
change of variable, τ = t – tinit. The equation is valid for a force that is applied to the
particle beginning at time tinit, but not before. The velocity, Vinit, is the velocity of the
particle at time tinit.

(4.3.4)

From here, we can derive a closed-form equation for position by integrating
Equation 4.3.4. This is shown in Equation 4.3.5, in which pinit is the initial position
of the particle, at time tinit.

(4.3.5)

It is important that you recognize that Equations 4.3.4 and 4.3.5 are exact and
will produce a correct, realistic result for any time t > tinit, as long as the applied force
remains a constant. Further, you can use these equations in a piece-wise fashion,
applying them as long as the applied force remains constant, and then restarting them
when the force changes to a different, constant value by updating the values tinit, pinit,
and Vinit to be the current values of t, p(t), and V(t), respectively, at the moment the
force changes. The equations are only exact when F remains constant for some time
after every change; however, games often make the assumption that a force applied to

p V
F

p V( ) ( ) ( ) �t d V
m

dinit init i= = + = +∫∫ τ τ τ τ nnit init initt t t t( ) ( )− + −
F

2m
2

V a
F

V
F

V
F

( )t d
m

d
m m

t t
init init init

= = = + = + −( )∫ ∫τ τ τ

4.3 Real-Time Game Physics 391



an object is constant for the duration of a frame or simulation step, and you may find
that you obtain good results if you apply these equations once per frame, using what-
ever force is applied at the start of the frame. In this scenario, the initial values would
change at the end of every frame.

Consistency of Units, Still Important

Let us revisit, for a moment, the important issue of consistency of units. It is insuffi-
cient to simply ensure all of the values used in an equation are measured in a consistent
system of units such as SI. It is also crucial that all of the terms in an equation measure
the same type of unit. For example, as presented previously, velocity is measured in
units of the type distance over time. You can verify the consistency of unit types in the
rightmost term of Equation 4.3.4, (F/m)(t � tinit ), by substituting the unit types for 
the variables and simplifying algebraically, as though the unit types were variables. This
verification is shown in Equation 4.3.6, which proves that the units of the rightmost
term are, correctly, the unit type for velocity. Note that the difference of two values of
time, (t � tinit ), does not result in a cancellation of the units of time. The value repre-
sented by (t � tinit ) is a change in time, which also has units of type time. If you have
reason to derive new equations yourself, make it your standard practice to analyze the unit
types in your derived equation to be sure they are consistent. If you discover that one or
more of the terms in your equation are inconsistent, you will know that there is an error in
your equation.

(4.3.6)

Projectile Motion

It is actually possible to use Equation 4.3.5 to achieve meaningful physics simulations
in games. We continue the review by looking at simple projectile motion in 3D. 
There is one approximately constant force that acts on all real objects near the surface
of a planet. That force is, of course, the force due to gravity. This force is the weight of
the object, equal to the object’s mass times a constant acceleration due to gravity, act-
ing in the direction of a vector from the object’s position toward the center of the
planet. The acceleration due to gravity is commonly represented by the variable g. In
SI units, the value of g on Earth is 9.81 m/s2 toward the center of the Earth, or the
vector, . Here, we’ve chosen the up direction to be the positive 
z-axis in world space. We can rewrite Equation 4.3.5 for a simple projectile on Earth,
as Equation 4.3.7.

(4.3.7)p p V g( )t t t t t
init init init init

= + −( ) + −( )1

2

2

g = −0.0,0.0, 9.81

Units of 
F
m

t t
mass dist time

mainit
−( ) =

( )( ) / ( )2

sss
time

mass dist

mass time
time

dist

t
= =

( )( )

( )( )2 iime

392 Part 4 Game Programming: Math, Collision Detection, and Physics



If Vinit is not parallel to g, the path will be parabolic, as illustrated in Figure 4.3.3.
Listing 4.3.1 is a fragment of pseudocode that can be used to simulate a particle

undergoing simple projectile motion on Earth, using Equation 4.3.7.

LISTING 4.3.1 Pseudocode for simulating projectile motion of a particle on Earth

void main()

{

// Initialize variables used in the simulation.

Vector3D V_init(10.0, 0.0, 10.0);

Vector3D p_init(0.0, 0.0, 100.0), p = p_init;

Vector3D g(0.0, 0.0, -9.81);

float t_init = particle launch time;

// The game simulation/rendering loop

while (game simulation is running)

{

float t = current game time;

if (t > t_init)

{

float tmti = t - t_init;

p = p_init + (V_init * tmti);

p = p + 0.5 * g * (tmti * tmti);

}

render particle at location p;

}

}

Note: Complete Exercise 1 to translate this pseudocode into a simple targeting game.

4.3 Real-Time Game Physics 393

V in
it

F = weight = mg

FIGURE 4.3.3 Particle undergoing
simple projectile motion.



Frictionless Collision Response

We conclude our review of basic physics with a detailed analysis of classical particle-
collision response. If you have previously studied physics in school, you may have
seen this same analysis applied to the collision of two billiard balls (the classic illustra-
tive example). First, a definition. Linear momentum is defined to be the vector quantity
mass times velocity, or mV. Linear momentum is measured in units of type mass times
distance over time. The SI units of linear momentum are kilogram-meters per second 
(kg-m/s).

Linear momentum is related to the force being applied to an object. In fact, its
relationship with force is more fundamental than the relationship between force and
acceleration shown in Equation 4.3.3. Equation 4.3.3 is actually an approximation to
Equation 4.3.8, a more general relationship that defines the first time derivative of
linear momentum as being equal to the net force applied to an object.

(4.3.8)

For most objects, mass is constant, and this enables us to derive Equation 4.3.3 by
noting (d/dt)(mV(t)) � m d/dt V(t) when mass is constant. Equation 4.3.8 is called 
the Newtonian Equation of Motion, since when integrated over time it determines the
motion of an object. By integrating the force applied to an object over time, we obtain
the change in linear momentum (and velocity) over time.

Consider two colliding particles, 1 and 2. For the duration of the collision, each
particle exerts a force on the other. The duration of most collisions is an extremely
short period of time, and yet the change in velocity of the objects is often dramatic.
(For example, think about the collision response of those billiard balls.) Large, nearly
instantaneous changes in velocity can only occur if the collision forces are large. 
Collision forces are often so large that they dominate over other forces during the col-
lision. When this is true, it is acceptable to ignore other forces entirely, assuming their
effect is negligible for the short duration of the collision. By integrating Equation 4.3.8
over the duration of the collision we obtain the linear impulse-momentum equation,
given as Equation 4.3.9.

(4.3.9)

Here, is the linear momentum of particle 1 just before the collision, and
is the linear momentum just after the collision. The superscripts, – and �,

indicate quantities before and after collisions, respectively. The vector Λ is called the
linear impulse, defined to be the integral of the collision force over the duration of 
the collision. The impulse corresponds to the amount of linear momentum that the
object gains or loses during the collision. 

m
1 1
V+

m
1 1
V−

m m
1 1 1 1
V V+ −= + Λ

d

dt
m t tV F( )( ) = ( )

394 Part 4 Game Programming: Math, Collision Detection, and Physics

Λ



Newton’s Third Law of Motion, paraphrased, states that for every action there is an
equal but opposite reaction. This law tells us that the collision forces and the impulses
on the two objects are equal in magnitude but opposite in direction. From this result,
we can immediately write the linear impulse-momentum equation for particle 2, as
Equation 4.3.10. Note that impulse is negated on the second object—equal but
opposite. It is interesting to note that we are adding momentum to one object and
removing exactly the same amount of momentum from the other object. The net
change in momentum of the two objects together is zero, and because of this, linear
momentum is said to be conserved.

(4.3.10)

Our goal is to find the velocities of the two objects after the collision response is
complete. We can solve Equations 4.3.9 and 4.3.10 for the after-collision velocities if
we are able to compute the impulse. The fact that we are assuming a frictionless colli-
sion allows us to simplify the situation. Without friction, the impulse will always act
purely along the unit surface normal vector at the point of contact. In this case, Λ
can be defined by Equation 4.3.11, where Λ is the scalar value (positive or negative)
of the impulse and is the unit surface normal vector. A collision detection algo-
rithm determines and the point of contact, as detailed in Chapter 4.2, “Collision 
Detection and Resolution.”

Λ � Λ (4.3.11)

By substituting Equation 4.3.11 into Equations 4.3.9 and 4.3.10, we obtain two
vector equations that together contain three unknowns: the two vectors , , and
one scalar Λ. We require a third equation before we can solve for all three unknown
values. We can generate the third equation by observing the physical behavior of real
objects during collisions. Observe the behavior when two objects in real life collide, as
shown in Figure 4.3.4. Here, just prior to impact, the objects exhibit their natural
geometric shapes. During the initial impact, both objects experience a period of defor-
mation in which their shapes compress and deform in response to the collision force.

V
2
+V

1
+

n̂

n̂
n̂

m m
2 2 2 2
V V+ −= − Λ

4.3 Real-Time Game Physics 395

Just Prior to Impact During Collision Just After Collision

Period of Deformation Period of Restitution

} }

FIGURE 4.3.4 A realistic view of collision response.

Λ



After the initial impact, the objects experience a period of restitution, in which they are
restored to their natural shapes and accelerate to their after-collision velocities.

We will choose our third equation to be an approximation to the material response
of real objects during a collision. Before we present the equation, observe that objects
do not always collide while traveling toward each other along collinear paths. The more
general situation is illustrated in Figure 4.3.5. In real life, as objects rebound after a 
collision, they may also slide past one another, remaining in contact for a while. 

396 Part 4 Game Programming: Math, Collision Detection, and Physics

Before Collision

1m

2m

After Collision

Contact Plane

−
1V

−
2V

+
1V

+
2V1p 2p

n

FIGURE 4.3.5 Frictionless collision of two spherical particles.

Equations 4.3.9 and 4.3.10, being vector equations, can be represented in a vari-
ety of coordinate systems. One valid choice is the world coordinate system; however,
in solving for the collision response, it is more convenient if we consider them in a
coordinate system that includes and the contact plane that is tangent to the object
surfaces at the point-of-contact. In the general case, with friction, a collision will
affect the object velocity components parallel to the contact plane and the component
parallel to the contact normal direction. For a frictionless collision, however, the
velocity components in the contact plane do not change. If the objects remain in con-
tact after the collision, they will simply slide past one another without slowing down.
Our third equation, given as Equation 4.3.12, reflects this fact and defines the rela-
tionship between the normal components of the velocities of the objects, before and
after a collision.

(4.3.12)

Here, the scalar ε is called the coefficient of restitution. This coefficient is related to
the conservation or loss of kinetic energy during a collision. Due to space constraints,
we will not discuss the concept of energy in detail here; however, you should know
that total energy, equal to kinetic energy plus potential energy, is a physical quantity
that is conserved similar to linear momentum. If ε is equal to 1, the collision is per-
fectly elastic, representing objects that rebound fully so that the sum of the particles’

V V n V V n
1 2 1 2
+ + − −−( ) ⋅ = − −( ) ⋅ˆ ˆε

n̂



kinetic energies is the same before and after the collision. If ε is equal to 0, the colli-
sion is perfectly plastic, representing objects that experience no period of restitution
and a maximum loss of kinetic energy. In real life, ε is a function of the material prop-
erties of the objects involved in the collision. For example, the coefficient of restitution
for a collision between a tennis ball and tennis racket is approximately 0.85, and that
for a deflated basketball colliding with the court surface is nearly zero.

Using Equations 4.3.9 through 4.3.12, we can solve for the linear impulse, given
in Equation 4.3.13. To compute the after-collision velocities, apply the result of
Equation 4.3.13 into Equations 4.3.9 and 4.3.10, and divide by m1 or m2, respec-
tively, to find the after-collision velocities.

(4.3.13)

The Story So Far

To this point, we have revisited a few basic concepts in kinematics and physics that you
may have seen before. The concepts have been generalized to three dimensions and are
ready to use in certain types of games. Depending on the game you are developing, you
may not need to read any further. Listing 4.3.2 is a fragment of pseudocode that you
can use to simulate a collection of N spherical particles experiencing gravitational
acceleration in a game, with occasional frictionless collisions.

LISTING 4.3.2 Pseudocode for simulating a collection of N spherical particles under gravity
with frictionless collisions

void main(

{

// Initialize variables needed by the simulation.

Vector3D V_init[N] = initial velocities;

Vector3D p_init[N] = initial center positions;

Vector3D g(0.0, 0.0, -9.81);

float mass[N] = particle masses;

float time_init[N] = per particle start times;

float eps = coefficient of restitution;

// Main game simulation/rendering loop.

while (game simulation is running)

{

float t = current game time;

detect collisions and collision times;

// Resolve collisions.

for (each colliding pair i, j)

{

// Calc before collision position and

// velocity of obj i (Equations 4 and 5).

Λ = −
+ − ⋅

+

− −m m

m m
1 2 1 2

1 2

1( )( ) ˆ
� ˆ

ε V V n
n

4.3 Real-Time Game Physics 397

Λ



float tmti = time_collision - time_init[i];

pi = p_init[i] + (V_init[i] * tmti);

pi = p + 0.5 * g * (tmti * tmti);

vi = V_init[i] + g * tmti;

// Calc before collision position and

// velocity of obj j (Equations 4 and 5).

tmti = time_collision - time_init[j];

pj = p_init[j] + (V_init[j] * tmti);

pj = p + 0.5 * g * (tmti * tmti);

vj = V_init[j] + g * tmti;

// For spherical particles, surface normal

// is just the vector joining their centers.

normal = Normalize(pj - pi);

// Compute the impulse (Equation 13).

impulse = normal;

impulse *= -(1 + eps) * mass[i] * mass[j];

impulse *= normal.DotProduct(vi - vj);

impulse /= (mass[i] + mass[j]);

// Restart particles i and j immediately

// after the collision. (Equation 9 and 10).

// Since the collision occurs instantaneously,

// the after-collision positions are pi, pj,

// the same as the before-collision positions.

V_init[i] += impulse / mass[i];

V_init[j] -= impulse / mass[j];

p_init[i] = pi;

p_init[j] = pj;

// Reset the start times since we updated

// initial velocities.

time_init[i] = time_collision;

time_init[j] = time_collision;

}

// Update particle positions (Equation 5) and

// render particles

for (k = 0; k < N; k++)

{

float tmti = t - time_init[k];

p = p_init[k] + (V_init[k] * tmti);

p = p + 0.5 * g * (tmti * tmti);

render particle k at location p;

}

}

}

Note: Complete Exercise 5 to determine how to handle particle collisions with an
immovable object (terrain or a wall).

398 Part 4 Game Programming: Math, Collision Detection, and Physics



Introduction to Numerical Physics Simulation

The presentation in the prior section provides you with simple equations that you can
use to put projectile physics into real games. If your game needs only to simulate
spherical objects that do not rotate and that experience only gravity plus an occasional
frictionless collision, you can use the pseudocode in Listing 4.3.2 as a basis for your
physics system.

In many games, as in real-life, the most interesting motion involves forces other
than constant forces and collision impulses. For example, you may wish to simulate
the effect of the wind on your particles or game objects. Wind forces are functions 
of object velocity; they are not constants. Similarly, spring forces are functions of the
length of the spring and are nonconstant. Unfortunately, when generalized, noncon-
stant forces are applied to objects, closed-form solutions such as those presented in the
prior section, as Equations 4.3.4 and 4.3.5 rarely exist. We assign the term numerical
simulation to a series of techniques that allow us to approximate the motion of objects
for which there is no closed form solution. This section provides a brief introduction
to numerical simulation.

Note: The technical addendum on the CD-ROM contains a description of a few types
of interesting forcing mechanisms, including springs, aerodynamic/fluid dynamic
drag, and simple friction.

Numerical Integration of the Newtonian Equation of Motion

We will consider a family of numerical simulation techniques called finite difference
methods. Most finite difference methods are derived using the Taylor series expansion
of the properties we are interested in. We begin in a generic way. Equation 4.3.14
shows the Taylor series expansion of a vector property, S(t). Equation 4.3.14 is valid
and exact, when S(t) is continuous and differentiable on the closed domain, [t, t � Δt].
In this context, Δt is called the time step, and it represents the incremental intervals at
which we will update S(t) over time.

(4.3.14)

In general, we will not know the values of any of the higher order time derivatives
of a property. We can convert Equation 4.3.14 into a truncated Taylor series, shown in
Equation 4.3.15, by simply removing the terms involving and higher order
derivatives. In some cases, the truncation may occur beyond the second derivative, but
it is always the higher order terms that are eliminated.

d dt2 2S

S S S St t t t
d

dt
t

t d

dt
t

t
2

+( ) = ( ) + ( ) +
( ) ( ) +

(
Δ Δ

Δ Δ
2

2

2!

)) ( )
=

∞

∑
n

n

n
n n

d

dt
t

!
S

3

4.3 Real-Time Game Physics 399



(4.3.15)

By removing the higher order terms, we introduce numerical error into the equa-
tion that is equal in magnitude, opposite in sign to the higher order terms. This error
is called the truncation error. The largest component of truncation error is usually the
term with the smallest exponent on the time step. The last term in Equation 4.3.15,
O(Δt2), indicates the order of magnitude of the truncation error, based on the time-
step exponent of the largest error term, in “big-O” notation. You will never evaluate
the truncation error term or write it in code. There is never any need to verify its
units. It simply indicates the accuracy of the equation. Since the truncation error of
Equation 4.3.15 is second order in time, the truncated series must be accurate to
something less than second order; for example, this truncated series is first-order accu-
rate. Formally, this is determined by solving the truncated series for and alge-
braically showing that the truncation error of the derivative equation is O(Δt). (Note
that O(Δt2)/Δt = O(Δt).)

Equation 4.3.15 is our first example of a finite difference equation that can be
used for numerical simulation. The process of updating properties using this particu-
lar truncated Taylor series is called explicit Euler integration (also known as simple
Euler integration). Explicit Euler integration is called a one-point method, because we
can solve it using properties stored at exactly one point in time, t, which is prior to the
update time, t � Δt. It is called an explicit method since the property S(t � Δt) is the
only unknown value, which we can explicitly update without solving a system of
simultaneous equations. An important characteristic of explicit Euler integration is
that every term of the right-hand side of the equation is evaluated at time t, the time
step immediately prior to the new time t � Δt.

Let’s take a closer look at Equation 4.3.15. We take the view that the variable that
we are numerically integrating, S, is the state of an object, and that is the state
derivative.

(4.3.16)

This view enables us to conveniently write a numerical integrator that can inte-
grate arbitrary properties as they change over time. We can, in fact, write an integrator
that can integrate a collection of properties for a collection of objects in a single func-
tion call. Listing 4.3.3 is a fragment of pseudocode for an explicit Euler integrator
that integrates a state vector of arbitrary length.

S St t t t
d

d
+( ) = ( ) +Δ Δ

new state prior state
��� �� 	 tt

tS( )
state derivative
���

d dtS

d dtS

S S St t t t
d

dt
t O t+( ) = ( ) + ( ) + ( )Δ Δ Δ 2

400 Part 4 Game Programming: Math, Collision Detection, and Physics



LISTING 4.3.3 Pseudocode for an explicit Euler integrator that integrates a state vector of 
arbitrary length. N is the number of state property values. The variable new_S is the output,
e.g., the state at t + Δt. The variable prior_S is the old state, e.g., the state at time t. The 
variable S_derivs holds the state derivatives at time t, and delta_t is the time step.

void ExplicitEuler(N, new_S, prior_S, S_derivs, delta_t)

{

for (i = 0; i < N; i++)

{

// Numerically integrate the i-th state property value.

new_S[i] = prior_S[i] + delta_t * S_derivs[i];

}

}

For a single particle, one choice (but not the only choice) for the state vector is
quite simply: . The corresponding vector of state derivatives follows directly
from Equations 4.3.1 and 4.3.8: . Note that for three-dimensional
motion, the state and state derivative vectors contain six real values each, since the 
linear momentum, position, force, and velocity are all three-component vectors.

Using Numerical Integration to 
Simulate a Collection of Particles

For a collection of N particles, we can expand the state vector to include properties for
all of the particles:

(4.3.17)

(4.3.18)

Listing 4.3.4 is pseudocode for implementing explicit Euler integration for a collec-
tion of particles. This code is a straightforward implementation of the state vector
shown in Equation 4.3.17 and the state derivative vector shown in Equation 4.3.18,
and makes use of the integrator shown in Listing 4.3.3. Note that the CalcForce func-
tion called by the pseudocode is a placeholder for a function that can determine the
force applied to a given particle. For example, if the only force applied is that due to
gravity, CalcForce will simply return the weight of the given particle, since the parti-
cle’s weight is the force due to gravity.

d

dt
t

N N
S F V F V F V( ) , , , , , ,=

1 1 2 2
�

S V p V p V p( ) , , , , , ,t m m m
N N N

=
1 1 1 2 2 2

�

d dtS F V= ,
S V p= m ,

4.3 Real-Time Game Physics 401



LISTING 4.3.4 Pseudocode for explicit Euler integration for a collection of N particles that
move without colliding

void main()

{

// Initialize variables needed by the simulation.

Vector3D cur_S[2*N];    // S(t+delta_t)

Vector3D prior_S[2*N];  // S(t)

Vector3D S_derivs[2*N]; // dS/dt at time t

float mass[N];          // Mass of particles

float t;                // Current simulation time

float delta_t;          // Physics time step

// Set current state to initial conditions.

for (i = 0; i < N; i++)

{

mass[i] = mass of particle i;

cur_S[2*i] = particle i initial linear momentum;

cur_S[2*i+1] = particle i initial position;

}

// Game simulation/rendering loop

while (game simulation is running)

{

DoPhysicsSimulationStep(delta_t);

for (i = 0; i < N; i++)

Render particle i at position cur_S[2*i+1];

}

}

// Update the physics

void DoPhysicsSimulationStep(delta_t)

{

copy cur_S to prior_S

// Calculate the state derivative vector.

for (i = 0; i < N; i++)

{

S_derivs[2*i] = CalcForce(i);

S_derivs[2*i+1] = prior_S[2*i] / mass[i];

}

// Integrate the equations of motion.

ExplicitEuler(2*N, cur_S, prior_S, S_derivs, delta_t);

// By integrating the equations of motion, we have

// effectively moved simulation time forward by

// delta_t.

t = t + delta_t;

}

402 Part 4 Game Programming: Math, Collision Detection, and Physics



Collision Response in the Simulation Loop

You can adapt the code in Listing 4.3.4 to a real game without modification as long as
there are no collisions; however, the code must be modified to handle collisions.

If all collisions occur at the beginning of a time step, e.g., at exactly time t before
the equations of motion are integrated (or if we merely choose this approximation), the
modification is quite simple. The collisions should be resolved before copying cur_S
to prior_S at the top of DoPhysicsSimulationStep. For each colliding pair, simply use
Equation 4.3.13 to compute the impulse, and then compute the after-collision linear
momentums using Equations 4.3.9 and 4.3.10. The after-collision linear momentums
should replace the corresponding values in cur_S. When the algorithm continues,
these after-collision linear momentums are copied into prior_S, and after S_derivs is
set up, the call to ExplicitEuler will use the after-collision velocities to update the
positions of the particles.

Note: Complete Exercise 6 to create a simple marbles game that implements frictionless
particle collision response.

Note: Complete Exercise 7 to create a projectile particle system based on explicit Euler
integration.

Subtle Complexities in the Collision Response
In reality, collisions will rarely occur at exactly the beginning of a time step. It is far
more likely that collisions will occur at some time, tc, between t and t+Δt. Further, the
collision time tc is likely to be different for every pair of colliding objects. Observe
what must happen in the simulation in this case, if we are to be strictly correct in our
handling of collision response using the impulse-momentum approach. For a pair of
colliding objects, we know that from time t until time tc, the two objects obey the
equations of motion. Then, at time tc, the objects exhibit an instantaneous change in
velocity due to the collision event. Finally, from time tc until time t+Δt, the objects
again obey the equations of motion. We must, then, integrate the equations of motion
twice in a given physics update for objects in collision: once to obtain the object states
at tc and again to obtain the state at the end of the time step following the collision,
t+Δt.

Collision response management is further complicated if it is possible for an
object to collide with more than one other object simultaneously. (And in games this
is extremely common.) For example, it may be possible for object 1 to collide with
both objects 2 and 3 between times t and t+Δt. It is also possible that the collision
time, tc, between objects 1 and 2 is different than the collision time between objects 1
and 3, which would make time integration more difficult to manage. Of course, the
objects might all come together at the same time, and in this case, our closed-form
solution cannot resolve the collision in a single step since it only updates objects in

4.3 Real-Time Game Physics 403



pairs. Resolving such multi-object collisions by processing the objects one pair at a
time requires careful planning.

Because of the complexities described here, and a few others, it is usually imprac-
tical for games to implement physics that accurately capture exact collision times.
Collision response is usually approximated. Games typically do make the assumption
that all collisions occur at the same time within a time step (e.g., at the beginning or
end) and apply clever algorithms to handle cases when groups of more than two
objects can come into contact during a single time step.

A Brief Word on Alternative Collision Response Methods
The impulse-momentum approach to resolving collision response can be robust, real-
istic, and reliable. But, as we have learned, in practice it is no panacea. When applied
in the naïve manner presented in this chapter’s pseudocode, it simply doesn’t work
well for many scenarios that are commonplace in modern games; it provides only a
partial solution. Alternative and hybrid methods for collision response exist, as we
briefly discuss here.

The so-called penalty force methods represent an alternative to impulse-based colli-
sion response. In the classical penalty force-based collision response, rather than cal-
culate instantaneous changes in velocity and angular velocity in response to a
collision, stiff springs are applied between pairs of objects that contact each other,
with a displacement based on interpenetration depth. As the objects interpenetrate,
the spring stretches, creating a force that attempts to reduce the interpenetration
depth to approximately zero over a few integration steps by pushing the objects apart.
When the objects separate, the spring is removed. As with the impulse-momentum
method, penalty force methods have a basis in reality. The spring force is a model of
the real-life forces generated as two colliding objects deform and rebound. The effect
of the spring force applied over a few physics integration steps is an approximation to
the collision impulse. In a sense, penalty force methods are more realistic than the
closed-form impulse-momentum method. Whereas the impulse-momentum approach
models deformation and restitution as occurring instantaneously, the penalty-force
methods approximately model deformation and restitution over a finite period of
time, which is, of course, what happens in the real world.

The use of penalty-force methods is often problematic, for a number of reasons.
First, to achieve reasonable-looking collision response (e.g., visually the objects don’t
interpenetrate), the springs must have a large stiffness, and this greatly increases the
likelihood of numerical instability. (In particular, the explicit Euler integrator will
often fail dramatically.) Second, if the spring stiffness is relaxed to avoid instability,
significant interpenetration is likely, which is both physically and visually inconsistent
(see Figure 4.3.6). Implicit methods are highly recommended if you choose to imple-
ment penalty-based collision response, since they will be stable even with stiff penalty
forces. Even if using implicit methods to work with stiff penalty forces, a third problem
with penalty methods is that they introduce additional difficulties if you implement a
friction model between objects that are in contact with one another.

404 Part 4 Game Programming: Math, Collision Detection, and Physics



Despite the difficulties, state management is quite elegant with penalty methods.
They easily support contact groups with more than two objects, all objects can be
updated with a single integration step, and no iterative discovery of the exact time and
location of collision is required, although a collision detection technique that can esti-
mate interpenetration depth is required. Some real-world games use penalty force
methods due to their elegance and simplicity. David Wu has demonstrated good suc-
cess using penalty methods for collision response, using implicit Euler integration (a
one-step implicit numerical integrator) and potential functions rather than springs to
model the penalty force that keeps colliding objects separated [Wu00].

Many modern game physics engines create special constraints on the movement
of objects, whenever a collision contact is detected between a pair of objects. The spe-
cial constraints not only prevent objects from interpenetrating, but they can also sup-
port surface friction in the contact plane, enabling two objects that collide to initiate
rotational motion. The collision constraints are represented in a generic way that allows
the collision response to be resolved simultaneous with other types of constraints, as
we will see later. Physics engines ultimately resolve constraints by computing either
forces to be applied (e.g., penalty forces) or impulses. Because of their superior stabil-
ity in general, impulse-based methods tend to be more popular in current physics
engines. Erin Catto’s presentation, “Modeling and Solving Constraints,” available on
the Internet, provides a more in-depth overview of generalized constraint resolution
for games [Catto09].

4.3 Real-Time Game Physics 405

FIGURE 4.3.6 A moving object exhibits significant interpenetration 
with a platform during a collision.



Numerical Stability Issues and Alternatives
to Explicit Euler Integration

Truncation error is always present in numerical integration. Since the result of one
numerical integration step feeds the next numerical integration step, the truncation
error at each step accumulates into a total error in the state vector that may grow or
shrink over time. A critical goal in numerical simulation is to ensure that the total
error is bounded; that is, the total error does not grow large without limits. A numeri-
cal simulation in which the total error is bounded for all time is said to be numerically
stable. Unfortunately, in some circumstances the truncation error can interact with
the properties that drive the motion in such a way that the simulation is numerically
unstable. In this case, the total error is unbounded and will eventually grow as large as
possible, ultimately resulting in floating-point overflow. Numerical integration tech-
niques are said to be conditionally stable if they can be made stable by reducing the
time step, Δt, below some threshold, a stability bound. The references [Rhodes01],
[Eberly04], and [Anderson95] provide a more detailed introduction to these concepts.

It happens that explicit Euler integration, while simple, even intuitive, is one of
the worst possible choices for numerical rigid body physics simulation. It is condi-
tionally stable at best, and unconditionally unstable when used to simulate physical
systems that include spring forces, unless damping forces are added.

One alternative to explicit Euler integration, which is often a better choice for
games, is Verlet integration. There are several variations, and we present the velocity-
less version here, as Equation 4.3.19, without proof. It is called velocity-less since the
first time derivative of the state, the velocity of state, does not appear.

(4.3.19)

The references [Porcino04], [Eberly04], and [Jakobsen03] provide a more in-
depth look at the derivation of the Verlet integrator. Note that, in this case, you must
track the state vector for two prior time steps and that the state derivative is actually
the second time derivative. Listing 4.3.5 provides pseudocode for a velocity-less Verlet
integrator.

LISTING 4.3.5 Pseudocode for a velocity-less Verlet integrator

void VelocityLessVerlet(N, new_S, prior_S1, prior_S2, S_2nd_derivs,

delta_t)

{

for (i = 0; i < N; i++)

{

S S S St t t t t
d

dt
t+( ) = ( ) − −( ) + ( )Δ Δ Δ2

2
2

2
     ( )t ⎜

406 Part 4 Game Programming: Math, Collision Detection, and Physics



new_S[i] = (2.0 * prior_S1[i]) – prior_S2[i] +

(delta_t * delta_t * S_2nd_derivs[i]);

}

}

In the case of velocity-less Verlet integration, the natural choice for the state vec-
tor of a particle is , with the corresponding second state derivative
being .

In some cases, the force applied to an object depends on velocity (e.g., viscous
damping and aerodynamic drag). In this case, you will need to integrate velocity in
addition to position. It is often acceptable to use a mixture of different techniques; for
example, explicit Euler integration to update the velocity states needed to compute
forces that are dependent on velocity and velocity-less Verlet integration to update the
position states.

There are a great many alternatives to explicit Euler and Verlet, which can be
derived by manipulating truncated Taylor series expansions at different offsets from
time t. Each method exhibits its own precision and stability characteristics. In terms
of game physics, the symplectic Euler integrator (also known as semi-implicit Euler and
a few other names) is a popular variant of explicit Euler that improves stability with a
trivial change to the source code. The source code change is to simply have the inte-
gration of the object’s position utilize the newly updated velocity, instead of the veloc-
ity from the prior time step, shown in Listing 4.3.6. Note that most current physics
simulators support symplectic Euler.

LISTING 4.3.6 Pseudocode for a symplectic Euler integrator for a single particle

void SymplecticEuler(new_S, prior_S, S_derivs, mass, delta_t)

{

// Update the linear momentum for the particle. Note that the

// new velocity will be embedded in the momentum.

new_S[0] = prior_S[0] + delta_t * S_derivs[0];

// Update the state derivative for position to be the new velocity,

// e.g., the velocity at time t + delta_t. We can easily extract

// this from the linear momentum by dividing by mass.

S_derivs[1] = new_S[0] / mass;

// Finally, integrate position using the updated velocity.

new_S[1] = prior_S[1] + delta_t * S_derivs[1];

}

The most stable numerical integration methods are called implicit methods. These
require solving a system of equations for each time step. The so-called A-Stable implicit
methods are stable for any time step size, Δt, meaning you will never have to reduce
your physics time step size to achieve a stable simulation, though you may need to
adjust Δt to achieve good accuracy. (There is an exception to this. A-Stable and other

d dt m m m
N N

2 2
1 1 2 2

S F F F= , , ,�
S p p p=

1 2
, , ,�

N

4.3 Real-Time Game Physics 407



implicit methods usually are, at best, conditionally stable when simulating situations
that are physically unstable. (See [Rhodes01] or [Eberly04] for more details on physical
vs. numerical instability.) Implicit methods can be applicable to games, and are bene-
ficial in some cases such as when implementing penalty-based collision response.
However, they are more difficult to implement, and tend to run slower than their
explicit counterparts.

Note: Complete Exercise 8 to demonstrate the difference between velocityless Verlet
integration and explicit Euler integration.

The Importance of Frame-Rate Independence

Given the tendency of numerical simulation to be sensitive to the time step, it is rather
important that you strive to create a physics simulation that is frame-rate indepen-
dent. By implementing a frame-rate independent system, you gain two significant
benefits. First, your results will be repeatable, every time you run a simulation with
the same inputs, regardless of computer CPU or GPU performance. Second, you 
will have maximum control over the stability of your simulation. Listing 4.3.7 is a
fragment of pseudocode that illustrates a simple way to ensure that your physics 
simulation is updated using a constant time step that is independent of your actual
game frame rate. If you find that your simulation step requires a significant portion of
the total frame time, it may be necessary to add limits on the number of calls to
DoPhysicsSimulationStep that can occur in a single frame in order to prevent the
simulation from reducing the frame rate.

LISTING 4.3.7 Pseudocode for updating the physics simulation at fixed time steps

void main()

{

float delta_t = 0.02;       // Physics time step, seconds

float game_time;            // Current game time, seconds

float prev_game_time;       // Game time at previous frame

float physics_lag_time=0.0; // Time since last update

// Simulation/rendering loop

while (main game loop)

{

update game_time;

physics_lag_time += (game_time – prev_game_time);

// Perform enough physics simulation steps, each at a fixed time

// step, until the physics system catches up with the game time.

while (physics_lag_time > delta_t)

{

408 Part 4 Game Programming: Math, Collision Detection, and Physics



DoPhysicsSimulationStep(delta_t);

physics_lag_time = physics_lag_time – delta_t;

}

prev_game_time = game_time;

render scene;

}

}

Beyond Particles

As you have seen, it is possible to create realistic particle physics in games using basic
math and simple algorithms. The previous discussion provides you with sufficient
information to implement a simple physics engine. However, physics for games does
not end with particles.

Objects in games usually have shapes that are very different from spheres (though
spheres are sometimes acceptable approximations to the shapes of game objects to be
used for collision and physics). An obvious extension to the physics algorithms devel-
oped previously is, then, to support more complex shapes. The technical addendum
for this chapter, on the included CD-ROM, contains an overview of generalized rigid
body dynamics, including a discussion of integrating the equations of motion for objects
that can rotate and a derivation of the collision response impulse when two colliding
objects are rotating. This information will enable you to begin implementing support
for more complex physics into your own physics engine, if you wish to do so.

Complex shapes are only one of many advanced physics-based features in modern
games. A discussion of the technical details of all of the effects that can be simulated
with physics is beyond the scope of this book. If you wish to explore the implementa-
tion of game physics in much more detail, the Essential Math tutorials, presented by
a team of experienced game industry developers at the annual Game Developers
Conference in San Francisco each year, provide an excellent introduction to the entire
range of issues associated with game physics simulation. The tutorials are available as
a set of PowerPoint presentations on the Essential Math Web site, and are highly rec-
ommended [VanVerth08]. Other excellent resources include Helmut Garstenauer’s
Master’s Thesis, “A Unified Framework for Rigid Body Dynamics” [Garstenauer06],
and the book Physics Based Animation by Kenny Erleben and others [Erleben05].

Due to the complexity of the math and algorithms, development of a physics
engine is expensive, time consuming, and ultimately risky to the developer and pub-
lisher. Developers are more frequently embracing the use of middleware physics
engines, which support a very wide variety of effects, and are readily available. The
next section provides an overview of third-party physics engines, which are readily
available for you to use. 

4.3 Real-Time Game Physics 409



Third-Party Physics Engines

There are numerous third-party, commercial, and open source physics engines avail-
able that provide comprehensive support for a wide variety of physics simulations.
Popular commercial physics engines include NVIDIA’s PhysX (http://developer.nvidia.com/
object/physx.html) and Havok Physics (http://www.havok.com/). Popular open
source physics engines include Erwin Coumans’ Bullet (http://www.bulletphysics.org)
and Erin Catto’s Box2D (http://www.box2d.org/), which is a strictly 2D engine.
There are numerous other commercial and open source/freeware engines available.
Most of the engines listed here have been ported to a variety of gaming platforms. The
commercial engines, for example, typically run on PCs and home gaming consoles,
such as Sony’s PlayStation 3, Microsoft’s Xbox 360, and Nintendo’s Wii. Versions of
Bullet exist for these platforms, as well as for Macintosh OSX, Linux, and Apple’s
iPhone. There are ports of Box2D to different languages (e.g., Java, Flash, C#), and it
currently operates on Microsoft Windows-based PCs, as well as on the Nintendo DS.
Note that all of the commercial physics engines and the most widely used open source
physics engines have good documentation and ship with sample applications that
provide guidance on the use of the libraries. Further, most of the libraries have online
user communities and message boards, which you can visit to browse historical discus-
sions or contribute to new discussions.

The following is list of several common features of third-party physics engines.

Static and Kinematic Objects

Physics engines support the concept of static and kinematic objects, to enable you to
include objects that affect simulated objects but do not themselves behave according to
the equations of motion. By allowing simulated objects to interact with nonsimulated
objects (via the collision detection system), you can add interesting gameplay to the
game. By skipping the physics simulation for nonsimulated objects, the runtime cost
of simulating physics is greatly reduced.

An example of a static object is the terrain or level geometry for a typical plat-
former game. Moving game objects collide with the level geometry, bouncing and
sliding in response to the collisions; however, the level geometry itself is immovable.
Here is an example where the solution to the impulse-momentum-based collision
response due to contact with an infinite mass will come in handy.

A kinematic object is called kinematic because it moves (and therefore has kine-
matic properties that change over time) but is not simulated using physics. An exam-
ple of a kinematic object is a moving platform in a platformer game. Many
platformers do have moving platforms or objects that are on rails, of course. These
simply follow keyframe or procedural animation paths, by design, to enable certain
puzzles to be solved. A kinematic object is slightly more expensive than a static object,
because animation routines have to be performed on it each frame.

410 Part 4 Game Programming: Math, Collision Detection, and Physics

http://developer.nvidia.com/object/physx.html
http://developer.nvidia.com/object/physx.html
http://www.havok.com/
http://www.bulletphysics.org
http://www.box2d.org/


Rigid Body Dynamics

Rigid body dynamics refers to the simulation of objects that move and rotate based on
the equations of motion we have been studying, but that never deform or change
shape. Rigid body dynamics are probably the most common type of physics-based
simulation seen in games today. Most of the objects we work with in the real world
behave very much like rigid bodies (even though in reality they do deform at a mole-
cular level). Because of this, it is critical that rigid body simulation in games looks cor-
rect. Game players will immediately recognize major problems, such as collision
interpenetration, and often judge the quality of the game based on poorly imple-
mented physics. A major challenge, taken on by physics engine middleware, has been
to support rigid bodies that stack one on top of another. The difficulty is twofold.
First, this is a case when there are more than two objects in a contact group and so a
naïve application of two-body collision response will cause problems. Second, this is a
case where interpenetration is particularly noticeable. The first few generations of
physics engine middleware were unable to robustly simulate stacked rigid bodies;
however, modern engines are extremely capable in this area.

Figure 4.3.7 shows an example, running in the Bullet open source engine, with a
large number of boxes organized in an array. These boxes are initially stacked, but
floating in the air. When the stacks collide with the ground, Bullet’s collision response
system simulates the collapse of the stacks.

Soft Body Dynamics

Many third-party physics engines support soft body dynamics in addition to rigid
body dynamics. Soft bodies have geometry that does deform based on applied forces
and interaction with other objects. For example, a deflated basketball will change
shape when it hits the court surface. A soft body’s center-of-mass moves and rotates
according to the equations of motion; however, in addition to this overall motion, the
body’s shape deforms. Note that if you support soft bodies in your game, another way
to deal with collision interpenetration is to allow the soft body system to deform the
objects so that the deformed shapes do not interpenetrate. This produces a visually
consistent appearance, which happens to be another step toward realistic simulation
of real objects, and adds detail to your game simulation that will appeal to players.

4.3 Real-Time Game Physics 411

FIGURE 4.3.7 Stacks of rigid body boxes, collapsing upon impact 
with the ground plane surface. 



There are several types of soft bodies that are simulated by physics engines. One
is simply a body that holds a basic shape but is flexible and deforms (for example, a
soft solid or a soft shell filled with liquid or pressured air, a balloon). Figure 4.3.8
illustrates an example of this, running in the Bullet engine, showing several frames of
a partially inflated ball rolling down stairs.

Another type of soft body that many physics engines support is cloth. Cloth is
suitable for modeling realistic clothing on characters, banners, and flags scattered in
the game world, etc. Figure 4.3.9 illustrates an example of cloth simulation, in this case
running in the Bullet engine. The triangulated mesh illustrates that the cloth is repre-
sented by a series of nodes (each carrying a mass value) connected together by linkages
that carry the cloth’s internal forces. Several physics engines support the concept of
tearable cloth, e.g., cloth that can be torn by breaking the linkages. Some engines can
automatically tear cloth when the force in a given linkage exceeds some maximum.
The right-most frame in Figure 4.3.9 illustrates the concept of tearable cloth, showing
the same cloth panel after portions are cut away from the interior.

412 Part 4 Game Programming: Math, Collision Detection, and Physics

FIGURE 4.3.9 A cloth panel, pinned at each corner, sits above a game world. 
In the right frame, the cloth was allowed to tear due to excessive forces.

FIGURE 4.3.8 A partially inflated ball, a soft body, rolls down the stairs.



Physics engines that support cloth also sometimes have specialized support for
soft bodies such as ropes, hair, strands of grass, and so on. These things can be simulated
using rigid bodies with joint constraints, but specialized subsystems are more efficient.

Physics engines that support soft bodies also simulate interactions between soft
bodies and other objects, for example, rigid bodies and static or kinematic objects.
This enables you to add visual interest your game. For example, when a simulated
basketball falls through a hoop with a soft body net, the net will deform based on the
motion path of the basketball.

Constraints

Constraints are used to limit the motion of physically simulated objects in games. We
have already discussed the possibility of using constraints to prevent interpenetration
of objects when they collide. Another example is to create an object that can only slide
along a surface or rotate about a fixed axis. For example, if using physics to simulate a
door that can be slammed shut, a hinge joint constraint would generate forces or
impulses to prevent the door from rotating except along the axis of the hinge. Joint
limits can prevent the door from opening beyond, say, 90 degrees.

Games commonly use joint constraints to link two or more rigid bodies together.
Physics engines typically support a wide variety of joint types. In addition to the hinge
joint mentioned previously, engines will typically support ball joints, which allow two
rigid bodies to rotate freely but limit translation, sliding joints, which allow translation
only along a certain axis, and others. By linking rigid bodies together, it is possible to
create articulating objects, such as robots and vehicles.

Constraints can be used to link simulated soft bodies to other objects in the
game. For example, it is possible to constrain nodes of a cloth body to link the cloth
to parts of the game world static geometry (e.g., a banner constrained along its left
and right edges to span between two buildings). Another example is to link the waist-
line of a cloth soft body representing a woman’s skirt to the kinematic objects or rigid
bodies representing a character’s skeleton, so that the skirt will appear as if it has been
secured with a belt and won’t fall to the ground.

Constraint solvers in physics engines are generalized, such that all of the con-
straints (e.g., joints, contact/collision) can be solved together in a unified manner.
This unified approach also enables several constraints of each type to exist on an
object within a given frame. Contact/collision groups with more than two objects are
processed by creating multiple contact constraints on objects that are in contact with
more than one other object.

Ragdoll and Character Physics

A common use of rigid body joints in games is to create ragdoll simulations of charac-
ters. Ragdolls are basically versions of a character’s skeleton where the keyframe-
animated bones have been replaced by rigid bodies that have been linked together

4.3 Real-Time Game Physics 413



with joints. Ragdoll characters do essentially one thing: fall to the ground in a pile.
For a number of years, ragdolls were used to simulate characters that experienced a
violent death in a game. Support for ragdolls is a ubiquitous feature in physics
engines.

While ragdoll physics were at one time considered to add realism to games, they
now are seen as simplistic. Physics engines, at least the commercial ones, now include
support for blending physics simulation with traditional keyframe or motion capture
animation to create characters that move and express personalities like real people and
animals but react physically when interacting with other characters or game objects.
For example, a game may animate a character with a walk animation sequence, but
blend in a physical reaction when a rigid body, say a snowball, impacts the character’s
skeleton. If the character is hit in the right shoulder, the physics engine would, for
example, compute and blend in a physical response to have the right shoulder swing
back in response to the impact, while at the same time triggering a transition to
another animation sequence that in retaliation shows the attacker the strong left arm
of the character that was hit! This approach is elegant, because it works no matter
where the skeleton is hit by the snowball. If the snowball hits the other shoulder, it is
the other shoulder that swings back. The character has all the personality that it should
have, but physics can incrementally adapt the character to interact with the world.

Fluid Dynamics

Some physics engines include the ability to simulate fluid dynamics, which can repre-
sent water and other liquids, smoke plumes that follow the wind, clouds, and so on.
One type of fluid dynamics support exists in the form of particle systems that imple-
ment simplistic fluids merely to add visual interest (e.g., smoke) to the game, and do
not support generalized interaction between the fluid and other objects. Though lim-
ited, particle systems are less computationally expensive than full interactive fluids,
and can work on lower performance hardware.

Some physics engines support more sophisticated fluid simulations and enable
the fluids to interact with all of the physics bodies, as well as with static and kinematic
objects. One popular technique for simulating fluid dynamics in real time is to use a
technique called smoothed-particle hydrodynamics (SPH). This technique does repre-
sent a fluid as a collection of particles, but includes an implicit surface extraction tech-
nique to visualize the fluid as a continuous large mass rather than many individual
particles. This technique integrates very nicely with general physics systems. One par-
ticularly nice feature of the technique is that it naturally supports fluids that separate
into blobs and splash. It is computationally expensive, generally requiring a high-end
personal computer or state-of-the-art gaming console. Figure 4.3.10 shows a few
frames from a fluid simulation performed using the SPH technique. The simulated
fluid, which was poured into a box, does form one large volume at the bottom with
surface waves visible and numerous blobs that indicate splashing.

414 Part 4 Game Programming: Math, Collision Detection, and Physics



Authoring Physics Content

There are a number of excellent digital content creation tools that you can use to
author physics content for your games. Plug-ins exist for Autodesk’s 3ds Max and
Maya (see www.autodesk.com for both products) for all of the commercial physics
engines and some of the open source ones. Bullet, for example, provides a Maya plug-
in. Bullet also supports the open source 3D modeling package, Blender, available at
www.blender.org. Blender is an excellent 3D modeling and animation package, which
supports authoring physics objects for most of Bullet’s current functionality. Blender
exports physics models into the COLLADA format (https://collada.org/), which
Bullet can read directly, giving a tool chain option that doesn’t require any intermedi-
ate file conversions.

Emerging Trends

There are a number of emerging trends that are starting to manifest in physics
engines, and here we will briefly discuss two of them.

The first trend is that physics engines are beginning to support game objects that
can be damaged and destroyed. The high-profile commercial games engines all now
have “destruction” modules that support walls, ancient vases, Greek columns, and
stone castles that fracture into many pieces when attacked. The ability to damage game
worlds certainly adds visual interest to games. It can also enable emergent gameplay
without requiring significant additional artistic production work. For example, if
there is a stone wall preventing your army from entering the fortified city in a real-time
strategy game, why not break down the wall to create an entry? While this has always
been possible, it used to require an artist to manually create a model of the wall that
had been destroyed. Further, now that the rigid body systems in game physics engines
are mature, the game can simulate the motion of the wall fragments as they move
while the wall is being destroyed. This can all add up to a compelling game experience.

4.3 Real-Time Game Physics 415

FIGURE 4.3.10 Fluid simulation based on the smoothed-particle
hydrodynamics (SPH) technique.

www.autodesk.com
www.blender.org
https://collada.org/


Most physics engines implement destruction using a technique known as prefrac-
ture, in which the artist, using his digital content creation tools, runs a game mesh
through a preprocessor that will automatically split the mesh into a collection of rigid
bodies. The rigid bodies are jointed with breakable joints, e.g., joints that will be
removed if the constraint impulse force exceeds some artist-determined limit. During
runtime, the game object will be displayed as whole, but if any joint is broken, the object
will be split, based on the preprocessed candidate fracture lines. Some physics engines
with destruction functionality implement the destruction system as an extension of
their robust rigid body dynamics implementation. At least one physics engine, Digital
Molecular Matter (DMM) by Pixelux Entertainment (www.pixeluxentertainment.com/),
implements destruction using a real-time finite-element system. Finite-element analy-
sis is a technique that historically has been used for the design of products such 
as vehicles and airplanes, and also to simulate high-fidelity physics effects for offline
rendering of Hollywood movies. Our game consoles and home computers are now
powerful enough to support running this type of analysis in real time, though with
lower fidelity than used for designing cars.

The second trend of interest is the transition toward using the GPU to perform
some of the physics computations. Modern GPUs have many cores (far more at the
present time than CPUs) and support hundreds of simultaneous threads. This makes
them excellent computing machines for operations that are naturally parallelizable.
Most modern GPUs are programmable, and while shader programs were conceived to
perform operations related to rendering, many people are now exploiting them for
computations other than rendering. For example, NVIDIA’s PhysX physics engine
can use GPUs to execute portions of the physics simulation, with dramatic results.

The trend toward using GPUs for purposes other than rendering is likely to 
continue. The upcoming version 11 of Microsoft’s DirectX includes a new shader
stage called the compute shader, designed to streamline the use of GPUs for general-
purpose algorithms. There are a number of other effects to facilitate the use of GPUs
for general-purpose computing, including physics, other than Microsoft’s compute
shader concept. These include NVIDIA’s Compute-Unified Device Architecture
(CUDA, www.nvidia.com/cuda), the Open Computing Language (Khronos
OpenCL, www.khronos.org/opencl/), AMD’s Compute Abstraction Layer (CAL,
http://ati.amd.com/technology/streamcomputing/faq.html), and others; however,
many of these other efforts aren’t focused on games. The processor cores in current
GPUs are specialized processors with instruction sets highly optimized for rendering
rather than for general-purpose use. Intel claims that its Larrabee processor
(http://en.wikipedia.org/wiki/Larrabee_(GPU)), which has not shipped as of this
writing, will provide a GPU with a large (unspecified) number of general-purpose
cores, with a large number of new instructions that will be beneficial for both render-
ing and general-purpose computing. If this product comes to fruition, we can expect
to see new novel approaches emerge for GPU-accelerated physics.

416 Part 4 Game Programming: Math, Collision Detection, and Physics

www.pixeluxentertainment.com/
www.nvidia.com/cuda
www.khronos.org/opencl/
http://ati.amd.com/technology/streamcomputing/faq.html
http://en.wikipedia.org/wiki/Larrabee_(GPU)


Summary

Closed-form particle physics is extremely practical for games that require only simple
physics. One significant benefit of these equations, if they are suitable, is that they are
perfectly stable and will never cause floating-point overflow. In practice, these equa-
tions are only useful for spherical particles experiencing occasional collisions and at most
a constant acceleration, such as that due to gravity (or piecewise-constant acceleration
with restarts).

Numerical integration techniques remove the restriction that an object experi-
ences only a constant force, making these techniques quite useful for implementing a
general-purpose physics engine. These techniques are subject to stability concerns
that you must consider carefully. Regardless of the stability considerations, these tech-
niques open up a world of opportunity for physics simulation.

The technical details developed in the first part of this chapter, together with
information provided in the technical addendum on the CD-ROM, provide you 
with enough information to begin developing your own physics engine, should you wish
to create one. However, for productive development of real games, third-party physics
engines open up a world of possibilities. These engines support multiple physics effects,
including rigid and soft body dynamics, fluid dynamics for liquids and gaseous fluids
such as clouds, character physics, and destruction including fracture of rigid and soft
bodies, and tearable cloth. The availability of plug-ins for commercial and open
source digital content creation tools greatly simplifies your use of a third-party engine.

The material presented herein is a great starting point. The exercises that follow
will solidify your comprehension of the theory and implementation of basic particle
physics and numerical simulation. The references listed, as well as many other sources
not listed, provide good introductions to advanced topics should you wish to explore
them.

On the CD-ROM

The CD-ROM contains a number of items that you may find useful.
First, there is some material taken from the first edition of this book, the tech-

nical addendum, which expands the theoretical development of mathematics for
physics simulation to include generalized frictionless rigid body simulation. As with
the particle physics developed in this text, the extra content isn’t comprehensive, but
it serves as a good reference for implementing a more complete physics engine.

The CD-ROM also contains a source code distribution for the latest edition of
Erwin Coumans’ open source physics engine, Bullet. Bullet is copyrighted software,
released under the ZLib license, free for commercial use on any platform. You can
interact with the online Bullet user community, and access new versions when they
become available, by visiting the Bullet Web site, http://www.bulletphysics.org, or the
corresponding source code repository at http://bullet.googlecode.com.

4.3 Real-Time Game Physics 417

http://www.bulletphysics.org
http://bullet.googlecode.com


Exercises

1. Use Equation 4.3.7 to create a simple targeting game in which the player
launches a projectile particle at a target particle. You can implement a full
3D game or a 2D system. Provide the player with the ability to change 
the launch speed of the particle and the launch direction (thus setting Vinit).
Provide a “perfect launch” feature that allows the game to automatically
choose the proper launch velocity to hit a given target. To do this, use
Equations 4.3.4 and 4.3.7 together to solve for Vinit and the time of 
impact, timpact – tstart, given that the particle position at time of impact is 
pparticle(timpact)=ptarget.

2. Verify that the units of linear impulse, defined as , are the same
as the units of linear momentum. Determine what the units of the coeffi-
cient of restitution must be, so that Equation 4.3.12 is consistent.

3. Verify that the velocity in the contact plane for the frictionless collision of
two spheres is unchanged during the collision response, using Equations
4.3.9 through 4.3.13.

4. Determine whether or not the direction of the surface normal is important
when computing collision response, e.g., is the result still valid if you choose

?
5. Most game worlds, or simulation worlds, include objects that are immov-

able, for example, the terrain or structures fixed to the terrain. In physics
terms, these immovable objects can be considered to have infinite mass;
however, infinite mass is not physically feasible from the point-of-view of
classical dynamics. Because of the infeasibility of infinite mass, conservation
of linear momentum is not satisfied and Equation 4.3.13 is invalid.
However, Equation 4.3.12 remains valid. After all, there is still an action
and reaction, and they can still be related using a coefficient of restitution.
Note, though, that the before-collision and after-collision velocities of the
immovable object are identical. Using Equation 4.3.12, derive the velocity
of a 0.5 kg ball after a collision with the Earth, with Earth considered to be
immovable. Your goal is to derive an equation that can be used for any valid
values of and ε. Verify that the units of your equation are consistent.

6. Implement a simple top-down view marbles game. The goal of this game
should be to allow the player to experiment with different marble collisions.
Allow the player to choose two marbles at a time, each with a different mass.
The player should be able to launch both marbles toward each other at the
same time so that they are moving toward each other. Use Equation 4.3.7 
to simulate the motion of the marbles prior to and after the collision, and
Equations 4.3.9, 4.3.10, and 4.3.13 to determine the collision response.

7. Implement the projectile system of Exercises 1 and 6 using explicit Euler
integration. Ensure that your implementation is frame-rate independent.
Compare the results against the exact solutions from the other exercises.

V−

ˆ ˆn n= −

F
collisiont

t
dt

−

+

∫

418 Part 4 Game Programming: Math, Collision Detection, and Physics



8. Modify your implementation of Exercise 4.3.7 to use Verlet integration and
compare the results with the explicit Euler solution. Modify it to use sym-
plectic Euler and observe the results.

9. Use Equations 4.3.9 through 4.3.12 to prove Equation 4.3.13.
10. Implement a simple platformer game using Blender and Bullet. Include a

static game level and at least one kinematic platform. Include at least one
goal, such as collecting a series of objects. Note that you can use custom 
collision “nearcallback” functions to know when two objects collide. This
will be beneficial when you need to determine that the player object has
touched a collectible.

References

[Anderson95] Anderson, John D., Jr., Computational Fluid Dynamics: The Basics
With Applications, McGraw-Hill, 1995.

[Catto09] Catto, Erin, “Modeling and Solving Constraints,” Game Developers
Conference 2009, available online at
http://www.gphysics.com/files/GDC2009_ErinCatto.zip, 2009.

[Eberly04] Eberly, David, Game Physics, Morgan Kaufmann, 2004.
[Erleben05] Erleben, Kenny, et al., Physics Based Animation, Charles River Media,

2005.
[Garstenauer06] Garstenauer, Helmut, “A Unified Framework for Rigid Body

Dynamics,” Master’s Thesis, available online at
http://www.digitalrune.com/?tabid=474, 2006.

[Munem78] Munem, Mustafa A., and David J. Foulis, Calculus with Analytic
Geometry, Worth Publishers, Inc., 1978.

[Porcino04] Porcino, Nick, “Writing a Verlet-Based Physics Engine,” Game
Programming Gems 4, Charles River Media, 2004.

[Rhodes01] Rhodes, Graham, “Stable Rigid-Body Physics,” Game Developers
Conference 2001, March 2001.

[VanVerth08] Van Verth, Jim, et al., “Essential Math for Games Programmers
Tutorial,” Game Developers Conference, available online at 
http://www.essentialmath.com/tutorial.htm, 2008.

[Wu00] Wu, David, “Penalty Methods for Contact Resolution,” Game Developers
Conference 2000, available online at: http://www.pseudointeractive.com/
files/PenaltyMethodsGDC2000.ppt, March 2000.

4.3 Real-Time Game Physics 419

http://www.gphysics.com/files/GDC2009_ErinCatto.zip
http://www.digitalrune.com/?tabid=474
http://www.essentialmath.com/tutorial.htm
http://www.pseudointeractive.com/files/PenaltyMethodsGDC2000.ppt
http://www.pseudointeractive.com/files/PenaltyMethodsGDC2000.ppt


This page intentionally left blank 



421

P A R T

5
GAME PROGRAMMING:

GRAPHICS, ANIMATION,
AI, AUDIO, AND

NETWORKING



This page intentionally left blank 



423

Overview

This chapter focuses on the rendering of three-dimensional scenes onto a flat screen
of pixels. There are many ways to do this, but for games, the most common is to use
custom hardware to render scenes made out of triangle-based meshes. While there are
large differences in the wide range of graphics cards in desktop computers and the
more special-purpose hardware in various consoles, there are also plenty of shared
generalizations that travel well between most of the common platforms. Regardless of
the low-level interface or API used, these common features tend to remain similar.
With care, a developer can use these common features to write a graphics engine that
works well on a variety of platforms. 

Graphics Fundamentals

Before diving straight in and getting elbow deep in code, it is wise to introduce the
shared concepts of most rendering systems and establish a common framework of ter-
minology. As always in any evolving technical field, some of this terminology may be
slightly different in various places, and this is a chance to define precisely what is
meant by particular terms in this chapter.

Graphics5.1

In This Chapter

Overview
Graphics Fundamentals
Higher Level Organization
Types of Rendering Primitives
Textures
Lighting
The Hardware-Rendering Pipeline
Summary
Exercises
References



Frame Buffer and Back Buffer

At the heart of graphics is the area of memory where the screen is stored, the frame
buffer. In a standard desktop system with a GUI (graphical user interface), there 
is only one frame buffer, the visible one, and the computer draws directly to it.
However, this means that the user can see the frame being constructed. For a window-
based GUI, this is usually not objectionable, but in most games and 3D applications,
seeing the frame being constructed is very distracting—the game would like to con-
struct the frame in a nonvisible area and then show only the finished frame. This is
usually done by having two frame buffers, one visible and one hidden.

Rendering is then performed to the hidden frame, called the back buffer, and
when the frame is finished, everything is displayed in one operation. In some cases,
the two frames are simply swapped, so that the frame buffer becomes the back buffer
and vice versa. This is done by telling the television or monitor to read data from the
other buffer, rather than copying memory. In other cases, the back buffer data is
copied to the frame buffer to display it, but their roles are not swapped. In modern
systems, the copy happens in a relatively trivial amount of time, and is not visible.

Although the latter method seems inefficient, since it involves copying memory
rather than simply swapping some pointers around, there are good reasons why it is
currently the more common method. Today’s graphics systems have amazing amounts
of memory bandwidth and copying the back buffer to the frame buffer consumes only
a small fraction of the available bandwidth. While copying the data, the graphics card
can also manipulate it and change its format, instead of merely copying it unchanged.
This allows the back buffer to have a different pixel format, such as a high dynamic
range format, or to be compressed, or for it to be a different size and have more or fewer
pixels than the display device. If it has more pixels, the back buffer may be antialiased
or filtered down to smooth the image and reduce some of the visible pixels.

Antialiasing is increasingly important for image quality as the number of pixels
on display devices has leveled off. Full-screen antialiasing is one way to get the quality
improvements of more pixels without physically having more on the display device.

Visibility and the Depth Buffer

When rendering a 3D scene, the game needs to make sure that only unobscured
objects are visible in the finished scene. For simplicity, assume that everything in the
world is opaque for now—there is no transparency. The obvious way to do this is sim-
ply not to render objects that are hidden, and this is a useful method, mainly for
increasing speed. However, it cannot solve the entire problem because sometimes only
part of an object is visible.

The next solution is to render objects in a specific sequence, ordering them from
far away (“back”) to nearby (“front”). That way, when nearer objects are drawn, they
will be rendered over the further ones and hide them. This has been used very success-
fully in hardware all the way up to the PlayStation 1, and it still works to an extent.

424 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



However, this process of sorting objects is time consuming, and there are many prob-
lems. Sometimes, one object is not obviously in front of another—think of a bird in a
birdcage. The bird is in front of the back of the cage, but behind the front of the cage.
What is more, if the cage is round, there is no obvious way to split the cage into two
halves—a back and front half—since if the viewer turns the cage by 90 degrees, the
two halves are now side by side, and each of the two halves is again both in front of
and behind the bird at the same time.

The solution most commonly used today is to have a second buffer that stores
depth values. For each pixel on the back buffer, there is a corresponding pixel in 
the depth buffer. The depth buffer is never displayed directly on-screen; it simply
helps decide which pixels are visible and which are not. Since x and y coordinates are 
commonly used to refer to screen pixels, the depth buffer is also commonly called a 
Z-buffer, since it stores the third dimension.

The value held in the depth buffer is an indication of how far away the corre-
sponding pixel is. When attempting to render another pixel from a different object
over the top, the depths of the existing pixel and the new pixel are compared. If the
new depth value is less, the object currently being drawn is closer than the object
already drawn, and the new pixel and depth values replace the old. If the new depth
value is greater, the object being drawn is farther away, and both the new pixel and
depth value are discarded. In this way, the order in which objects are rendered does
not matter for the result, so the difficult process of carefully sorting objects can be
avoided. Better still, since each pixel is considered separately, objects can be partly in
front and partly behind others, as in the example of the bird in the cage. Two objects
can even intersect; for example, a spoon in a cup of milky coffee. The surface of the
coffee can be drawn as a single flat surface, and because the depth test is done sepa-
rately at every pixel, the spoon’s handle will intersect the coffee in the correct way.

Notice that there is no requirement that the values held in the depth buffer have
any actual meaning. They do not need to be in centimeters or light years or furlongs,
and they do not even need to be linearly distributed. The only operation performed
with them is to compare one with another, so all that is necessary is that they have a
consistent ordering, so that if one depth value is larger than another, the distance it
represents is further away.

Stencil Buffer

There is often a third buffer paired with the back and depth buffers called the stencil
buffer. In fact, it is so common that is it usually interleaved with the depth buffer, with
the depth buffer occupying 24 bits and the stencil buffer occupying 8 bits of a 32-bit
word. The combined buffer is logically called the depth/stencil buffer. The stencil
buffer does not have a clearly defined role like the other two—it is the “really useful”
buffer. It holds an arbitrary value, and like the depth buffer it can be used to reject
pixels on the basis of a comparison between the existing value held in the stencil
buffer and a value attached to the pixel that the chip is trying to render.

5.1 Graphics 425



The applications for the stencil buffer are anything that requires pixels to be
rejected on a per-pixel basis. One example is rendering a 3D scene to an irregularly
shaped window on-screen. Geometrically clipping the scene to this irregular shape
would be time consuming, and in some cases almost impossible. However, the stencil
buffer can be set to the value 0 for the entire back buffer and the value 1 only inside
the window, and then the scene is rendered, setting the stencil buffer comparison to
allow pixels only to be written to the back buffer where the stencil value is 1. In this
way, the scene does not overwrite any of the pixels outside the window. This is a com-
mon technique when rendering mirrors inside scenes, and it can be used for more
advanced effects such as rendering shadows using stencil volume techniques.

Triangles

Now that the rendering system has buffers to hold the color and depth values, it needs
to render things into them. Overwhelmingly, those things are going to be triangles.
Some pipelines and APIs have support for other primitives such as quads and point
sprites, but usually both are reduced to triangles for rendering, and the use of other
primitives is simply a convenience.

Triangles are so common because they have a number of useful properties. They
are the simplest primitive that describes a surface in space, it is simple to linearly
interpolate values across them, and as noted, they can be used to construct a number
of higher order primitives.

The only other true primitives used with any frequency are lines. While useful for
many diagrammatic needs, when rendering real-world scenes, lines are less useful
because they often have a width that is fixed in pixels rather than in any real-world
units. Some APIs have line primitives that have widths in real-world units, but they
too are converted to triangles for actual rendering.

Besides simply defining a surface in space, triangles also have properties associ-
ated with them that determine which algorithms are used to determine how they are
rendered on the screen. This is frequently called a material, and may have associated
2D and 3D surfaces such as textures.

Vertices

A triangle is defined as the connection of three points in space. These points are called
vertices. Besides a position, each vertex also has a variety of properties that can be fed
into the material to determine how that particular vertex, and the triangles that use it,
are rendered. These properties include values such as which way its normal points,
where on a particular texture it lies, and so on.

In some cases, a single point in space may have multiple properties. For example,
consider one corner of a cube. It is a single point, but it has at least three triangles that
use it, and each triangle faces in a different direction, one on each adjacent side of the
cube (and note that each side of the cube is usually rendered with two triangles).

426 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Since, for the purposes of rendering, the normal of a surface is stored at the vertices,
not at each triangle, there are three different normals at this point in space. One solu-
tion is to store a single vertex with three normals in it, but this gets complex. The
solution used by most rendering APIs is to store the vertex three times, each with the
same position, but a different normal vector. The same is done wherever attributes
such as normals, texture coordinates, and so on need to be different at a single point
in space. Although it seems slightly wasteful to process the position of the point three
times, in practice, any other method has other complications that make it even less
efficient. As the number of triangles in a mesh increases, the proportion of these coin-
cident vertices to the number of vertices that are not duplicated tends to drop rapidly,
limiting their impact on speed.

Coordinate Spaces

When specifying the position of a point in space, it is standard to use three numbers.
However, what do these numbers mean? They need to be defined relative to an origin,
where the point (0, 0, 0) is, and the direction and scale of the three axes needs to be
defined.

Most coordinate spaces are, in turn, defined in terms of another coordinate
space—their parent space. The definition of a coordinate space is usually done by
specifying the position of its origin in the parent space as a three-dimensional vector
and the directions of its three axes in the parent space. These four vectors are usually
shown as the columns of a four-column matrix, with the x, y, and z axes listed first,
and finally the position of the origin as the fourth vector. For most cases, each column
can simply be a three-component vector, giving a total 4 × 3 matrix to represent a
coordinate space relative to its parent coordinate space. Mathematicians dislike this
representation because the first three columns simply indicate directions, whereas the
forth indicates a position. Thus, they add a fourth row with a zero in the first three
positions (indicating the column is a direction) and a one in the fourth position (indi-
cating that column holds a position). Programmers frequently adopt this convention
as well, since although it takes up a little more storage space, it allows the columns of
the matrix to be processed in a clean and elegant way, and computers are usually bet-
ter at processing four things at once than only three things (or at least, no worse). This
is a gross simplification of what are called homogenous coordinates, but it is a good rule
of thumb and a place to start without delving into the mind-bending complexity of
four-dimensional geometry. A discussion of homogenous coordinates is given in
Chapter 4.1, “Mathematical Concepts.” 

However, three-component vectors and matrices are still used where memory is at
a premium, despite the additional processing costs. In these cases, the final zero or one
is implied by the context. For these and many other reasons, matrices and vectors in
most game code are sometimes stored with three components, and sometimes with
four, according to the needs of that part of the code. The reader should be fluent in
using both 4 × 3 and 4 × 4 systems.

5.1 Graphics 427



It is also a quasi-religious issue whether vectors (whether on their own or as part
of a matrix) are written as columns or rows. The meaning of the representation does
not change; it is simply a convention chosen. This chapter chooses to use the vectors-
are-columns convention, as it is the one used by most math textbooks. Be aware that
different graphics APIs (specifically, Direct3D and OpenGL) use different conven-
tions, and be ready to deal with the “other” convention.

The most fundamental space is world space. This is where everything happens,
where the game is set, and the space in which most coordinates are defined. World
space is not defined in terms of any parent space, and the position and orientation of
world space are not particularly special—they are simply a convention decided on by
the makers of the game.

The next space is object space. This is the space in which the vertices of a model are
usually defined. These do not change as an object moves and rotates around the
world. What does change is the relationship between world space and object space.
Note that each separate object in a game has its own object space with its own rela-
tionship to world space.

When rendering an object, the first step is to transform each vertex from the
object space in which it is defined into world space so that the renderer knows where
it is at that instant relative to other objects. This is usually achieved by means of a
matrix describing the mapping from object space to world space.

Besides objects in space, a scene needs a camera. A camera also has a position and
orientation in world space. To actually render a scene, objects must be moved out of
world space and into camera space, so that when the camera turns right, the objects
on the screen move left.

A camera has a certain area in front of it that is visible on the screen. This area is
called a frustum, and it is usually defined by six planes in space. Imagine a scene in a
game, and now imagine that the monitor screen that they are going to be rendered on
is actually a model of the monitor sitting in the game scene, in front of the camera.
Now form four planes, each going through one edge of the screen and through the
center of the camera. These four planes form a pyramid with its tip at the camera,
extending out into space. These are four of the planes defining the camera frustum.
The frustum has two other planes: the near plane and the far plane. Both are parallel
to the plane of the screen, and in general, the aim is to move the near clip plane as
close as possible and the far clip plane as far away as possible. However, there is only a
finite amount of precision in the Z-buffer, and the major controller of how this preci-
sion is distributed is the position of the near clip plane. Moving the near clip plane
too close to the camera can dramatically affect the precision of the depth testing, lead-
ing to severe rendering artifacts. The result is that the near clip plane should only be
moved as close as it absolutely has to be and no further. However, because of the curi-
ous way in which projection transformations work, the far clip plane can often be
moved to infinity without significant loss of precision.

428 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Before being rendered, triangles are chopped into two parts—the part inside the
edges of the frustum, and the parts outside the edges. The part outside is discarded,
and only the part inside is rendered. This process is called clipping, and is performed
by transforming triangles and their vertices into a special space called clip space. Clip
space is a difficult concept to explain—it is roughly similar to camera space, but it has
two strange properties. First, it is four dimensional rather than the usual three (the
fourth component is usually given the label w), and second, it does not preserve
angles—it is warped. Clip space is warped so that whatever size or shape the screen’s
frustum is, the edges lay along certain special planes in clip space. These planes are
defined mathematically by the six plane equations, Equations 5.1.1 through 5.1.3.

x � �w x � �w (5.1.1)

y � �w y � �w (5.1.2)

z � �w z � �w or 0 (according to the rendering API) (5.1.3)

This warping simplifies clipping substantially, because hardware finds it easy 
to clip along these six elegantly defined planes, but much harder to clip along the
more complex representation in camera space of the same frustum planes. Naturally,
a mapping that distorts the pyramid of the frustum into the above six planes in four-
dimensional space is likely to be very strange indeed. Don’t worry too much about
what clip space “means.” In most cases, the calculation is performed by library code
and hardware, and attempting to derive any intuition about the values in clip space is
tricky at best. Those wishing to investigate the details of perspective transformations
in the rendering pipeline are advised to read [Blinn96].

Once clipped, the vertices of a triangle are projected out of this 4D clip space 
and into screen space. Their positions are now in actual screen pixels, and their depth 
values are used directly for testing and updating the Z-buffer.

One final space to mention is tangent space, sometimes called surface-local space.
This is a subspace of object space that follows the surface of a mesh, and each triangle
has its own tangent space. One axis of tangent space is the normal of the face, and 
the other two axes lie along the surface in user-defined directions—usually called the 
tangent and binormal vectors. Strictly speaking, each triangle has its own version of
tangent space, and it is not the same as any adjacent triangles’ tangent space unless
they happen to be coplanar and their tangent and binormal vectors point in the same
directions. However, in practice, it is convenient to define a more continuous tangent
space that curves smoothly over a mesh of triangles, defined at each vertex (rather
than face), and smoothly interpolated across the mesh. There is more discussion of
tangent space later in this chapter.

5.1 Graphics 429



Textures

A texture is a surface that holds fragments of data called texels (derived from the words
“texture pixel”). Each texel conventionally holds a red, green, and blue value, and
sometimes an alpha transparency channel (usually abbreviated to R, G, B, A), although
with the arrival of highly programmable shaders, these values can actually mean any-
thing the shader-writer wants them to mean. The RGBA names are preserved as a
convention for easy reference.

Textures are typically 2D arrays of texels, and conventionally represent a picture
that is mapped onto the object and used for shading. However, there are many other
formats and types of texture as well. Textures will be discussed in more depth later.

Shaders

A shader is a small program used to determine either the shape or the color of a mesh.
In older hardware, fixed-function hardware performed this job, but now the graphics
programmer can write these small programs to decide exactly what algorithms to use
for parts of the rendering pipeline. Typically, these programs are small and run many
times on different bits of data such as vertices and pixels—more like a function that is
called than an entire program such as a game or application.

Materials

A material is a description of how to render a triangle. Usually, this consists of one or
more shaders, associated textures, and data taken from the vertices of the triangles
such as normal, tangent, binormals, texture coordinates, various colors, reflectivity,
and other information. Materials can also include higher level information such as
multiple rendering passes, each with a different shader, and materials usually change
the exact rendering algorithm used to take lighting and shadowing into account.
Thus, a material is simply a grouping of all these items taken together, given a consis-
tent name, and applied to the surface of a mesh.

Higher Level Organization

Now that the lower level components of rendering have been introduced, it is helpful
to give an overview of the general structure of most engines. Engines vary widely in
their actual structure, according to the demands of the games and the scenes they will
actually be rendering. The requirements of a virtual dollhouse will be very different
from the needs of a flight simulator. Yet, there are always concepts that are useful as a
starting point for any specialization.

Note that in any discussion of large-scale structure in rendering engines, there are
frequently “side-band” channels for tunneling through and working around the struc-
tures, used for special purposes. This is doubly true for game engines. These interfaces
are frequently used for miscellaneous non-time-critical functions and especially for

430 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



rendering objects that are not in the “physical” game world, such as drawing text and
the heads-up display (HUD).

Interactions Between Game and Render

In general, it is recommended that the game logic and the rendering engine be struc-
tured so that they may operate at different rates. This is especially important if the
game must run on many different console platforms or on hardware such as the PC or
Mac where different users have very different graphics hardware available. On one
machine, the graphics may render extremely fast, at hundreds of frames per second.
On another machine, the graphics may render more slowly at only 20 frames per 
second—still playable, but far slower.

If the rendering engine and game logic are locked together, the game logic must
be capable of playing the same game, but at these two very different update rates. If,
for example, the hero is poisoned and is losing health at the rate of one point every
“turn,” having 10 times as many turns on one machine means the hero will die in
one-tenth the time. This is not an acceptable experience.

Naturally, simple problems such as this can be solved by scaling damage taken,
distances traveled, and so on by the number of seconds between rendered frames.
However, common experience has shown that in real games, running the complex
game logic at a single fixed rate, while allowing only the graphics engine to run at dif-
ferent speeds, vastly simplifies the process of developing a game. This is doubly true
for networked games, where multiple machines with different capabilities, and ren-
dering different scenes, may be talking to one another. If they lack a consistent frame-
work of time, the logic is massively complicated.

Render Objects

A render object, or sometimes just object in the context of rendering, represents the
renderable description of one game entity, such as a particular type of person (“hench-
man #3”). A render object is usually composed of a single animation skeleton and one
or more meshes that share the same skeleton or position in space. However, this has
many exceptions, and every game treats its exceptions differently, so this is only a very
general concept.

There is only one of each type of render object, so in a flock of a thousand seag-
ulls, there is only one seagull render object.

Render Object Instances

Each game object needs to have an equivalent in the graphics engine that stores all the
graphics information that the game logic doesn’t care about. This is the render object
instance (frequently called an instance). Each instance points to a single render object
that defines how the object is drawn, what shape it is, and so on. However, the instance
stores where that object is to be drawn, the animation state, lighting, and so on. 

5.1 Graphics 431



In a flock of 1,000 seagulls, there are 1,000 instances, each with its own position and
orientation, but they all reference a single render object and a single set of meshes,
textures, and shaders that define the shape of a seagull.

Instances typically have a position and orientation, an animation state that is
“played” on the render object’s skeleton, and various bits of graphics-engine state used
in rendering (such as whether it is visible and where in the visibility graph it currently
lives). Note that not every render object instance necessarily has an associated game
object. Some instances are purely visual effects; for example, a pretty particle system
that the game logic does not care about. Conversely, many game objects may not have
an instance, either because they do not have a graphical equivalent, or because at the
moment they are outside the visible frustum and are incapable of being rendered.

Meshes

A mesh is defined differently by many, but a useful definition is that a mesh is a collec-
tion of triangles, the vertices those triangles use, and a single material that is used to
render all the triangles. A render object may have multiple meshes, which allows it to
represent objects with multiple materials. However, since most graphics APIs’ atomic
operation is drawing a set of triangles with a single material, it is useful to have this
separate concept of a mesh as the “unit of rendering.” A mesh may share its skeleton
and lighting context with other meshes in the same render object, but each will usu-
ally have a different material. In general, the number of meshes in a render object
heavily influences how fast the object can be rendered. With too many meshes, the
engine needs to make too many rendering calls, and the game becomes limited by the
speed of the CPU. Since most current games are limited by the speed of the CPU and
not by the rendering hardware, it is wise to minimize the number of meshes in each
rendering object. This typically means minimizing the number of different materials
and textures used by each render object. However, this need not be taken to unreason-
able extremes.

To give a concrete example, a single person may have a mesh for his face (using a
shader optimized for skin rendering), a mesh for his hands (the same skin shader, but
a different set of textures), a mesh for his hair (a specialized hair shader and texture), a
mesh for his clothes (cloth shader and textures), and a mesh for his hat. Although the
hat is also made of cloth and probably shares the same material as the clothes mesh,
the mesh is kept separate so that the game can show or hide the hat mesh at will.
When the person is moving the hat around as an independent object (raising it, or
holding it), a separate render object will be used for the hat, and the hat mesh
attached to the person’s head will be turned off. When the person is simply wearing
the hat and walking around, the hat mesh is turned on, and the separate render object
is discarded. This gives extra speed for the two most common cases—where the hat is
either on the head or off-screen on a hat stand somewhere.

432 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Skeletons

Each render object will typically have a single skeleton, which describes how the
bones of that object are connected together. Each render object instance will describe
the animation state, which describes the current position of those bones. Both are
orthogonal to meshes—a single skeleton and animation state can be used for render-
ing multiple meshes. More rarely, multiple skeletons may be used to control a single
mesh. See Chapter 5.2, “Character Animation,” for more details on this concept.

Render Volume Partitioning

The previous concepts are, in combination, sufficient for rendering a scene. However,
they are usually not sufficient for rendering it efficiently. The problem is one of
culling. Most scenes do not simply draw everything in the entire world because this
would take far too long, and most of the world is not visible at any particular time.
The depth buffer will hide meshes hidden behind other geometry, and clipping will
reject off-screen triangles, but those triangles and pixels will still need to be processed.
Ideally, the rendering engine needs to simply avoid rendering the vast majority of the
instances in a large world to get reasonable performance. Not drawing instances is
known as the process of culling.

The most obvious example of culling is to ignore any instance that is behind the
camera or outside its frustum, or field of view. This is known as frustum culling. More
complex forms of culling try to find which of the instances that might be inside the
frustum are still not visible—for example, because there is a mountain in the way, or
because they are on the other side of a closed door.

The second related concept is that simply culling instances one by one is not suf-
ficient for speed. In some cases, worlds are so big and complex that they may have
millions of instances in them. In these cases, going through each instance every frame
and asking, “Is this visible?” is inefficient. What is needed is a way to ask the question
the other way around: “Which instances are visible?” This avoids even thinking about
the vast majority of instances that are not visible, and is far more efficient.

You can organize scene data in a variety of ways to achieve this. All use various
forms of a graph (or tree, which is a special but common case of a graph) to represent
the scene. Instances live in nodes of the graph, and the graph is traversed starting from
the node that the camera is in, and going outward until some limit of visibility is
reached. This way, nodes of the graph that are not visible are simply never considered,
nor are the instances inside them.

The following sections describe some examples of graphs that are in common use
today, such as portals, BSPs, quadtrees, octrees, and PVSs, along with their advantages
and disadvantages. Different games use different graphs according to their needs, and
many games use more than one type of graph for different purposes. These may be
combined in various ways; for example, a portal system with each portal having an
octree inside it (because nodes may get very large for outdoor scenes). They may also

5.1 Graphics 433



be used in parallel. For example, a PVS system is useful for visibility testing, but an
octree may be more useful for sound propagation.

A word of caution: the graphs and trees presented here are not what are referred
to by some as the scene graph. The scene graph theory proposes that everything in the
scene can be placed in a single unifying tree or graph structure. Meshes, vertices,
shaders, and textures are all placed inside the scene graph. This graph is then traversed
and drawn, and by specially ordering the nodes of the graph, optimal rendering per-
formance is achieved. While a seductive concept, in practice so much time is spent
keeping this massive data structure up to date and correctly ordered that any gains are
completely erased. Worse still, the structure of the graph frequently needs to be sub-
verted for practical matters, removing many of the (largely theoretical) benefits. The
fact is that many successful games and rendering engines have been written without
the scene graph concept. Trees and graphs are extremely useful in rendering, but in
practice, many different graphs and trees are required for many different purposes,
and attempting to unify them is not a particularly useful goal.

Portals

In a portal system, the scene is split into nodes, each occupying a given space, usually
defined simply by the geometry it contains. Each node is joined to one or more other
nodes by a “portal,” which is usually represented by a planar convex polygon
(although sometimes represented by rectangles or by more complex shapes).

To find which nodes are visible, the renderer starts the graph at the node that the
camera is in, and everything in that node that is inside the camera frustum is drawn.
For each portal leading out of this node, the shape of the portal on the screen is found.
The shape is either found precisely or approximately (by taking a screen-space bound-
ing box of the portal). If the portal is not inside the viewing frustum at all, it is ignored.
Any portal that is inside the frustum, and therefore visible, marks the node on the
other side of the portal as also visible, and also remembers the screen shape of the por-
tal, which is the only part of the node that will be visible. If multiple portals open onto
a given node (a common occurrence), the two shapes are combined. Again, this may be
done precisely using a multiple-polygon representation, or it may be approximated by
finding the combined bounding box of the portals. For example, a house may have a
living room with two windows on the same wall, each of which is a portal from the
node that represents that room to the node that represents the outside world.

This new node is now marked as being visible, and its contents are drawn. In
turn, the portals leading from it are checked to see if they are visible. Note that they
are checked against the existing screen-space shape of the portals that led to the node,
not against the entire frustum. If a portal is not visible through an existing portal, it is
marked as invisible, and the node beyond is not drawn, nor are its portals checked for
visibility. Traversal continues on through the graph of nodes and portals until all por-
tals that are visible have been rendered.

434 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



For example, the house with the two windows (each a portal) that open onto the
living room may have an open doorway (another portal) leading to the kitchen. From
the outside of the house, the camera may be able to see the living room through the
windows, and the kitchen doorway may be in the visible frustum. However, if the
camera cannot see the doorway through the windows because of where it is currently
situated, the kitchen is not visible, and does not need to be drawn. Similarly, anything
visible from the kitchen does not need to be drawn, unless the camera can see it
through some other sequence of portals that does not go via the kitchen.

Some portals may change shape or be switched on and off during the game to
change the visibility set. For example, if the kitchen door is closed, that portal will still
exist, because regenerating the portal network is expensive, but it will be marked as
“always hidden,” and the kitchen will never be visible from the living room through
that portal, even when the door itself is clearly visible.

Some render object instances may live in multiple nodes. For example, the actual
door itself (and doorframe) is in both the kitchen and the living room. If either is vis-
ible, the door instance needs to be drawn, even if the door itself is closed and the cam-
era cannot see from one node to the other.

The good thing about portal systems is that they are relatively cheap in both
processor time and memory, and they are simple and flexible. For indoor environments,
portals are an extremely effective way to quickly reduce the number of instances that
require drawing.

One annoying problem with a portal system is that the renderer must first know
which node to start in (in other words, which one the camera is in). This is usually
possible by tracking which node the camera is currently in, as it moves from node to
node during gameplay, and tracking which portals it moves through. The problem is
that cameras have a habit of moving through areas with no portals (such as traveling
through solid walls), or being teleported around, and this can cause the system to lose
track of the current portal. This can be solved in a variety of ways, such as starting
from a known reference point or by using some other structure such as an octree to
track down which node a given point is in.

The other problem with portals is that they must be generated from the scene
geometry so that the game can use it at runtime. There are some automatic portal
generation algorithms that can generate nodes and portals from “polygon soups”
(unordered collections of triangles), but they tend to be picky about the type of geom-
etry used in the scene and generate either too few or too many nodes and portals. If
there are too few portals, not enough instances will be culled. Too many, and proces-
sor time is wasted processing them, but with no extra culling as a consequence. The
usual way to generate portals is to simply have level designers or artists lay out portals
manually, but it is not a particularly natural concept to some, and effective portal lay-
out can sometimes be rather counterintuitive.

5.1 Graphics 435



The other problem with portals is that in outdoor settings, even in scenes such as
built-up cities with large buildings and skyscrapers, it can be difficult to pick portals
that do not result in nearly everything still being marked as visible without having
massive numbers of portals and nodes. Huge numbers of portals take time to process
each frame and remove some of the benefits of culling objects in the first place.

Binary Space Partitioning (BSP)

The BSP is a generalized form of hierarchical space partitioning, of which there are
also many more specialized types such as kd-trees, quadtrees, and octrees (although
these have special properties that make them interesting as a separate topic). A BSP is
a tree structure, and the entire tree represents all of the game space. Each node of the
tree represents a section of space that does not intersect with any of its sibling nodes,
and can be further subdivided into child nodes.

A node can have no children, in which case it represents a single area of space, just
like the nodes in a portal system. These are often called leaf nodes (as part of the
whole “tree” metaphor). Alternatively, it can have exactly two children and a single
geometric plane. The plane splits the space that the node represents into two halves,
each on opposite sides of the plane. Each half is in turn represented by one of the two
child nodes. Each of those nodes may in turn have a plane that splits the halves into
two further pieces, and so on.

By marking each leaf node (one with no children) as either hollow or solid, the
code can perform similar traversals through a BSP to determine which nodes are visi-
ble from which other node, although it is slightly more complex than for a true portal
system. Hollow nodes will have render object instances living in them, and if the node
is visible, those instances will be rendered.

The advantage of a BSP system is that all of space is classified. It is simple to pick
any point in space, start at the top node, decide which side of the dividing plane it is
on, go to that child node, test against its plane, go to one of its children, and so on
until a leaf node is hit, and that is the node that the point (e.g., the camera) is in. This
is reliable and fast and always computes the right answer, which is far better than the
case with portals. Another advantage of BSP trees over portal systems is that they are
far easier to generate automatically, rather than requiring construction by hand.

Because portal and BSP systems are similar in structure, but good at different
things, many games use a hybrid of the two, using each in different situations.

Quadtrees and Octrees

Quadtrees and octrees are the same data structure, except that quadtrees are two
dimensional and octrees are three dimensional. For simplicity, quadtrees will be dis-
cussed here since the extension to the third dimension is relatively straightforward.

A quadtree is, as the name suggests, a tree. Each node represents a square in space
aligned with the x- and y-axes, and has either no children (a leaf node) or four equally

436 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



sized children, cutting the node into quarters. Typically, the root node of the tree is
aligned with the origin, and each node is a power of two in size. This makes it
extremely easy to find which nodes a given point intersects. Simply take the x- and
y-coordinates of the point, convert them to integers, and start at the root node. At each
node, take the top bit of each of the x- and y-coordinates, combine them to create a
two-bit number from 0 to 3, and that is the index of the child node to traverse into.
Then shift the x- and y-coordinates left one bit and repeat until a leaf node is reached.
This makes tree traversal incredibly fast.

In the example shown in Figure 5.1.1, the point of interest has coordinates (3,6).
Although the quadtree is quite large, only the sections that are traversed for this point
are shown in solid lines, the rest in dotted lines. Stepping through the search algorithm:

Position (3,6) in binary is (0011,0110)

Step 1: node (00)=0, new coordinates now (0110,1100)
Step 2: node (01)=1, new coordinates now (1100,1000)
Step 3: node (11)=3, new coordinates now (1000,0000)
Step 4: node (10)=2, which is a leaf node, so this is the node the point is in.

Quadtrees are typically used for collision checking and fast frustum culling in
outdoor environments. A given node can be checked to see whether it is in the visible
frustum, and if it is not, none of its children needs to be checked—by definition they
will not be visible, since they are entirely enclosed by the parent node.

Although it seems that almost all games are three dimensional and would use an
octree, many games are only “two-and-a-half ” dimensional, and their world is mainly
flat. Most real-time strategy games show this very clearly. Although the landscape may

5.1 Graphics 437

00 10 01 11 

00 10 01 11 

00 10 01 11 

00 10 01 11 

FIGURE 5.1.1 A quadtree example showing how to traverse.



go up and down, and elevation may be important for strategy, the number of times
two render object instances occupy space one above the other is rare, and the extra
complexity of an octree does not give any significant culling advantages over the sim-
pler quadtree. As a result, both quadtrees and octrees are equally common in games,
according to the type of scenes a particular game will be rendering.

The close relative of the quadtree or octree is the loose quadtree or loose octree.
These are similarly useful for rendering, but are far more practical than the standard
quadtree for collision detection.

Potentially Visible Set (PVS)

A PVS is node based like all the other systems, and in fact may be built on top of any
of the other graph-based systems. Each node has a PVS, which is a list of links to other
nodes that are potentially visible from that node. That is, if the camera is in that node,
the PVS lists all the nodes that ever need to be considered for drawing. Some of these
nodes may not actually be visible from the current camera position, but it is guaranteed
that any nodes not in the list will never be visible from anywhere in the given node.

Although conceptually simple, generating PVS lists is tricky. To do it by brute
force, every single possible camera position in each node needs to be checked to see if
it can see any other node in the world. Of course, there are many ways to accelerate
this process, but none is simple, and many make very specific requirements of the
geometry used in the level. PVS systems also do not cope well with changing geome-
try. For example, if a door can ever be opened during a game, for the purposes of 
calculating the PVS, it must always be regarded as open.

Because a PVS is a static list, and does not change according to the exact position
of the camera inside each node, or the current state of the scene (such as open or shut
doors), it must be conservative, and may have many nodes that are not in fact visible
for a given frame. For this reason, PVS systems are often combined with other
dynamic visibility systems to do further culling of the list of nodes. The most obvious
is, of course, to perform standard frustum culling, but any of the other partitioning
schemes are common as well.

What a PVS does provide is an extremely quick way to reject nodes. For example,
if the PVS says that only 10 nodes are visible, it is guaranteed that at most those 10 are
visible, and no others need checking. This information is not found by traversing
trees or graphs and performing complex visibility operations (as with other methods
here); it is simply given immediately as a list.

Common Uses

Spatial partitioning schemes have many uses, both inside rendering and in general
game code. Frequently, the rendering and game code may share the same scheme, but
equally often, they do not, or each part of the game may use different algorithms for
different purposes. For example, portal systems are not particularly useful for collision-

438 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



detection schemes because they are frequently imprecise about exactly what space the
node occupies.

The most obvious use has already been mentioned—visibility culling. Some 
spatial partitioning schemes such as quadtrees can really only accelerate frustum culling
by providing early culling tests. Others, such as portals, can directly provide very
aggressive visibility culling.

Another principle use of spatial partitioning in graphics rendering is sorting
instances according to depth. A well-known problem in graphics is that instances con-
taining translucent parts need to be rendered from back (far from the camera) to front
(near the camera); otherwise, the translucency will not work properly, with or without
a depth buffer. In contrast, to get good speed from rendering hardware, it is typical to
draw opaque instances first, ordered roughly from front to back. In this case, the sort
does not need to be as precise as with translucent instances.

Spatial partitioning can accelerate both of these sorts by providing a simple way
to traverse the scene in a given order—for example, in a mostly back-to-front or a
mostly front-to-back ordering—by visiting each node’s children in a specific order.
Adding the instances found this way to a list in the order found results in a nearly
sorted list, and a nearly sorted list is far easier to sort than a randomly ordered list. In
the case of the opaque instances, no further sorting is usually needed anyway, as the
image will be correct whatever the order; it is simply a matter of improving speed.
Spending more time performing a perfect sort does not usually give significantly better
speed, and is wasteful.

Speed and Efficiency

It is clear that some algorithms are faster than others. The previous structures are
listed roughly in order of decreasing cost to traverse from one node to another. Portals
involve a rather lengthy step of checking arbitrary portal geometry, BSPs involve a
check against a single plane, quadtrees simply check two bits, and PVS does no tree
traversal at all. However, these speed increases arise because of increasing simplicity.
Each portal node can describe very complex shapes, so only a few are needed to accu-
rately represent a given scene and obtain efficient culling. BSPs can only describe con-
vex hulls, and may chop areas that are conceptually a single space up into multiple
parts (at each point, the plane chosen must split the entire space into two halves),
resulting in many more nodes being generated for a given scene. A quadtree or octree
can only represent power-of-two-sized axis-aligned squares or cubes, so many require
a very large number of nodes to represent a particular scene.

For this reason, careful consideration should be given to which data representa-
tion should be used for a particular type of game. Sometimes, the answer may be
counterintuitive, and it is wise to try all the options if possible. In many cases, what
the partitioning scheme is used for is more important than how efficient it is. It is
fairly common to use a portal scheme for visibility checking, but the same game may
choose to use an octree for collision detection.

5.1 Graphics 439



However, in other cases it may not actually matter. It may be advisable to pick the
simplest and most robust representation (such as an octree) to implement first. If the
profile then shows it using one-quarter of a percent of CPU time and 100KB of mem-
ory, there is little point in spending programming time investigating the other
options. In most cases, having any spatial partitioning scheme is more important than
which scheme is used.

Types of Rendering Primitives

Several primitive types are used in rendering. The most common by far is the triangle,
with its well-known properties. Also common are lines and points, although they
tend to be used more for representational geometry such as HUDs and user inter-
faces, as they do not have such inherent “3D”-ness as triangles. For example, lines are
typically one pixel wide, no matter how far away they are, which is unlike any real
physical object, but perfect for a display such as a targeting reticule. All primitives are
constructed as a number of vertices joined together, the main difference being how
many vertices are used—three for a triangle, two for a line, and one for a point.

Quadrilaterals, or quads, are used by some graphics APIs as a primitive, composed
of a plane (not necessarily a flat one) defined by four vertices. However, in most cases,
they are rendered by the underlying hardware as a pair of triangles. In theory, there are
slight speed advantages to quads, since they are only comprised of four vertices rather
than the six used by two triangles. In addition, they are slightly quicker to clip and
rasterize because they have only four edges, not six. However, modern hardware
design usually finds that the extra circuitry required to handle quads is better put to
use making triangles go faster. Quads are still extremely useful as higher-level concepts
in things such as user interface and font rendering, because they are simpler to deal
with, but they are usually converted to triangles by the low-level rendering routines.

Looking at the common uses of any of the primitives, we see that frequently, mul-
tiple primitives are used in sequence, one following from the next. Submitting the
primitives one at a time is a waste of processing power. As already noted, two triangles
that form a quad require only four vertices, but submitting them as separate triangles
requires the processing of six vertices. It also requires two calls to the API instead of one.

One solution to both of these problems is to string sequences of primitives
together, supplying an explicit topology. Several of these primitives are shown in
Figure 5.1.2. One of the common topologies for triangles is a triangle fan. These tri-
angles are specified by a single vertex that forms the “base” of the fan, followed by 
the vertices at the “tips” of the fan. The number of triangles drawn is two less than the
number of vertices submitted, which is far more efficient than submitting each trian-
gle separately, requiring three times the number of vertices as triangles actually drawn.
Fans are useful because they can directly represent an arbitrary convex polygon. The
vertices are simply fed in, and the fan topology automatically breaks the polygon into
triangles for rendering.

440 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Another common topology is that of a triangle strip where the triangles form a
continuous long strip. Again, the number of vertices is only two more than the num-
ber of triangles, rather than needing three times as many. The final common topology
is the triangle list where each triangle is separate and does require three separate ver-
tices, but at least multiple independent triangles can be submitted with one call,
rather than calling the rendering API once for each triangle. Lines have similar “list”
and “strip” primitives, and although they could have a “fan” equivalent, this is not
present in most APIs.

These primitives are a fairly good way to reduce the number of vertices processed,
but still not ideal. Most meshes consist of a continuous surface of triangles. Splitting
these into fans is possible, but not very efficient. Because all triangles in a fan must
share a single vertex, only a certain number of triangles can be rendered before need-
ing to stop and start a new fan. Strips are much more promising, and a large number
of triangles of a mesh can be drawn using strips before needing to restart a new strip.
The problem is that meshes are not regular, and when forming strips, odd triangles
can be left behind, which then requires more strips (or sometimes individual triangle
lists) to render them. More fundamentally, the vertices where two strips touch will be
processed twice, once for each strip. The best case is a mesh that can be converted per-
fectly to strips, such as a regular grid. For a concrete example, Figure 5.1.3 shows a
regular grid of 5 by 5 vertices, 25 in all. This mesh has 32 triangles in it, and can be
divided into 4 strips of 8 triangles each. Each strip processes 10 vertices, so 40 vertices
in total are processed. However, there are only 25 vertices in the mesh, so 40 is quite
an increase!

Increasingly elaborate topologies of triangles could be added to the API to reduce
this number, but this would only help in the case of regular grids, not for general
meshes. The real solution is to separate the vertices from the topology of the mesh and
supply each separately, with the topology referring to the vertices, not being specified
by their ordering.

5.1 Graphics 441

1

2

3
4

5
6

7

8
9

1

2

3

4

5

6

7

8

1

2

3
4

5

6

1

2

3

4

5

6

1

2

3

4

5

Triangle List
Triangle Fan

Triangle Strip

Line List Line Strip

FIGURE 5.1.2 Primitive types such as a triangle list, triangle fan, 
triangle strip, line list, and line strip.



Therefore, there is a list of vertices, which are numbered from zero upward. This
is usually put into an area of memory that is readable by the rendering hardware,
commonly called a vertex buffer. Then there is the topology of the mesh—the triangles
—which is a list of numbers, each referring to the vertex with that array index. This
list specifies which vertices each triangle uses, and may itself be specified as a strip,
fan, or list topology, just as before. These numbers are called indices, and are placed
where the hardware can read them, often called an index buffer.

The indices in Figure 5.1.4 still form four separate triangle strips, and most 
vertices are still specified more than once, in different strips. The first strip is
5,0,6,1,7,2,8,3,9,4. The second strip is 10,5,11,6,12,7,13,8,14,9, and so on.
However, there are two main advantages with this representation. The first is that
total memory use has dropped. Vertices are relatively large—around 32 bytes is not
uncommon, and with complex materials and rendering schemes, vertices can easily be
twice that size or more. However, indices are small—each is a single number, usually
16 bits (allowing a mesh of 65,536 vertices) or occasionally 32 bits (4 billion vertices).
Duplicating indices is extremely cheap compared to storing a vertex twice in memory.
In this specific case, with 32 bytes per vertex and 16 bits per index, the memory use
has dropped from (40)(32) � 1280 bytes to (25)(32) � (40)(2) � 880 bytes. A 
typical mesh in a game has around twice the number of triangles as vertices, so the
saving is almost a halving of memory. (This example saves less than that because it is
such a small mesh, and many vertices lie on the edges of the mesh and so are not
referred to more than once.)

The other advantage of indexing vertices is that when a vertex is referred to more
than once by different strips, it is done using the same index value. If the vertex-
processing hardware caches the results of its processing, it can tag each processed vertex
with its index. For subsequent triangles, the incoming indices are used to look in the
cache to see if those vertices have already been processed. If they have, the cached
results are used, and the vertices do not need to be processed again. In the previous

442 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.1.3 Example of a mesh divided into triangle strips.



example, instead of processing 40 vertices, the hardware would process only 25—a
considerable reduction in processing.

Most hardware vertex caches are typically 16 to 32 entries in size, which is large
enough to prevent reprocessing of approximately 95 percent of the vertices, as long as
the triangles are specified in an ordering that is friendly toward the hardware’s vertex
cache. Exactly what that ordering is depends on the exact size and workings of the ver-
tex cache used by the hardware. If these details are known ahead of time, there are algo-
rithms to optimize the ordering of the triangles for that target; for example, [Hoppe99].
However, in many cases, the exact hardware behavior is unknown, and more heuristic
methods must be used. In general, each triangle should be close to the previous triangles
and not scattered all over the mesh. Finding the optimal ordering is still a subject of
research, especially when the exact cache size and behavior of the hardware is not known
ahead of time—one interesting approach is shown in [Bogomjakov01].

The final primitive commonly used in rendering APIs is the point sprite. These are
specified similarly to the point primitives, but have one major difference—they have
both a position and a size. This is most useful for rendering clouds of particles. Each
particle is specified only as a single vertex and a size in world-space units. The hard-
ware performs perspective correction on the world size to produce a size in pixels, and
then typically expands the vertex to a screen-aligned quad, which is then assigned
automatically generated texture coordinates and rendered. Rendering a screen-aligned
quad is extremely efficient for hardware, and it is the one place where quads are still
common as a fundamental primitive. However, point sprites currently have many
annoying restrictions on different bits of hardware, and can sometimes be trouble-
some to use efficiently.

5.1 Graphics 443

1 2 3
4

5 6 7 8 9

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 

0

FIGURE 5.1.4 Triangle strips converted to indexed strips.



Textures

The rendering primitive defines which pixels in the back buffer will be rendered to,
but not what colors will be used to render with. The most common way to specify the
color of the pixels of a triangle is by mapping a texture onto it. The colors are read out
of the texture at each pixel, and used in the lighting algorithms to modify or specify
the properties of the surface at that pixel.

Texture Formats

A texture is simply an array of colors, each known as a texel, and the most common
shape of the array is a two-dimensional rectangular grid. Frequently, these are stored
on disk as common image formats such a targa (.TGA), bitmap (.BMP), portable 
network graphics (.PNG), JPEGs, and so on. There is a close similarity between the
concept of a texture and the concept of a stored image. In most cases, a texture is 
simply a picture that is mapped onto the rendered mesh.

The texels that make up a texture come in a wide variety of formats. By conven-
tion they each have four values—red, green, blue, and alpha—usually represented by
RGBA. The ordering of the letters often represents their ordering in memory, and so
it may be different for various platforms and formats (ARGB and BGRA are com-
mon). Many texel formats have fewer than the full four channels, and many store or
compress the different channels in different ways. This gives the graphics programmer
a variety of texel formats to choose from, each having a certain trade-off between the
precision of the stored data and the memory size of the texture. In most hardware,
speed of rendering is directly related to each texel’s size in memory. The larger the size,
the more precision the texel will have, but the rendering will be slower.

The RGB components usually mean the red, green, and blue components that
make up an actual color, and the alpha channel typically represents an opacity value of
some sort. However, with the advent of fully programmable shader hardware, this is
now just a convention, and the four channels may in fact mean four completely 
different things with possibly unrelated concepts. A common example of this is given
later in the chapter for “normal maps” where the RGB channels now represent the
XYZ components of a vector, and not a color at all. When a texture stores values such
as a color or vector, it is fairly common to pack another useful value into the alpha
channel; for example, a value that represents the shininess of that part of the surface.
It is important to think of textures as simply arrays of values, and although the RGBA
names do frequently represent colors, they are simply convenient labels. The real
meaning of the channels is determined by the shader code that uses them.

Common texel formats that illustrate many of these points include the following:

ARGB 8-bits-per-channel integer: Four channels, each represented by 8 bits of 
integer data representing numbers from 0.0 (integer value 0) to 1.0 (integer value
255). Sometimes written as “A8R8G8B8.” Total size per texel = 32 bits.

444 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



RGB 565: Three channels of integer data, the red and blue channels using 5 bits and
the green channel using 6. All three channels represent the numbers 0.0 to 1.0,
with the extra bit in the green channel giving it a little more precision, but the
same range. Sometimes written as “R5G6B5.” Total size per texel = 16 bits.

ARGB 32-bits-per-channel IEEE754 floating-point: Four channels, each stored as
a standard floating-point number with one sign bit, eight bits of exponent and 23
bits of mantissa. Range is roughly –3e38 to +3e38. Total size per texel = 128 bits.

ARGB 16-bits-per-channel floating-point: Four channels, each stored as a floating-
point number. A variety of formats exists, but the most common is 1 sign bit, 
5 bits of exponent, and 10 bits of mantissa. Range is roughly –32768.0 to
+32768.0. Total size per texel = 64 bits.

RG and R versions of the 8-, 16-, and 32-bit-per-channel formats: Used when
only two or one channel of data is required. Sizes are respectively one-half and
one-quarter of the previous.

8-bit-per-texel palletized texture: Each texel is an 8-bit index into a separately 
supplied 256-color “palette”—usually composed of A8R8G8B8-format texels.
Total size per texel = 8 bits, plus an additional (32)(256) � 8912 bits added to
the total texture size to store the palette.

RGB 4-bits-per-texel compressed texture format: Each 4 × 4 block of the texture
holds two R5G6B5 colors. Each texel in that block is then represented by a two-
bit code. This gives each texel four possible values, representing either one of the
two colors, or one of two intermediate colors formed by interpolation between
them. This gives a total size for the 4 × 4 texel block of (2)(16) � (4)(4)(2) �
64 bits. This format goes by many names—“DXT1” and “S3TC” being the most
common. Total size per texel = 4 bits.

As mentioned previously, the ordering of the channel names may be permuted in
some graphics architectures, and many of the formats listed may not be present in
some APIs and on some hardware. For example, although palletized textures were
common on early graphics hardware, they are now less efficient to render with than the
newer compressed formats, and most newer hardware does not support them directly.

As well as each texel having a format, there are various different ways they can be
laid out. The most common, already mentioned, is the two-dimensional rectangular
array of texels. There are frequently speed and flexibility advantages to using textures
with sizes that are a power of two, and of keeping textures square, or nearly so (e.g.,
using a 256 × 128 texel array rather than a 512 × 64 one, even though they have the
same number of texels). It is not uncommon for rendering engines to simply reject
textures that are not powers of two, and many complain about textures that are not
square. The details of why this is, aside from computers naturally liking powers of
two, are related to rendering efficiency and the generation of mipmaps (discussed shortly).

Although most textures are 2D arrays, there are also 1D (linear array) and 3D (vol-
ume) arrays in common use. Note that although the texture array may be conceptually

5.1 Graphics 445



a volume of texels, the primitive being rendered on the screen is still a flat 2D triangle.
The fact that it is reading its colors from a 3D array does not change which pixels it
affects on-screen. The triangle has not somehow become a volume itself; it is simply
reading a volume of texels for its shading information.

A final common texture format is that of six square (and usually power-of-two)
textures assembled in the shape of a hollow cube. This is called a cube map, and is use-
ful when representing a spherical shell of data. A true hollow sphere of texels would be
hard to represent for a computer, but it is relatively simple to distort a sphere into a
cube, which then has the desired rectangular and power-of-two properties, and rela-
tively understandable texel mapping and sampling properties.

In addition, textures may have a mipmap chain. A mipmap chain is a sequence of
textures (each called a mipmap level), each roughly half the size in each dimension of
the previous one, until the final mipmap is just one texel. For example, the mipmaps
of a 256 × 256 texture are 128 × 128, 64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2,
and 1 × 1. Each mipmap holds the same “picture” as the previous one, but shrunk and
filtered down to the smaller size. Mipmapping is used to reduce the aliasing artifacts
that occur when textures are rendered very small on-screen. 

All the types of textures listed previously (1D, 2D, 3D, and cube maps) may have
mipmaps, and in each case, the mipmap of a given type of texture is simply the same
texture, but halved in each linear dimension. Thus, a 3D texture may have mipmap
levels of 32×32×32, 16×16×16, 8×8×8, 4×4×4, 2×2×2, and 1×1×1 texels, and for a
cube map, each mipmap level is itself a cube map of progressively smaller size. The
rules for creating mipmap levels for nonsquare and non-power-of-two textures are
somewhat tricky to implement, and tend not to work terribly well—especially textures
that are not powers of two in size. This is one of the reasons why many rendering
engines require textures that are powers of two. Mipmapping is now such a funda-
mental feature of 3D rendering that having to turn it off for some textures is deemed
unacceptable.

Texture Mapping

At rendering time, the hardware must know which texels to read to find the color for
a given pixel on the screen. The texture must be mapped over the surface of the mesh
by some method. This is generally done in two slightly different ways.

The first is by explicit mapping. Each vertex of the mesh supplies a texture coor-
dinate, composed of one to three numbers, conventionally labeled u, v, and w. 1D
textures require just u, 2D textures require u and v, and 3D textures require all three.
The values supplied by each vertex are linearly interpolated across the triangle, and at
each rendered pixel, the numbers are used to look up the required texel in the texture
map. By convention, most rendering APIs map the 0.0 to 1.0 range to the entire 
texture, no matter how large in texels the texture is. Thus, u and v values of (0.5, 0.5)
always sample the texels in the middle of the texture, whatever size it happens to be.
This also makes sense in the context of mipmapping—using a mipmap level with a

446 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



different number of texels does not change the fact that (0.5, 0.5) samples from the
middle of the texture.

Cube maps also require all three values—these represent a vector (but this time,
each component has the range –1.0 to +1.0) from the middle of the cube, pointing
outward. This vector is projected outward until it hits the side of the cube at a certain
point on one of the faces, and that is where the texels are sampled from for that pixel.

Besides explicit mapping, where the coordinates are supplied by each vertex and
interpolated over the triangle, the coordinates may also be computed at each pixel.
This is under almost total programmatic control by the pixel shader, and is used for
things such as looking up the surface normal at a pixel by referring to a texture map (a
normal map), reflecting the eye vector around that surface normal, and then shooting
that reflected ray off to be looked up in a cube map representing the environment
around the object being rendered. Because the surface normal is itself represented by
a value taken from a texture map, this reflection computation that decides which texel
to use from the cube map must be done at each pixel.

In practice, hardware performs a computation at each pixel even if the coordi-
nates are supplied at each vertex. This is because interpolation in screen space does
not produce the same results as interpolation in world space, because of the effects of
perspective. The results must first be corrected to provide linear interpolation, and the
results of this perspective correction are then used to sample textures.

What happens when the u, v, and w values go outside the 0.0 to 1.0 range, and
therefore off the edge of the texture, is determined by something that is generally
referred to as the wrap/clamp mode of the texture. A variety of things can happen, 
as chosen by the renderer, and different things may happen in each direction—for
example, the texture may wrap in the u direction but clamp in the v direction. The
following are the common modes:

Wrap: The texture “wraps” or “tiles” so that multiple copies appear side by side.
Going off one edge of the texture brings the sampler back to the other side. The
texture coordinates (3.2, –5.7) will sample from the texel at position (0.2, 0.3).

Clamp: The coordinates are simply clamped to the range 0.0–1.0. Running off the
edge of the texture repeats the same texel over and over in that direction. The 
texture coordinates (3.2, –5.7) will sample from the texel at position (1.0, 0.0).

Mirror: Similar to wrapping, except that each time, the texture is flipped in the 
respective direction. The texture coordinates (3.2, –5.7) will sample from the
texel at position (0.8, 0.3) (because the 3.0 to 4.0 range is a “flipped” version,
and therefore the inverse of the “wrap” result, but the –6.0 to –5.0 range is not,
and therefore the same).

Mirror once: Like mirror, but only in the region –1.0 to +1.0. Outside this range,
behaves like clamp. Useful for textures that have reflection symmetry, such as
round blobs or star flares or some lighting functions—only one-quarter of the
memory is required. The texture coordinates (3.2, –5.7) will sample from the
texel at position (1.0, 1.0).

5.1 Graphics 447



Border color: Like clamp, except that instead of repeating the texels at the edge of
the image over and over, a specified color is returned instead. The texture coordi-
nates (3.2, –5.7) will not sample any texels; it will instead return the border color.

Texture Filtering

In a standard bitmap image, the texel can be thought of as a solid square of color,
entirely filling its box. However, when this bitmap image is used as a texture and the
shader simply picks the color of the nearest texel, this representation looks extremely
ugly if the texture is rotated or magnified—the square nature of the texels is immedi-
ately obvious. This type of texture sampling is called point sampling, and is only used
when rendering textures such as fonts that will always be displayed aligned with the
screen pixels, with no enlargement or shrinking.

To smooth the sharp edges of the texels, hardware generally picks the nearest few
texels to the sampled point and blends them together smoothly with the amount of
blending depending on exactly how close to each texel center the sample is taken. In
this representation, texels should be thought of not as square blocks of color, but as
single points of color, right in the center of the squares, that influence the surround-
ing parts of the texture. The closer the sample is to this center point, the more the
sample is like the color of that texel. The most common type of filtering is bilinear
filtering, and each sample uses the nearest four texels to construct its color. The term
“bilinear” is because there are two linear interpolations happening—one in the u
direction, followed by one in the v direction. There are larger filter sizes that use more
texels in each direction, but these are not supported by current hardware except in
special cases such as video rescaling. If needed, it is possible to construct them manu-
ally using clever shader programming.

Bilinear filtering improves the look of a texture when it is magnified, by smooth-
ing the edges. However, when the texture is shrunk, or minified, bilinear filtering can-
not help much. Even though it is still choosing the nearest four texel samples, each
adjacent rendered pixel uses very different sets of four texels, and the image “sparkles”
as it moves—a sign of aliasing. The solution is to create mipmaps of the texture that
are essentially prefiltered versions of the texture at different sizes. As the texture is ren-
dered smaller and smaller on-screen, smaller and smaller mipmap levels are chosen to
take samples from.

Besides reducing aliasing, using mipmaps also has the side effect of increasing
rendering speed considerably. In general, the correct mipmap level is chosen so that
the size of one texel is roughly the same size as one screen pixel. This means that when
rendering nearby pixels on the screen, nearby texels in the mipmap level are read, and
this is fairly easy for the various caches in the rendering system to help optimize. Most
rendering engines should always generate mipmaps for all textures and turn mipmap-
ping on for almost every texture. Not doing so causes visible quality problems, and
can severely affect speed—it is one of those rare decisions in rendering where there are
few tradeoffs to consider.

448 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



However, if the renderer simply turns mipmapping on, a visible change happens
when the mipmap level changes. This happens not only over time as triangles move
further and closer to the camera, but it can happen over the area of a single triangle on
a single frame. Perspective correction can mean that part of the texture on a triangle
uses a different mipmap level than another part, and the place where the mipmap
selection changes is extremely visible as a straight line of change. The solution here is
to stop “point sampling” which mipmap level is used, and to instead linearly interpo-
late between the mipmap levels, smoothly blending from one to the other. When
combined with the bilinear filtering happening within each mipmap level, this has
three linear interpolations occurring at once, and so is called trilinear filtering or tri-
linear sampling. Although trilinear sampling is slightly more expensive than bilinear
sampling with mipmapping, the results are far less objectionable, and usually worth
the small cost.

Mipmapping has one major artifact. The mipmapped version of a texture is pre-
filtered, but it is prefiltered in both u and v directions equally. Sometimes, this is not
what the graphics hardware needs; sometimes it wants to filter the texture more in one
direction than in another. Think of a road with a 512 × 512 texture mapped on it at
regular intervals, rendered on a 640 × 480 screen, stretching away to the distance.
Looking only at the section of road in the middle distance, in the horizontal direc-
tion, the road texture should not be filtered much at all. The texture is 512 texels
wide, and it occupies most of the screen width of 640 pixels. Thus, the ratio is nearly
even, and very little filtering or mipmapping needs to be done. However, in the verti-
cal direction, the road texture may repeat many times in the space of just a few tens of
pixels because of the effect of perspective correction. If standard mipmapping is used,
both directions must be filtered equally, so the rendering hardware may choose to use
the 64 × 64 mipmap level. Vertically, this is fine, but horizontally, the texture is now
very fuzzy—those 64 texels have been magnified to occupy nearly 500 pixels of screen
space and turned into a blurry mess.

The solution is to use an even more expensive texture-filtering algorithm called
anisotropic filtering. Isotropic means “the same in all directions,” which is what stan-
dard mipmapping is. Therefore, anisotropic means “not the same in all directions.”
Rather than take a single filtered sample, anisotropic filtering (in its most common
form) takes a sequence of filtered samples from the texture, taking more in the direc-
tion of greatest filtering and then blending them together. Mipmapping is still used,
but now it is used for the least-filtered direction, not the most. The details of
anisotropic filtering vary from hardware to hardware, and generally speaking, the ren-
dering engine can simply turn it on, and it works. Anisotropic filtering does have a
significantly higher cost compared to standard trilinear mipmapping, but it produces
a higher quality output, and frequently only needs to be applied to certain textures,
particularly those that are often mapped to large, flat surfaces.

5.1 Graphics 449



Rendering to Texture

Textures are usually supplied to the game by loading them from a disk, and originally
by artists creating them using art packages. As textures are really just arrays of num-
bers that map from one set of numbers (the u, v, and w coordinates) to some other set
of numbers (the R,G,B,A of the texel), they can also be used to store arbitrary func-
tions; for example, a cosine table or the amount of reflection a particular surface has
in a particular direction. In this case, the CPU may generate the texture.

However, in some cases, the game may want the graphics hardware to generate
the texture, by rendering triangles to it. One indirect way to do this is to render to the
back buffer and then copy the pixels to the texture’s texels with the CPU. Another
way is to do the copying with the graphics hardware. However, the most direct way is
to have the graphics hardware render directly to the texture’s memory. This process
redirects rendered primitives from affecting the back buffer so that they hit the 
texture, and is commonly referred to as changing the render target. After the texture has
been rendered to, the game changes back to the back buffer and renders the scene as
usual.

If the texture is a 2D texture with no mipmaps, this is a fairly simple process—
there is an obvious way to render to a 2D surface—and the fact that it is a texture and
not the back buffer is easy to deal with. If the texture is more complex, the rendering
hardware can usually only render to one 2D part of it at once. For example, the hard-
ware can only render to a single “slice” of a 3D texture at a time, but can be directed
to different slices at different times. For a cube map, the hardware can render to only
a single side at once, but can be directed to render to different sides by the game.
Rendering to all six sides of a cube map is becoming more common, and allows
dynamically updated environment maps.

For textures that are mipmapped, mipmaps can either be generated automatically
from the top mipmap level (usually by an internal render-to-texture process), or less
frequently by selecting the mipmap levels themselves as render targets, and rerender-
ing the scene.

When rendering to a texture, a depth buffer may be assigned that is the same size
as the texture, and hidden-surface removal may be performed in the same way.

Rendering to textures is a powerful feature, and allows the graphics hardware to
composite many partial renders together in interesting ways not normally possible if
always rendering to the back buffer. One of the simplest examples is rendering a tele-
vision screen. The scene on the television is rendered to a texture with no distortion
applied, as if the television were being viewed straight on. This texture can then be
used when rendering the scene with the television set in it. If the camera is off to one
side, the correct perspective will be applied to the flattened TV image, and artifacts
such as light bouncing off the television screen and (if the TV is an old one, or viewed
close up) the image may be split into visible red, green, and blue screen elements, with
distortion, blur, and static added. Without render-to-texture functionality, this would
be a very difficult effect to re-create.

450 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Lighting

Lighting is an umbrella term for the processes of determining the amount and direction
of light incident on a surface, how that light is absorbed, reemitted, and reflected from
the surface, and which of those outgoing light rays eventually reach the eye. Primarily,
a renderer is only concerned with the rays that finally reach the eye. Although there are
some interesting effects such as fluorescence that depend on the motion of light rays
that do not eventually hit the eye, these are rare and hard to simulate.

There are three major approaches to solving this problem. The first is called for-
ward tracing—take every photon emitted by a light source, trace it through the envi-
ronment, see what it hits, and decide if it is reemitted and in which directions. Then
ignore all photons that do not eventually hit the eye. This technique is used by nature
and our actual eyeballs, and is obviously very accurate. However, it is extremely
expensive to calculate, because only a miniscule fraction of the photons in a scene
actually reaches the eyeball. However, techniques such as photon mapping perform an
approximation of this process to achieve high-quality, but extremely slow, results.

The second is backward tracing—trace a hypothetical photon that hits the eye
backward from the eye in a particular direction, see which object it came from, and
then see the range of places it could have come from, and if so, what their color values
would be. This is what traditional raytracing does, and is also behind the concept of
techniques such as radiosity.

In general, both of these techniques are too slow for real-time rendering. Both
involve a phase of spreading a bunch of photons out to see either what they hit or
where they could have come from. Real-time rendering must compromise reality for
speed, and the way to do this is to pay attention only to the important rays. These are
generally those that hit the eye and those that come from light sources. Additionally,
because the hardware is rendering triangles, at any one time, the renderer knows
which surface the rays must bounce off—the one currently being drawn. Thus, the
question real-time rendering most often asks in lighting is, “Given this bit of surface,
how much light came from these sources of light and ended up hitting the eye?” This
type of middle-out evaluation is very efficient, but uses different mathematical models
than the previous two cases.

Note that in practice, all three major rendering techniques use a wide variety of
lighting models because speed is always important in all of them. However, the broad
classifications of forward tracing, backward tracing, and middle-out are always useful
to bear in mind when thinking about lighting algorithms.

Components

From the previous comments, it should be obvious that there are a few major bits of
data that any real-time lighting algorithm needs to generate the correct color for a
given pixel.

5.1 Graphics 451



What lights are shining on the surface? This data is held by the scene in the form of
various representations of lights and lighting environments. This is also deter-
mined by the positions of those lights relative to other objects, since in many cases
they may be fully or partially occluded by other geometry—causing shadows. 
In more advanced algorithms, the light may also bounce off some surfaces and
cause indirect lighting.

How does the surface interact with the incoming (or incident) light? This data 
is held in the material structure of the mesh, the shader code it is composed of,
and together with data such as textures and various numerical material values, 
it answers questions like, “How much of a certain color does the surface reflect?
How shiny is it? How bumpy is it?” and so on.

What part of the result of these interactions is visible to the eye? The data 
required to resolve this is the easiest to express, and is usually simply represented
by the vector pointing from the point on the surface toward the camera. How-
ever, it can often be the trickiest part of the algorithm to implement efficiently.

Taken together, these three parts, the position of the eye or camera, the position
of the lights in the scene, and the material description all combine to determine the
total lighting algorithm in the shaders used to render the instance.

The other question is at what point in the pipeline lighting occurs. Current hard-
ware has two major places, the vertex shader and the pixel shader, and both are capable
of performing most of the lighting calculations. Naturally, the vertex shader operates
at a coarser granularity than the pixel shader, over more pixels, but a benefit of this is
that it operates less frequently, and therefore the cost of performing expensive opera-
tions there is lower.

In classic lighting texts, the distinction between performing lighting at vertices or
pixels was often termed Gouraud shading (performing lighting at each vertex, and
interpolating the result over a triangle) and Phong shading (interpolating the input to
the lighting equations, then evaluating the equations at each pixel). With both vertex
and pixel units growing in power, this distinction is now very fuzzy indeed, since a
lighting algorithm may be implemented at either vertices or pixels, or parts of it may
be moved between the two almost at whim. This is especially true when higher-level
languages are used to program the shaders. In the following discussions, remember
that many of the techniques may be implemented at either level, or parts in one and
parts in the other. Future hardware may introduce even further levels of granularity,
giving the programmer even more choices for the trade-off between cost and fidelity.

Representation of the Lighting Environment

The first part of the lighting question is, “What lights are shining on the surface?”
The game needs a representation of the lighting environment to be able to answer this
question for each mesh it renders.

452 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



The standard, physically based solution is to regard all lights in a scene as infi-
nitely small points (point lights) giving off a certain number of photons per second, of
various wavelengths. In practical terms, the light has an intensity, a position, and a
color. The intensity is usually measured by the “brightness” of a diffuse white surface
illuminated by it at unit distance, and then assuming that the brightness falls off
according to the inverse square law. Although “intensity” and “brightness” are techni-
cally two very different quantities, in real-time rendering the two are frequently inter-
changed. The quantity most often being stored and calculated for lights is usually the
brightness of a “standard” 100-percent-white object.

While this may offend physicists, this trick is especially helpful on older hardware
with limited precision and range, where storing brightness instead of intensity or light
flux keeps most numbers in the pipeline in the 0 to 1 range, and is extremely common
in practical games programming. However, it should always be noted that this hack is
being used, and noticed when it is no longer appropriate to the lighting model. As
time goes on, rendering engines may move toward using physically correct units such
as lumens, but the old-fashioned “full white” scale is still extremely popular and easy
to understand. Fundamentally, all rendering is a hack, and that applies double to real-
time rendering in games—the trick is to choose which hacks are useful.

Any surface illuminated by this light takes the brightness value, divides by the
square of the distance from the surface to the light, and multiplies by the RGB color
value of the light. This is then the amount of incident light on the surface, as shown
in Equation 5.1.4.

(5.1.4)

The separation of the light’s color and brightness into separate components is
purely for modeling convenience. Color is frequently chosen using a “color picker”
that only displays colors with RGB values in the range 0.0 to 1.0, whereas brightness
is a floating-point number with a huge range that is typically adjusted with a slider bar
or typed in manually. Keeping them separate simply allows for easier modeling, and a
rendering may want to combine the two at whatever stage it wishes.

While this is a clean and efficient representation of light brightness, it actually
looks rather poor in practice. Real lights are not infinite points; they have a volume,
their light does not only go straight from the light to the surface, they generally have
a built-in reflector, or they bounce off nearby objects. The other problem is that com-
puter monitors have a limited color gamut—that is, they can only represent a narrow
range of intensities. In contrast, lights in the real world have a massive range. Our eyes
can adjust to most of this huge range, and “normalize” the images we see, but the
monitor simply cannot display this huge range. Actually rendering a scene using
inverse square falloff results in many black pixels, many “overbright” white pixels, 

incidentColor
lightColor lightBrightness

=
( )( )

ddistanceToLight2

5.1 Graphics 453



and very few with any intermediate colors. Useful for a “film noir” effect, but it makes
it very difficult for the player of the game to see what is going on.

Thus, the magnitude of the light intensities in a game environment needs to be
brought down to a manageable range. A quick inspection of the inverse square falloff
curve shows that it generates a huge range of intensities—an object placed 10 cen-
timeters from a light source is 100 times as bright as one placed a meter away, and
almost 1,000 times brighter than one placed three meters away. Monitors simply can-
not deal with this range, and as noted previously, it’s not actually very true to life.

An empirical tweaking of the lighting equation results in a version that is almost
as simple, but visually far more pleasing and controllable. Instead of an inverse
squared distance falloff, an inverse distance falloff is used, and a clamp is put on the
maximum value of the curve to prevent the brightness from exceeding a certain value
as an object gets very close to the light. This clamp is typically measured as a “mini-
mum distance” rather than a brightness, but the effect is the same. Equations 5.1.5
and 5.1.6 describe these new equations.

(5.1.5)

(5.1.6)

As a further speed optimization, lights are given a “maximum distance” beyond
which their effect is so dim that it can be ignored. This maximum distance is usually
where the light has very little visible effect, but if the light is simply turned off as the
object gets to this distance, there will still be a sharp visible “pop.” The (usually small)
brightness at this distance can be subtracted from the total, and the result clamped so
it never goes negative. Equations 5.1.7 through 5.1.10 describe this new optimization.

(5.1.7)

(5.1.8)

(5.1.9)

(5.1.10)incidentColor lightColor clampedBrightness= ( )(( )

clampedBrightness
lightBrightness

cla
= max . ,0 0

mmpedDistance
brightnessAtMaxDistance−

⎛

clampedDistance distanceToLight lightMi= max , nnimumDistance( )

brightnessAtMaxDistance
lightBrightness

ligh
=

ttMaximumDistance

incidentColor
lightColor lightBrightness

=
( )( )

cclampedDistance

clampedDistance distanceToLight lightMi= max , nnimumDistance( )

454 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



In practice, the exact values of the various inputs end up being not particularly
meaningful, as artists tend to ignore the actual numerical values and simply play with
the numbers until things start to look good. If they have an art package with lighting
models they like, it is also a good idea to try to reproduce something close to those
behaviors inside the shader.

This is only a very brief look at single-light lighting models. There are many dif-
ferent lighting models, and many are interesting and efficient representations of light
sources in particular situations.

Representing Multiple Lights

The next step beyond representing a single light at a time is to represent an entire
environment of lights at once. One way to do this is simply to store multiple lights in
a list and process them individually, adding up their contributions. However, cost
grows linearly with the number of lights, and in an environment with hundreds of
lights, it can become prohibitive. One important thing to realize is that in most
scenes, the lighting environment for a particular object instance can usually be classi-
fied into two parts—a few, bright, important light sources, and “all the rest,” stored as
some type of unified, but possibly not particularly accurate, representation. The
major lights that contribute to most of the lighting are processed individually at high
quality, and the rest are stored in some other less-precise way and processed as a
whole. However, how do we represent the rest?

The simplest version, and one that has been used since the beginning of com-
puter graphics, is the notion of an ambient light. This is simply a constant term that is
added to all calculations of incident lighting, and it models the rather tenuous
assumption that in any environment, there is a constant number of photons bouncing
at random in every direction and illuminating every surface by some chosen amount.
This is actually a fairly acceptable model for a small indoor environment with multi-
ple light sources and white-painted matte walls, ceiling and floor, and no external
sunlight. The combination of the multiple artificial light sources and the bright matte
surfaces does a good job of distributing light fairly evenly around the scene. Add this
ambient term to the direct lighting effect of the nearest few lights, and fairly convinc-
ing (although not necessarily accurate) results can be obtained.

A better model for an outdoor scene during the day is hemisphere lighting. There
are three major sources of lighting in this environment. Direct sunlight is the major
one, and is modeled as a standard distinct light source. The bright blue sky (the result
of diffracted sunlight) is the second, and is modeled as a hemisphere of constant blue.
The ground also reflects sunlight shining on it and bounces to illuminate the object
from below, although as the ground is not particularly shiny, this is a lesser effect. This
latter effect is usually modeled as a brownish hemisphere opposite the blue of the sky,
although in some environments it may be a different color—for example, a dark blue
for a scene on the open ocean, or a green color rather than brown for a scene set in
large meadows during the summer.

5.1 Graphics 455



The result of being illuminated by two hemispheres, one a bright blue and the
other a dark brown, is quite well approximated by taking the dot-product of the nor-
mal of the surface with the vector pointing vertically upward, shifting and scaling 
it into the 0.0 to 1.0 range, and then using this value to interpolate between the two
colors, as shown in Equations 5.1.11 through 5.1.13.

(5.1.11)

(5.1.12)

(5.1.13)

This, together with the standard direct lighting from the sun, can produce an
effective and cheap model of outdoor lighting.

Another very flexible solution is to render, either at runtime or as a preprocess
step, a cube map that is a picture of the lighting environment. When used directly,
this is called a reflection map or environment map for shiny surfaces, or it can be heav-
ily blurred and used to look up the diffuse lighting environment.

The latest technology, getting some early adoption in the games industry, is to
encode the previous cube map in the frequency domain rather than the spatial
domain, as a set of spherical frequencies—much as the movement of a loudspeaker
membrane can be encoded as a series of sine waves. There are a few ways to do this,
but one of the most common is by using spherical harmonics [Ramamoorthi01].
Although mathematically complicated, the actual implementation and use of these
representations in a shader are surprisingly simple and powerful [Forsyth03].

All the previous techniques assume that the object is essentially “small”—its size
relative to the lighting striking it is trivial, and the only thing that matters is the direc-
tion the light falls on it, not how the incident light varies over the surface of the
object. For objects up to about the size of humans, such approximations are fre-
quently reasonable for games, but for objects such as walls or houses, it is not. This is
especially true if the lights are actually inside the objects; for example, a light mounted
on a wall in a house. Even the concept of “which direction is the light from the house”
makes no sense. However, a useful property of large objects is that in many games,
they do not move, and this is also true of most lights. If the light and object do not
move, it is possible to precalculate the incident light directions and brightness and
store them in a texture map. If the result of the diffuse lighting equation is also precal-
culated, the result is a texture with colors in it—known as a lightmap, and used by
many games over the years. However, there is no need to fully resolve the lighting
equation at preprocess time, and the maps may simply store the direction and bright-
ness values for use in later runtime calculations. Some newer variants go further and
store not just a single light direction and brightness, but the entire lighting environ-
ment—for example, storing a spherical harmonic series at each sample. Note that the

incidentColor lerpFactor hemiColor1= ( )( ) + −1 0. llerpFactor hemiColor2( )( )

lerpFactor howUpwards= ( )( ) +0 5 0 5. .

howUpwards hemisphereUpVector sur= dotProduct , ffaceNormal( )

456 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



frequency of samples, and thus the texture size in memory, can often be surprisingly
low and yet still obtain good-quality lighting results. The direction and brightness of
incident light does not change particularly quickly over most areas of a scene.

Once the amount and direction of incident light has been established for the sur-
face in the current scene, the interaction of this light with the specific type of surface
can be modeled, and the color and number of the light rays that enter the eye from
this interaction found. There are two main types of lighting interaction, usually
referred to as diffuse and specular lighting.

Diffuse Lighting

The distinguishing feature of diffuse lighting is that it models how light is absorbed
by the material and then reemitted as new, changed photons. The main feature of
these new photons is that they are emitted equally in all directions from the surface.
What this means for the purposes of lighting is that the result looks the same from
every angle. Since the photons are emitted equally in all directions, it does not matter
where the eye is. The only thing that affects the appearance of the surface is the
incoming light, and properties such as the normal of the surface.

The most basic diffuse lighting equation, and yet still the most common, is
known as Lambert lighting. This says that the number of photons hitting a given area
of a surface and being reemitted in all directions is proportional to the dot-product of
the surface normal and the incident light vector. If the light is facing directly at the
surface, a given area of the surface will receive many photons. However, if the same
light shines with a grazing angle, the same photons will be spread out over a much
larger patch of the surface, and the same area will receive fewer photons.

Since this is a diffuse lighting formula, the apparent brightness of the surface is
directly proportional to the total number of photons striking it, being absorbed, and
then being reemitted in a random direction. The proportionality is stored as the
“color” of the surface, which actually stores which wavelengths of photons are
absorbed completely, and which are absorbed and reemitted, and is only actually a
real color when illuminated by white light. Thus, Equations 5.1.14 and 5.1.15:

(5.1.14)

(5.1.15)

Note that by convention, the incident light vector points away from the surface
toward the light, rather than from the light toward the surface. When the surface nor-
mal faces in the opposite direction to the incident light, the light is shining on the
other side of the object and (unless the object is made of thin paper or other transmis-
sive material, which is not well modeled by Lambert diffuse) the surface will be dark.
This is why the dot-product is clamped so that it is always positive or zero.

reflectedColor surfaceColor incidentColor= ( )( ))( )clampedNdotL

clampedNdotL surfaceNormal= max . ,dotProduct0 0 ,,incidentLightVector( )( )

5.1 Graphics 457



Normal Maps
The previous lighting operation can be performed at either a vertex or a pixel level. If
performed at each pixel, the surface normal may be calculated at each vertex and
interpolated over the triangle, or may be read from a texture applied to the object. If
read from a texture, that texture is commonly known as a normal map, since it is a tex-
ture map that holds surface normal vectors. This is one of the most common places
where the R,G,B channels of the texture are reinterpreted as arbitrary data rather than
a color—in this case, as the x, y, z values of the surface normal vector.

This brings up an important question, “In which space is this calculation being
performed?” One possible answer is to perform the entire operation in world space.
The light’s position is usually stored in world space, the vertex shader will need to
transform the vertices into world space at some point to render the triangle on the
screen, and so the vertex shader can also calculate the incident light vector in world
space. However, the texture cannot store world-space normals—they must be in object
space, or they would all have to be recalculated when the instance rotates. One solution
is to read the object-space normals from the normal map and then transform them
into world space. Once everything is in world space, the previous lighting calculation
can be performed and the pixel shaded. In total (see Equations 5.1.16 through 5.1.21):

(5.1.16)

(5.1.17)

(5.1.18)

(5.1.19)

(5.1.20)

(5.1.21)

The annoying part of this is that the transformation of the surface’s object-space
normal to world space must be performed at every pixel, since that is where the nor-
mal map texture is sampled.

One nice property of the dot-product operation is that if you transform both vec-
tors from one orthonormal space to another, the result of the dot product is
unchanged. In games, both object and world space are almost always orthonormal
spaces, which means the previous algorithm could be converted to work in object
space instead, as follows in Equations 5.1.22 through 5.1.27:

(5.1.22)

(5.1.23)objectLightPosition = transformSpaceWorldToObjject worldLightPosition( )

worldVertexPosition = transformSpaceObjectToWoorld objectVertexPosition( )

brightness surfaceColor incidentColor cla= ( )( ) mmped( )
clamped worldNormal worldI= max . ,dotProduct ,0 0 nncidentVector( )( )

worldNormal obje= transformSpaceObjectToWorld cctNormal( )
objectNormal normalMap= ( )sampleTexture

worldIncidentVector worldLightPosi= normalize ttion worldVertexPosition−( )
worldVertexPosition = transformSpaceObjectToWoorld objectVertexPosition( )

458 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



(5.1.24)

(5.1.25)

(5.1.26)

(5.1.27)

Note that the vertex shader still needs to calculate the worldVertexPosition of the
vertex, because that is what it uses to render the triangle. At first glance, the amount
of work has not been reduced. There are still two transformations from one space to
another being performed. However, the transformation of the surface normal that was
read from a texture has been removed and replaced by the transformation of the light’s
position from world space to object space. This can be done in the vertex shader
rather than the pixel shader. Since the vertex shader is run less often than the pixel
shader, this can be a significant speed saver. In fact, in many cases, when rendering
rigid bodies such as machinery, it can be done once per instance on the host CPU,
and never executed in either the vertex or pixel shaders. This concept of shuffling
parts of an algorithm around between the shader stages is important and very useful
when optimizing for speed.

More on Tangent Space
A further refinement of the bump-map technique is to realize that most bump maps
do not store normals in object space, but instead store normals in tangent space.
Tangent space is defined at any place on the surface of a mesh by three vectors. The
first is the normal to the surface, and the other two are the tangent and binormal vec-
tors that lie along the surface, and usually at roughly right angles to each other. Note
that the “surface normal” that defines tangent space is the one specified at each vertex
of the mesh, whereas the surface normal being looked up in the texture is a per-pixel
value representing the fine bumps and grain of the surface.

The normal, tangent, and binormal vectors that define tangent space are specified
at each vertex of the triangle, usually as an average of the tangent-space vectors of each
triangle that meets at that vertex. Since each vertex of a triangle can point the three
vectors in different directions, with the directions interpolated across the triangle, this
space is only loosely defined. Strictly speaking, all three vectors should be at right
angles and unit length. In other words, they should form an orthonormal basis that
defines tangent space. However, this is frequently not quite true in practice, and the
vectors may only point at somewhere close to right angles. This is especially true as
tangent space is interpolated across a triangle—the interpolated space may be even
less orthonormal than at any of the vertices. In practice, this effect can be reduced as
needed by adding a few vertices where tangent space distorts too severely over the
more curved areas of a mesh.

brightness surfaceColor incidentColor cla= ( )( ) mmped( )
clamped objectNormal objec= max . ,dotProduct ,0 0 ttIncidentVector( )( )

objectNormal normalMap= ( )sampleTexture

objectIncidentVector objectLightPo= normalize ssition objectVertexPosition−( )

5.1 Graphics 459



The result is that calculations in tangent space should be treated with caution—
lines are only “mostly straight” and angles are only roughly correct over short distances.
Over long distances, because tangent space curves to follow the surface of the mesh,
all conventional geometry breaks down completely. This lack of rigor means that
most calculations in tangent space are only approximate, but since it is almost entirely
used for lighting, some degree of error is usually acceptable, especially for real-time
game rendering.

There is a variety of reasons to store normal maps in tangent space, but the main
one is to reduce the size of the normal-map texture. Normal maps can consume consid-
erable portions of available memory, and reducing their size is of major importance,
even at the cost of some rendering speed.

Notice that in tangent space, almost all the normals of a normal map will point
away from the surface. Unless the surface is incredibly bumpy, there is no way that a
normal can point back toward the surface, and for all practical purposes this situation
can be ignored (remember—the normal map is meant to encode fine surface details—
large details should still be represented as actual geometry). The other main point is
that surface normals are unit-length vectors, which means that the sum of the squares
of the x, y, z components is 1. Because the normals all point away from the surface,
that perpendicular component (by convention, the z-component) must be positive.
These two facts mean that the z-component can be discarded, because the shader can
always compute it by combining these two facts, as shown in Equation 5.1.28:

(5.1.28)

Reducing the texture from a three-component x, y, z texture to a two-component
x, y texture (or, in more conventional terminology, from RGB to RG) significantly
reduces the memory that the texture takes up. Another optimization is that for rela-
tively smooth surfaces, the normal will rarely diverge far from being perpendicular to
the surface, which means the x- and y-components will be small. Knowing that the
range of possible values is usually small allows several compression tricks, meaning
that each texel of the normal map can use fewer bits to store the x- and y-components,
further reducing storage requirements.

Precomputed Radiance Transfer
Instead of representing a surface as a geometric construction, such as storing its nor-
mal vector, it is possible to represent the diffuse lighting of a surface in terms of its
response to external lighting from a variety of directions. This effectively bypasses the
question of what the surface is made of, what shape it is, and how it casts shadows on
itself. Instead, the representation simply stores what the final brightness of the surface
is under lighting from any given direction.

Thus, each texel of the image is effectively just a lookup table. For each light, the
incident direction is looked up in the table, and the result is a color—the color response
of the surface. This includes all the information about the color of the surface, in

z y= + − −( )sqrt x1 2 2

460 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



which direction that part of the surface faces, and how it responds to light. It can even
include slightly more “global” information, such as how well the surrounding surface
casts shadows on it from that direction (known as local self-shadowing), and whether
the light can bounce off another nearby surface and illuminate the surface indirectly.

This is a very powerful technique, but how to store the table? This table stores a
color in response to a unit-length vector: the incident light vector. This type of lookup
usually requires a cube map, but this would require a cube map per texel, which is an
unlikely and memory-hungry concept.

However, maps of the unit sphere can also be stored as spherical harmonics, and
if only the lower frequency bands are used, the memory requirements are reasonable.
There is also a variety of cunning compression schemes possible for storing the higher
frequency spherical harmonics in a memory-efficient way. This technique is called
precomputed radiance transfer because it stores the transfer of incident radiance to exit
radiance toward the eye.

Even cleverer is if the lighting environment is itself represented with a spherical
harmonic, as in the previous example. Therefore, a spherical harmonic represents 
the total incident light from all directions, and a spherical harmonic represents how the
incident light from each direction is reflected into the eye. One of the interesting math-
ematical tricks is that combining these two together (the correct term is convolving) is
as simple as performing a large dot-product. This is extremely simple for rendering
hardware to perform, and the result is the color that is seen by the eye.

Precomputed radiance transfer (PRT) is a fairly new technique, but is extremely
powerful [Sloan02]. It does still have some limitations to work through, such as poor
support for animated meshes and relatively large storage requirements, but it and
related techniques are already being used by some games to enhance the quality of
their diffuse lighting. With some work, PRT can be extended to include specular
lighting, although at this point the memory and speed costs are prohibitive for cur-
rent hardware.

Specular Lighting

There are many specular lighting techniques, but they all share one main feature.
Whereas photons in diffuse lighting are absorbed and reemitted from the surface,
photons in specular lighting bounce off the surface. Because the photon is bouncing,
its exit direction is closely related to its incident direction. What this means is that for
a light from a particular direction, more photons will bounce off the surface in some
directions than others will. However, the rendering engine is interested in only one
direction—the one the eye is in.

Contrast this with diffuse lighting, where it is assumed that whatever direction
the photon comes in along, it leaves in a random direction. The only reason why 
diffuse lighting uses the incident light direction is to calculate how many photons
strike a given area of the surface—where the actual direction is not in itself important.

5.1 Graphics 461



Because photons leave at random angles, the direction of the eye is unimportant—
wherever it is in space, the same number of photons will reach it. However, for specu-
lar lighting, photons do not all leave in random directions, and thus the direction of
the eye from the surface is a key component of the lighting result.

There are many specular lighting models, all showing slightly different effects or
modeling different materials, but in many cases, even simple models can give a good
effect. One of the simplest is Blinn specular lighting, which takes advantage of a neat
insight—to treat the surface as a collection of minute conceptual microfacets, each fac-
ing in a random direction relative to the visible surface. These microfacets are individ-
ually far too small to see, it is the net effect of huge numbers of them that the specular
lighting equation is trying to model.

If each microfacet is a perfect specular mirror, then a photon bounces off them
with perfect reflection with the angle of exit being the same as the angle of incidence.
Naturally, most of these photons miss the eye, and the lighting equation should
ignore them. However, how many hit the eye? To hit the eye, the microfacet must be
perfectly oriented to reflect the incoming light directly into the eye. Therefore, the
normal of the microfacet must point along the average of the eye vector and the inci-
dent light vector—exactly halfway. This vector is named the half vector. Only then
will incoming light bounce into the eye and cause a bright spot.

To determine how bright this part of the surface is, the only question is, “What
proportion of the microfacets do in fact point in this particular special direction—the
half vector?” The Blinn model assumes that microfacets are randomly oriented, but
not in a uniform way. Their average orientation is the same as the overall surface nor-
mal. At one extreme, if the surface is a perfect mirror, all the microfacets are oriented
in exactly the same direction. As the surface gets rougher, the microfacet orientation
gradually diverges from the surface normal, and there is a chance that a certain pro-
portion of them will be oriented along the half vector and bounce light into the eye.
The closer the half vector is to the actual surface normal, the higher the number of
microfacets that are likely to be oriented correctly, and the brighter the pixel.

If the surface is quite smooth, there is a significant number with this orientation
if the half vector and the surface normal are quite close. Conversely, the rougher the
surface is, the wider the random distribution of microfacets, which means that even
when the half vector is significantly different from the surface normal, a significant
number of microfacets are still reflecting light into the eye. This distribution of micro-
facet orientations may be modeled in various ways, and the standard Blinn method is
to take the dot-product between the normal and half vectors and raise it to a certain
power.

For a photon to get from the light to the eye, it must bounce off a microfacet ori-
ented toward the half-vector (Figure 5.1.5, left). A rough surface (Figure 5.1.5, mid-
dle) has more microfacets oriented in the direction of the half-vector than a smooth
surface (Figure 5.1.5, right).

462 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



When put together, Blinn’s model of specular lighting is shown in Equations
5.1.29–5.1.31:

(5.1.29)

(5.1.30)

(5.1.31)

The value materialSmoothness is used here because a low value denotes a very
rough surface that produces specular reflections in many different directions, while a
very high value represents a very smooth surface that only reflects any significant spec-
ular light when the surface normal is almost exactly aligned with the half vector.

There are many specular lighting models, each representing a different approxi-
mation to a certain set of materials, and the reader is encouraged to try as many as
possible. Programmable shader hardware also encourages experimentation with exist-
ing algorithms, tweaking them to increase speed or reduce undesirable artifacts.

Environment Maps
The Blinn specular model is useful for moderately smooth surface models such as var-
nished wood and plastic, where the slight grain in the surface means that the only
lights that reflect enough light into the viewer’s eyes (to be significant) are large,
strong point lights such as the sun or a light bulb.

However, one of the most common specular lighting models is that of a nearly
perfect reflector such as well-polished metal or glass. These surfaces are so smooth that
nearly everything can reflect an image well enough to be seen. If one of the one-light-
at-a-time models were used to render these, all that would be seen would be a few tiny

brightness surfaceColor incidentColor ali= ( )( ) ggnmentmaterialSmoothness( )
alignment halfVector surfa= max . ,dotProduct ,0 0 cceNormal( )( )

halfVector
incidentLightVector eyeVector

=
+( )

2

5.1 Graphics 463

FIGURE 5.1.5 Left: The relationship between the four vectors in Blinn lighting. Middle
and right: The distribution of microfacets in rough and smooth surfaces.



points of light—the perfect reflections of those major light sources. In reality, these
surfaces reflect nearly everything, not just strong emitters of light.

For outdoor environments and objects that are only mildly reflective such as the
cars in a racing game, it may be sufficient to simply create a cube map containing
some generally dark stuff (for example, the road) at the bottom, some trees or hills
around the middle, and blue sky and clouds at the top. The shader then takes the eye
vector, reflects it around the surface normal, and looks up the result in the cube map.
This tells the shader the color of the light bouncing off the surface and into the eye.
This is an example of a “backward trace” lighting algorithm being used in real-time
rendering. The shader may also modify the color according to the color of the surface.
For example, gold metal reflects more red and green photons than it does blue,
whereas silver metal reflects all three equally well.

As long as the cars are not too highly polished, and the action is moving reasonably
quickly, it is rare for people to notice (or care) that the reflected environment does not
actually match the rendered environment (e.g., a certain part of the racetrack may not
have many trees around it, and yet the environment maps always contains trees). A
simple but common trick in this particular case is to have several different environment
maps for different parts of the track, but even this goes unnoticed by most people. The
same is true if the object being rendered is highly reflective, but also a complex shape,
so that no large part of the environment can be seen without severe distortion. The
common example of this in many games is the metal parts of weapons or equipment.
If the surface normal is read from the normal map at every pixel, the reflected environ-
ment map gives the equipment an authentic “shiny bumpy metal” look without it
actually being all that important what the environment map actually contains.

Of course, in some cases, it would be nice if the environment map did correctly
reflect the surroundings, and in this case, the same trick can be used. However, this
time the game can render the actual environment to the sides of the cube map once
each frame (or, in some cases, every couple of frames), using six render-to-texture
operations, one for each side of the cube map. In this case, it is important that each
instance in the game has its own cube map. If there is a red car and a blue car racing
side by side, the cube map used for the red car should be rendered from the center of
the red car, and therefore have a picture of the blue car in it. Conversely, the cube map
used for the blue car should be rendered from the center of the blue car and thus show
the red car in it. Trying to use the same cube map for both cars will create some odd
results. Either one car will not have a reflection of the other car, or both cars will have
reflections not only of the other car, but also of themselves!

The Hardware-Rendering Pipeline

The hardware-rendering pipeline presented here is intended as a reference to what to
expect from recent graphics hardware. As hardware becomes increasingly programmable,
certain parts of this pipeline may become more complex, simpler, mutate, or vanish
entirely. However, most of the principles are fairly fundamental, and even when

464 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



replaced by programmable units, those units will perform similar functions, although
presumably with a much higher degree of customizability by the rendering engine.

The part of the pipeline most likely to change significantly in the next few years
is that the simple one-in-one-out geometry unit currently embodied by a single vertex
shader program stage is likely to become far more complex. Frequently, games want to
generate multiple triangles from a single input primitive, and currently this must be
performed on the host CPU, with only some of the work possible on the vertex
shader. One common example is that of tessellating a higher order surface representa-
tion (such as a Bézier or Catmull-Clark surface) and displacing the new vertices by val-
ues from a texture map or noise function. Another example is the generation of
shadow volumes. Currently, this is done either on the CPU, or by pregenerating all
the possible triangles, and then having the vertex shader cull the ones not needed by
various tricks. Neither method is particularly efficient. A final example is the genera-
tion of the “fins and shells” of geometry commonly used for rendering fur or grass—
another task currently performed by the host CPU.

Since these operations are highly parallel, and in many cases fairly simple, it is
likely that hardware will expand to take this extra functionality on-board. However,
the exact form this will take is still a matter of conjecture.

Bear in mind while reading that this is mainly a conceptual model, not a physical
model of what hardware actually does. In practice, hardware may perform these oper-
ations in a completely different order, and perform some operations in different places
in the pipeline, or even in multiple places where appropriate. For example, it is not
uncommon for hardware to have at least two depth buffers, one the “real” one at the
end of the pipeline, and one much earlier in the pipeline to throw pixels away as early
as possible, without taking the time to shade them. Although the functional behavior
is the same as presented here, the actual implementation of most hardware is far more
complex, and it is expected that this will continue in the future. Because of this, the
performance characteristics of real hardware are already very different from the con-
ceptual software model most programmers have of the process. It is therefore impor-
tant when considering the performance implications of using rendering hardware in
various ways to always remember this guiding principle—hardware is absolutely
nothing like software. Even the programmable shaders that look a bit like software
models can have strange and counterintuitive performance implications. 

With that in mind, here is the almost entirely fictitious conceptual model.

Input Assembly

The renderer feeds many streams of data to the hardware—buffers of vertices, indices,
values to be fed to the shaders in other ways, textures, and various other control data.
The data is read, de-indexed as necessary, and assembled into primitives. For simplicity,
it is assumed for the rest of this section that the primitives are triangles. These triangles
then decide which bits of data they require to be processed before they can be rendered
to the screen. Typically, these are the vertices of the mesh.

5.1 Graphics 465



Vertex Shading

If the vertices required by the triangle have already been processed and are sitting in
the postshading vertex cache, they are used directly. Otherwise, the vertex shader’s
input data is read from the various buffers it lives in and fed to an instance of the 
vertex shader program.

The vertex shader typically transforms the vertex’s local-space position to clip
space using a matrix transformation. If the mesh is animated, this matrix may be a
composite of many separately animated matrices (discussed in Chapter 5.2, “Character
Animation”).

Additionally, the vertex shader may further modify the vertex’s position in various
ways, such as looking up a displacement map or projecting it in various directions for
effects such as fur-rendering “shells.” Alternatively, the vertex shader may not use a
source position at all—it may simply generate the position directly from mathemati-
cal formulae. This is common when rendering particle systems. The vertex shader is
told the type of particle system, some details about when and where this particle was
created, and calculates the current position by assuming the particle followed a few
standard equations of motion (such as parabolic motion under gravity) since it was
created. The advantage of this is that the data describing the particle never changes—
it always describes the particle’s birth. All that changes from frame to frame is the time
since the particle’s birth.

The vertex shader then calculates any data required by the pixel shader for its
shading. Many values can be calculated in either pixel or vertex shader, and which is
performed where depends entirely on the performance and quality trade-offs. Some
quantities, such as the computation of vectors to lights and the eye, can be performed
in the vertex shader and interpolated over the triangle with reasonable fidelity. However,
the exact shading of the pixels is usually performed in the pixel shader because this
allows each pixel to have a different normal and color, provided by a texture map.

Note that newer models of vertex shader may sample textures, just like pixel
shaders, and in fact, the programming models of the pixel and vertex shader are grad-
ually converging with similar capabilities in both. Some hardware already uses the
same processing units to perform both tasks, and this convergence is expected to con-
tinue. This allows further migration of algorithms from one to the other, according to
quality and speed requirements.

Primitive Assembly, Culling, and Clipping

Once all the vertices for the triangle are shaded, the triangle has the clip-space posi-
tions for all its vertices, and can now decide if it is visible, and if so, how much of it is
visible. The first thing to happen is backface culling. Triangles conventionally have two
sides—a clockwise side (the front) and a counterclockwise side (the back). The order
in which the vertices are specified by the game is preserved and remembered, and if
these vertices appear in a clockwise ordering when rendered on the screen and the
triangle is told to render its front side, the triangle will be visible. 

466 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



When rendering, the renderer can decide if both sides are visible, or only one, and
if so, whether it is the clockwise or counterclockwise side that is visible. Note that if
the triangle primitive used is a “strip,” the ordering of the vertices is reversed for every
even-numbered triangle. This is taken into account, so that the entire strip has a con-
sistent side that is visible—the renderer only has to consider the ordering of the first
triangle and the rest will follow.

If the game has specified that only one side is to be visible, and that side is not fac-
ing the camera, the triangle is discarded and not rendered (i.e., it is backfaced culled).
There are two main reasons to do this. The first is if the game wants to render each
side of a triangle with a different shader or different properties. For example, when
rendering a page of newspaper or a book, one side has one set of writing on it, and the
other side has another. The simplest way to do this is to render the page twice. The
first time, only clockwise triangles are rendered, and the texture on that side is set.
The second time, only counterclockwise triangles are rendered, and the texture on the
other side is set. Because the same geometry is used each time, and a particular trian-
gle cannot be both clockwise and counterclockwise in a single frame, each triangle is
rendered only once, and the correct texture is used.

The other reason to backface cull triangles is efficiency. Most objects being ren-
dered are solid, and have a definite “inside” to them that is never seen. If triangles of
the mesh are always ordered so that the clockwise side faces “outward,” then they are
the only ones that ever need rendering. This is an extremely fast way to discard
approximately half the triangles in a typical scene without performing any depth tests
at all, and should be used whenever possible.

After this, frustum culling is performed. The three vertices of the triangle are
tested against the six planes of clip space, and if all three are off one of the planes, the
triangle is quickly rejected. After this, the triangle is clipped to those six planes to
remove the invisible parts. If the game has chosen to add in some additional user-
defined clip planes, the triangle must be clipped against those as well.

Note that clipping is an expensive operation, as it involves geometric operations,
and may involve generating more than one output triangle from a single input trian-
gle. A triangle can potentially be clipped by all six sides of clip space to produce a
nine-sided polygon, usually rendered as seven triangles internally. Add user clip
planes, and it can be even more. Some hardware can use guard-band regions and
other tricks to move some processing down to a per-pixel test to remove some of this
geometry-processing cost, but again, this is an implementation detail.

Projection, Rasterization, and Antialiasing

Once the triangle has been clipped, it can be projected from clip space to screen space
(where pixels live) by dividing the clip-space x, y, and z values by the w value, some
simple scale-and-biasing to fit the result to the screen rendering window (called the
viewport), and rasterized. Rasterization is the process of finding which pixels and sam-
ples the triangle hits. This is a relatively simple process, but because of the speed with

5.1 Graphics 467



which it must be performed, there are many tricks and subtleties in this process.
Fortunately, most of them are invisible to the renderer.

The distinction between pixels and samples is subtle, but important when using
full-screen antialiasing. In this scheme, each displayed pixel on the frame buffer has
many “samples” in the back buffer. Each sample has a separate color and Z value, and
in fact, the back buffer behaves much like a frame buffer with a much higher resolution.
When the back buffer has finished rendering and is displayed, the multiple samples
are combined (often using a complex filtering process) to create a single pixel. This
allows triangle edges to be smoothed and appear less jagged—this jaggedness is caused
by “aliasing,” and therefore the process to smooth them is called antialiasing.

So far, this process happens the same way for both current methods of anti-
aliasing—called multisampling antialiasing (MSAA) and supersampling antialiasing
(SSAA). The difference is in the pixel-processing pipeline. For supersampling AA, it is
exactly like rendering to a larger back buffer and then filtering down—each sample 
is shaded individually by the pixel shader, depth tested, and stored.

For multisampling AA, only one screen pixel is sent to the pixel shader. The result
is then sent to all the samples for that pixel, and each sample is then individually
depth-tested and written. This obviously lowers the amount of work required—only
one pixel is shaded, rather than every sample being shaded individually. Additionally,
if all the depth tests for all the samples of a single pixel pass, then the color values for
all the samples in that pixel will be the same, and some hardware can use this fact to
reduce the amount of memory bandwidth it uses, rather than always storing all these
identical values. This reduction in memory bandwidth and the number of times the
pixel shader is being run give MSAA a considerable speed advantage over SSAA in
most cases.

However, multisampling AA has some artifacts that may be objectionable, and as
shaders become more complex, these artifacts may become more of a problem. The
details are long and complex, and vary between different hardware, so it is usually 
sufficient to be aware of the two types of antialiasing and be aware that although 
multisampling is considerably faster, there is (as always in graphics) a price to be paid
for the extra speed.

To alleviate the confusion between whether a pixel shader is being run on a pixel
(MSAA) or a sample (SSAA), the term fragment is used to denote whatever unit a
pixel shader works on. Therefore, the term pixel shader is somewhat inaccurate, and it
should be called a fragment shader. Nevertheless, the original name has stuck.

Pixel Shading

The pixel shader is invoked once per fragment (a pixel for MSAA, a sample for
SSAA). The various attributes calculated by the vertex shaders at each vertex are inter-
polated across the triangle, and a single value is given to each invocation of the pixel
shader. In some shader architectures, these attributes are assigned specific meanings,
such as a set of texture coordinates, a set of colors, an interpolated normal, a depth

468 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



value, and so on. Other shader programming models simply see an array of attributes
generated by the vertex shaders, interpolate them, and feed the results to the pixel
shader to be interpreted as the shader writer wishes.

The pixel shader may use the attributes as coordinates for sampling texels from
textures, and may generally perform a wide range of standard operations on the results.
Since this part of the pipeline is programmable, the limits are defined by the hardware,
the speed costs of each shader instruction, and the ingenuity of the programmer.

Each pixel shader outputs one or more color values as its result, and may option-
ally also output a new depth value for the pixel (although this is currently an expen-
sive option to use, and should be used sparingly). Again, although the outputs are
labeled “colors,” they are really just a set of numbers, and may represent whatever 
values the programmer wishes. The pixel shader may also abort the current pixel and
decide that it should not be rendered after all. This is useful when rendering translu-
cent objects. If the current fragment comes from a part of the object that is entirely
transparent, there is no point in outputting any colors because the back buffer will
not be affected in any way by this fragment. It is often quicker to abort processing of
the fragment as soon as this fact is known, rather than going on to shade the fragment
that will then have no effect.

Z, Stencil, and Alpha-Blend Operations

Once the pixel shader has generated its fragment color and possibly a new depth
value, the fragment becomes one or more samples (again, this only applies to MSAA).
Unless the sample has been killed by the pixel shader, the depth value of the new sam-
ple is compared against the current value in the depth buffer. The new sample may
also have a stencil reference value, which is compared against the current value in the
stencil buffer, if one is present. Both these tests (depth and stencil) have a variety of
configurable settings, but the result of a couple of moderately programmable logical
operations is that the new sample is either accepted or rejected. Probably the most
common setting for these tests is that the new sample is accepted if the new depth
value is less than the existing depth value, and rejected otherwise. If the sample is
rejected, no further processing takes place, and the existing sample’s depth, stencil,
and color values are preserved.

If the new sample passes, a number of things may happen. All of these are under
the direct control of the renderer and may be enabled or disabled between batches of
primitives. First, the new sample’s depth value may or may not replace the existing
sample’s value in the depth buffer (the usual setting is that it does). Second, the exist-
ing sample’s stencil value may be incremented, decremented, inverted, set to zero, or
replaced by the new reference value. Most simple rendering does not involve the sten-
cil buffer at all—it is only used for advanced rendering options. Finally, the new 
sample’s color may replace the existing color in the back buffer, or may be blended with
it in a variety of ways. This may also be enabled or disabled on a per-channel basis.

5.1 Graphics 469



For example, the game may choose to preserve the existing alpha channel for a partic-
ular rendering operation and only change the red, green, and blue channels. Currently,
the blending operations available are fairly limited, with all blending being of the
form (A · B) op (C · D), where A, B, C, and D are various values taken from the 
current sample in the back buffer and the new sample output by the pixel shader, and
where “op” is an add, subtract, minimum, or maximum operation. Different blending
operations may be performed on the color (RGB) and alpha channels.

In the past, this part of the hardware was even more limited, and could perform
only a simple “alpha blending” operation. This unit has many names, most of them
inaccurate but historical, such as the alpha blender (it now does more than simple
alpha blends) or the frame buffer blender (it technically blends to the back buffer or
current render target, not only to the frame buffer).

This largely fixed-function “back end” unit is likely to be a source of considerable
innovation over the next few years. It will probably become far more programmable,
although there are currently good performance-critical reasons why it is not already
fully programmable and simply part of the pixel shader. The most obvious reason is
that most hardware will perform the depth and stencil tests before the pixel shader
whenever possible and reject fragments before they require shading, giving a huge
boost to processing speed, since in a typical game scene approximately 80 percent of
pixels are rejected by the depth buffer. Of course, if the pixel shader chooses to modify
the fragment’s depth value, this is no longer possible, and on current hardware, there
are considerable performance penalties for doing so. For this reason, the functional
diagram shows the depth and stencil tests as conceptually occurring after the pixel
shader.

Multiple Render Targets

One modification to the previous pipeline is fairly recent—the capability for the pixel
shader to write to more than four channels of data (the RGBA channels of a single
back buffer). This is achieved by giving the pipeline multiple render targets, each of
which may have a different texel format and up to four channels each (still conven-
tionally named “RGBA”). The pixel shader may then output one color per render
target. However, these multiple render targets must be the same size, and currently
must have the same alpha-blend function applied to all of them. There is still only one
depth and stencil buffer rather than one per-render target, and the fragment either
modifies all the render targets or none at all.

In total, this feature effectively allows the pixel shader to produce more than four
outputs, which can often be useful when combining multiple shaders together for a
particularly complex effect—the multiple render targets can be read as separate textures
by pixel shaders in later rendering passes and recombined in interesting ways. Again,
this area is expected to evolve rapidly in the coming years.

470 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Shader Characteristics

Current shader models place considerable restrictions on what a shader can do and
what data it may access. Most of these restrictions are designed to allow the hardware
to run many hundreds or even thousands of these shaders in parallel. Parallelism is
mainly where graphics hardware gets its immense speed from, because graphics ren-
dering is an inherently highly parallel operation. Although these restrictions might
seem annoying and unreasonable in some cases, removing them would often also
remove a lot of the possible parallelism, dramatically reducing speed.

Part of the fine art of the graphics programmer is working within the restrictions
of this highly parallel framework to produce interesting real-time effects. In many cases,
this requires attacking a problem in a different way to maintain this parallel execution
as much as possible, even at the cost of some theoretical efficiency. For example, it
may be quicker to recompute a value many times over, rather than trying to calculate
it once, write it out, and then read it multiple times. Although this latter option
sounds faster in theory, it breaks the parallelism—the first operation must be per-
formed, the graphics hardware must wait until that operation is completed, and only
then can the second be started. This may result in slower overall speed because more
of the hardware is sitting idle and simply waiting for other parts of the chip to finish
their jobs.

The most notable restrictions placed on current shaders are discussed here. Some
of these restrictions may be lifted with future shader models and hardware, but in
many cases, it is expected that there will be an associated speed penalty, and so these
guidelines are still useful.

The most important restriction is that shaders may not write out to anywhere but
their assigned output slots, and they may not change where they write to according to
program execution. For a vertex shader, this output is the per-vertex position and
attribute data. For a pixel shader, this is the fully shaded fragment (pixel or sample, as
appropriate). Additionally, shaders may not read the results of any other shader in the
current batch of primitives, except for the specific case of a pixel shader reading the
output of a vertex shader. This can be achieved in other ways to a certain degree by
rendering to a texture and then reading that texture in subsequent passes, but render-
ing to and reading from the same texture within a single pass is not allowed.

Shaders may not have any persistent data. Each invocation of a shader starts with
the same context as every other. Any local data that one shader may have modified is
forgotten when that shader finishes, and registers are reset to default values. The only
difference is in specific input values. For the vertex shader, these are the attributes of
the respective vertex, fetched from various vertex buffers, and for the pixel shader,
these are the interpolated attributes of the vertices, and some other contextual infor-
mation such as the screen coordinate and which side (clockwise or counterclockwise)
of the triangle is being rendered.

5.1 Graphics 471



Shaders may not access arbitrary memory. They must declare ahead of time which
areas of memory they will access—typically restricted to a set number of “buffers”
rather than being arbitrary areas of memory—and because of the previous considera-
tions, they may only read from these buffers, never write to them. This is not only
because most shaders lack sufficient integer arithmetic functionality to handle arbi-
trary 32-bit addresses, but also because attempting to access any memory from both
the CPU and a shader at the same time is extremely difficult. Typically, only one of
the two may access any part of memory at a single time, and the handover must be
carefully synchronized.

Shader Programming Languages

The wide variety of shader capabilities, especially pixel shaders, and the rapid rate of
change, has lead to a profusion of shader languages, each targeted for a specific range
of hardware.

Most of these appear to be very similar to CPU assembly language, except with
the previous restrictions, and the fact that most registers are four components wide
(typically and interchangeably named either R, G, B, A or X, Y, Z, W), and most
instructions can operate on up to four of those components at a time. The experience
of programming these units will be moderately familiar to anyone who has done any
SIMD programming on a CPU, although it should be remembered that in most
cases, the CPU’s integer, arbitrary memory fetch, and looping and branching instruc-
tions are not available for most shader hardware, except in the newest examples.

Fortunately, there is also some higher-level language support to help hide this
complexity behind a veneer of C-like readability. In many cases, the languages look
very much like C, but with no pointers or arbitrary arrays, little or no global data, few
looping and conditional constructs, and specialized instructions to perform tasks such
as texture sampling. In addition, it is extremely common for shaders to fail to compile
because of complexity or length limitations, so the programmer is always required to
understand and adapt to the underlying hardware capabilities for which his code is
being compiled. As time goes on and hardware improves, these will be less and less of a
problem, and the difference between high-level shading languages and “real” C will be
further eroded. However, it is important to bear in mind that for many algorithms, the
performance characteristics of graphics hardware will be radically different from that of
a CPU. A change that may double the speed of an algorithm on a CPU may halve the
speed of the same algorithm when performed on rendering hardware and vice versa.

Fixed-Function Pipelines

The pipeline presented so far describes the current state of the art for consumer 
rendering hardware. However, there is plenty of older hardware still around and being
used for playing games, both in console systems and in PCs, and it is worth mentioning
some of the places in which the previous model must be modified when dealing with
older hardware.

472 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



First, internal shading precision can be reduced dramatically. The previous model
assumes all shaders run at full 32-bit floating-point precision. Currently, only the 
latest and greatest hardware does this. Most hardware only performs vertex shading to
this precision, while pixel shading is performed at a variety of precisions depending on
age, such as 24-bit floating point, 16-bit floating point, 12-bit fixed-point, and 9-bit
fixed point (8 bits plus a sign bit). The oldest hardware has only 8 bits of precision
internally with no sign bit.

Second, the range of programmability drops off rapidly. Even fairly new hardware
has tight limits on the functionality exposed. Pixel shaders have limited instruction
and texture counts, and may perform no conditional execution or dynamic loops.
Slightly older hardware allows only certain combinations of texture sampling and
places restrictions on the amount of computation that can be applied to texture coor-
dinates before being used to look up texels, and the maximum number of total
instructions drops to around 20. Still older hardware removes any semblance of a
“shader program,” and instead has only a set number (between two and six) of blend
units, each with a limited range of functionality—each equivalent to maybe only two
or three shader instructions at best, with less flexibility. The most basic hardware
allows only a single texture to be sampled, four possible operations performed on the
texel value, a depth-test unit, and a restricted alpha-blend unit.

Vertex shaders have only recently been able to read textures and to perform con-
ditional execution. As hardware gets older, the amount of space available to hold
shader “constant” data (such as animation bone matrices or scene lighting informa-
tion) drops rapidly, as does the number of instructions allowed in a single program.
Older hardware has no vertex shaders at all, and instead has a fixed-function unit that
transforms vertices by a matrix, lights them according to a variety of standard per-
vertex lighting formulae, and projects them into screen space. Older still, there is no
vertex processing hardware at all—the host CPU must perform all vertex calculations
and supply the rendering hardware with vertices already mapped to screen space with
lighting and texture coordinate calculations already performed.

Summary

Writing a full graphics engine for any cutting-edge hardware is extremely challenging.
The multitude of speed, memory, and quality trade-offs required is daunting and
changes every hardware generation. In most games, the rendering engine is a large
module taking most of the memory and processing power of the system, and as such
will have only a few specialized programmers who truly know how it works and what
the performance characteristics are.

However, this chapter should have given the reader a rough guide to the various
capabilities and performance characteristics of most engines and removed some of the
unknowns. It should also have established enough of a framework to allow readers to
start using most of the common graphics APIs to create their own rendering engine.

5.1 Graphics 473



Exercises

These exercises should be performed in a shader-editing environment such as
DirectX’s “Effect Edit” or any of the similar environments available from various
graphics card manufacturers, and in most 3D art packages.

1. Perform the Lambert diffuse calculation in both the vertex shader and the
pixel shader. Compare the differences between the two (the differences be-
tween Phong and Gouraud shading). Which has fewer artifacts? Which has
lowest cost? For what type of meshes is either acceptable? Which vectors
must be normalized before being used in the pixel shader? Try to amortize
the cost of per-pixel shading by moving only parts of the lighting equation
into the pixel shader and leaving others in the vertex shader. Do the same
with normal-mapped surfaces, rather than surfaces where the normal is 
provided only at each vertex.

2. Blinn specular lighting was discussed in the text. The other common 
version of specular lighting is Phong lighting (note that this is not the same
as Phong shading). Write both versions in a shader and compare the two in
visual appearance, trying to use similar-looking roughness values. Check
the appearance at grazing angles of the eye and of the light. Where does
each method have problems or artifacts? Which would artists prefer? Would
they like different ones for different materials? Which is more flexible?
What is the approximate speed difference between the two?

3. Blinn and Phong specular lighting classically use an exponent to model the
distribution of microfacets. This has no particular basis in reality; it was
simply chosen because (at the time) it was easy to calculate. However,
shader hardware can find exponents moderately expensive to perform, but
is very good at multiplies and adds. Try replacing the exponent with various
polynomial approximations, such as quadratic or cubic ones. How does this
change the appearance? Can you match the exponential model closely
enough? Can you produce specular reflection patterns that are not like an
exponent at all? Could this extra flexibility be useful to an artist? 

4. Try the same Gouraud versus Phong shading tricks with the various forms of
specular lighting, moving bits of code between pixel and vertex shader. How
much can be moved into the vertex shader and still look acceptable? Could
diffuse shading be done in one place while specular is done in the other?

5. Add an environment map to your shading model by reflecting the eye vector
in the normal of the surface and looking up the result in a cube map. Very
shiny objects do not reflect uniformly; the value changes depending on the
incident angle. This is commonly called a Fresnel term and there are many
ways to approximate it. Add such a term to your environment map reflec-
tion. Experiment with different approximations such as exponential and
polynomial ones.

474 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



References

[Blinn96] Blinn, Jim, Jim Blinn’s Corner, Morgan Kaufmann, 1996.
[Bogomjakov01] Bogomjakov, Alexander, and Gotsman, Craig, “Universal

Rendering Sequences for Transparent Vertex Caching of Progressive Meshes,”
Proceedings of Graphics Interface, 2001.

[Forsyth03] Forsyth, Tom, “Spherical Harmonics in Actual Games,” Proceedings,
Game Developers Conference, 2003.

[Haines02] Haines, Eric, and Akenine-Möller, Tomas, Real-Time Rendering, AK
Peters, 2002.

[Hoppe99] Hoppe, Hugues, “Optimization of Mesh Locality for Transparent Vertex
Caching,” ACM SIGGRAPH 1999, available at
http://research.microsoft.com/~hoppe/tvc.pdf.

[Ramamoorthi01] Ramamoorthi, Ravi, and Hanrahan, Pat, “An Efficient
Representation for Irradiance Environment Maps,” ACM SIGGRAPH 2001,
available at http://graphics.stanford.edu/papers/envmap/.

[Sloan02] Sloan, Peter-Pike; Kautz, Jan; and Snyder, John, “Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments,” ACM SIGGRAPH 2002, available at
http://research.microsoft.com/~ppsloan/.

5.1 Graphics 475

http://research.microsoft.com/~hoppe/tvc.pdf
http://graphics.stanford.edu/papers/envmap/
http://research.microsoft.com/~ppsloan/


This page intentionally left blank 



477

Overview

This chapter delves into the details of animating meshes for the purpose of character
animation. This includes how to make them move and deform according to an ani-
mator’s instructions, how to store the animations and replay them efficiently, and how
to blend multiple animations together. The primary focus will be on bone-based skele-
tal animation systems, since they are by far the most widely used systems today, used
by most tools and runtime systems.

It is assumed that the reader has a decent grounding in 3D geometry and is famil-
iar with the basics of vector and matrix math, and the transforming of vertex positions
and normals by matrices, as covered in Chapter 4.1, “Mathematical Concepts.”
Quaternions are introduced as an essential component of most animation systems,
although this is only a brief introduction and readers are urged to read some more
comprehensive texts on the subject before using them.

Character Animation5.2

In This Chapter

Overview
Fundamental Concepts
Animation Storage
Playing Animations
Blending Animations
Motion Extraction
Mesh Deformation
Inverse Kinematics
Attachments
Collision Detection
Summary
Exercises
References



Fundamental Concepts

Many fundamental concepts are important to understanding how to program an ani-
mation system. These include understanding the skeletal hierarchy, the concepts of
transforms and rotations, and models and instances. We will begin with the skeletal
hierarchy.

The Skeletal Hierarchy

At the heart of most bone-based animation systems are, of course, bones. Bones are
usually (although not always) arranged in a tree hierarchy, where each bone hangs
from a single parent bone, which in turn has its own parent bone, and so on. Each
bone may have multiple child bones. This matches most real-world skeletal hierar-
chies. As the song says, “the thigh bone is connected to the hip bone, the hip bone is
connected to the back bone,” and so forth.

Associated with each bone is a transform that determines how that bone’s motion
differs from its parent. If the transform is the identity transform, the bone will be in
exactly the same translation and orientation as its parent. If the bone has no parent,
the transform determines how that bone moves relative to some other defined space.
This is either the space of the object with the skeleton we are looking at, or just the
space of the world in general. The bone at the top of a bone tree has no parent and is
usually called the root bone. Most skeletons will have a single root bone, and thus only
one bone will have no parent. This root bone is often the pelvis or the shoulders or
sometimes halfway down the back. The concept of a synthetic root bone that somewhat
modifies this arrangement will be introduced later.

Animations change the transforms of each bone over time and thus create
motion. Although you could have animations storing the transform of the bone in
world space, encoding the transform of a bone as being relative to its parent is an effi-
cient mechanism in many ways. It also matches the ways people actually move. To move
the elbow but not the tip of a finger requires the coordination of many muscles to
move the elbow and then move the wrist, hand, and knuckles to compensate and keep
the fingertip still. Whereas moving the finger without moving the elbow is trivial.

This type of animation is commonly termed forward kinematics, where motion is
transmitted “forward” down the hierarchy of bones. The opposite, where an end-
bone’s position is fixed at a certain place and the bones higher up the hierarchy are
moved to keep it there, is called inverse kinematics or IK for short. Because motions
due to IK are rarer than motions due to forward kinematics, storing most animations
using this implicit hierarchy is very efficient.

The organization of bones and how they are joined to each other in a model is
usually termed a rig. This rig does not determine the animation on its own (it does
not change over time), but it does heavily influence what motions are possible, and
how easily some motions can be achieved. Although many games will use a single rig
for all the motions of a particular character, it is possible to have multiple rigs, each
for a different purpose. Some rigs may be designed for walking, some for acrobatics,

478 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



and some for “acting” work such as delivering dialogue in close-up. Although you can
write an animation system without the ability to change skeletons and rigs, and
require the use of a single skeleton for all purposes, it can limit what your animators
can do with objects.

Not all bones have parents. An example of this in the physical human body
(although not usually in the animation rigs used for human animation) is the shoul-
der blade (scapula), which is not joined to the rib cage in the same way the thigh bone
(femur) is joined to the hip bone (pelvis) with a ball-and-socket joint. Instead, the
shoulder blade is anchored to the rib cage with many large and small muscles that
allow it to move in many different ways that no physical joint would allow. For the
same reason, some rigs have bones with no parent bone—they are sometimes con-
strained in space by a series of rules, but the movement of another bone does not
directly cause motion. These systems are termed multiroot bone systems, and although
not very common, they are again very useful in certain cases.

The Transform

We so frequently talk about a particular bone’s orientation, translation, scale, and
shear that it is useful to have an umbrella term for this collection: a transform. A trans-
form expresses a geometrical transformation, and in almost every animation system,
these are linear transforms. That is, a line that is straight before the transform is also
straight after the transform. This is obviously a useful property in a rendering system
composed of triangles with straight edges and flat planes.

A transform can be represented as a 4×3 matrix, and is typically written “width-
ways,” with more columns than rows. (This does vary, but the notation does not 
alter the mathematics performed.) The left-hand 3×3 section represents the rotation,
scale, and shear, and the three-element right-hand column represents a translation.
Mathematical purists will also add a fourth row to the matrix always composed of

, but for animation purposes, it is usually left as implied, since it never
changes (and we certainly wouldn’t want to store it anywhere and have it take up
space). As we will see, memory use is a major problem with animation systems.

Any 4×3 matrix can be represented as a combination of the four elements: trans-
lation, rotation, scale, and shear. It is frequently convenient to perform the decompo-
sition of the matrix into these four elements when manipulating animations, since
they each have distinct properties and meanings, and can lead to better compression
and runtime performance. For example, in a “conventional” hierarchical skeleton that
closely mimics the human body, all bones simply rotate in the joint they have with
their parent bone. Thus, they have a fixed translation (representing the position of the
joint in their parent bone’s space) and can only change their orientation. Being made
of calcium carbonate and rigid, they cannot normally scale or shear. Thus, the posi-
tion can be held in the rig as a constant value, scale/shear can be discarded as being
always identity (zero shear, scale of one), and only the orientation needs to be stored
and played back for the animation.

0 0 0 1, , ,

5.2 Character Animation 479



As we will see, in practice things are more complex, and some bones use all four
components. However, the orientation-only and translation-orientation cases are so
common that it is worth optimizing both memory and execution speed for them.

Euler Angles

Euler (the name of a Swiss mathematician, pronounced “oi-luh”) angles are a set of
three angles that can describe any orientation of an object in 3D space. These three
angles each describe a rotation around a particular axis. Each rotation is applied to the
result of the previous one. Because there are three axes to choose from to apply each
rotation to, and because the order of rotations is important (a rotation of 90 degrees
around the X followed by 90 degrees around the Y is not the same as 90 degrees
around Y and 90 degrees around X), there needs to be an ordering and axis conven-
tion that goes along with the three numbers to pick from 1 of the 12 possible
axis/order combinations (and of each of these, eight possible sign/rotation direction
conventions). Sadly, at least seven of these combinations are used commonly in vari-
ous places, and probably many more. This means that when using Euler angles, you
need to know which convention is being used, and be aware that whichever conven-
tion you pick, it may not match anyone else’s.

For ease of reference, we will use a common convention for the rotation ordering,
xyz, which means that we first rotate around the x-axis, then around the y-axis, and
then around the z-axis. Although this “seems” the most obvious ordering, it is far
from it. In the mathematics world, a far more common ordering is zxz. Although this
rotates around the z-axis twice, because there is another rotation in the middle, it is
not the same z-axis. All the 12 possible orderings of Euler angles are equally powerful
(and have equal problems), mathematically speaking.

Aside from the angle-ordering convention confusion, Euler angles suffer from a
more serious problem, often given the term gimbal lock. As mentioned, Euler angles are
rotations about three angles. However, there are places where the values of these three
angles do not specify a unique orientation. Using the xyz angle convention, consider the
rotation (90,90,–90) performed on an object. Now consider the orientation (0,90,0).

The resulting orientation of the object from these two very different sets of angles
is identical (see Figure 5.2.1). Worse still, there are arbitrarily many combinations of
three angles that describe the same resulting orientation. The problem is that Euler
angles have poles in their formulations, where different rotations produce the same
result. Different conventions have poles in different places, but they all have poles.

For representing static orientations, this is actually not much of a problem. If you
give either of these two orientations to an astronomer (although astronomers use yet
another convention, so you may need to translate the values to that system first), he
will look at the same place in the sky. The problem comes when you want to store ani-
mations this way. Animation systems rely heavily on interpolation. You cannot store
every possible orientation between two poses, because as animation programmers, we

480 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



are frequently short of memory, so you must be able to interpolate smoothly between
adjacent orientations. If given the orientations (0,88,0) and (2,90,0) to interpolate
between, it is fairly obvious that these two are quite close together, and that (1,89,0)
might be a fairly reasonable half-way point. However, if given (0,88,0) and (88,90,–90)
to interpolate between, a numerical check suggests these are very different orienta-
tions, and that the halfway point is somewhere around (44,1,–45). Yet we know that
(0,90,0) and (90, 90,–90) are the same orientation, so in fact those two are far closer
than they appear, and (44,1,–45) is in fact a terrible midpoint.

There are ways to fix this sort of thing, rather than doing a naïve averaging of the
three values, but all these interpolation methods rely on fiendishly complex (and thus
expensive) computation, or end up transforming the Euler angles into another repre-
sentation, doing the interpolation there, and transforming it back. If you are going to
do that, it would be better to use one of the other representations all the time, rather
than constantly performing conversions.

The 3 × 3 Rotation Matrix

An obvious alternative to Euler angles is describing the orientation as a 3×3 matrix.
This has the benefits of simplicity. We can use the 3×3 matrix directly for our trans-
formations of vertices since we do not need to do any conversions to use it. Moreover,
two orientations that look the same will have very similar numbers in their matrices,
which means that a simple linear blend between the two will produce a sensible-
looking result.

5.2 Character Animation 481

Initial 
Orientation 

90 ° Rotation 
on x-axis 

90 ° Rotation 
on y-axis 

-90 ° Rotation 
on z-axis 

x

y

z z z z 

y y 

x x x 

y

Initial 
Orientation 

y

z

90 ° Rotation 
on y-axis 

z

x

y

x

FIGURE 5.2.1 Two series of Euler angle rotations can result in the same orientation.



The main problem with storing a 3×3 is, of course, that you have to store it. It is
three times as large as the three values required by Euler angles. Since storage space 
is typically at a premium for animation systems, this is an issue.

The other problem is that a 3×3 can represent a rotation, but it can also represent
any combination of rotation, scale, and shear. This is to be expected, since there are three
times as many values stored in a 3×3 than in a triplet of Euler angles. In practice, this also
means that if two 3×3s are interpolated, the result is not a pure rotation—some types of
scale and shear creep in, and the matrix needs to be orthonormalized. This is a fairly
expensive operation. In addition, the blend between two source rotations will not be
completely correct—performing a 30:70 blend between a rotation of zero degrees and
one of 100 degrees does not result in a 70-degree rotation, even after orthonormalization.

Quaternions

Quaternions are the best method of representing rotations without the polar prob-
lems of Euler angles or the large size and interpolation problems of 3×3 matrices.
Quaternions are composed, as the name suggests, of four components, usually
referred to as (x,y,z,w), although sometimes the ordering is given as (w,x,y,z). The
“meaning” of these components is generally that (x,y,z) defines an axis of rotation,
and the length of the vector (x,y,z) defines the sine of half the rotation angle. The
value of w defines the cosine of half the rotation angle (note that without w, you can-
not tell the difference between a rotation of 20° and a rotation of 340°, because both
have the same half-angle sine, but different half-angle cosines).

Generally, the only types of quaternions used for representing orientations or
rotations are unit-length quaternions. As the name suggests, and by extension from
three-dimensional vectors, these are quaternions whose lengths are 1, for whom x 2 +
y 2 + z 2 + w 2 = 1. A non-unit-length quaternion can be normalized by dividing it by
its length, similar to the way a standard 2D or 3D vector is normalized.

Because a quaternion defines an axis and a rotation angle, it shows no preference
to any particular orientation. All axes are the same, so there is no “pole” around which
orientations slew bizarrely, as there are with Euler angles, and the “distance” between
two orientations defined by quaternions is fairly intuitive. If the numbers seem simi-
lar, they are very similar. This leads to good interpolation properties. In most cases,
interpolation between two orientations always occurs along the path of least rotation,
which is a desirable thing when interpolating.

The one exception is that a single rotation can be represented by two different
quaternions. If one is the quaternion (a,b,c,d ), the other is the quaternion (-a,-b,-c,-d ).
These both represent the same rotation, and for many (but not all) purposes are inter-
changeable. When interpolating between two quaternions, it is common to first take
their dot-product. If it is negative, one of the quaternions—it does not matter which
—is negated before performing the interpolation. If this negation is not done, the
interpolation is still sensible, but it goes the “long way around,” which is frequently
not what is wanted.

482 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



For these various reasons, quaternions are almost always the animation program-
mer’s representation of choice for orientations, even though they might not be very
intuitive to work with. In practice, artists will author animations using a wide variety of
controls, often specialized for a particular joint type. Conversion to a single rotational
representation is necessary to avoid massively complicating the runtime animation code. 

Please note that this has been a very brief introduction to quaternions and why
they are important. For further information on quaternions for game applications,
consult [Lengyel04, Svarovsky00].

Animation versus Deformation

The two terms, animation and deformation, are often confused. The collective trans-
forms of a skeleton at a certain moment in time is called a pose. Animation is the
process of changing the pose over time. However, a pose cannot usually be rendered
on-screen directly—it is simply a list of transforms. Deformation is the process of tak-
ing a single pose generated by animation and applying it to a mesh’s vertices, moving
them to the correct position so they are ready to be rendered. In general, animations
do not know about vertices, they simply specify poses, whereas deformation does not
know about the concept of time, simply transferring poses onto vertices.

Typically, the animation part of a game cares only about animations: playing
them, sampling them, and blending them. It rarely, if ever, cares about actual mesh
vertices and almost exclusively deals with skeletons and poses.

The low-level triangle rendering side of a game rarely cares about anything higher
level than a skeleton’s pose. Whatever animations are playing, it simply takes the pose
on each frame, deforms the mesh into the given pose, and renders it.

This provides a clear separation between rendering and animation. This is useful
since it allows the renderer to run at a different rate than the rest of the game, which
is a vital part of many rendering engines. This is also a common place to make the
split between a CPU and graphics hardware. Most current engines perform all anima-
tion on the CPU, but then hand the poses to graphics hardware to perform the actual
deformation (and subsequent rendering) of a mesh.

Models and Instances

A single model is a description of an object. This usually consists of a mesh with ver-
tices, triangles, textures, and so on. Most importantly for an animation system, it
includes a skeleton that holds the properties of each bone and how they are linked
together. A single model can be used multiple times in a given scene, and there is no
need to replicate it for each object in that scene. For example, each bird in a flock of
seagulls will use the same vertices, the same texture, and the same skeleton, and thus
they will all use the same seagull model.

However, each seagull will need some unique data: its position and orientation,
the state of any animations playing on it, and the current positions of its bones. In

5.2 Character Animation 483



addition, there will be game-specific data such as how hungry the seagull is, who its
friends are, and whether it has picked up the rocket launcher.

All this data is particular to that one seagull, and lives in an instance. An instance
stores all the unique information about a certain item in a scene, and holds references
to shared data that describe the item.

Animation Controls

When you play an animation on a particular instance in the scene, certain things need
to be stored: the animation, when it started, what speed it is playing at, what blending
weight it is playing at, and so on. You also need to be able to later stop the animation
or change its speed. Thinking of the flock of seagulls again, many of the birds will be
playing the same “flap wings” animation, but they will be playing them at different
speeds, and start them at different times. Thus, this data cannot be held in the anima-
tion itself, since there is only one of those shared between all the seagulls. In addition,
you certainly do not want to make a copy of the animation for each seagull, because
animations are quite large objects, and you would quickly run out of memory.

However, this data cannot be held directly in the instance. A particular instance
will often have many animations playing on it, all blending together or playing on dif-
ferent sets of bones. Each of these sets of data is usually independent, and you need a
way to stop or change the speed of a particular animation without affecting the rest. It
is also moderately common to have the same animation playing on a given instance
more than once, but with different values. For example, when a soldier fires his auto-
matic rifle once, he may play the “recoil” animation, which may last a second. If the
soldier fires the weapon on automatic, he will play the animation once for each bullet
fired, and may fire tens of bullets a second. Thus, at any one time, he may have 10 or
more of the same recoil animation playing, but offset in time. If his aim is good, his
target may also be playing the “hit by bullet” animation a lot, too.

This leads to the concept of an animation control, which is a data structure that
links a particular instance in the scene with a particular animation, stores information
such as the animation’s speed and start time, and can be told to stop, pause, or change
speed. Since each instance may have many controls hanging from it (one for each ani-
mation playing on that instance), and each animation may have many controls point-
ing to it (one for each instance playing that animation), controls usually live in two
linked lists: one for instances and one for animations.

Animation Storage

It is always useful at the planning stage of a system to throw estimates around, just to
check how feasible certain ideas are going to be. This is a sanity check, before you start
all the programming to see whether your scheme is going to work easily, or whether it
is “pushing the back of the envelope.” Even with rough calculations scribbled on the
back of something handy, you will likely find that you are going to have to work hard
to fit within processor and memory constraints.

484 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Therefore, let us do some quick calculations on the simplest animation system we
can think of: a scheme where we store a 4×3 matrix for each bone, one for each frame
of each animation. This allows us to do very little work when replaying the anima-
tion. Simply pick your frame and use the 4×3 matrix directly.

Let us assume some fairly typical numbers for a game, such as 30 frames per 
second, 5 major characters with 100 animations each, 15 minor characters with 20
animations each, each animation lasting an average of four seconds. All characters
have 50 bones. These are very rough figures, of course, and probably underestimate
many values, but we are mainly interested in order-of-magnitude results.

Well, that is not going to go down well with the project lead. It is unreasonably
large for current-generation consoles such as the PS3 and Xbox 360, and exceeds the
capacity of some of the less powerful consoles and portable systems.

To give an idea of the numbers we should be aiming for in these discussions, an
Xbox 360 console has 512MB of memory and a Wii console has 88MB of memory.
The animation system, if it is lucky, will get perhaps a quarter of that, so you might
have 128MB to play with on the Xbox 360 and about 20MB on the Wii. Even though
next-generation consoles will have much more memory, you will also want higher
bone counts and more animations, so the previous numbers are quite conservative.

So, what can we drop? You cannot reduce the number of characters, the number
of animations, or the number of bones, since those decisions are made by the design
and art department. Of course, if they are asking the impossible, you need to tell them
this, but these types of numbers have been done by other games, so it can be done.
With these numbers in mind, let us look at various ways of solving the space problem.

Decomposition and Constant Elimination

The first step is to look at what is being stored for each bone. A 4×3 matrix is a good,
complete description, but as previously mentioned, it encodes four quite separate
concepts: translation, orientation, scale, and shear. Many bones in many animations
do not perform some of these motions. Only a tiny minority of bones has any shear at
all, and some animation systems do not even support the concept. Most bones will
not perform scaling, with the main exception being “bones” that represent muscles
(e.g., the large muscles in the chest, upper arm, thigh, and calf, and the complex sys-
tems of facial muscles). Bones representing actual skeletal bones with fixed joints,
such as the knee, hip, and elbow, will not have any translation change during their
animation either. Many mechanical systems (such as weapons) have parts that only
slide relative to their parents; they do not change orientation, only position. 

In addition, some animations simply do not move all bones. An animation of a
character sitting at a bar will mainly move parts of the body above the waist. The char-
acter may tap one foot, or shift in position slightly, but most animations will not

TotalSpace sizeof float= ⋅ ⋅ ⋅ ⋅( ) ⋅ ( ) ⋅ ⋅30 4 50 4 3 5 1000 15 20 220( ) + ⋅( )( ) = Mb

5.2 Character Animation 485

MB



move most of the bones of the legs. These can therefore be stored as constant values,
rather than storing the same value at every frame.

Therefore, for each bone, we can decompose the 4×3 matrix into its four compo-
nents and check which components are constant or identity over the lifetime of the
animation. For each animation, we can store constant values just once and eliminate
identity values completely. Translations require three values, scales require three values,
shears require three values, but orientations, as we have seen, are slightly annoying,
and it is probably best to use a quaternion, which is four values.

That is going to save quite a bit of memory. Assuming that the constant values are
a trivial amount of storage and effectively insignificant, let us again examine our rough
numbers.

Assume that only 10 percent of bones have shears, 20 percent of bones have scal-
ing, 50 percent of bones have changes in translation, and 90 percent of bones have
changes in orientation. Of course, the type of game and the characters used in it will
change these figures quite a bit, and these are slightly pessimistic, but again, this is a
back-of-the-envelope calculation. Therefore, the average space required for one bone
for one frame is:

This is considerably better than the original 48 bytes, since we have halved the
space required, although, 110MB is still more than five times our budget on a Wii.
Additionally, we have introduced some runtime costs. For example, instead of simply
reading a 4×3 matrix, we now have to look at the animation, read the data that is
there, fill in the rest from animation constants or identities, and then reconstruct the
4×3 matrix result from the four separate pieces of information: translation, orienta-
tion, scale, and shear. However, this extra work is well worth the effort. This will form
the basis for all the other optimizations we will discuss.

Keyframes and Linear Interpolation

The next most obvious step is to use fewer than 30 frames per second. Animations
are, overall, smooth, and we can borrow a technique from the days of hand-drawn
animation known as keyframes. Cinema film is 24 frames per second, but when ani-
mation was all drawn by hand, many animation houses would only draw 12 frames
per second and show each frame twice. However, 12 frames per second is still a huge
number for an hour-and-a-half-long movie (almost 65,000 frames). If your lead char-
acter appears in maybe half of those, they need 32,000 frames drawn. Even if these are
drawn very roughly in pencil, and inked and colored by other artists later, this is a
daunting number for one person to create. Typically, very few artists can draw a major
character to a high enough quality, so farming the motion of that character out to
hundreds of artists is not sensible, since you will end up with 100 characters that
merely look similar, but move very differently.

bytesPerBonePerFrame = ( ) ⋅ ⋅( ) +sizeof float .0 1 3 00 2 3 0 5 3 0 9 4 24. . . bytes⋅( ) + ⋅( ) + ⋅( )( ) =

486 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



The solution is to have the main character artist only do certain key important
frames of the character, such as static poses, the start, middle, and end of any motion,
and more detail on any difficult and uncommon motions. These keyframes can be
anywhere from one every quarter of a second, to many seconds apart, depending on
the complexity of the motion. As you can see, this reduces the workload on the lead
artist considerably.

These keyframes are then passed to other artists, who draw the frames in between
them. The idea is that all the essential characteristics of the motion are in these
keyframes, and it is a much simpler task to draw the frames making up that motion
once these guidelines have been drawn. These two roles have given rise to two impor-
tant terms: keyframe and tweening (the process of drawing the frames in between the
keyframes). Because the lead artist has already laid out the major facets of the motion,
there is a limit to how much these “in between” frames can diverge from the original
vision.

We can use these concepts in our animation code. We do not need to store ani-
mations at 30 frames per second; we can store them at a lower speed and interpolate
between the keyframes to produce the intermediate frames. This is one reason why
quaternions are so much easier to work with than Euler angles. As discussed previ-
ously, quaternions interpolate far better with no special poles where interpolation
becomes difficult.

Therefore, we will use the simplest interpolation there is: linear interpolation.
Given any two adjacent keyframes, to find the frame 25 percent of the way (in time)
from the first to the second, we multiply the first frame’s values by 0.75, the second
frame’s values by 0.25, and add the results together.

For translation, scale, and shear, this produces good results, but as usual, orienta-
tion is a special case. The problem is that when storing orientations either as a 3×3
matrix or as a quaternion, there is a constraint on the values. A 3×3 must be orthonor-
mal, which means that the three column vectors must be of unit length (meaning the
matrix is normalized) and at right angles to each other (meaning the matrix is orthog-
onal). Therefore, orthonormal = orthogonal + normal. A quaternion also needs to 
be normalized, which means that it is of unit length. Whenever you perform linear
interpolation on either of these representations of an orientation, you will find that
the result is frequently not normal or orthonormal, which leads to unwanted shear
and scale effects creeping in.

Fortunately, there are good ways to renormalize orientations and prevent this. For
quaternions, simply divide all four numbers by the quaternion’s length, and for 3×3
matrices, perform a combination of normalization and moving the column vectors 
so that they are at right angles to each other. However, as discussed previously, inter-
polation of 3×3 or 4×3 matrices is not a good idea, since it is expensive and does not 
produce very good results. Notably, interpolating two 3×3s that represent rotations
can introduce scales and shears that were not in the original matrices.

5.2 Character Animation 487



It is interesting to note that Euler angles do not suffer this problem; every possi-
ble triplet of values is a valid orientation and will never produce scale and shear
effects. However, the problems with interpolation and poles make them so hard to use
in other ways that quaternions are usually the better solution, and interpolating and
renormalizing quaternions is not a difficult process. There is a note later in this chap-
ter on the best way to interpolate quaternions; there is more than one. Before diving
into the math libraries or textbooks, it is worth reading this brief discussion of the
problem. The solution may be simpler than you expect.

So just how much keyframing can we do? How many frames can we throw away
and produce by interpolation rather than storing them? To answer this, we should
first mention the problems associated with keyframes.

First, and most obviously, you are losing data. If the animation is complex with
high-frequency components, this detail will be lost. Think of the animation of a two-
bladed helicopter rotor. If it is spinning at 10 revolutions per second, and you store
the animation at 30 frames per second, each blade will be sampled at three different
orientations in each full revolution. For simplicity, let us measure the orientation in
degrees and say that the three samples are 0°, 120°, and 240°. This is fine, since you
can reconstruct the idea that the rotor is spinning, and playing the animation slowly
using interpolation will show it moving smoothly in a circle. However, if we use
keyframes and only store this animation at 10 frames per second, blindly assuming we
can interpolate the rest, we will find that all the frames we store have the same value
in them. From this, all the interpolation in the world will simply show that the rotor
is not moving. We obviously need more than 10 keyframes per second in this case.

On the other end of the scale, if a person is asleep, his animation consists almost
entirely of the rise and fall of his chest as he breathes. This motion has a repetition
length of around five seconds, so storing only two keyframes, one with a risen chest
and one with a fallen chest, over this period seems possible, and yet still produces good-
looking animation. In practice, it is a little more difficult. What if the two frames you
chose to use were both in the middle of the breathing cycle, with one as the chest is
halfway through moving up and one as it is halfway through moving down? Both are
the same, and again, the chest would not move. It is clear that as well as careful choice
of frequency, it is important to choose carefully exactly which frames to store.

Another problem is that we are using linear interpolation, which assumes that
given two keyframes, the motion between them is a straight line. This is a reasonable
approximation in many cases. However, consider a bouncing ball. At no point is its
motion that of a straight line. In fact it is (very nearly) a parabola between the
bounces. As long as we have enough keyframes, approximating the motion as a series
of straight lines between each keyframe is reasonable. However, as we take fewer
keyframes, the approximation looks far worse, and you do not need to get as low as
the previous examples of only having two or three keyframes per cycle before the
motion looks very bad with linear interpolation. Often, having up to six keyframes
per second still looks rather poor.

488 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Even more of a problem is selecting which of the original frames to keep and
which to throw away. For example, if we do not have a keyframe showing the instant
the ball hits the ground, the linear interpolation will ensure that the ball never hits the
ground, which will look very strange.

Therefore, there is a limit as to how well keyframes can be used to reduce the
amount of data stored. Of course, we can fairly easily change the number of
keyframes used for each animation. Some require many keyframes and will tolerate
very little interpolation; others require far fewer keyframes and can use a great deal of
interpolation. To pick an extremely rough figure out of the air, most motions will start
to look poor if fewer than five keyframes per second are used. However, note that hav-
ing just one animation at double this rate takes up the same space as four animations
at half this rate! Therefore, this cannot be taken as an average number for the sake of
computing the space taken by animations. An average value around 10 keyframes per
second is more realistic. This is still a good improvement from 30, which is a threefold
reduction. Our memory use is now down to 37MB, which would fit comfortably in
an Xbox 360, but would still be a bit too large for a Wii.

Higher Order Interpolation

Many of the problems with interpolation are related to the way we reconstruct the in-
between poses with straight lines. Most motions are not straight lines; they are some
sort of curve. Therefore, it probably makes sense to use a curve rather than a straight
line for reconstruction. However, which curve? This book is not nearly large enough
to look at all the possible curves, nor to even introduce the mathematical basis behind
curves and splines, so we will stick to a few simple case studies.

The simplest place to start is to replace each linear segment with a cubic Bézier
curve. This is a very flexible and controllable curve that is also very simple to evaluate.

For linear interpolation between two stored frames F1 and F2, we define a purely
conceptual time t that is 0.0 at F1 and 1.0 at F2. For linear interpolation to obtain a
result R, the calculation is simple, as shown in Equation 5.2.1.

(5.2.1)

We can see that when t is 0.0, at the start of the segment, R is entirely F1, and
when t is 1.0 at the end, R is entirely F2. For times above 1.0, we would instead switch
to the next segment between F2 and the next sample, F3, and a new conceptual time t
that again goes from 0.0 to 1.0.

For a curve, as well as defining the start and end points, we also need to be able to
control the tangents of the curve at those end points (when t is 0.0 and when t is 1.0).
We define two extra frames of data T1 and T2. These are not real frames since the ani-
mation does not go through them as it progresses. They simply define the shape of the
curve. As you can see from Figure 5.2.2, as the curve leaves F1, it is heading toward
T1, and as it arrives at F2, it has been coming from T2. The tangent of the curve at the
end points F1 and F2 is defined by the values of T1 and T2, respectively.

R t F t F= −( ) ⋅( ) + ⋅( )1
1 2

5.2 Character Animation 489



The curve is evaluated using Equation 5.2.2.

(5.2.2)

The cubic Bézier curve is quite good, as it gives explicit control over the two
places the curve travels through, and also gives explicit control over the gradient of the
curve at those two points. With this control, we can use Bézier curves to get some very
good-looking approximations to the previously mentioned bouncing-ball case.

The main problem with Bézier curves is that for each section of the curve, you
need three control points. Although each section uses four, we can assume that the
final control point, F2, is shared with the next curve and used as its F1; thus, effec-
tively, each segment only requires the memory to store three control points. However,
this is still three times as many stored numbers as linear interpolation. One interesting
variant of the Bézier curve is found by replacing T2 with F2 – (T2 – F2) or 2F2 – T2. In
other words, pointing the F2 to T2 vector “the other way,” so that it points beyond the
end of the curve, not back into it. Note that you have not really changed the nature of
the curve, you simply stored its control points in a different manner. So, if this has not
changed the curve, why is it interesting? Because it allows you to share this new T2

with the next curve’s T1 if you want. In most cases, this is exactly the desired behavior,
and reduces most curve sections to only requiring two control points instead of three.

There are a few other variants similar to this. For example, if you replace T1 with
the vector (F1 – T1) and T2 with the vector (T2 – F2) in the formulation, you get
another standard curve called a Hermite curve. The same trick of sharing adjacent tan-
gent vectors can be done with this representation.

Note that with this version, we need to add a further refinement. Each section of
the curve uses four control points—F1, T1, F2, and T2. Normally, F2 and T2 of one
section can be used as F1 and T1 of the next section, but this is not always true. The
bouncing-ball example shows this well. When the ball bounces, the T2 of one section
is not shared with the T1 of the next, because the ball suddenly changes direction.

R t F t F= −( ) ⋅( ) + ⋅( )1
1 2

490 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

F1

T1

T2

F2

t=0.25

FIGURE 5.2.2 A cubic Bézier curve with associated control points. 



This is called a discontinuity. In mathematical terms, this type of discontinuity is a
“C1” discontinuity, because the slope or velocity of the curve changes abruptly. A
“C0” discontinuity is one where the actual value suddenly changes, such as if the
object is teleported somewhere, which is far rarer in animations, but it does happen.
There is also a “C2” discontinuity (and, of course, the sequence continues to C3, C4,
etc.), which is harder to see, and is where the acceleration changes suddenly. These
happen often in animations, such as every time a muscle is tensed, there is a change in
acceleration, and thus a C2 discontinuity. In general, preserving C2 continuity is not
a terribly important feature of animation systems, and it is broken frequently.

By tying together curves by sharing end and control points like this, we easily
achieve C0 and C1 continuity. (We also happen to achieve C2 continuity in this case.)
However, where you do not want this continuity, you need to be able to specify multi-
ple end points for adjacent curves, such as the place where the ball bounces. You can do
this by having a list of indices that tell you, for each section of curve, which control
point to use. Using this, each section will have four indices: one each for F1, T1, T2, and
F2. However, adjacent curves will often have indices referring to the same controls,
allowing for smooth interpolation in most cases or discontinuities where not wanted.

Just how much memory can be saved by using Bézier curves instead of linear
interpolation? The evaluation of the animation has become a little bit more expensive,
since each section of the curve has actually increased from having a single sample to
having two (and maybe a third for the occasional C1 discontinuity), and the index list
has been added, which is small but still significant in size. However, this added size for
each section is more than made up for by the reduction in the number of sections that
need to be stored. A very general figure is that cubic curve interpolation can use roughly
one-tenth the number of sections that linear interpolation can, and look just as good.

Therefore, the space required for each section has risen. We now need just over
twice as many samples (let us assume 2.1 times as a reasonable modifier, if 10 percent
of the curve sections require a C1 discontinuity), plus the index list, which is four
integers per section. This puts the total per section at (24×2.1) + (4×sizeof(int)), which
is 66.4 bytes or 2.77 times as large per curve section. However, we are using one-tenth
as many sections, so the real multiplier is a very encouraging 0.277 (which is around
one-quarter) bringing the total space from 37MB down to just over 10MB. This is
now getting very close to our target of 8MB, but not quite.

There are plenty of other curve types out there, one interesting one being
Catmull-Rom curves. Although more complex, they can further reduce the number
of samples required by making the T1 and T2 tangent samples implicit, rather than
explicit. Rather than storing them as separate entities, they can usually be stored as
combinations of the surrounding F samples. This only works where you do not need
explicit control over the exact value of the tangent at the control points and only
require the tangents to be reasonable and the curves to be C1 continuous. Since this
is the common case, the saving in space is useful. This extra bit of saving now gets us
into our target memory slot.

5.2 Character Animation 491



All the curve types introduced so far are uniform curves, which means that all sec-
tions of the curve represent the same amount of time. In practice, animations tend to
have short periods of time with many changes and long periods where the animation
is smooth. It would be nice to store fewer curve sections for the smooth parts. This
can be done by storing a time with each section of curve that says when the section
starts. This way, some curve sections can refer to a long period of time, and others can
refer to only a short period. The times are more properly called knot values, and these
curve types are called nonuniform curves. Some of the uniform curves already men-
tioned also have nonuniform versions.

One interesting thing about nonuniform curves is that the index values are no
longer strictly necessary. The curve sampler can always assume that the T2 of one sec-
tion is shared with the T1 of the following section, meaning that the curve is always
continuous. To introduce a discontinuity of any sort, one or more sections of the
curve can be shrunk so that they take zero time by setting the start time of the next
section to be the same as this section’s start time.

This allows curve types that are always continuous to be used, which opens up
new possible types. One very powerful curve is the B-spline, which is a generalization
of most of the curves already mentioned. The trickiest part about using B-splines is
that although the curve is influenced and shaped by the control points, it does not
necessarily travel through the control points because B-splines are a noninterpolating
curve type. Despite this, B-splines are very quick to evaluate, have many elegant
mathematical properties, and are what many commercial animation packages use.

Looping

Many animations loop. The loop must be continuous with no pops, either in value
(must be C0 continuous) or in velocity (must be C1 continuous). You should be able
to rely on your animators to create animations like this, where the first and last frames
match exactly and are smooth. However, it is important when considering questions
such as compression, timing, and changing speed that you remember to consider the
looping case and ensure that whatever transformation you make to the data preserves
any C0 and C1 continuity.

The more generalized case of looping one animation repeatedly is that of playing
one animation directly after another. A very common example is that you have a walk
cycle and a run cycle, each of which loops properly. Then you also have an animation
that shows the transition from walk to run. The start of this animation joins seam-
lessly with the end of the walk cycle, and the end joins perfectly to the start of the run
cycle. Again, animators are accustomed to creating animations that do this, and it is
important that the animation code does not break this continuity or impose special
conditions on that continuity. One constraint that is acceptable is to require that 
both animations be playing at the same speed, since maintaining C1 continuity is
extremely difficult otherwise.

492 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



In practice, this simply means taking care when using curves to compress your
animations and ensuring that the tangent curves at each end are maintained wherever
possible.

Playing Animations

When you want to sample an animation, you need to pick the time in the animation
in which you are interested. This time is called the animation’s local time. Local time
typically begins at zero at the start of the animation and ends at the original length of
the animation (when played at normal speed). Thus, a five-second animation has
local time going from 0.0 to 5.0.

The other time that games use is global time, which is the time that actually passes
in the game. An animation’s local time may pass at a different rate to global time
because the animation is being played slower or faster than it was originally authored
at, or it might even be played backward, in which case local time will decrease rather
than increase. However, forces such as gravity run on global time—you cannot (usu-
ally) speed them up or slow them down. There is a third time, known as real-world
time, which is what the user perceives. This usually keeps lockstep with global time
while playing, although the user can pause the game or watch a slow-motion replay, in
which case they will go out of lockstep. Animation systems do not generally care
about real-world time. It is mentioned simply to clarify what global time is and is not.

The speed of an animation is the ratio between the passing of global time and the
incrementing of local time. If the speed is set to one, both will pass by the same
amount each frame, and the animation will be played back at the same speed at which
it was authored. If the speed is set to one-half, local time will progress at half the speed
of global time, and the animation will play more slowly (it will last twice as long).

Some animation systems, especially those based on film and television tools, store
local time not as a number of seconds, but as a number of frames, using 24 per second
for film and either 50 or 60 per second for television. This is convenient for entirely
keyframed systems, where every frame is stored in memory. To find which frame you
need, simply take local time, chop off the fractional part leaving the integer, and look
up that numbered frame. However, as soon as you have animations that are sampled
at lower frequencies (which, as we have seen, is a huge space-saver), this system simply
makes life more complex, since the 24 intervals per second now corresponds to no
actual data concept at all, and simply makes development more confusing. For this
reason, it is recommended that time be kept in seconds rather than frames.

Some systems “normalize” local time and say that it always starts at zero (the start
of the animation) and ends at one (the end of the animation), and change the speed
that the animation plays to stretch or shrink it to its required duration. An animation
that was originally four seconds long, played at “original” speed, is actually played at
quarter speed so that its one unit of local time lasts four seconds of global time. In
practice, either arrangement is equally valid. The slight advantage of not normalizing

5.2 Character Animation 493



is that most animations are played at the same speed they were authored at, which can
make for easier debugging to be able to instantly see that an animation is four seconds
long, and that at the moment, you are sampling it three seconds in.

Scrubbing

No matter how you deal with the question of “when is now,” one thing that is impor-
tant for an animation system is that it can deal with multiple global times simultane-
ously. This sounds like an odd requirement—there should surely be only one global
time in a game at a time! Well, yes, and you will usually be sampling animations at the
global “current” time—usually the time being currently rendered. However, there are
cases in which you will want to sample animations in the future or the past, without
changing the concept of “now.” An obvious example is when looking at a character’s
footsteps and deciding where they are walking to. As humans, when we walk, we look
ahead and predict where our feet will be planted, and a good animation system must
be able to do the same to a certain extent. Similarly, prediction is useful when doing
animations for reaching for objects, throwing objects, jumping (typically, the game’s
jump happens the instant the takeoff animation starts, not when it ends, to avoid “lag”
on the controls), and is also used for motion extraction and compensation.

The ability to sample animations at any time (within a certain sensible range
around the global time) is called scrubbing, which is a term borrowed from film and
sound editing. It is obviously simple to sample a given single animation at any time
you wish. After all, you need to be able to do this because multiple instances may be
playing a given animation at different times. The important thing is to ensure that all
the surrounding code does not rely on algorithms that do not cope well with multiple
random accesses. For example, any technique that requires you to go from frame A to
frame B by having to perform some operation on all the frames in between is not
going to be useable in a real game—the gap between frame A and frame B may be
large, requiring many of these operations. Worse, frame B may be before frame A,
which is tricky if the operations are hard to reverse.

One example is the practice of encoding animations as deltas from the previous
frame. At first glance, this sounds great, since many animations have only very small
frame-to-frame changes, which allows you to compress them to an extremely small
memory size. Unfortunately, if you want to sample frame 200, you need to start at the
beginning and apply all 200 deltas to get your result. In some cases, you can remem-
ber that last frame, you wanted to sample frame 198, and so you can start with the old
result and apply only two deltas. In practice, storing this information rapidly spirals
out of control and gets very complicated. It also does not help the worst case, which is
still that of applying 200 deltas. There are various modifications to this scheme that
make it less of an issue, but in general, it is unwise to use techniques that rely on per-
sistence of data from a previous frame except in very specialized circumstances.

494 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Blending Animations

One of the fundamental components of a good animation system is not just the capa-
bility to play back an animation, but also the capability to play back multiple anima-
tions and blend them together.

The Lerp

The fundamental unit of operation is the weighted blend between two transforms.
This is usually called a linear interpolation or lerp. Once you can do one of these, every-
thing else builds on top of it. Although, in practice you can usually achieve multiway
blends more efficiently than simply as a sequence of two-way lerps.

Blending two offsets is easy, requiring simple vector calculations. Blending two
scales and shears is similarly easy. Blending two rotations is only slightly more work.
Whether you are storing a rotation as a quaternion or as a 3×3 matrix, the principle is
the same: perform a standard blend for each component (four for a quaternion, nine
for a matrix) and then normalize the result. As mentioned earlier, normalizing a
quaternion is considerably simpler than normalizing a matrix. However, in some cases,
an animation system will need to blend matrices, such as when blending the results 
of an external system (such as physically simulated ragdolls) that does not use quater-
nions, so it is helpful to have code paths that blend matrices as well as quaternions.

In both quaternion and matrix cases, it is important that both source rotations
are also normalized before performing the blend. Just normalizing the result will not
ensure that the lerp actually looks good, since it will blend from one to the other, but
not in a linear fashion. However, it is usually sufficient to only require that the sources
be “moderately normalized.” They do not have to be perfectly normalized/orthonormal
for the blending to do the correct thing. Although this seems like a curiously fine 
distinction, in practice it is useful. The source rotations are typically obtained by 
sampling animations, which as we have seen also involves interpolations of rotations.

When interpolating the control points on an animation curve, we perform calcu-
lations on quaternions, and these operations themselves require normalization. One
option is to fully normalize those results, then perform the blend between the two
animations, and fully normalize again. However, even for quaternions, normalization
is not cheap, as it involves a square root and divide (or, equivalently, a reciprocal
square root, which some hardware finds just as easy). However, we can replace the
postsampling normalize operations with a “mostly normalize” routine that uses an
approximation to the square root instead of the fully correct result. Exactly what form
this approximation takes varies according to the platform. Some platforms have a fast
approximate square root built in, on some you will use a small lookup table, and on
some you can do a (very) few Newton-Rapheson iterations on an initial guess.

For the two-way blend, this removes two of the three normalization operations,
thus leaving only the last one, which usually does need to be to a high precision. This
can result in good speed savings, with little or no loss in visual quality.

5.2 Character Animation 495



Quaternion Blending Methods

In the previous section, we blended two quaternions by simply adding their compo-
nents together and normalizing. However, is this even valid for quaternions, since
surely they are not normal vectors? Most texts say this is not valid and talk about
spherical interpolation or slerp as being the only sensible way to blend two quaternions
together. There are in fact at least three plausible ways to blend two quaternions, and
possibly others yet to be discovered. The three methods considered here are:

Normalizing lerp, or nlerp: The simplest of the three. The four components of the
two quaternions are simply blended together linearly and the result renormalized. 

Spherical lerp, or slerp: Middling complexity, and the one found most frequently in
textbooks concerning quaternions.

Log-quaternion lerp (also known as exponential map interpolation): Fairly 
complex. It involves “unwrapping” the quaternions into a locally flat space and
then performing interpolation.

Note that in all three cases, the two quaternions must be in the same hemisphere
(strictly, the same hyperhemisphere, since it is a hemisphere in four dimensions),
which means that we should take their dot-product, and if it is negative, negate one of
them before applying any of the three methods.

For the interpolation of quaternions, a desirable property is for the interpolation
to be along the shortest path. This is known as the path of “least torque,” because the
resulting rotation involves the least twist from one orientation to the other.

A second desirable property is that the interpolation occurs at a constant speed.
In other words, as you smoothly interpolate from quaternion A to quaternion B, the
result moves smoothly from one orientation to the other, rather than speeding up or
slowing down along the way.

The third desirable property is whether three or more quaternions can be blended
together, with the results independent of the blending order. This is similar to the
property of associativity, although not identical. Ideally, the order in which the anima-
tions are specified should not be important.

To skip the lengthy and rather dull analysis, each of the three methods satisfies
two of the desired properties, but not a third. It is in fact possible to prove that no
method can ever provide all three. Nlerp does not have constant speed, slerp does not
associate, and exponential map interpolation does not travel along the shortest path.
Therefore, we need to compromise in some way, whichever method we choose to use.
The question is, which involves the least-visible compromise?

The first thing to mention is that in animation, we will usually be interpolating
between two (or more) quaternions that are quite close together. Over 45 degrees is
extremely unusual, because we only need to interpolate when we are sampling a com-
pressed animation (interpolating between subsequent frames, or control points in a
curve, or whatever method you use), or we are trying to blend multiple animations

496 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



that hopefully look moderately similar to each other. Either way, large interpolations
are not likely to look very good, even with a mythical “perfect” interpolation scheme,
simply because we are making up data that is not actually there. In the same way, no
matter what clever tricks you use to enlarge a small image, it is still going to look like
an indistinct mess since the data simply does not exist. Hopefully, such large interpo-
lations will not be very common.

Conversely, when interpolating quaternions that are very close to each other (e.g.,
less than one degree apart), all three methods produce virtually identical results. In
this case, we should naturally opt for the one that is simpler to execute.

So the question is, for interpolations of around 45 degrees, which looks best? The
answer is somewhat surprising. Exponential map interpolation does not look very
good because it does not follow the path of least distance between the two. This effect
is only slightly visible at small angles, but as the interpolation angle grows, becomes
very visible.

Spherical interpolation looks the best because it follows the path of least torque,
and it has constant velocity over the duration of the lerp. However, it has a big disad-
vantage in that it is not associative, so we may have some trouble using it. It is also
moderately expensive to perform.

Normalizing linear interpolation is most obviously “hacky,” so much so that it is
not even mentioned in many textbooks about quaternions. It does follow the path of
least torque, but the apparent speed of interpolation changes during the course of that
interpolation. So just how noticeable is the changing interpolation speed? The answer
is, for practical angles: not at all. For an interpolation angle of 45 degrees, the differ-
ence between slerp and nlerp is tiny—only around five percent. In practice, this is
almost impossible to detect and far from objectionable. The best way to prove this is
to write some actual interpolation code that works by either slerp or nlerp, blend
some animations together, and toggle between the two methods on a key press. Not
only is there only a tiny visible difference, but the real test (as with all questions of
approximation) is to toggle between the two a random number of times and then
challenge 10 people to (separately) tell you which version is “correct.”

The advantages of nlerp are that it is extremely obvious how it associates (simply
add as many quaternions together as you like and normalize the result), and it is very
fast to execute. You can even put the actual normalization off until later if you are
going to blend it with more quaternions in the future. Therefore, given that the error
is small and hard to notice, the default choice seems like it should be nlerp, unless
slerp is actually required for a few special cases. The author has never found a case
where exponential-map lerps looked better, yet their processing cost is considerable.

For fuller and more mathematically grounded discussion of blending quater-
nions, see [Blow04, Lengyel04].

5.2 Character Animation 497



Multiway Blending

The standard two-way lerp describes a linear interpolation between two bones, with a
single weight determining the amounts of both bones.

If blending multiple animations together, there is a variety of ways to represent
what fraction of the whole each source contributes. The simplest is to perform a
sequence of two-way blends, starting with the first animation, and sequentially blend-
ing in each subsequent animation by the supplied amount. However, the results
change according to the order of the animations. For example, if animations A, B, and
C are blended together, each time having a blend weight of 0.5, you have:

Obviously, this is not a symmetrical result, since there is twice as much influence
from animation C as the other two. If we perform the blending in the other direction,
we get a different answer, with A having twice the influence. This seems an odd result,
but possibly controllable. For example, we could change the weights to compensate.
However, what if the animations A, B, and C have different durations, and animation
B ends before the other two? When it ends, the influence of C (whatever that was)
will be the same, but the influence of A will increase, taking over whatever influence
B originally had. This is horribly counterintuitive, since it depends on concepts that
should really be orthogonal to influence, such as animations starting and stopping.

A better method is to supply a weight for each animation. As well as multiplying
each animation by its weight when summing, we also keep track of the total weight.
Once all animations are summed, we divide the result by this total weight. For example,
if we gave animations A, B, and C weights of 0.5, we would get:

This gives an even blend between all three, which is what you would expect if all
were set to the same weight. A good thing about this method is that order does not
matter. If one animation ends, the relative contributions of the other two depend only
on their own weights, not on their position in the blending list. Remove animation B
from the previous sequence and you will obtain half of each of A and C, which is 
logical if they both have the same weight.

result
result

totalWeight
= = + +

1

3

1

3

1

3
A B C

result result . . . .= + = + +0 5 0 5 0 5 0 5C A B CtotalWeight . . .= + =1 0 0 5 1 5

result result . . .= + = +0 5 0 5 0 5B A BtotalWeight . . .= + =0 5 0 5 1 0

result .= 0 5AtotalWeight .= 0 5

result . result . . . .= + = + +0 5 0 5 0 25 0 25 0 5C A B C

result . .= +0 5 0 5A B

498 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



One thing to notice is that if all three are the same weight, no matter what
numerical value that weight is, you get the same result. If you change the 0.5 in the
previous example to any value you wish, the result is the same. In fact, in any multi-
way blend using this method, all weights are simply relative to each other and there is
no absolute meaning to a weight of 0.5, 1.0, or 1000.0. 

Fortunately, it is moderately intuitive that if animation X has twice the weight of
animation Y, it will have twice the influence. However, it has one notable defect: there
is no weight value that will allow a single animation to completely mask the others
and cause them to have no influence at all. You can give the animation a very large
weight such as 1 million, which will mostly work, but even then if another anima-
tion’s weight is set to 1 million minus 1, it will have roughly the same influence. There
are other ways to solve this, though, such as the masked lerp, which we discuss later.

The multiway blending operation can use approximate normalization operations
on its sources in the same way the two-source lerp does, for even greater speed
improvements. It should be noted that if performing multiway blending using the
quaternion slerp operator, it is very hard indeed to get a blend that does not depend
on blending order. Using nlerp, it is trivial.

Bone Masks

Frequently, you will want to apply an animation to only a few select bones, rather
than to the whole skeleton. For example, you have a character walking along who
wants to wave at someone. This animation involves only one arm; consequently, it
does not involve the head, legs, or the other arm. Thus, the person could be sitting,
walking, or running, and perhaps carrying something with the other arm or even
pointing a weapon at someone (a fairly common pastime for computer game charac-
ters). Therefore, the “wave” animation will not have anything particularly useful to
say about what the leg bones should be doing. However, if you play it, whatever data
it has for the leg bones will still influence them in some way, which is not what you
want. You need some way to say that an animation has no influence over some of the
bones of the skeleton.

This is called a bone mask. It is simply a list of numbers, generally a value from 0.0
to 1.0, one for each bone in the skeleton, and it is applied to an animation. When the
animation is blended with others, the mask is multiplied by the animation’s overall
weight when performing the blend. The result of this multiplication of the bone mask
and the overall weight is called the effective weight, and is what is actually used when
blending the multiple animations. Note that this means the weight for each anima-
tion changes from bone to bone, and this includes the total weight for each bone.

In this “waving” animation case, the bone mask would contain zeros for most of
the bones, except for the bones in the arm and hand, which would contain ones. To
produce a smooth blend between the body and the arm, the bones of the shoulder may
have a fractional blend, such as 0.5. Fractional blends are especially common when
blending lower-body animations such as runs and walks with upper-body animations

5.2 Character Animation 499



such as firing with a rifle at a target. Fractional weights along the spine, increasing or
decreasing as they progress up or down the spine, allow the ribs of the torso (and the
clothing it wears) to blend incrementally, as they do in real life.

Bone masks can be created by naming convention, or by detecting which bones
do not move during an animation. However, these are cumbersome methods and
poor at special cases (e.g., the animation for aiming and firing a rifle demands that the
bones of the arm be stationary, but they are certainly part of the animation). The ideal
solution is to allow the animator to author the weights directly. Sadly, most animation
packages do not allow easy previewing of the effects of these weights, so this can also
be a process of trial and error.

Naturally, it is a good idea to avoid storing bone data that will be entirely masked
out by the bone mask. There is no point in storing data that will never be used.

Masked Lerp

This style of blending is almost identical to the standard two-way lerp, except that
instead of a single blend value that applies to the whole of the two animations, a bone
mask is used that gives the lerp value individually for each bone. Otherwise, the calcu-
lation for performing the blend is identical to the two-way lerp presented previously.
The mask will be set to one to entirely use one animation, zero to entirely use the
other, or a fractional value to produce a blend.

The important difference here is that the bone mask can allow one animation to
entirely control a particular set of bones, while allowing the other animation to entirely
control a different set of bones, and to blend between the places on the skeleton where
they join. This type of blending can be performed by applying bone masks to a mul-
tiway blend, but the only way to do it properly is to apply the mask to one animation
and then the inverse mask to the other. This is cumbersome, so it is easier (and faster
to execute) to have a specific binary lerp that performs this directly.

Hierarchical Blending

The techniques presented previously all take a series of animations and blend them
together. However, it is frequently useful to take one set of animations, blend 
them together, then another set, blend them together, and then take the results of the
two blending operations, and blend those together. One such example is when ani-
mating human figures. Frequently, you want to play an animation on the top half of
the body, and a different animation on the bottom half. For example, the “animation”
playing on the bottom half may actually be composed of many animations: you may
be playing a run cycle and want to transition smoothly into a walk cycle. During the
transition, both run and walk cycle will be playing and blended together. This blending
must happen before being blended with the upper-body animations. Thus, we have a
hierarchy of blending, which is frequently represented with a tree. Each frame, the tree
of blends is traversed, sampling each animation and performing the necessary blends.

500 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Typically, the leaves of the tree will be multiway blends used for the purposes of
performing time-based blending, such as transitioning from a walk to a run. Moreover,
the nodes of the tree, where the results of these time-based blends are combined, tend
to be area-based blends, with each source corresponding to one section of the body,
being blended together using bone masks. However, this is by no means the only way
the blending tree can be used; it is simply a common example.

Motion Extraction

When the game is playing an animation of a stationary character, life is easy. The
character stays in a fixed place and animates. However, life gets trickier when the ani-
mation wants the character to move. Remember that two separate concepts are com-
bined to make up what we see on the screen: the game’s idea of where the instance is
(typically a simple position and orientation), and the effect of whatever animations
are playing on the instance. With a standing animation, the two are not that different,
and there is no confusion.

However, if the instance plays a walk animation, things can get confusing. The
animation may cause the character to walk away from where the game thinks it is,
meaning that the character is not observing the correct physics—it may walk through
walls, float in the air, and so on.

The obvious solution is for the game to move the origin of the character in the
direction of the walk, and the walk animation to be authored so that the character
does not actually move in the scene, but instead walks on the spot. This makes sure
the game and the animation agree on where the character is. However, there are two
problems with this. First, the speed of movement applied to the character must pre-
cisely match the speed at which the feet move backward in the animation. If the two
do not match, the resulting motion of the feet in world space will not be zero, and the
feet will slip along the ground, which looks particularly bad.

The second problem occurs if the animation is more complex than a straight-line
walk. What if the animation is that of a character climbing onto a ledge? The charac-
ter first jumps up to grab the ledge, hauls itself up, then over the edge to a crouch, and
then stands up. This is an extremely complex motion, but the game must somehow
match it in some way so that the character actually moves during the process. The
motion the game imparts must be removed from the motion that the animator puts
into the character, or the various parts like the hands and feet will slide across the 
surface, which is something that is even more noticeable than slipping feet.

The process of taking an animation and deriving the overall movement of a char-
acter from it is called motion extraction, and there are a variety of techniques.

Linear Motion Extraction

Let us start with the simplest form of motion extraction, linear motion extraction
(LME). Despite its simplicity, it is common, and very useful for many situations.

5.2 Character Animation 501



First, look at the position of the root bone on the first frame of the animation. Then
look at its position in the last frame. Subtracting one from the other shows how the
character moved during the animation, and dividing that motion by the duration of
the animation gives the average velocity of the character during the animation.

In a preprocessing step, take this velocity, store it with the animation, and for
each frame of the animation, subtract the cumulative effect of this velocity from the
position of the root bone. Only after performing this subtraction on each sampled
frame do you encode the root-bone’s motion as compressed curves or whatever format
your animation scheme chooses. This has now removed all the linear components of
the root bone’s movement from the animation. Naturally, the first and last positions
of the root bone will now coincide, since that was how the velocity was defined, but
the intermediate motions may still move around (what is termed the residual motion
of the root bone). For example, in the ledge-climbing animation used previously, the
motion is not linear at all. First, there is a sudden vertical motion as the character
jumps, then a smoother one as it hauls itself up, a slower irregular motion as it stays
crouched but moves onto the ledge (and moves in a horizontal direction for the first
time), and then a quicker one as it stands up. However, the overall motion that is
extracted is a straight line, and the animation encodes the difference between the real
motion and this average motion.

At playback time, execute the reverse process. As the animation is playing, the
game moves the character instance’s position at the given velocity. The combination
of the linear velocity applied by the game and the residual motion left in the anima-
tion is to play the animation back perfectly; except that this time, the character ends
up in a different place, standing on top of the ledge instead of remaining where it
started. This automatic extraction of motion is much better than using some hand-
coded value on which both animator and game code need to closely agree. If the ani-
mation is later changed—for example, because the ledge height is changed—there is
no need to update the code to match. The animation will still be in perfect sync with
the velocity given to the instance, and there will still be no hand or foot sliding.

Composite Motion Extraction

The major problem with the previous technique is that it does not capture rotational
movement. If you have an animation for a character turning on the spot, LME will
simply say that nothing happened, since the position of the root bone did not change.
However, you still need to rotate the instance, and the angle and speed of this rotation
is important to make sure that the feet do not rotate while on the ground.

The same trick used in LME can be applied to the rotational component. Take
the orientation of the first frame, the orientation of the last, find the axis of rotation,
divide by the duration of the animation, and you have a rotational velocity. Subtract
this rotation from the root bone’s motion before encoding your animation. At runtime,
as the animation is played, apply this velocity to the orientation of the instance, and
you have both translational and rotational versions of LME.

502 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



You can, of course, do the same with scale and shear, but so few animations
involve scale and shear of the root bone, and so few games understand the concept of
scale and shear for a game entity, that it is unlikely to be important. Most motion
extraction ignores these components.

So this works fine, and the instance does end up correctly rotated and translated
at the end of the animation, and the animation is played perfectly. The problem now
is slightly more subtle. The question is, “Where is the instance in the middle of the
animation?” Imagine an animation where the character is running and turning left
(you need to have animations like this, since the motion of running around a curve is
very different from that used when running in a straight line), and that during this
animation, the character turns through 90 degrees. The real movement should be
along one-quarter of a circle. Unfortunately, LME plots a straight line between the
start and end positions, and moves and rotates the instance along this line. It relies on
the residual motion inside the animation to correct this linear movement and render the
character moving in a circle. However, the game logic does not know about the residual
motion in the animation—it only knows about the instance’s position and rotation.

There is no problem with the rotation, but the position at the middle of the ani-
mation is a long way from reality. What if the character were running around the edge
of a curve in the road? In reality, the character should always stay a few inches from
the edge of the road and never be on the road itself. However, LME approximates the
path during the animation as a straight line, which cuts across the corner. Thus, for
part of the animation, the game logic would think the character was actually on the
road, and would be hit by a car. Worse still, what happens if the player stops running
in the middle of the animation and stands still? The character will actually pop to that
position, no longer running on the edge of the road, but suddenly standing in the
middle of it.

The secret is to encode the translational movement as always being relative to the
current orientation of the instance. Of course, this had to be done anyway, since the
translation component of even a straight walk cycle needs to know if the character is
facing north, south, east, or west when it starts walking. However, that is only relative
to the starting frame. The secret here is to make it relative to every intermediate
frame, after the effects of rotation are taken into account.

The result is composite motion extraction (CME). The main difference in this
example is that whereas with standard LME, the translation vector moved at 45
degrees to the starting orientation of the character, now we find that the translation is
always exactly in the direction of the character’s current orientation; the character’s
rotation on every frame means that the final resulting motion is a circle. In the exam-
ple, we can see that this gives a result where the game’s instance mirrors the motion 
of the animation precisely. This means that collision detection always works correctly,
the motion can be stopped at any point, and the character is where the game expects
it to be.

5.2 Character Animation 503



It is not that LME is “wrong” and CME is “right.” Both correctly extract a com-
ponent of motion from the animation and apply it to the game instance. It is simply
that CME approximates many common motions with circular motion in a far more
consistent manner than LME does.

Variable Delta Extraction

LME and CME are still not the end of the story. Both are pleasingly simple and apply
well to many common motions and animations. However, they still do not represent
some motions adequately. Irregular motions, such as the ledge-scaling example given
earlier, are poorly represented as either a linear or circular movement, and even
smooth motions, such as a bouncing ball, are not represented well because it is a
parabola, not a circle or a straight line.

The answer is not to find some more ever-better ever-more-complex approxima-
tions to the motion of the root bone and apply it to the motion of the instance, but to
use the motion of the root bone directly. To do this, the root bone is ignored com-
pletely for the purposes of animation. Instead, for each frame, the animation system
samples the root-bone’s transform at the current time, samples (or remembers) the
root-bone’s transform on the previous frame, and finds the difference between them,
which is the delta. This delta is then applied to the instance’s position and orientation.

Using this method, the instance always follows the motion of the root bone
exactly, and there is never a mismatch between the rendered position of the object and
the game’s idea of where it is. This allows complex multipart animations such as the
previous examples. However, it does require extra complication, since each frame, the
root bone’s motion must be sampled twice, and the delta from one to the other found.
However, when playing back the animation, we can completely ignore the root bone’s
motion (we know it is all in the instance), so that is one less bone to sample there.
Overall, the extra cost is usually unnoticeable (although there are other considera-
tions, discussed later), and the extra fidelity in motion is extremely useful.

Finding Your Roots

In all this motion extraction discussion, one important fact has so far been glossed
over. We have assumed that the instance should follow (to some variable degree of
precision) the position of the root bone of the animation. However, this ignores one
key question, “What actually is the root bone, and what does its position and orienta-
tion mean?”

The simple but naïve answer is that it is whatever the animator uses as the root
bone, which for a humanoid character is usually the pelvis (although there are other
conventions). However, this can cause complications when blending between anima-
tions and when performing transitions. For example, imagine a cowboy of the Wild
West walking down the road, saddle-sore from a long ride. Because of his aching hip
joints and his wide gait, each step, his pelvis rotates to move his legs forward, so that

504 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



its orientation swings by maybe 30 degrees either side of straight ahead. Since the
pelvis is the root bone, this motion will be reflected in the game instance orientation,
and it too will turn from side to side as he moves. This is counterintuitive, since he is
(conceptually) walking in a straight line, but it is not actually a problem. Well, not
yet, at least.

Suddenly, a bandit jumps out in front of him, and being the fastest gun in the
West, in an instant he transitions to his gun-fighting pose, draws his six-shooter, and
fires. Sadly for him, he was just stepping out with his right leg, which means his game
instance orientation was facing 30 degrees to the left. Transitioning instantly to his
gun-fighting pose did not change that orientation (since it is a pose, not a motion,
and therefore does not affect the root bone). He is now facing directly at the saloon,
and the only thing he hits is a bottle of his favorite whiskey. The slim-hipped but
wide-mustachioed bandit, who was careful to walk with pelvis always fixed directly
ahead, fires back and mortally wounds our hero. The moral of the story is: choose
your root bone carefully!

However, it is hard to think of a better bone in the skeleton to use than the pelvis.
Sometimes, the shoulders are used, but they rotate even more than the pelvis. What is
our hero to do? The real answer is to create a new root bone, one whose only purpose
is to allow the animator to define exactly what he wants to happen to the game orien-
tation of the object. This is called a synthetic root bone (SRB), since it does not actually
correspond to a real place on the skeleton, and does not influence any vertex on the
mesh. The most common version of SRB, standard in many animation packages, is
the ground shadow. This bone sits at ground level, usually directly under the center of
gravity of the character, and facing forward.

The exact position of the SRB is something that can be agreed on between the
game programmer and the animators, since the SRB can in fact be anywhere they
wish. Some people like to have the SRB at just below pelvis level. (This helps when
animating characters sitting down, since the SRB is then the bone they sit on, and the
height can be directly matched to the height of the chair or ledge on which they are
sitting.) Others like to have it at shoulder level. The animation system does not care
where exactly the SRB is, the important thing is that it makes sense from the game’s
point of view. With an SRB, the animator can do two things very easily. First, he can
directly control how the character moves through the world in an animation, espe-
cially if using VDA rather than CME. Second, he can control the exact relationship
between the graphical appearance of the mesh due to the animation of its physical
skeleton, and where the game thinks it is.

When transitioning or blending between two animations, the position of the
SRB in both is kept constant, and all the other bones in the skeleton are blended. This
allows the cowboy with the white hat to always keep his SRB facing forward, and
when he changes to his gun-slinging pose, he is still facing directly at the bandit—
another one bites the dust.

5.2 Character Animation 505



If a Tree Animates in a Forest…

Motion extraction brings up an interesting problem that is not often discussed, and
sometimes those writing an engine may not realize it is even a concern. This problem
is the separation of game and graphics. In an ideal world, the game runs as an entirely
self-contained system. It takes controller inputs in one end, processes the game world,
and outputs the state of its world to the graphics (and sound) engine for display. It
does not rely on the graphics system for anything, and in fact does not even care if the
graphics system is there at all.

This system has many advantages, such as being able to display the graphics at
any desired frame rate (especially important for the PC market), being able to trans-
mit the graphics elsewhere (e.g., for a multiplayer game, where one machine is the
host and the other is the client), or even having no display at all (the “headless” servers
used for massively multiplayer games). The other advantage is that the game can
process a large world, and the graphics system can increase its performance by only
rendering the tiny fraction that the player can see.

However, when we talk about animation driving the movement of game objects,
we break that model, and we now have graphics data feeding back into the game.
Ideally, we should fix this. In a large world, it may mean animating everything in the
world simply to find out how it moves around, and then for the vast majority of
objects, simply throwing that animation data away, because the object was not visible.

It is therefore a good idea to separate the calculation of the motion-extraction of
the root bone from the calculation of the rest of the bones. In addition, most anima-
tions do not (or should not) contribute to the movement of the root bone. Any action
that is only played on a part of the body should be flagged as such, and ignored dur-
ing motion-extraction replay. For the same reason, it can also be important that the
animation sequencing code (that decides which animations to play and when to play
them) should have a “light” version that ignores all animations that are purely graph-
ical in nature and concentrates on the animations that change the motion of the game
instance. In this way, the cost of instances that are not currently visible is minimized
as much as possible.

Mesh Deformation

Once we have our looped, sampled, interpolated, and blended animation, what do we
do with it? Well, we have a local pose, which is a sequence of transforms, each relative
to a parent transform in a manner described by the connections in the skeleton.
However, we cannot render that directly on the screen. We need to use this local pose
to deform the vertices of a mesh that we can draw. This process is composed of several
stages, as discussed next.

506 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



1. Transform Each Bone into World Space

The transforms are currently in a space relative to (or “local to”) their respective par-
ent bone, called a local pose. The first stage is to convert this to a global pose or a world
pose, where each transform describes the bone’s position in the world, without need-
ing any other frame of reference except for the shared world origin and orientation
(and fundamentally, everything has to be relative to that).

The procedure is simple. Start at the root node of the skeleton. Multiply its cur-
rent transform by the instance’s overall transform, which is the one that describes
where the instance is in the world and which way it is facing. You now have the world-
space transform of the root bone. Now, take each of the children of the root bone and
multiply each of their transforms by the root bone’s world transform (the one you just
calculated). You now have the world transforms of each child bone. Then just keep
recursing down the skeleton. For each bone, multiply its local transform by the world
transform of its parent bone, and you now have the world transform of the bone.

For each bone, you must calculate the world transform of its parent before you
can do this. It can be quite time consuming checking that this has been done, so a
nice trick is to ensure that you keep your bone transforms (both local and world) in
an array, ordered so that parent bones are always stored before child bones. This natu-
rally implies that the root bone is always the first item in the array, since it is the only
one without a parent. This way, you can process the bones in a linear fashion, and
always be sure that a parent bone has been processed before any of its children.

The world pose is also the space in which most physics simulations or collision
detection happens, and where inverse kinematics (IK) tend to happen, so it is almost
always found as soon as the correct blending of the local pose has been performed.

2. Find the Delta from the Rest Pose

Now we have the bones in world space. However, we cannot simply apply those trans-
forms to the mesh. This is because the mesh is already in a pose, which is the pose in
which it was exported. This is called many things: the binding, rest, or default pose.
What needs to be done first is to transform the mesh out of its rest pose (meaning that
it is now in “no pose”) before transforming it into the pose we want.

Therefore, we must first untransform by the rest pose, which is the same as trans-
forming by the inverse of the rest pose, and then transform by the desired pose. Of
course, we do not need to do two transforms per vertex; we can simply find the com-
posite of these two transforms for each bone. Better still, since the rest pose is always
the same for a given mesh, we do not have to find the inverse of its transforms every
frame; we can calculate them just once—either when the model is exported, or when
it is loaded into memory. Then each frame, take the world-space transforms of the
desired pose, multiply them by the precomputed inverse world-space transforms of
the rest pose, and use the resulting transform to deform the mesh.

5.2 Character Animation 507



3. Deform the Vertex Positions

Each vertex in the mesh will have a certain number of bones that affect it. Depending
on the type of mesh, the number of bones affecting a single vertex can be limitless.
However, most animation systems pick a maximum number of bones per vertex that
they will support. By far the most popular value is four. The reasoning is that most
humanoid meshes require at least three to look good—areas where three bones all
influence a single vertex include the crotch (the pelvis and both thighs), the shoulders
(the upper arm, collar bone, and rib cage), and many parts of the face. However, three
is not a power of two, and this causes programmers severe philosophical anxiety.
Rounding up to four is much more agreeable. There is no strict reason why four is
chosen, and many engines have optimized paths for three, two, and one, if the mesh
allows. For example, most mechanical objects only need a single bone’s influence for
each vertex, since all the parts are rigid. However, if there is only one animation code path,
four seems to work well as a balance between animation quality and performance.

Besides knowing which bones deform a vertex, we also need to know how much
each bone influences that deformation relative to each other. This is a multiway
blend, but this time the weights are fixed, and we can prenormalize them so that they
strictly add up to 1.0.

The usual way of storing this information is to store, in each vertex, four indices
into the array of bones and four corresponding weights (sometimes only three weights
are stored and the last is computed as one minus the others). This allows the vertex
deformation code to do the following for each vertex:

vec3 FinalPosition = {0,0,0};

for ( i = 0; i < 4; i++ )

{

int BoneIndex = Vertex.Index[i];

float BoneWeight = Vertex.Weight[i];

FinalPosition += BoneWeight * 

(Vertex.Position * PoseDelta[BoneIndex]);

}

Another advantage of using four bones is that the per-vertex data packs well into
memory. The indices of the bones can easily fit into a byte each (256 bones are suffi-
cient for most animation systems right now). The blend weights are strictly between
zero and one, and eight bits of precision is sufficient, meaning they also fit into bytes.
Thus, the total animation information fits into eight bytes.

4. Deform the Vertex Normals

This demonstrates the deformation of vertex positions, but vertices often include 
vectors used for shading as well: the normal, tangent, and binormal vectors. All three
can be handled in similar ways, so we will look at only the normals for simplicity.

Whether animating or not, whenever you apply a transform to a vertex position,
to ensure the normal is shaded appropriately, you need to transform it by the inverse

508 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



transpose of the transform. That is, take the 3×3 matrix that represents the transform
(the fourth column is the positional offset and is ignored, since normals are vectors
and not positions), invert it, transpose it, and then multiply the normal by it. Finally,
for correct shading, the normal must be renormalized.

There are a couple of expensive operations in that sequence; notably, finding the
inverse of a 3×3 matrix and renormalizing the normal after the transformation.
Performing these at every vertex is obviously undesirable. Therefore, many engines
can take a few shortcuts. Naturally, these all reduce fidelity by a certain amount, but
since these are vectors used for shading and not positions, a certain amount of error is
acceptable.

The first optimization is more of an observation. If all the bone deformations are
strictly rotations without scales or shears (translations are ignored), the transforma-
tion is orthonormal. That is, its basis vectors are of unit length and at right angles to
each other. A feature of orthonormal matrices is that their inverse is their transpose.
Thus, the inverse transpose is just the matrix itself, removing that chunk of work.
Starting with orthonormal matrices also has a second advantage. As long as the nor-
mals are unit-length before transformation, they will also end up unit-length, and
thus do not need renormalization. This makes using transforms with only rotations
and translations very cheap, and luckily, this is the case with most bones used in
games today. Even in meshes where some of the transforms may involve scales or
shears, it can still be worth having two code paths and only use the expensive one for
the normals that require it.

The inversion of the matrix can be sped up in various ways. Some bones only
have a uniform scale that is the same along all three axes. Not only are these simple to
invert (simply multiply the whole matrix by a constant), but the scaling can be
pushed until after the normal has been transformed, thus needing only three multi-
plies rather than nine.

Of course, even when the inverse transposes are needed, they do not need to be
found at every vertex; they can be found once per bone instead, and a second array of
inverse transpose delta matrices fed to the vertex deformation code. This does not
reduce fidelity, but it does mean that the vertex deformation needs access to two bone
arrays rather than one. In many architectures, this deformation is performed by cus-
tom hardware (such as a vertex shader), which requires the matrices to be uploaded to
a certain area of memory with limited capacity. Doubling the size of the array halves
the number of bones that can be uploaded at a time, which means that the mesh must
be rendered in smaller pieces, decreasing efficiency.

Finally, one clever hack to increase speed is to always order the bone data in the
vertices in decreasing order, with the bone with the largest weight being specified first.
Then only deform normals by the first few listed bones. Just using the first is quite
common and surprisingly effective. The effect of dropping bones for normals is far
less visible than for positions.

5.2 Character Animation 509



Inverse Kinematics

So far, the animation we have addressed is known as forward kinematics or FK, where
each bone determines where its child bones are, and they determine where their chil-
dren are, and so on. At no point does the transformation of a child bone influence 
its parent.

However, animation in the real world is a complex interplay of influences both
down and up the skeletal frame (indeed, there is no real-world concept of “child” or
“parent” bones—we simply impose one because it is useful). When standing on one
leg, the motion (or lack of it) of your foot is definitely being transferred upward to
your pelvis and spine, and this type of animation is called inverse kinematics or IK.

In fact, IK is more accurately defined as the part of “animation” that is not FK. As
you can imagine, this is a huge topic and the subject of much research, so this chapter
can only introduce the basics. We will concentrate on moving a single child joint to a
given position or orientation, and then allowing some small number of its parents to
move to compensate for the motion. A good example is somebody picking up a cup
of tea by the handle. Ideally, this motion would be animated by a human—the
motion of the arm and wrist during this action is extremely complex. However, the
game may not be able to control where on the table the cup is, or where the person is
when he reaches for the cup, and so must do some runtime adaptation to make sure
the two meet properly.

There is a wide variety of IK algorithms, and they are frequently used in combi-
nation to complement each other. Four algorithms will be introduced here, three of
them being closely related, mathematically based bone operations, and one being a
higher level method using animation input to guide its process.

Single-Bone IK

The simplest IK solution is almost trivial. It is the process of orienting a particular
bone in a desired direction. This is commonly used to rotate eyeballs in their sockets
to point at whatever a character is looking at, or to ensure that a camera is pointing at
whatever the game designer wants it to. A secondary use is as a fix for the variety of
other IK solutions, such as ensuring that feet point in the correct direction and
remain flat on the ground during a walk cycle, or that a hand holding a coffee cup
keeps the cup level and upright as it moves it around.

First, find the vector along which the bone being rotated must point. For cameras
and eyeballs, this is the normalized vector from the center of the bone to the point of
interest. For feet and hands, the vector is defined by other methods (the normal to the
ground for feet, or the vector opposite to gravity for a hand holding a coffee cup).

Then find the vector along which the bone currently points. This is often as sim-
ple as taking a vector from the bone’s transform matrix. With these two vectors, find
the rotation that maps one to the other using standard matrix or quaternion methods
and apply this rotation to the bone.

510 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



A slight variation of this IK method is where you always start from some reference
orientation of the bone, rather than the current orientation. Using the current orien-
tation can lead to progressive rotation of the bone in some cases. This is commonly
used for cameras, where the camera should always remain aligned vertically, rather
than tilting over to one side or the other. If using the current orientation, this rotation
along the camera axis happens a great deal. For example, tilt the camera down by 90
degrees and then rotate to the side by 90 degrees until the camera is horizontal again.
The camera will be pointing 90 degrees to the right of where it started, which is what
you want, but it will also be tilted over to the left by 90 degrees. Although this exam-
ple is extreme, the effect is very apparent even with small rotations. Starting from a
known orientation each time will prevent this.

Multibone IK

Multibone IK is the term for the most general form of analytical IK. This is used where
the application wants a given bone to end up in a certain place and wants to allow
movement of a certain number of bones higher up the skeletal tree to allow this
motion. The number of bones allowed to move is typically constrained in some way,
and the IK solver is informed which bones it may move and which it may not.
Although the bones allowed to move typically form an unbroken chain in the skeletal
hierarchy (i.e., each is a parent of the one before it), there are variations that allow any
pattern of bones to be moved, and the fundamental nature of the solver does not need
to change significantly.

To use a concrete example, we will use a fencer trying to hit a target with the tip
of his fencing foil. The “lunge” animation has been played to the point where the
fencer should have hit the target, but for various reasons the animation did not place
the tip of the foil exactly on the target. (Perhaps the target moved, or perhaps it is
slightly lower than the one for which the animation was authored.) In this example,
the IK algorithm may only move the bones of the arm and hand, and it might move
the position of the shoulder by bending the spine. (We assume this is a single bone for
simplicity, although in many character rigs it is composed of multiple joints.) The IK
algorithm may not move the position of the hips or legs. The tip of the foil is called
the end effector (a hangover from the fact that IK is derived from research on robot
arms with some sort of tool, or effector, on the end), and the target it must hit is, nat-
urally, called the target.

There are a number of algorithms for solving this type of general IK, but one of
the simplest methods is called cyclic coordinate descent, which is the one presented here.
It is by no means the best, but it is simple, easy to understand, and moderately useable.

The algorithm is iterative, and it is frequently possible that there is no solution. 
In this example, it may be that the fencer is simply too far from the target to reach,
even with spine, arm, and sword fully extended. In this case, the iterations will go on 
forever, so a cap on the number of iterations is supplied by the calling routine.

5.2 Character Animation 511



Additionally, the iterations can sometimes oscillate around the desired result, slowly
getting closer and closer but never actually hitting, so a tolerance is supplied. Once
the algorithm gets closer than this tolerance, it is declared “good enough,” and the
iteration stops. For this example, we declare that a centimeter of accuracy should be
more than sufficient.

The principle is fairly simple. At each stage, pick one of the joints to move and
leave the other joints fixed in their current state. Measure the error between the cur-
rent position of the end effector (the tip of the foil) and the target, such as the physi-
cal distance between them. Then move the chosen joint to try to minimize this error.
Typically, we start with the last bone in the chain. In this case, the wrist, which is the
joint closest to the tip of the fencing foil, should be moved to minimize the error.
Then move up one link to the elbow joint, move that joint, then the shoulder, and then
the spine. If the foil has still not hit the target, repeat, starting from the wrist again.

In practice, all of the joints we consider here are rotational joints, and most have
fairly full rotational freedom. (Although the elbow joint itself can only hinge in one
direction, the combination of the rotation of the upper arm and the bending of the
elbow allow us to consider it as a joint with full freedom.) For this type of joint, 
the details of the computation are simple. Find the vector from the rotation point 
of the joint (the point of the elbow, wrist, etc.) to the end effector. Then find the 
vector from the rotation point to the target. Find the rotation that moves one vector
to the other, just as with single-bone IK, and apply it to the joint. Repeat this opera-
tion for the different bones, until the solution is reached, or the number of iterations
becomes too high.

One of the notable problems with cyclic coordinate descent is that it copes very
badly if the chain of joints is already straight, or nearly so, but needs to be bent to
make the end effector hit the target. The most common example is a leg that is nearly
straight, but where the knee must bend significantly to make the foot hit a part of the
ground that is higher than the animation thinks, as shown in Figure 5.2.3. Here, the
foot is nearly in the right place horizontally, but is simply too far below the surface of
the ground. Bending the knee to minimize this error results in only a very small bend-
ing motion. Bending the hip, again minimizing the error, also moves the foot only a
small distance.

In Figure 5.2.3, the left frame shows how the middle joint rotates to move the
line between the joint and the effector so that it goes through the target. The second
frame shows how much the joint has moved the bone. The third frame shows the top
joint rotating to move the line to the effector so that it goes through the target. 
The fourth frame shows how much this motion has moved the bones. The final frame
compares the start and end poses, showing that the total system has changed only 
very slightly.

Because the leg has barely moved, this cycle can repeat for many iterations before
converging on the correct solution. Note that for clarity, Figure 5.2.3 shows the leg
already slightly bent. In practice, real animations can start the leg almost precisely

512 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



straight, which results in far less movement per iteration than shown. In tests, 50 
iterations were not uncommon, and sometimes even that was not sufficient. Lowering
the error tolerance does not help much in this case, because once the knee starts to
bend significantly, the algorithm converges very quickly. The problem is that it can
take many iterations to get the knee to bend significantly in the first place.

The other problem is that if the knee is nearly straight, it is hard to predict which
way the knee will bend. If the IK routine is required to move the foot slightly behind
the person instead of slightly in front, and the leg is nearly straight, the most common
solution that cyclic coordinate descent finds is for the knee to bend backward. The
algorithm can be modified to respect joint limits and prevent the knee from bending
the wrong way; however, this can further increase the number of iterations required
and prevent the algorithm from finding a solution at all, even though one exists. In
this case, the knee may simply keep trying to bend backward and being reset straight,
time after time, never approaching a good solution, even though a perfectly good
solution exists where the knee bends forward.

However, this specific case of a leg, where the hip may not move but the knee and
ankle may, can be solved quickly and in a far more elegant manner.

Two-Bone IK

Two-bone IK is a special case of multibone IK, but it applies to a very specific, but
also very common case—notably arms and legs. This is the special case where exactly
two bones may rotate relative to their parents (the thigh and shinbones in the case of
a leg), and where the middle joint (the knee) may bend in only one direction. In prac-
tice it is simple to constrain the joint to a single plane, which is the one defined by the
two surrounding joints (hip and ankle) and another value such as a third supplied
position. In the case of a two-bone knee IK, this third position may be derived from
the position of the knee in an example pose supplied by the artist; one where the leg

5.2 Character Animation 513

Target

FIGURE 5.2.3 Cyclic coordinate descent converging slowly.



is bent in a reasonable manner with the knee pointing forward. If the knee is already
bent in the current pose, a game may want to use that as the third reference position
instead. This allows complex motions such as martial-arts kicks to be performed
properly, even when the legs are highly rotated and the knee may be in a plane that is
not straight ahead.

These three points define a plane that the knee is confined to, which imposes one
constraint on the knee position. The thigh and shinbones must remain constant
length, and the angle and hip joints must not move. Each of these defines a sphere
with a fixed radius around the respective joint that the knee must be somewhere on
the surface of, which imposes another two constraints. Satisfying these three geomet-
ric constraints gives two possible positions for the knee, and one of them involves
bending the knee backward, and can be ruled out.

IK by Interpolation

Performing IK by mathematically moving one bone at a time is all very well, but
sometimes the motion you want to perform is more complex. A common example of
this is a character standing still, but moving its head around to look at various objects
in the scene. We would like to be able to find the vector between the center of the
head and the object of interest, and then somehow point the head along this vector.
The problem is that moving the head and neck is a complex biomechanical process
involving many muscles, and can involve slight shoulder movement for the extremes
of movement such as looking 90 degrees to either side or straight up. Using simple
mathematical bone-based IK would not produce a natural result. Rather, the charac-
ter would look robotic, with joints that can move unnaturally far, and do not influ-
ence their neighboring joints in a way that looks comfortable for a real human.

The solution is a primitive version of “Animation by Example” [Cohen00]. The
artist supplies a number of example poses, and the animation system blends between
them to create a composite pose. These poses can capture all the details of the com-
plex movement of the neck, head, and shoulders that naturally happens as the charac-
ter looks around.

The most common version uses nine different poses. One pose has the character
looking directly ahead. One has the character looking directly upward, one 60-
degrees downward, one 90-degrees left, one 90-degrees right, and four more for the
corners (up left, up right, down left, down right). Note that it is extremely uncom-
fortable to move your head to look directly downward, so typically, the head will only
move to around 60-degrees down and the eyes will look the rest of the way.

Each frame, the relative bearing and elevation of the desired view direction are
found by simple trigonometry, and the angles used to derive interpolation values for
the nearest four poses. Let us say that our target view direction is 54-degrees right and
15-degrees downward of the neutral pose. This is 60 percent of the way along the hor-
izontal scale (54/90) and 25 percent of the way along the vertical scale (15/60), so the
weights of the various poses are:

514 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Look ahead: (1 – 0.25)(1 – 0.6) � 0.3
Look downward: (0.25)(1 – 0.6) � 0.1
Look right: (1 – 0.25)(0.6) � 0.45
Look down and right: (0.25)(0.6) � 0.15

The other five poses (left, up, left and up, right and up, left and down) are not
used for looking in this direction.

As can be seen, these weights naturally sum to 1.0, so although they can be used
in a traditional multiway blending, there is no need to divide by the sum, which can
be a slight optimization in some cases.

This blending is performed for all the bones of the head, neck, and shoulders,
and using this method, a character can look anywhere within the supplied blend space
(often called a gamut) and still reflect the complex interactions of the muscles and
bones in the shoulders and neck.

However, there are still two big problems with this method of using nine example
poses and blending between them. The problem becomes immediately apparent as
soon as we change the example from a person moving his head to the common game
example of a soldier holding a rifle and moving his aim around.

The first problem is that the aim point is inexact. In both cases (a head looking,
and a rifle being aimed), the end result, the direction of aim, is determined by a com-
plex chain of rotations in a hierarchy. Although each individual rotation is being 
correctly interpolated, the way in which rotations and translations accumulate means
that the final direction of aim is not going to be precisely correct. For a person look-
ing in a certain direction, this small imprecision is perfectly acceptable as long as the
eyeballs are pointed in the correct direction using a simple single-bone IK. It is in fact
extremely rare for people to turn their heads to look precisely at something, since they
typically move their head in the right general direction and move their eyeballs to zero
in on the target.

However, in the case of the rifleman, such remedial action is trickier. The rifle will
not point in the correct direction simply from the blending, and this deviation can be
fairly visible. If the rifleman is firing directly at the player, the error in the aiming of
the rifle barrel will be quite obvious, and the player may feel quite aggrieved to be hurt
by a bullet apparently fired at the ground to his left.

The second problem is that the case of the rifleman involves a “loop” of bone
dependencies, where each bone must precisely join the next. The loop in this case
goes from the shoulders, down one arm to the hand, through the hand to the rifle it
holds, to the other hand holding the rifle, back up the arm, and to the shoulder again.

This loop must remain unbroken as the rifle is moved around. (Hands should not
slide along the weapon or wobble in space.) However, animation systems only deal
with nonlooping schemes such as the tree of bones in the standard skeletal arrange-
ment. The way to fix this is to break the loop somewhere (usually between one of the
hands and the rifle—typically, the hand that rests on the barrel rather than the one

5.2 Character Animation 515



holding the trigger grip), blend the animations as needed, and then rejoin the loop
using IK to move the hand to the correct position. Fortunately, the errors are usually
small, and using two-bone IK to place the wrist in the correct position and then sin-
gle-bone IK to keep the hand in the correct direction is usually extremely effective.

To solve the first problem of the incorrect aim, we could do the same trick with
the rifle as with the eyes—simply rotate the rifle to the correct direction. However,
this will definitely mean that neither hand will automatically follow properly. Thus,
we need to also IK the hands to the rifle as a secondary step. As previously, both arms
perform a two-bone IK to place the wrists and then a single-bone IK to orient the
hands correctly.

The trouble with all this is that it is quite expensive, and we are overriding 
artist-created shape with machine-created shape using the individual IK fix ups.
Unfortunately, this can only be done to a limited extent before the result starts to look
poor. In this case, a small change in the rifle orientation can cause quite a large change
in hand position (because the rifle is quite long), so the IK must work harder. Even if
the IK works perfectly, the result can look quite unnatural, with the arms in cramped
or over-extended positions that a real rifleman would never use.

A better solution would be to find the correct blend weights that result in the rifle
pointing in the correct direction and do as little remedial IK as possible. One method
is to gradually iterate closer. First, guess some blend weights, perform the blend, see
where the rifle ended up, measure the error, adjust the blend weights, and so on until
the correct result is reached. This is quite effective, but the iteration is, of course, quite
expensive. One way around this is to only perform one iteration per frame, so that the
rifle approaches the ideal over time (this is in fact how our brains do the same thing),
but in some cases the lag is undesirable.

Another clever trick is to do some precomputation to find where certain blend
values will put the rifle and to use this at runtime to fine-tune the first guess of the
blend weights. This is well documented in a paper by Kovar and Gleicher [Kovar04],
and is effective as long as the precomputation step is feasible. If the combinations of
blends are hard to know ahead of time (e.g., if the soldier must also move from a stand
to a crouch, will have a variety of differently shaped rifles, or if the operation must be
performed on a wide variety of soldiers, all of different shapes and sizes), the number
of combinations required in the precomputation phase is hard to compute and store.

A similar blending technique can be used for animations rather than static poses,
and using more abstract variables than simply direction. A common example is walk
cycles that must cope with uneven terrain. The animator creates three walk cycles:
walking on the flat, walking up a slope, and walking down a slope. Then, when play-
ing the walk cycles, measure the slope that the person is currently walking on and use
it to interpolate in the same way between the three walk cycles. The three walk cycles
must be the same duration and their local times kept in sync or else the footsteps will
not be in phase.

516 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Attachments

Frequently, animated characters carry objects. The most common example in games
is, of course, a weapon. In some cases, the weapon is a separate object that is drawn
separately from the character and is moved each frame so that it is in the character’s
hands. In other cases, the weapon mesh is part of the character’s mesh, or rather, there
are two character meshes (one with weapon drawn, one without), and the appropriate
one is chosen. However, if the character drops its weapon (e.g., because it is changing
weapons or because another character has just shot it dead), the game will switch
instantly to the weaponless character mesh and place the weapon in the correct place.
The weapon is then an autonomous object that will probably fall to the ground under
gravity.

In either case, the game needs to know, for a certain pose, where the weapon
needs to be placed. The obvious solution is make a bone in the character’s skeleton
that represents the weapon’s root bone. In the case of the mesh that is both character
and weapon in one, this bone is used to deform the combined mesh. In the case of
separate character and weapon meshes, the bone will not be used by the mesh defor-
mation routines, but its world-space transform will be used to set the root transform
of the weapon mesh. As far as the animator is concerned, it is animated just like any
other bone, and the mesh for the weapon follows correctly.

The slightly more complex case occurs when an animated object is being carried,
or indeed the character is hanging off something (such as an airplane wing, dangling
from a rope ladder beneath a helicopter, or clinging to the top of a speeding car—
things that a surprising number of game characters seem to do on a regular basis). The
world-space transform of one of the character’s hands is defined by the object to
which it is clinging. Given this, and the animation pose that the character is currently
in, we need the world-space transform of the character’s root bone. Walk the hierar-
chy from the hand up to the root, starting with the identity transform and each time
transforming by the inverse of the usual parent-to-child transform that is extracted
when sampling animations (i.e., the child-to-parent transform). The resulting com-
posite transformation maps from “hand-bone space” to “root-bone space.” Feed in
the transform of the object being clung to, and you have found the “root-bone space”
transform—in other words, the world position of the character’s root bone. Then pro-
ceed as normal, traversing the skeleton back down the tree, and draw.

Collision Detection

In many games, collision detection does not interface with animation at all, except in as
much as the game asks the animation how the root bone moves. In these cases, approx-
imating objects by a bounding box, sphere, ellipsoid, or other simple object oriented
the same way as the game instance’s world-space transform is perfectly adequate.

However, some games require far more accurate collision detection. Some need 
a bounding object for each bone and to know which bone was hit. Others need 

5.2 Character Animation 517



pixel-perfect collision and must know exactly where on the triangle of the animated
mesh a certain collision took place.

The simple and foolproof way is to do all mesh deformation on the CPU each
frame and to use the same data for both rendering and collision detection. However,
this has some large performance and practical problems. The first is that where avail-
able, it is usually better to let vertex-processing hardware deform meshes, since that is
what it was designed to do. The second is that this intimately links the rendering rate
with the game rate. The two must be synchronized; otherwise, the data from one can-
not be reused by the other. As discussed elsewhere, this is generally a bad idea for
many reasons. Finally, the data format for rendering is typically very different from
that for collision detection. Collisions do not care what texture the surface uses, and
the rendering does not care whether the object is made from paper or steel.

So let us assume that the rendering is doing what it does elsewhere and just think
about collision detection in the most efficient way. Note that for simplicity, we will
consider only intersecting a single ray against the deformed mesh. Polygon/polygon
collisions and swept-body collisions use similar principles, but become complex quite
quickly, and are beyond the scope of this chapter.

The first step is to store a bounding volume (box, sphere, ellipsoid, etc.), one for
each bone, that bounds the vertices influenced by that bone during deformation. The
ray being tested then checks for intersection against each of these bounding volumes,
either by transforming the bounding volume by the world-space transform of the
bone, or by transforming the ray by the inverse of the same transform and then per-
forming the intersection. Which of the two is performed depends on which is quicker
for the particular type of bounding volume used.

For each bone, we now know that if the ray hit the bounding volume, there is a
chance that the ray hit the mesh itself, but also that it will only have hit the part of the
mesh deformed by that bone. In fact, this is not strictly true, but given the topology
of the vast majority of meshes used in games, it is close enough to the truth to be use-
ful. We can now perform software deformation of only that part of the mesh that is
influenced by the bones whose bounding volumes were intersected and the resulting
collision polygons tested against the ray. The optimization is that usually only a few
bone volumes will be hit by any particular ray, which means the portion of mesh that
must be deformed and tested is relatively small.

Summary

This chapter introduced the basic components of most animation systems. Animations
are encoded using a variety of compression methods, primarily to reduce the memory
footprint, but also to support playing and sampling them in real time, while blending
them together in various ways. The overall motion of the animation is transferred
from the animation system to the game’s instance, so that the game logic can keep

518 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



track of the animated figure. IK corrects the animation to ensure that contact with
other objects in the world is maintained even when blending and distorting the orig-
inal animations. The pose is then transformed to world space, and finally the mesh is
deformed using the animated bone positions and rendered on the screen.

These principles are shared by almost all animation systems. However, a real
game’s animation system will have many higher level systems layered upon these prin-
ciples that are specific to the game, which is a juggling act between the needs of the
animators and the needs of the game design. This demands flexibility and can result
in many different methods for performing the same operation. As long as these are
constructed using components of a single, shared, low-level animation system, the
complexity of the code can be kept manageable, even when blending multiple tech-
niques together.

Exercises

1. The differences between slerp and nlerp are discussed in this chapter. Make
a library that can use either for blending between two quaternions and 
compare the speed and accuracy of the two for various rotations.

2. The general algorithm for a two-bone inverse kinematics solver was presented.
Work out the actual code from the description given. The two solutions,
corresponding to the knee bending either forward or backward, are the two
roots of a quadratic equation.

3. Experiment with the various keyframe and curve methods detailed in this
chapter. It is easiest to visualize if this is done in a two-dimensional environ-
ment and the extension to three or more dimensions is simple. Remember
to include motions with discontinuities in them and check how well the
chosen method copes with them. 

4. Evaluate a variety of nonuniform curve types and try placing single and
multiple knots to see the effects. Try to re-create the same target shapes with
different degrees of curve. It may be simpler to evaluate a quadratic curve
than a cubic curve, but it may also require more control points to represent
a given target shape. Find out the rough trade-offs between speed and stor-
age space requirements.

5. As discussed, animations may be compressed by encoding them as curves
rather than keyframes. Additionally, the control points of the curves may be
quantized. For example, animation quaternions are always of length one,
meaning that they do not need to be stored using four full 32-bit floating-
point numbers. Try quantizing to a variety of fixed-point representations
and see how few bits can be used while still obtaining acceptable results.

5.2 Character Animation 519



References

[Blow04] Blow, Jon, “Understanding Slerp, Then Not Using It,” Game Developer
Magazine, April 2004, available at http://number-none.com/product/. 

[Cohen00] Cohen, Michael F.; Rose III, Charles F.; and Sloan, Peter-Pike, “Shape
and Animation by Example,” Technical Report, Microsoft Research, July 2000,
available at ftp://ftp.research.microsoft.com/pub/tr/tr-2000-79.pdf.

[Kovar04] Kovar, Lucas, and Gleicher, Michael, “Automated Extraction and
Parameterization of Motions in Large Data Sets,” Transactions on Graphics, 
23, 3, SIGGRAPH 2004, available at
www.cs.wisc.edu/graphics/Gallery/Kovar/ParamMotion/.

[Lengyel04] Lengyel, Eric, Mathematics for 3D Game Programming & Computer
Graphics, 2nd ed., Charles River Media, 2004.

[Svarovsky00] Svarovsky, Jan, “Quaternions for Game Programming,” 
Game Programming Gems, Charles River Media, 2000.

520 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

http://number-none.com/product/
www.cs.wisc.edu/graphics/Gallery/Kovar/ParamMotion/


521

Overview

In many video games, the quality of the experience depends on whether the game pre-
sents a good challenge to the player. One way to present a good challenge is to offer
computer opponents, or sometimes even allies, that are capable of playing the game
intelligently. In most cases, this is not a trivial problem to solve, but fortunately, there
is an entire field of study that can help us out—artificial intelligence (or AI for short).

AI describes the intelligence embodied in any manufactured device. If we design
a character or opponent in a video game that acts on its own, it is generally accredited
with possessing AI.

Human-level AI is the stuff of dreams and science fiction. How do you take the
accumulated common sense and expertise of a human and distill it into a computer?
Unfortunately, this problem is currently unsolved, and it will likely be decades before
we get close to understanding what it truly entails. Since general human-level intelli-
gence is currently impossible to re-create, researchers chip away from dozens of differ-
ent angles by solving much simpler problems. By sufficiently narrowing down the
domain of an AI problem, it becomes possible to create behavior that is reasonable
and believable, especially in the realm of video games.

Artificial Intelligence:
Agents, Architecture, 
and Techniques

5.3

In This Chapter

Overview
AI for Games
Game Agents
Finite-State Machines
Common AI Techniques
Promising AI Techniques
Summary
Exercises
References



This chapter first discusses the unique properties of game AI and how it differs
from other AI fields. With believable characters being the centerpiece of most game
AI, the next section introduces the concept of a game agent. Game agents perceive the
world, react in intelligent ways, and potentially adapt to the player. As the most
widely used architecture for game AI, various flavors of finite-state machines are then
examined and compared. The chapter finishes with a survey of the most common and
promising techniques in game AI today. Intelligent movement for game agents is cov-
ered in-depth in Chapter 5.4, “Artificial Intelligence: Pathfinding Overview.”

AI for Games

Video game AI is very distinct from most other AI applications, such as military
defense, robotics, or data mining. The core distinction is in terms of goals. The goal
of an AI programmer is to create both entertaining and challenging opponents while
shipping the product on time. These goals have the following five implications:

1. The AI must be intelligent, yet purposely flawed.
• Opponents must present a challenge.
• Opponents must keep the game entertaining and fun.
• Opponents must lose to the player in a challenging and fun manner.

2. The AI must have no unintended weaknesses.
• There must be no “golden paths” to defeating the AI every time in the

same way.
• The AI must not fail miserably or look dumb.

3. The AI must perform within the CPU and memory constraints of the
game.
• Most games are real time and must have their AIs react in real time.
• Game AI seldom receives more than 10 to 20 percent of the frame time.

4. The AI must be configurable by game designers/players.
• Designers must be able to adjust the difficulty level, tune the AI, and

occasionally script specific interactions.
• If the game is extensible, players can tweak or customize the AI.

5. The AI must not stop the game from shipping.
• The AI techniques employed must not put the game at risk.
• Experimental techniques must be proved early in the development

cycle during preproduction.
• If the AI is given latitude to evolve or change, it must be testable 

to guarantee that it doesn’t deteriorate when released to millions of
consumers.

522 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



These requirements color a game developer’s perception of the field of AI. An
important distinction is that game AI doesn’t need to solve a problem perfectly, only
to the satisfaction of the player. For example, in pathfinding, the AI might need to
calculate a path across a crowded room. Search algorithms exist to find the absolute
shortest or cheapest path, but perfection is generally not a requirement for games. By
relaxing the standards for many problems, shortcuts can be taken that make the prob-
lem tractable in real time or result in large computational savings.

Another consequence of game-specific AI is that the AI has access to perfect
knowledge. For example, a given opponent doesn’t need to sense the world the way a
physical robot would need to. The game world is wholly inside the computer, and the
AI has the luxury of performing its analysis on these completely accurate representa-
tions. Much of robotics research concentrates on the problems of vision recognition
and mechanical movement, both of which are rightfully ignored in games.

When designing game AI, considerable thought must be put into making the AI
configurable by the game designers. Rather than making a perfect autonomous char-
acter or adversarial opponent, the goal is to make a highly customizable AI that can be
adjusted for difficulty and individual attributes such as aggressiveness or accuracy. By
creating a slightly more general AI that can be adjusted, the game can be balanced and
tuned by game design experts to ensure that the game is enjoyable and fun.

Finally, an important consideration is that the product must ship on time.
Experimental AI techniques are exciting and intriguing, but they have the potential to
put the project unnecessarily at risk. Therefore, new AI techniques must be proven
early in the development cycle. The promise that it will all come together three
months before shipping is simply not acceptable.

Specialization

The last decade has seen a dramatic specialization of disciplines within game develop-
ment. One of the more notable positions to fall out of this specialization is the role of
the artificial intelligence developer. Once considered a side duty of general game pro-
grammers, AI has become complicated enough to warrant a deeper understanding of
the dozens of current and potential techniques. Even more interesting, the skills of an
AI programmer must vary dramatically between game genres. While strategy games
require careful battlefield analysis and strategic planning, first-person shooter games
require one-on-one tactical analysis and intelligent movement at the level of individ-
ual footsteps. There is no one-size-fits-all solution to game AI, which reinforces the
tremendous specialization that takes place within this discipline.

Real-time strategy (RTS) games are perhaps the most demanding for an AI pro-
grammer, with current AAA titles typically requiring as many as three full-time AI
developers. However, other titles like racing games, street fighting, or puzzle games
might only need a part-time programmer for AI. Additionally, many companies are
scripting more and more of their AI, which tends to push some of the AI work toward
level designers.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 523



Game Agents

With a firm grasp on the goals and purpose of game AI, let’s now turn our attention
to the game agent. In most games, the purpose of AI is to create an intelligent agent,
sometimes referred to as a nonplayer character (NPC). This agent acts as an opponent,
an ally, or as a neutral entity in the game world. Since the majority of game AI focuses
around the agent, it is very helpful to study game AI from this perspective.

An agent has three key steps through which it continually loops. The steps are
commonly known as the sense-think-act cycle. In addition to these three steps, there is
an optional learning or remembering step that may also take place during this loop. In
practice, most game agents do not take this extra step, but this is slowly changing
because of the added challenge and replayability that is leveraged as a result.

Sensing

The game agent must have information about the current state of the world to make
good decisions and to act on those decisions. Since the game world is represented
entirely inside the program, perfect information about the state of the world is always
available. This means that there is no uncertainty about the world. The world offers
accurate information to the game agent about the existence, location, and state of
every opponent, barrier, or object. Unfortunately, while all of this rich information
exists, it may be expensive or difficult to tease out useful and pertinent information.

At any time, the game agent can query the game world representation to locate
the player or other enemies, but most players would consider this cheating. Therefore,
it is necessary to endow the game agent with certain limitations in terms of what it
can sense. For example, it might seem obvious, but game agents should typically not
be able to see through walls.

Game agents are usually given human limitations. They are restricted to knowing
only about events or entities they have seen, heard, or perhaps were told about by
other agents. Therefore, it is necessary to create models for how an agent should be
able to see into the world, hear the world, and communicate with other agents.

Vision
When modeling agent vision, it is important that the game engine provide fast meth-
ods for determining the visibility of objects. While game AI typically isn’t very CPU
intensive, visibility testing can be enormously expensive. Therefore, it is often limited
to particular agents and performed only on a periodic basis.

Vision usually starts with obtaining a list of pertinent game objects. For example,
the agent might ask for a list of all enemies. Since agents are not concerned with most
game objects that populate a world, it would be wasteful to consider every object in
the game database. Once this pared-down list is constructed, a vector from the game
agent to each game object is calculated. This toObject vector is then processed in the
following ways to determine if the agent can see the game object. The order of these
steps is important to minimize processing.

524 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



1. Is the object within the viewing distance of the agent? Check that the
magnitude of the vector is less than or equal to the maximum viewing dis-
tance. Note that it is computationally faster to compare the distance
squared, since that eliminates having to perform a square root operation.

2. Is the object within the viewing angle of the agent? Use a dot product
between the toObject vector and the agent’s forward vector to determine if
the game object is within the agent’s viewing angle. For example, if the dot
product of the two normalized vectors is greater than or equal to 0.5, the
object is located within an agent’s 120-degree viewing angle.

3. Is the object unobscured by the environment? The ray defined by the
agent’s position and the toObject vector must be tested against the environ-
ment, looking for collisions with level geometry. This test is expensive, so it
is purposely performed after all other tests.

The preceding three steps are a reasonable approximation of human vision.
However, the unobstructed test is rather coarse and will not detect if just a portion of
an object is visible. This can be improved by testing if the extents of the agent’s
bounding volume can be seen. However, this added accuracy comes at a high cost
since multiple ray casting tests will need to be performed.

Depending on the game, it might be advantageous to model vision that is more
sensitive to movement. As most people have experienced, it’s easier to see a moving
object than a perfectly still object. Of course, this effect is related to how distant the
object is, since close stationary objects are easier to see than distant ones. Movement-
sensitive vision can be modeled by ignoring stationary objects that are beyond a par-
ticular threshold distance, or by varying the recognition reaction time of stationary
objects based on their distance.

Beyond visually sensing the simple existence of objects, many more aspects of the
environment might be of interest. For example, it may be important to recognize hid-
ing spots or high-risk areas that should be avoided. This advanced recognition about
the topology of the world is critical for particular games such as first-person shooters.
The existence of these interesting spots can be flagged by hand, or algorithms can 
be devised to discover them from the world representation [Lidén02, Tozour03b].
Once these areas of interest are marked, an agent should be able to sense them like any
other object.

Hearing
An interesting twist on agent awareness is to allow an agent to sense through hearing.
For example, if the player tiptoes past a sleeping enemy, the enemy might not notice.
However if the player runs past the same enemy, the enemy might hear the noise and
wake up. Similarly, if the player starts wildly firing his gun, agents that can’t see the player
might rush to the scene because they heard the gunfire coming from that location.

Hearing is most commonly modeled through event-driven notifications. For
example, if the player performs an action that makes a noise, the game will compute

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 525



where that noise might travel to and inform any agents within that range. Rather than
performing elaborate sound reflection calculations against the environment, this is
usually accomplished through a simple distance calculation coupled with bounding
areas. If a sound emanates inside area B and can be heard up to 10 meters away, all
agents inside area B and within 10 meters are notified. This eliminates any computa-
tionally expensive sound modeling. See Chapter 5.5, “Audio Programming,” for more
details related to sound propagation.

Communication
Many types of agents are expected to communicate with each other, so it may be
important to model the transfer of sensed knowledge between agents. Take, for exam-
ple, guards. If a guard saw the player in a sensitive area, the guard could run away and
alert others. The other guards could then use this information to make better deci-
sions themselves, such as deciding to hunt down the player together, starting with the
player’s last known location.

Similar to the mechanism of hearing, information from communication will be
event-driven in the form of notifications. When an agent has useful information and
comes within a certain distance of other agents, the information will be sent directly
to the other agents.

Reaction Times
When sensing the environment, it is important to build in artificial reaction times.
Agents should not be able to see, hear, or communicate instantaneously. For example,
it would look decidedly wrong to witness a guard take off running at the same instant
the alarm is sounded.

Since agents do sense the world instantaneously, simple timers can be used to
simulate reaction times. Typical reaction times for seeing and hearing might be on the
order of a quarter to half a second. Communication reaction times would be longer to
model speaking or gesturing between agents.

Thinking

Once an agent has gathered information about the world through its senses, the infor-
mation can be evaluated and a decision can be made. This thinking step is the crux of
what most people consider true AI, and it can be as simple or elaborate as required.

Generally, there are two main ways in which an agent makes a decision in games.
The first is for the agent to rely on precoded expert knowledge, typically handcrafted
through if-then rules, with randomness introduced to make agents less predictable.
The second is for the agent to use a search algorithm to find a near-optimal solution.

Expert Knowledge
Many techniques exist for encoding expert knowledge. These include finite-state
machines, production systems, decision trees, and even logical inference. By far, the
most popular technique is the finite-state machine, to which a subsequent section is
dedicated.

526 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Encoding expert knowledge is appealing because it is simple and comes naturally
to most people. It is quick and easy to write a series of if-then statements that ask “just
the right questions,” in order to make a good decision. For example, consider the rule,
“If you see an enemy that is weaker than you, attack the enemy; otherwise, run away
and get backup support.” This simple rule embodies a great deal of common sense
about knowing when to pick a fight. By accumulating knowledge in the form of 
if-then rules, elaborate decision-making processes can be modeled.

While expert knowledge can create a formidable AI, it is not a scalable solution.
As the number of rules mounts, the system becomes brittle and bugs must be patched
with more rules, which only exacerbate the inherent weakness in the system. Since
expert knowledge is not a complete solution, it relies on game testers to uncover bugs
so they can be repaired before the game ships. Since most agents only solve very 
narrow problem domains, limited expert knowledge is usually sufficient and the 
scalability problems generally aren’t enough to cripple the technique.

Search
Search is another commonly used technique for making intelligent decisions. Search
employs a search algorithm to discover a sequence of steps (a plan) that will lead to a
solution or ideal state. Given possible moves and rules that govern moves, it is possi-
ble for an algorithm to explore the search space and find an optimal or near-optimal
solution, if one exists.

In games, the most common use of search is in planning where the agent should
move next. Game agent navigation is a tough problem that requires a great deal of
programming effort in many games. As a result, a thorough discussion of pathfinding
issues using search is detailed in Chapter 5.4.

Machine Learning
If imparting an agent with expert knowledge is not possible and search cannot effi-
ciently tackle the problem, it is possible to use machine learning to discover systems for
making good decisions. Potential machine learning algorithms include reinforcement
learning, neural networks, genetic algorithms, and decision trees. These techniques
often look promising, but in practice they are almost completely unused in game
development. Complex machine learning techniques require deep knowledge and
years of experience in order to make them work well. Additionally, machine learning is
often inappropriate for most games or doesn’t outperform other techniques in terms of
performance, robustness, testability, ease of programming, and ease of tuning.

Flip-Flopping
When decisions are made, there must be a mechanism to maintain that decision over
some reasonable time period. If a decision is reevaluated every frame, it might flip-
flop between two states and the agent will be paralyzed in a perpetual moment of
indecisiveness. Since agents should have reaction times built into their sensing and
thinking, this should never happen at the scale of individual frames. However, flip-
flopping might still occur every half-second and needs to be guarded against.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 527



Acting

Until now, the game agent’s sensing and thinking steps have been invisible to the player.
Only in the acting step is the player able to witness the agent’s intelligence. Therefore,
this is a very important step in having the agent carry out its chosen decisions and
communicate its decisions to the player (if that enhances the game and the player’s
perception of the agent). In other words, if the agent is brilliant, and the player never
realizes it, the effort making the agent intelligent was clearly wasted.

Depending on the game, there are numerous agent actions. Some common ones are
to change locations, play an animation, play a sound effect, pick up an item, converse
with the player, and fire a weapon. The adeptness and subtlety with which the agent car-
ries out these actions will impact the player’s opinion of the agent’s intelligence. This
places an enormous burden on the variety and aesthetic quality of the animations,
sound effects, and dialogue created for the agent. In a very real sense, the agent can only
express its intelligence in terms of the vocabulary afforded by these art assets.

In the early days of games, agents had very few animations with which to con-
tend. Once 3D games emerged, the agent’s repertoire expanded from several dozen
animations to hundreds and thousands. This complexity resulted in a need to cope in
a scalable manner with animation selection. Best practices in this area have moved the
animation selection problem out of the code and directly into the hands of artists and
game designers through data-driven design [Hargrove03a, Hargrove03b, Orkin02b].

As previously mentioned, the player is oblivious to any work the agent does dur-
ing the sensing-thinking steps unless it is revealed during the acting step. Therefore, it
is important to convey the hidden work to the player if it enhances gameplay. For
example, if the agent has concluded that it’s going to inevitably die in the near future,
there might be nothing the agent can do to avoid this outcome. However, if the agent
just sits there and dies, the agent will look rather dumb. A more entertaining outcome
would be for the agent to use that information to either cower or shout “Oh no!” as it
is about to die. This way, the players don’t see a dumb agent getting killed—instead,
they see a smart agent who comprehends the situation. So, even though the outcome
is the same, the agent and the game are greatly enhanced by exposing the intelligence.

Learning and Remembering

Learning and remembering together form an optional step to the sense-think-act
cycle. Without it, the agent will never get better, will never adapt to a particular player,
and will never benefit from past events or information it witnessed or was told.

Interestingly, learning and remembering aren’t necessarily important in many
games, simply because agents might not live long enough to benefit from anything
they might have learned. However, in games in which the agent is persistent for
longer than 30 seconds, a significant advantage can exist when learning and remem-
bering are incorporated.

For game agents, learning is the process of remembering specific outcomes and
using them to generalize and predict future outcomes. Most commonly, this can be

528 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



modeled with a statistical approach. By gathering statistics about past events or out-
comes, future decisions can leverage these probabilities. For example, if 80 percent of
the time the player attacks from the left, the AI would be smart to expect and prepare
for this likely event. Thus, the AI has adapted to the player’s behavior.

Remembering can be as simple as noting the last place the player was seen to use
that information during the think cycle. By keeping some bookkeeping information
on observed states, objects, or players, the agent can leverage past observances at a
later date. In order not to accumulate too much knowledge, these memories can fade
with time depending on how important they are. Memory fading can be a way to
model selective memory and forgetfulness.

It is important to note that past knowledge doesn’t always need to be stored in the
agent. Some types of knowledge can be stored directly in the world’s data structures.
(This is related to smart terrain, as discussed later.) For example, if agents consistently
get slaughtered in a particular place, that area can be marked as more dangerous. You
could almost conceptualize this as the smell of death in a particular spot. During the
think cycle, path planning and tactical decisions can consider this information and
prefer to avoid the area.

Making Agents Stupid

In many cases, it is actually very easy to create agents that will dominate and destroy
the player. Simply make the agents faster, stronger, have more resources, or more
accurate with their firing. Of course, that’s not really the point of game AI. The point
is generally to lose to the player in a fun and challenging way.

Dumbing down an agent can be accomplished by making it less accurate when
shooting, having longer reaction times, engaging the player only one at a time, and
unnecessarily making itself more vulnerable by changing positions often. These simple
steps will bring agents down a notch and give the player ample time and opportunity
to defeat them.

Agent Cheating

While agents can be made superior by making them faster, stronger, or omniscient, in
many situations players consider this cheating. Ideally, agents don’t need to cheat to
make intelligent decisions or to represent a challenge, but there are situations in
which it can be the best route to go. For example, in a real-time strategy game, it is
often necessary to make the opponents cheat at the highest difficulty levels to provide
a supreme challenge to the player. However, it is advisable to let the player know so he
will not feel resentful of the AI. That way, the player is making an informed decision
to play against an AI that has an unfair advantage.

The primary lesson with cheating is to be upfront with the players and never let
them catch you cheating. If the players suspect that the AI is cheating, they will feel
less compelled to continue playing, and it can ultimately hurt the success of the game.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 529



Summary of Game Agents

The sense-think-act cycle of game agents is a simple conceptual framework for orga-
nizing intelligent behavior. It isn’t intelligent in and of itself, but it provides a good
foundation for creating intelligent and believable agent behavior. It’s a guide that
helps the programmer conceptualize what an agent needs to know and consider
before the agent acts in the world. As we will see in subsequent sections, many more
techniques need to be employed to achieve intelligent AI.

Finite-State Machines

Within game AI, it is generally recognized that finite-state machines (FSMs) are the
most common software pattern. This kind of popularity doesn’t happen by accident.
Rather, FSMs are widely used because they possess some amazing qualities. They are
simple to program, easy to comprehend, easy to debug, and completely general to any
problem. They might not always provide the best solution, but they consistently get
the job done with minimal risk to the project.

However, FSMs have a darker side as well. Many programmers look at them with
distrust since they tend to be constructed ad hoc with no consistent structure. They
also tend to grow uncontrollably as the development cycle churns on. This poor struc-
ture, coupled with unbounded growth, makes many FSM implementations difficult
to maintain and brittle.

Yet with all of their warts, FSMs are still the most compelling way to structure
most game AI implementations.

The Basic Finite-State Machine

Formally, a finite-state machine is an abstract model of computation that consists of a
set of states, a starting state, an input vocabulary, and a transition function that maps
inputs and current states to a next state. Computation begins with the starting state
and transitions to new states as inputs are received. The FSM can perform work
within a given state, known as a Moore machine, or on the transitions between states,
known as a Mealy machine.

Game developers deviate from the strict FSM definition in many different ways.
First, the states themselves are used to define behaviors that contain code specific to
that state. For example, states can be behaviors such as wander, attack, or flee. Second,
the single transition function is typically divided among the states so that each state
knows exactly what will cause its transition to another state, which helps keep the
relation between states and transitions easy to understand. Third, the line between
Moore and Mealy machines is blurred, as work is often performed both inside of a
state and during transitions. Fourth, leveraging probability and randomness is
extremely common when transitioning to a new state. For example, after being
attacked, an agent might have a 10 percent chance of transitioning to the flee state.

530 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Fifth, extra state information not directly represented in the FSM, such as agent
health, is often used as a deciding factor for some state transitions.

Since FSMs can elegantly capture the mental states or behaviors of an agent, they
are a natural choice for defining character AI. Figure 5.3.1 demonstrates how an
agent’s behavioral FSM might be diagrammed using UML (Unified Modeling Language).

Defining an FSM

Having covered the basics, the next issue is how to define an FSM in the game. There
are several different methods. The simplest and most straightforward approach is to
directly code the FSM in the game’s source language. Listing 5.3.1 shows an FSM
defined in C/C++ using the switch statement construct. This is perhaps the simplest
implementation of a finite-state machine.

LISTING 5.3.1 An FSM coded directly in C/C++.

void RunLogic( int * state )

{

switch( *state )

{

case 0:  //Wander

Wander();

if( SeeEnemy() )    { *state = 1; }

break;

case 1:  //Attack

Attack();

if( LowOnHealth() ) { *state = 2; }

if( NoEnemy() )     { *state = 0; }

break;

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 531

FIGURE 5.3.1 An example of diagramming an agent’s behavioral FSM in UML. 
The black dot points to the starting state.

No Enemy Low Health



case 2:  //Flee

Flee();

if( NoEnemy() )     { *state = 0; }

break;

}

}

The FSM in Listing 5.3.1 consists of three states and four transitions, identical to
the diagram in Figure 5.3.1. Presumably, RunLogic is called each frame during the
game while the agent is alive. Depending on the agent’s current state, a single action
will be carried out on that frame. After each action executes, potential transitions to
new states are checked and possibly taken. The logic is simple and easy to understand.
Debugging is also quite trivial with this implementation.

Unfortunately, there are several problems with this simple switch statement
structure:

The code is ad hoc, in that the language doesn’t enforce the structure. There is
nothing preventing another programmer from adding catch-all code outside the
switch statement that further modifies states or executes actions.
All transitions result from polling, which can be inefficient. In practice, it is better
to be able to transition to a different state when an event occurs, such as being
attacked by an enemy, rather than checking every frame if an enemy has attacked.
There is no easy way to know that a state was entered for the first time. For exam-
ple, upon entering the attack state, the agent might need to unsheathe his sword.
One solution is to create a “preattack” state that prepares the sword and then
immediately transitions to the proper attack state, but this can lead to an explo-
sion of states that complicates the structure.
The FSM is defined directly in the code and can’t be specified by game designers.
If the FSM is data-driven outside of the game code, the possibility for more paral-
lel work exists, which might be important for larger games.

An alternative to directly hard coding an FSM in the game’s source language is to
create a scripting language that encapsulates the best features of an FSM and enforces
a consistent structure. Such a scripting language might resemble Listing 5.3.2.

LISTING 5.3.2 A fictional FSM scripting language that abstracts and enforces a consistent
structure.

AgentFSM

{

DeclareState( STATE_Wander )

OnUpdate

Execute( Wander )

if( SeeEnemy )

ChangeState( STATE_Attack )

OnEvent( AttackedByEnemy )

ChangeState( Attack )

532 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



DeclareState( STATE_Attack )

OnEnter

Execute( PrepareWeapon )

OnUpdate

Execute( Attack )

if( LowOnHealth )

ChangeState( STATE_Flee )

if( NoEnemy )

ChangeState( STATE_Wander )

OnExit

Execute( StoreWeapon )

DeclareState( STATE_Flee )

OnUpdate

Execute( Flee )

if( NoEnemy )

ChangeState( STATE_Wander )

}

The fictional FSM scripting language in Listing 5.3.2 demonstrates several
improvements over the hard-coded version: 

The structure of the FSM is enforced by what will be accepted by the script 
compiler.
Events can be handled (via the OnEvent convention), as well as polling.
When a state is entered for the first time, the OnEnter construct can be used to
execute any special initialization. Conversely, there is an OnExit construct to carry
out any cleanup code, regardless of what triggered the transition. The OnExit con-
struct makes the script more explicit and reduces redundant code.
A scripted, data-driven FSM can be specified by game designers and artists who
are not familiar with traditional programming languages.

The Execute and if constructs indicate that a particular function should be called
by the specified name. This requires the name within the parentheses to be bound
to an actual function name in the game code. In the case of the if statement, the
function will return a Boolean so that the script knows whether to execute the next
statement. Note that this particular scripting language lacks curly brackets and semi-
colons, which is simply a language design choice.

Unfortunately, it is not trivial to create an FSM scripting language, and the deci-
sion to implement one should not be taken lightly. Typically, it can require several
months of engineering work to design and implement the language. A custom com-
piler must be written that converts the scripted FSM into bytecode that can be inter-
preted “on the fly” by the game engine during runtime. This presents several problems
in terms of usability and debugging, since compile-time errors in the script must be
reported back by the custom compiler, and debugging the scripts during runtime will
require extensive hooks and support. Unsurprisingly, it is not uncommon for a custom
scripting language within a game company to be despised and hated by the people

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 533



who must work with it on a daily basis. After all, it is extremely difficult and time con-
suming to create tools that approach the polish and robustness of commercial compil-
ers and debuggers.

Since the difficulty is in the tools, at least one middleware company now offers
FSM solutions that assist with creation (using visual diagramming) and debugging.
However, since FSMs are trivial to implement directly in code and many companies
already have proprietary scripting languages, it can be difficult to convince game
developers that they can benefit from these outside solutions.

One possible solution to the dilemma is to develop a hybrid approach. Included
on the companion CD-ROM is a “State Machine Language” that is implemented
completely in C++. Through the use of several C-style macros and an FSM class, it is
possible to achieve the abstraction and structure of many scriptable FSM languages.
By existing entirely in the game’s source language, namely C++, all of the compiling
and debugging problems of scripting languages fall away. Listing 5.3.3 shows an
example of the C++ State Machine Language.

LISTING 5.3.3 A hybrid approach of coding an FSM directly in C++ using a supporting FSM
class and C-Style macros.

bool AgentFSM::States( StateMachineEvent event,

MSG_Object * msg, 

int state, int substate )

{

DeclareState( STATE_Wander )

OnUpdate

Wander();

if( SeeEnemy() )

ChangeState( STATE_Attack );

OnMsg( MSG_Attacked )

ChangeState( Attack )

DeclareState( STATE_Attack )

OnEnter

PrepareWeapon();

OnUpdate

Attack();

if( LowOnHealth() )

ChangeState( STATE_Flee );

if( NoEnemy() )

ChangeState( STATE_Wander );

OnExit

StoreWeapon();

DeclareState( STATE_Flee )

OnUpdate

Flee();

if( NoEnemy )

ChangeState( STATE_Wander );

}

534 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



The C++ state machine language example in Listing 5.3.3 conceals a great deal of
functionality. However, the primary point is that the structure promotes a consistent
format, good readability, and straightforward debugging. It supports the OnEnter and
OnExit concepts, and event-driven triggers in the form of messages that get pumped
into the state machine (captured by the OnMsg construct). What isn’t supported is
defining the FSM in a way that designers or artists can author it from outside the
source code. However, this is the trade-off to avoid creating tools and instead leverage
the existing compiler and debugger.

A more common method for implementing an FSM completely in code is to use
C++ classes, where a state machine is a collection of state classes containing member
functions to execute the enter, exit, and update functionality. Unfortunately, this can
be harder to comprehend and read than a scripting language solution, since the states
are generally scattered over many files.

Extending the Basic FSM

So far, we have seen several ways to extend the basic FSM. These include extending
states to offer OnEnter/OnExit blocks and allowing event notifications to trigger tran-
sitions. As mentioned earlier, it’s common to allow randomness and probability to
influence transitions, and it’s also common to refer to additional state information,
such as health, when making state transition decisions.

Beyond these, there are several other important ways that FSMs can be extended.
First, FSMs can have a stack-based history that tracks past states. As transitions are
followed, states are pushed on and popped off the history stack. This is extremely use-
ful if the agent becomes interrupted and later needs to return to a previous state. For
example, if an agent was repairing a building (repair state), but subsequently got
caught up in a firefight (attack state); once the fight is over, the attack state can pop
itself off the stack and the FSM would return to the repair state. Therefore, once a
state completes, it can choose to resume the last behavior without having to reexam-
ine the situation.

A related stack-based extension is to allow a state to transition to a completely
new FSM, pushing it onto an FSM stack. This results in a hierarchical FSM that can
lead to better encapsulation of behaviors and tasks, thus keeping any one FSM from
becoming too large and cumbersome [Houlette01]. Hierarchical FSMs can also
reduce code duplication, since common subbehaviors can be referenced by many
other FSMs.

Similar to hierarchical FSMs, a single FSM can potentially have substates that
exist within a given state. Depending on the situation, this can be an effective way to
break down behavior without resorting to a completely new FSM for just a couple of
related states.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 535



Multiple FSMs

So far, we have considered a single agent owning a single FSM, but there is no reason
why an agent couldn’t own several concurrently running FSMs. One model is to have
an agent run both a “brain” FSM and a “movement” FSM. Another model is known
as a subsumption architecture, where there are multiple levels of concurrently running
FSMs [Brooks89]. The lowest level FSM takes care of rudimentary decisions, such as
obstacle avoidance, while the higher-level FSMs focus on goal seeking and goal deter-
mination. A subsumption architecture remains robust because the lower levels must
be satisfied before they allow the higher levels to influence the behavior.

Debugging FSMs

One of the chief benefits of working with FSMs is the ease with which they can be
debugged. However, when there are dozens or hundreds of agents milling about,
complex interactions can still be very difficult to debug. Therefore, it is prudent to
build debugging facilities directly into your FSM architecture. At the very least, you
should be able to log the states of each FSM over time. By capturing this data, partic-
ular logs can be examined after a bug has occurred and good clues will be available to
help track down the cause.

Another way to facilitate debugging is to have agents display their current state
above their heads. By being able to see the current state, you can quickly identify what
each agent is “thinking,” thus making it easy to visually spot errors. It might also help
to display the last state as well so that it’s clearer how the agent transitioned into the
current state.

Summary of FSMs

Finite-state machines are general, simple, easy to understand, and easy to debug. They
are much more useful than the formal definition might suggest, and can serve as the
basis for almost any AI agent implementation. However, FSMs aren’t capable of
pathfinding, reasoning, or learning, so other techniques will most certainly have to be
employed. Yet, it would be a mistake not to initially investigate whether FSMs could
solve a portion of your AI needs.

Common AI Techniques

The following survey of common AI techniques is designed to provide an executive
summary of the many tools that an AI programmer can wield. Since game AI is
approached from so many diverse directions, a whirlwind tour of techniques is a good
way to familiarize oneself with the diverse landscape of available solutions. The next
section similarly provides a survey of promising AI techniques.

536 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



A* Pathfinding

A* pathfinding (pronounced A-star) is an algorithm for finding the cheapest path
through an environment. Specifically, it is a directed search algorithm that exploits
knowledge about the destination to guide the search intelligently. By doing so, the
processing required to find a solution is minimized. Compared to other search algo-
rithms, A* is the fastest at finding the absolute cheapest path. Note that if all movement
has the same traversal cost, the cheapest path is also the shortest path.

Game Example
The environment must first be represented by a data structure that defines where
movement is allowed [Tozour03a]. A path is requested by defining a start position
and a goal position within that search space. When A* is run, it returns a list of
points, like a trail of breadcrumbs, that defines the path. A character or vehicle can
then use the points as guidelines to find its way to the goal.

A* can be optimized for speed [Cain02, Higgins02b, Rabin00a], for aesthetics
[Rabin00b], and for general applicability to other tasks [Higgins02a]. A* pathfinding
is described in detail in Chapter 5.4.

Behavior Tree

A behavior tree is very similar to a hierarchical finite-state machine; however, it has a
more rigorous structure, is more scalable, and contains rule-based transitions. It can
be visualized as a tree structure of behaviors, starting at a root and expanding outward.
The nonleaf behaviors decide when the children should run and the leaf behaviors do
the actual work. Out of the several methods for deciding which children should run,
the most common is the prioritized list, where the highest priority child that can run
is allowed to execute. Other methods include sequential (running each child in order),
probabilistic (choosing a random child), and one-off (pick randomly or prioritized,
but never repeat the same choice).

Game Example
Behavior trees have become a very popular alternative to FSMs as a result of their use
in both Halo 2 and Halo 3, and their subsequent explanations by Damian Isla
[Isla05]. Halo 2 had 50 different behaviors built using the behavior tree architecture
and showed that they were more robust and could scale better than FSMs.

Command Hierarchy

A command hierarchy is a strategy for dealing with AI decisions at different levels, from
the general down to the foot soldier. Modeled after military hierarchies, the general
directs the high-level strategy on the battlefield, while the foot soldier concentrates on
individual combat. The levels in between deal with cooperation between various pla-
toons and squads. The benefit of a command hierarchy is that decisions are separated
at each level, thus making each decision more straightforward and abstracted from
other levels [Kent03, Reynolds02].

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 537



Game Example
A command hierarchy is often used in real-time strategy or turn-based strategy games
where there are typically three easily identifiable levels of decisions: overall strategy,
squad tactics, and individual combat. A command hierarchy is also useful when a
large number of agents must have an overall coherency.

Dead Reckoning

Dead reckoning is a method for predicting a player’s future position based on that
player’s current position, velocity, and acceleration. This simple form of prediction
works well since the movement of most objects resembles a straight line over short
periods of time. More advanced forms of dead reckoning can also provide guidance
for how far an object could have moved since it was last seen.

Game Example
In a first-person shooter (FPS) game, an effective method of controlling the difficulty
level is to vary how accurate the computer is at “leading the target” when shooting
projectiles. Since most weapons don’t travel instantaneously, the computer must pre-
dict the future position of targets and aim the weapon at these predicted positions.
Similarly, in a sports game, the computer player must anticipate the future positions
of other players to pass the ball effectively or intercept a player [Laramée03, Stein02].

Emergent Behavior

Emergent behavior is behavior that wasn’t explicitly programmed, but instead emerges
from the interaction of several simpler behaviors. Many life forms use rather basic
behavior that, when viewed as a whole, can be perceived as being much more sophis-
ticated. In games, emergent behavior generally manifests itself as low-level simple
rules that interact to create interesting and complex behaviors. Some examples of rules
are seek food, seek similar creatures, avoid walls, and move toward the light. While
any one rule isn’t interesting by itself, unanticipated individual or group behavior can
emerge from the interaction of these rules.

Game Example
Flocking is a classical example of emergent behavior, which results in realistic move-
ment of flocks of birds or schools of fish [Reynolds87, Reynolds01]. However, emer-
gent behavior in games is more commonly seen in city simulations, such as the
ambient life in the Grand Theft Auto series. The city’s inhabitants, composed of pedes-
trians, cars, taxis, ambulences, and police, create complex behavior from the interac-
tions of agents using simple rules. Just like an ant colony exhibits large-scale behavior
from the actions of individual ants, a city is a complex system that emerges from the
behavior of individual agents.

538 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Flocking

Flocking is a technique for moving groups of creatures in a natural and organic 
manner. It works well at simulating flocks of birds and schools of fish. Each creature 
follows three simple movement rules that result in complex group behavior. It is said
that this group behavior emerges from the individual rules (emergent behavior).
Flocking is a form of artificial life that was popularized by Craig Reynolds’ work
[Reynolds87, Reynolds01].

The three classic flocking rules devised by Reynolds are:

Separation: Steer to avoid crowding local flock mates
Alignment: Steer toward the average heading of local flock mates
Cohesion: Steer toward the average position of local flock mates

Game Example
Games typically use flocking to control background creatures such as birds or fish.
Since the path of any one creature is highly arbitrary, flocking is typically used for
simple creatures that tend to wander with no particular destination. The result is that
flocking techniques, as embodied by the three core rules, rarely get used for key ene-
mies or creatures. However, the flocking rules have inspired several other movement
algorithms, such as formations and swarming [Scutt02].

Formations

Formations are a group movement technique used to mimic military formations.
Although it shares similarities to flocking, it is quite distinct in that each unit is guided
toward a specific goal location and heading, based on its position in the formation
[Dawson02]. 

Game Example
Formations can be used to organize the movement of ground troops, vehicles, or air-
craft. Often, the formations must split or distort themselves to facilitate movement
through tight areas. The game Age of Empires 2: Age of Kings pioneered several key
techniques for formations in games [Pottinger99a, Pottinger99b].

Influence Mapping

An influence map is a method for viewing the distribution of power within a game
world. Typically, it is a two-dimensional (2D) grid that is superimposed onto the
landscape. Within each grid cell, units that lie in the cell are summed into a single
number representing the combined influence of the units. It is assumed that each unit
also has an influence into neighboring cells that falls off either linearly or exponen-
tially with distance. The result is a 2D grid of numbers that gives insight into the loca-
tion and influence of differing forces [Woodcock02].

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 539



Game Example
Influence maps can be used offensively to plan attacks; for example, by finding neu-
tral routes to flank the enemy. They can also be used defensively to identify areas or
positions that need to be strengthened. If one faction is represented by positive values
and the other faction is represented by negative values within the same influence map,
any grid cells near zero are either unowned territory or the “front” of the battle (where
the influence of each side cancels each other out) [Tozour01]. 

There are also nonviolent uses for influence maps. For example, the Sim City
series offers real-time maps that show the influence of police and fire departments
placed around the city. The player can then use this information to place future build-
ings to fill in the gaps in coverage. The game also uses the same information to help
simulate the world.

Level-of-Detail AI

Level-of-detail (LOD) is a common optimization technique in 3D graphics where
polygonal detail is only used when it can be noticed and appreciated by the human
viewer. Close-up models use larger numbers of polygons, while faraway models use
fewer polygons. This results in faster graphics processing since fewer polygons are ren-
dered, yet there is no noticeable degradation in visual quality. The same concept can
be applied to AI, where computations are performed only if the player will notice or
appreciate the result [Brockington02a].

Game Example
One approach is to vary an agent’s update frequency based on its proximity to the
player. Another technique is to calculate paths only for agents that the player can see;
otherwise, use straight-line path approximations and estimate off-screen movement.
This technique becomes important when there are more than several dozen agents in
a game and collectively they use too much processing power. This often occurs with
RPG, RTS, strategy, and simulation games.

Manager Task Assignment

When a group of agents tries to choose tasks to accomplish independently, such as
selecting a target in battle, the performance of the group can be rather dismal.
Interestingly, the problem can be turned around so that instead of the individuals
choosing tasks, a manager has a list of required tasks and assigns agents based on who
is best suited for the job [Rabin98]. Note that this is very different from having the
manager run through the list of individuals and assign tasks. Task assignment consid-
ers the tasks themselves first and uses them as the basis for prioritizing. This avoids
duplication of tasks, and high-priority tasks always get the best candidates. This type
of tactical planning is more deliberate than the emergent coordination that can be
achieved with a blackboard architecture. However, the resulting plan might not be as
optimal as performing an exhaustive planning search [Orkin03a].

540 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Game Example
In a baseball game with no runners on base, it might be determined that the first pri-
ority is to field the ball, the second priority is to cover first base, the third priority is to
back up the person fielding the ball, and the fourth priority is to cover second base.
The manager can organize who covers each priority by examining the best person for
the job for a given situation. On a soft hit between first and second base, the manager
might assign the first baseman to field the ball, the pitcher to cover first base, the sec-
ond baseman to back up the first baseman fielding the ball, and the shortstop to cover
second base, which is the correct play. Without a manager to organize the task assign-
ment, it can be significantly harder to get coherent cooperation out of the players
using other methods.

Obstacle Avoidance

A* pathfinding algorithms are good at getting a character from point to point through
static terrain. However, often the character must avoid players, other characters, and
vehicles that are moving rapidly through the environment. Characters must not get
stuck on each other at choke points, and they must maintain enough spacing to
maneuver when traveling in groups. Obstacle avoidance attempts to prevent these
problems using trajectory prediction and layered steering behaviors [Reynolds99].

Game Example
In an FPS game, a group of four skeletons wants to attack the player, but must first
cross a narrow bridge over a river. Each skeleton has received a route to the player
through the navigation system. The skeleton closest to the bridge has a clear path
across. The second skeleton predicts a collision with the first, but sees space to the
right, which is still within the boundaries of the path across the bridge. The last two
skeletons predict collisions with the first two, so they slow their rate of travel to 
correctly queue up behind the first two.

Scripting

Scripting is the technique of specifying a game’s data or logic outside of the game’s
source language. Often, the scripting language is designed from scratch, but there is a
growing movement toward using Python and Lua as alternatives. There is a complete
spectrum for how far you can take the scripting concept.

Scripting influence spectrum:

Level 0: Hard code everything in the source language (C/C++)
Level 1: Data in files specify stats and locations of characters/objects
Level 2: Scripted cut-scene sequences (noninteractive)
Level 3: Lightweight logic specified by tools or scripts, as in a trigger system
Level 4: Heavy logic in scripts that rely on core functions written in C/C++
Level 5: Everything coded in scripts—full alternative language to C/C++

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 541



Commercial games have been developed at all levels of this spectrum, with the
oldest video games at level 0 and games such as the Jak and Daxter series at level 5
(with their GOAL language based on LISP). However, the middle levels are where
most games have settled, since the two extremes represent increased risk, time com-
mitment, and cost.

Game Example
Programmers must first integrate a scripting language into the game and deter-

mine the extent of its influence. The users of the scripting language will typically be
artists and level designers. The written script will typically be compiled into byte code
before actual gameplay and interpreted “on the fly” during gameplay.

The following are the advantages and disadvantages of scripting [Tozour02a].

Advantages of scripting:

Game logic can be changed in scripts and tested without recompiling the code.
Designers can be empowered without consuming programmer resources.
Scripts can be exposed to the players to tinker with and expand (extensible AI).

Disadvantages of scripting:
More difficult to debug.
Nonprogrammers may be required to program.
Time commitment and cost to create and support scripting language and comple-
mentary debugging tools.

State Machine

A state machine or finite-state machine (FSM) is a widely used software design pattern
that has become a cornerstone of game AI. An FSM is defined by a set of states and
transitions, with only one state active at any one time.

Game Example
In common practice, each state represents a behavior, such as PatrolRoute, within
which an agent will perform a specific task. The state either polls or listens for events
that will cause it to transition into other states. For example, a PatrolRoute state
might check periodically if it sees an enemy. When this event happens, it transitions
into the AttackEnemy state.

Stack-Based State Machine

A stack-based state machine is a technique and design pattern that often appears in
game architectures. Sometimes referred to as push-down automata, the stack-based
state machine can remember past actions by storing them on a stack. In a traditional
state machine, past states are not remembered, since control flows from state to state

542 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



with no recorded history. However, it can be useful in game AI to be able to transition
back to a previous state, regardless of which state it was. This stack concept can be
used to capture previous states, or even entire state machines [Tozour03c, Yiskis03a].

Game Example
In a game, this technique is important when a character is performing an action,
becomes interrupted for a moment, and then wants to resume the original action. For
example, in a real-time strategy game, a unit might be repairing a building when it
gets attacked. The unit will transition into an attack behavior and might destroy the
enemy. In this case, the conflict is over and the unit should resume its previous activ-
ity. If past behaviors are stored on a stack, the current attack behavior is simply
popped from the stack and the unit will resume the repair behavior.

Subsumption Architecture

A subsumption architecture cleanly separates the behavior of a single character into
concurrently running layers of FSMs. The lower layers take care of rudimentary
behavior such as obstacle avoidance, and the higher layers take care of more elaborate
behaviors such as goal determination and goal seeking. Because the lower layers have
priority, the system remains robust and ensures that lower layer requirements are met
before allowing higher level behaviors to influence them. The subsumption architec-
ture was popularized by the work of Rodney Brooks [Brooks89].

Game Example
Subsumption architectures have been used in many games, including the Oddworld
series of games, Jedi Knight: Dark Forces 2 and the Halo series. The architecture is ide-
ally suited for character-based games where movement and sensing must coexist with
decisions and high-level goals [Yiskis03b].

Terrain Analysis

Terrain analysis is the broad term given to analyzing the terrain of a game world to
identify strategic locations.

Game Example
There are many strategic locations in a game that might be identified through terrain
analysis, such as resources, choke points, or ambush points [Higgins02c]. These loca-
tions can then be used by the strategic-level AI to help plan maneuvers and attacks.
Other uses for terrain analysis in a real-time strategy game include knowing where to
build walls [Grimani03] or where to place the starting factions. In an FPS game, ter-
rain analysis can assist the AI in discovering sniper points, cover points, or where to
throw grenades from [Lidén02, Reed03, Tozour03b, van der Sterren00]. Terrain
analysis can be viewed as the alternative approach to “hard coding” regions of interest
in a level.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 543



Trigger System

A trigger system is a highly specialized scripting system that allows simple if/then rules
to be encapsulated within game objects or the world itself. It is a useful tool for level
designers since the concept is extremely simple and robust. Often, it is exposed
through a level design tool or a scripting language [Orkin02a, Rabin02].

Game Example
A designer might put a floor trigger in the middle of a room. When the player steps
on the floor trigger (the condition), the designer might specify that a scary sound
effect is played and a dozen snakes drop from the ceiling (the response). In this way, a
trigger system is a simple way to specify scripted events without designing a complex
scripting language. As an example, the level editor for StarCraft allowed users to
define their own missions using a Windows-based trigger-system tool.

Promising AI Techniques

The previous section described many common techniques that are typically employed
in current games. This next section examines techniques that show potential for the
future. For some reason or another, each technique has found limited use or accep-
tance within the games industry. Some techniques are rather complicated or difficult
to understand, some are not well known, and some solve niche problems and might
never gain widespread use. Regardless, it is important to be aware of these promising
techniques for games.

Bayesian Networks

Bayesian networks allow an AI to perform complex humanlike reasoning when faced
with uncertainty. In a Bayesian network, variables relating to particular states, features,
or events in the game world are represented as nodes in a graph, and the causal relation-
ships between them as arcs. Probabilistic inference can then be performed on the graph
to infer the values of unknown variables or conduct other forms of reasoning [IDIS99].

Game Example
One particularly important application for Bayesian networks in games lies in model-
ing what an AI should believe about the human player based on the information it has
available. For example, in a real-time strategy game, the AI can attempt to infer the
existence or nonexistence of certain player-built units, like fighter planes or warships,
based on what it has seen produced by the player so far. This keeps the AI from cheat-
ing and actually allows the human to deceive the AI by presenting misleading infor-
mation, offering new gameplay possibilities and strategies for the player [Tozour02b].

Blackboard Architecture

A blackboard architecture is designed to solve a single complex problem by posting it
on a shared communication space, called the blackboard. Expert objects then look 

544 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



at the blackboard and propose solutions. The solutions are given a relevance score,
and the highest scoring solution (or partial solution) is applied. This continues until
the problem is “solved.”

Game Example
In games, the blackboard architecture can be expanded to facilitate cooperation
among multiple agents. A problem, such as attacking a castle, can be posted, and indi-
vidual units can propose their role in the attack. The volunteers are then scored, and
the most appropriate ones are selected [Isla02].

Alternatively, the blackboard concept can be relaxed by using it strictly as a shared
communication space, letting the individual agents regulate any cooperation. In this
scheme, agents post their current activities and other agents can consult the black-
board to avoid beginning redundant work. For example, if an alarm is sounded in a
building and enemies start rushing the player, it might be desirable for them to
approach from different doors. Each enemy can post the door through which it will
eventually enter, thus encouraging other enemies to choose alternate routes [Orkin03b].

Decision Tree Learning

A decision tree is a way of relating a series of inputs (usually measurements from the
game world) to an output (usually representing something you want to predict) using
a series of rules arranged in a tree structure. For example, inputs representing the
health and ammunition of a bot could be used to predict the probability of the bot
surviving an engagement with the player. At the root node, the decision tree might
test to see whether the bot’s health is low, indicating that the bot will not survive if
that is the case. If the bot’s health is not low, the decision tree might then test to see
how much ammunition the bot has, perhaps indicating that the bot will not survive if
its ammunition is low, and will survive otherwise. Decision trees are particularly
important for applications such as in-game learning, because (in contrast to compet-
ing technologies like neural networks) extremely efficient algorithms exist for creating
decision trees in near real time [Fu03].

Game Example
The best-known game-specific use of decision trees is in the game Black & White
where they were used to allow the creature to learn and form “opinions” [Evans02]. In
Black & White, a creature will learn what objects in the world are likely to satisfy his
desire to eat, based on feedback it gets from the player or world. For example, the
player can provide positive or negative feedback by stroking or slapping the creature.
A decision tree is then created that reflects what the creature has learned from its expe-
riences. The creature can then use the decision tree to decide whether certain objects
can be used to satisfy its hunger. While Black & White has demonstrated the power 
of decision trees to learn within games, they still remain largely untapped by the rest of
the games industry.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 545



Filtered Randomness

Filtered randomness attempts to ensure that random decisions or events in a game
appear random to the players. This can be achieved by filtering the results of a ran-
dom number generator such that non-random-looking sequences are eliminated, yet
statistical randomness is maintained. For example, if a coin is flipped eight times in a
row and turns up heads every time, a person might wonder if there was something
wrong with the coin. The odds of such an event occurring are only 0.4 percent, but in
a sequence of 100 flips it is extremely likely that either eight heads or eight tails in a
row will be observed. When designing a game for entertainment purposes, it is desir-
able for random elements to always appear random to the players.

The technique involves keeping a short history of past results for each random
decision that should be filtered. When a new decision is requested, a random result is
generated and compared to the history. If an undesirable pattern or sequence is
detected, the result is discarded and a new random result is generated. The process is
repeated until a suitable result is accepted. Surprisingly, reasonable statistical random-
ness is maintained despite the deliberate filtering [Rabin03].

Game Example
Simple randomness filtering is actually very common in games. For example, if a
character plays a random idle animation, often the game will ensure that the same idle
animation won’t be played twice in a row. However, filtering can be devised to remove
all peculiar sequences. For example, if an enemy can randomly spawn from five differ-
ent points, it would be extremely undesirable for the enemy to spawn from the same
point five times in a row. It would also be undesirable for the enemy to randomly
spawn in the counting sequence 12345 or favor one or two particular spawn points in
the short term, like 12112121. Although these sequences can arise by chance, they are
neither intended nor anticipated when the programmer wrote the code to choose a
spawn point randomly. By detecting and filtering undesirable patterns or sequences
with simple rules, a particular random decision can be guaranteed to always appear
fair and balanced in the short term while still maintaining good statistical randomness. 

Fuzzy Logic

Fuzzy logic is an extension of classical logic that is based on the idea of a fuzzy set. In
classical crisp set theory, an object either does or does not belong to a set. For exam-
ple, a creature is a member of the set of hungry creatures or is not a member of that
set. (It is either hungry or not hungry.) With fuzzy set theory, an object can have con-
tinuously varying degrees of membership in fuzzy sets. For example, a creature could
be hungry with degree of membership 0.1, representing slightly hungry, or 0.9, repre-
senting very hungry, or any value in between [McCuskey00].

546 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Genetic Algorithms

A genetic algorithm (GA) is a technique for search and optimization that is based on
evolutionary principles. GAs represent a point within a search space using a chromo-
some that is based on a handcrafted genetic code. Each chromosome consists of a
string of genes that together encode its location in the search space. For example, the
parameters of an AI agent can be the genes, and a particular combination of parame-
ters a chromosome. All combinations of parameters will represent the search space.

By maintaining a population of chromosomes, which are continually mated and
mutated, a GA is able to explore search spaces by testing different combinations of
genes that seem to work well. A GA is usually left to evolve until it discovers a chro-
mosome that represents a point in the search space that is good enough. GAs outper-
form many other techniques in search spaces that contain many optima, and are
controlled by only a small number of parameters, which must be set by trial and error.

Game Example
Genetic algorithms are very good at finding a solution in complex or poorly under-
stood search spaces. For example, your game might have a series of settings for the AI,
but because of interactions between the settings, it is unclear what the best combina-
tion would be. In this case, a GA can be used to explore the search space consisting of
all combinations of settings to come up with a near-optimal combination
[Sweetser03a]. This is typically done offline since the optimization process can be
slow and because a near-optimal solution is not guaranteed, meaning that the results
might not improve gameplay.

N-Gram Statistical Prediction

An n-gram is a statistical technique that can predict the next value in a sequence. For
example, in the sequence 18181810181, the next value will probably be an 8. When
a prediction is required, the sequence is searched backward for all sequences matching
the most recent n–1 values, where n is usually 2 or 3 (a bigram or trigram). Since the
sequence might contain many repetitions of the n-gram, the value that most com-
monly follows is the one that is predicted. If the sequence is built up over time, by
representing the history of a variable (such as the last player’s move), it is possible to
make a prediction of a future event. The accuracy of a prediction made by an n-gram
tends to improve as the amount of historical data increases.

Game Example
For example, in a street fighting game, the player’s actions (various punches and kicks)
can be accumulated into a move history. Using the trigram model, the last two player
moves are noted; for example, a Low Kick followed by a Low Punch. The move his-
tory is then searched for all examples where the player performed those two moves in
sequence. For each example found, the move following the Low Punch and Low Kick
is tallied. The statistics gathered might resemble Table 5.3.1.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 547



Table 5.3.1 Statistics Gathered from Past Player Moves

Player Sequence Occurrences Frequency

Low Kick, Low Punch, Uppercut 10 times 50%

Low Kick, Low Punch, Low Punch 7 times 35%

Low Kick, Low Punch, Sideswipe 3 times 15%

The information in Table 5.3.1 can be used in two different ways. The first is to
predict that the player’s next move will be the one with the highest probability (the
Uppercut with 50 percent likelihood based on past moves). The other is to use the
probabilities as the chance that each will be predicted. Using this second technique, it
is still possible to predict a Low Punch or Sideswipe as the next move, but it is less
likely to make that prediction.

The statistics in Table 5.3.1 can be quickly calculated “on the fly” when a predic-
tion is requested. A moving window into the past can be used so as not to consider
moves that occurred too long ago [Laramée02b].

Neural Networks

Neural networks are complex nonlinear functions that relate one or more input vari-
ables to an output variable. They are called neural networks because internally they
consist of a series of identical nonlinear processing elements (analogous to neurons)
connected together in a network by weights (analogous to synapses). The form of the
function that a particular neural network represents is controlled by values associated
with the network’s weights. Neural networks can be trained to produce a particular
function by showing them examples of inputs and the outputs they should produce in
response. This training process consists of optimizing the network’s weight values, and
several standard training algorithms are available for this purpose. Training most types
of neural networks is computationally intensive, however, making neural networks
generally unsuitable for in-game learning. Despite this, neural networks are extremely
powerful and have found some applications in the games industry.

Game Example
In games, neural networks have been used for steering racecars in Colin McRae Rally
2.0 and the Forza series, and for control and learning in the Creatures series.
Unfortunately, there are still relatively few applications of neural networks in games,
as very few game developers are actively experimenting with them.

Perceptrons

A perceptron network is a single-layer neural network, which is simpler and easier to
work with than a multilayer neural network. A perceptron network is composed of
multiple perceptrons, each of which can either have a “yes” or “no” output. In other

548 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



words, each perceptron either gets stimulated enough to trigger or it does not. Since a
perceptron can classify things as “yes” or “no,” it can be used to learn simple Boolean
decisions such as attack or don’t attack. They take up very little memory and are eas-
ier to train than a multilayer neural network or a decision tree. It is important to note,
however, that perceptrons and perceptron networks have some limitations and can
only learn simple (linearly separable) functions.

Game Example
In the game Black & White, every desire of a creature was represented by a different
perceptron [Evans02]. For example, a single perceptron was used to represent the
desire to eat (or hunger). Using three inputs (low energy, tasty food, and unhappi-
ness), a perceptron would determine whether a creature was hungry. If the creature ate
and received either positive or negative reinforcement, the weight associated with the
perceptron would be adjusted, thus facilitating learning [Evans02].

Planning

The aim of planning is to find a series of actions for the AI that can change the current
configuration of the game world into a target configuration. By specifying precondi-
tions under which certain actions can be taken by the AI and what the effects of those
actions are likely to be, planning becomes a problem of searching for a sequence of
actions that produces the required changes in the game world. Effective planning relies
on choosing a good planning algorithm to search for the best sequence of actions,
choosing an appropriate representation for the game world, and choosing an appropri-
ate set of actions that the AI will be allowed to perform and specifying their effects.

Game Example
When the domain of a planning problem is sufficiently simple, formulating small
plans is a reasonable and tractable problem that can be performed in real time. For
example, in a game, a guard might run out of ammo during a gunfight with the
player. The AI can then try to formulate a plan that will result in the player’s demise
given the guard’s current situation. A planning module might come back with the
solution of running to the light switch, turning it off to provide safety, running into
the next room to gather ammo, and waiting in an ambush position [Orkin03a]. As
game environments become more interactive and rich with possibilities, planning sys-
tems can help agents cope with the complexity by formulating reasonable and work-
able plans.

Player Modeling

Player modeling is the technique of building a profile of a player’s behavior, with the
intent of adapting the game. During play, the player’s profile is continuously refined
by accumulating statistics related to the player’s behavior. As the profile emerges, the
game can adapt the AI to the particular idiosyncrasies of the player by exploiting the
information stored in his or her profile.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 549



Game Example
In an FPS, the AI might observe that the player is poor at using a certain weapon or
isn’t good at jumping from platform to platform. Information like this can then be
used to regulate the difficulty of the game, either by exploiting any weaknesses or by
shying away from those same weaknesses [Beal02, Houlette03].

Production Systems

A production system (also known as a rule-based system or expert system) is an architec-
ture for capturing expert knowledge in the form of rules. The system consists of a
database of rules, facts, and an inference engine that determines which rules should
trigger, resolving any conflicts between simultaneously triggered rules. The intelligence
of a production system is embodied by the rules and conflict resolution [AIISC03].

Game Example
Many games use a simple version of a production system in the form of a series of
rules constructed as if/else statements. However, true production systems are generally
considered more structured and elaborate.

The academic community has had some success in creating bot AI for Quake II
using the Soar production system [van Lent99], although the system requires upward
of 800 rules to play as a fairly competent opponent [Laird00]. Another applicable area
is sports games, where each AI player must contain a great deal of expert knowledge to
play the sport correctly. Microsoft’s Sports Group experimented with some success
using a production system to drive their team sports games, but the group has since
been disbanded for unrelated reasons.

Reinforcement Learning

Reinforcement learning (RL) is a powerful machine learning technique that allows a
computer to discover its own solutions to complex problems by trial and error. RL is
particularly useful when the effects of the AI’s actions in the game world are uncertain
or delayed. For example, when controlling physical models like steering an airplane or
racing a car, how should the controls be adjusted so that the airplane or car follows a
particular path? What sequences of actions should a real-time strategy AI perform to
maximize its chances of winning? By providing rewards and punishments at the
appropriate times, an RL-based AI can learn to solve a variety of difficult and complex
problems [Manslow03].

Reputation System

A reputation system is a way of modeling how the player’s reputation in the game world
develops and changes based on his or her actions. Rather than a single reputation
model, each character in the game knows particular facts about the player [Alt02,
Russell06]. Characters learn new facts by witnessing player actions or by hearing

550 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



information from others. Based on what the characters know about the player, they
might act friendly toward the player or they might act hostile [Brockington03].

Game Example
In a cowboy gunfighter game, the player’s reputation might be very important. If the
player goes around killing people indiscriminately, others might witness the killings
and relay the information to whomever they meet. This would give the player motiva-
tion to play nice or to make sure there are no witnesses. Player reputation was used
quite extensively in Fable and Fable 2 for how the townspeople would react to the
player [Russell06]. Reputation was recorded at both the macro game-wide level and
uniquely for each individual agent; then it was combined when a townsperson needed
to react to the player.

Smart Terrain

Smart terrain (also known as smart objects) is the technique of putting intelligence into
inanimate objects. The result is that an agent can ask the object what it does and how
to use it. For example, a smart microwave oven knows what it can accomplish (cook
food) and how it should be used (open door, place food inside, close door, set cooking
time, wait for beep, open door, take food out, close door). The advantage of such a
system is that agents can use objects with which they were never explicitly pro-
grammed to interact.

The use of smart terrain is enlightened by affordance theory, which claims that
objects by their very design allow for (or afford) a very specific type of interaction
[Gibson87]. For example, a door on hinges that has no handles only permits opening
by pushing on the nonhinged side. This is similar to letting the objects themselves
dictate how they should be used.

Game Example
The term smart terrain was popularized by the very successful game The Sims. In The
Sims, the objects in the game world contain most of the game’s intelligence. Each
object broadcasts to agents what it has to offer and how it can be used. For example,
an agent might be hungry, and food on the table will broadcast “I satisfy hunger.” If
the agent decides to use the food, the food instructs the agent how to interact with it
and what the consequences are. By using this smart terrain model, agents are able to
use any new object that is added into the game through expansion packs or from
Internet sites.

Speech Recognition and Text-to-Speech

The technology of speech recognition enables a game player to speak into a microphone
and have a game respond accordingly. In the games industry, there have been a few
attempts to add speech recognition to games. The most notable are Sega’s Seaman for
the Sega Dreamcast and Nintendo’s Nintendogs for the Nintendo DS. While these

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 551



first attempts were somewhat gimmicky, they serve an important role by feeling out
the territory for viable speech recognition in games, both in terms of the current state
of the technology and the possibilities for enhancing gameplay. Platforms such as the
Nintendo DS have a built-in microphone, which encourages games to support speech
recognition.

Text-to-speech is the technique of turning ordinary text into synthesized speech.
This allows for endless amounts of speech without having to record a human actor.
Unfortunately, currently, virtually no games use text-to-speech technology, perhaps
because it sounds rather robotic. In practice, it’s more effective to record a human
voice, especially since most games have access to enough disk space to store high-quality
audio samples. The quality of voice acting in games has also risen in recent years,
which makes bland text-to-speech less appealing. However, for some games, it can be
quite entertaining for the player to enter his or her name and have the game speak it.
For the right game, text-to-speech can be a novel technology that can set the game apart.

Weakness Modification Learning

Weakness modification learning helps prevent an AI from losing repeatedly to a
human player in the same way each time. The idea is to record a key gameplay state
that precedes an AI failure. When that same state is recognized in the future, the AI’s
behavior is modified slightly so that “history does not repeat itself.” By subtly disrupt-
ing the sequence of events, the AI might not win more often or act more intelligently,
but at least the same failure won’t happen repeatedly. An important advantage of
weakness modification learning is that potentially only one example is required in
order to learn [van Rijswijck03].

Game Example
Within a soccer game, if the human scores a goal against the computer, the position
of the ball can be recorded at some key moment when it was on the ground before the
goal was scored. Given this ball position, the game can create a gravity well vector
field that will subtly draw the closest computer players toward that position. This par-
ticular vector field is then phased in whenever the ball appears near the recorded posi-
tion in a similar situation (and phased out when the ball moves away). This example
lends itself well to many team sports games such as soccer, basketball, hockey, and
perhaps football. However, the general concept is very simple and can be applied to
almost any genre.

Summary

Game AI is distinctively different from many other related AI fields. The goal is to
create intelligent opponents, allies, and neutral characters that result in an engaging
and enjoyable experience for the player. Ultimately, the goal is not to beat the player,
but rather to lose in a fun and challenging way.

552 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Most games are populated by agents that sense, think, and act on their own; how-
ever, even a single opponent can be thought of as an agent. Advanced agents might
also learn and remember in order to present a deeper challenge. It is important to real-
ize that whatever an agent senses, thinks, or remembers, it is completely invisible and
inconsequential to the player unless the agent can express the result through actions.
An agent’s outward appearance through movement, manipulation, animation, and
dialogue is critical to making the agent appear intelligent. Typically, this requires tight
integration and collaboration with the people who generate the art assets.

One of the most enduring techniques for endowing intelligence on agents is the
ubiquitous finite-state machine. This simple computational model allows complex
expertise to be expressed in a simple, easy-to-understand manner that is also conve-
nient to debug. The actions and mindsets of an agent eloquently map to the states of
an FSM, further allowing for simple, yet effective modeling of behavior. With the
many enhancements developed for FSMs, it is easy to understand why they have
become so universal within AI game development.

Finally, there are dozens of common and promising techniques for adding intelli-
gence to games. Each game is unique and might require mixing and matching several
different techniques. There is no single solution, and the resulting design is highly
dependant on the exact requirements of the game. Therefore, it is critical that a devel-
oper becomes familiar with a broad range of techniques in order to experiment and
make intelligent implementation decisions.

Exercises

1. Name several simple ways to make an AI opponent difficult to beat.
2. How could an agent apparently get better at playing a game over time 

without actually learning or remembering anything?
3. Design an FSM for a patrol behavior. For example, a patrol behavior might

visit three different locations in an endless loop. Compose your answer as a
UML diagram. 

4. Design an FSM for a smart patrolling guard. Consider how the guard might
detect intruders and what his reaction might be over his lifetime. Compose
your answer as a UML diagram.

5. Take the FSMs you designed in the previous two exercises and convert them
to the fictional FSM scripting language as described in Listing 5.3.2.

6. Using the State Machine Language included on the companion CD-ROM,
investigate the messaging scheme that allows agents to communicate with
each other. Write a short explanation of each messaging function (starting
with SendMsg). Give examples of how each might be useful.

7. Research a recent game that has received acclaim for its AI. What does the
game do particularly well with regard to AI? What AI techniques are likely
being used?

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 553



8. The game Black & White was hailed for its interesting and innovative use of
AI. Research this game and comment on how the game design allowed the
AI to be showcased.

9. Write a one-page essay on the future of game AI. What will it look like in
10 or 20 years? How about 100 years?

References

[AIISC03] “Working Group on Rule-Based Systems Report,” The 2003 AIISC
Report, AIISC, 2003, available online at www.igda.org/ai/report-2003/
aiisc_rule_based_systems_report_2003.html.

[Alt02] Alt, Greg, and King, Kristin, “A Dynamic Reputation System Based on
Event Knowledge,” AI Game Programming Wisdom, Charles River Media, 2002.

[Beal02] Beal, C.; Beck, J.; Westbrook, D.; Atkin, M.; and Cohen, P., “Intelligent
Modeling of the User in Interactive Entertainment,” AAAI Stanford Spring 
Symposium, 2002, available online at www-unix.oit.umass.edu/~cbeal/papers/
AAAISS02Slides.pdf and www-unix.oit.umass.edu/~cbeal/papers/AAAISS02.pdf.

[Brockington02a] Brockington, Mark, “Level-Of-Detail AI for a Large Role-Playing
Game,” AI Game Programming Wisdom, Charles River Media, 2002.

[Brockington03] Brockington, Mark, “Building A Reputation System: Hatred,
Forgiveness, and Surrender in Neverwinter Nights,” Massively Multiplayer Game
Development, Charles River Media, 2003.

[Brooks89] Brooks, Rodney, “How to Build Complete Creatures Rather than
Isolated Cognitive Simulators,” Architectures for Intelligence, Lawrence Erlbaum
Associates, Fall 1989, available online at www.ai.mit.edu/people/brooks/papers/
how-to-build.pdf.

[Cain02] Cain, Timothy, “Practical Optimizations for A* Path Generation,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Dawson02] Dawson, Chad, “Formations,” AI Game Programming Wisdom, Charles
River Media, 2002.

[Evans02] Evans, Richard, “Varieties of Learning,” AI Game Programming Wisdom,
Charles River Media, 2002.

[Fu03] Fu, Dan, and Houlette, Ryan, “Constructing a Decision Tree Based on Past
Experience,” AI Game Programming Wisdom 2, Charles River Media, 2003.

[Gibson87] Gibson, James, The Ecological Approach to Visual Perception, Lawrence
Erlbaum Assoc., 1987.

[Grimani03] Grimani, Mario, “Wall Building for RTS Games,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Hargrove03a] Hargrove, Chris, “Simplified Animation Selection,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Hargrove03b] Hargrove, Chris, “Pluggable Animations,” AI Game Programming
Wisdom 2, Charles River Media, 2003.

554 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.igda.org/ai/report-2003/aiisc_rule_based_systems_report_2003.html
www.igda.org/ai/report-2003/aiisc_rule_based_systems_report_2003.html
www-unix.oit.umass.edu/~cbeal/papers/AAAISS02Slides.pdf
www-unix.oit.umass.edu/~cbeal/papers/AAAISS02Slides.pdf
www-unix.oit.umass.edu/~cbeal/papers/AAAISS02.pdf
www.ai.mit.edu/people/brooks/papers/how-to-build.pdf
www.ai.mit.edu/people/brooks/papers/how-to-build.pdf


[Higgins02a] Higgins, Dan, “Generic A* Pathfinding,” AI Game Programming
Wisdom, Charles River Media, 2002.

[Higgins02b] Higgins, Dan, “How to Achieve Lightning-Fast A*,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Higgins02c] Higgins, Dan, “Terrain Analysis in an RTS—The Hidden Giant,”
Game Programming Gems 3, Charles River Media, 2002.

[Houlette01] Houlette, Ryan; Fu, Daniel; and Ross, David, “Towards an AI
Behavior Toolkit for Games,” AAAI Spring Symposium on AI and Interactive
Entertainment, 2001, www.qrg.northwestern.edu/aigames.org/2001papers.html.

[Houlette03] Houlette, Ryan, “Player Modeling for Adaptive Games,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[IDIS99] “Bayesian Networks,” IDIS Lab, 1999, available online at 
http://excalibur.brc.uconn.edu/~baynet/.

[Isla02] Isla, Damian, and Blumberg, Bruce, “Blackboard Architectures,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Isla05] Isla, Damian, “Handling Complexity in the Halo 2 AI,” Game Developer
Conference 2005, available online at http://www.gamasutra.com/view/
feature/2250/gdc_2005_proceeding_handling_.php, 2005.

[Kent03] Kent, Tom, “Multi-Tiered AI Layers and Terrain Analysis for RTS
Games,” AI Game Programming Wisdom 2, Charles River Media, 2003.

[Laird00] Laird, John, and van Lent, Michael, “Human-level AI’s Killer Application:
Interactive Computer Games,” AAAI, 2000, available online at ai.eecs.umich.
edu/people/laird/papers/AAAI-00.pdf.

[Laramée02b] Laramée, François Dominic, “Using N-Gram Statistical Models to
Predict Player Behavior,” AI Game Programming Wisdom, Charles River Media,
2002.

[Laramée03] Laramée, François Dominic, “Dead Reckoning in Sports and Strategy
Games,” AI Game Programming Wisdom 2, Charles River Media, 2003.

[Lidén02] Lidén, Lars, “Strategic and Tactical Reasoning with Waypoints,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Manslow03] Manslow, John, “Using Reinforcement Learning to Solve AI Control
Problems,” AI Game Programming Wisdom 2, Charles River Media, 2003.

[McCuskey00] McCuskey, Mason, “Fuzzy Logic for Video Games,” Game
Programming Gems, Charles River Media, 2000.

[Orkin02a] Orkin, Jeff, “A General-Purpose Trigger System,” AI Game Programming
Wisdom, Charles River Media, 2002.

[Orkin02b] Orkin, Jeff, “A Data-Driven Architecture for Animation Selection,” 
AI Game Programming Wisdom, Charles River Media, 2002.

[Orkin03a] Orkin, Jeff, “Applying Goal-Oriented Action Planning to Games,” AI
Game Programming Wisdom 2, Charles River Media, 2003.

[Orkin03b] Orkin, Jeff, “Simple Techniques for Coordinated Behavior,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 555

www.qrg.northwestern.edu/aigames.org/2001papers.html
http://excalibur.brc.uconn.edu/~baynet/
http://www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php
http://www.gamasutra.com/view/feature/2250/gdc_2005_proceeding_handling_.php


[Pottinger99a] Pottinger, Dave, “Coordinated Unit Movement,” Game Developer
Magazine, January 1999, available online at www.gamasutra.com/features/
19990122/movement_01.htm.

[Pottinger99b] Pottinger, Dave, “Implementing Coordinated Movement,” Game
Developer Magazine, February 1999, available online at www.gamasutra.com/
features/19990129/implementing_01.htm.

[Rabin98] Rabin, Steve, “Making the Play: Team Cooperation in Microsoft Baseball
3D,” Computer Game Developers Conference Proceedings, 1998, available on the
AI Game Programming Wisdom 2 CD-ROM, Charles River Media, 2002.

[Rabin00a] Rabin, Steve, “A* Speed Optimizations,” Game Programming Gems,
Charles River Media, 2000.

[Rabin00b] Rabin, Steve, “A* Aesthetic Optimizations,” Game Programming Gems,
Charles River Media, 2000.

[Rabin02] Rabin, Steve, “An Extensible Trigger System for AI Agents, Objects, and
Quests,” Game Programming Gems 3, Charles River Media, 2002.

[Rabin03] Rabin, Steve, “Filtered Randomness for AI Decisions and Game Logic,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Reed03] Reed, Christopher, and Geisler, Benjamin, “Jumping, Climbing, and
Tactical Reasoning: How to Get More out of a Navigation System,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[Reynolds87] Reynolds, Craig, “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” Computer Graphics, 21(4) (SIGGRAPH ‘87 Conference
Proceedings), pp. 25–34, 1987, available online at www.red3d.com/cwr/papers/
1987/boids.html.

[Reynolds99] Reynolds, Craig, “Steering Behaviors For Autonomous Characters,”
Game Developers Conference Proceedings, 1999, available online at 
www.red3d.com/cwr/papers/1999/gdc99steer.pdf.

[Reynolds01] Reynolds, Craig, “Boids,” available online at www.red3d.com/cwr/
boids/.

[Reynolds02] Reynolds, John, “Tactical Team AI Using a Command Hierarchy,” 
AI Game Programming Wisdom, Charles River Media, 2002.

[Russell06] Russell, Adam, “Opinion Systems,” AI Game Programming Wisdom 3,
Charles River Media, 2006.

[Scutt02] Scutt, Tom, “Simple Swarms as an Alternative to Flocking,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Stein02] Stein, Noah, “Intercepting a Ball,” AI Game Programming Wisdom, Charles
River Media, 2002.

[Sweetser03a] Sweetser, Penny, “How to Build Evolutionary Algorithms for Games,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Tozour01] Tozour, Paul, “Influence Mapping,” Game Programming Gems 2, Charles
River Media, 2001.

556 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.gamasutra.com/features/19990122/movement_01.htm
www.gamasutra.com/features/19990122/movement_01.htm
www.gamasutra.com/features/19990129/implementing_01.htm
www.gamasutra.com/features/19990129/implementing_01.htm
www.red3d.com/cwr/papers/1987/boids.html
www.red3d.com/cwr/papers/1987/boids.html
www.red3d.com/cwr/papers/1999/gdc99steer.pdf
www.red3d.com/cwr/boids/
www.red3d.com/cwr/boids/


[Tozour02a] Tozour, Paul, “The Perils of AI Scripting,” AI Game Programming
Wisdom, Charles River Media, 2002.

[Tozour02b] Tozour, Paul, “Introduction to Bayesian Networks and Reasoning
Under Uncertainty,” AI Game Programming Wisdom, Charles River Media, 2002.

[Tozour03a] Tozour, Paul, “Search Space Representations,” AI Game Programming
Wisdom 2, Charles River Media, 2003.

[Tozour03b] Tozour, Paul, “Using a Spatial Database for Runtime Spatial Analysis,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Tozour03c ] Tozour, Paul, “Stack-Based Finite-State Machines,” AI Game
Programming Wisdom 2, Charles River Media, 2003.

[van der Sterren00] van der Sterren, William, “AI for Tactical Grenade Handling,”
CGF-AI, 2000, available online at www.cgf-ai.com/docs/grenadehandling.pdf.

[van Lent99] van Lent, M.; Laird, J.; Buckman, J.; Harford, J.; Houchard, S.;
Steinkraus, K.; and Tedrake, R., “Intelligent Agents in Computer Games,”
AAAI, 1999, available online at hebb.mit.edu/people/russt/publications/
Intelligent_Agents_in_Computer_Games(AAAI99).pdf.

[van Rijswijck03] van Rijswijck, Jack, “Learning Goals in Sports Games,” Game
Developers Conference Proceedings, 2003, available at www.gdconf.com/archives/
2003/Van_Ryswyck_Jack.doc or www.cs.ualberta.ca/~javhar/research.html.

[Woodcock02] Woodcock, Steven, “Recognizing Strategic Dispositions: Engaging
the Enemy,” AI Game Programming Wisdom, Charles River Media, 2002.

[Yiskis03a] Yiskis, Eric, “Finite-State Machine Scripting Language for Designers,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

[Yiskis03b] Yiskis, Eric, “A Subsumption Architecture for Character-Based Games,”
AI Game Programming Wisdom 2, Charles River Media, 2003.

5.3 Artificial Intelligence: Agents, Architecture, and Techniques 557

www.cgf-ai.com/docs/grenadehandling.pdf
www.gdconf.com/archives/2003/Van_Ryswyck_Jack.doc
www.gdconf.com/archives/2003/Van_Ryswyck_Jack.doc
www.cs.ualberta.ca/~javhar/research.html


This page intentionally left blank 



559

Overview

Pathfinding is a problem that has to be dealt with in just about every game. If an
agent cannot find its way around the level, it will seem quite incompetent. Pathfinding
is not a trivial task. This is in part because the resources that a pathfinding system
consumes can quickly get out of hand. Even though there are many search algorithms
to choose from for pathfinding, the A* algorithm (pronounced A-star) is by far the
most popular. In this chapter, we will look at a few different algorithms and work our
way up to A* to give you a complete understanding of how A* works and why it is so
popular. There are also two applications on the companion CD-ROM that corre-
spond to this chapter. The first one, PathPlannerApp, is designed to help you imple-
ment the algorithms covered in this chapter. The second application performs the
algorithms implemented in the PathPlannerApp on an alternative common represen-
tation known as waypoint graphs. 

Representing the Search Space

To perform pathfinding, an agent or the pathfinding system needs to understand the
level. An agent does not need a fully detailed model of the level. In fact, even humans
don’t keep track of every little detail about a level when trying to find a path in a
building. For example, we typically do not pay attention to details such as the exact

Artificial Intelligence:
Pathfinding Overview

5.4

In This Chapter

Overview
Representing the Search Space
Pathfinding
Summary
Exercises
References



shape of every room, the color of the walls, and all the objects in each room. Similarly,
an agent only needs a representation of the level that takes into account the most
important and relevant information. 

There are numerous ways to represent the relevant information of a level for an
agent. The knowledge representation technique and the amount of information about
the level directly affect the efficiency and quality of paths that an agent can find. The
more information, the better paths the agent can potentially find. However, more
knowledge is not always better. If you give the agent an overly detailed model of the
level, it will waste precious memory space and CPU cycles to store and process unnec-
essary data. 

Grids, waypoint graphs, and navigation meshes are among the most common repre-
sentation schemes, each of which has its own advantages and disadvantages. The
genre of a game, the type of levels, the number of agents, and many other constraints
can make one scheme more appropriate than the others. In the following section, we
will cover the advantages and disadvantages of these representation schemes. 

Grids

Two-dimensional grids are an intuitive way of representing the level for many games.
In fact, RTS games such as Age of Empires and Warcraft III use a grid. Each cell is
flagged as either passable or impassable. Each object in the world can occupy one or
more cells. A building might occupy several cells, whereas a tree might occupy a sin-
gle cell. Just because a grid is 2D does not mean that it cannot be used for a 3D RTS
game such as Warcraft III. Even though Warcraft III levels are 3D, for any point on
the terrain, a unit can be at only one elevation. For example, Warcraft III levels do not
have bridges where the unit is allowed to go over the bridge and under the bridge. In
essence, the elevation can be ignored, which reduces the 3D level to a 2D level. 

A grid has several advantages. Given an arbitrary location in the world, you can
immediately find the exact cell that corresponds to that position. In addition, for any
cell in the world, you can easily access the neighboring cells. Grids can work quite
well for levels that can be reasonably aligned to grid cells. Figure 5.4.1 shows a level
that has been estimated using a grid, despite the fact that everything is not perfectly
aligned to a grid. 

Waypoint Graphs

Instead of specifying passable and impassable parts of the level, a waypoint graph
specifies the lines in the level that are safe for traversing. An agent can choose to walk
along any of these lines without having to worry about running into major obstacles
or falling into ditches or off a ramp. The waypoint nodes are connected through links.
A link connects exactly two nodes together, indicating that an agent can move safely
between the two nodes by following along the link. Figure 5.4.2 shows a waypoint
graph for a level that would be harder to estimate using a grid. In addition, the classes
in Listing 5.4.1 can be used to represent a waypoint graph.

560 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



5.4 Artificial Intelligence: Pathfinding Overview 561

FIGURE 5.4.1 A level represented using a grid.

FIGURE 5.4.2 A level represented using a waypoint graph.



LISTING 5.4.1 Waypoint graph node and waypoint graph link.

class GraphNode

{

public:

int                 m_id;

Vector3             m_position;

std::vector<int>    m_linkIds;

...

};

class GraphLink

{

public:

int    m_id;

int    m_beginId;

int    m_endId;

float  m_weight;

...

};

A typical grid cell is connected to its eight surrounding cells, whereas a graph
node can be connected to any number of nodes. This makes waypoint graphs much
more flexible than grids. In fact, for every grid, an equivalent waypoint graph can be
created by placing a waypoint at the center of the passable cells and connecting it to
its eight immediate neighbors. However, this does not mean that using graphs is nec-
essarily better. When a level is represented as a grid, there is no need for additional
data to keep track of the neighboring cells. Instead, the indices of a cell can be used to
compute the indices of the neighboring cells. Representing certain levels as a grid can
save orders of magnitude of memory space, while using a waypoint graph can be a far
better approach for levels such as the one in Figure 5.4.2. 

The nodes of a waypoint graph can store additional information such as a radius.
The radius can be used to associate a width with the links so that the agents do not
have to follow the links very closely. By doing so, the agents can have plenty of room
to deviate from the links without having to worry about running into obstacles or
falling into a hole. However, many games do not associate a width with the links.
Instead, they allow the agents to loosely follow the links and rely on additional run-
time collision detection to save the agents from running into obstacles or falling into
a hole. To rely on runtime collision detection to help an agent avoid holes, the level
designer will have to provide additional collision information such as invisible planes
or bounding volumes.

One of the biggest advantages of waypoint graphs is that they can easily represent
arbitrary three-dimensional levels. Many FPS games such as Unreal Tournament and
Half-Life use waypoint graphs. 

562 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Navigation Meshes

Navigation meshes have been gaining more and more popularity over the past few
years. This is because they bring the best of both grids and waypoint graphs together.
Figure 5.4.3 shows the equivalent navigation mesh representation for the level presented
in Figure 5.4.2. 

Navigation meshes are in many ways similar to waypoint graphs. The major dif-
ference is that every node of a navigation mesh represents a convex polygon or area, as
opposed to a single point. The advantage of a convex polygon is that any two points
inside it can be connected without crossing an edge of the polygon. This means that
if an agent is inside a convex polygon, it can safely move to any other point inside the
polygon without leaving the polygon. An edge of the polygon is either shared with
another polygon, indicating that the two nodes are linked, or not shared with any
other polygon, indicating that the edge should not be crossed. Edges that are not
shared with other nodes can be used to stop the bots from running into obstacles or
falling off a cliff. 

There are different variations of navigation meshes. One of the major distinctions
is whether the nodes store a triangle or an n-sided convex polygon. Figure 5.4.3 is a
mesh that is made of triangles.

As mentioned previously, waypoint graphs tend to emphasize the points and lines
in the level that are safe for traversing. Unlike grids and navigation meshes, a way-
point graph does not specify passable and impassible regions. A waypoint graph is
considered to be an incomplete representation of the level, whereas a navigation mesh
is inherently a complete representation. 

5.4 Artificial Intelligence: Pathfinding Overview 563

FIGURE 5.4.3 A level represented using a navigation mesh.



Another advantage of navigation meshes is that they tie pathfinding and collision
detection together. When using a waypoint graph, an agent has to rely heavily on run-
time collision detection to help it navigate the level. The cost of the collision detection
can easily add up, especially as the number of agents increases. With navigation meshes,
simple 2D line intersection tests against the edges of the polygons can determine
whether an agent is hitting a wall or when it is safely crossing into another polygon. 

Pathfinding

Now that we have seen different ways of making a small-scale model of a level that an
agent can use for pathfinding, let’s look at how we can enable the agent to find paths
around the level. The pathfinding algorithms we discuss here can be used on any of
the representations that we covered in the last section. For the sake of simplicity, we
will assume that the level is represented as a grid. 

Let’s start with the definition of a path. A path is a list of cells, points, or nodes
that an agent has to traverse to get from a start position to a goal position. In most sit-
uations, a large number of different paths can be taken to reach the goal. Some paths
are better than others are. One of the important criterion of a pathfinding algorithm
is the quality of the path it finds. Some algorithms guarantee that they find the most
optimal path, while others do not guarantee to even find a path. Plenty of algorithms
can be misled in certain situations and ultimately fail to find a path. Algorithms that
guarantee to find a path are referred to as complete algorithms, and algorithms 
that guarantee to always find the most optimal path are known as optimal algorithms.
The amount of CPU cycles and memory needed to find a path is another important
criterion of an algorithm. 

In the upcoming sections, we will analyze five different algorithms. The first,
which we will refer to as the Random-Trace algorithm, is a very simple algorithm that
will be used as a basis to explain why A* is such a popular algorithm. To understand A*,
you have to fully understand the Breadth-First, Best-First, and Dijkstra algorithms. 

Random-Trace

Given a map such as the one in Figure 5.4.4a, how would you get an agent from the
start cell to the goal? Assume that the map only contains relatively small convex obsta-
cles. Unlike concave obstacles, convex obstacles do not have any cavities. For example,
a square, line, or triangle is convex, whereas a U- or L-shaped obstacle is concave. 

Consider the following solution: Allow the agent to move toward the goal until it
reaches the goal or runs into an obstacle. If it runs into an obstacle, it can randomly
choose to trace around the object in a clockwise or counterclockwise manner. It can
then trace around the object until it can head toward the goal without immediately
running into an obstacle. The agent can repeat this procedure until the goal is reached.

564 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



This simple algorithm can work very well as long as the map only has relatively small
convex obstacles. What is the weakness of this algorithm if the map has concave or
even large convex obstacles? As you can see from Figure 5.4.4b, larger objects can have
a substantial effect on the quality of the path. It would be much better for the agent to
trace clockwise when he runs into the obstacles in Figure 5.4.4b, rather than trace
counterclockwise. Note that a high-quality path would not even go into the concavity. 

One of the fundamental problems with this algorithm is that it is incapable of
considering a wide variety of paths. To get a good idea of how limiting this algorithm
is, think about how many potential paths this algorithm can take for the map in
Figure 5.4.4b. It can only pick between four paths, even though there is an infinite
number of paths between start and goal. This shortcoming is why this algorithm is
not a complete algorithm. The Random-Trace algorithm does not even guarantee to
find a path from start to goal in a finite amount of time for the map in Figure 5.4.4c. 

Understanding the A* Algorithm

In this section, we will look at why A* is such a popular algorithm for pathfinding. A*
is a combination of two other algorithms—Best-First and Dijkstra. Best-First and
Dijkstra are both derivatives of the Breadth-First algorithm. To get a complete under-
standing of A*, we will study these other algorithms and work our way up to A*. As
you will soon see, these algorithms have a lot in common.

One of the most important characteristics of these algorithms is that they con-
sider a wide variety of paths. In fact, they keep track of numerous paths simultane-
ously, and if they have to, they will consider every possible part of the map to find a
path to the goal. To do so, they need a way of keeping track of the paths. A path can
be described as an ordered list of subdestinations. Instances of the PlannerNode class
presented in Listing 5.4.2 can be used to represent a path. 

5.4 Artificial Intelligence: Pathfinding Overview 565

FIGURE 5.4.4 Three different levels: a) trivial, b) nontrivial, and c) difficult.



LISTING 5.4.2 PlannerNode class for representing a node.

class PlannerNode

{

public:

PlannerNode    *m_pParent;

int             m_cellX, m_cellY;

...

};

The PlannerNode class stores the position of a cell and a pointer to another
PlannerNode that specifies which of the neighboring cells has led us to the cell. By chain-
ing these nodes together using the parent pointers, we can represent a path between a
starting cell and a goal cell. Given a path, additional PlannerNodes can be concatenated
to the end of the path to create other paths. By creating additional paths that extend
existing paths, an algorithm can work its way through the map in search of the goal. 

All of the algorithms we are about to cover use two lists known as the open list and
the closed list. The open list keeps track of paths that still need to be processed. When
a path is processed, it is taken off the open list and checked to see whether it has
reached the goal. If it has not, it is used to create additional paths, and it is then placed
on the closed list. The closed nodes (or paths) are those that do not correspond to the
goal cell and have been processed already. 

Figure 5.4.5 shows the state of an algorithm that has completed the search
process. In the case of this particular algorithm, the search started in the center and
worked its way outward until it found the goal represented by the X. At the comple-
tion of the search, the light gray nodes are on the open list and the dark gray nodes are
on the closed list. Again, each node on the open list represents a path between that cell
and the starting cell, and the closed list contains paths that used to be on the open list.

566 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.4.5 Open and closed nodes.



The arrows in Figure 5.4.5 represent the parent pointer of the PlannerNodes. The par-
ent pointers that are part of the path between the start and the goal appear in bold and
represent the solution path pointing from the goal back to the start. Breadth-First,
Best-First, Dijkstra, and A* algorithms all follow the pseudocode in Listing 5.4.3.

LISTING 5.4.3 The overall structure of the algorithms.

1)create a node for the start point and push it onto 

the open list

2)while the open list is not empty 

A)pop a node from the open list and call it

currentNode

B)if currentNode corresponds to the goal, 

break from step 2

C)create the successors of currentNode and 

push them onto the open list

D)put the currentNode onto the closed list

The pseudocode first creates a node and pushes it onto the open list. It then loops
until it has examined every node on the open list. In the first iteration of the loop, the
only node on the open list is the root node. Once it is popped from the open list, it is
used to create additional nodes for neighboring cells. These successor nodes are then
pushed onto the open list, and the current node is pushed onto the closed list. This
process is repeated until either the goal is reached or the open list is empty. The node
that reaches the goal is part of the path between the start and the goal. Once the goal
has been reached, the path between start and goal can be obtained by traversing the
parent pointer of the PlannerNodes starting from the node that reached the goal and
ending with the root node. If the open list becomes empty without finding the goal,
it means the goal cannot be reached. Unlike the Random-Trace algorithm, all four
algorithms are considered complete algorithms because they guarantee to find a solu-
tion if one exists, regardless of how complicated the map is. 

Before creating a successor node, the algorithms make sure there is no more than
one node for any given cell of the grid. This is to prevent unnecessary reexploration of
the map. The idea is that there is no need to store more than one path between the
start and another single cell of the grid. If we come across another path to a cell to
which we already have a path, we can either disregard the new path or pick the better
of the two and disregard the other. To make sure we never have more than one path to
any single cell of the grid, before creating a successor node, we have to see if we have
already made a node for that cell. This means that we need to check the open list and
the closed list. Even though this step can be very expensive, it is still better than
unnecessarily reexploring parts of the map. Not catching redundant nodes can result
in substantial consumption of memory and substantially more time to find the goal.
Using a data structure that offers fast lookups, such as a hash table or hash map, can
have a significant effect on the performance of the algorithm.

5.4 Artificial Intelligence: Pathfinding Overview 567



The main difference between Breadth-First, Best-First, Dijkstra, and A* is in which
node on the open list it decides to process every iteration of the loop. Breadth-First
always processes the node that has been waiting the longest, Best-First always processes
the one that is closest to the goal, Dijkstra processes the one that is the cheapest to reach
from the start cell, and A* chooses the node that is cheap and close to the goal.

Breadth-First

Breadth-First tries to find a path from the start to the goal by examining the search
space ply-by-ply. That is, it checks all the cells that are one step (or ply) from the start,
and then checks cells that are two plies from the start, and so on. This behavior occurs
because the algorithm always processes the node that has been waiting the longest.
Breadth-First uses a queue as the open list. Every time a node is created, it is pushed
to the back of the queue. By doing so, the node at the front of the queue is always the
one that has been waiting the longest. The algorithm used to search for the goal in
Figure 5.4.5 was actually the Breadth-First algorithm. The pseudocode in Listing 5.4.4
shows the details of the algorithm. 

LISTING 5.4.4 Breadth-First pseudocode.

1)create the rootNode

- set its x and y according to the startPoint

- set its parent to NULL

2)push the rootNode onto the open list

568 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.4.6 The Best-First algorithm.



3)while the open list is not empty

A)pop the node that has been waiting the longest

from the open list and assign it to currentNode

B)if currentNode’s x and y correspond to the

goalPoint then

- break from step 3

C)for every nearbyPoint around the currentNode

a)if this nearbyPoint is in a spot that is

impassable then 

- skip to the next nearbyPoint

b)if a node for this nearbyPoint has been 

created before then

- skip to the next nearbyPoint

c)create the successorNode

- set its x and y according to nearbyPoint

- set its parent to currentNode

d)push the successorNode onto the open list

D)push the currentNode onto closed list

4)if the while loop exits without finding the goal,

goalPoint must be unreachable

This algorithm is not the best pathfinding algorithm for several reasons. One of
its major issues is that it consumes a lot of memory and CPU cycles to find the goal.
If you place the goal five cells away from the starting cell, Breadth-First will create 100
nodes to cover the 10-by-10 region. More nodes means more memory consumption,
and more CPU cycles are needed to allocate them and search the open and closed
lists. Breadth-First does not take advantage of the location of the goal to focus the
search effort. In fact, it searches just as hard in the direction away from the goal as it
does toward the goal. It is important to note that Breadth-First finds the most optimal
solution in terms of plies. Since it searches in a ply-by-ply fashion, when it reaches the
goal, it has found a path that has the fewest number of nodes in it. However, Breadth-
First has no concept of distance. If you run Breadth-First for different coordinates,
you might see unnecessary diagonal steps in the path. The path that Breadth-First
finds heavily depends on the order in which the successor nodes are created. We will
come back to this point when we talk about the Dijkstra algorithm. 

Best-First

Unlike Breadth-First, which is an exhaustive search, Best-First is a heuristic search.
Best-First uses problem-specific knowledge to speed up the search process. It tries to
head right for the goal. The only difference with Best-First code would be to compute

5.4 Artificial Intelligence: Pathfinding Overview 569



the distance of every node to the goal and use a priority queue that is sorted by the
heuristic cost. Through every iteration of the loop, the node that is closest to the goal
is processed. Figure 5.4.6 shows how Best-First compares to Breadth-First.

On average, Best-First is much faster than Breadth-First and uses significantly less
memory. It typically creates very few nodes and tends to find “good quality” paths.
However, Best-First has a rather noticeable shortcoming. Because it only cares about
getting close to the goal, it can end up heading in a direction that does not necessarily
result in finding an optimal path. The distance-to-goal measure is a heuristic or rule-
of-thumb that can pay off quite often. However, it is not always the right thing to do.
Figure 5.4.7 shows a map that was built to exploit the weakness of Best-First and
causes it to head in a doomed direction and find a terrible path.  

It is important to note that Best-First is still a complete algorithm. That is, in the
worst-case scenario, it will exhaust all the nodes on the open list and find a path to 
the goal. However, it might not find a high-quality path. 

Dijkstra

The Dijkstra algorithm is similar to Breadth-First but always finds the optimal solu-
tion. The problem with Breadth-First was that as it went along, it only cared about
plies. Dijkstra goes a step further and keeps track of the cost of the path from start to
any given cell. By doing so, it always processes the cheapest path in the open list. This
means that every PlannerNode needs to store the accumulated cost that was paid to get
to it from the start node. When Dijkstra generates a successor node, it adds the cost of
the current node to the cost of going from the current node to the successor node.

570 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.4.7 Exploiting the weakness of Best-First.



If the move from the current node to the successor node is a diagonal move, some
additional cost should be added since a longer distance is traveled. This is a major 
distinction from Breadth-First, since Breadth-First only thinks in terms of plies.

An advantage of Dijkstra is that it can understand regions that are weighted differ-
ently. Breadth-First and Best-First only understand passable and impassible regions and
basically assume that the passable regions have a uniform weight or cost to travel
through. Different terrain weights can be used to help an agent avoid certain parts of the
map. The weighted region can represent costs such as additional resource consumption,
or risks such as the risk of being seen by the enemy in certain parts of the map. 

A complication occurs in Dijkstra that needs special consideration. Unlike Best-
First and Breadth-First, it cannot simply say, “If a node has been created already for a
cell of the map, there is no need to consider that cell again.” Instead, it has to find out
if the new path to that cell is better than the previously created path. Since the given
cost of a node represents the accumulated cost that was paid to get to that node from
the start node, the given cost can be used to decide which node is better. If the new
path is better, the algorithm can get rid of the old path. If the old path is better, the
algorithm can disregard the new path. Note that if Dijkstra does not perform this
check, it cannot guarantee to always find the optimal solution. Listing 5.4.5 is an
example of Dijkstra pseudocode.

LISTING 5.4.5 Dijkstra pseudocode.

1)create the rootNode

- set its x and y according to the startPoint

- set its parent to NULL

- set its givenCost to 0

2)push the rootNode onto the open list

3)while the open list is not empty

A)pop the node with the lowest givenCost from the

open list and assign it to currentNode

B)if currentNode’s x and y correspond to the

goalPoint then

- break from step 3

C)for every nearbyPoint around the currentNode 

a)if this nearbyPoint is in a spot that is

impassable then 

- skip to the next nearbyPoint

b)create the successorNode

- set its x and y according to nearbyPoint

- set its parent to currentNode

- set its givenCost to currentNode’s

givenCost + cost of going from

currentNode to successorNode

5.4 Artificial Intelligence: Pathfinding Overview 571



c)if a node for this nearbyPoint has been

created before then

- if successorNode is better than oldNode

then

- pop the oldNode and delete it

- else 

- skip to the next nearbyPoint 

d)push the successorNode onto the open list

D)push the currentNode onto the closed list

4)if the while loop exits without finding the goal,

goalPoint must be unreachable

It is important to emphasize that no other algorithms can find paths more opti-
mal than the ones found by Dijkstra. Just like Breadth-First, Dijkstra is an exhaustive
search and therefore consumes a lot of memory and CPU cycles to find a path.
Exhaustive searches do not take advantage of the location of the goal, which results in
not directing the search toward regions that are more likely to pay off. 

A*

A* resolves most of the issues with Breadth-First, Best-First, and Dijkstra. It tends to use
significantly less memory and CPU cycles than Breadth-First and Dijkstra. In addition,
it can guarantee to find an optimal solution as long as it uses an admissible heuristic
function (a function that never overestimates the true cost). A* combines Best-First
and Dijkstra by taking into account both the given cost (the actual cost paid to reach
a node from the start) and the heuristic cost (the estimated cost to reach the goal). A*
keeps the open list sorted by final cost, which is computed by the following:

Final Cost � Given Cost � (Heuristic Cost * Heuristic Weight)

Figure 5.4.8 shows how A* handles the map that was used to exploit the weakness
of Best-First. The given cost that is incorporated into the final cost prevents A* from
falling into the trap that we had made for Best-First. 

Heuristic weight can be used to control the amount of emphasis on the heuristic
cost versus the given cost. In other words, the weight can be used to control whether
A* should behave more like Best-First or more like Dijkstra. For example, if the
heuristic weight is set to 0, final cost will be exactly the given cost, which means that
the algorithm will behave just like Dijkstra. On the other hand, if the heuristic weight
is set to an extremely large value, the algorithm will behave just like Best-First. In gen-
eral, a number greater than one will put more emphasis on the heuristic cost, and a
number less than one will put more emphasis on the given cost. 

To guarantee that A* finds the optimal solution, the heuristic function used to
compute the heuristic cost should never overestimate the actual cost of reaching the
goal. Fortunately, by nature, the distance formula is a nonoverestimating heuristic

572 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



function for pathfinding. For example, if the goal is two cells away from the current
node, the distance formula will return 2, which is the least amount of cost that will
have to be paid to reach the goal. However, if there is an obstacle between the current
node and the goal or the cells in between have a higher weight, then the true cost of
reaching the goal will be more than 2. Listing 5.4.6 is an example of A* pseudocode.

LISTING 5.4.6 A* pseudocode.

1)create the rootNode

- set its x and y according to the startPoint

- set its parent to NULL

- set its finalCost to givenCost + heuristicCost

2)push the rootNode onto the open list

3)while the open list is not empty

A)pop the node with the lowest finalCost from open

and assign it to currentNode

B)if currentNode’s x and y correspond to the

goalPoint then

- break from step 3

C)for every nearbyPoint around the currentNode

a)if this nearbyPoint is in a spot that is

impassable then 

- skip to the next nearbyPoint

5.4 Artificial Intelligence: Pathfinding Overview 573

FIGURE 5.4.8 The A* algorithm.



b)create the successorNode

- set its x and y according to nearbyPoint

- set its parent to currentNode

- set its finalCost to givenCost + 

heuristicCost

c)if a node for this nearbyPoint has been 

created before then

- if successorNode is better than oldNode

then

- pop the oldNode and delete it

- else 

- skip to the next nearbyPoint 

d)push the successorNode onto the open list

D)push the currentNode onto the closed list

4)if the while loop exits without finding the goal,

goalPoint must be unreachable

Summary

To perform pathfinding, an agent needs to understand the level. This can be accom-
plished by providing the agent with a small-scale model of the level that encompasses
its more important features. We discussed the strengths and weaknesses of grids, way-
point graphs, and navigation meshes, which are the most popular representation tech-
niques. A search algorithm is executed on the small-scale model of the level to find
paths between a start and a goal point. A* is by far the most popular algorithm for
pathfinding. In this chapter, we showed the superiority of A* by comparing and con-
trasting it to other algorithms. Please note that there are many optimizations that can
improve the performance of A* and other algorithms presented here. However, such
optimizations can significantly reduce the readability of the algorithms and make
them harder to understand. Refer to [Cain02] and [Higgins02] for examples of such
optimizations.

Even though we spent a lot of time on A*, it is important to note that simpler
algorithms, such as Random-Trace, can be very effective for simple levels. Despite the
fact that Random-Trace is not a complete algorithm and cannot guarantee to find
high-quality paths, it does not consume any memory. In addition, if the map is triv-
ial, it will run significantly faster than A* and Best-First. 

You should also know that there is more to pathfinding than a representation
technique and a search algorithm. For example, once an algorithm returns a path, the
path might have to be modified a bit to make it seem more humanlike. In addition,
avoiding movable obstacles in the level is an issue that needs to be dealt with as well.
For interesting path following and steering algorithms, refer to [Reynolds97].

574 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Performing searches on massive levels or multiple searches simultaneously can be
very expensive. Hierarchical path planning and preplanning are two approaches of
dealing with these situations. Hierarchical path planning uses multiple representa-
tions, each at a different level of detail. Paths are first resolved on the lower resolution
layer and the details are then worked out on the higher resolution layers. For addi-
tional information on hierarchical path planning, refer to [Botea04]. Preplanning is a
technique where the most optimal path between every two cells of the level is com-
puted ahead of time and stored. During runtime, the precomputed paths are simply
looked up without the need to perform a pathfinding search. For more information
on preplanning, refer to [Surasmith02].

Exercises

1. For every algorithm covered in this chapter (Random-Trace, Breadth-First,
Best-First, Dijkstra, and A*), answer the following questions: (a) Is the algo-
rithm an exhaustive or a heuristic search algorithm? (b) Is the algorithm
resource (CPU and memory) intensive? (c) Does the algorithm always find
the optimal path? (d) Is the algorithm a complete algorithm?

2. Explain the difference between heuristic cost that is used by Best-First and
given cost that is used by Dijkstra.

3. Why is A* typically preferred over Breadth-First, Best-First, and Dijkstra
algorithms?

4. Use the PathPlannerApp application provided on the companion CD-ROM
to implement Breadth-First, Best-First, Dijkstra, and A*. 

5. The WaypointGraph application on the companion CD-ROM has two
functions that perform A* and Dijkstra on a graph. Add a function that
performs Best-First.

6. There are many other search algorithms such as Depth-First, Iterative-
Deepening-Depth-First, Iterative-Deepening-A*, and Hill-Climbing.
Research an algorithm that was not covered in this chapter and discuss its
characteristics.

References

[Botea04] Botea, Adi; Müller, Martin; and Schaeffer, Jonathan, “Near Optimal
Hierarchical Path-Finding,” Journal of Game Development, Charles River Media,
March 2004.

[Cain02] Cain, Timothy, “Practical Optimizations for A* Path Generation,” 
AI Game Programming Wisdom, Charles River Media, 2002.

[Hancock02] Hancock, John, “Navigating Doors, Elevators, Ledges, and Other
Obstacles,” AI Game Programming Wisdom, Charles River Media, 2002.

[Higgins02] Higgins, Daniel, “How to Achieve Lightning Fast A*,” AI Game
Programming Wisdom, Charles River Media, 2002.

5.4 Artificial Intelligence: Pathfinding Overview 575



[Reynolds97] Reynolds, Craig, “Steering Behaviors for Autonomous Characters,”
September 5, 1997, available online at www.red3d.com/cwr/steer/. 

[Surasmith02] Surasmith, Smith, “Preprocessed Solution for Open Terrain
Environments,” AI Game Programming Wisdom, Charles River Media, 2002.

[Tozour02] Tozour, Paul, “Building a Near-Optimal Navigation Mesh,” AI Game
Programming Wisdom, Charles River Media, 2002.

[Tozour03] Tozour, Paul, “Search Space Representations,” AI Game Programming
Wisdom 2, Charles River Media, 2002.

576 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.red3d.com/cwr/steer/


577

Overview

The role of the audio programmer has become increasingly important as games have
evolved to feature more complex sound and musical components. Rather than just
supporting real-time playback of audio content, the audio programmer must also sup-
port the creation and integration of sound within the game engine. In some sense,
programming success can be measured by the degree to which an audio designer can
integrate audio without the direct need for programmer support. In most situations,
audio events are triggered by in-game events: a character plays a specific animation, a
weapon fires, an explosion occurs, and so forth. Others are triggered by locality, such as
ambient effects. Still others may be launched via scripts, such as dialogue in a cut-scene.

As with visual rendering technology, audio programming has moved past the sim-
ple basics of vanilla sound mixing and playback. However, every audio system should
be built on top of a fundamental understanding of these basic principles and systems.
On most modern gaming platforms, the capabilities of mixing and rendering audio
data on hardware is a given. Moreover, these platforms typically have a reasonably
robust API to program these capabilities. It is rare for an audio programmer to have to
write a low-level mixer or filter in software. Instead, this chapter will focus on mid-
level programming; that is, how one should make use of existing APIs and hardware
to create an audio engine.

Audio Programming5.5

In This Chapter

Overview
Programming Basic Audio 
Programming Music Systems
Programming Advanced Audio
Summary
Exercises
References



As with any other specialty, audio programming has its own standards and vocab-
ulary. Since each platform has unique hardware and APIs, we will forgo any one 
specific API and instead provide the essential concepts and vocabulary necessary to
understand audio programming. Once the groundwork has been laid, we’ll explore
some of the more advanced issues being faced by modern audio programmers
[Boer02]. When you are ready to implement game audio, there are many places
online to easily obtain APIs for Windows, Mac, and Linux PC platforms, and instruc-
tions on how to use them [MSDN, OpenAL].

Programming Basic Audio 

To effectively program audio in modern computer games, it is important to have a
basic grasp of the physics involved in the processing and reproduction of audio on
modern computer hardware. We’ll examine the fundamentals of sound in the real
world and how it is stored digitally in a computer. Audio processing hardware works
in a fundamentally similar manner, offering standardized operations, such as pan, 
volume, and pitch control on individual sound channels. In addition, we’ll examine
some fundamental aspects of sound manipulation, such as ADSR envelopes.

578 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

API Choices for Windows, Mac, and Linux

There are currently several audio mixing and rendering APIs that you may
choose from to experiment with. The first, XAudio, is a freely available audio
mixing component for Microsoft platforms such as Windows and the Xbox
360. This is the replacement for DirectSound, and offers a flexible and powerful
system for digitally mixing and processing audio. 
Another API is OpenAL. OpenAL was designed to be the aural equivalent of
OpenGL. As you might expect, OpenAL is a cross-platform solution, making
this an attractive option for game programmers looking to port their games to
other platforms. Other audio APIs may be provided along with the general
SDK for specific platforms, such as the PS3 or Wii. 
In addition to these free audio APIs, numerous commercial APIs on nearly
every platform may be licensed for a fee. These APIs are either easier to use or
simply offer the convenience of a single API that will work across all platforms.
It’s probably not a bad idea to examine as many APIs as possible to become 
familiar with their similarities and their differences. A potential employer look-
ing to hire an audio programmer will be more impressed with someone who has
familiarity with several systems, regardless of which API is ultimately used.



Basic Audio Terminology and Physics

In simple terms, a sound is nothing more than compression waves transmitted through
a medium, such as air or water. A physically vibrating object, such as a piano string or
a speaker cone, causes the initial vibrations. These vibrations are then transmitted
across the medium until they reach a listener’s ears, at which time they are converted
back into physical vibrations by an eardrum. The eardrum converts the vibrations
into nerve impulses, which our brains then translate into what we perceive as “sound.”

The important information to remember is that sounds can be represented as 
a scale of wave pressure over time. Figure 5.5.1 shows a common representation of a
sound wave.

5.5 Audio Programming 579

Mixing Trends: From Hardware to Software

An interesting trend in recent years is the transition from dedicated audio 
hardware for mixing and effects to pure software-based audio systems. Modern
multicore processors are now powerful enough to perform all required func-
tionality, often using only part of a single core. There are several advantages to
using software mixing as opposed to dedicated hardware. The primary benefit,
at least to PC development, is consistency of sound. Audio designers no longer
have to worry about how different vendors may have implemented I3DL2 or
EAX. A secondary benefit is a much more flexible mixing system. With a soft-
ware pipeline, you also gain significant flexibility. It’s easy to create submixes
and apply custom post-processing filters, which was impossible to do with 
most fixed-function hardware. Windows Vista has depreciated hardware-based
mixing, and modern consoles such as the Xbox 360 and Playstation 3 perform
most of their audio processing entirely in software.

FIGURE 5.5.1 Characteristics of a simple sine wave.



The plotting of a sound wave is actually a measurement of the sound’s amplitude
over time. Amplitude is the measurement of a sound wave’s pressure, either in a posi-
tive or negative direction. The perceived sounds we hear are not actually generated by
amplitude, but rather, changes in amplitude. Most sounds tend to have a natural
oscillation of repeating pressure patterns. You will note that Figure 5.5.1 looks very
similar to a sine wave. This demonstrates the property of frequency. Frequency may be
defined as the interval between wave cycles, and is usually measured in Hertz—the
number of cycles that occur in a second. Human hearing ranges from approximately
20Hz to 20,000Hz. 

Frequency is related to pitch, but is not necessarily synonymous with it. Pitch may
be described as the perception of frequency. Humans tend to perceive high notes at a
slightly lower frequency and lower notes at a slightly higher frequency. However, for
the purposes of audio programming, this distinction is often incorrectly ignored, and
the two terms are used interchangeably.

Tuning may be defined as a musical distribution of frequency over keys. In 
modern Western music, each octave is divided into 12 keys. An octave represents a
doubling or halving of frequency, depending on whether you are traveling up or down
in pitch. A system of tuning called equal tempering divides the 12 notes between each
octave equally, so that no particular key is favored. This is the tuning that nearly all
contemporary music uses. Table 5.5.1 shows the frequencies in Hertz for 12 keys
through 9 octaves.

TABLE 5.5.1 Frequencies in Hertz for Equal Tempering Tuning

0 1 2 3 4 5 6 7 8

C 16.352 32.703 65.406 130.81 261.63 523.25 1046.5 2093.0 4186.0

C# 17.324 34.648 69.296 138.59 277.18 554.37 1108.7 2217.5 4434.9

D 18.354 36.708 73.416 146.83 293.66 587.33 1174.7 2349.3 4698.6

D# 19.445 38.891 77.782 155.56 311.13 622.25 1244.5 2489.0 4978.0

E 20.602 41.203 82.407 164.81 329.63 659.26 1318.5 2637.0 5274.0

F 21.827 43.654 87.307 174.61 349.23 698.46 1396.9 2793.8 5587.7

F# 23.125 46.249 92.499 185.00 369.99 739.99 1480.0 2960.0 5919.9

G 24.500 48.999 97.999 196.00 392.00 783.99 1568.0 3136.0 6271.9

G# 25.957 51.913 103.83 207.65 415.30 830.61 1661.2 3322.4 6644.9

A 27.500 55.000 110.00 220.0 440.00 880.00 1760.0 3520.0 7040.0

A# 29.135 58.270 116.54 233.08 466.16 932.33 1864.7 3729.3 7458.6

B 30.868 61.735 123.47 246.94 493.88 987.77 1975.5 3951.1 7902.1

580 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



A sound’s amplitude is a measure of its power. This power corresponds to its per-
ceived loudness. In Figure 5.5.1, this corresponds directly to the maximum changes in
height from the bottom to the top of the waveform. Amplitude is often measured in
decibels. A decibel is one-tenth of a bel, which is less commonly used in measure-
ments. Decibels (and bels) actually measure the perceived difference in loudness
between two sounds, not an absolute loudness. Since perceived loudness increases lin-
early as power increases logarithmically, this is reflected in the scale. In other words, if
a sound is twice as loud as another sound, it is 10 log10(2), or approximately 3.01dB
louder. It is important to understand the logarithmic nature of the decibel scale,
because sound hardware often implements volume control as attenuation (reduction)
in decibels. Generally speaking, hardware volume controls cannot actually amplify
(increase) volume.

To measure absolute sound volume, a standard pressure (20 micropascal) has
been defined as the approximate quietest average sound a human can hear transmit-
ted through the air. All other human-audible sounds are compared against this mea-
surement, resulting in an absolute scale. When decibels are used to describe a sound
in terms of its perceived loudness, it is likely that this is the scale against which it is
being measured. However, in audio programming, we’re typically much more inter-
ested in relative sound volumes. After all, the player ultimately has the final control
over the volume of the audio being rendered.

Inside your own sound-system layer, it is often far more practical to store sample
volume as a ratio (0.0 to 1.0) rather than attenuation in decibels (–100 to 0). Combining
volumes and interpolation are much more practical on a linear scale. You may use the
functions in Listing 5.5.1 to convert between a decibel scale and a linear ratio.

LISTING 5.5.1 Code to convert between a decibel scale and a linear ratio.

float linearToLog(float fLevel)

{

// Clamp the value

if(fLevel <= 0.0f)

return -100.0f;

else if(fLevel >= 1.0f)

return 0.0f;

return (-2000.0f * log10f(1.0f / fLevel)) / 100.0f;

}

float logToLinear(float fLevel)

{

// Clamp the value

if(fLevel <= -100.0f)

return 0.0f;

else if(fLevel >= 0.0f)

return 1.0f;

return powf(10, ((fLevel * 100.0f) + 2000.0f) /

2000.0f) / 10.0f;

}

5.5 Audio Programming 581



Digital Representation of Sound

For a sound to be reproduced by a computer, we must first examine how digital audio
is stored. The most common (and simplest) technique is known as sampling, which
means measuring and storing the amplitude of a sound wave at discrete time intervals.
The rate at which the samples are collected is known as the sampling rate, and it is
measured in samples per second. Typical sample rates range from 4,000 to 96,000
samples per second. The amplitude of the wave file is stored in a discrete value, typi-
cally represented by a value from 4 to 24 bits. This is known as the sample’s bit depth.
In general, it is agreed that most people cannot perceive quality improvements
beyond CD-quality samples, which uses 16-bit samples measured at a frequency of
44,100 samples per second. Figure 5.5.2 shows how the sine wave from Figure 5.5.1
can be represented digitally.

As is intuitively obvious, the greater the combination of bit depth and sampling
rate, the more accurately a waveform can be represented. Figure 5.5.3 demonstrates a
phenomenon known as quantization error. You can see how the amplitude of the
waveform cannot be perfectly represented by the sampled data due to the low bit
depth. The lower the bit depth, the more noise will be introduced into the signal. The
amount of unwanted noise is directly related to the sample size. An 8-bit sample
allows 128 discrete values, and sample error is limited to one-half the size of the sam-
ple step. Therefore, with 8-bit samples, we have a 256:1 signal-to-noise ratio (SNR),
which translates to 48dB. Keeping in mind that a decibel is actually a measurement of
the difference in sound volume, this measurement in decibels represents the differ-
ence in volume between the average noise level and the maximum volume of the 
signal. A 16-bit sample, on the other hand, offers a much more impressive SNR of
65,536:1, or 96dB. Since the human range of hearing is approximately 100dB, an
optimally mixed 16-bit recording will have very little discernable noise introduced by
quantization artifacts.

582 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.2 Sampled representation of a basic sine wave.



Just as low bit depth creates quantization error resulting in a worse signal-to-noise
ratio, sampling rate also has a dramatic effect on sound quality, but in different ways
and for different reasons. The frequency of the sampling rate, as you might expect, 
has the most dramatic effect on how accurately high-frequency waveforms can be rep-
resented. Figure 5.5.4a demonstrates how a digital representation of a high-frequency
sound wave using a low-frequency sampling rate has no chance of accurately repre-
senting the original sound. For the sake of this demonstration, keep in mind that
we’re using an unsophisticated algorithm (closest point) for sample placement and a
low bit depth, both of which tend to exaggerate the final outcome.

Notice how by doubling the sampling rate in Figure 5.5.4b we get a much-improved
digital version of the original waveform. However, this version still has obvious flaws. 

Doubling the sampling frequency again in Figure 5.5.4c finally yields a digital
waveform that matches reasonably close to the original.

This exercise demonstrates a phenomenon known as the Nyquist limit, which
states, in part, that a specific sampling rate can only represent frequencies of one-half
that sample rate. However, the differences between Figure 5.5.4b and Figure 5.5.4c
demonstrate another property of the Nyquist limit, which states that the closer a 
frequency approaches its theoretical maximum, the worse the representation will be.
It is for this reason that 44.1kHz was chosen as a sampling rate for CD audio, even
though humans have a nominal hearing range of 20Hz to 20kHz.

5.5 Audio Programming 583

FIGURE 5.5.3 Waveform showing maximum quantization error.

FIGURE 5.5.4 Demonstration of sampling error based on sampling frequency.



Audio Pipeline and Mixing Features

Modern audio systems typically have very similar capabilities. We will examine how
this works in principle and what you need to know as a programmer to effectively use
these resources.

Figure 5.5.5 shows the pipeline that all audio data must flow through in a typical
audio rendering system. 

Data must first be retrieved from a permanent storage medium, such as an opti-
cal or magnetic hard drive, and stored in memory. From there, audio data is trans-
ferred or assigned to a sound channel, a concept representing a mixing path for the
audio data. Once the audio data is assigned to a sound channel, it is then manipulated
digitally, adjusting volume, pitch, pan, and applying digital effects and filters. After all
the channels have been individually processed, they are then mixed together into a
submix or master mix, after which additional effects or filters may be applied. Finally,
the mixed data is converted from a digital stream of data into an appropriate output
format. This could be an analog signal, or a multichannel digital format, such as
Dolby Digital (also known as AC-3).

There are also different ways of transferring the audio data, depending on the vol-
ume of data to be transferred. For smaller-sized samples, it is typical to store the entire

584 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.5 Diagram showing the flow of audio data through a 
typical audio processing and rendering system.



sample in memory at once. However, for playing extremely long samples (such as
music tracks or lengthy tracks of recorded dialogue), there is simply not enough mem-
ory to load the entire sample. This means that streaming will be required, where a
small portion of the sample is loaded at any one time. As more data is required, it is
fetched from the permanent storage system, while previously played data is discarded.

The core of an audio system, like so many other aspects of game programming, is
really about asset management. The data to manage comes in the form of sampled
waveforms. These audio files, once loaded into memory, are called samples. This dual
use of the term sample is slightly unfortunate, but it is typically clear which meaning
of the word is appropriate based on context. Typically, anywhere from several dozen
to several thousand samples can be loaded at once, depending on how much memory
is available. Often, the memory allocated to load the sample is called a buffer.

The other managed aspect are the resources used to process and mix the sound
data. A channel can mix a single sample at one time. Thus, the number of channels is
equal to the number of individual samples that can be mixed and played at one time.
Previously, this was limited to the number of hardware channels available, but with
software-based mixing, it’s a function of available CPU usage and bus bandwidth.

Mixing and playback is generally as simple as assigning a sample buffer to a chan-
nel and instructing the audio system to mix (play) the sound.

Sample Playback and Manipulation

After a digital audio sample has been assigned to a channel, the audio system takes
over the job of processing the audio data in real time. This involves first manipulating
the individual audio data and then sending the audio data to a final mixing buffer,
where it is combined into a single audio stream. Next, the audio hardware must con-
vert this single digital audio signal back into an analog waveform for playback on
speakers or into a digital stream for decoding by external audio hardware. 

Before each channel is mixed together, there are certain common operations that
you may perform on the channel. Three of these common operations are pan, pitch,
and volume controls. 

Panning is a simple operation that directs the relative position of a sound in a
stereo field by attenuating the left or right mix. Panning is an operation that often can
only be performed on nonstereo data. For hardware that does not support true 3D
positional sound mixing, a simple pan (combined with the volume control) can be
used as a simple substitute method for placing sounds in 3D space. 

Pitch control is typically performed by simply processing more or fewer samples
per second. This has the result of manipulating pitch, but as you can surmise, a side
effect of this operation is that it alters the sample’s playback time. 

Volume control, as described earlier, is typically implemented via an attenuation
control measured in decibels. For instance, a volume setting of –3dB will sound
approximately half as loud as when set to full volume (0dB).

5.5 Audio Programming 585



Streaming Audio

As mentioned earlier, one important variation of audio playback is known as streaming
audio. This is a general term used to describe the concept of reading data in real time
for playback directly off the bulk-storage medium (such as the disk) instead of storing
the entire sample in memory. This is typically done for large audio tracks, such as music
or recorded dialogue, where the size of the sample prevents it from being efficiently
stored in memory all at once. 

To prevent the audio stream from being susceptible to the intermittent skips 
that would occur if it literally tried to read audio data in real time, it is necessary to 
pre-buffer a small amount of audio data. Typically, these buffers range in size from
half a second to perhaps two seconds in length. There are essentially two types of
buffering methods: circular buffers and double buffering (or buffer chaining). Figure 5.5.6
demonstrates these two methods.

Circular buffers use a single buffer for their buffering operations. The buffer con-
tains a read and a write pointer. The read pointer will wrap around from the end of
the buffer back to the beginning of the buffer when it exceeds the total buffer length
(hence the name). The application must track how much data is pushed into the
buffer, and must make sure it pushes data into the buffer well ahead of the read buffer,
but not so far that it wraps around and interferes with the read buffer from behind. 

586 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.6 Diagram demonstrating two streaming methods: 
circular buffers and buffer chaining.



Double buffering is a slightly less complex method that makes use of two (or
more) buffers. While one buffer is being played, the other buffer is filled with data.
The application is notified that the next buffer in the chain is being used. The user
can now begin streaming data into the previously playing buffer, and the cycle begins
again. This is the method OpenAL uses for streaming audio.

Compressed Audio Formats

Because digital audio data requires so much memory, intensive efforts have been
made to find ways to compress audio data to reduce this memory load. Generally
speaking, nearly all audio compression formats are lossy compression formats (unlike
lossless formats that preserve every bit, such as “.zip”). Because digital audio data is
already an approximation of an analog signal, there is no need to preserve every single
bit of data. Rather, the only important factor is the final acoustical result.

There are, in general, two classes of compression schemes you are likely to be
working with in the game programming world: bit-reduction schemes and psycho-
acoustic compression schemes. These encoding/decoding algorithms are also known as
codecs, which is derived from the words compress and decompress.

Bit-reduction schemes are by far the simpler of the two methods. They employ
techniques to reduce the number of bits that each sample is required to store. One of
the most popular schemes of this type is known as ADPCM compression. ADPCM is
designed to reduce the number of bits stored per sample from 16 to 4. Because of this,
it typically has a fixed compression ratio of 4:1 (although there are some variants that
utilize different ratios). It employs a more sophisticated method of encoding numeric
movement from sample to sample so that fewer bits are required to encode a reason-
ably high-fidelity sound. Although this method of encoding has been surpassed in
recent years by other formats, there are still reasons why you should understand this
more simplistic compression. First, ADPCM compression schemes are much less
computationally expensive than high-compression psycho-acoustic techniques such
as MP3 compression. The simplicity of the algorithm means that it is much easier to
implement this compression in hardware or using less powerful general processors.
The Sony PSP, Nintendo Wii, and Nintendo DS, for example, all make use of
ADPCM compression. This simple compression scheme immediately quadruples the
effective audio memory for little additional CPU cost. 

The most well-known audio compression scheme, MP3, is in the psycho-acoustic
compression class. Three other formats useful for game developers are Ogg Vorbis, an
open-source format, Windows Media Audio, a format developed by Microsoft, and
ATRAC3, developed by Sony. These types of compression schemes use sophisticated
algorithms to encode sound, and they save space by discarding audio data that our
ears would not typically be able to hear. These schemes can compress audio data in a
variable manner, depending on the desired final quality of the reproduction. As such,
you can expect anywhere between a 5:1 and 25:1 compression, depending on the

5.5 Audio Programming 587



original source and desired quality of the reproduction. Most current-generation 
psycho-acoustic codecs can emulate CD-quality audio with at least a 10:1 compres-
sion ratio. Increases in processing power have made it practical for some systems to
use high-compression formats exclusively, saving a great deal of memory and disk
space. The Playstation 3, Xbox 360, and the PC platform all have enough processing
horsepower to decode dozens of audio samples with relative ease.

ADSR Envelopes

One volume-control technique that you should be familiar with is the basic ADSR
envelope. ADSR is an acronym for Attack, Decay, Sustain, and Release. As indicated,
these four parameters can be used to define a standardized volume envelope. Let’s
look at a standard ADSR envelope in Figure 5.5.7.

588 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

The MP3 Format and Licensing Fees

Why would game developers want to look at compression formats other than
MP3? Simple: Putting MP3 support in your game legally requires you to pay 
licensing fees to Franhofer-Thompson, the MP3 patent owners. Ogg Vorbis
and Windows Media both are high-quality formats, and both have well-
documented APIs for use in games. More importantly, neither of these formats
requires paying a licensing fee for including this technology in your game. 
Ogg Vorbis, as the only open-source, high-compression codec on the market, 
is making considerable in-roads in the games industry.

FIGURE 5.5.7 A standard ADSR envelope.



The attack parameter (A) is a measurement of time between the initial volume of
zero and the final, full volume. The decay parameter (D) is a measurement of the time
from full attack volume to the sustain volume. The sustain parameter (S) is a measure-
ment of the volume of the envelope held between the decay and release phases.
Finally, the release parameter (R) is a measurement of time from the release point to
the zero volume point.

You may have noticed that one significant measurement has been omitted—the
length of the sustain. This is simple to explain. The ADSR envelope was originally
designed for applications such as electronic synthesizers. The envelope was triggered
when a key was pressed, and the sustain was defined by the time the key was held
down. In other words, this envelope should be used in a real-time environment.

When implementing a musical synthesizer, a real-time ADSR envelope is an
absolute necessity for creating more realistic-sounding instruments with smaller-sized
samples. However, the benefits of this type of envelope can also be seen with sound
effects. Consider implementing ADSR envelopes into your basic sound-system design
if you have an opportunity to do so.

3D Audio

In the world of interactive computer entertainment, everything has moved into the
third dimension, including audio. Most modern audio systems today have the capa-
bility to process 3D audio. A big part of an audio programmer’s job involves under-
standing how sounds work in the real world, and then reproducing those sounds in a
digital world. To start, let’s examine how 3D audio works at a fundamental level.

In the real world, our two ears allow us to spatially locate sounds in 3D space,
somewhat analogously to the way our two eyes help visualize a 3D environment. Our
brain discerns the slight timing and acoustical differences between our two ears to
locate sounds. Figure 5.5.8 demonstrates how the spatial difference between our ears
creates a slight timing delay that helps to determine a sound’s relative position.

5.5 Audio Programming 589

FIGURE 5.5.8 How a listener determines a sound’s position in the world.



The process of reproducing 3D audio in games revolves around providing these
types of aural cues for game players to immerse them more fully into our simulated
world. One of the biggest problems, however, is the wide variety of speaker arrange-
ments for a given set of hardware. While some computers and home theater systems
have surround-speaker capabilities, the majority of these systems have only a pair of
stereo speakers. How, then, do we represent sounds in a 3D world with only a pair of
speakers in front of the listener?

The simplest solution involves panning sounds between the left and right speak-
ers to position the sound source around the listener and attenuating the volume to
simulate distance from the listener. This yields decent results for sounds originating in
front of the listener, but is obviously deficient in that there is no good way to create a
sound originating from behind the listener. In fact, it is troublesome to represent any
sound outside of a rather limited arc directly in front of the listener.

While simple pan-volume schemes work well enough, there are better solutions
out there. A technique called HRTF (Head Relative Transfer Function) encoding
allows more realistic-sounding 3D audio using only two speakers. This is accom-
plished by encoding into the left and right channel the types of aural cues that occur
with sounds based on the natural shape of your ears. For instance, sounds that origi-
nate from behind the listener have their high frequencies slightly attenuated, just as it
happens in real life.

While in theory this does work quite well (especially with headphones on), the
practical matter is that HRTF in the real world is only partially successful in fooling
the listener’s ears. This is due to the unavoidable problems of different speaker sys-
tems, room configurations, and even differences in the physical dimensions of differ-
ent listener’s ears.

The best solution is perhaps the most straightforward: place speakers all around
the listener. The most common surround-sound speaker solution today is a 5.1
speaker arrangement. This is a six-channel system: left, right, center, left rear, right
rear, and subwoofer (low frequency) channels. Other arrangements add or subtract
high-frequency speakers to make 4.1, 6.1, and even 7.1 systems. 

Fortunately, the complexity of converting a position in 3D space to a multichan-
nel panning mapping is not one that we as game developers have to solve. This sort of
functionality is typically provided in hardware. Our task is to provide two different
sets of data to the audio hardware so that it knows how to mix the desired audio
streams into a final multichannel mix. The first set of data is, oddly enough, not any
type of audio data at all. 

The listener is simply a position and an orientation (sometimes defined as two
orthogonal vectors) in 3D space. The listener represents the physical head of a virtual
person in the virtual world. The listener acts much the same way as the camera does
for 3D graphics. It is important that your listener is oriented to the world in a similar
fashion to your engine’s graphics, as they will be likely using the same set of positional
coordinates and properties to render.

590 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Each sound in the world is defined as a source, and is positioned and oriented in
world space. Just as polygons are transformed from world space to camera space by 
the camera’s transformation matrix, so are sounds transformed from world space to 
listener space.

While the listener represents a fairly simple set of data, the source is a bit more
complex, and often has more data associated with it. Some of this data includes veloc-
ity (used to apply Doppler shift), min. and max. cone angles for directional sounds,
and min. and max. distances (to define a source’s gain). 

Environmental Effects

With the advancement of mixing and filtering technology comes the ability to create
programmatically generated environmental effects. Simply put, environmental effects
are an attempt to mimic the natural coloration of sound that occurs in the real world
due to geometry and materials. For instance, we all know the different ambience that
occurs in a large church versus a small hallway. By re-creating these subtle effects in
our virtual world, we give the user a more immersive experience.

In essence, environmental effects describe the nature of sound propagation. Much
like a wave in a calm pool of water, sound waves will reflect off surfaces in the world.
The amount of reflection is dependent upon what the material is made of. Hard,
smooth surfaces will tend to reflect most of the signal, while soft, porous materials
will tend to absorb much of the sound.

Sound transmission, when dealing with environmental effects, is categorized three
ways: direct transmission, early reflections (or echo), and late reflections (or reverbera-
tion). Figure 5.5.9 shows how these sounds are transmitted from a source to a listener.

5.5 Audio Programming 591

FIGURE 5.5.9 Demonstration of direct path, echo, and reverberation.



Although sound propagation through complex structures in real life is quite com-
plex, there are two substantial contributions that we can focus on that contribute the
bulk of the reverberation effect: environmental geometry and material composition.

To demonstrate how environmental geometry can affect sound propagation, we
can see in Figure 5.5.10 how a wall blocks the direct transmission of sound from the
source to the listener. This will leave only indirect transmission of sound from source
to listener, and so the sound will be affected by the frequency absorption of the mate-
rials off which the sound must bounce. This phenomenon is known as obstruction.

Material composition is the other factor that affects sound propagation. Certain
materials will cause specific frequencies (both high and low) to be absorbed. In addi-
tion to absorbing sound, specific materials will also cause sounds to be scattered. This
is known as diffusion.

You may be familiar with how material can also act to block specific frequencies
while allowing others to pass through at reduced volume. Generally speaking, low fre-
quencies can be transmitted through many types of material, while high frequencies
tend to be reflected and absorbed by walls. This phenomenon can be noticed by lis-
tening to the differences in transmission of sound by a stereo system in another room.
If you close the door, you only hear the muffled bass part of the music. If the door is
opened, the high frequencies, now unblocked, flow freely out of the room and to the
listener’s ears. This phenomenon is known as occlusion.

592 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.10 Obstruction resulting in no direct path for the sound.



Environmental Effects Standards: I3DL2 and EAX

There are currently two competing standards that define environmental extensions
for modern hardware implementation. I3DL2 (Interactive 3D Audio Rendering Level
2) is a standard established by the Interactive Audio Special Interest Group (IA-SIG)
to define a reverberation model and API for use in games and other interactive appli-
cations. EAX is a reverberation model invented by Creative Labs that started fairly
simply with 1.0, allowing preselected reverberation models with several parameters. 
It then grew into 2.0, which implemented a much more flexible and robust reverb
modeling system. EAX 2.0 is, in fact, nearly identical to the I3DL2 specification in
both form and function. The specifications for I3DL2 can be found easily on the
Internet [IA-SIG].

Previously, EAX was the dominant environmental reverb standard largely because
it was implemented both in Creative Labs as well as other manufacturers’ sound cards.
Recently, I3DL2 has been making gains due to the proliferation of software-based
audio mixing, which has favored the more open IA-SIG’s standard. It’s now practical
to fully or partially implement the full I3DL2 specification in software.

In truth, I3DL2 is suitable for quite advanced reverberation modeling. Further
advances in the reverberation model, such as EAX HD, provide good marketing bul-
let points on the back of a game box, but in practice, most listeners would likely not
be able to tell the difference between the two reverberation models unless it was
specifically pointed out to them.

These reverberation models all work in a similar manner. A set of global reverber-
ation parameters is set on the listener. These parameters are intended to describe the
listener’s environment in a general sense. Some of these parameters include settings
that describe the overall room size, decay rate, reverberation volume, air absorption
settings, and so on.

This provides a reasonable baseline for the environmental reverberation engine to
apply reverberation settings on any sound. However, each source also has its own set
of unique parameters. This allows each sound to have a unique reverberation signa-
ture. Why would each sound source need unique properties if the listener were in a
single location? The answer is simple: the unique properties are, in fact, more of a
reflection of the difference in location between the source and listener. Properties such
as obstruction and occlusion are not inherent in any particular location. Rather, they
are, in some sense, a calculation describing the properties of how the world affects
sound traveling from the source to the listener, given those two unique positions in
the world.

Programming Music Systems

Depending on the type of game and platform you work on, you might find yourself
having to create a music playback system. In general, music systems on modern hard-
ware will be one of two basic types of flavors: a sampled-based MIDI player or a digital

5.5 Audio Programming 593



594 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

audio stream player. These two types of systems both have strengths and weaknesses,
and both continue to be used on today’s platforms.

A MIDI-Based Music Player

A MIDI-style player is based on the simple concept of storing information as discrete
musical notes and using a sound engine to play particular instruments. MIDI is an
acronym for Musical Instrument Digital Interface, and represents a long-established
method of communicating common musical data in real time between electronic
instruments [MIDI]. The standard encodes music in the form of musical notation,
not as digitally encoded sound. This provides a tremendous saving of space, but it
limits the acoustic quality of the music to the device that is rendering the music in real
time. Modern audio hardware now has the capabilities of general-purpose synthesizers
with only a small amount of programming work. Most of this work involves decoding
MIDI and sample data, as well as some basic work in real-time envelope control (such
as the ADSR envelope described earlier). Another significant disadvantage is the 
limited repertoire of instruments, which must be sampled and stored in memory.

MIDI music has two primary advantages over digital audio streams. The first
advantage is greater control. Because each note of music is a discrete event and played
electronically, the program has great control over every aspect of the music. For
instance, a player could actually have a musical riff change keys, control looping
points, or even dynamically switch instruments on one or more tracks to create differ-
ent musical moods. Other capabilities inherent in this format include the ability to
synchronize music to a specific beat pattern, speeding up or slowing down the musi-
cal tempo to a desired rate. Musically themed games or puzzles could benefit greatly
from this type of control.

The other advantage MIDI-based players have is a small storage footprint. A
MIDI song requires the use of a set of sampled instruments (or even algorithmic
instruments in some cases), but the actual song data is almost negligible in size.
Literally hours of music can be stored in just kilobytes of RAM. As such, MIDI-based
music is very common on platforms where storage space is at a premium, such as
downloaded games or cartridges/flash card–based platforms, such as the Nintendo
Game Boy and DS.

DLS

The MIDI format is not the only standardized format useful for MIDI-based players.
Perhaps the most important other format to understand is the DLS (DownLoadable
Sound) format. The DLS format is essentially a collection of MIDI-ready instruments
in a single file format package. By extracting and using this set of sampled data, MIDI
instruments can essentially be programmed at will to match whatever set of sounds is
required for a given piece of music. DSL essentially provides a convenient, standard-
ized package of instrument samples, playback instructions, and envelope data.



iXMF

One of the more interesting developments in the world of game audio was the cre-
ation of the iXMF (Interactive eXtensible Music Format) specification. The XMF is
essentially a container system for encapsulating MIDI files, DSL files, waveforms, and
custom meta-data. This provides a convenient and robust method for a game to pack-
age these types of files together into a single, unified package. iXMF is an extension of
this format designed to address the needs of interactive content. Although iXMF has
not enjoyed widespread support, if you want to develop an interactive music system,
it would be wise to at least read the iXMF specifications to see what ideas you can
glean from its pages.

A Digital Audio Stream Player

Digital audio streams are the opposite of MIDI in almost every way. These types of
audio streams are simple to produce and create. Because a digital audio stream is sim-
ply a digital recording, there are no limitations on the ultimate quality of the original
material being recorded. This has given rise to licensed soundtracks and even live
recording of symphonic scores, Hollywood style, all for games. Because of the ease of
use and high-quality sound of digital audio streams, it is the most popular choice of
today’s high-end gaming systems, and will likely continue to be so in the future. 

However, this type of fidelity comes at the cost of both size and flexibility. Unless a
game is using a high-compression scheme, music alone will amount to a large percent-
age of a game’s total footprint in disk space. In terms of flexibility, it is much harder to
manipulate the data stream in any meaningful manner, save for queuing or looping 
discrete segments of music. Keep in mind, though, that it is still possible to create an
adaptive music system using only looping and queued segments of pre-authored music.

A Conceptual Interactive Music System

Although there are nearly an infinite number of ways to create an interactive music
system, we will demonstrate a simple conceptual system that can be created given
nearly any type of audio content and/or platform capabilities.

To start, we must assume several factors—our audio content must have the capa-
bility to queue individual chunks of music end to end. We will call these discrete
chunks segments. Our player also must have the capability of recognizing and sending
a notification when a segment is about to end playing—with enough lead time to choose
and queue another segment. This is the backbone of building an interactive music sys-
tem, and can be built effectively with either MIDI-based or streaming audio players.

So we now essentially have a map of short musical segments (each a couple bars
long) that are designed to flow together to form a cohesive piece of music. If we allow
random branching, we can introduce interesting variation into the piece with mini-
mal effort. Let’s call this map structure a musical theme. To provide true interactivity,
we can create multiple music themes and define transitions from one theme to another.

5.5 Audio Programming 595



However, it won’t typically work to simply map any currently playing segment in one
theme to the starting segment of another theme. Instead, we must ensure that we can
explicitly map the segment transitions depending on the originally playing segment
when switching from one theme to another. This way, we have complete control over
every segment switch. Obviously, the number of specialized transition segments
grows exponentially with each theme and the number of segments in each of those
themes, so it is important to place realistic limitations on these numbers. Figure 5.5.11
demonstrates how the music path can flow from theme to theme through custom
transition segments.

The result of this system, while a significant investment in both programming
and composing effort, can be truly remarkable: a completely seamless musical score
that contains automatic and internal variation within a single musical theme, and can
even switch between different musical themes as required by the game environment.

Programming Advanced Audio

Audio programming in today’s and tomorrow’s computer games will be much more
than creating a simple, low-level audio API. In the following pages, we’ll discuss some
of the most advanced audio-related issues facing the industry. Some of these issues are
only now being effectively addressed in modern games, and some of them are still
waiting for practical solutions to come with the next generation of game developers.

3D Audio Environmental Effects Integration

With the advent of ubiquitous environmental effects and digital filters, the next logi-
cal question is: How do we integrate this feature into a game engine? Unfortunately,
this question, in many ways, still has not been definitively answered. Let’s define the
problem. 

596 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.11 The concept of musical themes, each containing a connectivity 
map of music segments forms the basis for this interactive music system. 

Here we demonstrate two sample themes and their internal segment maps.



We first have to create the environmental effects based on specific locations in our
game world. In reality, environmental effects change continuously based on your
position in the world. In practice, we will define areas in which the overall effect
should be relatively similar, such as the interior of a single room. The effect can be set
manually or generated by scanning the geometry and material types found in the
world and creating reverberation settings based on this input. These generated rever-
beration settings must be stored along with the geometry that defines its boundaries,
so that the reverberation settings may be retrieved in real time based on a positional
value in the world. Figure 5.5.12 illustrates this process.

While this is a considerable task already, there’s still more complexity to consider.
Unfortunately, the nature of any particular sound involves the positions of both the
source and the listener, which is why there are typically settings to apply to each of
these programmatic elements. Detecting sound obstruction means determining in
real time if an object is blocking the line of sight between a sound source and the lis-
tener. For this, you will likely have to rely on a physics component of your engine to
perform this type of ray-casting test. 

Even more complicated is the proper detection and application of the obstruction
parameter. In some ways, this is something of a pathfinding problem for sound. If a
sound is completely blocked off from the listener by solid objects (such as walls), the
obstruction rating should be the lowest component among those obstacles (such as a

5.5 Audio Programming 597

FIGURE 5.5.12 Environmental effects per area based on room acoustics.



door). However, if the door is opened, the door can no longer obstruct the sound, and
this should no longer be a factor. This type of dynamic audio pathfinding problem is
much tougher to solve. In fact, many games still do not attempt to solve the problem
at all. Figure 5.5.13 illustrates how a sound must essentially “pathfind” to the listener
position to determine the proper occlusion settings.

Obviously, the ideal solution is one in which the audio phase is completely auto-
mated, and the designer has to do nothing at all to get realistic reverb settings from
anywhere in the game environment. As game worlds become bigger and more com-
plex, it will be important for programmers to figure out ways of streamlining the
development process. This will allow game content creators to build these bigger and
better game worlds with ever-increasing efficiency.

Audio Scripting and Engine Integration

One of the most important jobs of an audio programmer does not involve any 
low-level audio programming. Rather, it is the integration of an existing audio API
into a toolset designed for streamlined content creation. Audio in games typically
does not exist in a vacuum. It is nearly always triggered by some event, locale, script,
effect, character, or animation. It is the job of the audio programmer to ensure that
there is a seamless methodology regarding the placement and real-time control of all
audio content in a game.

Just as visual rendering is moving beyond using single-pass basic texture render-
ing (e.g., using bump or normal maps, dynamic shadows, specular highlights, environ-
ment maps, etc.), it is no longer acceptable for an audio system to just play simple
wave files (or whatever the platform’s native sample format is). The next level of audio
programming is the concept of audio scripting.

The essential premise behind audio scripting is this: Game programmers should
rarely have to think about audio. At the game level, mundane audio programming
should be minimal. All audio events are triggered via engine-level mechanics. In addi-
tion, in the rare case they do have to trigger some type of audio playback from game
code, programmers should never, ever reference or have to deal with wave files. Instead,
programmers should trigger an audio script or an audio event. 

598 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

FIGURE 5.5.13 Occlusion data that is dynamically affected by a door.



Now, instead of simply playing back a small, linear track of audio (represented by a
single audio file), audio designers have the freedom to define any type of behavior that
can be represented by our data script format. How extensive this audio script should be
is ultimately up to the audio programmer. Audio scripting involves simple sample play-
back commands in addition to programmatic elements. It should be built on top of an
existing low-level API and encapsulate common programmatic elements into a user-
defined data format. However, this format should be efficient enough to be used for
each sound event in the game without a lot of runtime or memory overhead. Let’s exam-
ine a number of common audio-related problems that must be solved in a typical game.

Sound variation. When a common sound (such as a footstep) is played over and over
again, the player quickly memorizes every nuance of the sample. A sound script
allows the audio designer to choose from a set of similar samples to add basic
variation. In addition, it may add a small amount of pitch and volume variation
on each playback. The script may even use input, such as ground type values, to
choose from entirely different sample sets. The script may even choose multiple
layers of sounds to combine in layers, further adding to the variation. By adding
this functionality to the audio script format, we can ensure that even small
sample sets don’t become repetitive sounding too quickly.

Sound repetition. Often, a single sound is used in many different places simultane-
ously. For instance, a sword clanking may be used on one of your in-game 
creatures. If you have 30 creatures on the screen at once, though, it may be 
advantageous to limit the number of simultaneous sword clanks that occur at any
one time. After all, sounds tend to reach a saturation point after a certain number
of repetitions. Additionally, this will help to conserve sound channels for other
types of game sounds.

Complex sound looping. A simple looping sound is not always sufficient. Machinery
often has unique starting and stopping sounds, and it is cumbersome to program
this type of mechanism using basic playback mechanisms. A sound script, 
however, can define discrete starting, looping, and ending samples that are 
triggered at scripted intervals. Imagine an elevator that can travel to several 
different floors. A single sample is triggered when the elevator starts, and the
looping sample fades in shortly as the start sample fades out. When the elevator
finally stops, the loop is stopped and the stopping sample is played. However, to
the client, this was as simple as playing and then stopping a single sound event.

Background ambience. To produce convincing background ambiences, an audio 
designer may combine a number of elements that merge together to form a seam-
less soundscape. This may involve playing several looping elements that shift pitch
and volume randomly over time (this is great for wind effects). Additionally, 
one-shot elements may be periodically played at randomly timed intervals sur-
rounding the listener in 3D space to provide additional interest. This type of
background ambience would be tedious to program for each locale, but a dedicated
scripted system could easily provide the capabilities of performing such tasks.

5.5 Audio Programming 599



As you can see, the concept of audio scripting allows an audio system to become
much more than a rudimentary sample playback engine. Modern sound program-
ming should allow much more intricate playback of component elements and para-
meter control, combined through a unified data scripting mechanism. An important
aspect of game development is optimizing the pipeline for efficient creation of game
assets. By allowing audio content creators to have more control over aspects of audio
performance, you facilitate the creation of more interesting and immersive audio con-
tent, and free up game programmers to concentrate more on programming game
logic and less on triggering and playing samples here and there.

Lip-Sync Technology

Many of the advances in rendering technology have allowed hyperrealistic rendering
of the human form, including faces. One of the more challenging aspects of facial ren-
dering is how to animate the mouth in perfect synchronization with a character’s
speech. This technology is generally known as lip-sync.

At a basic level, simply moving a mouth open and closed based on a wave file’s
amplitude provides a surprisingly good approximation. If your budget is limited or
your characters will only be viewed from far away, this is a reasonable solution.
However, modern games are pushing the envelope with full phonetic representation
and animation. There are at least two approaches currently being pursued. One
method scans a text transcript of the voice performance, and the expected phonemes
and syllables are then matched up to the actual performance. The second approach is
based on pure sound analysis. While a trickier problem to solve, this approach has the
advantage of being language-neutral—a considerable advantage for games that must
be shipped in many different languages.

The game-side rendering of lip-sync data has its own challenges. Based on the set
of phonetic data, artists must manipulate bones or textures (or a combination of the
two) to create realistic facial and mouth animations to match the expected phonemes. 

A number of excellent articles both in print and on the Internet describe the
basics of rendering human phonemes.

Advanced Voice Playback

Many games, especially sports titles, involve a lot of human dialogue commenting on
real-time action being performed in the game. Because it is simply not possible to pre-
record every conceivable play, it often falls on the audio programmer to find ways of
cleverly stringing together logical phrases. Initially, fairly rudimentary techniques
were used, but tomorrow’s games will be using much more sophisticated techniques
to blend phrases and words together.

As a simple example, one common problem is how to insert a player’s name into
a phrase. Without proper timing and inflection cues, it will sound like an obvious
cut-and-paste job. However, by properly blending one phrase into another (much in
the same way that real speech occurs), the chopping effect can be minimized. 

600 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



As the sports game genre advances, gamers will demand more realistic and enter-
taining commentary. There are still plenty of advances to be made in this category of
audio programming.

Voice Recognition

Audio programming is not exclusively devoted to real-time rendering of audio events.
One emerging specialization of audio programming is voice recognition. Simply put,
voice recognition is the capability for a computer to identify and recognize commands
spoken by the human player. This gives a level of interactivity beyond the somewhat
clumsy mechanism of choosing commands in real time from a menu using a game
controller. Several tactical shooters are already using this technology to good effect,
and it is likely we will continue to see developments in this area.

Summary

As you can see, audio programming from the perspective of a game developer is 
certainly no longer about fine-tuning some low-level audio mixing routines. Modern
hardware and rendering libraries now take care of the basics. Instead, the lowest-level
job will typically be integration of a complete audio scripting system into a game engine.
As an audio programmer, your job is to give as much power and control as possible to
the audio content creators, while minimizing the time any programmer must think
about low-level programming tasks. That leaves a world of much more advanced and
exciting audio-related research topics to investigate and implement in tomorrow’s games. 

Exercises

1. How is a sound typically represented in computer memory?
2. How does a sample’s bit depth affect its final signal-to-noise ratio?
3. What are two basic properties of the Nyquist limit?
4. How does streaming sound differ from normal sound playback?
5. What are the two essential interfaces (data sets) required to render a sound

in three-dimensional space?
6. What are the two most prominent characteristics of a sound that occlusion

affects?
7. Design a pseudocode function that computes the attenuation and pan for 

a given sound source in a two-speaker configuration. The function accepts a
sound position in 3D space and the listener’s forward and up vectors. The
function returns the attenuation (in the range of [0.0, 1.0], with 1.0 being
full volume) and the pan (in the range of [–1.0, 1.0], with –1.0 being full
left speaker and 1.0 being full right speaker). This function will require the
use of a cross product, a dot product, and a trigonometric function.
Document any design assumptions, such as the threshold for deciding when
a sound is too far away to hear.

5.5 Audio Programming 601



8. Describe all of the events in a game that require sound and what events 
trigger them. Given this information, design a rough conceptual system
allowing audio content creators and artists to incorporate all sound content
into the game without any programmer support. How can sounds be
attached to or triggered by all of these events?

9. Choose one of the following themes: sports game, squad-based network-
enabled shooter, or role-playing game. Describe any potential audio tasks a
programmer will be asked to solve for the game type you have chosen. Then
briefly describe how you would attempt to research and solve these tasks.

References

[Boer02] Boer, James, Game Audio Programming, Charles River Media, Inc., 2002.
[IA-SIG] For information about I3DL2 or iXMF, visit www.iasig.org.
[MIDI] For more information about the MIDI, DLS, and XMF formats, visit

www.midi.org.
[MSDN] XAudio 2/DirectX documentation, msdn.microsoft.com/directx.
[OpenAL] OpenAL is a 3D cross-platform audio-rendering standard: www.openal.org.

602 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.iasig.org
www.midi.org
www.openal.org


603

Overview

This chapter introduces the concepts and terminology involved with network and
multiplayer programming. It begins with an assessment of multiplayer game modes,
followed by an exploration of network programming fundamentals, including network
protocols, real-time data transfer, asynchronous environment guidelines, and game
security.

Multiplayer Modes

Multiplayer games share a generic set of concepts, in addition to mode-specific details.
This section surveys the common ground, describing three key differentiating factors
of multiplayer design/implementation: event timing, shared I/O, and connectivity.

Network and Multiplayer5.6

In This Chapter

Overview
Multiplayer Modes
Protocols
Protocol Stack
Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer
Real-Time Communication
Security
Summary
Exercises
References



Event Timing

Games follow either a turn-based or a real-time event-timing model. Some games con-
tain a mixture. In such cases, turn-based events take precedence due to their lock-step
nature. Consequently, timing models influence design and implementation paths of
various components.

Turn Based 
Turn-based games restrict movement to a single player, making all other players wait
for their turn; also referred to as round robin. Most board games and card games
exhibit turn-based gameplay. These games tolerate high and/or variable latency and
low-bandwidth conditions.

Real Time 
Real-time games support simultaneous player interaction, often requiring arbitration
to handle race conditions. Examples of such conditions include determining the first to
cross the finish line, grab an object in the game world, or lose all health. A special cat-
egory of real-time games, known as “twitch” games, relies on a constant flow of race
conditions. All real-time games design around a rigid set of latency and bandwidth
requirements, but twitch games tend to degrade with latencies above 150 ms and
become unplayable above 500 ms (0.5 seconds).

Shared I/O

Games run on a single computer often facilitate multiple players by sharing input and
display systems. Players may share a single input device such as assigning different
keys on a keyboard to each player, or simply passing the entire keyboard between
turns in a turn-based game, or plug in additional input devices for exclusive use by
each player. One could consider this a form of connected multiplayer. In fact, multi-
ple input devices provide a good means to simulate players on a low-latency network.
The next few sections describe models for sharing the displays.

Full Screen

A full-screen multiplayer game normally requires one of the following conditions:

Complete playfield visibility. Card games show the entire table. A checkers or chess
game shows the entire board. A game with a virtual world such as a soccer 
playfield or a war game’s battlefield must display the entire field. Without this
constraint, one or more players may not see their game entities and subsequently
fail in efforts to control them.

Player funneling. To facilitate multiple players in a snapshot of a larger game world,
player funneling restricts players to stay within a virtual cage the size of the screen
display. It’s as if four people were each holding one corner of a blanket. If they all
pull in opposite directions, the blanket stays put. If one person decides to move
in the same direction of the person opposite him, the blanket moves in that 

604 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



direction. The popular role-playing game Gauntlet uses this technique to arbitrate
player movement while scrolling through the game world.

Turn-based screen control. Since turn-based games only allow one person to move
at a given time, the display only necessitates showing the current player’s view-
point. In this scenario, the display simply switches to the active player’s camera.

Split Screen

With split-screen multiplayer, each player is allotted separate portions of the display
to show personalized views of the game world. The following are common component
separations required for each player: 

Camera (each player’s point of view)
Cull data (one for each screen since the point of view differs for each player)
Heads-Up Display, or HUD (game stats relevant to each player)
Map data (centered on current player)
Audio effects (mixing required since there’s normally only one audio system)

Splitting the screen incurs a performance hit due to the multiple render cycles.
Updating each view during the render phase of the game loop keeps the display state
consistent, the importance of which becomes relevant when two or more players exist
in close proximity. One possible optimization, which breaks this consistency, involves
round robin rendering. Only one view updates per render phase, and the updated
view changes to the next player on the next render phase. In a four-player game, a
hybrid of this could update two views each render phase. This helps keep the view
consistent in the close proximity case; otherwise, each player will be three updates out
of sync with one of the other views.

There are two standard methods for dividing the screen real estate: viewports and
render destinations. Viewports render directly to the back buffer, and render destina-
tions render to a texture placed on geometry, which then renders to the back buffer.
Due to their performance benefits over render destinations, viewports experience
greater acceptance. However, render destinations offer unique capabilities over view-
ports. The created textures map to geometry of any shape. This geometry may freely
move in the virtual display, thus allowing varied size, rotation, translation, and over-
lap with transparency.

A hybrid option known as windowed mode may use either viewports or render
destinations to display the contents within the window. This adds further perfor-
mance degradation to the base modes, but on a PC, it allows players to drag their view
onto separate monitors, or otherwise customize their window layout. Usability stud-
ies suggest it is best to offer the player a few predesigned and playtested layouts to
choose from; otherwise, the customizability tends to detract from gameplay because a
new player doesn’t necessarily know how to form a good layout to deal with particular
game features.

5.6 Network and Multiplayer 605



Connectivity

The connection type determines latency and bandwidth. These two constraints then
dictate game timing, number of controllable game entities (including players), and
other game design elements. However, connected multiplayer games reuse many ideas
from nonconnected multiplayer games. Some connected games use split-screen dis-
plays or player funneling. Others pass input data as if additional input devices were
connected to the same computer. 

Due to the lack of latency requirements, turn-based games work over a greater
variety of connection mediums. In this case, data transfer need not be fast; the data
just needs to get there intact eventually. For example, game moves saved to a file and
then transferring that file by e-mail, FTP, or even saving it to a removable disk 
and walking it over to another computer are all acceptable means of turn-based game
connectivity. The following categories offer real-time connectivity:

Direct link: Linking computers over a short connection normally guarantees low 
latency, while bandwidth depends on the medium. Popular cable links include 
a modified serial cable (a NULL modem cable) and a USB cable. Popular wire-
less links include infrared and Bluetooth. Each harbors specialized protocols to 
facilitate communications that tend to restrict to peering.

Circuit-switched network: The public phone networks provide an unshared direct
connection or circuit. This maintains a consistent, low-latency medium, but is
short on bandwidth and player distribution (only two player; call conference
modem games never really took off ). An Internet service provider (ISP) allows
the circuit to attach to an Internet conduit (the modem at the ISP), which 
places the packet data traffic on the Internet. This solves the player distribution
problem, but takes away the low-latency benefits of the direct circuit. 

Packet-switched network: Data networks share virtual circuits that are created 
and released for each data packet. Network configurations vary in hardware,
transmission medium, and protocols, and the Internet combines these smaller 
physical networks into a single large logical network, allowing people to play 
anybody from anywhere, at any time. However, the Internet suffers from a wide
variance in bandwidth and latency. It is also less reliable than the public phone
system.

Protocols

A protocol is an agreed-upon format for transferring data between devices. This format
specifies some or all of the following methods:

Packet length conveyance
Acknowledgement methodology
Error checking
Error correcting

606 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Compression
Encryption
Control packet description

Packets

The logical transmission units of a protocol, otherwise known as packets, consist of
two parts: a header section and a payload section. The header contains the format 
elements of the protocol. A protocol considers the payload as a Binary Large OBject
(BLOB), which it does not modify; rather, it simply delivers it according to the terms
of the protocol. The following demonstrates a simple packet structure:

struct packet

{

// Header

short PacketLength; // Length of this packet

short PacketType;   // Control Information 

int   Checksum;     // Error checking

// Payload

char [256] Blob;    // Higher layer protocol data

};

When creating packet structures, the structure may be formed such that it requires
no special serialization (reformatting the data into a serial form). The following factors
determine whether a packet structure requires serialization:

Pointers: Since pointers refer to local memory, the data pointed to needs to be 
serialized into a byte stream.

Abstract data types: ADTs commonly contain references, which require their 
extraction and placement in an array.

Byte alignment linkers: Default to word alignment for processor performance. 
To avoid this byte padding, use the following preprocessor directives: 

#pragma pack (1) // Byte aligned, no padding

// Add packet structures here

#pragma pack () // Set back to default alignment

Endian order: When building a game that connects across platforms, multibyte 
intrinsic types require endian synchronization. The Sockets API provides the 
following macros to place multibyte in the standardized network order (since
routers need to inspect address variables): ntohs, ntohl, htons, and htonl. 
Following the same standard for endianess reduces confusion. 

Specific intrinsic types: Use intrinsic types that have a specified width. For example,
use “__int32” rather than “int,” since the size of “int” differs on 32-bit and 
64-bit CPUs.

5.6 Network and Multiplayer 607



Unicode strings: Start out using Unicode character strings at the beginning of a
game development project to make localization easier at the end of the project.
Otherwise, an additional conversion/serialization step needs to occur for cross-
language packet exchange where one language uses 1-byte ASCII strings and the
other uses 2-byte Unicode strings.

Request for Comments

Protocol specifications require distribution to get used. They also need to be construc-
tively criticized or otherwise commented on to identify imperfections. From this need
arose the Request for Comments [RFC] repository for new and existing protocol
specifications. Most public Internet protocols have an associated RFC specification
number associated with a detailed description on the RFC Web/FTP site.

Protocol Stack

The Open System Interconnect (OSI) specification formalizes interoperability
between devices and software entities into logical layers. Figure 5.6.1 illustrates the
flow of data between layers, pointing out common protocols that reside in each layer.

The Internet model provides a variation of the OSI model that combines the
Application, Presentation, and Session layers into one layer and calls it the Application
layer. This simplifies the model for workers in the lower layers, but the core work in
multiplayer game development takes place at the higher layers.

608 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

Router

Sender Receiver

Network 

Data Link 

Physical 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Game Events 

Game Packetization 

Connection & Data Exchange 

Input Updates 
State Updates 

Serialization 
Buffering 

Sockets 

TCP 
UDP

IP 

Ethernet  (MAC) 

Wired ( C5, Cable)
Fiber Optics 
Wireless 

FIGURE 5.6.1 The OSI model.



Physical Layer

The physical layer streams bits of data over a communication medium. Popular mediums
include category-5 twisted-pair wire, coaxial cable, and various wireless frequencies.
The game developer’s primary concern at this layer regards latency, bandwidth, and
reliability of the media. 

Bandwidth and Latency

Bandwidth represents the data transfer rate from source to destination, commonly
measured as bits per second and often confused with the more useful measurement of
bytes per second due to its abbreviation “bps.” Latency represents the delay a single bit
of data experiences traversing from a source computer to a destination computer,
commonly measured in millisecond time units. Bandwidth calculations must account
for the initial latency cost; otherwise, the initial latency becomes amortized in the
bandwidth calculation. Amortized bandwidth approaches actual bandwidth when
line latency and total transfer time deviate, thus making line latency insignificant.
The following demonstrates a not-so-deviant case:

Data (�) � 240 bits
Transfer Time (θ) � 4 s
Latency (�) � 500 ms
Bandwidth (	) � unknown

	Amortized � � / θ
� 240 b / 4 s
� 60 bps

	Actual � � / (θ – �)
� 240 b / (4s – 500 ms)
� 240 b / 3.5s
� 68.5 bps

With bandwidth increasing and latency decreasing, it may seem pointless to even
consider these calculations. Realize that initial line latency is included only once, but
packets normally transmit in intervals. This requires adding in the line latency time
multiple times throughout the session. If 32 packets are delivered each second, the
calculation must multiply the line latency by a factor of 32.

Media

Designing a connected game requires setting a minimum bandwidth. Determining
the supported media dictates the bandwidth. Otherwise, designing the packet model

5.6 Network and Multiplayer 609



and arriving at a minimum bandwidth will determine the media over which it may be
played. Either way, one must know the bandwidth saturation of each medium. Table
5.6.1 lists some common bandwidth specifications.

TABLE 5.6.1 Max Bandwidth Specifications

Media Connection Type Speed (bps)

Serial 20K
USB 1&2 12M, 480M
ISDN 128K
DSL 1.5M down, 896K up
Cable 3M down, 256K up
LAN 10/100/1G BaseT 10M, 100M, 1G
Wireless 802.11 a/b/g b=11M, a=54M, g=54M
Power Line 14M
T1 1.5M

Note that both DSL and cable download two to 12 times faster than they upload
data. The serial specification describes the uncompressed transfer rate a NULL modem
experiences. Phone modems use the serial chip (UART), so the serial chip theoreti-
cally limits phone modems. Both 28.8K and 56K modems acquire the extra transfer
rate through additional compression schemes. Direct serial transfers also contain
smaller headers, which increases their bandwidth relative to TCP/IP, for example. The
actual delivered bandwidth of any given medium tends to reliably hit about 70 percent
of its advertised theoretical maximum.

Data Link Layer

The Data Link layer serializes the data for the Physical layer and manages the trans-
mission to its neighboring node. The Ethernet adapter or network interface card
(NIC) handles this serialization. Each NIC contains a MAC address to identify it as a
unique node on the local network. Not all NICs contain unique MAC addresses;
however, for a subnet to communicate, all NICs on that subnet must contain a
unique MAC address.

Network Layer

The Network layer handles packet routing. Its most popular resident, Internet Protocol
(IP), contains both the source and destination IP address for a packet. Richard
Stevens’ book [Stevens94] provides clear, in-depth coverage of IP and its companion
protocols TCP and UDP.

610 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



IP Addresses 

Two common versions of IP exist on the Internet today: the popular old IP version 4
(IPv4) and IP version 6 (IPv6), also referred to as the next generation (IPng). The
header formats differ in all but the first 4 bits of data that specify the IP version used.
The major difference between these protocols centers on the size and format of the IP
address entries. An IPv4 address contains 4 bytes, commonly displayed in 8-bit deci-
mal sections:

255.000.255.000

An IPv6 address contains 16 bytes, commonly displayed in 16-bit hex sections: 

FFFF:FFFF:0000:0000:FFFF:FFFF:0000:0000

IP entry GUIs should be designed to accept both forms of addresses. The Sockets
API, responsible for passing the IP address to this layer, provides a generic means of
dealing with either address. For further details, see the discussion on binding a socket
to an IP address in the “Session Layer” section of this chapter.

Unicast

An individual’s IP address, or unicast address, comes from one of the following sources: 

Static (user assigned): The static assignment of an IP address is usually reserved for
servers that require a well-known presence.

Dynamic Host Configuration Protocol (DHCP): Routers commonly use this 
protocol to assign IPs to a specific NIC. The DHCP server maintains an IP lease
list containing the IP address assigned, the NIC MAC address assigned to, and
the lease expiration time. When an IP address lease expires, it may automatically
renew with the same IP or a different IP depending on the policy in place.

Automatic Private IP Addressing (APIPA): The fallback when a DHCP service is
not available.

Special Addresses

The following commonly used IPv4 addresses have special meaning and may not be
used as a unicast address.

Multicast
Range: *.*.*.{224–239}
Special “multicast” routers allow multiple IPs to enter a group. When a member of the
group sends a packet, he sends one packet to the group address on the router, and 
the router redirects that packet to all members. Multicasting provides excellent band-
width savings, but the hardware costs make this technology sparse.

5.6 Network and Multiplayer 611



Local Broadcast
Range: 255.255.255.255
Socket macro: INADDR_BROADCAST
Local broadcast packets deliver themselves to all adapters on the local subnet, reach-
ing up to 222 IPv4 adapters. 

Directed Broadcast
Range: *.*.*.{240–255}
Similar to local broadcasts, but instead of broadcasting on the local subnet, it broad-
casts on the specified subnet. Although a nice feature, directed broadcasts are usually
discarded by firewalls.

Loop Back
Range: 127.0.0.1
Socket macro: INADDR_LOOPBACK
Packets sent to this address never reach the physical layer. Instead, they are transferred
from the send queue to the receive queue at the IP layer.

Address Any
Range: 0
Socket macro: INADDR_ANY
Computers with single adapters often use this address as the source address when set-
ting up a listening socket, because it selects the IP associated with the only NIC on
the computer. Computers with multiple NICs may also use this address to allow
automatic selection of any available NIC for the socket to listen on.

Domain Name

A domain name provides a human-readable form of the IP address, and a layer of
indirection through the Domain Name Service (DNS). For example, the Web server
located at 16.15.32.1 provides less description than the domain name www.gamedev.net.
The DNS indirection allows the gamedev.net site to move to another IP address at
any time, but clients can use the same domain name. The DNS is a server infrastruc-
ture dedicated to fast domain name resolution. While DNS often meets its service
goals, it has its downsides. 

First, it adds a layer of complexity to the socket connection process if an address
requires resolution, which takes some time since it must contact one or more DNS
servers to do so. Working with an IP address directly would save connection time.
Second, the DNS server may be unreachable, leaving one unable to connect even with
an active network. Again, using an IP address directly avoids such dependencies.
Another problem with DNS centers on the changing of a domain name’s associated
IP. Moving a domain name to point to a new IP takes time to propagate through the
DNS server infrastructure. Moving a domain to a new server may take hours or even
days before all DNS nodes reflect the change. Caching the most recent IP resolution

612 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.gamedev.net


provides a good fallback solution if the DNS fails for some reason, although it’s not
100 percent reliable. 

The Sockets API contains methods to resolve a domain to an IP and look up all
domain names associated with an IP, getaddrinfo() and getnameinfo(), respectively.

Transport Layer

The Transport layer ensures data delivery between endpoints. It recovers from errors
and controls the flow of data. It also provides the notion of “ports” as a logical exten-
sion to the IP address.

Ports

A port number works similarly to an apartment number, where an IP address works
similarly to the address of the apartment complex. To deliver a piece of mail, the mail
carrier needs both numbers. Network connections also require a complete “Net
Address”:

Net Address = IP Address + Port

Ports range between 0 and 64k. Common network services such as FTP, Telnet,
and HTTP use “well-known ports” in the range of 0–1024. Historically, RFC 1700
maintained port specifications. Now, these numbers are maintained by the Internet
Assigned Numbers Authority [IANA]. Additional, but less common, services map to
the 1k–5k port space. While entirely valid, using port numbers below 5k may clash
with other servers running on a LAN. For example, creating a server that listens on
port 80 may never receive any traffic due to the router forwarding all port 80 traffic to
the LAN’s Web server.

TCP and UDP packet headers contain both a source and destination port entry.
The listening port must be agreed upon by both endpoints before attempting a con-
nection. If a connector lacks this information, it will require connection attempts on
all 64k ports to find which port the host chooses to listen on. The connector must
also specify the return port, but due to its inclusion in the packet, it may be selected
at random.

Transmission Control Protocol

TCP works best for large data transmissions and data that must reach its destination.
The following sections highlight the most-used features of TCP.

Guaranteed In-Order Delivery
TCP will not deliver data to the session layer out of order. If two bytes, byte “A” and
byte “B,” are sent in respective order, TCP guarantees that byte “A” will be delivered
to the session layer before byte “B,” even if byte “B” arrives before byte “A.”

5.6 Network and Multiplayer 613



TCP supports a special flag in the header called “Out of Band,” which allows
sending/receiving of priority packets. However, the architecture required to use this
facility is frowned upon. The recommended alternative entails the creation of a sepa-
rate TCP connection to handle high-priority data.

Connected
TCP requires a connected state between endpoints that supports the following features:

Packet window: Although data flowing between the Transport and Session layers is
considered a stream, TCP-to-TCP data transmission occurs through packets.
This allows for a window of N outstanding packets, each with a window sequence
number used for stream reconstruction, packet acknowledgment, and resending
when necessary.

Packet coalescence: Also referred to as the Nagle algorithm or packet nagling, this
combines smaller packets into a single larger packet to reduce network congestion
caused by many small packets. If 1 byte of data were sent in a packet, 41 bytes
would actually be sent: 40 for the header and 1 for the data. The downside to this
is that data may sit in the TCP stack waiting for more data, causing unacceptable
latencies. Nagle, on by default, may be turned off with the TCP_NODELAY socket
option.

Connection Timeout: Off by default, this facility sends a simple “Timeout” packet
after the line remains idle (no transmissions) for a specified period of time. The
receiver of the heartbeat must reply with an acknowledgment in a given amount
of time, or the TCP session closes. Use socket option SO_KEEPALIVE to configure
TCP timeouts.

Streaming: Data transmitted over TCP comes as a stream to the Session layer rather
than individual packets. Internally, TCP sends/receives data in packets, but these
packets do not necessarily reflect the size of the data buffers made at the Session
layer through a call to send(). TCP may split or combine individual send com-
mands depending on TCP settings. This requires that the Presentation layer pro-
vide facilities to reconstruct data into packets if needed.

User Datagram Protocol

UDP communicates in a send-and-forget manner, not guaranteeing order of delivery
or even delivery at all since no direct connection is made. Data transmits in packets
instead of a stream, which assumes a connection. The lack of connection maintenance
also reduces the UDP header size. The reduced header size in conjunction with the
absence of resends and packet coalescence provides a better latency/bandwidth model
than TCP. 

Avoid writing a guaranteed layer on top of UDP, which bypasses all the time and
effort built into TCP. Firewalls tend to render such solutions useless anyhow, because
they commonly block all incoming UDP traffic. The policy to block all incoming
UDP traffic stems from the security issue introduced by not verifying the return

614 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



address. Stopping a network attack involves identifying its source—a difficult journey
without a confirmed return address. Design the game to allow TCP as a fallback for
denied UDP traffic.

Broadcasting

All broadcasting over IP networks takes place with UDP packets. This makes perfect
sense with the connectionless nature of UDP. However, broadcasting floods network
bandwidth, and firewalls normally drop incoming broadcast packets. This restricts its
use to LANs where it provides an excellent method of player/game discovery. Lobby
servers, such as GameSpy, replace actual UDP broadcasting on the Internet with a
logical subscription-based broadcast in which one must connect to the server to
receive TCP packets sent to all connections.

Session Layer

The Session layer manages connections between applications. Its responsibilities include
establishing connections, terminating connections, and coordinating data exchange.
The Sockets API provides a cross-platform Session layer model to handle these tasks. 

Sockets

The Sockets API supports several basic implementation models, each simple at the
outset to implement. The complexity emerges when maintaining multiple sockets,
setting options for lower layers in the protocol stack, and ultimately using high-
performance socket extensions. While sticking to the standard socket API methods
promotes cross-platform portability, this model generally limits itself to client devel-
opment. Servers often push connectivity limits and/or data throughput, which neces-
sitate use of OS-specific socket extensions. About a dozen extensions exist that obscure
the best approach to achieving high performance. The “Sockets Programming” refer-
ences at the end of this chapter contain reams of information on both basic and 
high-performance sockets. Although not listed in the references, most modern pro-
gramming languages support the Sockets API, including Java, C#, C/C++, and Visual
Basic. The remainder of this section presents a general overview of sockets, and more
importantly, the high-level differences in the ways to use sockets. The code snippets
use WinSock defines, which occasionally differ ever so slightly from their UNIX
equivalents.

Origins

Sockets originated as an extension to the file I/O paradigm, which explains why the
file descriptor “fd” abbreviation is scattered throughout sockets. To this day, serial
[Camp93], socket, and other connection types maintain file descriptor–compatible
handles. These handles pass to file I/O interfaces such as read() and write(), allowing
data transfers to follow the standard reader/writer design pattern. UNIX hosted the

5.6 Network and Multiplayer 615



first Sockets API, which provided additional functionality to deal with the latent data
transmissions and protocol control. Many years passed before third-party ports were made
available on the Microsoft Windows platform, but soon after these first ports became
available, Microsoft released its own implementation of the WinSock Sockets API. 

WinSock

All the standard socket interfaces exist in WinSock, with specific extensions containing
the “WSA” function name prefix. Microsoft provides nonstandard, briefly documented
socket extensions external to the Winsock specification that allow for socket reuse and
additional high-performance features. 

All WinSock programs must use two such extension functions to allocate/free 
system resources; UNIX sockets do not require such initialization:

WSAStartup(): Call this before using any Winsock API methods.
WSACleanup(): Call this to release all socket handles after closing them.

Socket Modes

Sockets are either blocking or nonblocking. By default, sockets use blocking mode. In a
game that requires an active user interface, blocking sockets should only be used in
separate threads, because blocking calls puts their thread to sleep until the action
completes. To hack around the blocking problem in a single thread, one can “peek”
for data available to read, since a socket read() call often blocks waiting for data.
Setting nonblocking mode provides a better alternative to peeking because it actually
completes the operation if possible or returns an error that it would have blocked if it
were in blocking mode. In contrast, a successful peek polls for arrived data, and still
requires an additional read operation to clear the data off the stack. This double read
of kernel memory buffers degrades performance considerably in server applications.

To switch between blocking and nonblocking mode:

unsigned long arg = ?; //0=blocking 1=non-blocking

int status = ioctlsocket( fd, FIONBIO, &arg); 

Once in either blocking or nonblocking mode, it remains in that mode for the
duration of the process. If WinSock is shut down and reinitialized, it will be set back
to blocking mode. To force a blocking call to return, either close the socket or make a
call to WSACancelBlockingCall().

Standard Socket Models

The sockets specification provides two socket models: standard and select. The select
model provides a mechanism to handle sets of up to 64 sockets each. The following
sections briefly cover the simplest form of the standard socket model and common
usage patterns.

616 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Socket Creation
This line of code creates a TCP socket descriptor:

SOCKET tcpSocket = 

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

This line of code creates a UDP socket descriptor:

SOCKET udpSocket =

socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

TCP Connecting
To connect to a remote listening host socket, a destination net address is required.
The following code creates an IPv4-compatible address structure and attempts a TCP
connection:

SOCKADDR_IN addrV4;

addrV4.sin_family       = AF_INET;

addrV4.sin_port         = htons(4000);

addrV4.sin_addr.s_addr  = inet_addr(“10.2.15.89”);

int error =

connect(tcpSocket,(SOCKADDR*)&addrV4,sizeof(addrV4));

The following code uses the preferred getaddrinfo() method to create an IP
address compatible with both versions 4 and 6:

PADDRINFOT info         = NULL;

ADDRINFOT hints;

hints.ai_flags          = AI_NUMERICHOST;

hints.ai_family         = PF_INET;

hints.ai_socktype       = SOCK_STREAM;

hints.ai_protocol       = IPPROTO_TCP;

char strPort[10] = “4000”;

int result = 

getaddrinfo(“10.2.15.89”,strPort,&hints,&info);

int error = 

connect(tcpSocket, info->ai_addr, info->ai_addrlen);

TCP Listener
The TCP host must bind the socket to a port and a local adapter with the bind() call.
Next, the host must listen for incoming connections, and finally sit and wait to accept
the connection.

int status = 

getaddrinfo(htonl(INADDR_ANY),strPort,&hints,&info);

5.6 Network and Multiplayer 617



status =

bind(tcpSocket, info->ai_addr, info->ai_addrlen);

int connectionBacklog = 1;

status = listen(tcpSocket, connectionBacklog);

int addrLen=0;

PADDRINFOT remote = NULL;

SOCKET newSocket = 

accept(tcpSocket, &remote.addr, &remote.ai_addrlen);

Stream Transmissions
After connection, the client and host may freely send and receive data. Among other
error conditions, the send operation may error if the TCP buffer is too full to accept
data, in which case the send should succeed once the buffers have time to transmit
their contents.

#pragma pack (1)

struct Packet

{

short length;

char username[10];

};

#pragma pack ()

Packet pkt = {12,”testpkt”};

int flags = 0;  // No flags, rarely used

int err = send(tcpSocket,(char*)&pkt,sizeof(pkt),flags);

TCP receive operations may look very different between implementations due to
its streaming nature. The following sample provides a common solution for packetiz-
ing the data stream. It assumes the first two bytes of all application layer packets 
contain the length of the packet. This allows the system to determine how big a buffer
to create for the complete packet read operation. 

// Handle Endian order if used cross platform 

short pktLen; 

// a short is used to represent packet length

short lenSize = sizeof(short); 

int bytesToRead = lenSize;

int flags = 0; // ignore

// Read the packet length first

int bytesRead = 

recv(tcpSocket, (char*)&pktLen, bytesToRead, flags);

618 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



// Allocate buffer for to read in entire packet

char* buffer = new char[pktLen];

memcpy( buffer, &pktLen, lenSize );

// Read remainder of packet

bytesToRead = pktLen – lenSize;

bytesRead = 

recv( tcpSocket, &buffer[lenSize], bytesToRead,flags);

Datagram Transmissions
UDP’s sendto() method acts similarly to the combination of TCP’s connect() and
send() methods. UDP’s recvfrom() method combines even more functionality in
comparison to TCP’s, with recvfrom() taking the place of bind(), listen(), accept(),
and recv(). The following shows UDP’s send method with previously declared 
parameters:

int status = sendto( udpSocket, (char*) &pkt, sizeof(pkt), 

info->ai_addr, info->ai_addrlen );

In addition to combining so much functionality into one method, recvfrom()
also avoids the two-step read of packet length followed by a read of the remaining
packet. This is due to recvfrom() only reading one packet at a time. Simply create a
buffer the size of the largest possible packet and call recvfrom() with the buffer and
its length:

int flags = 0; // ignore, not very useful

char buffer[MAX_PACKET_SIZE];

int bytesRead = 

recvfrom(udpSocket, buffer, MAX_PACKET_SIZE, flags 

&remote.addr, &remote.ai_addrlen);

The recvfrom() will only fill up to the size of a single packet and return. The
method will never combine packets, as TCP would, because it does not stream data as
TCP does.

High-Performance Socket Models

Standard socket models fall short with respect to performance in several areas, most
notably in event notification and memory buffer copies. Additional shortcomings
exist in the accept() architecture and in socket reuse. For implementation details on
each of these subjects, search for the following keywords: WSAEventSelect, I/O
Completion Ports, poll, and Kernel Queues. The following provides an overview of
the issues involved with each problem. 

5.6 Network and Multiplayer 619



Event notification entails use of multiple threads and kernel level signaling of a
blocking application thread waiting for an operation to complete, such as data arriving,
data sent, or a socket closed. “Standard” sockets need a thread for each outstanding
operation, and “select” sockets require a thread for every 64 sockets. Event notifica-
tion requires only one main socket processing thread that receives the signals for all
sockets. Once signaled, the processing thread can handle the operation or place the
operation in a signaled queue to process in a worker thread from a thread pool. 

Standard sockets copy data from kernel buffers to user-supplied buffers during a
read call. Asynchronous I/O solves this performance issue by allowing the application
or user thread to pass the kernel some number of buffers to use instead of its own.
After a buffer fills, the kernel then signals the user thread about the readied data. This
greatly reduces overhead with data transfers, which is critical for maximizing data
throughput.

The Listen/Accept role of a TCP connection host using the standard socket
model requires the host to accept a socket connection before receiving any data from
the connector. Accept creates a socket that requires the lengthy process of the kernel
allocating a descriptor. Two solutions exist for lessening the impact of this problem.
One solution allows the passing of a created but unconnected socket descriptor to the
accept method, thus bypassing the expensive socket creation hit at runtime. This still
requires the connection to happen before any authentication. The other solution
allows the connect method to send an initial data packet with the connect request.
This allows the host to authenticate a connection request before the TCP connection
request returns accepted.

Creating a socket descriptor consumes valuable resources. Reusing socket descrip-
tors after they close allows servers to handle many transient connections with faster
response times. This requires connections to confirm closure and that closed sockets
not release their descriptor handle. The standard socket close() method frees socket
descriptors in addition to closing the connection. Note that this only applies to TCP
sockets, since UDP sockets inherit reuse since they never connect and thus never
require closure.

Three methods exist in the Sockets API to control TCP, UDP, and IP protocol
options and session layer I/O: getsockopt(), setsockopt(), and ioctlsocket().
These take a socket, a predefined operation code, and the arguments associated with
the operation (plus other overhead parameters). Refer to the references at the end of
this chapter for a thorough explanation of all these options and sockets programming
at large.

Presentation Layer

The Presentation layer provides generic data conversion by preparing data for transmis-
sion and converting incoming data back into a format recognized by the Application
layer.

620 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Compression
Real-time data packets are relatively small compared to file transfers, normally on 
the order of 10–1000 bytes. They should not exceed the network’s Maximum
Transmission Unit (MTU), which dictates the largest size of a single packet. Packets
larger than the MTU, normally around 2k bytes, must be split over multiple packets.
Dealing with such small data sizes makes it counterproductive to use generic com-
pressors such as Huffman encoding, due to their table overhead. A better generic
alternative would be a custom encoder built into the packet serialization process. Such
an encoder may implement the following data reduction methods:

Pascal strings: C/C++ commonly follows the NULL terminated string convention.
This poses two problems. First, the containing buffer is normally created at a 
static maximum string length, which often wastes space, including the space 
required by the NULL terminator. Second, a packet stream works best if 
the length of the pending data comes first. With NULL-terminated strings, the
length remains a mystery until reaching the NULL terminator. Pascal strings 
reserve the first byte or two of the string to place the string length, and forego 
the NULL terminator.

String tables: Some strings are set once during a game and continuously used, such
as a username in chat rooms. Keep a table of strings and associate an integer key
with each string. Introduce a string to all players as a string/key pair, and then
only send the key in all future references. New players need to receive a copy of
the entire table upon entering the game.

Bit fields: Placing small enumerations and Boolean variables into bit fields conserves
bandwidth. Implement this at the structure level to avoid having to serialize the
data. Placing bit fields consecutively also reduces gaps of unused byte space.

Float to fixed: Often, floating-point accuracy is overkill for certain data representa-
tions, such as percentages. A fixed-point number commonly uses a single 2-byte
integer and logically splits it into a two parts: the whole number and the fraction.
This saves 2 bytes over the common 4-byte floating-point representation. Save
more memory by splitting a short or char if precision requirements permit.

Matrix to quaternion: A 3D orientation is commonly represented in matrix form 
for any number of reasons. A quaternion provides the same information and 
accuracy with fewer bytes.

Encryption
The most likely person to hack a game packet is the person running the game. Never
pass sensitive data to a DLL, as they are easy to chain, allowing the user to replace 
the authentic DLL with his own to change the data, which it then passes on to the
authentic DLL. This chaining process is also referred to as shimming. The WinSock
DLL may also be shimmed, rendering IP Security vulnerable to local data tampering.
The best method to keep data from the gamers’ prying eyes involves encrypting
within the executable module.

5.6 Network and Multiplayer 621



Serialization

Structures may contain integer alignment padding, pointers, or other data not intended
to leave the local computer. To solve this problem, serialize the data by using a secondary
buffer and filling it with the exact byte stream to pass to the Session layer. 

When using TCP, data is sent to and received from the Session layer as a stream.
To work in packets over TCP, this layer must provide the logic to identify the size and
type of packet as such:

struct packet

{

ushort Length;  // Size of this packet

ushort ID;      // Predefined packet type

...             // Additional header info

char Data;      // Data from Application Layer

};

The positioning of the Length variable as the first variable works well in the
receiving architecture. First, post a 2-byte socket read operation. Create a buffer to
hold the size of the packet. Then post a second read operation to receive the remain-
der of the packet. Repeat for the next packet.

Buffering

The following sections describe different types of buffering found in the Presentation
layer.

Packet Coalescence
Although supported by TCP, turn it off and create a customized coalescence system to
avoid excessive latencies. Since UDP doesn’t support this feature, such a system at the
Presentation layer could be used with UDP. Game clients normally abandon all coa-
lescence in lieu of absolute lowest latency. Game servers may actually lower overall
latency through coalescence by freeing up processing time and bandwidth. The effects
are most noticeable in servers with large numbers of clients. 

Induced Latency
Ideally, all players act on the same input data from all users at the same time. The
induced latency technique sends input as soon as it latches locally, and then stores it
for some prescribed amount of time (the induced latency) before using it, as shown in
Figure 5.6.2. 

622 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

Latch Input 
Send Input Use Input Locally Induced Wait 

FIGURE 5.6.2 Induced latency diagram.



Adding a server that sends local input back at a steady rate allows the server to
send previous input when current input does not arrive in time for the server sendoff.
In this case, the local machine never stores their input and acts only on input received
from the server. Of course, this runs the risk of stopping and waiting for input to
arrive from the server, but the intent is to use this on a synchronous model, which
must stop and wait for remote input as well.

Dead Data
Since UDP packets may be received out of order, a real-time game may not use old
data, allowing the Presentation layer to discard such older packets. A more complex
system uses old data to either confirm paths or help provide more accurate interpola-
tion. Old data may also be entered into replay queues for smoother transitions and a
more accurate original path. The game designer must decide whether the replay shows
actual paths or viewed paths. Since actual paths may conflict with local paths, run-
ning the replay system should warp to discrete position/orientation nodes rather than
rerun through a simulation with collision detection.

Large Packets
Data packets larger than UDP’s MTU or larger than the TCP’s send buffer must be
split into multiple packets. The Presentation layer handles this subdivision and recon-
struction. Such a system involves the addition of a new packet type ID for “large
packets,” a unique instance ID to differentiate it from other large packets, and a
sequence number. A given large packet must either transmit the total number of pack-
ets in the first packet or provide a special sentinel number for the final packet.

Application Layer

The Application layer deals directly with game data and game logic. While the Session
and Presentation layers often contain generic implementations replaceable with mid-
dleware, the Application layer is always part of the game. Here, the update model and
synchronization code form the core of a networked game. 

Version Verification

When a quality assurance (QA) team starts testing, especially during development when
many versions of game components exist, always run a sanity check on all component
versions. This check includes comparing size, version, and checksums of all executable
files and dynamic link libraries (even system DLLs used), data, and art files. One risks
a constant chasing down of nonbugs without using a robust validation system.

Update Models 

The game’s update model guides the design of the most intense packets in the game.
The input reflection model presents packets sent over the network as if they were

5.6 Network and Multiplayer 623



another input device attached to the computer. The state reflection model processes the
input locally and sends the processed data, such as new positions, orientations, veloc-
ities, and accelerations.

Input Reflection
This model usually sends slightly processed input data, processed enough to make the
input generic rather than deal with specific device nuances. The generic input for a
single player using a mouse, joystick, and keyboard can usually fit in a packet less than
32 bytes in size, depending on the controls used. Such a small payload turns out
smaller than the combined protocol headers of TCP/IP at 40 bytes. Expending more
bandwidth on header data than on the actual packet payload data is generally frowned
upon as an inefficient use of bandwidth. The low packet latency mandate overrides
general network bandwidth efficiency, and in this respect, input reflection excels.

Human perception of delay plays a critical role in establishing the latency require-
ments of input reflection. The average person will notice anything more than approx-
imately 1/10th of a second delay in hand/eye coordination tasks. Frame rate also plays
a role, since ideally each new frame changes with respect to player input. With human
perception and average maximum frame rates capping at around 60 fps, an acceptable
packet send rate ranges between 16 to 64 input packets per second.

Input reflection might use a synchronous or asynchronous play model.
Synchronous play, where the game stops and waits until it receives input data from all
users, looks horrible and plays jerky when latencies vary or rise, but it always remains
100 percent in sync. Asynchronous play, where the game predicts remote player input
when not available, produces difficult game synchronization problems when wrong
predictions result in dramatic in-game events such as a crash, death, or anything else
that produces a “rising of the dead” on a resynchronization. Even without cata-
strophic events, the resynchronization of input reflection requires a complicated,
comprehensive, and potentially memory-intensive state save for each input simula-
tion past a prediction point until the actual input arrives. This allows recovery at any
point past the prediction, so that the game goes back to a save point, discarding all
future states (or in this case, current state), and resimulates the game from that point.
Asynchronous play is better suited to the state reflection model or hybrids thereof,
which may use input reflection as hints.

Pure input reflection works well with the synchronous “stop & wait” model. The
prime directives of this model keep:

Latency low
Latency consistent
All clients in sync

The last item requires rigid rules on randomness. The following tips help avoid
unintentional randomness.

624 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



The function rand() must use the same seed on all clients if used in simulation
calculations. There should be no actual randomness between clients. Since only
one rand() instance exists for a given process, consider creating a custom random-
izer for the game if multiple systems need it.
Use rand() in a reproducible manner; avoid sharing it between the physics system,
which is consistent, and the graphics system, which introduces variance across clients.
Fix all uninitialized variables. Clear all stack and heap variables to remove residual
contents before setting. Partial initialization of dirty structures and arrays are very
difficult bugs to locate.
Fix all freed pointer reads. Rely on heap tools for this.
Validate versions of all files between clients. Note that art files may affect physics
calculations.
Avoid using client system time for calculations, as they rarely match 100 percent.

State Reflection
The state reflection model transmits local changes to objects, in other words, the

client’s view of the game world. Implementing this model starts with passing object
positions and orientations. Absent of support systems to smooth object motion, at
least the objects will warp around in their correct location. Other types of object states
may also need to be transmitted: lights on/off, doors open/closed, triggers armed/
discharged/unarmed,  and possibly much more, all game dependent.

Due to latency, a state/position update received by a client always arrives from the
past. The real work in state reflection comes with building smooth and accurate predic-
tion algorithms. These algorithms require additional information, such as an object’s
speed and acceleration, to make valid predictions. With even more information, such
as pathing behavior and objectives (targets, destinations, preservation), prediction
becomes a complicated task. With more detailed prediction comes more test cases to
determine how to handle false predictions, the possibility of which always exists.

When to transmit an object’s state becomes a critical feature when game worlds
and/or player count grow large. To reduce the number of objects to transmit, parti-
tion the world, possibly into a simple grid, and only update objects in cells adjacent to
the player. The size of these cells, and which cells to transmit, depend on how much
time it takes for a player to see a nonupdated area. Some game features, such as
overview maps, add additional complications. An overview may require basic infor-
mation about a lot more objects, but not the detailed data required to interact with
those objects.

How often to send an object’s state depends on how the player interacts with it.
When joining a game, the player needs a snapshot of everything close. After that, if an
object doesn’t change state, there’s no need to send it, unless the player wasn’t guaran-
teed to have received the last object update (as is the case with UDP). Objects could
have a timeout such that they always transmit even without change. When an object

5.6 Network and Multiplayer 625



is in continuous motion, sending its changes with every game loop update can be
bandwidth intensive. Choosing to send an object 10 times a second vs. once a second
depends on how your prediction algorithms work and bandwidth limitations. The
worst-case scenario of hundreds of moving players right next to each other must rely
heavily on prediction and transmit only critical data as infrequently as possible. 
What happens to your bandwidth when 500 players simultaneously kick your player
in the shin?

State reflection works best for games that expect variable or high latencies, large
numbers of players (hundreds to thousands), and allow players to join a game in
progress. Most real-time games use this model.

Synchronization

One of the most artistic tasks of a network game programmer revolves around keep-
ing all clients in sync with minimal visual or game event-related anomalies.

Dead Reckoning
Dead reckoning is a basic prediction method that uses the last known position, orien-
tation, momentum, and acceleration to determine the most plausible current posi-
tion. The object undergoes simulation over time assuming no changes to acceleration
factors. The results work well for all but drastic changes in acceleration, which should
be capped in the game’s design.

AI Assist
Standard AI design involves setting waypoints for nonplayer characters (NPCs).
Positional updates provide such waypoints but lack the smooth transition between
waypoints. Leveraging the AI to control the transition works well as long as the way-
points don’t change too often. To achieve this, give waypoints a commitment time
and refrain from removing the waypoint for a tunable amount of time. This causes
the game to run slightly out of sync, but avoids the distracting “bee wiggle” that
results from wavering waypoints.

Arbitration
As in real life, some things just don’t work out as planned and require unbiased third-
party arbitration to rectify a situation with no clear outcome. Fuzzy logic helps build
a weighted decision as to the correct outcome based on affected clients and the server’s
view of a situation. A simplified, dictator-style approach ignores the client views and
forces clients to take the game server’s view. Most games instantiate the dictatorship
role in the server, but design the game with incremental states. The client may lessen
the impact of dictation by delaying critical events, such as a dying sequence that starts
with a badly wounded sequence while it waits for the final word from the server/
arbitrator. 

626 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Real-Time Communication

Real-time networked games require a great deal of coding effort to efficiently handle
waiting for data to arrive. Properly crafting multithreaded constructs to avoid spinning,
dead lock, lock contention, and excessive context switches help to reduce the wait.
These constructs grow in complexity with the number of interactions. 

Reducing wait time often requires a judgment call on the following data-related
issues:

Priority: Certain types of data impact the feel and fairness of gameplay, while other
types of data merely support the game through added flair. Data that impacts
gameplay needs to arbitrate outcome with other players.

Security: Encrypting all data traffic costs both CPU time and extra bandwidth,
which in turn cause additional delivery delay. One encryption algorithm doesn’t
necessarily fit all. Consider the following optimizations:
• Lower bit strength encryption on less-sensitive data.
• Use secret key instead of public key for high-frequency transmissions.
• Use message digest instead of secret key if the intent is to tamperproof 

without hiding contents from prying eyes.
• Encrypt every other packet (or even less often) on high-frequency 

transmissions, and then use the encrypted packets to sanity check data 
in nonencrypted packets.

Compression: Converting, packing, or otherwise compressing data comes at a CPU
cycle cost. While bandwidth reduction often takes priority over CPU cost, a very
small bandwidth saving may incur a large CPU cost.

Reliability: Does the data need to arrive? If so, use a guaranteed protocol. If not, 
use a nonguaranteed protocol. Games often require data on time or not at all. 
Using UDP avoids resends, freeing bandwidth, socket buffers, and CPU cycles
for required and on-time data.

Synchronicity: Will the game adopt a “stop-and-wait” policy on latent data? If so, 
the simulation may need to freeze, but the graphic subsystem should continue to
update. Stopping graphical updates appears as if the system hung. The user needs
fluent access to chat and menu systems to communicate with connected parties
or take action on the latency issue by booting a player or simply exiting the game.

Connection Models

The connection models described in this section should not be confused with connec-
tion- and connectionless-oriented protocols such as TCP and UDP, respectively. Even
though UDP is considered connectionless, a packet follows a path considered a
pseudoconnection for this discussion.

5.6 Network and Multiplayer 627



Broadcast
Broadcasting simplifies player discovery, but should never be used for normal packet
delivery. To receive a broadcast packet requires actively listening for all broadcasts.
Broadcast packets must contain some special identifying mark to distinguish them
from broadcasts sent by other applications (which you have no choice but to weed
through). A Globally Unique IDentifier (GUID), built from a hash of unique numbers
—IP address, MAC address, and current date/time—handles such circumstances.
Creation usually occurs outside the application, followed by embedding it as a constant
within the source code. Microsoft provides “guidgen.exe” to create these numbers,
and similar tools exist on other platforms. 

A GUID established for game broadcasts solves the problem of game discovery.
To use broadcasting for all game packets during gameplay requires a second GUID
for the game instance. While broadcasting provides a useful mechanism for game 
discovery on LANs, avoid its use for high-frequency game packets. If 10 four-player
games were played on the same LAN, each person would have to weed through 39
packets for each game event, while only three are of concern to any given player.

Peer to Peer
Peer-to-peer connectivity means every player connects directly to every other player, as
shown in Figure 5.6.3. This model experiences the least amount of latency because
packets avoid the additional scenic trip to a server. This latency benefit comes at the
cost of increased bandwidth requirements and connection maintenance complexity as
the number of players increases beyond two. Since two-player games are not affected
by the adversities of peering, they normally use this model unless the game architect
requires a server.

Client/Server
The client/server model suits most games over two players, better than peering, due to
the easier connection maintenance and lower bandwidth. 

628 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

P1 P2 

P1 

P2 P3 

P1 P4 

P2 P3 

P1 

P2 P5 

P3 P4 

2 players 
1 connection 

3 players 
3 connections 

4 players 
6 connections 

5 players 
10 connections 

FIGURE 5.6.3 Connections within the peer-to-peer model.



Having a server in the connection model, as shown in Figure 5.6.4, offers many
benefits over peering arrangements. Packet coalesce works best on servers. “Lossy TCP,”
a construct that requires a server, works as follows. UDP packets are commonly refused
by secure firewall configurations. If your game relies on high packet throughput in the
absence of UDP, you must resort to TCP. TCP tends to back up, trying to redeliver
packets that become outdated if not delivered immediately. A server can implement a
“Lossy TCP” for clients that cannot accept UDP traffic by maintaining a buffer of size
two; one slot for the item currently being sent, and the other slot for the latest packet.
An incoming packet simply replaces the second slot item if one exists.

Connection Complexity
Maintaining a connection requires monitoring the line for input, outputting data
(duplicating effort for each additional player), keeping silent connections from clos-
ing with “keep alive” packets, and handling dropped connections either by ending the
game or attempting to reconnect. Table 5.6.2 illustrates the number of connections
required using different connection models.

TABLE 5.6.2 Number of Connections Required Using Different Connection Models 
(N = number of players)

Broadcast Peer to Peer Client/Server

Connections 0 Client � 1
Server � N

Bandwidth
Bandwidth costs increase linearly with the number of players. With bandwidth at nearly
the same premium as latency, peering tends to fail beyond the simplest two-player game.
In a fully connected game, going from two to three players more than doubles the

x
x

N

=

−

∑
1

1

5.6 Network and Multiplayer 629

P1 

P2 P5 

P3 P4 

Server 

5 players 
5 connections 

FIGURE 5.6.4 Connections within a client/server model.



bandwidth requirements. That is more than just application data, since each packet
comes with the transport’s header. Table 5.6.3 illustrates the number of times a single
packet must be transmitted for each player using the different connection models.

TABLE 5.6.3 Number of Times a Single Packet Must Be Transmitted for Each Player 
(N = number of players)

Broadcast Peer to Peer Client/Server

Send 1 N – 1 Client � 1
Server � N

Receive N – 1 N – 1 Client � 1
Server � N

Asynchronous Environments

An asynchronous environment exists where two or more branches of code run simul-
taneously. This section assumes a basic understanding of threads, signals, and critical
sections. The following information provides tips for network game programming in
a multithreaded environment.

Set network thread priority above or equal to the main render thread, but always
below the audio thread. Make sure that all network threads exit before exiting the
main thread, or shared data will likely cause a NULL pointer exception.

Use signals and events to wake up or otherwise communicate the availability of
new information across threads. The alternative, polling for state change, also goes by
the name “spinning” because of the time wasted accomplishing nothing. Both events
and signals are limited system resources, so plan accordingly. Remember that events
notify all subscribers, where signals usually notify one of N subscribers. Expect to run
into signals with thread pools that contain multiple subscribers, but only one avail-
able thread should receive a wake signal to process the work item.

System timers signal a high-priority thread, so refrain from lengthy activities in
the timer thread or risk skewing time. Choose a reasonable timer resolution; no need
to go above 128Hz for most cases. Make sure to use the proper high-resolution timer,
as more than one timer may exist on the OS. Use the multimedia timer for Windows.

Use critical sections sparingly. Try to design with the least amount of critical sec-
tions, and always keep the amount of time in a critical section to a minimum. Always
match a critical section entry with an exit. Avoid entering in one method and exiting
in another, as this complicates the design. All shared data writes require critical sec-
tions if more than one thread writes to the data. Avoid calling another critical section
within a critical section at all costs; otherwise, deadlocks may occur. For incremental
data modifications, use interlockedincrement() and interlockeddecrement() in
Windows or their OS equivalent rather than using a critical section. Precede all shared
data definitions with the volatile keyword; using data in a critical section does not
relieve the possibility of shared data getting stored in registers between context switches. 

630 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Security

As soon as someone starts boasting about his perfectly secure system, he gets hacked.
One-hundred-percent security does not exist. Keys and passwords can always be 
compromised at some level. Security takes development time and affects game perfor-
mance. Instead, make a great game and provide an environment secure enough against
all but the most diligent delinquent. The best way to go about securing a system
involves using multiple security mechanisms. Start with standard security measures
and then add some creative convolution to make breaking security a hands-on affair
rather than leaving the system open to automated cracking. The remainder of this 
section describes security mechanisms, what they do, and where to use them. 

Encryption

The three goals of encryption are:

Authentication: Verification of an entity’s claimed identity
Privacy: Prevent unauthorized viewing of data
Integrity: Assurance that data was not tampered with after leaving its source, 

although it does not prevent tampering

Atomic security elements commonly address one or two of these goals, but not all
three. Higher level security layers combine the atomics to meet additional goals.

Public Key (Asymmetric—Key Pairs) 
The public key encryption algorithm creates two keys: one public and one private. The
public key is made public so others may encrypt data with it. The encrypted data
requires the private key to decrypt. This algorithm is stronger than secret key encryp-
tion, but requires much more computational time. Both symmetric and asymmetric
key encryptions provide privacy only.

Secret Key (Symmetric—Same Key)
The secret key encryption algorithm creates one shared key used to both encrypt and
decrypt data. Use this algorithm to encrypt real-time data, as it requires less computa-
tion time. To share a secret key, encrypt it with the remote end’s public key and send
it to the remote end.

Ciphers
Block and stream ciphers describe how the key mechanism interacts with the plain text
to produce the cipher text. Block ciphers work with a fixed-size data block. If the
plain text does not fill the data block, the block cipher adds padding. Plain text larger
than the block is split across multiple blocks. Stream ciphers work with any size data.
The simplest cipher, called Electronic CookBook (ECB), combines the key and the plain
text to produce the cipher text. Other variations use the output from the previous
cipher operation in addition to the key and plain text, providing stronger encryption
[Sch96].

5.6 Network and Multiplayer 631



Message Digest
The relatively fast message digest algorithm produces a checksum to verify message
integrity, but does not encrypt the data or provide authentication. 

Certificates
Certificates, also known as digital IDs, provide authentication through a trusted third
party [VeriSign]. The third party stores public keys associated with a verified entity
and delivers them on request, encapsulated in certificates that confirm the key owner’s
identity.

Copy Protection

Stopping game software pirating may not work entirely, but several reasons make it a
worthwhile endeavor to at least delay the inevitable. A chart-topping game makes a
large percentage of its lifetime sales in the first month of its release. Consider purchas-
ing a copy protection system as an insurance policy on these initial sales. Even though
professional criminals will break the protection, many more would not think twice
about burning a copy for their friends.

An old form of copy protection involved the use of a code sheet distributed with
the game. The code sheet contained numerous entries that did not photocopy. The
game would randomly ask for codes from the code sheet to be entered in order to con-
tinue play. A similar approach was to request words from specified sections of the
manual. The deterrence here was to ship a very large manual. Both code sheets and
digital copies of the large manuals started popping up all over the Internet.

CD-ROM copy protection combines tricks using valid data in sectors marked as
invalid on a CD-ROM and encryption [Safedisc].

Watermarking
While not preventing illegal copying, digital watermarks make nonvisible alterations
to art assets that can prove theft if such art appears in other works; for example,
another game using artwork without permission from the creator.

Execution Cryptography

The following sections detail measures to take against attacks on the game execution
modules.

Code Obfuscation
Stripping the code of its symbol names complicates reverse engineering. While not
possible with interpreted languages, a code obfuscator changes all variable and method
names to nondescriptive names. For example, a variable named “WorldPosition”
would change to “v0001,” leaving a hacker to figure out the intended purpose. Code
obfuscators do not affect the actual byte code.

632 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Heap Hopper
Tools are available that take snapshots of the heap before and after an event takes
place, such as moving a player entity forward. After taking several snapshots between
moves, certain variable locations consistently show change. A hacker can narrow in on
the movement variable and change it manually, or make a program to automate
changes. Heap hopping moves sensitive data around in the heap to make it more diffi-
cult to associate an action with a specific variable change. This may be done in numer-
ous ways, but one strategy creates several heap buffers of the same size, copies data
from one location to the next, and modifies the variables in the new location, thus
preventing a hacker from narrowing in on the sensitive data.

Stack Overrun Execution
Stack overrun execution hacks take advantage of deficient packet data validation by the
game. If a user sends malformed data that causes a function in the game to overrun its
stack, the hack can modify the return instruction pointer to point to another location,
be it in the code or a data buffer the user sent in a packet. Such a hack usually requires
a great deal of code analysis to craft, but there are determined hackers willing to spend
the effort to make such an attack.

No Op Hacks
One of the easiest hacks involves changing the executable file by replacing method
calls with “No Operation” byte codes. A hacker could use this to bypass certain vali-
dation checks, allowing further tampering of the code.

Timer Hacks
Many games use the computer’s timers to regulate the game physics or otherwise con-
trol movement. Changing the system clock is very simple. To counter such hacks, ver-
ify that the timer never goes back in time or never takes unreasonable forward leaps.

DLL Shims
Game DLLs have method entry points. A shim DLL mimics these entry points and
provides replacement code for each entry point so it silently replaces the original
DLL. This allows monitoring of data passed to the methods of the DLL and often the
changing of code execution. Several viable counters to this attack include using
numeric entry points (ordinals) instead of method names, or providing only one
entry point that returns class object pointers. Using a DLL with named method entry
points makes the shim builder’s job much easier, while a single entry point makes the
hacker work harder.

User Privacy

Breaching a player’s right to privacy creates headaches ranging from bad public rela-
tions to legal trouble. An online subscription game typically collects very personal
data for billing purposes. 

5.6 Network and Multiplayer 633



Never divulge the following critical pieces of information:

Real name
User password
Address
Phone number(s)
E-mail address
Billing information
Age (especially of minors)

Use strong cryptographic measures for both transmission and storage of such
information. In addition, limit access to this secured data within the development team. 

While not a listed element in the critically private information, a user’s IP address
justifies a fair degree of privacy. Peered connection architectures make sharing IP
addresses unavoidable, but not their display. Displaying a user’s IP allows even the
nontechnical person to simply enter someone’s IP into a program that could perform
various network attacks.

Username and Password Interception

Using public key encryption for transmission of username and passwords, and not
showing the user’s password as it is typed are sufficient standard practices to secure
this information. Problems with username/password theft normally stem from imper-
sonation over chat or e-mail channels and fake utilities. Prevention by educating the
user is the best step to take on both accounts. Fake game-specific utilities often require
the user to enter in his username and password, which it sends to the hacker through
some untraceable means such as a hotmail e-mail account. To reduce the impact of
such a breach, all changes to the account and access to billing should require confir-
mation through the user’s e-mail.

Firewalls

A firewall either inspects packets to determine if they should pass through the firewall
or provides an encrypted session.

Packet Filter
Stateful protocol inspection, or packet filtering, looks at protocol headers to determine
whether a packet should be allowed to pass. A port filtering device inspects the port
entry of a TCP or UDP packet and either accepts or rejects the packet based on user
settings for a given port. Users should keep ports blocked in case they inadvertently
acquire a malicious program that attempts to communicate with data from their 
computer. This applies twofold to computers running a game server, which should
block every port not explicitly in use. Games that require certain ports be made avail-
able should allow configuration of exactly which port(s) the game uses.

634 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Similar filters inspect IP address entries in IP packets and accept/reject packets
based on the source. Such filters provide a way to ban specific IPs from access to the
network. Entry of IP addresses into the banned table provides the most benefit when
done by an automated process that detects numerous denied connection requests to
elements on the network behind the firewall.

Proxies
Application proxies inspect the data within the packet. Such a proxy server could
check MIME or FTP traffic for viruses.

Circuit Gateways
Circuit gateways set up secure sessions and ignore packet contents.

Network Address Translation (NAT)
The NAT protocol allows routers to share a single WAN IP address between all net-
work adapters connected to the router. It accomplishes this by sharing the 64K port
space of the WAN IP between them. To share the port space, the router maintains a
NAT table that maps LAN addresses, IP:Port, to WAN ports. This process hides LAN
IPs from the Internet side of the router, which only sees the WAN IP. This indirection
makes it more difficult to direct attacks on a specific address.

The NAT algorithm determines whether requested ports actually map directly to
the WAN port. In the case of two requests for the same port, from separate adapters,
one request will either be offered a different external port or return with an “in use”
failure. Figure 5.6.5 illustrates this process. 

5.6 Network and Multiplayer 635

LAN Address WAN Address 

192.168.1.1:200 24.15.1.118:200 

192.168.1.1:201 24.15.1.118:201 

192.168.1.2:199 24.15.1.118:199 

192.168.1.2:200 24.15.1.118:4000* 

ISP 

WAN IP 
24.15.1.118 

LAN IP 
192.168.1.1 

LAN IP 
192.168.1.2 

NAT Requested Ports 
200 
201 

Requested Ports
199 
200 

Router 

FIGURE 5.6.5 NAT at work.



Port Forwarding
Hosting socket connections requires a preagreement between client and server as to
the IP and port on which the server listens for client connections. When a computer
behind a NAT listens on a port, there is no guarantee the WAN port is the same such
port. To compensate for this problem, most routers allow the forwarding of specific
ports or ranges of ports to a specific LAN IP. This, in essence, places a static entry into
the NAT table.

Port Triggering
Port triggering enables transient port forwarding. Some routers enable port triggering
with a table of process names and ports to forward, when requested, to the requesting
computer. After the socket closes and the port is subsequently released, the port
returns to the pool of ports available for translation by the NAT. This reduces the 
vulnerability caused by the static nature of port forwarding. It also allows the game,
requiring the specific port(s), to work on different computers without the need to
manually update port forwarding.

DMZ
Adding a LAN IP to the demilitarized zone (DMZ) setting on a router forwards all
ports to that particular computer. This bypasses the NAT and its security feature of
hiding the computer’s IP. A computer in the DMZ shares the WAN IP with the router.

Determining WAN IP
When a computer behind a router uses conventional means to determine its own 
IP address, it receives the LAN IP issued through the DHCP service. No clear-cut
method exists to reliably retrieve the WAN IP programmatically. The most reliable,
cross-platform-friendly and router-brand-agnostic method is by third party:

Third party: Send a packet to a third party requesting a response containing the IP
address they see in the sender portion of the IP packet. Such a third-party tool
may be written as a server dedicated to this purpose or a simple server-side script
built for access through HTTP.

UPnP: Universal Plug-and-Play contains methods to gain the WAN IP for newer
routers that support it.

Parse router admin page: Routers have different ways to access this information
through administration tools. The Web page admin interface is popular, and a
developer could write code to parse the IP from the admin page. The problem is
that each router admin page hierarchy and page format differ, thus requiring
time-consuming vender-specific special-case code support.

636 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Summary

This survey of multiplayer development began by looking at different multiplayer cat-
egories, from split-screen to real-time network connections. The core material focused
on dissecting the OSI layers in an average network game. The OSI layers contained
mediums, IP, TCP and UDP, sockets, packet presentation, and game logic related to
controlling latency. Next, the real-time communication models of broadcasting, peer-
to-peer, and client/server were analyzed for strengths and weaknesses, followed by tips
for working in multithreaded environments. The chapter concluded with a glimpse
into the necessary evils of game security. 

No single book covers all the technical details of multiplayer development.
Complete coverage would entail a discussion of all the dirty details on numerous 
platforms on the following subjects: serial communication, server design, network gear
and infrastructure, socket programming, voice-over IP (VOIP), tools of the trade,
unit and beta testing, available middleware analysis, database development, Web
development, asynchronous programming, and much greater depth in latency hiding/
recovery for every game genre.

Exercises

Protocol Search

Use the RFC Web site (www.rfc-editor.org/) and the IANA Web site 
(www.iana.org/assignments/port-numbers) to answer the following questions:

1. What protocols do the following RFCs cover: RFC 791, RFC 792, RFC
793, RFC 768, RFC 2616, RFC 10, and RFC 9?

2. What protocols are associated with the following ports: 80, 3074, 20/21,
1433, and 3306?

Throughput Calculations

Assume the following conditions for problems 3 through 5:

256 kbps DSL connection on all endpoints
Eight clients sending to a dedicated server
Each client sends at 32Hz
Application packet data is 64 bytes per packet

3. Determine client sending saturation given a TCP protocol, packet, and
send rate.

4. Determine bandwidth saturation using UDP.
5. How many clients could a server support with a bandwidth of 1 Mbps?

5.6 Network and Multiplayer 637

www.rfc-editor.org/
www.iana.org/assignments/port-numbers


Packet Construction

6. Rewrite the following Packet so it does not need to be serialized and is as
small as possible. Assume the following conditions:

•  System supports a maximum application packet length of 300 bytes.
•  Packets will be exchanged between varieties of platforms, including

64/32 bit systems and Windows/UNIX.

typedef enum PktCode

{

Pkt0=0,

...                      // Other IDs

PktMax=65000

};

struct Packet

{

PktCode   ID;

BOOL      Lights;

int       HourOfDay;     // 0-23

short     DayOfWeek;

int       Health;        // 0-100%

int       PacketLength;

char      UserName[64];

};

WinSock

Complete Exercise 7 using the ServerMon application server (on the companion 
CD-ROM) running on a remote system, preferably running Windows Server 2003 
or greater with 2GB of RAM. Client computers should also run with at least 2GB of
RAM for the “Critical Mass” tasks. Lower RAM will limit the system resources required
for 30,000 connections due to the kernel page locked memory limitation of Windows.

7. Blackbox: 
a. (optional) If the instructor supplies a Web page containing the IP:Port

of the server, acquire that information from the Web page using either
the WinINet SDK or MFC HTTP reader class. A more advanced alter-
native entails reading the HTTP protocol RFC to format a page request
and implement a simple HTTP protocol to acquire the Web page.

b. Connect to that IP:Port given for the Blackbox server, and wait for a
Pkt_Message (defined in the header file “PacketDefs.h” on the companion
CD-ROM) packet containing further instructions. This program will test
your ability to host and connect using TCP and UDP, and send and
receive data using both protocols.

8. Critical mass:
a. Make and maintain 30,000 TCP connections.
b. Listen for, accept, and maintain 30,000 TCP connections (not supported

in the provided ServerMon.exe).

638 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking



Encryption

Use Microsoft’s Crypto API to perform the following:
9. Implement public key encryption with a certificate:

a. Generate a certificate using makecert.exe.
b. Extract the public key from the certificate to encrypt some plain-text

message.
c. Get the private key associated with the certificate, which was placed in

a key container you named during the creation of the certificate. Use
this private key to decrypt the cipher text generated in Step b.

10. Implement symmetric key encryption:
a. Generate a symmetric/secret key.
b. Encrypt a plain-text message.
c. Save the secret key to a file.
d. Load the secret key from the file and use it to decrypt the cipher text

generated in Step b.

References

Protocols

[Hind95] Hinden, Robert, “IP Next Generation Overview,” available online at
http://playground.sun.com/pub/ipng/html/INET-IPng-Paper.html.

[IANA] Internet Assigned Number Authority, “Well Known Ports,” available online
at www.iana.org. 

[NSIP04] Network Sorcery, “IP, Internet Protocol,” available online at 
www.networksorcery.com/enp/protocol/ip.htm.

[NSIP604] Network Sorcery, “IPv6, Internet Protocol version 6,” available online 
at www.networksorcery.com/enp/protocol/ipv6.htm#Version. 

[NSTCP04] Network Sorcery, “TCP, Transmission Control Protocol,” available
online at www.networksorcery.com/enp/protocol/tcp.htm.

[NSUDP04] Network Sorcery, “UDP, User Datagram Protocol,” available online at
www.networksorcery.com/enp/protocol/udp.htm.

[RFC] Internet Society, “The Request for Comments,” available online at 
www. rfc-editor.org/.

[Stevens94] Stevens, Richard, TCP/IP Illustrated, Volume 1, The Protocols,
Addison-Wesley, 1994.

Communication APIs

[Camp93] Campbell, Joe, C Programmer’s Guide to Serial Communications, Second
Edition, Sams Publishing, 1993.

[Darcy] Darcy, Jeff, “High-Performance Server Architecture,” available online at
http://pl.atyp.us/content/tech/servers.html.

5.6 Network and Multiplayer 639

http://playground.sun.com/pub/ipng/html/INET-IPng-Paper.html
www.iana.org
www.networksorcery.com/enp/protocol/ip.htm
www.networksorcery.com/enp/protocol/ipv6.htm#Version
www.networksorcery.com/enp/protocol/tcp.htm
www.networksorcery.com/enp/protocol/udp.htm
www.rfc-editor.org/
http://pl.atyp.us/content/tech/servers.html


[Jones02] Jones, Anthony, Network Programming for Microsoft Windows, Second
Edition, Microsoft Press, 2002.

[Kegel00] Kegel, Dan, “Micro benchmark comparing poll, kqueue, and /dev/poll,”
available online at www.kegel.com/dkftpbench/Poller_bench.html.

[Lemon] Lemon, Jonathan, “Kqueue: A generic and scaleable event notification facility,”
available online at http://people.freebsd.org/~jlemon/papers/kqueue.pdf.

[Provos00] Provos, Niels, “Scalable network I/O in Linux,” available online at 
www.citi.umich.edu/techreports/reports/citi-tr-00-4.pdf.

[Stevens04] Stevens, Richard, UNIX Network Programming, Volume 1, Third Edition:
The Sockets Networking API, Addison-Wesley, 2004.

Middleware

[DirectPlay] Available online at http://msdn.microsoft.com–keyword DirectPlay.
[Quazal] Available online at www.quazal.com.

Latency Compensation

[Aronson97] Aronson, Jesse, “Dead Reckoning: Latency Hiding for Networked Games,”
available online at www.gamasutra.com/features/19970919/aronson_01.htm.

[Caldwell00] Caldwell, Nick, “Defeating Lag with Cubic Splines,” available online
at www.gamedev.net/reference/articles/article914.asp.

[Haag01] Haag, Chris, “Targeting: A Variation of Dead Reckoning (v1.0),” available
online at www.gamedev.net/reference/articles/article1370.asp.

Security

[Coleridge96] Coleridge, Robert, The Cryptography API, or How to Keep a Secret,
available online at http://msdn.microsoft.com/library/en-us/dncapi/html/
msdn_cryptapi.asp, August 19, 1996.

[Gibson02] Gibson, Steve, “Distributed Reflection Denial of Service,” available
online at http://grc.com/dos/drdos.htm.

[RSALabs00] RSA Laboratories, RSA Laboratories’ Frequently Asked Questions About
Today’s Cryptography, Version 4.1, May 2000.

[Safedisc04] MacroVision, “Safedisc Copy Protection,” available online at 
www.macrovision.com/products/safedisc/index.shtml.

[Sch96] Schneier, Bruce, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, 2nd Edition, John Wiley & Sons, 1996.

[TwoFish96] Schneier, Bruce, The Twofish Encryption Algorithm, John Wiley & Sons,
1996.

[Veri04] VeriSign, “Digital ID, A Brief Overview,” available online at
http://www.verisign.com/.

[VeriSign] VeriSign, “Protect Your Digital ID; Protect Your Private Key,” available
online at www.verisign.com/repository/PrivateKey_FAQ/.

640 Part 5 Game Programming: Graphics, Animation, AI, Audio, and Networking

www.kegel.com/dkftpbench/Poller_bench.html
http://people.freebsd.org/~jlemon/papers/kqueue.pdf
www.citi.umich.edu/techreports/reports/citi-tr-00-4.pdf
http://msdn.microsoft.com
www.quazal.com
www.gamasutra.com/features/19970919/aronson_01.htm
www.gamedev.net/reference/articles/article914.asp
www.gamedev.net/reference/articles/article1370.asp
http://msdn.microsoft.com/library/en-us/dncapi/html/msdn_cryptapi.asp
http://msdn.microsoft.com/library/en-us/dncapi/html/msdn_cryptapi.asp
http://grc.com/dos/drdos.htm
www.macrovision.com/products/safedisc/index.shtml
http://www.verisign.com/
www.verisign.com/repository/PrivateKey_FAQ/


641

P A R T

6
AUDIO VISUAL DESIGN

AND PRODUCTION



This page intentionally left blank 



643

Overview

Visual design can be described as the management and presentation of visual informa-
tion. It encompasses many forms of communication in both the two-dimensional and
three-dimensional realms. Many fields of endeavor such as cinema, theater, and archi-
tecture owe their success or failure to strong visual design. This is also true in the more
traditional design fields such as graphic design, illustration, typography, and symbol
creation. These disciplines use visual design to communicate with the viewer through
the practical application of basic principles. Although new as a form of entertainment,
computer and console games still rely on these same basic principles to communicate
information.

The “Look and Feel”

During the early concept stages of a project, there is usually no real technology or code
base. The game is simply an idea on paper. The programming code has yet to be 
written, so a more traditional method of utilizing imagery to convey the idea is used.
During this preproduction process, the designer and art director begin to explore the
look and feel of the game. Preliminary sketches and concept drawings help to visualize

Visual Design6.1

In This Chapter

Overview
The “Look and Feel”
Graphic Design Principles 
Color Theory
User Interface Design
Summary
Exercises
References



what the game may look like. Early design concepts can be tested and rejected with a
minimum of effort and very little wasted manpower. These early drawings or paint-
ings help define the vision of a game and begin to set expectations for all those
involved. They are used to define qualities such as tone, mood, and style. Often, these
concepts are collected into what is sometimes referred to as an Art Bible, a document
where all of the best ideas and imagery are kept. It helps the project leads of the team
to maintain a common reference point from which they can begin to create a game. 

For the artistic vision to maintain a strong presence throughout the development
cycle, the game artist must understand and use some basic design principles.

Graphic Design Principles 

Graphic design is a communication process through which ideas and concepts are
presented in a visual medium. Using graphic elements, composition, layout, color and
typography, information can be presented in a very powerful and compelling way.
Good graphic design is often invisible to the user. The information is understood with
a minimum of effort and can be acted upon easily. Bad design, on the other hand, can
interfere with the presentation of information to the point where the intended audi-
ence comes away with little or no useful data. In game development, this translates to
user frustration, negative game experiences, and bad reviews. 

Graphic design can be broken down into several basic principles. By understand-
ing each and with proper use, a cohesive design that is both pleasing and informative
will result. These principles are balance, rhythm, emphasis, and unity.

Balance is the visual equilibrium in a composition. Opposing forces cancel one
another out and give the image stability. Symmetrical balance is where objects of equal
weight are placed on either side of a central point or fulcrum. Asymmetrical balance is
where objects of nonequal weight are balanced around a point or fulcrum. Examples
of each are shown in Figure 6.1.1.

644 Part 6 Audio Visual Design and Production

FIGURE 6.1.1 Symmetrical and asymmetrical balance.



Rhythm is the pattern created by repeating various elements within a design. This
rhythm produces order and predictability. It also gives movement to a composition,
allowing the artist to control the visual energy. Figure 6.1.2 shows an example of rhythm.

Emphasis is created when the pattern of movement is interrupted. The rhythm is
broken and forms a focal point, usually drawing the eye to it first. Emphasis can also
be created through repetition and contrasts in elements such as color, size, shape, or
texture. The right image in Figure 6.1.2 demonstrates emphasis.

Unity is the harmony of all parts. It forms a cohesive whole within a design.
Elements that are in unity look like they all belong together. 

Elements of Graphic Design

Elements are the parts of a design that can be isolated and defined. The principles are
applied to these elements to form a cohesive design. These elements are line, shape,
space, texture, size, and color, as shown in Figure 6.1.3.

6.1 Visual Design 645

FIGURE 6.1.2 A rhythmic pattern is predictable. To create emphasis and focus
the eye on a specific location, the pattern can be interrupted.

FIGURE 6.1.3 The basic elements of graphic design.



A Line is any mark that connects two points. It can be curved or straight, have
weight, and emphasize direction. Lines can be combined to form textures and patterns. 

Shape refers to anything that has height and width. This can include characters,
symbols, and forms. Three basic primitive shapes form the building blocks for all
other shapes: the rectangle, the circle, and the triangle. Shapes, and the forms they
create, can be either two dimensional or three dimensional. A two-dimensional form
has width and height. By adding depth, the third dimension is achieved. 

Space is the area around or between elements and can be thought of as positive or
negative. In most two-dimensional designs, the background is considered negative
space, while objects form the foreground and compose the positive space.

Texture is the look and feel of a surface. We relate all textures to our previous
experiences of touch. A texture can also be imaginary and not necessarily tied to a
known touch experience. All surfaces can be described in terms of a texture. Examples
of a texture might be rough, soft, smooth, or cold. 

Size is how large or small something is. It is the comparative relationship between
things. Size can be used to create a sense of importance or make objects appear closer
to the viewer. Size relationships can be used to create a sense of depth or perspective.
A good example of size relationships can be found in a mathematical ratio called the
“Golden Mean” or “Golden Rule.” It is often found in nature and considered to be
aesthetically pleasing. 

Color is a generic term that covers a broad array of areas. To use color effectively,
it is important that some of the basic science behind it is also understood. The first
area we will explore is color theory.

Color Theory

We see color in a small portion of the electromagnetic spectrum known as visible light.
Other types of radiation found above and below visible light in the electromagnetic
spectrum are radio waves, microwaves, infrared, ultraviolet, x-rays, and gamma rays.
When we see a color, it is the reflection of light off a surface. All of the other colors are
absorbed by the surface, allowing only the color we see to be transmitted. 

The reflected colors we see all fall within the visible spectrum. A beam of sunlight
can be broken into this spectrum by passing through a prism. The result shows the
visible spectrum broken down into individual colors. They always follow a specific
order—red, orange, yellow, green, blue, indigo, and violet. Just prior to red on the
electromagnetic spectrum is infrared light. Just after the violet, it transitions into
ultraviolet light.

To help define how colors appear, they are broken into several qualities such as
hue, saturation, and value. 

Hue: Refers to the name of a color within the visible spectrum. 
Saturation: Refers to the amount of a color. The less saturated a color is, the more

gray value is visible. 

646 Part 6 Audio Visual Design and Production



Value: The amount of white or black that is present in a color. This is often referred
to as the lightness or darkness of a color. 

When we look at the world in sunlight, we see only the colors that are reflected
into our eyes. This is known as subtractive color. Print graphics, paintings, and drawings
all use subtractive color. See Color Plate 1 for an example.

Primary colors: Within the subtractive color wheel, there are three primary colors:
red, yellow, and blue.

Secondary colors: These colors are formed by mixing the primary colors. They are
green, orange, and violet. 

Tertiary colors: These colors are formed by mixing one primary and one secondary
color. They are yellow-orange, red-orange, red-purple, blue-purple, blue-green,
and yellow-green. 

By mixing one or more sources of light, colors can be achieved using additive
color. Because the colors are emissive rather than reflective, they behave and blend 
differently. A common example of something that uses additive color is a television or
computer monitor. Within the games industry, most artwork is created with software
that uses the additive color chart. See Color Plate 2 for an example.

Primary colors: The three primary colors of the additive chart are red, green, and blue. 
Secondary colors: Equal portions of any two primary colors will yield a secondary

color of magenta, cyan, or yellow.
White: Equal portions of all primaries (red, green, and blue) will yield white.
Color harmony: This categorizes colors and determines harmonious groups such as

complimentary, split complimentary, triads, and analogous colors. The order,
amount, and combination of these colors are where the “art” comes in.

User Interface Design

The amount of effort devoted to the design and implementation of the interface in a
game can be staggering. How people interact with computers, extract information,
and use this knowledge is now a critical element in the development of software. The
user interface (UI) design is an important link between the programming code and
the end user. For a successful interface between man and machine to occur, a UI must
be predictable, consistent, and informative. 

Underlying any good UI design are the fundamentals of graphic design. As
defined earlier, graphic design is nothing more than presenting information in a strong,
consistent, visually appealing format. The text and visual elements are organized in such
a way as to provide the viewer with an easy way to retrieve, sort, and store the infor-
mation. Composition, layout, and typography are all balanced to provide the strongest
visual presentation possible. However, graphic design, in the traditional sense, is a
one-dimensional medium for conveying information. It is targeted to a noninteractive,
one-way presentation. 

6.1 Visual Design 647



UI design adds many new elements to the basic equation. Sound graphic principles
are needed, and consideration has to be given on a whole new set of design elements.
User interaction, navigation, the impacts of sound, animation, and time all affect the
end experience. The designer must consider how he will be controlling the user expe-
rience. What type of feedback mechanisms will be in place, and how will all of these
elements tie together to form a positive user experience?

Often, the best UI is the one that is most transparent to the user. Depending on
the needs of the game, a minimalist approach to the user interface design might prove
to be the most appealing. It’s always best to start with the simplest solution first and
add more complexity as needed. With all of this to consider, it’s easy to see why creat-
ing a solid, well-thought-out design can have a major impact on the time of a game
development artist. 

Design Considerations

First, consider some basic graphic design principles and how they can be expanded for
use within an interface design.

Simplicity: Artists, as a rule, have a tendency to overdesign or overwork game graph-
ics. In interface design, the simplest solutions are generally the easiest to use and
most effective. Sometimes, more information and greater impact can be gained
from a minimalist approach.

Consistency: Humans are creatures of habit. We learn through repetitive actions and
are quicker to respond to events if we can predict the behavior. Once a user has
learned the function or placement of an interface element, he will use that
knowledge on new screens in an attempt to find consistency in the structure. 
If the consistency isn’t there, the user will be frustrated by having to relearn new
paradigms from screen to screen. Consistency also makes design seem simpler to
use. By setting up consistent placement of repetitive elements, such as where the
Cancel button is found, it is possible to create an environment where the user
feels empowered and comfortable to explore. 

Know the target user: In the broadest strokes, this means understanding and 
predicting how the product will be used by the target demographic group. The
UI design for a children’s product will be radically different from one targeted at
adults. Consideration must be given as to how knowledgeable the user is, how he
perceives the information presented, what types of feedback mechanisms will be
used, and how simple the navigation requirements are. Products that are targeted
at an international audience must consider the cultural implications of design 
elements. For instance, a color can have very specific connotations in one
country, and entirely different ones in another.

Color usage: A UI should not rely on color alone to convey critical information. 
Approximately eight percent of the male population has either color blindness or
color perception deficiencies. Additional feedback mechanisms will ensure that

648 Part 6 Audio Visual Design and Production



the user understands what the designer intended. Using value contrast between
the foreground and background elements, especially when text is concerned, can
avoid readability issues. It is also advisable to avoid large amounts of light text on
a dark background. It is more difficult to read and causes visual fatigue or eyestrain. 

Feedback mechanisms: These visual and auditory elements help the end user under-
stand his interaction with the UI. A common example of this is standard buttons
in most computer applications. They usually have a rollover state that indicates
when the user is over a “hot spot” on the button. The feedback mechanism can
take the form of a visual highlight change, a special effect, an animation, or a
sound. It also tells the user that he has accomplished a task. Because of the nature
of computers and the tendency for them to lock up or crash, it is usually wise to
let the user know when the program is performing a task. A progress bar can 
satisfy this need easily and prevent user frustration. If loading a file takes longer
than about 5 to 10 seconds, it is a good idea to show some form of a progress bar
or percentage feedback. 

Design Elements 

A flow chart of the design is an invaluable tool for spotting errors in design or func-
tionality. This is especially critical when the functional design and the aesthetic design
are being done by two different people. It is fairly common for the game designer to
come up with the functional requirements of the menuing system, while the artist
comes up with how it will look. Often, a flow chart will flush out flaws in the logic of
the design well before any time and effort has gone into creating art assets. Creating a
UI while the design is still in a major state of flux will lead to rework and wasted art.
An example flow chart is shown in Figure 6.1.4.

6.1 Visual Design 649

FIGURE 6.1.4 A flow chart helps to visualize a design.



Usually, the simplest design is the most efficient. Human short-term memory
stores only five to seven items before it begins to lose focus. Many of the most success-
ful designs rely on this basic idea. The user is never more than three to five clicks away
from accessing the information he wants. Of course, this is sometimes impossible to
maintain, but keeping the navigation to a minimum will increase the user’s comfort
with the menus. Grouping multiple functions or options in one area is also a good
practice. This allows the user to make decisions that are more efficient and keeps him
within the same area of the screen. If the user is given the impression that he is jump-
ing from screen to screen with each menu navigation, he may have a tendency to feel
lost within a large menu system. 

Establishing a grid: Underlying all good design is a grid. This is a visual structure
that provides the framework for the design and gives it balance and rhythm. By
observing any magazine, newspaper, or advertisement, a grid can be found that
all images and text fall within or on. From a design standpoint, the grid gives the
artist a logical structure for the layout. A well-designed grid will give the UI
screens consistency and allow the user to better understand and predict the 
behavior of the menu. It also provides a good basis for narrowing down design
decisions and establishing a set of rules or style guides that can be applied to new
screens. Figure 6.1.5 shows an example of how grids can be used.

Tiered menu system: The most powerful menu system is one that can adjust to the
needs of the user. For the novice, it may only contain the most basic commands.
For the advanced user, the interface can be made to reveal more complexity,
allowing for greater control. By allowing the user the ability to control the
amount of data he is given access to, he will be more apt to explore.

Localization considerations: Overseas sales make up a substantial part of the target
market for many of today’s games. Converting a title to a different language is
generally referred to as localization. By keeping in mind some of the simpler 
localization rules, a game artist can avoid additional rework when it comes time
to localize a product. 

650 Part 6 Audio Visual Design and Production

FIGURE 6.1.5 Grids will help tie a design together.



First, do not embed text directly into the artwork for the game or menu. If possi-
ble, text should be handled via the programming code as either a TrueType font or a
bitmap font. However, if it is embedded in the art (such as a sign or logo), it is a good
idea to separate the text onto a unique layer in the base art file. This will allow the
artist easy access to only the artwork that is affected by the translation. Next, allow for
30 percent of additional space around any text. Some languages, such as German,
have a tendency toward much longer translated words that take up more space in the
UI. Lastly, avoid small font sizes and test them often against the target output device
(TV or computer monitor). As a general rule of thumb, don’t go below 12 pixels in
font height. Below that size, there are not enough pixels to form some of the basic let-
terforms, especially with languages such as Japanese. When creating fonts for console
platforms, it is critical that they be previewed on the target system. A font that reads
very well on a PC can often become unreadable on an NTSC television.

Typography Fundamentals
Choosing the right font will add solidarity and elegance to a design. There is no exact
science or formula that will yield good results every time. However, understanding
some of the basic typographical rules can significantly reduce the time it takes to cre-
ate a solid design. 

Humans recognize letters and words as shapes, which are memorized as a mean-
ing or concept. Consider how a page of text is read. Each letter isn’t sounded out in
the reader’s head. Instead, combinations of letters have been memorized as a shape
recognition unit, forming a word. When text is written in all uppercase letters, it is
much more difficult to read, since the pattern recognition is reduced to simple rectan-
gles instead of unique groupings found in a mix of upper- and lowercase letters. A
good test of this is to take any paragraph of text in a word document, switch it to all
uppercase, and read it. The time it takes to read a single sentence is slowed signifi-
cantly since the brain can’t use its natural ability to recognize shapes as efficiently. 

Serif versus san serif fonts: A serif font is distinguished from a san serif font by the
addition of small strokes at the ends of each character stroke, as shown in Figure
6.1.6. In large bodies of text, serifed fonts are generally considered easier to read.
The serifs provide horizontal structure for the eye to follow. Although the same
rules apply when designing computer or game typography, it is usually less of 
an issue. It isn’t often that large amounts of text are structured in a page format.
In addition, the resolution limits of the output screen will often restrict the
amount of text that can be displayed at one time. Even though hardware 
continues to evolve, designs must target the lowest common denominator in
terms of screen resolution. 

6.1 Visual Design 651



International font considerations: Games are often localized to major languages
such as French, German, and Spanish. To minimize the amount of work involved
to convert from one language to another, fonts usually contain a specific set 
of specialized characters. Most of the Western Europe translations can be 
accomplished by using a font that has a single-byte character set that provides
256 characters. This set generally contains the Latin letters, Arabic numerals,
punctuation, and some drawing characters. The recognized standard for these
256 character codes is the ANSI (American National Standard Institute) 
Character Code set, used by most large computer companies. However, 256
characters falls well short of what is necessary in a single font for translations that
involve some of the Far Eastern languages. In some cases, these fonts may need as
many as 12,000 characters to cover the language properly. To provide the needed
character codes, double-byte or multibyte (MBCS/DBCS) character sets are
used. These sets are a mixture of single-byte and double-byte character encoding
that provides over 65,000 characters.

Kerning: Kerning is the adjustment of space between characters so that part of one
letter extends over the body of the next, as shown in Figure 6.1.6. We see this 
letter spacing every day, but don’t really notice its presence. An example would 
be the narrow spacing between two circular letters such as a “c” and an “o.” This
spacing or kerning would be much narrower for two parallel letters such as two
lowercase “l’s.” Most computer or TrueType fonts have the spacing information
built into them. Kerning makes the word forms more solid and readable. 
Without it, text appears disjointed, lacks cohesion, and is more difficult to read.

652 Part 6 Audio Visual Design and Production

Non-hinted letter Hinted letter

FIGURE 6.1.6 Examples of a serif and sans serif font. Kerning shows the spacing 
between letters. Hinting allows text to be reduced and still maintain legibility.



Hinting: Hinting is a mathematical instruction added to the font that distorts the
character’s outline before it is converted to a bitmap for display on the screen.
These modification hints allow the designer to have a fairly high level of control
over the resultant bitmap shape of the letter, especially at smaller sizes. Without
this control, features that define the font (line weight, widths, serif details) can
become inconsistent, irregular, and sometimes even disappear at smaller sizes.
This can have a dramatic effect on legibility. An example is shown in Figure 6.1.6.

TrueType versus Bitmap Fonts
Although TrueType fonts have kerning built into them, some game engines don’t 
necessarily support their use. Because these fonts require more memory and special
programming code to use, they are often replaced with a simple bitmap font. A bitmap
font is a texture map with all of the necessary letters spaced out in a grid of cells. With
this cell-based approach, the letter spacing is often defined by the width of a specific
cell. This usually doesn’t allow for kerning and can lead to a more simplistic look to
the font.

Creating a Font
The creation of a custom game font is no small undertaking. By creating a font, 
creative control over a major visual element in the game is gained; however, there is a
tremendous amount of work involved. Generating a proper TrueType font entails 
creating the base alphabet and numbers, and the international characters necessary for
European translations. In addition, creating the kerning and hinting information can
add unexpected time to the schedule. One distinct advantage with generating a font
from scratch is from the copyright and licensing standpoint. It is no longer necessary to
get copyright and license agreements for use within the game and on the packaging.

Rapid Prototyping 
Rapid prototyping allows the UI designer to work quickly through the logic and flow
of a menu system without the need to involve the programming team. A number of
programs and methods allow the design to be fleshed out and tested easily. At the 
simplest level, a flow chart can be used. Another popular way is to generate HTML
pages with simple hyperlinks between them that mimic the navigation. More
advanced programs, such as Macromedia’s Director or Flash, can be used to show
functionality, and to begin to test out elements such as animation and sound. These
prototypes serve to solidify artistic elements and provide programmers and other team
members with a very clear, concise vision of the artistic direction. 

Summary

Because of the content-rich environment provided by game development, a whole
new set of art-related disciplines has emerged. When personal computers first began
to reach the mass market, they were a relatively simple communication device. Little
or no visual design was needed to help present the information. Monochromatic

6.1 Visual Design 653



screens were used to display low-resolution text. The personal computer had yet to be
considered a form of entertainment, so there was little need to go beyond the utilitar-
ian. In the few short years since then, hardware capabilities have gone through an
exponential growth curve. Now, full-color, photo-realistic 3D environments and
movie-quality cut scenes are commonplace. Along with this explosive evolution in the
technology has come a corresponding maturation in the expectations and sophistica-
tion of the users. Now, more than ever, strong visual design helps mold the experience
of the user and makes the human-machine interface successful.

Exercises

1. List the principles and elements of graphic design. Show an example of
each.

2. Create an example graphic showing the electromagnetic spectrum and 
principle ranges within it.

3. Create an example of an additive and a subtractive color chart. Describe
the differences between each color model. 

4. List the design elements that should be considered when beginning to
create a UI design.

5. Generate a layout design for a menu system. Show the underlying grid
system on which the design is based.

6. Show an ANSI Character Code set that includes international character
sets. Describe how it is used when a product is localized to a different
language.

7. Design a game font. This font should contain uppercase characters, lower-
case characters, and numbers. Extra Credit: Create international characters
needed for localization. 

8. Design an interactive menu system for a fictitious game. Using rapid pro-
totyping techniques, create a functional user interface that shows menu
navigation.

References

[Beaumont87] Beaumont, Michael, Type—Design, Color, Character and Use, Quarto
Publishing, 1987.

[Hamlin 96] Hamlin, J. Scott, Interface Design with Photoshop, New Riders
Publishing, 1996.

[IBM04] “IBM Design Fundamentals,” IBM, 2004, available online at 
www-3.ibm.com/ibm/easy/eou_ext.nsf/publish/561.

[Johnson04] Johnson, David, “Psychology of Color,” Infoplease, 2004, available
online at www.infoplease.com/spot/colors1.html.

[Knobler71] Knobler, Nathan, The Visual Dialogue, Holt, Rinehart and Winston,
Inc., 1971.

654 Part 6 Audio Visual Design and Production

www-3.ibm.com/ibm/easy/eou_ext.nsf/publish/561
www.infoplease.com/spot/colors1.html


[Marcus92] Marcus, Aaron, Graphic Design for Electronic Documents and User
Interfaces, ACM Press, 1992.

[Mayer04] Mayer, Roger, “Color Theory,” Brown University, 2004, available online
at www.cs.brown.edu/courses/cs092/VA10/HTML/start.html.

[Microsoft04] “Microsoft Typography,” Microsoft, 2004, available online at 
www.microsoft.com/typography/default.mspx.

[MundiDesign04] “Web color studies,” Mundi Design Studios, 2004, available
online at www.mundidesign.com/webct/.

[NASA04] “Electromagnetic Spectrum—Introduction,” NASA, 2004, available
online at http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html.

[Swann89] Swann, Alan, How to Understand & Use Grids, Quarto Publishing, 1989.

6.1 Visual Design 655

www.cs.brown.edu/courses/cs092/VA10/HTML/start.html
www.microsoft.com/typography/default.mspx
www.mundidesign.com/webct/
http://imagine.gsfc.nasa.gov/docs/science/know_l1/emspectrum.html


This page intentionally left blank 



657

Overview

In this chapter, you will learn about the process of creating 3D models. Some meth-
ods discussed are standard day-to-day work for a modeler, and some are less used or
special-purpose methods, but are still worth mentioning. This chapter begins with a
step-by-step example of how a 3D character model is created to familiarize you with
basic workflow. Later, we will examine a few typical gaming models and how they are
created, including a car, an environment, and a low-polygon character.

Introduction to 3D Modeling

A professional 3D modeler is a sculptor and a technician. He is an artist and an engineer.
He must be concerned with the form, expressiveness, and style, as well as the polygon
count, topology, and efficiency of his models.

Although there are many methods and types of modeling, in gaming today poly-
gon modeling is king. 

3D Modeling6.2

In This Chapter

Overview
Introduction to 3D Modeling
Box Modeling with Polygons
NURBS
Subdivision Surfaces
3D Sculpting
Reverse Engineering
BSP Modeling
Common Approaches to Constructing Geometry
Modeling Methodology
Critical Analysis
Summary
Exercises
References



Box Modeling with Polygons

Box modeling is just as the name implies. You start with a polygon box, and cut,
extrude, and refine until you have a finished model. This is a freeform approach to
modeling, and it somewhat mimics the process of sculpting with clay. Let’s dive right
in to creating a simple character using box modeling techniques.

Concept Sketch

If possible, begin with turnaround sketches of the character you are modeling, as
shown in the two right-hand sketches in Figure 6.2.1. A posed sketch is great for
showing the personality and attitude of the character, but it is not ideal as a modeling
reference. Turnaround sketches provide nearly exact proportions and show form that
may be confusing on a posed sketch. These turnaround sketches can be scanned in
and imported into your modeling program. When seen directly in the viewport, 
turnaround sketches will make the modeling process much easier. Note that it helps
to make your image a square, power-of-two resolution, like 256×256, 512×512, or
1024 ×1024. Otherwise, the video card may have to resample the sketch to one 
of these resolutions, reducing the fidelity of the image.

Before you begin any modeling, a few technical requirements should be defined.
Most important at this stage is the polygon count you are targeting. In games today,
character polygon counts can range anywhere from 200 polygons to 15 million poly-
gons (when using normal maps). Your polygon count budget will depend on the
game platform, game engine, number of characters on-screen simultaneously, level of
detail method, and so forth. Generally, the total polygon budget for a scene, includ-
ing polygon budgets for the environment and individual characters, is decided jointly
by the management (art director, lead programmer, and producer) during the prepro-
duction phase. For the purposes of this chapter, we’ll target under 4,000 polygons,

658 Part 6 Audio Visual Design and Production

FIGURE 6.2.1 A posed concept sketch of a character, along with two turnaround sketches.



which is typical of a main character for a Wii street fighting game or hero for a third-
person action game. Other technical questions to define include: what is the desired
scale, what unit should equal one game engine unit, how many segments are desired
around joints, can semitransparent (alpha channeled) textures be used for hair or
other elements, and what angle will the model be viewed from most of the time?

There are two main phases to box modeling. First, you rough out the character.
Second, you refine the model so that it has correct proportions, all of the necessary
topology, and fine detail.

Roughing Out the Character

To rough out the character, begin by adding a polygonal box to the scene (Figure
6.2.2a). The fundamental techniques from here are cut, extrude, and adjust. Cutting
subdivides faces and adds new faces. Extruding adds more volume to the model, like
adding a chunk of clay to a sculpture. Adjusting is the artistic part of modeling. You
are trying to capture the form, profile, and character of your model by moving vertices
around in 3D space.

The box we are starting with will eventually be the torso of our character. A front,
back, and two sides are not enough faces to define the basic shape of a torso, so we will
cut the box in half (Figure 6.2.2b). Having a centerline is also extremely helpful in
modeling, because it allows you to create only half the model and mirror it. However,
whenever possible, show both halves of the model because it helps in visualizing cor-
rect proportions.

Next, adjust the box so that it more closely reflects the shape of a human torso
(Figure 6.2.2c). Move the vertices such that the box is wider than it is deep and tweak
the center vertices (the ones that were added down the centerline) so that the middle
is slightly bulging.

Now extrude the top face three times and the bottom face once (Figure 6.2.3a).
This gives us enough cross-sections to define the rough contour of a torso. Adjust 
the vertices using move, rotate, and scale, so that spinal curvature is reflected and the
volumes represent a human body.

6.2 3D Modeling 659

FIGURE 6.2.2 Start with a box, cut a centerline, and then approximate the torso shape.

a b c



Create the base of the neck by selecting the face that is on the top of the torso and
extrude it a small amount (see Figure 6.2.3b). Scale this new face smaller so that it
approximates the base of the neck. Extrude again to create a short neck. Move it for-
ward and rotate it to approximate spinal curvature.

Once the neck is created, it’s time for the head. Select the top of the neck and
extrude twice. The first extrusion will be at eye level and the second will be at the top
of the head. It now looks more like a longer neck than a head. Grab all of the faces
around all four sides of the new head protrusion and extrude again to create some
head volume (Figure 6.2.4a).

Now, adjust until you have a rough approximation of the head. Add a cut directly
above the eye line for the brow and under the eye line for the nose. Add a cut down
the side of the head. Adjust vertices until the head is recognizable (Figure 6.2.4b).

After the head is roughed out, create the arms. Model the arms in the standard
“Da Vinci pose,” meaning that the arms will be outstretched with elbows slightly bent
and the wrist at about the same height as the shoulder, and the legs straight down
with knees slightly bent. Hands will be palms facing downward.

660 Part 6 Audio Visual Design and Production

FIGURE 6.2.3 Extrude and form the torso, and then extrude and adjust the neck.

a b c

FIGURE 6.2.4 Neck extruded and cut to approximate a head. 

a b



It is easier and faster to create only one of the arms; in this example, the right arm
is modeled. Select the upper two polygons on the right side of the torso, and extrude
slightly. Scale and position this so that it mimics the base of the shoulder (see Figure
6.2.5a).

Extrude again to create the upper arm, ending at the elbow. Adjust the vertices to
represent the size of the elbow and rotate around the “up axis” to give a slight bend in
the elbow. Extrude twice and adjust to create the bulging forearm and small wrist
(Figure 6.2.5b).

For the hand, extrude three times to form the widest area of the hand, the fingers,
and the fingertips (Figure 6.2.5c).

Extrude the two polygons above the inner wrist for the thumb base. Select the
side of this extruded box (nearest the fingertips) and extrude twice. Adjust this mass
into a thumb shape (Figure 6.2.5d). Look at your own body for reference. Notice that
in a relaxed position, the thumb is about an inch or two under the other fingers.

After the arm is roughed out, move to the leg. Don’t worry about the opposite
arm for now; it will be mirrored after one of the legs is modeled. Creating the rough
leg is basically the same process as creating the arm: just extrude and adjust.

Select one of the faces underneath the torso. In this example, the polygon for the
right leg is selected (see Figure 6.2.6a). Extrude and adjust four times to represent the
thigh and knee, down to the ankle (Figure 6.2.6b). The foot is created by extruding
once from the ankle, creating a “nub.” Then select the front of this nub and extrude
(Figure 6.2.6c).

6.2 3D Modeling 661

FIGURE 6.2.5 Right arm constructed through extruding and adjusting.

a b

c d



When the right arm and right leg are completed, mirror half of the body to create
the other side (Figure 6.2.7).

Refining the Model

Now, on to the second phase of box modeling. In this step, you refine the model so
that it has all of the basic topology and correct proportions. The rough model that has
been created doesn’t much resemble the sketch of the character yet. More detail will need
to be added for smoothness and contour. New polygons will be created for elements
like the cuffs and belt. The hair and headphones will be modeled as a separate object.

The first thing to do is a proportions match—the head isn’t big enough, the torso
is too large, and so forth. Now that we have a very simplified humanoid mesh, it’s
time to start making it look more like the character in Figure 6.2.8.

662 Part 6 Audio Visual Design and Production

FIGURE 6.2.6 Right leg constructed through extruding and adjusting.

a b c

FIGURE 6.2.7 Mirror half of the body to create the left arm and left leg.



By placing the turnaround sketches behind the model, we can see how much the
rough model varies from the original sketches. Push and pull points until you have a
decent representation of the proportions and volumes of the drawings. Don’t worry
too much about the details at this point. Important things to check for are head size,
shoulder height, extremity lengths, and eye level (see Figure 6.2.9).

Notice that the legs and arms seem somewhat to the left of the sketch. A drawing
is generally not perfectly symmetrical. Try to approximate an average of what you see
on the left and the right. More importantly, attempt to capture the contour and char-
acter of the model.

Now that the model is starting to resemble the sketch, it’s time to start adding
detail. The squared-off legs and shoes do not have enough resolution to hold up in a
game engine, especially since they are so exaggerated and prominent. Cut an addi-
tional row of faces up the center of each foot and leg (see Figure 6.2.10). Continue
cutting and adjusting until enough detail is present to represent better curvature. Pay
particular attention to the profiles (the edge, viewed from the side), and constantly
compare the model to the turnaround sketches.

6.2 3D Modeling 663

FIGURE 6.2.8 Compare the rough model to the turnaround sketches.

FIGURE 6.2.9 Proportions matched.



The cuffs are created by selecting a row of faces around the lower leg and extrud-
ing (Figure 6.2.11).

Hands are often one of the most complex parts of a character model. General
problems to solve are how to transition from a relatively low-detail arm to a more
dense hand, where and which direction lines should flow to support all of the muscles
and structures of the hand, and how to accurately reflect the form and shape of a hand.

664 Part 6 Audio Visual Design and Production

FIGURE 6.2.10 Adding detail in the leg.

FIGURE 6.2.11 Extrude the cuffs out.



Begin by cutting the rough hand volume (see Figure 6.2.12a) just behind where
the knuckles will be (Figure 6.2.12b). This should leave you with a “stump hand.”
Divide the face of the stump so that there are enough faces to extrude four fingers
(Figure 6.2.12c). Extrude slightly for the knuckles, and adjust the vertices so that the
finger bases are roughly circular (Figure 6.2.12d). Extrude the fingers out, with
enough segments for the knuckles (Figure 6.2.12e). Tweak vertices until a nice hand
shape is obtained and cut as needed to support the various structures and muscles 
of the hand (Figure 6.2.12f ). Once the form of the hand is correct, cut additional 
segments around the joints (Figure 6.2.12g). When joints are animated, two or three seg-
ments are necessary so that the joint maintains its form. In this example, two segments
per joint are used. Reference Figure 6.2.13 to follow the buildup of the hand from the
underside.

6.2 3D Modeling 665

FIGURE 6.2.12 Sequence showing the buildup of a hand.

a b c d

e f g

FIGURE 6.2.13 Sequence showing the buildup of a hand, shown from the underside.



The entire time during modeling, compare the hand model that you are design-
ing to your own hand at as many angles as possible to help troubleshoot proportional
problems. It is best to model the hand in a relaxed, slightly bent posture. This makes
it a bit more difficult to add a skeleton to, but will result in a more realistic hand in
the end. Pay particular attention to the back of the hand and how it curves. The back
hand is not flat. You will find that the middle finger knuckle (when in a relaxed pos-
ture) is higher than the pinky knuckle. Also, notice the mounts and valleys of the
palm. Try to represent the meatiness of the thumb base, hand edge, and below the
knuckles. Pay attention to the angle and facing of the thumb. It is facing across the
hand more than downward.

The arm is more of the same. Cut additional cross sections and adjust vertices
until the model matches the form and contours of the sketch (Figure 6.2.14).

The torso presents some complications. Here is where a good sense of anatomy is
important. Start by subdividing the main chest polygons to be more circular, as a
frame for the breasts (see Figure 6.2.15a and Figure 6.2.16a). Extrude twice for breast
polygons and adjust vertices until proper breast form is achieved (Figure 6.2.15b).
Bevel the edge where the bottom of the shirt will be and flare it out (Figure 6.2.15c).
Cut polygons to support skeletal structures like the ribcage and shoulder blades
(Figure 6.2.15d). Add rows of polygons surrounding the center of the back to support
the spinal indentation (Figures 6.2.15e and 6.2.16b). Add an additional row of poly-
gons surrounding the shoulder joint to support animation deformation (Figure
6.2.15f and Figure 6.2.16c).

The head is finished in a few phases. Starting with a base (Figure 6.2.17a), begin
by adding a few sections to support the major structures of the face, including the
brow line, eye line, cheekbone line, mouth, nose, and hairline (Figure 6.2.17b). Select
all of the faces above the hairline and extrude a volume for the hair (Figure 6.2.17c).

666 Part 6 Audio Visual Design and Production

FIGURE 6.2.14 Sequence showing the buildup of an arm.



6.2 3D Modeling 667

FIGURE 6.2.15 Sequence showing the buildup of the torso detail, from the front.

FIGURE 6.2.16 Sequence showing the buildup of the torso detail, from the back.

a b c

d e f

a b c



Adjust some of the faces toward the bottom of the hair, where the ponytails will be to
accommodate extruding. Extrude and adjust verts to create the ponytails. An addi-
tional cut on the largest volume is added to simulate the hair curling back up (Figure
6.2.17d). Add additional detail to support all of the curvature and structures of the face.

Cut in polygons that follow the shape of the eyes. Add more polygons to the cheek-
bone and check the face from all angles to ensure cheekbone curvature and volume.
Add more segments around the nose and mouth (Figure 6.2.17e). Once you are
happy with the face and head, add some asymmetry. Move the part of the hair slightly
off center and cut in a part that zigzags back toward the crown of the head (Figure
6.2.17f ). Figure 6.2.18 shows the completed character in wireframe.

In this section, we covered the basics of box modeling. We used a character in this
example, but the same methodology applies to modeling anything. Start with a rough
object, whether it’s a box, cylinder, or even a generalized loft. Then cut, extrude,
refine, and adjust until you have rough structures for the entire object. Once you have
a roughed-out model, check for topology problems and address them now. Correct
any proportion issues. When you are happy with the rough model, refine until the
model is detailed and complete, as shown in Figure 6.2.18.

668 Part 6 Audio Visual Design and Production

FIGURE 6.2.17 Sequence showing the buildup of the head detail.

a b c

d e f



NURBS

NURBS is an acronym for “Non Uniform Rational Basis Spline,” and it is a form of
modeling that uses curved surfaces based on relatively few data points. NURBS have
been used extensively in the film industry for quite a while, and have limited use in
the gaming industry. 

A NURBS spline is made up of control vertices, often referred to as CVs. A
NURBS spline is essentially a 3D line. Notice that the spline does not pass through
the CVs, except for the first and last points. The CVs create a hull that influences the
spline (Figure 6.2.19a).

A NURBS surface is a curved 3D mesh that is defined by multiple NURBS
splines and is often referred to as a patch (Figure 6.2.19b). NURBS surfaces generally
have four sides. When modeling with NURBS, you must decide how various surfaces
can be connected to form shapes that are more complex. For instance, an arm can be

6.2 3D Modeling 669

FIGURE 6.2.18 The completed character in wireframe and shaded. 
Images courtesy of WildTangent, modeled by David Johnson.

FIGURE 6.2.19 a) A NURBS spline defined by control vertices. b) A NURBS surface.

a b



modeled by wrapping the NURBS surface into a basic cylindrical shape and then
refined to add support for joints, muscle bulges, and other definition. A face is divided
into sections with a patch circling the mouth, a patch circling the eyes, and additional
patches to support the remaining facial structures and to bridge the other patches.

Advantages of NURBS include:

Resolution independent
Can tessellate “on the fly”
Curved surfaces
Inherent mapping coordinates

Disadvantages of NURBS include:

Build using only square patches, which is not ideal for complex objects such as hands
Tangency between patches can be difficult to solve 
Topology problems (lining up isoparms)
Difficult to change between high- and low-density areas
Can result in an unwieldy number of isoparms
Not supported by all game engines

Subdivision Surfaces

Think of subdivision surfaces as a hybrid somewhere between polygon modeling and
NURBS modeling. Subdivision surfaces are created using standard polygon modeling
techniques, but the result is a smoothed surface, like a NURBS model. Subdivision
surfaces offer the best of both worlds in polygon and NURBS modeling. You have the
infinite resolution of a NURBS model and none of the topology headaches.

Hierarchical subdivision surfaces are a subset of subdivision surface modeling. A
subdivision surface model is a low-resolution mesh that is smoothed a number of
times when rendered. Hierarchical subdivision surfaces allow the artist to enter each
level of smoothing and adjust vertices. This is useful because it allows you to work
very rough, and rig and animate a very efficient model, yet render with as much detail
as needed. This is an improvement over standard subdivision surface modeling
because otherwise, your low-resolution model must contain all of the detail.

3D Sculpting

Another method for creating game models is a category called 3D sculpting. Programs
like ZBrush from Pixologic allow you to push, pull, and sculpt high-resolution models
without worrying about topology. This type of product works more like a paint program
(Adobe Photoshop, for instance) than a 3D modeling program. You use brushes to add
minute details and refine models beyond what is practical using traditional modeling
methods.

670 Part 6 Audio Visual Design and Production



Three-dimensional sculpting is by far the best technique for creating high-quality
normal maps. A normal map is a texture that is applied to a low-resolution model that
gives the illusion that there is much more detail than actually exists. Typically, lighting
is calculated at every vertex of a model, but with normal maps, the lighting is
processed at each texture pixel. For instance, a medium resolution model may have
3,000 lighting calculations (3,000 vertices), whereas a model with a 512 × 512 pixel
normal map will receive about 260,000 lighting calculations.

To sculpt a normal map, you start by creating a low- to medium-resolution model
in any modeling program (Figure 6.2.20a). Then bring the model into a 3D sculpting
package. The model is tessellated to an extremely dense, high-resolution mesh (Figure
6.2.20b). You can then sculpt fine detail, such as scales, veins, musculature or clothing
wrinkles in a relatively short time (Figure 6.2.20c). After the sculpted model is com-
plete, a utility can be used to create a normal map by comparing the low-resolution and
high-resolution maps. The normal map is applied to the original low-resolution mesh
(Figure 6.2.20d). 

6.2 3D Modeling 671

FIGURE 6.2.20 Sequence showing the stages of building a normal map. 
a) Original low-poly mesh. b) Tesselated high-resolution mesh. c) Sculpted detail. 

d) Low-resolution mesh with normal map applied. e) Final rendering, low-resolution
model with normal map and texture. Images courtesy of Pixologic.

a b c

d e

Reverse Engineering

Another way to create models, although less common in gaming than the previous
techniques, is a category of modeling called reverse engineering. Reverse engineering
means digitizing a real-world “physical model.” Laser scanners, optical scanners, and
3D point digitizers are a few examples of technologies that are used to capture real
objects. In gaming, you have probably witnessed a 3D character whose head was
“cyberscanned” or a car in a racing game that was point digitized (see Figure 6.2.21).



Laser scans are another way to generate normal maps. A sculpture, or maquette, is
laser scanned to create an extremely dense mesh from a “point cloud,” generally based
on many millions of polygons. An artist uses a reduced version of the scan to build a
game-ready low-polygon model. The normal map is generated by comparing the orig-
inal scan to the artist-created model.

We will not cover specific reverse-engineering techniques in this book because
each of the many technologies has individual and specific workflows. Suffice it to say
that if you work at a company that uses any of these technologies, they will generally
train you in the related techniques and software.

BSP Modeling

Many game levels are created using a technique called BSP modeling or Brush model-
ing. Counter-Strike, Unreal Tournament, and Quake III Arena are common examples
of games that contain BSP levels. BSP is an acronym for “binary space partitioning.”
It’s a programming term that describes a way to organize data. From an art stand-
point, BSP modeling is essentially a way to cut away chunks of the world using prim-
itive volumes such as boxes and cylinders.

In typical BSP modeling, the scene starts with a solid world. The artist selects a
brush from a preset list of primitives (box, sphere, cylinder, and so on) and subtracts
the volume to create an open room. Think of this as a miner inside a mountain. The
mountain is solid rock, and the miner blasts away to carve out rooms and tunnels.

Creating BSP environments can be very fun and gratifying. An artist can quickly
carve out a rough level and play it instantly. Brushes are easy to adjust and reform
without worrying about topology and mesh editing. BSP environments have inherent
mapping, so basic texturing can be applied with great ease.

BSP is common in indoor first-person shooter levels. Every game engine that
employs BSP levels has an associated editor that is used to design the BSP brushes.

672 Part 6 Audio Visual Design and Production

FIGURE 6.2.21 A car being laser scanned using a FARO Laser ScanArm. 
Images courtesy of FARO Technologies, Inc.



For example, Unreal Tournament has UnrealEd, Half-Life has the Valve Hammer
Editor, and Quake III Arena has Q3Radiant. Generally, when you purchase and install
any of these games, the editor is included. You will need to check the documentation
or online resources to learn any of these editors.

Common Approaches to Constructing Geometry

Modeling a character is perhaps the most fun subject to sculpt, but in gaming, char-
acters are only one of many responsibilities of a modeler. Vehicles, environments,
weapons, props, and sometimes user interfaces will require modeling.

Case Study: Final Drive Nitro

We’ll now look at the issues involved with modeling cars and levels for a racing game.
Racing games are a great example of a non-character-based genre where the struc-

ture of the game puts many requirements on the modeling.
Creating a car model is much the same as creating a character. Start with a reference,

like a photograph of a car, or a high-resolution CAD mesh. Create a low-resolution
roughed-out car, and refine and adjust until the car has sufficient resolution. Note
that the most common view of a car is of its rear, so spend extra attention and poly-
gons on this area of the car. Figures 6.2.22 and 6.2.23 show the wireframe model of a
car and how it appears in the online game Final Drive Nitro.

6.2 3D Modeling 673

FIGURE 6.2.22 Wireframe of a car model. Modeled by Zhang Changhua at Gamestar.
Images courtesy of WildTangent.

FIGURE 6.2.23 The same car, seen in the car select screen and during gameplay. 
Images courtesy of WildTangent.



Car modeling has some other specific considerations. Positions must be defined
for wheels, glows, and upgrade attachments. This is commonly specified with locator
objects or point objects, or perhaps defined in text files. You may be required to model
the interior of the car. Damaged versions of panels, and sometimes underlying struc-
tures, may be necessary. 

Many games, including car-racing games, require the use of level-of-detail (LOD)
meshes to keep the frame rate consistent. LOD meshes are multiple versions of the
model at progressively lower resolutions. Up-close models are rendered at higher
LODs while distant models are rendered at lower LODs. As a model recedes into the
distance, it will switch between LODs. Therefore, several LODs of a character or
vehicle must be modeled. Generally, a modeler will construct the most-detailed LOD
first and then create the less-detailed LODs either automatically through a modeling
package plug-in or by manually reducing it.

Level modeling is performed using the same basic methods as other types of 
modeling, but there are unique technical goals for environments. Polygon counts are
important, but harder to define with environments. Since it is generally impossible to
render an entire level, it is broken into smaller chunks, so that pieces can be culled, or
removed from the rendering pipeline. You are mainly concerned with how many
polygons are rendered at any given time, after culling, although, the entire polygon
count of the level is important because it impacts memory consumption and loading
time. On consoles, there should be a fixed polygon density that you are targeting.
However, PC games often have to support a range of machines, so it is common to
support several clipping distances (how far out the scene is rendered), or simply
model the environments with the lowest common denominator in mind.

Texture usage is important to keep in mind while modeling environments. For
instance, in the example racing level (Figure 6.2.24), each lane was cut to provide
rows for tileable textures. The method of lighting used will have an impact on how
the model is set up. If vertex colors are used (as in the racing example), you must have
enough vertices to support large washes of light and dark areas, but shadows are gen-
erally not possible, as they would require too many vertices. If light maps are used
(textures that define lighting), vertex count is not a concern, as lighting is based on
textures, not vertices.

Depending on the type of level, the way you will go about modeling will vary. For
any level, it is common to start with a sketch of the map, including notes for impor-
tant visual or gameplay elements.

For racing levels, you will start with a spline that follows the rough shape of the
entire track and loft a profile of the road with a curb. From the base profile, create a
large set of variations, including different road widths, split roads, banks, and so forth,
and apply these over the course of the track. This will start you off with a roughed-out,
playable track. Continue to refine the banking, turns, jumps, and overall gameplay
until you are satisfied that you have a fun driving experience. It may be necessary to
add rough road textures and major buildings or structures to give you a sense of scale.

674 Part 6 Audio Visual Design and Production



Low-Polygon Modeling

Although polygon counts increase exponentially with each generation of hardware, and
normal mapping makes high-polygon modeling a valuable skill to master, low-polygon
modeling isn’t going away anytime soon. The extra power will often be used to push
greater numbers of low-polygon characters on-screen rather than just display a couple
of high-resolution characters.

When modeling low-resolution characters, especially if they will be seen from a
distance, common in many real-time strategy games, there are a few special consider-
ations. Pay particular attention to profiles. Spin your character to every conceivable
angle and see if the forms hold up. Define large muscle and structural forms.
Exaggerate bulges. Don’t worry about tiny details, as they will probably be rendered
by only a few pixels. Fine detail should be painted into the texture, not modeled in. Paint
in shadows and accentuate highlights in the texture (see Figures 6.6.25 and 6.2.26).

6.2 3D Modeling 675

FIGURE 6.2.24 a) Wireframe model of a level. b) Model with vertex lighting. 
c) Textures and effects added. Images from Final Drive Nitro, courtesy of WildTangent.

Modeled by Luo Jun and Feng Yuhui at Gamestar.

FIGURE 6.2.25 a) Wireframe low-polygon monster. 
b) Mapping coordinates for the monster. c) Texture map. 

Images courtesy of WildTangent. Model and texture by David Johnson.

a b c

a b c



Modeling Methodology

As a professional modeler, you will need to be able to look at an object or sketch and
visualize how it can be represented as a game model. Just as a 2D animator starts with
a rough gesture “line of action” and adds volumes to visualize and begin a sketch, a
3D modeler starts with simplistic volumes for major structures of a model. The rest of
this section presents other techniques to help you work efficiently and evaluate the
quality of your work.

Use Reference Material

The better reference material you are working from, the more accurate your model
will be. If you are modeling a real-world object, take orthographic photographs from
as many angles as possible. If you have access to scan data, it can be difficult to work
with, but it is the best reference without question. If you are working from a sketch,
try to work from turnaround sketches.

It is extremely effective to have your reference material in context. Create textures
from your reference material and show them in the viewport of your modeling pack-
age. If you are working from a sketch, use the black line as the alpha channel, and you
have a great “sketch wireframe” that is very easy to model on top of. Apply some
transparency to your model so you can see the mesh superimposed over the reference
material to constantly check proportions and positioning. If you are working from
scan data, snap vertices to the scan mesh to ensure exact volumes. If you are modeling
a car, you can generally do a search online to obtain useful specification data such as
height, width, length, and wheelbase.

676 Part 6 Audio Visual Design and Production

FIGURE 6.2.26 Finished and posed model. 
Images courtesy of WildTangent. Modeled by David Johnson.



Work Rough and Refine

Start models by blocking out major structures with rough shapes. It is easy to identify
and solve problems when your model is still rough. Once you start subdividing and
the polygon count gets unwieldy, it becomes increasingly difficult to make broad
changes. Working rough also establishes a basic structural topology. It will give you lines
that run the length of your model and provide an excellent basis from which to refine.

Critical Analysis

It’s easy to look at a model and know that it is not quite right, but it is considerably
more difficult to identify exactly what’s wrong and how it should be corrected. Here
are a few tools for you to use in the critical analysis of your models.

Profiles

Too many head models suffer from “flat face” syndrome. The cheekbone doesn’t 
protrude enough or the eye socket isn’t concave enough. To help solve problems like this,
check your profiles. Rotate the model to all angles and compare them to an actual person.
How far does a head have to turn for an eye to be obscured by the bridge of the nose?
When modeling a nose, check it from the side, front on, top down, three quarter, and
upshot. Does it hold up from all these angles? Turnaround sketches can ensure that front
and side profiles are relatively good, but the 45-degree angles will have to come from your
artistic sensibility. If something seems off, compare it to a real-world person or object.

Topology

Topology, as it relates to 3D modeling, is how the vertices, faces, and edges are laid
out and arranged to form the various structures of a model. A good topology will have
just enough detail to support a structure, and in an even, well-distributed manner.
Arms and legs should have nice rows and columns, and if there is strong muscle defi-
nition, polygons will be present to frame these muscles and provide good profiles.
Avoid long, skinny polygons wherever possible. It is preferable to have a vertex shar-
ing four or less faces. More are acceptable and even necessary at times, but try to avoid
extremes where many faces are connected by a single vertex.

Distribution of polygons is very important. Generally, the hands and face will have
the greatest number of polygons. Consider what angle the model is going to be seen from
and at what scale in the game. If the model will be seen from a distance, all that facial
detail may be unnoticeable, and would have been better spent smoothing larger profiles.

Objective Opinion

As an artist, it can be uncomfortable to accept criticism about your work, but it is
necessary in the team environment of game development. Get someone else to look 
at your model and offer his or her initial reaction to your work. Modeling can be a
technical endeavor at times, and it’s easy to lose track of the artistic element. Having 

6.2 3D Modeling 677



a second set of eyes look at your work can often give you a fresh look at what is right
and wrong about your model.

Expressiveness and Essence

This is difficult to articulate, but it is the most important thing to consider while mod-
eling, particularly with characters. Does your model capture the character, personality,
and emotion of the reference sketches? Do the eyes have the same spark; does the
smile or grimace look convincing, or flat and lifeless? Does the model look inviting or
intimidating enough? You may have to deviate from the sketches and exaggerate these
important features to get them to read in a 3D model.

Summary

Since a vast majority of game modeling is done with standard polygon editing, most
of this chapter was spent discussing techniques specific to polygons. NURBS, subdi-
vision surfaces, 3D sculpting, reverse engineering, and BSP modeling were also intro-
duced. A step-by-step demonstration of how to model a character using polygons was
presented. Finally, we discussed what makes a good model and how to analyze and
improve your models.

Three-dimensional modeling is both a technical and artistic endeavor. As you
become more familiar with the tools, processes, and methods of creating models, the
technical side will become second nature, and you can focus your attention on the much
more important artistic side.

Exercises

1. Using box modeling techniques, create a character of your own design, or
find reference for an existing character.

2. Using NURBS surfaces, create an underwater creature—for example, a fish,
dolphin, or whale.

3. Using subdivision surface techniques, create a monster of your own design
or find a reference for an existing character.

4. Import one of your creatures into a 3D sculpting program and sculpt in fine
detail.

5. Use a BSP level editor such as UnrealEd or Worldcraft to create a rough
level with four rooms.

References 

[Gahan08] Gahan, Andrew, 3ds Max Modeling for Games: Insider’s Guide to Game
Character, Vehicle, and Environment Modeling, Focal Press, 2008.

[Russo05] Russo, Mario, Polygonal Modeling: Basic and Advanced Techniques, Jones &
Bartlett Publishers, 2005.

678 Part 6 Audio Visual Design and Production



679

Overview

The task of the 3D artist is not much different from that of the classic oil painter or
sculptor. The tools have become more complex, but the intent is the same. The artist
seeks a way to take an idea (for example, a game design or specific art direction) and
turn it into a visual space that can be explored by the user. Basic techniques for con-
veying light, distance, and form have been used throughout the centuries to manipu-
late the human perception of space and volume. The 3D artist uses these same
techniques and brings them one step closer to reality in a game space by allowing the
player to interact with the world the artist has created.

Careful attention to technical specifications is critical when constructing a 3D
world. The technical guidance will ensure that the game runs smoothly on the targeted
platform (Xbox 360, PS3, Wii, PC, Nintendo DS, etc.). Careful attention to consis-
tency of style, lighting quality, color schemes, texturing, and volume enhancements
will ensure a convincing and positive gameplay experience. This chapter provides
some of the key tactics used in creating compelling 3D environments.

3D Environments6.3

In This Chapter

Overview
Preplanning
Artistic Approach
Scheduling
Summary
Exercises
References



Preplanning

Building games is a team process, and one that is driven by economics. The team
must keep in mind the game’s aesthetic appeal for the target audience and make that
aesthetic fit into the technical restrictions of the targeted platform and schedule.

Ideally, the target platform, game style, and art direction have already been deter-
mined by the art director by the time an art team begins environment production.
Realistically, games are not completely designed, technical tests are still undefined,
and concept art is still being produced as the environment team is brought on board.

Artistic Approach

A successful 3D environment will maintain consistent style, enhance the volume of
the 3D space through judicious use of distance effects, and use fake detail whenever
possible (to enhance frame rate). It is not enough for a game to be 3D; it must also
look 3D.

Consistent Style and Setting 

The art director will work with the designers and art team to ensure that all assets are
created with a consistent artistic vision. Each artist should, on an individual basis if
necessary, review similarly styled games and consider what has succeeded and failed in
these game environments. Consider the artistic approach used in games that have a
feel similar to what you want to build. While wild strokes of creative and artistic
genius are desirable, the reality is that much creativity is based on the work of prior
artists. It is acceptable to use prior work as a starting point and try to improve on it for
the benefit of the current project. 

Style consistency should be guided by the art director, and the artist will save
much rework by adhering to the set style. It would, for example, be inappropriate to
place palm trees in a landscape destined to go into a Northern European first-person
shooter, or use a surreal mountain landscape in a contemporary outback race setting.
Similarly, color palettes should reflect the intent of the game. For example, World
War II games are generally expected to have a certain palette, and unless the game
specifically deviates from that genre, it is wise to stay within expectations. A player
who is a fan of World War II genres would expect greens, browns, grays, and typical
military color schemes. 

Camera Viewpoint

Different camera views are used throughout the game industry. First-person cameras
show the world as if the player has the camera attached at eye level. CounterStrike
(Valve) and Doom 3 (id software) are examples. Third-person cameras show the world
from an over-the-shoulder view. The player can typically see his character in the camera
view. Diablo II (Blizzard Entertainment), World of Warcraft (Blizzard Entertainment),

680 Part 6 Audio Visual Design and Production



and Dark Orbit (Figure 6.3.1) [WildTangent01] are examples of this view. Side-
scrollers show the world from the side, and are more common as 2D games but are
being reinvented for the 3D world as processors become more powerful. R-Type Final
(Irem) and Phoenix Assault (Color Plate 3) [WildTangent04a] are fine examples of the
side-scroller revolution.

Volume Enhancements

The environment viewed through the computer screen is necessarily flat, and it is the
artist’s task to exaggerate the 3D aspects when necessary to help lend credibility to the
environment and differentiate it from a 2D setting. 

The players should feel fully immersed in the fantastic world that has been cre-
ated for them, and clever environmental construction will help reinforce that. The
layout of the game environment will, in part, be set by the level designer. The artist
then has the task of manipulating the level design into something visually compelling. 

Some environmental components work well with some camera views and do not
work with others. For example, a towering rock spire has a different visual impact in a
first-person perspective, where it might disappear into the upper clouds or environ-
mental fog. In a third-person view, the tip of the spire might sweep near the camera,
greatly enhancing the 3D effect. Tunnels, tubes, spires, pits, towers, cliffs, and so forth
all have something in common: they enhance the perceived volume of the 3D world. 

6.3 3D Environments 681

FIGURE 6.3.1 Dark Orbit is built using the third-person view. 
© WildTanget, Inc. Reprinted with permission.



Figure 6.3.1 shows this method of terrain exaggeration in practice [WildTangent01].
Gameplay in Dark Orbit is restricted to a 2D plane, so emphasizing the surrounding
terrain became important for conveying depth and scale of the world. Notice how the
tips of the spires sweep dramatically past the camera, and the pits plunge deeply into
the planet. Deep pits are emphasized with colorful fog to reinforce our perception
that faraway or deep objects become obscured by haze with distance. This “distance
effect” is a powerful weapon in the environmental artist’s arsenal and will be discussed
further. 

These concepts are best understood by first reading about them and then experi-
encing them. The reader is strongly encouraged to play these free game demos at the
Web links listed in the “References” section [WildTangent01, WildTangent04a].
Beyond the games listed there, think critically about what you see in each game you
play, and try to analyze what makes an environment seem large, scary, cold, friendly,
warm, and so forth. As an artist creating environments, you will be, in large part,
responsible for shaping the player’s emotions to fit the purpose of the game.

Distance Effects

Another method of lifting the flat 2D game screen into compelling 3D space is to
over-exaggerate colors and contrast. The player’s acceptance of what is real (otherwise
known as “suspension of disbelief ”) is flexible when playing a game. A playing experi-
ence can be enhanced by exaggerating colors beyond what can typically be seen in the
real world. An example of this is seen in photography. Underwater photography done
without special lighting typically looks drab and monochromatic. Professional under-
water photographers use light enhancements to bring out the colors of the underwater
world. Other professional photographers will frequently enhance the color intensity
and contrast of their photographs by using polarizing filters to remove reflected light.
Try looking around outside through a set of polarized sunglasses. Observe that direct
light is more colorful, shadowed areas are darker, and contrast is increased overall.
Colors reflected off objects will depend on the color of the polarized lens. 

Rules in the real world can be used in games to convey distance and depth. For
example, near objects will be higher in contrast, more detailed, and typically darker
than similar objects seen farther away. Fog is a good way to convey this depth. A
major benefit of incorporating fog in your game is that fog is a tool used by world
builders to cull geometry—thus increasing frame rate.

The environmental artist can use rules from both the “real” world and the
“enhanced” world to manipulate how the player will view the environment. Color
Plates 1 and 2 illustrate these concepts and show how a classically 2D environment
has been transformed into 3D space with the perception of depth greatly enhanced by
using both rule sets. Color Plate 3 shows a first-pass attempt at the environment
details. While the first pass is reasonably good, if we apply the previously discussed
principles to the scene, we will get a much more convincing portrayal of depth and space. 

682 Part 6 Audio Visual Design and Production



First, let’s discuss geometry. In Color Plate 3, note the large water-tower-like
structure in the background and the large rock in the foreground. These objects seem
to stand alone, and since the water tower is an alien object and a rock can be any size,
we need to add additional objects into the scene so the player has some sense of their
scale. In Color Plate 4, we have added an additional tower, moved it closer to the
player, and added a rock in the background. The proximity of these objects and their
relative sizes give the player a more visceral sense of the scale of the world and the scale
of the alien objects in the scene. Also, note in Color Plate 3 that the water layer almost
looks like a cloud or some glowing fog. In Color Plate 4, the objects have been
reflected in the water below them, most notably the foreground rock. This reflection
detail defines the water plane and gives the player a more solid sense of playable space. 

Next, we consider contrast level and fog throughout the scene, and how to add
visual intensity to objects and add volume to the environment. The most obvious
change is the addition of detail and contrast to the near-ground rock in Color Plate 4.
As mentioned previously, near objects will, in general, be darker and higher in detail
than far objects. Far objects will, in the real world, be lightened by haze in the air, and
details will be obscured by light reflecting off this haze. All objects receive less “haze”
treatment as they appear closer to the camera. Starting from back to front, we see the
sky in Color Plate 3 has been fogged a bit in Color Plate 4. The contrast level of the
large background planet has been reduced (as has color, but that will be discussed in
the next section). The rear water tower has been hazed out, as has the rear rock. In
Color Plate 4, the near tower is higher in contrast and darker than the rear tower, and
the near rock is subsequently higher in contrast and darker than the near tower. The
nearest ground objects are the player ship and enemy ships. These have received the
highest contrast level. In this case, one could argue that the contrast has been taken
too far, and that color values are suffering as a result, but it is instructive to see the
result. For final production, the ship contrast levels would be toned back a bit so color
values were not so garish, and every other object’s contrast level would be scaled back
proportionately. Finally, the water surface has been given higher contrast in the near-
ground and less contrast along the distant horizon.

Now we will briefly discuss color. Human perception of color can be manipulated
to convey depth. Warm colors such as reds, yellows, and browns are perceived as being
closer to us in space than cool colors such as blues or greens. This principle is fre-
quently used in interface design, but can also be used in world building. The major
object throwing the color out of balance in Color Plate 3 is the large background
planet. In Color Plate 4, the planet has been given a cool, bluish tone to show the
effect of light scattering in the blue haze of our planet’s atmosphere. This has 
the added benefit of seemingly pushing the distant planet farther into the background.
It is now less distracting to the player and seems to fit more naturally into the 3D
environment.

6.3 3D Environments 683



Faking Detail

Regardless of development platform, there are always technical limitations in texture
space and polygon count. A realistic environment cannot contain all the details that
we see in real life, regardless of setting. Video cards are also limited in the number of
textures they can hold without affecting performance. One way to circumvent texture
and polygon limitations is to use vertex coloring in the scene. The development
engine used will determine whether vertex coloring is a viable option. Vertex coloring
is the process of painting the vertexes in your mesh. Any texture applied in the area
between two differently colored vertexes will adopt their color gradient. Vertex color-
ing is a popular and cheap (does not require much processing power) method of
adding color to a mesh. Vertex coloring can be added in areas where shadows are
needed, depth or a depression must be implied, or just to add color variety to a heav-
ily tiled texture. Color Plate 5 shows an image of a scene from the game Polar Bowler
[WildTangent04b]. The ice tunnel relies heavily on vertex coloring to add interest
and variety to the ice. Only one texture is used on the ice walls throughout the scene.
By adding blues, purples, and the occasional yellow vertex color, the perception of
depth and variety is greatly enhanced, and varying degrees of warmth and coolness are
spread throughout the tunnel. If additional vertex coloring detail is desired, a polygon
face may be tessellated to add vertices to an area (as long as performance allows). 

Scheduling

Game production is an economic endeavor, and as such is schedule driven. Start by
building the largest-scale or highest-risk components of the environment, with the
intent of revisiting your work or handing it off to another artist for a different phase.
(Work structure varies for every shop.) The project producer can also help set this pri-
ority. This approach is analogous to painting the large background parts of a canvas
and then going back later to fill in details. In addition, the art director or program-
ming lead will have set a technical limit on how detailed a scene may be, so part of
efficiently constructing a complete set of game environments is getting one scene as
complete as possible near the start of the project. By completing one scene, you will
have an understanding of how quickly the remaining scenes will be built and what
pitfalls to avoid along the way. 

Summary

The principles introduced in this chapter are only a starting point in creating com-
pelling and beautiful environments. The actual creation of 3D environments will vary
in each software application, but the theory of the environment’s display in a game is
the same: create the perception of 3D space on a flat 2D computer screen. A 3D game
will by definition use geometry to attempt to create the perception of volume, but the
best implementation will not ignore the basics of proper color use, contrast levels, and

684 Part 6 Audio Visual Design and Production



real-world distance principles. Lastly, color theory and enhancements of real-life
observation have been used throughout the centuries to convey depth on a flat canvas
and can be used today to bring a 3D world to life.

Exercises

1. Find a screenshot of an environment in one of your favorite games. Create
a written critique documenting what works and what doesn’t work about
the environment in the scene. Specifically address the emotion that is cre-
ated in the scene. Consider whether the color schemes work well and how
these or other color schemes are used in different parts of the game. How
would changing the lighting, color schemes, and contrast levels affect the
player’s perception? 

2. Compare an environment from a first-person game with an environment
in a third-person game. What elements have a powerful impact in the first-
person perspective that does not work as well in the third-person and vice
versa? 

References

[WildTangent01] Dark Orbit, available online at www.wildgames.com, 2001.
[WildTangent04a] Phoenix Assault, available online at www.wildgames.com, 2004.
[WildTangent04b] Polar Bowler, available online at www.wildgames.com, 2004.

6.3 3D Environments 685

www.wildgames.com
www.wildgames.com
www.wildgames.com


This page intentionally left blank 



687

Overview

Much like covering this book with a paper cover, or wrapping a football in gift wrap,
or painting a ceramic sculpture of a horse with glaze paints, even a 3D model in a
game needs the equivalent of a cover, a wrapper, or color coating. A successfully com-
pleted 3D model usually means that an artist has worked through a few necessary steps
in the assembly process to give the model a colorful custom skin. Such steps include
the creation of well-prepared digital images, referred to as texture maps, and a method
of meticulously getting these 2D images to show up directly onto the surface of a 3D
model. In this highly artistic phase that occurs between the modeling and lighting of
an object, the artist will create digital images, usually within a popular 2D paint 
program using more traditional art skills. In the relating steps that follow, however,
certain technical skills must be developed before knowing how the artist can go about
preparing the final art or texture map for the best use by the model’s geometry. This
seemingly complicated process is called texture mapping or UV mapping. All environ-
mental objects in a 3D game, as well as the avatars, automobiles, certain effects, and
even the sky, rely on these steps to give polygonal geometry color values. During 
production of all such objects, this step of assigning texture coordinates has to happen
before the artist can actually see his or her texture on the model.

2D Textures and Texture
Mapping

6.4

In This Chapter

Overview
2D File-Based Images Used for Texture Mapping
What You Should Know Before Creating a Texture Map
Texture Mapping Coordinate System
Methods for Mapping UV Coordinates
Case Study: Texture Mapping a Character
Summary
Exercises
References



This chapter discusses the kinds of texture maps that are often used, and demys-
tifies the technical process of how an artist tells the computer how to apply a texture
to a particular polygon on a model and explicitly how to display it on-screen. Although
there are many ways of “skinning this cat,” the discussion of creating texture maps
and the approaches for texture mapping techniques will focus more on those that a
professional game artist will commonly use in the creation of real-time video games.

While wearing the hat of “texture map artist,” these people are responsible for
creating the texture maps, which may also be known as color maps or diffuse maps,
depending on the 3D application used. Looking at Figure 6.4.1, notice that upon the
involvement of these steps in the production workflow, the textured model can be
exported and begin to make its way into the game engine for the purpose of evaluat-
ing the appearance and impact it has on gameplay. Generally speaking, the sooner art
can be critiqued while in the game alongside other environmental art, special effects,
properly scaled characters, and so forth, the better off the team will be to make critical
changes sooner during development.

After the mapping step is completed, even a temporarily assigned texture on a
model can be changed several times to improve it aesthetically. These revisions can be
updated on the model quickly for further ongoing evaluation. This phase is where
most texture artists would rather spend their time—past the more technical stuff and
well into the creative part of making it look ideal for their game. A fast and proven
method of texture mapping a model will be demonstrated in detail in the case study
at the end of this chapter.

2D File-Based Images Used for Texture Mapping

Even though many types of 2D images can be used for real-time game art, below the
surface they all share certain physical attributes. To help the artist get past some of 
the more technical aspects of this process, and so that the language between team
members is understood, here is a brief description of these attributes. Each image or

688 Part 6 Audio Visual Design and Production

FIGURE 6.4.1 Texture mapping is a midproduction component with several steps.



texture map is a two-dimensional array of color values called texture elements or texels.
These are pixels in the texture map. Each texel occupies a specific location and has 
a unique physical address. This address in the texture space is also represented by a
column and row number. As shown in Color Plate 7c, the U direction represents tex-
ture elements and their values along the horizontal axes, and the V represents texture
elements along the vertical axes of the texture space.

An artist will use many types of texture maps, and they all share this makeup.
They can be used either alone or in combination. A few of these texture maps are
essential to all 3D games, and so have been illustrated in Color Plate 6 and will be
described in more detail in the following paragraphs. A texture artist may at some
point make color maps, transparency maps, bump maps, normal maps, environment
maps, and light maps, to name a few. Each has a unique visual effect within the game.
However, until such a texture map is assigned to a model to give it more character,
color, and depth, it will have a generic machine perfect “skin,” as in Color Plate 8b.

Color maps: This texture map gives basic color, or diffuse color, to a model by way of
a file-based texture map. Diffuse colors are those we refer to when an object is
evenly lit, not oversaturated, too bright, or in shadow. In a 3D program like 3DS
max, this is assigned via the Diffuse Color channel from within the Material 
Editor. In another program, like Maya, this would be the Color Channel. This
image can be of any one solid color, combination of colors, drawn by hand using
a digital paintbrush, or scanned from a painting or a photograph.
Depending on the look of the game, any source used can provide this color infor-
mation for a model. When creating such a color/diffuse map from a photograph,
there are ideal images and not so ideal or poorly lit images. An artist should avoid
using photos that already show evidence of a light source in the scene, perhaps
from afternoon sun or an overhead stadium light. If the photo has such high-
lights, pronounced directional shadows, or other captured lighting information,
the artist must take care to eliminate them in the final image. Sometimes, the
artist will first need to even out the lighting throughout the image using photo
manipulation tricks in a paint program. The texture in Color Plate 7a has even
lighting with just enough shadow to convey that the surface isn’t flat throughout.

Transparency maps: This is a file-based color or grayscale image that is used in 
combination with the color map to control the transparency of the surface. Such
maps are also referred to as opacity maps or just alpha maps. The shades of gray
will control the amount of transparency, with black being 100 percent transpar-
ent and white being 100 percent opaque, or no transparency (see Color Plate 6a).
A computer interprets the pixel values not as color, but in a way that describes
the transparency of the surface at each texel. A transparency image designed for 
a tree or houseplant, for example, will have a random-looking pattern of solid-
white leaf-shaped patterns against black, whereas one for a lacy see-through 
window curtain will have a wider range of grays with a lighter shade background
for a less-transparent decorative design pattern (see Color Plate 6c).

6.4 2D Textures and Texture Mapping 689



Bump maps: To enhance the often flat inherent look found in 3D games, a bumpier
surface appearance for things like castle rock walls and lumpy alien skin can be
achieved on a surface level with this type of texture map. Use of a bump map
produces results that simulate a bumpier, 3D relief surface. The model’s geometry
isn’t altered by this and only appears to have more detail in the mesh (see Color
Plate 6b). Before considering this type of texture map in your game design and
art production, however, this should be a known supported feature of the 
graphics chip on the target system.
The way a bump map works is similar in principle to the grayscale alpha maps
used for transparency, except that the grayscale information is now used to control
the amount of “bump” that appears on the model’s surface. What often gives this
trick away is when the same model’s profile is seen. It will seem flatter than the
bumps, lumps, and divots suggest it should. This is an acceptable trade-off. For 
a real-time game, to achieve a similar level of 3D detail with only slightly better
visual appeal would cost the artist a ton of extra time to model such detail and
consequently will slow the game’s performance because of the added polygons.

What You Should Know Before Creating a Texture Map

In the development of the latest cutting-edge game, there will likely still be technical
constraints an artist must be aware of that will determine how he or she approaches
the construction of images. Such constraints won’t affect the final look or style, but
rather the size and position of image subjects, and the scale of the finer details within
the texture map. This kind of up-front planning will save artists much time and frus-
tration once they are well into the workflow. Learning as much as one can during 
preproduction about the game design, the specific objects to be texture mapped, and
how they are to be used within the game environment will help during production.
The following are several recommended questions that should be asked to get the
artist better prepared for a successful mapping job.

A few of the technical questions that an artist should ask his or her art director,
game or level designer, and programmer beforehand are things like, how much file
space in the final product will be allocated for all texture maps? What resolution size
should the final texture maps be? In an effort to reduce the number of images used by
the game overall, or by a specific level, is tiling of textures acceptable? For example, a
large Olympic field or airplane runway may have large surface areas of repeating grass
and asphalt, respectively. A tiling texture is a cleverly designed texture map that 
provides a seamless repetition of a single texture map that covers a large span of
ground surface. Another question may be, are areas of a model to have interchange-
able textures? An example of this would be a design feature in a racing game that 
supports having interchangeable decals on a racing car that a gamer can then specify.

690 Part 6 Audio Visual Design and Production



What about optimization of all textures to reduce file size? For real-time games, there
typically is a need to optimize by reducing the size and color space to be compatible
with the intended game platform. You can expect this step in every game studio.

The level of importance of various 3D objects and their surfaces in the game is
another important consideration that the texture artist should know beforehand. An
example would be a prominently placed object in a level or main hero character. What
is the look of the game? Before designing and painting the one or more images for a
model, understand the game’s design, the style, and the target audience for which it is
intended. For example, is it stylized or photo-realistic? Are the potential players teens
or middle-aged women? Are objects to appear to have lighting and shadows, meaning
are the textures to be created with an implied light source evident? Answers to ques-
tions such as these can affect what technical decisions you make along the way and
guide how you call attention to significant objects and surfaces while playing down
the less-important ones.

Texture Mapping Coordinate System

To place 2D textures onto 3D models, the texture artist will use a texture mapping
coordinate system. This will help establish a direct correlation between the 2D image
and the texture space of the 3D model. It is like a set of instructions that defines which
areas of the texture image are mapped to certain parts of the model. The basic method
of texture mapping is to specify the coordinates of each texel in the texture map (U,V)
that map to a unique point across the model’s surface. The UV coordinates are speci-
fied at the polygon vertices and are interpolated across each polygon’s surface by the
graphics chip. Although other types of model geometry can have texture coordinates,
such as spline models, patch models, or NURBS, polygon models are typically the
type of geometry that is exported for use in game engines. Moreover, unlike NURBS
that have an inherent set of such texture mapping coordinates, polygon models always
need to have texture coordinates applied to them. As shown in Color Plate 7c, the tex-
ture coordinates are on the range of 0 to 1 in the U and V directions. In the case of
tiling textures that are to repeat more than once across the surface of a model, it is
expected to have texture coordinates outside the range 0 to 1.

Every texture artist should know that achieving perfect UV mapping in game
development is nearly impossible. They should, however, strive for the ideal UV map-
ping while being mindful of other important objectives during this process. UV map-
ping involves trade-offs that an artist learns to accept and balance in the pursuit of
efficiency and continuity. Such goals will make more sense after the case study at the
end of this section. Figure 6.4.2 compares two scenarios, demonstrating both bad and
ideal “packing” of UV geometry. The two UV editor windows show the results of two
differently mapped organic models used by the company WildTangent. Although
both have used all areas of the texture space well, example b has fewer continuously
mapped geometry groups and will be easier to paint. The UV clusters are grouped and
positioned in a logical fashion for easier recognition.

6.4 2D Textures and Texture Mapping 691



Methods for Mapping UV Coordinates

Several common systems for mapping UV coordinates are available from within 3D
applications. Each uses one of two methods for placing images on a model by way of 
projecting or wrapping them onto the model. Image projection mapping is a technique
where an image is projected onto geometry. It would be like having a slide projector
aimed at your model while projecting a static image onto the surface of a few of the
model’s polygons or through all of them. An example of such a method is planar
projection mapping. Although this is an easy way to get mapping coordinates on the
model quickly, it is less desirable for certain shapes because of problems it creates, such as
streaking along the sides of the model. Depending on the shape of the model, other
methods are more suitable and produce better results. As the names imply, other methods
such as spherical mapping coordinates, cylindrical mapping coordinates, and box mapping
coordinates are also used. These are like tools, with each being suitable for geometry
forms that resemble the name. For example, a spherical mapping method is commonly
used for shapes like planets and eyeballs, whereas box mapping will be used when the
object is a crate, a box train, or a building. The best way to learn their strengths and weak-
nesses is to try each on several models of different shapes. With time and experience, each
will become familiar to the texture artist. And like specialized tools, knowing when and
how to use them will save time and produce more predictable results.

After these UV mapping systems are used, some adjustments are often still
needed to smooth out any wrinkles. Things get more challenging when the model’s
form is a combination of several of these simpler shapes. For example, how one might
assign mapping coordinates for a simple shape like a cylinder or a sphere should differ
from the method used to map a human figure’s arm that is attached to a torso. This
more complex shape blend is like having a cylinder attached to another cylinder, as in
Figure 6.4.3c. Now attach a head on top of both the arm and torso and then try to

692 Part 6 Audio Visual Design and Production

FIGURE 6.4.2 UV mapping results of a human character and a dragon body.



map it all with one texture map. The case study at the end of this section provides
such an example.

To help simplify this work, today’s 3D packages offer ways of applying and con-
trolling the placement of UV coordinates with real-time visual feedback, using gad-
gets and gizmos that show the 3D placement of textures. Fortunately, unlike texture
mapping objects for film or broadcast production, the advantage of creating content
for real-time games is that an artist already has a good idea of what the mapping is
going to look like from within the 3D application. In film work, to check the actual
results of what the freshly mapped surfaces will look like, a test render has to be done
in software. In Color Plate 7b, two images show examples of the tool’s 3D placement
icon for spherical mapping and one for the box mapping tools.

Because the coordinate system is like a set of instructions that define which areas of
the texture are mapped to certain parts of the model’s polygons, how one controls this
assignment of UV mapping coordinates becomes an important skill for any texture
artist. How the artist manipulates these UV points (see Color Plate 7c) is ultimately
accomplished within this texture space. Within the 3D application, this is done using
a UV editor window that exposes the mesh’s UV control points within the texture
space. The control points (or UV points) are the mesh’s vertex points, only laid out flat
in a 2D area represented in a space between 0 and 1. Moving these control points in
the texture space along the U direction adjusts texture pixels along the horizontal axes,
and along the V direction adjusts them along the vertical axes of the model’s surface.

After assigning a file-based texture map to a UV mapped object, the final refine-
ment pass is testing and editing the UV points. This manual adjustment of UVs into
a more uniform configuration can take much time and practice. A temporary image
or test image that has a busy pattern or some discernable visual noise, as shown in
Color Plate 8c and 8d, can be used for the texture map as a visual aid. The checker
pattern on a 3D model is a visual indicator of how well the UVs are being adjusted.
The following case study describes how to use a test image and evaluate the results.

Case Study: Texture Mapping a Character

The following case study is designed to give you a better understanding and apprecia-
tion of the concepts and practices discussed in this section. It steps you through the
process of analyzing and preparing a complex model for mapping, assigning several
different mapping coordinate systems, and manually adjusting and packing UVs within
the texture space for optimal use of a texture map. Although this flexible approach
isn’t the only one available to a texture artist, it relies only on tools and features avail-
able in 3D applications used by the gaming industry. Due to evolving methods 
and tools available within the latest 3D applications, other approaches are becoming
obsolete. The techniques demonstrated here also focus on getting artists through the
technical aspects of the process quickly and efficiently so that more of their budgeted
time can be spent on the creative process of refining and finalizing the texture.

6.4 2D Textures and Texture Mapping 693



If you want to follow along with this case study, you can load the model from the
companion CD-ROM called “sister.max” into 3DS max. It is a full-body, single-mesh
female polygon model created for a WildTangent game. Due to its intricate form and
curvy shape, an organically shaped character model represents a greater challenge to
texture map. Moreover, because character models are often viewed from 360 degrees
in most games, the difficulty is further compounded by the need to consistently apply
the UV mapping coordinates without stretching or distorting texels.

During this case study, expect to work interactively between the 3D application
and a paint program. Throughout the texture mapping process, the more interactive
it is for the artist, the faster and more intuitive it becomes with more control over the
desired results. With time and practice, artists can define their own way of working
that is best for them. For future reference, several third-party software products are
also written to support this notion of working interactively by allowing the user to
import and export 2D and 3D data back and forth between popular 2D and 3D 
programs, while specializing in the process of assigning UV mapping interactively and
painting onto 3D objects in real time.

The following five steps will texture map the character model. These steps can
sometimes overlap and can be revisited at any time during production.

Step 1: Evaluate the Model’s Mesh Design and Edge Placement

As the texture map artist in the assembly process of creating 3D objects, someone may
hand you a model, as shown in the example model in Color Plate 8a and 8b. This is a
single continuous polygon mesh with no UV mapping since they do not occur on
polygon surfaces automatically. The first thing an artist should do is analyze the 
construction of the mesh and check for areas in the model’s design where mapping
can be difficult. In this example, these are the areas where polygons meet at acute
angles, like the armpit, the crotch area, and the top of the neck. Since a polygon
model can consolidate large areas of the model into one texture map, and because the
need to optimize texture space and to usually maintain a low total count of textures
used, the texture for this entire character will be represented in a single texture map,
as shown in Color Plate 8e. In anticipation of the next step, the artist will also evalu-
ate the placement of polygon edges that will define simpler groups of polygonal
shapes, as shown in Figure 6.4.3b.

Step 2: Delete Duplicate Elements and Dissect What Is Left

To save time by reducing the amount of surfaces you will have to map, identical
geometry should be identified and deleted. As in this example, a character model
often has a symmetrical design throughout the body. During the construction process
of such a model, it is likely that the modeler constructed only half of the final model
in an effort to save time. For this reason, many characters are seamed right down the
middle. An edge down the center is a good place to dissect and eliminate half the body,

694 Part 6 Audio Visual Design and Production



as shown in Figure 6.4.3a. The benefit is that after mapping one of the duplicate ele-
ments or body parts, the texture artist can easily copy, flip, and move it back to where
the original was before he deleted it. This step will eliminate the possibility of dupli-
cating UV mapping work that wastes time, especially if the identical part is a compli-
cated shape that was hard to map. This consolidating of geometry also improves how
much area of the valuable texture space the duplicate parts would have taken up
unnecessarily. Wasted texture space, unused or used by identical parts, is inefficient to
production and wasteful to the product’s performance and image quality.

Again, the fewer pieces of geometry that are left to represent the entire model, the
fewer surfaces there are to map, and therefore the more texture-space real estate the artist
can devote to mapping them. In the end, this means more pixel resolution and better
image quality in the game.

Next, the artist will divide the entire model into smaller groups of more primi-
tive-like shapes, as if separate objects but not move them apart. The separation of
geometry shown in Figure 6.4.3b is an added optional step after deleting symmetrical
parts. It was done here only to show more clearly the different groups of geometry.
The artist can leave the mesh intact and do a face-level subobject selection instead as
many times as needed and apply separate mapping coordinates for each selection set
of polygons. This step makes the steps that follow easier by breaking the model into
more manageable parts. Mapping coordinates can now be applied more quickly and
intuitively by using a combination of planar, spherical, or cylindrical mapping coordi-
nates. The narrow cylinder-like shape of the arms and legs can be mapped separately
from the even larger cylinder or capsule-like shape of the torso. The head shape in
Figure 6.4.3c is similar to a sphere in form. Isolating the head at the neckline from the

6.4 2D Textures and Texture Mapping 695

FIGURE 6.4.3 Duplicate parts are avoided or even removed and remaining geometry is
sectioned and grouped, based on their resemblance to simpler, more primitive shapes.



rest of the model makes it so that a spherical mapping method can be used for this
group of polygons. This approach also reduces the amount of subdivisions needed to
map fairly large sections of this female character.

When subdividing geometry into mapping groups as in Figure 6.4.3b, edge
boundaries called texture borders are created. These are potentially unsightly seams in
the texture-mapped model and are best placed at locations that are easily concealed,
much like the inseam of a pair of pants. As mentioned previously, by separating the
head at the neckline, there is a better chance that something in the model’s design will
provide a more natural and expected transition at the neckline. Tricks like these play
down seams that are inevitably created at texture borders. If the concept drawing of
the character has been provided, reference it for a better idea of seam placement based
on clothing design.

In addition, during this step there may be times when existing polygon edges or
vertex points should be moved to a better location on the model for optimal results.
In all attempts to improve the efficiency of the texture mapping process and final out-
come, you should be careful not to change the intended design of the model’s form.
Doing so will sometimes offend the modeler or alter the concept artist’s original
design. To avoid changing the shape or profile of a model, further dividing an edge or
polygon face for better placement of a texture border is a good alternative. This solu-
tion, of course, will increase the polygon count with each new division and potentially
exceed the model’s specified “polygon budget.”

Step 3: Assign a Texture Map and Apply UVs

The texture artist is finally at a good place to assign a bitmap to the model. This
could have been done as a first step, but would be less useful since steps 1 and 2
require that the artist work in wireframe mode to see the polygon edges and vertices.
For this step, the artist first creates an image file using a filename that coincides well
with the model’s name and places it in the directory it needs to be in for the game.
The artist then assigns it to the model from within the 3D program using a simple
drag-and-drop method. The image file is usually a .bmp, .jpg, or .png that is 512 
pixels × 512 pixels in size, or smaller, but usually of a number that is a factor of 2. 
In creating the texture map initially, the highest possible resolution is always recom-
mended. This can be reduced or downsampled to a smaller image later, like a 256 ×
256 or a 128 × 128 pixel dimension. The larger resolution also enables the texture
artist to design and evaluate textures at their most optimal level. The final image size
will depend on resolution limitations imposed by the minimum specified system or
file optimization requirements.

When testing the model for texture coordinates, a common practice is to create
and assign a temporary test image that has a consistent pattern. A checker pattern of
small black-and-white squares, as in Color Plate 8d, is a good one to use. This enables
the UVs to be visualized and aids the artist through the decision process of selecting
mapping tools and adjusting their controls during the next two steps. Other test

696 Part 6 Audio Visual Design and Production



images can have numbers and color squares, as used in Figure 6.4.4. More than one
can be used sequentially to help expose problem areas for seams, stretching, distortion,
and inconsistent resolution or pixel distribution. A few test images have been provided
on the companion CD-ROM in this section’s folder.

To see the assigned texture map or test map on the model, UV coordinates must
be applied. Although not ideal in all cases, a planar mapping system can be used by
default just to get the newly assigned texture map to show up on the model. To apply
the initial UV mapping, select a group of faces to planar map. Find and use the planar
mapping tool within your 3D program. Perfect placement of the projected image is
not important since it is only temporary. Later, more time, experimentation, and pre-
cision can be devoted to improving the final UV mapping using any one or a combi-
nation of other mapping systems. The idea is to see the results in real time and to be
able to work interactively while visualizing the effect on the model. For this case
study, more than one mapping coordinate type will be needed for the character.
Figure 6.4.3c should guide the artist in the selection of the mapping type and where
to use them. For most bipedal characters, mostly cylindrical, spherical, and planar
mappings are used in combination.

Step 4: Evaluate the Texture Space and Adjust UVs

In this final and somewhat technical phase of texture mapping, the texture artist will
be refining his work. While evaluating the appearance of the test image on the model,
the artist should try to avoid any situation resembling the problems shown in Figure
6.4.4. For example, while looking at the checkered squares on the surface of the
model, the artist should ensure that there is good consistency in the pixel resolution
throughout the model’s surface. If the checkers in some areas appear to be larger or
smaller than most, the artist can adjust the scale of individual UV points or groups of

6.4 2D Textures and Texture Mapping 697

FIGURE 6.4.4 Undesirable UV mapping effects that should be avoided.



polygons from within the editor until the checkers more closely resemble the other
checkers on the surface. Alternatively, if areas appear to have rectangular instead of
square checkers, this indicates that stretching is occurring in the direction of the longer
side of the black and white rectangles. To correct this, the artist will select and move
the points that define the offending faces and move them vertically or horizontally in
the editor. Again, this is like modifying mesh geometry but on a 2D plane instead. As
the UV points and polygons are moved around in the editor, the changes should be
updating the results on the surface of the 3D model. The preferred arrangement of
checkers throughout the model should ultimately resemble Color Plate 8d. This will
produce optimal results for the final texture map that will respond to this mapping.

For efficient use of the texture map, the artist should also ensure that each unique
area of the model is referencing a unique area of the texture space. Within the UV edi-
tor, there are numerous ways to change the placement and packing of polygon groups
by moving, rotating, and even flipping them. When packing the shapes into the tex-
ture space, it isn’t very important to use up all of the space. Depending on the desired
texture map detail, contrast, and complexity, maintaining a consistent pixel resolution
and distortion-free surface detail may be more important than using up every possible
area. With time and experience, a dedicated texture artist will get better at deciding
which is more important.

Step 5: Let the Real Fun Begin—Create the Texture Map

Since a correctly named texture is already assigned to the model and the mapping
coordinates are properly applied, the artist can now move forward and focus only on
improving the texture map. If a test image is still showing on the model, the artist can
choose to paint over it or assign a differently named texture map altogether and view
this on the model. With all UV mapping completed, the missing duplicate areas of
the model can also be re-created and welded back together to reconstruct the original
single-mesh model. For this example model, the final texture map and mapping are
shown in Figure 6.4.5.

698 Part 6 Audio Visual Design and Production

FIGURE 6.4.5 The final texture map with the various body parts labeled.



Additional reference information for this example can be found at 
www.titopagan.com. These five steps are all that a texture artist will need to know to
improve his texture mapping process and get up to speed with professionals. By elim-
inating the majority of guesswork during the mapping stage, artists can save themselves
and their team lots of time and frustration. If an artist or team of artists clearly under-
stands how to execute each of the steps, the final art will reflect their knowledge and
technical control over their craft, and allow the original idea for the game to shine
through.

Summary

The result of any 3D art asset for a real-time game is the product of all the steps one
takes to design, model, texture map, and animate objects. Even if an artist isn’t dead
set on becoming a texture artist, this kind of work is a much-needed task in any game
production environment. Texture maps are the color component of 3D models, and
UV texture mapping is an intrinsic part that can make or break an object’s close-up
appearance in a video game. Because teams are generally smaller in the games industry
than art production studios for other industries, more tasks have to be accomplished
per individual team member. The topics covered in this chapter represent a large and
valuable portion of any 3D artist’s employable skill set. A professional texture artist
will learn all that he can about his program’s UV mapping tools, the UV editor, and
the controls within the editor window.

Exercises

1. Bump maps add perceived detail without adding extra geometry. In what
cases does the illusion of the bump map fail? Since bump maps re-create
subtle detail well, brainstorm five types of surface detail that could be simu-
lated with bump maps.

2. Name four image-projection mapping techniques. Which primary image
mapping technique might you use to UV map a fire hydrant? What about a
house?

3. Why is achieving perfect UV mapping in game development nearly impos-
sible?

4. Re-create the planet Jupiter. Find reference photos and paint a texture map
to look like Jupiter and then UV map the texture to the sphere.

5. Find a model of a simple creature (such as a fish), find reference photos
from the Internet, and texture the creature using the reference material.

6. Find a unique head model, take a picture of your own face, and texture map
your own face to the model.

6.4 2D Textures and Texture Mapping 699

www.titopagan.com


References 

[Ahearn06] Ahearn, Luke, 3D Game Textures: Create Professional Game Art Using
Photoshop, Focal Press, 2006.

[Capizzi02] Capizzi, Tom, Inspired 3D Modeling and Texture Mapping, Premier Press,
2002.

[Demers01] Demers, Owen, “Axel’s Face: Texturing Polygons,” [Digital] 
Texturing and Painting, New Riders, 2001.

[Pagan02] Pagan, Tito, “Efficient UV Mapping of Complex Models,” 
Game Developer Magazine (August 2002): pp. 28–34.

700 Part 6 Audio Visual Design and Production



701

Overview

Explosions, magical energy, collapsing buildings, splashing water, and weapon impacts.
These are the pleasure and responsibility of the effects artist. It is the effects that make
a beautifully crafted scene into something extraordinary. You breathe life into other-
wise static environments. You are the bridge between gameplay, as it is represented by
spreadsheets and parameters, and the player who sees mystical monsters summoned
by the cast of his spell. 

The role of a special effects artist is arguably one of the most difficult of the art
jobs in games. It demands technical savvy, a sense of animation and timing, a grasp of
physics, a deep understanding of the game engine, and the ability to paint textures of
natural phenomena. Effects also require a general understanding of adjacent disciplines
that you will interact with, including scripting, code, animation, prop modeling, and
rigging. The effects artist can bring a game engine and frame rate to its knees faster
than anyone else by filling the screen with smoke. Figure 6.5.1 shows an example of a
well-integrated explosion crafted by a special effects artist.

Special Effects6.5

In This Chapter

Overview
Terminology
Types of Effects
Elements of an Effect
Creating Particle Systems
Critique
Shaders
Physics
Performance and Optimizations
Requesting New Features
Professional Tips
Exercises
References



Special effects can also be one of the most rewarding art jobs. Trailers of your game
will feature your work, and reviews will call out the explosions and spells. And around
the office, when you take someone’s level and make it sing with snowstorms, distor-
tions, detonations, and resurrections…your peers will tell you how awesome it looks.

Terminology

One of the unfortunate realities of games’ special effects is the lack of a uniform ter-
minology. For every particle, texture, or light that will be agreed upon industry wide,
you will have a ribbon, runner, or Z-fade that will be called something completely dif-
ferent at various studios or engines. Let us define some terminology in generic terms
so that regardless of the game engine or studio, you will have a language to describe
the elements of special effects. It will be up to you to match these words to the lexicon
that is used on your project.

Effect, Particle Systems, Emitters, and Particles

All of these are the basic building blocks of your work as an effects artist. They are
listed from biggest to smallest, with each successive element being contained by the
previous one. For example, an effect will contain one or more particle systems. Each
particle system will contain an emitter. And each emitter will create a series of particles. 

The names chosen for these building blocks are purposely generic so as to empha-
size the fundamental elements of each. Unfortunately, these names are not standard-
ized and can vary depending on the studio. For the sake of clarity, we’ll use the names
as presented for the remainder of the chapter.

702 Part 6 Audio Visual Design and Production

FIGURE 6.5.1 An explosion from Infinity Ward’s Call of Duty 4: Modern Warfare
by Robert Gaines. Image courtesy of Infinity Ward.



Effect
An effect is a complete visual with several different elements such as particle systems,
lights, sound, and sometimes rumble feedback. Think of a rocket explosion as an
effect. This explosion will have several parts, including an initial flash, a fireball, some
sparks, a dynamic light, a decal, some roiling smoke, some lingering smoke, some
chunks of ground or dirt that fly up, some secondary dirt that falls down, and some
pieces of debris that are 3D models. Typically, all of these elements will be edited
together into one effect.

Particle Systems
Designing particle systems will be your primary role as an effects artist. A particle sys-
tem consists of the look, density, movement, and all other parameters that go into a
layer of an effect. For example, if you want sparks, you will begin with a texture of an
individual spark (or a few variants), tell your editor that you want 80 sparks to shoot
out, give them some gravity, and when they hit the ground you give them a percent
chance to bounce, and upon death a percent chance to spawn a new particle system to
simulate the spark bursting. This entire set of parameters defines the behavior of the
“particle system.” 

Emitter
An emitter is the thing that generates the particle. It simply specifies where the parti-
cles will come from and in what configuration. The player will never physically see 
the emitter, but the effects artist will sometimes get to see a representation of it in the
editing tool. When defining an emitter, you will commonly specify its shape (like
point, sphere, cone, ring, cube volume, or 3D mesh-based), size, how many particles
will come out of it, what direction the particle will start heading, whether the particles
will stream out of it over time (like a waterfall) or appear all at once (like a sudden
burst from a bullet hitting a wall). Think of the emitter as a hose that sprays water,
and you are setting how strong the water is spewing out and pointing the hose in a
particular direction. Once the water particles leave the hose, they have their own para-
meters that determine what happens to them over their life. The emitter is determin-
ing the “initial state” of the particles when they are born, primarily their position and
direction.

Particle
A particle is the most basic element of a particle system. Continuing with the previous
example, one of those individual sparks is a particle. Common parameters that you
will set on a particle are: How long it will live, its size, what it looks like (what texture
is applied to it), its speed and direction, and whether or not it has physics applied. 
You will also specify the type of particle, which could be a 2D sprite, a 3D model, a
“ribbon,” or other variant.

6.5 Special Effects 703



Particle Types

In game engines, there are several different things that a particle can represent.
Billboards, sprites, models, and ribbons are some typical particle types, each with its
own set of parameters and unique qualities.

Billboard
The most common particle type is billboard, where the particle is rendered using a
single polygon in 3D space that is always facing the player. Smoke clouds from a
grenade are a typical example of a billboard particle. Sometimes this particle type is
called a card.

Sprites
Sprites are very similar to billboard particles, but the difference is that they do not
exist in 3D space. They are 2D elements that are drawn to the screen similar to UI 
elements. However, they are smarter than a UI element, since the particle that they
are representing does exist in 3D space, so culling, depth, and size can be worked out
before the particle is drawn. A single particle of pixie dust would be a good candidate
for sprite particles.

Models
Models are 3D meshes that are exported from a modeling package like Maya or
3DStudio Max. Rocks that appear from a rocket hitting the ground could be 3D
models that have physics and bounce around.

Ribbons
Ribbons are a particle type that leaves a long trail behind an emitter. Picture the
Olympic sport of ribbon dancing, where the dancer will move a stick through the air,
and a trailing ribbon will leave a long, flowing shape behind it, lingering in the air. In
games, these will be commonly used for rocket trails, vehicle trails, and weapon
swooshes. They are also referred to as contrails or geo-trails.

Z-Feather Particle Rendering
Z-feather is a technique for rendering particles that ends that awful line where a par-
ticle cuts right through a wall or floor. With Z-feather, you can specify a distance that
the particle will fade off before intersecting any other mesh in the scene. It is great for
mist and smoke, where that cutoff line would kill the illusion of volume. Thankfully,
this artifact is quickly becoming something from the past. This technique is some-
times referred to as depth fade.

Types of Effects

There are four common types of effects that are typical in any game production:
gameplay, environment, cinematic, and destructibles. Each of these will have a different
workflow.

704 Part 6 Audio Visual Design and Production



Gameplay effects are effects that are triggered by the player. Weapon and spell
effects are the meat and potatoes of gameplay effects. They include muzzle flashes,
rocket or grenade explosions, impact effects (where a bullet hits a player or wall),
blood, vehicles, melee weapon swooshes, and in fantasy games, spells of all sorts.

Environment effects are placed around levels and are just looping to provide some
ambience. Mist washing through a forest, dust motes from skylights, fires, magical
energy waves coursing through a building, holograms animating in space, bugs from
garbage cans, plumes of smoke on the horizon, and clouds overhead are all examples
of environmental effects.

Cinematic effects are generally “one-off” effects that play for specific story moments
in a game—for example, detonating a building, space ships flying overhead in a sky
battle, or a demon lord wiping out a huge army. These are often tied to moments
where the player loses control of his character and watches as dialogue or a story is
presented. In moments like these, we can blow the whole effects budget on this one
scene without regard for gameplay effects in order to make the moment as spectacular
as possible.

Destructibles are objects that show up all over the game that can be destroyed.
They range from vehicles exploding, to jars on the wall, to lights blowing out.
Sometimes there’s no real destruction effect, but physics need to be set up on the
object so that it can take a bullet and get knocked around the room.

Elements of an Effect

When you are assigned an effect, like a rocket explosion, what are your building
blocks to create the visuals? Obviously, particle systems are important. You will also
want to add other elements, like a 3D light, a decal that scorches the ground, and a
sound that plays. If it’s a scripted moment in your game, you may also want to have
elements placed in the environment that get knocked away by the blast. You may
want to create a destruction sequence for whatever gets hit. Metal shelves can swap to
a mangled version of the model. A bridge overhead can collapse, and all the enemies
can come falling down in the hole left by your destruction.

When you begin an effect, think of elements you will want to include. Will you
need to get other disciplines involved, like the animation or sound department? Give
them a heads-up early. What about design? Do you want some rumble or camera
shake to happen based on how close you are to this effect? What about screen effects?
Can you momentarily bloom or radially blur the screen to emphasize the shockwave?
Try to think outside the box. Your main workflow will be creating particles, but try to
keep an open mind and get other, more visceral elements, into your visuals.

Creating Particle Systems

Enough with the deconstruction, now let’s take a look at how exactly an effect is made.
You’ll begin by getting your game engine and effects tool set up and running and then

6.5 Special Effects 705



launch Photoshop. For this example we’ll use Unreal Editor 3, the tool that comes
with Unreal Tournament 3. Although the following example is specific to Unreal Editor
3, the core concepts, durations, and sequence of events are generally applicable and
can be roughly followed without knowing anything about the tool.

Let’s walk through a rocket detonation. Begin by deciding what elements you are
going to need. To break down the elements of an explosion, go to your favorite
Internet image search engine and examine several photographs of explosions. We’ll
add a bright burst, a giant glow, a fireball, some lit smoke, some hazy smoke, some
dirt getting thrown into the air, and some models of debris chunks. Figure 6.5.2
shows textures for several of the elements.

Start with a burst. Some people use additive textures for this first initial flash, but
a nice opaque alpha works well since the color is more controllable, independent of
the scene. Create a particle system and point it to the burst texture. Have it create a
few particles with very short lifespans, ranging from 0.08 to 0.15 seconds. You want it
to leave a strong, fast impression in just a frame or two and then let the fireball take
over. Give it a size range from 100 to 150 units. Put a little range into the initial start-
ing locations of the particles, positive to negative 30 is fine. This will give a little dis-
symmetry to the shape, as the couple of particles appear shifted around. Give it 0 to
360 degrees to its initial rotation. Give the particle a bit of scaling over time. Have it
grow from 0.5 to 1.0 over its life. If the particle gets a few frames of animation, you’ll
get a sense that it’s expanding. Give the particle a bit of opacity fade over its life. Have
it start at full opacity, and then have it fade to completely transparent between time
0.5 and 1.0 (where 0 is the particle’s birth and 1 is the particle’s death). We have the
beginnings of a rocket explosion!

706 Part 6 Audio Visual Design and Production

FIGURE 6.5.2 Textures used to construct the sample rocket explosion. 
Dirt, glow, burst, hazy smoke, lit smoke, and an explosion sequence.



Add some glow. Duplicate the burst particle system and rename the new one to
“glow.” Assign the additive glow texture to it. Give it a slightly longer life, 0.12 to 0.16
seconds. Make the size many times larger, such as 1,000 units. This will simulate all the
particles in the air getting lit up by the explosion. Reduce the particle count to 1 parti-
cle. Change the scaling over time to shrink this particle from 1.0 to 0.5 over its life.

Time for a fiery explosion. Copy the burst particle system and rename it fireball.
Notice the fireball texture has many frames of animation, laid out in six rows and
columns. In Unreal Editor 3, a technique called Particle SubUV is used to play through
these frames. Check the documentation for instructions on setting this up. Use a
subimage index node to play through the first 20 frames of the animation. Set the 
initial locations of the fireball to –30 to 30 on all axes. Increase the particle count to
between 6 and 10. Since animation sequences result in low-resolution frames, we’ll use
more particles that are smaller, so set their sizes to 65 to 75. Give them a bit more life-
time so that the animation can play through (for example, 0.3 seconds should be fine).

Now for some smoke. Duplicate the fireball particle system and rename it lit
smoke. Set up and apply the lit smoke material. In this case, instead of playing through
frames of animation, we will use the texture sheet to have each particle randomly
select one of four frames of smoke for randomness. Increase the particles’ life to 7 sec-
onds. Kill the random rotations so that all the particles are oriented upward, so that
the lighting on the smoke texture looks correct. Give a touch of random rotation over
time, –0.02 to 0.02 is fine. Have the particles’ starting location range from z–50 to
z100 to create a column of smoke shooting up into the air. Give the particles a bit of
upward initial velocity from 10 to 40 in z and –10 to 10 in the other axes. Apply some
negative z acceleration to simulate gravity taking over and pulling the smoke down-
ward after their initial ascent. Give the particles 0.85 max opacity and some custom
fading over time so that they take a while to ramp out to 0 opacity to make their dis-
appearance less abrupt.

The lit smoke looks awkward fading out, so we cross fade it with the hazy smoke
to give a sense that the lit particles disperse before they fade away. Duplicate the lit
smoke, rename it hazy smoke, and apply the appropriate material. Give the hazy
smoke a larger size, from 200 to 250. Increase their life to 12 seconds. Set up random
rotations again so that they can begin randomly from 0 to 360 degrees. Lower the
downward acceleration so that they have more hang time than the lit smoke did.

Shoot some dirt that gets shot up into the air. Duplicate, rename, and assign the
correct material. Make these particles much smaller, such as 30 units. Change these
particles from square to velocity screen alignment so that they can be stretched out.
Scale the particles over their life from x1, y3, z3 to x1, y1.5, z1.5 to give the dirt some
initial burst stretching, to a more settled state. Zero out the upward initial particle
positions. Lower their lifetime to be between 0.7 and 1.2. Give them a bit of upward
initial velocity and some downward acceleration. Delay their emission so that they
don’t appear till after the fireball is fading out. Change the material indexing to refer-
ence the two frames of dirt.

6.5 Special Effects 707



Now add some sparks to finish it off. Duplicate the dirt particle system. Raise the
particle count to 50 particles. Change their initial size to x2, y6, and z6. Get rid of
the coloring over time, and set the initial color to 3 to overblow the intensity. Raise the
velocity to 100 to 500 in z and –200 to 200 in the other axes. Raise their lifetimes
from 2 to 3.

Now that we have all the basics of the rocket explosion, reorder the systems so
that they draw in this order: smoke light, smoke lit, dirt, sparks, glow, fireball, and
burst. Voila! A rocket explosion, as shown in Figure 6.5.3.

Critique

As with any professional art job, you will be reporting to a lead or art director. You
will need to be able to communicate about your work in an effective manner. In
paintings, you can talk about the composition, weight, symmetry, color, mood, and
tone to describe what you like or don’t like about the piece. What about an explosion?
How do you get feedback on a spell that communicates what’s good and bad, what
works and falls short? Here is some language that is commonly used to critique and
improve your work.

Timing

Not just how fast or slow the effect is, but what is the emphasis? Is there a buildup?
Anticipation before the apex? Or does the effect start with a bang and have a long
linger? What about effects that are constant, like a looping smoke plume on the hori-
zon. Use timing to emphasize scale and distance. If it’s a titanic creature, imperial
Starfleet, or planetary implosion, use slow timing to emphasize the scale. Things that
are huge take much longer. A smoke plume on the distant horizon will barely move.
Things with a lot of impact will move very fast. If an effect is too fast, the player will
not have much to see. To get around this, we commonly have a very fast initial impact
and then give a little hang and linger before the effect goes away completely.

708 Part 6 Audio Visual Design and Production

FIGURE 6.5.3 Sequence showing an animated rocket explosion.



Concussiveness

A grenade explosion should not feel soft and watery. It should emphasize the wracking
in your head if one goes off near you. It should be concussive. A one or two frame flash
and a big bright light will provide the basis for it. What other elements can you add to
make the effect more concussive? Some screen blur? Camera shake? Distortion? Explosion
sounds? Maybe a ringing in the ear filter? How much bang does your effect have?

Secondary Motion

This in a fundamental animation term, and it is important to effects. Often, effects
will have a buildup, a climax, and linger. Picture a rocket, where the primary motion is
the rocket itself and its flame and smoke trail. The secondary motion is what happens
to the trail while it’s hanging in the air dissipating. It could be bending with turbu-
lence and settling.

Density

How thick and complex is something? Does it feel too sparse? Should it be more
opaque? Should it have more layers of dirt, debris, pixie dust, glow, or sparks? Is it too
dense? Is the grenade smoke building up too much, obscuring the battlefield? Is there
just too much going for it to read as a clear, unified effect?

Weight

Do the elements feel like they are falling realistically? How much do they bounce
when they hit the ground or other objects? If it is a huge element, is it falling suffi-
ciently slow? How does crushing or breakage work when it hits other objects? Often,
weight on an object is a matter of tweaking settings for your physics engine and set-
ting good initial velocities.

Dispersion

How does it go from a full, matured state to completely gone? Does its opacity fade?
Gamma fade? Scale down to a point? How long does it take? Does it linger for a while
at barely visible before going away? Is the dispersion dynamic and does it have inter-
esting secondary motion, or is it a basic fade to transparent? Fire and smoke should
have much attention paid to their dispersion.

Grounding

Does the effect feel well grounded in the world? This is a big deal with weapon
impacts. Does the surface that is producing the effect, like a wooden door, dirt road,
or concrete ground, look like it could produce that effect? Is it the right scale for the
weapon? Does the decal that is left behind properly simulate the amount of mass that
was removed by the effect? Is there some trash, or blown-up vehicle beneath that fire,
to explain what is fueling it?

6.5 Special Effects 709



Visceral

Does the effect have that something special? Are the colors bright and vibrant? Is the
blood goopy and viscous? Is the magic fantastical and dense? Or is it falling short? Do
the textures add to an ugly blown-out single color? Does the single texture you’re
using look like a repeating pattern?

Frenetic

Is there an intensity and energy? Are things shaking and spurting enough to convey an
engine core explosion or lightning storm? Is the timing fast and random enough?

While the previous terms are certainly not standardized across the entire games
industry, it is common to hear many of them used at various studios to communicate
what’s good or bad about an effect. Not only can these terms help facilitate discus-
sions when you’re looking for feedback, but it’s often worthwhile to use them yourself
during design to evaluate what works and what doesn’t.

Shaders

Shaders refer to how an effect will draw. A majority of effects shaders today will use
the two most basic shader types, blend or add. There are more complicated shaders
that use custom UV animations, distortion lookups, or procedurals. Shader develop-
ment is partially the responsibility of the programmers and partially the responsibility
of the effects artist.

Often, the effects artist will define what new shader he needs, for example: “I
want to make an evolving energy core. There should be two textures, one that scrolls
outward with polar UV coordinates that serves as an offset lookup for a second color
texture that uses standard 0 to 1 lookup and is distorted by the first texture. I’ll use the
red channel for radial offset and the green channel for outward offset.” That is a tech-
nical description that is a bit hard to visualize. It helps to use an offline tool like
Adobe After Effects or ATI’s Render Monkey [ATI09] to prove that the results are
effective before committing code time to the endeavor. Prototyping shaders offline
also helps to communicate better between the effects and code teams, and they serve
as a visual target.

A “blend mode” refers to how the particles combine with the scene to produce
the final results of the shaders. Blend shaders consist of a color texture and an alpha
channel. Smoke or dirt are examples of blend shaders. Add shaders only have a color
component, and they simply use their brightness to combine with the scene. Sparks,
glow, or magical energy are typical of add shaders. One characteristic of add shaders is
that when multiples of them overlap, as with fires, they will brighten each other until
they hit pure white. This result is called blown out and is generally avoided.

Some effects will use the same texture over and over again, as with sparks. You
generally only need to paint one spark, and the entire particle system will use the same

710 Part 6 Audio Visual Design and Production



texture. Sometimes though, this isn’t enough, as with smoke or fire. You will want
either a series of random textures that each particle will randomly pick, or an ani-
mated sequence of textures that provide some motion within each particle. This tech-
nique is called flipbooking. The texture is created with all the frames of the animation
in one large texture sheet. UV animation is used to tell the particles to progress through
the rows and columns of the texture sheet. An explosion is a perfect example of a flip-
book texture. A flipbook can also be referred to as a texture atlas or texture sheet.

On complex shaders, the UVs can be animated over time. This is commonly used
to scroll the textures across the surface of the polygon. Waterfalls and rivers with vari-
ous scrolling water textures are examples of UV animation.

Polar coordinates are a mathematical representation of UVs that map the particle
radially instead of in 0 to 1 space. Energy coming out of a point is represented nicely
with polar coordinates.

Multitexture shaders use multiple textures with different UVs to create a more
layered effect. You may start with a basic color map, add another layer to the texture
that fades the edges, and add yet another texture that scrolls over the base map creat-
ing a complicated layering effect. 

Procedural textures are generated on the fly with code, and they have no textures
maps. Lightning, water and energy are examples of shaders that can be created with
procedurals. They will instead be defined completely by parameters like color, speed,
and turbulence.

Render Monkey is a tool by ATI that is used to develop shaders. Crack it open
and take a look at some of the samples to see various effects that you can create with
shaders. You will be able to set parameters for sample procedural shaders, and take a
look at the shader code to see the math that is happening under the hood.

Physics

Physics has become a major part of the effects load. While too deep a subject to
explore in detail, we’ll provide an overview of some of the ways physics are used in
game effects.

There are different ways effects handle physics, even within a game engine. At the
highest level, every particle system will have parameters that you’ll set, such as veloci-
ties, rotations, and gravities. While these sound like physics terms, under the hood
particles are not using the games “physics engine” to handle these basic forces. They
are entered as values, like “use 80% of gravity,” to make something fall a bit slower
than expected, and often they have curves so that you can change how much of these
forces are applied over the particle’s lifetime. But the main distinction here between
the physics engine and these basic forces that are applied to the particles is that the
basic forces have no knowledge of their environment. They will go right through a
wall. Smoke clouds are a good example of this type of “fake physics.”

6.5 Special Effects 711



The next level is particles that can interact with the environment. You can pick a
“colliding” particle type, or check the “collide” checkbox, or equivalent feature for
your effects tool. Now your particles, when they hit a wall or the ground, can have
some new behavior such as bounce, they could die, or they could spawn a new effect.
This still fits into the loose category of “fake physics,” because the particle is just a
polygon. Imagine a burst of sparks that can bounce off the ground. 

The final level is where we get into the real physics engine. At this level, you will
have real 3D models with low-resolution collision meshes that are simulated every
frame. Many games use licensed physics engines, such as Havok, and some engines use
their own physics system. An example here is a cash register in a store that can be shot
off the counter, falls to the floor, and settles realistically. This setup requires a 3D model,
a low-resolution collision mesh, and parameters such as mass, friction, and bounce.

Performance and Optimizations

An effects artist must be especially concerned about frame rate. Particle systems can
destroy the frame rate with overdraw by having the screen filled with too much
smoke. Unfortunately, at the end of the project when the team needs to improve the
frame rate, it’s relatively easy and effective to start reducing or cutting effects. It is
therefore paramount that an effects artist has a firm understanding of why and where
performance is impacted so that during the normal work cycle, effects are designed in
a way that they will function well within the constrains. Staying within your budget is
the best way to ensure that your effects stay in the game.

Time Constraints

Most console games run at 30 frames per second and there are a few that run at 60 fps,
while PC games commonly run upward of 100 fps. There are 1,000 milliseconds in a
second, so a single frame of a 30 fps game takes 33.3 milliseconds to render. A 60 fps
game gets 16.6 milliseconds to render.

In that tiny amount of time, all of the AI must be updated, the characters must be
animated, all the physics processing happens, network traffic must be resolved, con-
troller inputs processed, audio triggered and played, each and every particle must be
advanced in time, and once the new state of everything is worked out…the drawing
begins. Objects are transformed into camera space, culling happens, objects, colors,
normals, specular, and such are looked up in textures. A few buffers are drawn such as
depth and bloom, lighting is calculated, shaders determine the output color, a few of
the buffers get combined, and the final frame is drawn. That’s a lot of stuff to get done
in a fraction of a second. So how much time do the effects get? About 4 thousandths
of a second (4 milliseconds) seems to be typical, and we’ll assume that duration for
the rest of the examples in this section.

712 Part 6 Audio Visual Design and Production



Breakdown

As an effects artist, how do you know how efficient your effects are? How do you know
if you are within the budget? There are a few gotchas to watch out for and some handy
tools for evaluating where you stand against your budgets. First, let’s give an example of
a fictitious but typical set of effects budgets for a game. These are roughly an aggregate
of the budgets on the titles Shadowrun, Halo 3, and Call of Duty: Modern Warfare 2.

3,000 CPU particles
64 GPU particles, each can contain 512 particles
256 total emitters available at one time 
4 ms to draw everything

Particle Counts
For each of these criteria, you must be mindful of how your effects are spent. The first
three are generally pretty straightforward to manage. During development, you
should debug HUD elements that show what your counts are for any given frame,
compared to the limits, and perhaps show error messages when you exceed your 
limits. Get a sense for how to allocate effects and particles for gameplay elements like
weapons and spells, ambient effects like mist, fires, bugs, and “Hero” effects that are
played at cinematic moments, where you can blow a larger portion of the budget for
a single scene.

Try to get a sense for how many effects your gameplay will need. Do the math to
figure out, if every person in the level shoot his guns simultaneously (which will prob-
ably happen often), and maybe a grenade or two are going off, how much of the bud-
get will this eat up? How many players can the level have simultaneously? How many
particles do a typical muzzle flash and impact eat up? You can maximize things a bit
by having the initial, very quick burst (five frames or less) have many particles (~20),
and the smoke that lingers afterward have relatively few particles (five or less). Be
mindful also of how long you have weapon effects linger, because you’re not just wor-
ried about how many players shoot simultaneously, you’re worried about guns on full
auto doing this, where every other frame they are shooting out another bullet. So try
to keep the linger fairly quick so that the effects disperse to limit the number of shots
that can simultaneously accumulate for a single gun.

Once you’ve got an idea for what your gameplay effects load will be, you can allo-
cate, and have a solid plan for how much you’ve got left for ambient level effects.
One-fifth to one-half of the effects is typical to assign to ambient effects.

For each effect, pay attention to the total particle count. Some typical numbers
are the following: a heavy effect may have 150 particles, a medium effect may have 25
to 30 particles, and a light effect will have less than 10 particles. Once you get used to
working with these numbers, you will be surprised how much you can pull off with
very little. It also gives hope for future generations of hardware, where the budgets
may be 10 times these numbers.

6.5 Special Effects 713



Four Milliseconds to Draw

This is a much trickier number to hit. Particle counts are fairly predictable, as you
have a general idea for how many players can be creating effects plus how many parti-
cles the environment is producing. However, total draw time is very context sensitive
and many more factors go into determining this. The two major factors are CPU
updates and draw time.

CPU Updates
CPU updates, such as particle counts, are predictable. They are mostly fixed to how
many particles are in the scene. This takes care of all the position, rotations, color,
transparency, and so on. If an effect is too expensive, reducing the particle count by a
certain percentage will generally yield CPU savings of the same percent. The only
major toggle beyond that is physics. Particles that do not require physics collisions
generally have substantially lower CPU update costs.

Overdraw
The other main factor is draw time, which can vary wildly based on circumstances. If
particles are far away from the player, they will take little time to draw. If the player is
standing directly in three smoke grenades simultaneously, the many particles filling
the entire screen will take a very long time. Although there are some subtleties and
differences, this cost can be referred to as fill rate or overdraw.

Think of overdraw as, “How many layers am I drawing through?” If there are no
transparent effects on the screen at all, and the environment is rendered, consider this
100 percent overdraw. Depending on the engine, this can take about 3 ms to draw
just the basics. Now, imagine the player was standing close to a smoke grenade, and
happened to get one particle of smoke completely overlapping the whole screen.
Consider this 200 percent overdraw. Unfortunately, it’s unlikely that just one of the
smoke grenade’s particles was overlapping the screen. A smoke grenade probably has
12 or so particles, some of which will be filling part of the screen, some the whole
thing, and maybe two or three were behind the player. It’s likely that standing in a
smoke grenade will result in about 500 percent overdraw.

The good news, though, is that particles shaders are generally much less compli-
cated than environment shaders. Where the environments have a color texture, nor-
mal map, specular mask, specular strength, and lighting to work out, effects textures
are usually only burdened with color and transparency. While an environment may
take 3 ms to render a whole frame, adding a full-screen effect particle may only add
0.5 ms. So in the previous scenario, that 500 percent overdraw from the smoke
grenade probably resulted in 2.5 ms more render time (0.5 ms times 500% = 0.25 ms).

All of these numbers probably seem abstract until you start to get under the hood
and begin getting a feel for how expensive things are. The take-away is that you
should be very aware of the cost of your effects. It may be the boring, technical part of
your job, but in the end having a solid frame rate on your title is extremely important

714 Part 6 Audio Visual Design and Production



to your players. They are relying on you to be sure that you wield this weapon of
frame rate destruction with care. 

CPU versus GPU Particles

In the blockbuster films of today, you will see glorious special effects that are rendered
with millions of particles. The unfortunate reality of game effects is that our budgets
for particles commonly number in the thousands. What a movie’s render farms can
output for minutes, across hundreds of computers, we have to render on a single
machine in a 30th or 60th of a second. There are two pipelines where particles can do
all their updates, on the CPU and on the GPU.

CPU particles are the most common and oldest technique for updating particles.
Every frame, every particle’s parameters are examined, all of the forces are applied to
the particles, its conditions are updated (new position, rotation, opacity, etc.), and it
is ready to be drawn. Doing all this processing for thousands of particles every frame is
flexible, but time consuming. The upside of CPU particles is that they are very con-
figurable. You can turn on and off behaviors like collision or rotation, decide what emit-
ter shape you would like, tell them to spawn a new effect when they die, and so on.

GPU particles are handled differently and much more efficiently. Specifically, a
GPU runs similar operations on all particles in parallel, which results in less flexibility
but much faster computation. So where your game’s entire budget for CPU particles
may be two thousand, GPU particles may allow a thousand particles in each system.
Unfortunately, programmers must create specific routines that run on the GPU
which are customized to the effect, so GPU particles aren’t as generically “tool driven”
or as flexible as CPU particles. For example, an effects artist would configure a GPU
sparks effect with a fixed set of parameters based on what the programmers defined. If
the effect needed to be changed in some unforeseen way, such as emitting the sparks
from a plane instead of a point, it might require programmer effort to create a new
“plane sparks” GPU particle type. 

Requesting New Features

On one hand, your job is to make the coolest, newest effects that have never been seen
before, which often requires new code. On the other hand, you generally can’t have a
programmer implementing every idea and whim that pops into your head. It will be
up to you to find the right balance for your studio in terms of innovation versus “just
deal with it.” 

Part of your job is to get the job done with what you’ve got. You may have cool
ideas that aren’t possible in your engine. So it’s up to you to get as close to that vision
as you can with what’s sitting in front of you right now. However, you don’t want to
let innovation get shoved into a closet, never to be seen. Speak up when you have a
good idea, a new way to do things, and float the idea past others.

6.5 Special Effects 715



In the end, every studio is different in terms of support that the effects team will
get from code. You don’t want to be the squeaky wheel that is causing headaches for
programmers with your never-ending list of features. But just as important is your
responsibility to your player, to give that person the most magnificent visuals you can
muster. Get a feel for your studio and how much you should push versus back off.
This is one area where social skills can be a great asset. If you can get one of the
designers or programmers excited about your idea, by establishing a great rapport and
presenting your idea in an exciting and animated way, that person will be more likely
to stay late to help you get it done.

Professional Tips

1. If your editor does not show a representation of your emitter shape, turn
your particle count way up and reduce (or remove) their velocities, so that
you can see the particles represent the emitter shape temporarily.

2. Use physics on just a few particles to sell the illusion (without the extra cost
of simulating everything) and let the brain fill in the rest. For example,
when rocks shoot out from an explosion, only a small proportion of the
rocks (maybe five out of 20) might have expensive collision and bounce
around. This causes enough of an impression to fool the player into imagin-
ing more realism that actually exists. This helps keep performance in check
for expensive physics calculations.

3. Do not represent a line with dots. Creating a missile trail with circular puffs
of smoke will inevitably lead to the “dotted line abomination.” There are
particle primitives that are much better suited for this, such as ribbons. If
your engine doesn’t yet support ribbons, talk to your programmer about
getting it on the schedule.

4. Avoid additive textures that are one hue. For example, sparks shouldn’t just
be orange. Use some yellow or white for the hottest area, orange for the
meat of it, and as the color fades toward black, make the deepest colors dark
reds. This goes a long way toward avoiding color blowout that can quickly
occur when you overlap several additive particles.

Exercises

1. Create a grenade explosion. Include the initial flash, a light, sparks, lit and
lingering smoke, dirt getting thrown up, and some rocks. Extra points for
adding screen effects like radial blur or bloom and for adding objects nearby
the explosion that get destroyed or knocked around with physics, a decal
destroying the ground, and a point multiplier for setting this up in a game
engine and being able to play the effect interactively.

716 Part 6 Audio Visual Design and Production



2. Create a destructible prop/vehicle. Create or get a 3D model of a car, piece
of furniture, or breakable object. Remodel it in pieces. Then set up a physics
simulation or use particles to blow the thing to pieces. Use additional parti-
cles to simulate particulates, dust, or smoke that would be produced.
Consider creating a source spell or explosion that is the reason for the
destruction, in order to ground it to the world.

3. Create a resurrection spell. Start with two characters in a scene, one alive
and one dead. Animate the live character casting a spell and bringing the
dead character back to life. Create magic energy and spell effects to sell this
mystical event.

4. Create a waterfall. Waterfalls are often done with a combination of a
scrolling texture on a mesh and particles to fill it out. Shaders with nice
specular and normal maps really help sell the scrolling texture part of the
effect.

References

[ATI09] Render Monkey, ATI, available online at
http://developer.amd.com/gpu/rendermonkey/Pages/default.aspx.

6.5 Special Effects 717

http://developer.amd.com/gpu/rendermonkey/Pages/default.aspx


This page intentionally left blank 



719

Overview

Whether you are creating a prerendered cinematic, a level for a first-person shooter, or
prerendered 3D assets for a top-down three-quarter view game, lighting will play a
critical role in defining the look of the game. More than just making objects visible,
lighting has the ability to reveal or conceal details in your scene. It can be used to
make an object stand out from the background, define the irregularity of a surface, or
even through shadow to define objects that are out of frame or obscured by a wall in
the scene. Light can define the mood of a scene, or when focused, light can even be
used to direct the attention of the player.

To use light effectively, it is important to understand how light interacts with the
surfaces in your scene and how that interaction affects the other visual components of
the composition. Understanding light requires that you look at both the aesthetic
qualities of light and the technical components that guide its use within the digital
RGB system.

Lighting6.6

In This Chapter

Overview
Seeing Dimension in a Flat World
Light Models
Shadows
Lens Effects and Atmosphere
Illuminated Textures
Summary
Exercises
References



Seeing Dimension in a Flat World

The single most important role that lighting plays in games, whether for cinematics or
in level design, is to help define the three-dimensional form of your scene on the two-
dimensional plane of your television or computer monitor. This two-dimensional
medium strips away important stereoscopic cues that your eyes are designed to collect
and send to the brain. As a result, an artist must rely on the use of lighting to enhance
and emphasize the three-dimensional aspects of the game world.

Light and Surface

In the real world, we can only see a surface when light bounces off (or emanates from)
the surface and hits our eyes. What we see is a result of the qualities of the light reveal-
ing the qualities of the surface. With our eyes, we collect the combined information to
be interpreted by the brain, giving us an understanding about that surface. Humans
are very adept at distinguishing between infinitely subtle differences in light and how
it plays off surfaces. For example, the slightest blemish or ding on a brand-new car is
instantly recognizable.

In the digital realm, a surface has no visual quality at all until you define it. Given
the complexity of real-world vision, it should not be surprising that even computer-
generated sets and actors in film, created and rendered by the best artists with the
most powerful computers, will often look artificial. It is the complex play of light on
the physical world that is so hard to re-create, and both light and surface are insepara-
bly intertwined.

Luminance

An often-overlooked factor in digital lighting is that a light’s apparent brightness is
actually due to its contrast with surrounding elements in the scene. On the computer,
the brightest object in a scene will never be more than the RGB value of R:255, G:255,
B:255, which is pure RGB white. Once a light is as bright as it can be (without the tex-
tures looking washed out), the only option for making it appear brighter is to reduce
the brightness of surrounding areas. Furthermore, if a light source is directly visible in
the scene, such as a bare light bulb, being pure white is not enough to make it look real.
Our understanding of how lights look is largely informed by our experience of film
and video. To get the light to have a cinematic look, effects such as glowing must be
artificially replicated in the game. These lens effects can be as simple as adding a glow
texture to a polygon in front of the light object. A common technique is to have code
rotate the glow polygon to always face the camera. Many of these effects are much sim-
pler than they look on-screen, but they are necessary to sell the scene.

720 Part 6 Audio Visual Design and Production



Accent on Form

One of the effects of translating three-dimensional space into a two-dimensional
image is the loss of typical stereoscopic depth cues. To help bring out foreground and
midground subjects from the background, lighting techniques can be borrowed from
the film and video industries. The classic lighting scheme for shooting a subject is the
three-point light setup. This setup uses three lights: a key light, a fill light, and a kicker
light or back light. With these three lights, most subjects will exhibit well-defined
form and remain clearly defined within their environment. 

Directing the Focus with Light

In cinema, there is an often-used technique where an actor’s eyes seem to be glowing
from a beam of light (with no apparent source). The motivation for such lighting is sim-
ple; it is to direct the audience’s attention to the actor’s eyes to draw the audience into
the actor’s emotional state. Although this example of using light to focus attention can
be heavy handed if it draws attention to itself, it is an important compositional tool for
helping the audience read a scene. For example, if you want to lead your player to a dif-
ferent part of a game level, you can accent the preferred passage with lighting that helps
it stand out from the other details in the scene. Avid gamers will look for such clues, but
even the novice gamer will be unconsciously drawn toward this highlighted detail. 

Setting the Mood

Lighting can help define the texture of a surface, accent form, and direct attention,
but it is also crucial for setting the mood of a scene. A bright scene with sharp black
shadows is reminiscent of a sunny day and conveys a sense of alertness and cheerful-
ness, much like the world of Nintendo’s Mario. A dark night scene lit with blue
moonlight and yellow torches that cast long wavering shadows is much more sinister
or spooky, and was used quite effectively in the Thief series. In each case, lighting is
critical to conveying the mood of the game and setting the player deep inside both the
emotional and physical world.

Light Models

In the real world, light can emanate from a wide variety of sources. A scene might be
lit by sunlight, moonlight, incandescent bulbs, red neon lights, car headlights, or
torches. Additionally, in the real world there is a lot of indirect light that bounces off
various surfaces, which will change the color and dispersion of the original light. In
the digital realm, your options are limited to four common light models: point, spot,
directional, and ambient.

Each model has different parameters that can be adjusted, but they have one
parameter in common: the color of the light. Normally, we envision light as being
white or yellow, but a light source in the real world or in a game can be of any color,
from neon red to moonlight blue. Keep this in mind as you examine each light type. 

6.6 Lighting 721



Point Light

A point light, sometimes referred to as an omni light because it casts lights in all direc-
tions, is useful for a wide variety of lighting situations. As indicated in Figure 6.6.1,
the point light radiates out evenly from a single point. This light tends to work well
for lighting areas where a specific source is not apparent. There are certain types of
light sources such as torches or unshaded light bulbs where a point light is an obvious
choice, but even some shaded lights are easier to emulate with a point light. While
you can’t focus a point light, it can cast shadows, so it can be directed by obstructing
the light with surrounding objects. As with most of the light types, you can attenuate
(or reduce the intensity of ) a light by adjusting the falloff parameters. Depending on
the sophistication of the point light model, you may even be able to adjust the near
attenuation, a parameter that allows the light to fade in as it travels from its source.
Used together, near and far attenuation parameters can be adjusted to finely control
the area affected by the light.

Spotlight

Spotlights have all of the parameters of point lights (position and attenuation) with the
addition of being able to focus the light like a flashlight or car headlight. In Figure
6.6.1, the spotlight is differentiated from the other light types in that it casts a cone of
light, controlled by changing the cone width and orientation (direction). Because
there is a directional nature to spotlights, there are two common ways that its direc-
tion is often controlled interactively. One way is for a spotlight to lock on to a target
object, thus constantly changing its direction to follow an object. The second way is
for a spotlight to emanate from a source that is actively moving in the scene. An excel-
lent example of the second technique is in Doom 3, a game where the darkness plays a
strong role in both the mood and the gameplay. In Doom 3, the player holds a flash-
light object that shines a spotlight in whatever direction the player faces. This interac-
tive nature of the light source is critical to gameplay and helps the player connect and
explore the environment. 

722 Part 6 Audio Visual Design and Production

a) Point Light b) Spot Light c) Directional Light d) Area Light 

FIGURE 6.6.1 Common light models used to light three-dimensional environments.



Directional Light

Both point lights and spotlights radiate from a single point in 3D space, thus the rays
of light fan out as they get farther from the source. To emulate sunlight with a spot-
light, the light source would have to be infinitely far away, which isn’t practical. The
nature of sunlight is that the light rays are essentially parallel because the sun is so far
away from the earth. The concept of a directional light, with its parallel light rays, was
created to simulate light sources such as the sun. Directional lights are the simplest to
use since they are specified by a direction, intensity, and color. In some directional light
models, there are parameters for adjusting the area or range affected by the light, but
these parameters are not commonly implemented in most game engines. The directional
light is usually placed in the role of the key light when lighting an outside environ-
ment, and therefore must be combined with other lights to achieve a well-lit scene.

Area Light

An area light is a specialized light that is used to simulate light coming from a large
surface area. Typical office lighting, with the large rectangular ceiling boxes, gives a
unique quality of light that can be emulated with an area light. Recent advances in 3D
art packages may even allow an object to be used as a light source. It is important to
understand that these complex area light shapes can be very calculation intensive.
Because of the complexity of the calculation, area lights are generally not imple-
mented in graphics hardware for consoles or PCs; however, some 3D art packages do
offer them for prerendered scenes. In real-time game engines, area lights can be simu-
lated with several point lights or spotlights.

Ambient Light

Ambient light represents the color and intensity of light that affects every surface of
every object in a scene. You might think of this as the light that allows you to see
detail in the shadows where the direct light is being blocked. Unfortunately, the way
that a digital ambient light works does not have a real-world equivalent. In the real
world, ambient light is created by indirect light sources, such as sunlight that is
reflected off objects. A digital ambient light is a single RGB value that is applied to
everything in the scene.

It is important to understand that the look of reflected light is substantially differ-
ent from bumping up the value of all rendered pixels in a scene. The digital equiva-
lent, radiosity, is a way to mathematically simulate this phenomenon, but the
calculations make it impossible to currently do in real time. However, if the light
sources and 3D models don’t move relative to each other, radiosity effects can be
baked into the vertices of a 3D model. This is done by precalculating the radiosity
light value for every model vertex (the reflected ambient light that would strike each
vertex) and using these values at runtime to color (light) the model’s vertices. Another
technique is to bake the radiosity values into separate material (texture) layers to be

6.6 Lighting 723



rendered at runtime. With either technique, radiosity can add very subtle and accu-
rate ambient lighting to any static models within a scene, such as street environments
or interior architecture.

Shadows

Shadows are critical for spatially orienting objects and characters in a scene. An object
without a shadow will appear to float above the floor, so it is crucial to ground objects
with shadows. When lighting a scene for film or video, one of the more problematic
aspects of lighting a scene is controlling the shadows, because every light casts a
shadow. In digital lighting, this task is much more controllable, since shadows can be
turned on or off for each light. However, the drawback of digital lighting is that real-
time shadows are not cheap to compute, so you generally want to limit what shadows
in the scene are calculated in real time. The art of working with shadows in a real-time
environment is to find a balance between adding shadows to the texture layers of your
objects and using a limited amount of real-time projection. 

The relative dispersion of shadows will be affected by the hardness or softness of
the light. Hard lights project crisp shadows that are well defined and have sharp con-
trast. Soft lights create soft, diffused shadows with deemphasized surface contours and
reduced contrast. Since the shadows are what tie the object to the ground, it is impor-
tant to have consistency between any shadows baked into the textures or vertices and
the real-time shadows projected from the lights in the scene.

Lens Effects and Atmosphere

The blooming or glow that we are familiar with around very bright areas in film and
video is caused by a variety of phenomena. For example, lens flare is caused by reflec-
tions within a lens, and the star-like glow around lights is caused by reflections on a
camera’s aperture blades (a five-blade aperture will create five streaks in the flare). A
heavy atmosphere, such as fog, can also create glows or visible beams of light. If you
are creating prerendered cinematics, all of the current 3D packages have rendering
effects that can be added to your scene to achieve a wide variety of lens and atmos-
pheric effects. In real-time game engines, you can still achieve many of the common
effects either by faking the effect with special halo objects or light cones. These can be
rendered usually with an additive effect, or occasionally some effects can be done pro-
grammatically either to the entire frame or based on special glow or light maps
applied to the shaders.

Illuminated Textures

There is one more lighting technique to add realism to your scene that, while not
actually a light model, is critical to accurately representing elements that are casting or
emanating light. For example, many light sources have translucent physical features,

724 Part 6 Audio Visual Design and Production



like light shades, frosted glass, or textured glass, which are in effect glowing or ema-
nating light. The most direct way to emulate an illuminated material is to add self-
illumination to that material. In this case, the lighting calculation for the surface takes
into account that it is giving off light, not just reflecting it. It is important to under-
stand that in the most common type of self-illumination, it is not actually making the
material brighter; it is reducing the effect of lights on the texture by bringing up any
pixels that are in shadow up to the full intensity of the original texture. By adding 
self-illumination with the use of a grayscale image, you can selectively control the
brightness of each pixel with a corresponding bitmap. 

Summary

This chapter introduced the uses and techniques of digital lighting. Lighting is criti-
cal to defining the surface texture and form of 3D objects. It is important for convey-
ing a mood or atmosphere, and can even be used to direct the player’s attention. As far
as implementation, there are four main types of lights used in real-time games: point,
spot, directional, and ambient. Shadows are an integral part of lighting and are crucial
for grounding objects in a scene. However, shadows can be expensive to calculate in
real time, so a game will use a combination of baked-in shadows and real-time pro-
jected shadows. 

As you proceed to light your game levels or cinematic scenes, make sure to do
extensive research into your genre. Analyze how films in similar genres use lighting in
telling a story; observe the use of lighting in a variety of games to see how lighting can
create moods and enhance the gaming experience; observe real-world light and find
ways to simulate that effect in your three-dimensional level designs. 

Exercises

1. Find a scene in a computer-animated film that used light as a strong visual
element. Break down the role of lighting in the scene and describe the fol-
lowing aspects: colors, brightness, contrast, shadows, atmospheric lighting,
or lens effects. Approach this exercise as if you were writing instructions to
an artist responsible for the lighting in the scene.

2. Describe how the light is used in defining the mood of the scene.
3. Create a diagram of the position of each light in the scene, along with qual-

ities such as light type, color, brightness, use of shadow casting, and any
other unique quality or technical characteristics.

4. Describe how the lighting fits into the compositional structure. Describe
the two-dimensional composition of the lighting and how the lighting
helps the readability of the three-dimensional space. 

6.6 Lighting 725



References 

[Birn06] Birn, Jeremy, [digital]Lighting & Rendering, Second Edition, New Riders
Publishing, 2006.

[Hill04] Hill, Steve, “Hardware Accelerating Art Production,” Gamasutra, 2004,
available online at www.gamasutra.com/features/20040318/hill_01.shtml.

[Jackman04] Jackman, John, Lighting for Digital Video & Television, CMP Books,
2004.

[James04] James, Greg, and O’Rorke, John, “Real-Time Glow,” Gamasutra, 2004,
available online at www.gamasutra.com/features/20040526/james_01.shtml.

[O’Rourke03] O’Rourke, Michael, Principles of Three-Dimensional Computer
Animation, Third Edition, W. W. Norton & Company, Inc., 2003.

726 Part 6 Audio Visual Design and Production

www.gamasutra.com/features/20040318/hill_01.shtml
www.gamasutra.com/features/20040526/james_01.shtml


727

Overview

This chapter discusses the process of creating animated 3D art for real-time games.
Animation for these games is the art of capturing a series of individual movements in
digital form and then playing them back in real time. Just about everything in a game
—from the user interface, to atmospheric effects, to characters and walking critters—
will need to be animated. Even the camera may need to be animated through a 3D
environment in a predictable and controlled manner. Animation establishes the char-
acter and personality of humanoid figures and both real and imagined creatures.

Becoming an animator in the games industry has become one of the more highly
sought-after positions. It is also among the most complicated tasks that a digital artist
can undertake in a production studio. Because 3D animation takes place in time, hav-
ing the freedom to artistically manipulate both time and space for expressing actions
and moods is very rewarding. In creating a suitable motion for a never-before-seen
creature, an animator can play God and invent—as long as it works and looks believ-
able in the game. The return for such artistic work is the opportunity to contribute
significantly to a game’s distinctly different style and unique feel. Being the compe-
tent animator who earns a living creating such original work can feel like a bonus.

Animation6.7

In This Chapter

Overview
Responsibilities and Expectations of the Animator
Learning to Animate for Real-Time Playback
Production Workflow of Character Animation
Facial Animation
Motion Capture
Simulation Animation
Summary
Exercise
References



Basically, all things set in motion require thought about how to design their
movement on a frame-by-frame or pose-to-pose basis. Thought must also be given as
to how to evaluate the results and how to feed the data to the game’s animation sys-
tem. Due to the popularity of character-based animation in games and the overlap
with motion for other inanimate 3D objects, this chapter intentionally focuses on the
creation of motion for real-time characters.

Responsibilities and Expectations of the Animator

An animator in the games industry is predominately a character animator, since mov-
ing and talking characters are commonly needed in most game genres. The animation
of many different kinds of characters is an art form that takes much time and practice
to perfect, thus making character animation more of a specialization. As competent
game animators, it is their job to understand the meaning behind an expression and
how to get the body posed and moving to accurately or stylistically convey the action
for playback in real time. An animator should also be knowledgeable in anatomy,
since creating believable motion requires an understanding of the underlying mecha-
nism, like rotating joints and bulging muscles. Character work is a tall order and usu-
ally calls for seasoned animators. Moreover, as the saying goes, you do get what you
pay for when a game company is in search of experienced talent.

In practice, a common mistake many game companies make is to not clearly
understand the difference between a trained animator and an experienced technical
artist. Both are essential and needed for a successful 3D game, but they are not the
same person. An animator who is trained in traditional animation understands 
the fundamental principles of animation and proper timing and how to use them to
his advantage. With a 3D package in hand, this individual can learn the specialized
tools-of-the-trade quickly that will allow him to create and control expressive perfor-
mances. However, a good technical artist or “tools jockey” who masters the software
first and foremost isn’t necessarily capable of producing compelling animations that
are not run-of-the-mill, robotic, or poorly timed. The concepts and principles behind
fluid and convincing motion aren’t yet a button push away.

Any industry-savvy computer artist, given a chance, will at least attempt to ani-
mate characters. The result of his effort, and lack of experience, is more obvious than
one would think to any member of their team. At a glance, it either looks or feels cor-
rect or it does not. No one ever asks what the animator did to get where he did, or
how much time it actually took to complete a character animation. However, almost
anyone is a good critic for convincing and appropriate motion. Consider the fact that
at an early age, even children quickly develop the ability to read body language or pos-
ture and facial expressions. As a result of daily observation of others, people under-
stand the basics of believable human motion and can be acceptable judges of one’s
work. They may not be effective in describing the problem with the motion they see,
but will know intuitively that there is a problem. A computer artist embarking on a

728 Part 6 Audio Visual Design and Production



career as an animator will need to be open to ideas that are different from his own.
Taking criticism constructively is another essential trait of a successful animator.

The artistic versus the technical are two different disciplines that inevitably come
together when animating in 3D. Requiring the use of both sides of the brain, each
discipline calls upon different skills and approaches that command special attention
and ongoing determination by the animator or “all-purpose” game artist. During this
marriage of art and code, producing desired results for complex game characters is
undoubtedly a technical challenge. Fortunately, improved features and workflow in
today’s top 3D applications continue to make the process of learning animation tools
visually interactive and a more intuitive process with every new release of software. 
To stay well informed of such improvements, there are literally hundreds of tutorials
and examples on the Internet that can walk an animator through the steps of learning
the new and improved tools of each application. User group forums and product-
sponsored sites are also good sources for learning the tricks and techniques used by
game developers. Industry trade shows are planned events where many animators 
participate for continuing their specialized knowledge. Historically, however, many
startup game companies do not typically budget time or money for such ongoing
training of their animators.

For creating animation by hand, most game companies will expect that an industry
animator is proficient in the use of at least one of the primary 3D packages. These are
usually the same 3D software products used for all other facets of creating 3D objects
and characters, such as modeling, texturing, and exporting. The tools for animating
characters are common to all popular packages, and although their workflow, names,
and visual appearance may be slightly different, the concepts are generally the same.

Learning to Animate for Real-Time Playback

Learning the art of animation is simple and affordable to anyone who takes the time
to observe the way things around them move, react, and behave. For animators, the
world is like a textbook for studying the anatomy of all living things. Study how the
human body moves on its own or in response to other physical objects and forces, like
the wind or gravity. Learning to animate well requires knowing what important ele-
ments to observe and lots of practice and patience in trying to simulate them.

Two basic and fundamental elements of animation common in all motion are
timing and space. To give life to an otherwise static object or statuelike character is to
understand the role that time and space play in the illusion of movement. A good way
to demonstrate this is to study a simple bouncing ball. If one were to observe the
motion frame by frame, one could see how different the spacing of the ball is at the
top of its arc (or parabola), compared to its spacing during acceleration both before
and after a bounce. The timing is such that the ball feels suspended in place just a bit
longer at the top of the arc it travels than it does at any other place while it moves in
free flight. Conveniently, this example also illustrates another important effect in timing:
ease-in and ease-out.

6.7 Animation 729



There are many proven techniques and principles common to 2D animation that
can and should be considered for 3D. Unfortunately, there are too many to cover in
detail, but here are a few examples of which any animator should be aware. With a 
little creative thinking, these principles can enhance any motion. Figure 6.7.1 shows 
a squash and stretch technique that can be used when creating more rubbery cartoon-
like gag-based animation for a kid’s game. It can also be used to help “sell the idea” of
an expression with emphasis and exaggeration. Other examples are anticipation, follow-
through, reaction and takes, weight shift, and timing to suggest weight and force. In
Figure 6.7.2a, a good sense of body weight is conveyed between two versions of the
same simple 3D character (a biped skeleton). Time and space are used well to capture
the varying rate of movement (or travel) of the more solid character as it impacts the
platform below it, compared with the lighter feeling character that is transported by 
a lifting force. If one were to animate a character that can fly or jump about, the 
concept of lift can also help “sell” the animation.

Since game characters usually do not exist in an empty world devoid of objects,
interaction with furniture, doors, and weapons, for example, can be expected. Figure
6.7.2b demonstrates anticipation, in the subtle stepping movement as he prepares to
lift a heavy object.

Think of what should be present in the motion to help make the animation
believable. It isn’t enough to just satisfy the requirement by having the motion com-
plete. Think of other things about the character that should be conveyed within the
motion as it interacts with things. Is the character heavy or small? Is the character
strong or perhaps frail? Are they wearing special gear that enhances or hinders their
movement? Are they traversing across a terrain that is smooth, bumpy, or slippery?
Are they injured and favoring a particular side of their body?

730 Part 6 Audio Visual Design and Production

FIGURE 6.7.1 Squash and stretch technique applied to a character. 
Courtesy of George Henion. © George T. Henion. Reprinted with permission.



Another technique called overlapping action is often used by traditional animators
for adding life to an otherwise bland design of a simple character. This technique 
can make a very ordinary and dull move more interesting by breaking the action into 
different parts. For example, the drawing in Figure 6.7.3 shows the yo-yo in a hand
moving forward first, with the fingers of the hand dragging behind for a bit, and then
follows through after the hand releases the yo-yo.

In a realistic oil portrait, attention to even the smallest detail is often present. In
the case of motion, more detail can be captured by studying the subtle nuances in a
move that are less apparent at a casual glance. Capturing the subtleties in an anima-
tion brings more life and personality to a character. Animation that appears dynamic,
natural, and conveys weight and realistic movement often has what animators call 
secondary action. This is the movement of smaller parts or details of a character; for
example, things like hair, clothing accessories, cloth, and a tail that continue to move

6.7 Animation 731

FIGURE 6.7.2 Example animation of weight and anticipation. See the file
heavyobject.mov on the companion CD-ROM. Courtesy of Martin Bartsch.

FIGURE 6.7.3 Overlapping action. Courtesy of George Henion. 
© George T. Henion. Reprinted with permission.



and linger after the primary motion has stopped. For example, a woman wearing long
dangling earrings turns quickly to her left. Even though her head, face, and short hair
stop moving at the end of the head turn, the hanging earrings continue to swing
beyond the turn of the head and move to and fro like a pendulum, just a bit longer in
time. See the secondary_action.avi animation on the companion CD-ROM for a 
similar example.

To separate oneself from the mediocre or average character animation talent, an
animator should take the time to learn the fundamentals of animation and borrow
from them for his own work. A career 3D animator develops ways of incorporating
proven traditional techniques within a 3D system, with the basic difference from 2D
animation being that it operates by manipulating volume through genuine three-
dimensional movements. The animator manages to capture in 3D what its long-
standing 2D predecessor has already established to give the illusion of movement to
much simpler, flat shaded shapes common to cartoons. In addition, having learned
how to use the tools available in a 3D software package for animation, an animator
should develop his own approaches to animating that are less technical and more
artistic. In general terms, this produces a less mechanical feel in favor of a more nat-
ural and fluid motion. Experimenting with tutorials found both online and within
CG books and manuals will expose an animator to other methods that may be faster
and more affective. An animator should try not to rely on software and features that
claim to “auto animate.” A seasoned animator or studio art director looking to hire an
animator will see right through this approach.

Production Workflow of Character Animation

The development process for a good majority of real-time games requires the same
basic steps. From initial concept to exporting into a game engine, the pipeline for cre-
ating these virtual actors follows the same paradigm. With a character mesh in hand,
you must first attach the mesh to a structure that will enable the character artist or
animator to deform the mesh into various poses. These poses are keyframed at differ-
ent intervals through time and recorded for playback within the real-time 3D game.
The multiple frames that transition or blend the motion between the key poses,
referred to by animators as in-betweens, are automatically generated by the computer.
The established order and rate in which the hand-keyed motions are played is han-
dled programmatically from within the game. In anticipation of “player control” of a
game character, the animations are designed with the in-game transitions in mind.
The exercise at the end of this chapter will help clarify many of the typical issues that
an animator must address to prepare animation for a game engine. Following are the
steps one takes in preparation of animation. This is often followed by an export
process for getting the motion from the authoring 3D software to a file format that
the game build process understands and supports. It is now ready for testing at run-
time within the game engine.

732 Part 6 Audio Visual Design and Production



To help demonstrate important production steps, we’ll review a typical animation
setup and workflow. The mention of software tools or features specific to any one 
of the 3D packages will be omitted intentionally to avoid confusing anyone not
acquainted with product-centric features and terminology. The example model reviewed
was for an actual RPG-style game created and published by WildTangent.

Planning Your Work

As with anything initially designed on a blank sheet of paper, animating objects for
video games can begin as an abstract thing with many possible directions. One can
make certain basic assumptions, of course, about the motion for a game. For example,
an animation can be designed to serve the purpose of giving a fox character or a floating
puffy cloud personality, or to make an otherwise inanimate object more interesting.
Before creating a single animation key, however, someone has to give thought to what
the look, feel, and timing of this built-to-move piece will be. This creative vision may
have originally been described in written form by a game designer, or illustrated visu-
ally in a storyboard, or at least implied in a model sheet. With even a model sheet in
hand, besides being a series of sketches of your character design presented from several
angles, an animator may glean some direction to begin constructing an animation. A
well-detailed model sheet may explicitly show how a character stands, if it slouches,
how it expresses certain feelings or attitude, is very uptight, or self-righteous. Perhaps
the character appears to roll off knuckles when walking, drag its knuckles on the
ground, or walk on its toes. A profile shot will show something about the proportions
and posture of a character that the front view drawing may not. It can convey the size
of a character relative to other characters or objects so that you can try to capture
something in the motion to help support this important difference. The more specific
a model sheet is, the less likely an animator will have problems when he gets to the
animation. This may sound obvious, but there can be designs that have extraneous
parts in the character, making them difficult or impossible to animate well. This in
turn can make the work harder and less enjoyable. This can also mean that the result
is often bland or boring. Planning ahead can prevent unnecessarily hard work and
poor-quality animation. 

In building a motion sequence, much like constructing a fence from a dimen-
sioned and detailed blueprint, or rehearsing a dance choreography number, motion
needs a way to visually communicate details of the design so that it can be carried out
by the animator. For character animation, this previsualization of a performance is
best done by physically acting out the move. Animation is a performance art, much
like dancing, acting, or a martial arts kata. Before a dancer can perform a physically
difficult solo dance routine, she must be well trained in the art of dance. She will need
to know how to balance her weight, move through space, perform a high vertical
jump, and land with great ease. A mime actor standing before an audience will know
how to gesture with his body to convey emotion. Likewise, an animator needs to
know how to convey the desired expression or mood before he can get a CG character

6.7 Animation 733



to do the same. Good training for emoting and creating the right poses that read well
may come from taking acting classes, studying actors or animals in film, watching
skilled athletes perform highly trained maneuvers, or watching video-taped street per-
formers mime. For example, the Web site www.bbcmotiongallery.com is a free library
of motion imagery that has an extensive collection of domestic and wild animal
videos one can download for free. Standing in front of a mirror, with no one watch-
ing, of course, is an excellent first stab at visualizing a move. Whatever the source of
inspiration, animators should invest time in understanding the expected performance
before they can re-create it.

As with any other visual art form, the more preproduction planning for anima-
tion before beginning the work, the easier the job is with fewer revisions later.
Additionally, like building a stage set for a movie where the more one knows up front
about what the camera sees during a shoot and from what angles, the better a decision
can be made about where to spend valuable time during the construction phase. If the
camera will pan back and forth from the left to the right in a computer or video game,
and the characters or “actor” will also move from left to right, there will be less reason
to be concerned for how the character’s weight shifts to its own left and right side,
thus saving the animator some production time. In contrast, a 3D game that allows
for greater camera control enables seeing the character from all possible angles.
Careful planning can again result in creating better animation that reads well without
blowing the production budget.

Finally, an animator will also need to know what approach to take given the rig’s
design and capabilities, and which software features he should use before diving in to
create the motion. He’ll also need to give thought to whether he should build the
motion sequence in a linear fashion as in straight-ahead animation, which is the
process of designing each keyframe in order from first to last. Because the entire
process is kept very creative and spontaneous, this usually produces action that has a
fresh and slightly comical look. An alternate approach may be to establish extreme or
key poses at the beginning and the end first. This is followed by “tweening” the charac-
ter, or creating and sliding additional key poses between the extremes, to vary the 
timing and spacing and to progressively fill in more detail. The animator will also
need to know if motions are cyclic in nature and if they are to seamlessly transition
into other moves listed on the move list.

Modeling and Texture Mapping

For the modeling of low-polygon models that have to move and bend, here are several
things a character artist should consider:

Avoid having geometry edges or missing polygons that may show when the model
moves. For example, a robed character with no geometry underneath may have to
be animated to fall down, thus exposing the bottom area of the robe.

734 Part 6 Audio Visual Design and Production

www.bbcmotiongallery.com


When placing geometry near body joints, the modeler or rigger should make 
certain that the pivot points are well placed. Have enough subdivided geometry
around them so that the mesh can bend nicely without flattening or collapsing the
volume of the mesh. If needed, the animator may need to move vertices around or
add more edges, as in Figure 6.7.4.

To reduce the appearance of surface stretching, the modeler should try to avoid
having too much detail granularity in the texture map around areas that will expe-
rience a considerable amount of stretch when animating.
It is common to have to go back and refine areas of a texture that are mapped to
parts that seemed unimportant or were hidden from view when the model was
originally created.
The more complicated the design of a character is, the more difficult and time
consuming it will be to prepare for animation or animate. Beginners to animation
may have to simplify their character designs and make sacrifices to keep the char-
acter simple enough to control and animate well.

In creating animation for real-time characters, an animator will need a way to
deform the mesh so that it takes on expressive key poses. A commonly used method for
manipulating the “only skin deep” surface uses a skeletal structure that can simulate
the way living things are able to move in the real world. A skeleton or rig comprised
of bones gives the animator a means to deform geometry in a more intuitive and pre-
dictable way. The use of a skeleton is much like outfitting a puppet with an armature
rig made up of flexible wire or a rod-and-joint construction arranged in a hierarchical
relationship. As with a puppet, this virtual rig is then inserted into the mesh object
and moved to change its shape. 

6.7 Animation 735

FIGURE 6.7.4 Constructing models to animate well.



Creating a Skeletal Rig

An animator in the games industry will most likely be responsible for rigging the 3D
characters. Rigging is the process of attaching or binding a mesh object to other control
objects (such as a skeleton). These control objects will be used to deform or move the
mesh. An animated skeleton is the underlying structure that drives the movement of
characters created as either a single mesh object or as a segmented model.

Skeletal rigs can be custom made to fit any form, shape, or sized character. They
can be constructed of any combination of parametrically created bone objects, helper
objects, and mesh objects. The appearance of a bone can also vary considerably in
appearance among different 3D packages or even within the same package. Whichever
is used, they simply provide a visual aid to help the animator more intuitively control
and manipulate his character. A bone can be a simple shape, such as a long narrow
box, or an elongated diamond shape. In contrast, a bone can be a custom shaped
mesh object that is designed to look like the human or animal bone it represents, like
a hip bone, spine bone, or skull. Sometimes, a bone object can have extra fins or 
special handles extending from them to help the animator select the bone from within
the character body mesh.

In the example shown in Figure 6.7.5a, the skeleton is made up of bones joined
together, in a configuration that more closely resembles a human. This set of bones
came prepackaged as a set from within a specific 3D package, and was then adjusted
to a size and proportion suitable for the character’s mesh. Figure 6.7.5b illustrates
another human rig made up entirely of segmented mesh objects. For clarity, the seg-
ments in this image were intentionally separated with even more space between the
various body parts. Again, they are linked together in a parent-child relationship with
the hips at the top of the hierarchy. Lastly, a combination of both simple mesh objects
and bones are used for the human rig in Figure 6.7.5c.

736 Part 6 Audio Visual Design and Production

FIGURE 6.7.5 Skeleton rig design can take on many forms with varying control.
(Rig c. is courtesy of Nick Kondo).



For the best animation possible, most character animators feel it is important to
have good control over the rig. There are many devices available with each 3D pro-
gram that offer control of linked bones. For optimal results, controls need to feel
comfortable, respond quickly and predictably, and be easy to use. With complex char-
acters, there can be as many as 100 controls for an entire body. These can be facial-
animation target shapes (Figure 6.7.12a), controls for bone rotation and scale XYZ
values, IK goal position XYZ values, and constraints. It’s good practice to simplify
controls whenever possible. Having to wrestle with a rig can hinder the creative
process and often forces a frustrated animator to accept poor results.

There are trade-offs to having ideal controls. The more control for manipulating
a complex rig, the more experimentation the animator will need to create full body
expressions, with balancing and shifting of body parts that transition well between
poses. A poorly designed rig that doesn’t offer good control of large areas can mean it
will take more work and time to establish the various poses, with more parts to move
overall. Better gross control enables the animator to be more flexible and means that
he doesn’t have to commit to anything right away, making large area changes quickly.
On the other hand, a highly specialized rig is often less interchangeable and harder to
repurpose for use with other character types. To save the animator time and many
steps, the individual responsible for constructing the rig should understand what the
animator will need. Arguably, finding the right balance between complexity and con-
trol is a subjective call an animator should be allowed to make. This may take more
time upfront to set up, but it can be well worth it in the long run. 

The proper placement of each bone is also an important factor to good anima-
tion. A well-proportioned and detailed model will clearly convey the positioning of
the body’s underlying structure (see Figure 6.7.6). When placing bones, the animator
should take care to understand the mesh topology and give thought to where defor-
mation of the mesh will take place. It helps to see through the mesh object of the
character’s body, as in Figure 6.7.7, so that while placing bones, one can determine
the proper centering of each joint. Using as few bones as possible is also a good prac-
tice because that would require less processing in-game for supporting and maintain-
ing that character. A good rule of thumb when determining how many bones to use is
to assume that the smaller the character is on-screen, relative to other characters, the
fewer bones will be needed to clearly articulate the entire body, since the more subtle
nuances may not be noticed. In contrast, the more important the character and the
larger it is displayed on-screen, the more complex the rig can be with more effort
needed to animate the subtle nuances for added realism. 

Depending on the game’s need for more subtle details, the hand is an example of
a body part that may or may not require multiple bones. For any mesh object to have
smaller independently moving parts (like a hand’s three fingers and a thumb with two
or more joints each), the skeletal structure within the hand must have enough bones
to control each digit separately. The complexity for building the rig, as well as animat-
ing it, has just increased considerably. The so-called joint is the bone’s pivot point at

6.7 Animation 737



the end of each bone length and is where they rotate, along one or more axes (Figure
6.7.7b). Understanding the anatomy of a character is critical in determining where to
put the start and end points of each bone. When a bone at the top of a chain is rotated
about its joint or pivot point, all attached bones, or children bones, are also affected.

Several rigs can be built to serve different purposes during the production of 
multiple animations for a single character. Differently configured rigs will provide
more specialized controls for specific parts of the character’s body. For example, for
outfitting a character that walks and talks, a facial animation rig will facilitate the
development of facial expressions and speech animation, while a separate full-body rig

738 Part 6 Audio Visual Design and Production

FIGURE 6.7.6 Label all parts to avoid confusion.

FIGURE 6.7.7 A bind or figure pose, with a transparent mesh for 
evaluating placement of joints.



can focus on providing better control over body limbs and spine. The facial rig may
stem from the neckline on up to the head and have branching bones that reach out to
provide control over the surface of the face, as in Figure 6.7.12b.

Several things to consider when designing a rig:

The best place to start building a skeleton is usually the base of the spine or the
hip (root).
The distance between pivot points directly determines the length of each bone.
Place the start and end of each bone at the center of the point of rotation.
When building a skeleton, it is best to view the model in wireframe or transparent
mode (Figure 6.7.7a), viewing the model from as many angles or windows as pos-
sible. This will ensure the best placement in the body relative to the bone’s pivot
point and the polygon edges.
A bone may have to pass through the outside of the mesh between joints to get
proper placement of the joint. This is acceptable and doesn’t introduce a problem.
For real-time game development, it may be important to keep the bone count as
low as possible. Check with a programmer about performance specifications.
Proper naming of bones and other parts of a rig will help organize the setup. This
also simplifies the process of selecting them when looking for them in a program’s
track view or schematic diagram.
Use interactive controls when possible to help speed up the animation process.
Setting them up can be quite involved. Getting everything to move naturally
using controls will require reading the software manual and practicing with the
various constraint options. An animator should take the time to do this before
venturing into making an appropriate animation rig.
Helper objects, dummies, or end bones are needed at the end of every extremity to
terminate a chain. This ensures that a continuous link between bones during
binding will reach the last child in the chain.

Vertex Weighting—Binding the Mesh to the Skeleton

The mesh will need to be attached to the skeleton using a method for binding it to all
of the assigned bones. On a vertex level, one or more animated bones will control the
amount of movement of each vertex point relative to each other. This process of
assigning and adjusting the amount of influence each bone has for every vertex is
called vertex weighting. The adjustment of vertex weight values is important to main-
taining good form and volume of the mesh as it is being deformed by the moving
bones. Properly weighted vertices will make the model’s form look great during most,
if not all, frames of animation, and not just at the pose that was used during the ini-
tial binding. To this end, every vertex point in a low-polygon model should be evalu-
ated during the playback of every animation to see the full effect of each bone’s
influence during all animation sequences. The process of refining vertex weighting

6.7 Animation 739



can and should be revisited often during the animation process. It is usually the more
extreme sequences that stress the mesh to a point that reveals the less than ideal weight
values in problem areas, such as the shoulders.

To speed up the process of vertex weighting, the rigger can use what are referred
to as envelopes to assign a group of vertices to each bone. As shown in Figure 6.7.8,
each bone that the mesh is bound to has its own adjustable three-dimensional enve-
lope to control the amount of influence over vertices that it encompasses. There is an
inside envelope, with a falloff to an outside envelope. The controls for adjusting the
size and effect of the falloff are similar to those used to adjust the falloff of a spotlight.
Although finer and more precise adjustments of weight values can be addressed on a
vertex level, the process of doing so is much more tedious and time consuming. For a
faster workflow, using envelopes is a good place to start for defining the area of influ-
ence each bone has over often hundreds of vertices. Although finer control for each
vertex is available, envelopes, as a first pass, should cover about 90 percent of the work
with little fuss. After creating new animations or loading existing motions, the rigger
can further test the vertex weighting. The dialing in of more optimal values for any
questionable vertex point can begin. For a more intuitive and artist-friendly approach
to adjusting the weight values, some programs even support “3D painting” of each
bone’s influence using a 3D paintbrush. The amount of influence can also be repre-
sented to the user in color for visual clarity.

Animation—Hand Keyframe

This is the last step in the production workflow process for character animation.
Learning how to animate any 3D object is to truly teach oneself by trial and error.
Although the concepts and practices are simple to comprehend, the process of con-
trolling and predicting the results of animation can seem daunting at first. The only
way to overcome this is to work through various tutorials that walk a student through

740 Part 6 Audio Visual Design and Production

FIGURE 6.7.8 A look “under the hood” at the thigh bone envelope for vertex weighting.



the process of animating something similar. Doing so is like following a recipe 
step-by-step in a cook book. Every major 3D program comes chock full of “How-to”
tutorials and examples. They are written with the intention of revealing important
tools and workflow issues specific to the task of animating an object or character in
their 3D package.

This chapter does not provide a tutorial on how to animate. Instead, it is an
overview of concepts, important terms, and common approaches all animators should
know to build from. Workflow recommendations and tips are offered to help the new
animator troubleshoot common problems when creating a character animation.

A common approach for creating motion for game characters and other environ-
mental 3D objects is hand-keyed animation. This means the animator created the
animation manually using keyframes, without the aid of any other existing motion
data or animation plug-in. A trade term that is specific to creating keyed motion for
characters is pose-to-pose animation. To better understand this approach, look at the
opening art for Part 6 of this book as a visual reference. The multiple images of the
running Jack Russell terrier resemble stop-motion animation. As in clay or flipbook
animation, the incremental changes to objects or drawings together create movement
or “life”—the key concept of animation. Traditionally, a movie film camera was
started and stopped, one frame at a time. While the camera was stopped, an animator
would adjust the figure or object to the next pose. The camera would film another
frame—this would continue until all the animation was filmed. Playing the film at a
predetermined frame rate creates the illusion of motion.

In the pose-to-pose approach to animating a character, the skeleton of the model
is rotated and positioned into a key (or “extreme”) pose, and then another, along a
timeline. Each figure pose is keyed, or held in place using keys, for every bone on that
frame. For example, Figure 6.7.9a shows several keyframes along a 70-frame anima-
tion. The time span between the poses is not important at first. Just capturing the
action in a sequence of static poses is the initially creative focus of this approach. Once
this is done, the animator can play back the animation in real time and review the tim-
ing between keys as the computer fills in the movement for all the frames between.

6.7 Animation 741

FIGURE 6.7.9 (a) Key frames on a 70-frame timeline resulting from hand 
animation versus (b) motion capture data.



When compared to manually drawn hand animation of each in-between frame, this is
where the beauty and power of today’s computer technology saves animators lots of
time and money.

Kinematics, the study of motion in its most basic form, plays a role in how an ani-
mator will manipulate a rig and how the hierarchical linking of bones from parent to
children will be set up to form a system. Kinematics systems come in two varieties,
forward kinematics (FK) and inverse kinematics (IK). When using FK, the order of the
bones is important. The best place to start animating is with the root of the skeleton.
FK, more commonly known as keyframe animation, is the most accurate way to ani-
mate and requires the least amount of time to set up. This makes it popular among
new animators. However, it isn’t necessarily the fastest way nor does it produce the
most fluid results. The animator is essentially hand positioning each bone, in order
from the root forward through the chain, in the exact position desired. Working with
an FK system is like animating a jointed wooden stick figure or a hinge joint G.I. Joe
action figure or Barbie doll. The pose-to-pose approach works best with this setup.
Since the root bone is the parent of all other bones, its position and movement should
be established before working on any other bone that the parent will affect. Later, the
animator can create the movement of other bones from the root toward the head,
hands, and feet. Should the animator work on the feet first, adjusting for how they
touch the floor plane, they will undoubtedly be affected by any changes made to the
root later on and will throw off the position for bones that are children of the root.
Another disadvantage of this system is the constant time-consuming re-keyframing of
all the bones in the chain.

A less time-consuming and easy-to-use kinematics system is IK. This is a goal-
driven animation system that operates based on manipulating a single “goal object” to
position an entire chain or object hierarchy. It is the opposite of FK. Instead of defin-
ing movement by moving and orienting the bones from the root out to the extremi-
ties, the opposite approach is taken. For example, the hand is placed in a pose, and the
animation program will attempt to figure out how the other bones and joints should
move or rotate to reach that pose. IK can produce more fluid movement, but can be
harder to control with less accuracy.

A rig that is set up for IK takes much more time to configure and test. The signif-
icant savings in time during animation more than make up for the extra steps
involved in setting up an IK system. Because the movement resulting from IK more
closely resembles the real world, experienced animators will use it often and in combi-
nation with FK for better results. Learning when to use IK over FK in the same rig is
very much a creative process that requires a good understanding of the movement.
Movement that is goal-driven works well with IK, while movement driven by an
“internal force” works well with FK. Each system is unique and can be used to the
animator’s benefit if understood well.

742 Part 6 Audio Visual Design and Production



Built-in features can help speed up the animation process considerably. In the
straight-ahead animation approach mentioned previously, the use of set key mode via
a user interface button or hot key is a good example of a valuable time saver. Starting
with the first frame, adjust the character to assume the first position of the animation.
Press a key to invoke this feature, and all bones are instantly keyed at that frame.
Then, moving forward in time, various bones are rotated and translated to create the
second pose. Set keys again. It is important to establish the main broad strokes first
with the core central parts of the body, since they are the bones in the hierarchy that
will inevitably affect all other bones in the chain. Later, once the broad strokes of the
animation are in place, overlapping action can be added by animating the movement
of things like hair or a long beard, staggering the keys after the rotation and position-
ing of the head is done. Sometimes, simply offsetting a single key can add much 
personality to an otherwise stiff-looking animation.

There are several things an animator should consider when creating animation
for any kind of game character. Here are some helpful recommendations:

Become familiar with the software’s timeline and keyframe functions. These are
the basis of animating all objects well in a 3D program.
Practice with a single simple character first before working on more complex
scenes and character setup. The software CD that comes with each 3D program
may contain some models for this purpose. The Internet is also a good source for
models.
The start and end frames of a looping motion must often be the same for game
characters. A copy and paste function may be available to the animator within 
his program of choice. For a perfectly seamless blend, it is best to view what the
function curve looks like going in and out of the keys at both the beginning and
the end of a sequence. As shown in Figure 6.7.10, look for the function curve edi-
tor in your program. Learn to use the controls to edit function curves. Familiarity
with this editor will quickly advance a novice animator’s control for adjusting keys
and refining animation.
With high-frequency motions that play back too fast in real time to evaluate prop-
erly, adjust the playback setting in the program so that it plays the sequence in
slow motion. This will allow the animator to study the motion path of each bone
for smoothness. Varying the playback speed also provides a better idea of what the
final timing of the motion should be before actually adjusting the keys to affect
the timing of the motion.
Some programs will allow saving and loading of animation clips, even for use on
different characters. You can later load this clip to replace or be added to the end
of an existing animation clip. This file type is used only for merging and loading
animations and can’t be opened as a scene file. When copying and pasting keys, it
is a good idea to see what is happening in graph form in a motion track that shows
the function curves for the animated bones.

6.7 Animation 743



In the pose-to-pose method, the motion generated between key poses may look
mechanical or choppy. To smooth out the motion, the animator can add additional
keys where needed. A good way to visualize the path of travel by each bone is to
turn on trajectory in your 3D application. Figure 6.7.11 has the trajectory of the
neck bones for the example Dragon model provided on the companion CD-ROM.
For a more fluid and natural-looking animation, avoid having bones travel in a
straight line. Prefer elliptical motion paths, as revealed using the trajectory path
visual aid, as in Figure 6.7.11b.

744 Part 6 Audio Visual Design and Production

FIGURE 6.7.10 A function curve is another vital aid to troubleshooting and editing keys.
Here, the motion is expressed as a function curve on a graph.

FIGURE 6.7.11 Displaying a bone’s trajectory shows the motion pattern as 
well as problems in the motion path. The left image reveals a 

pronounced stutter in the motion of the neck.



Avoid hyperextending joints.
Avoid having sliding feet if possible. Explore any features the software may 
provide to lock down and release the feet and hands at each frame. 

Not all programs are alike when giving thought to important time-saving fea-
tures. When making the selection of which production software to use for character
work and animation, there are certain standard approaches and common expectations
among professional game animators. For example, having the ability to easily remap
motion data from one skeleton to another of the same or different bone count, as well
as having a different configuration or naming convention. The support for repur-
posed content can save a team much valuable time and money. Saving the bind pose
and other key poses separately for later use is another important feature. Animating
with both IK and FK interchangeably offers more freedom of control during anima-
tion. Having a built-in parametrically configurable prenamed skeleton that can take
on any shape or size is a bonus. Tools to lock feet down to the ground plane, attach
hands to props and goal objects, is another huge benefit and time saver. Other devices
for dynamically adjusting motion and animation controls, such as setting up joint
constraints, prop linking, mirroring of motion, changing of orientation, and copy/paste
of poses are all attractive features to a tech-savvy producer art lead or production
artist. When adjusting the timing of an animation, having access to function curves
within a track view window is a must for finer control of all keys.

Facial Animation

Facial animation for in-game characters is another area of work that would fall within
the responsibility of the animator. Although less common than body motion, the use
of facial animation for expressing emotions and speech with audio dialogue is quickly
becoming a vital component to passive storytelling cut-scenes of newly released game
titles. Facial animation is meticulous work that requires much attention to detail and
a lot of time to set up and complete. Even so, highly ambitious PC and console games
are going the extra mile to develop the best-looking and ever-engaging close-ups of
their star characters.

Before an animator can jump in and start to set up a character for animating
facial features and expressions, he must first have a clear grasp of how muscle move-
ment can affect facial tissue. The animator will be able to simulate the appearance of
a desired expression if he knows how muscles move over bone and each other, what
their range of motion is, and how each affects the soft fatty tissue and skin attached to
it. The animator can set up his underlying structure more accurately having a full
understanding of the 11 major facial muscles that control facial expressions. For
example, in a yawn, the jaw opens very wide by rotating downward from the rest of
the head, and the facial muscles around the mouth would bring the corners of the
mouth closer together (neither up nor down), with eyes made to squint or close and

6.7 Animation 745



eyebrows drawn in. In keyframing such a pose, a good structure will allow the anima-
tor to focus on moving the areas of the face that are essential to making this expression
read. Valuable time for experimenting would not be sacrificed by forcing the anima-
tor to wrestle with a less than ideal structure. Setting up a face model for animation
can be accomplished using one of two common methods. Both methods have their
limitations and technical drawbacks in conveying a wide range of facial expressions
commonly needed to make a base face mesh appear to emote feelings. Sometimes, an
animator can work around limitations and even use them as part of the design.

The first method is referred to as morphing, because a base mesh of a face or head
changes shape by blending between other states or target shapes of the same model.
The animator must create a library of key poses or facial expression targets to animate.
Each target mesh is like a frozen version of an extreme state of every expression, or
phoneme for lip-syncing. The set of targets are used by the game engine to deform the
base mesh. In a predetermined order, it re-creates the detailed facial expression or
appearance of speech in real time, sometimes, in combination with an audio file of
spoken words or human sounds. One of the technical drawbacks to creating the 
multiple target meshes is that the number and order of vertices must be carefully
maintained throughout the various target versions in order to work.

The second method resembles the same workflow for setting up a full-body rig.
The animator would first create a skeletal structure designed to deform the surface of
the face that would enable him to simulate the underlying muscles of human facial
features. Figure 6.7.12b, along with the example animation secondary_action.avi on
the companion CD-ROM, shows how facial gestures and mouth movement have
been created with keyed bones. For a potentially wide range of expressions, a high
number of bones may be required. Limiting the number of bones that have to be
rotated, as well as the points of the face that they control, is one way to help simplify
this daunting task.

Using a rig, in order for specific parts of a face, such as the brow, to move inde-
pendently from other parts of the mesh, the vertex points will need to be controlled
with a single moving bone or a group of bones. This mesh deformation technique will
move individual or groups of vertex points associated with facial features. To get the
face to express a smirk, puzzled, or surprised look, the brow part of the face mesh can
be moved to create such an expression. For example, in moving these subparts, the
bones controlling the vertex points above the eye will have to be manipulated and
keyed. For real-time game animation, the animation system used to deform the mesh
in-game understands the additional bones that are different or in addition to the body
rig, as in Figure 6.7.12b.

746 Part 6 Audio Visual Design and Production



Other Important Considerations for Facial Animation

The relationship between the inner structure (meaning how it’s rigged) and the
outer surface is a key component in facial animation with bones.
When facial animation is used in a game, the character usually ends up being a big
part of what audiences see on the screen, because the dialogue lines that we hear
are coming out of the character’s mouth, and also because there is a wide range of
nonverbal communication that can be achieved with facial expressions.
When blocking out animations, it is useful to start by first animating the eyes,
because audiences usually look at the eyes first. You can use a single NULL point
to control the point of interest and direction in which the eyes look.
It is also important to keep different timing for each of the different major com-
ponents of a face, like the eyebrows, lips, and nose, blinking of eyelids, and the
tongue. This often results in more engaging gestures and overlapping secondary
motion. In addition, animating things like the jiggle of loose skin separately, for
example, is a good way to convey secondary motion and a sense of mass.
When syncing the lips to the dialogue, it’s best to focus on animating the impor-
tant intonations, which usually gives you better results than overanimating or
exaggerating the lip positions. The open and closed mouth positions are the most
important shapes because they are the extremes that show emotion.
Facial animation is usually applied to the character after the body’s primary
motion has been blocked in.

Motion Capture

Another common way to provide character motion for a game is to use motion cap-
ture data, or mocap. In contrast to the hand animation approach, mocap is movement

6.7 Animation 747

FIGURE 6.7.12 Two commonly used methods for animating facial features and expressions.
The models in the left image are courtesy of Nick Kondo, an animation created by Martin Bartsch.



that was performed by a live actor and captured by a computerized system that
records the performer’s every twitch, sway, and bounce, all in real time. This motion
data is then mapped onto a virtual actor, designed to carry out the same performance.
A video clip from a motion capture session has been provided on the companion 
CD-ROM, entitled mocapmotion.avi. This approach to animation is often a quick
and precise way of getting realistic motion onto a noncartoon game character. Keep in
mind that the expression of the motion is only as good as the performer’s ability to
carry out the desired motion, as instructed by the creative director. Therefore, a lot of
preplanning and good direction is important to avoid buying costly motion data files
that may require a lot of rework by a development team animator or may even be cut
from the project.

In only a few days, mocap animation can be recorded and prepared for immedi-
ate use in a game engine. In contrast, it can take one or more animators weeks or
months to hand animate a large amount of character motions. The cost of capturing
such data may seem expensive initially to a cost-conscious project manager or pro-
ducer developing a low-budget game. However, the long-term savings become appar-
ent when comparing the cost of creating detailed and realistic moves that usually takes
hours and hours apiece to hand animate. The trade-off in time saved by going this
route can often offset the cost and preparation time. In addition, if the project calls
for animation that must represent characteristic movements of real people or signa-
ture moves of celebrities, as in sports, mocap may be the only viable option.

Appropriate Use and Availability

Of course, mocap shouldn’t be used in a product just because one can. Certain game
genres may not prefer such realistic motion and may require a hand animation
approach to enhance their product’s style. For example, in a more cartoonlike game
filled with fun, goofy, or playful characters, hand animating them will give the char-
acter capabilities that not even the most flexible or athletic human possesses. Yet other
game genres inevitably need to have such motion capture services in-house to make it
cost effective for them due to the volume of moves needed and control over trained
talent. A sports-oriented game can have a wide range of specialized moves, requiring
precision to make them believable to a sophisticated audience. A high-frequency
dance performance that exhibits great styles and time-based rhythm would also be
best carried out by properly trained dancers and not one or more animators. 

The majority of game companies in the United States do not own their own
mocap studio. Consequently, many have to send an art lead, or an art director and tal-
ent, to a mocap studio for one to three days to capture their custom moves. Different
studios will have different systems and equipment for capturing the motion data.
There are advantages and disadvantages to each system. Game development leads
should shop around and research for the studio that will best serve their project’s spe-
cific needs and budget.

748 Part 6 Audio Visual Design and Production



There are several things to consider when preparing for a motion capture shoot.
Here is a preshoot checklist for review, in no particular order:

1. Before a trip to the studio, prepare and submit a well-planned move or shot
list with a naming convention and description that can be easily understood
by the studio technicians. The studio usually likes to see this as early as 
possible to optimize their system for the upcoming moves. The move list is
closely tied to the final price in that the more complicated the motion is to
capture, the more time may be needed to both successfully capture and clean
up the moves in postproduction before delivery to the client.

2. Use exceptional talent who can deliver the desired moves and take direction
well (see Figure 6.7.13). These individuals may charge more than the friend
or cousin willing to do the work. Not paying the professional’s price may
cost more in the long run if the motions are inferior due to poor execution.

3. Have the talent bring comfortable shoes that are well broken in. The studio
technicians may place markers on them that can potentially deface the
shoes. Ask the studio about this beforehand.

4. Select a motion capture system and team that has experience troubleshooting
problems.

5. Be well rested for the shoot and ready to make quick decisions and give
direction.

6. Lunch needs to be thought about beforehand, so that valuable time is not
lost during the day of the shoot. Make sure that the talent has lots of water
nearby.

7. Have important props handy that the talent can interact with during a shoot.
The proper weight and size can be important to an accurate performance.

6.7 Animation 749

FIGURE 6.7.13 Having exceptional talent and choosing the right mocap 
system are key to producing optimal results.



8. For very physical moves and stunts, ask the studio to provide padding or
landing mats. It’s a good idea to have a stunt coordinator and paramedic on
standby if the motions can cause bodily injury to the performer.

9. Before the capturing begins, be clear about instructions for the method and
schedule of delivering approved motions. The person paying for the motion
never leaves the studio with any captured data that is ready for use. Allow at
least a couple of days before expecting the first batch of processed motion files.

Simulation Animation

With today’s 3D applications, another way to create realistic animation by a 3D artist
or animator is to set up simulations that perform real-world effects and then record
the resulting animation of affected objects. These systems can create the effect of wind
that blows particles around for creating smoke, fire, or waterfalls. An artist can set up
a simulation with collision physics that can break a wall down into smaller parts by
having a separate object thrown into it. Even cloth or moving hair can be simulated
for real-time playback in a game. A falling person, a bouncing ball, or even a sliding
car can be simulated using today’s well-developed software and plug-ins that offer dif-
ferent systems for simulating physics. These may impose a bit of a learning curve to
master the many subtle variations in their settings. Like motion capture, it is defi-
nitely worth the payoff in believability by producing complex and convincing results.
Beside, this suspension of disbelief is what helps to sell an interactive 3D experience.

Summary

The scope of work that an industry artist or animator is expected to contribute on a
project varies extensively. For character work and animation specifically, this chapter
discussed the many facets of the production pipeline. It involves planning, modeling,
texturing, rigging with vertex weighting, animating both body and face with
keyframes, motion capture, or physics simulation. Animation is a tough job, make no
bones about it. As the scope of design and the complexity of environments continue
to increase for interactive games, the volume and variety of virtual inhabitants will
also continue to increase. Learning the recommended workflow steps and approaches
to setting up and animating this growing cast of digital actors will help secure more
ongoing gratifying work for the art and animation staff. Newer tools of the trade will
have to be learned and mastered to compete on all levels.

A seasoned animator’s patience and devotion will continue to be challenged as he
learns the use of professional tools and advanced methods for making both player
avatars and nonplayer characters give grand performances. However, becoming com-
fortable with the software is still just a smaller part of the work requirement and
knowledge base a successful animator must have. As a craft, there is still much to
know artistically about animation for creating exceptional moves that compete well.

750 Part 6 Audio Visual Design and Production



Convincing and fluid animation is hard to create and requires an understanding of
both the tools at hand and the performance arts. With enough time and determina-
tion, convincing motion can be achieved. Once the animator understands the princi-
ples for animating believable characters discussed here and with other sources, they
can be applied to animating any other object.

Exercises

Hand-Animated Character Motions for a Real-Time Game

The following is a typical list of specifications common to first- and third-person
games. It starts with a move list that can be used as a guide for creating a base set of
character motion for an interactive PC or console game. A main character in a game
can easily have requirements that exceed this number of moves. Other characters
may start here, or have a few specialized moves that support their unique purpose in
a game.

A complete dragon model with textures has been provided on the companion
CD-ROM in the file formats .dxf, .3ds, .max (version 6). A set of motions are also
provided in the file dragonMax6.max. The motions can also be viewed in the provided
movie file dragon.mov. With this set of example moves to guide the animator, he
should try to create a set of his own. For the purpose of learning how to create a custom
rig for this model, the files dragon_mesh.3ds and dragon_mesh.dxf have no keyframe data.

Technical Specifications

1. The artist responsible for rigging a character should know the desired scale
of each particular character relative to each other beforehand, so that the
overall height of the skeleton can be established before binding the mesh to
it. The artist can use any available method for binding the mesh to the
skeleton, but should try to create only rigid vertices in the process and avoid
using or creating what are referred to as “deformable vertices.”

2. Establish the correct orientation for all characters before animating. The
game code will require this of all characters so that they face correctly in game.

3. All characters are to have a base set of moves, as in the following move list: 
a. A looping walk cycle in place
b. A looping run cycle in place
c. An attack the opponent cycle
d. An idle or fidget cycle—to be used while standing in place and waiting
e. A die sequence (not prolonged dying) 
f. A taunt cycle in place

In addition to the preceding set of moves, different variations of attack, idle,
and/or die may be required per character. See game specifications.

6.7 Animation 751



4. Animations can be constructed and maintained within a single scene file, or
can be created in separate scene files. If separated into their own individual
files for exporting, each animation will need to have a common base pose at
frame 0 for each file. Animation keys can start at any frame afterward.

5. Test the vertex weight values of all animations against all custom motions
for the character before submitting. Motions maintained in separated files
do not need to have the same final version of the character with the final
vertex weight values. However, the file with the correct vertex weights must
be identified for the export of the character mesh.

6. Create all animations with a playback setting of 30 frames per second.
7. All looping cyclic motions are to play back seamlessly, with no apparent

hitching or slight pausing. Walk cycles are to have a consistent rate of travel
in a straight direction without sliding of planted feet. Suggestion: create the
walk or run with forward translation to ensure the proper planting of the feet,
and then remove the forward motion keys of the root before submitting.

8. No motion sequence should have the character traverse the ground in any
direction so that it moved too far off the original location.

9. All animations that imply interaction with another opponent assume that
the opponent is immediately in front of the character.

10. If designing a motion that involves the use of a prop while “interacting”
with an opponent—such as a sword weapon for melee combat, or a devise
that carries the character such as a bicycle or baby carriage—make certain
that you have an example prop to work with before creating the animation.
This can be a placeholder prop that represents the final scale and volume of
the worst-case object for the character (such as the longest sword). This will
ensure the proper rotation of the arm and orientation of the weapon relative
to the ground plane. With respect to a bike, for example, the correct vertical
position from the ground plane can be established with the prop in place.

11. Because of the possible 360-degree viewing angle of all characters, make
sure that no body parts or props seemingly penetrate other body parts of the
character. Likewise, avoid having the foot penetrate the ground plane.

References 

[Besen08] Besen, Ellen, and Hallett, Bryce, Animation Unleashed: 100 Principles
Every Animator, Comic Book Writers, Filmmakers, Video Artist, and Game
Developer Should Know, Michael Wiese Productions, 2008.

[Kalwick06] Fleming, Bill, Animating Facial Features & Expressions, Second Edition,
Charles River Media, 2006.

[Pagan02] Pagan, Tito, “Rigging Beyond Bipeds,” Game Developer Magazine
(November 2001): pp. 23–34.

[Williams02] Williams, Richard, The Animator’s Survival Kit, Faber and Faber
Limited, 2002.

752 Part 6 Audio Visual Design and Production



753

Overview

In 1983, an interactive cartoon called Dragon’s Lair hit the arcades, offering the first
glimpse and inspiration for bringing the film experience to the world of video games.
It is fitting that this early example borrowed a nonlinear technology from the film and
video industry, the laser disc, and grafted a video game interface onto the front end to
control the experience. It would be another decade before Doom would show up and
gamers would see the first images that would hint at the potential for creating a cine-
matic experience in real time. 

As computer graphics have come to dominate many aspects of movies, much of
the supporting high-end computer technology for the film industry has trickled down
and informed related technology in the computer games industry. This pollination
from the film industry goes beyond technology to include cultural influences, and it
is these cultural influences that have driven game developers to try to bring the cine-
matic experience to their craft.

Cinematography6.8

In This Chapter

Overview
Defining Cinematics for Games
Integrating Cinematics into Games
Technical Considerations
The Cinematic Language
Planning and Preproduction
Production Practices
Summary
Exercises
References



Defining Cinematics for Games

At the beginning of the game design process, it is important to decide if and how cine-
matics will be used within the game. If the cinematics are not integrated into the design
as part of gameplay (e.g., to move along the story), you should seriously consider elimi-
nating them or at least relegating them to a small role outside of gameplay. Your design
document should be as specific about the motivation for each cinematic or cut-scene as
it is for each level or gameplay element. This will help the development of the game
design, and help the team keep the scope of the project in check right from the start.

The Language of Cinema

Once you string images and action together in a cinematic sequence, you introduce
an additional set of visual elements that if not constructed skillfully have the power to
confuse the viewer and thus disrupt the flow of the gaming experience. Thankfully,
for those tasked with creating cinematic sequences in games, the history of cinema
brings with it a wealth of knowledge about the language and rules of making movies.

In 1895 when Auguste and Louis Lumiere previewed Arrival of a Train at La
Ciotat Station (a film of a train coming into a train station toward the camera), history
recorded that the audience jumped in fear of the train heading toward them on the
screen. This first impression hinted at the emotional power of the new medium. It
wasn’t long before story entered the medium with Georges Melies’ 1902 film, Le Voyage
dans la Lune (A Trip to the Moon). Melies’ film even used special effects to complete
the image of the fictional world, and he is considered a pioneer of special effects.
However, the real breakthrough in cinema was to come shortly with the films of D.W.
Griffith. It was Griffith who first expanded the language of film through the use of
sophisticated editing techniques. The cinematic language that emerged from the
silent era was fully dependent on the visual image. For the artist designing and build-
ing cut-scenes for games, the ability to deliver your message without a lot of dialogue
will free up your resources and reduce or eliminate some of the biggest headaches in
the production of cinematics.

Delivering Emotion

Film director Samuel Fuller once remarked that the motion picture industry isn’t sell-
ing clothes or cars or wood, but rather it is selling “emotion.” Fuller’s comment points
at the fundamental purpose of cinema, which translates equally to games as well. Even
a simple win sequence, shown after successfully completing a level in a puzzle game,
delivers an emotional narrative by reinforcing the accomplishment and heightening
the excitement. Throughout this chapter, the art of creating cinematics for games will
draw on the language of film, but there is a key difference between using the cinematic
sequence within a game and the medium of the narrative film. In games, cinematic
sequences are first and foremost elements of gameplay, and gameplay has its own set
of rules wholly independent of the rules that govern the linear narrative of film.

754 Part 6 Audio Visual Design and Production



Integrating Cinematics into Games

Understanding that the artistic purpose of the in-game cinematic is to guide or
enhance the emotional state of the player lets you explore the specific roles that these
sequences play in games. Almost every game has some kind of noninteractive cine-
matic sequence. These can range from the most basic flourish of fireworks, announc-
ing your successful completion of a level in a puzzle game, as in Peggle, to the elaborate
movie-like dramatic and action-packed sequences found in games like Metal Gear
Solid 4 where the cinematics are fully integrated into the gaming experience.

Offering a Reward: The Original Cut-Scene

The most basic type of cinematic is the classic win sequence. This may not even be a
flashy graphic, for it can be as simple as the remaining pieces of a puzzle game danc-
ing off the bottom of the screen followed by the next level configuring itself before
your eyes. Obviously, the simple puzzle game example doesn’t require much extra art
or effort. Often, these sequences can be handled programmatically or with simple
scripting by a level builder. For the most part, these sequences use the game engine to
display in-game assets in a sequence created specifically as a climatic “exclamation
point” at the end of a section of gameplay. 

However, these types of sequences can be much more elaborate. For example, if
there is a character associated with the player, you may want to show that character
expressing satisfaction. Segments between levels might show new powers acquired or
new dangers that lie ahead. The flipside of the win segment is the lose animation.
These lose animations could show a simple “try again” message, or be more elaborate
illustrations of lost powers or the consequences of failure.

Pacing

Pacing is a very important role for cut-scenes. For example, you can use the cut-scene
to prepare the player for faster-paced gameplay by signaling that a dangerous situation
has erupted just ahead. Conversely, cut-scenes can give the players a breather between
levels while they get ready for their next assault. Simple puzzle game cut-scenes, pre-
viously mentioned as a reward, are also used to allow the players to gather their focus
and energy for the next challenge. Every gamer appreciates a moment to give his or
her thumb and index finger a break.

Advancing the Plot: Intros, Finales, and Backstory

Since the early indulgent days of four-minute intro sequences, game designers have
become more skillful at paring down the intro and cut-scenes into digestible segments
that don’t interfere too much with gameplay. If there is one place where cinematics
can bog down a game, it is when they are used to create a backstory or drive a plot in
the game. Used effectively for this purpose, they have the potential to give your game
world a boost of credibility, but these types of cinematics can be expensive and time

6.8 Cinematography 755



consuming to produce. More importantly, they put gamers into a passive role with
which they might become impatient. Unlike going to the movies where the viewer
chooses to engage in a passive role, a person who picks up a game is choosing to play
interactively. There are no hard rules about how extensive these sequences can be
before they begin to work against the game, but it is best to generally err on the
shorter side. Moreover, if you have a flexible design, you can make adjustments if
early focus testing reveals game flow problems. 

Hints, Clues, and Instruction

Cinematic sequences are a great way to teach the player important or subtle gameplay
elements. As with all cinematics, it is important that they flow well with the gameplay.
Therefore, it is a good idea to plan your hints with the pacing of the game in mind, by
setting a mood or by advancing the plot. Using this technique, it is critical that
important information is not buried in the middle of a long sequence of fluff. Many
gamers get frustrated at long or frequent cinematic sequences, so plan cut-scenes with
the gameplay pace in mind.

Technical Considerations

Once the role and scope of any cinematic sequences have been clearly defined, the
cinematic designer must then determine how the game integration will be accom-
plished. There are several key technical issues to consider before working any further
on the design of cut-scenes.

Prerendered versus In-Game

The most important logistical issue is how the cut-scene sequences will be executed.
Every aspect of cinematic production, from the script to the final packaging of the
product, will be affected by the fundamental decision of whether you will create these
sequences to run independently of the game engine, or create them as runtime
sequences to be rendered “on the fly” by the game engine. 

Prerendering Cinematics

In the early 1990s, when the first relatively inexpensive 3D animation software came
out, 3D game engines were far more primitive than what could be shown in a preren-
dered animation file. Even today, with a complete suite of the latest 3D animation
and postproduction tools, the prerendered approach still has an edge, but the gap is
closing rapidly. Great strides have been made with the latest generation of graphics
cards and 3D game engines. The visual justifications for prerendered cinematics are
rapidly disappearing.

However, other advantages to the prerendered approach aren’t directly related to
the final look. With prerendered graphics, cinematic production can begin immediately,
which offers more flexibility in the scheduling and may help ensure that the cinematics

756 Part 6 Audio Visual Design and Production



do not jeopardize critical milestones close to the end of the project. Additionally,
some types of games, like the top-down three-quarter view games or side-scrolling
games, don’t lend themselves well to in-game cinematics. While these games may use
3D art in generating the final game assets, the art is generally not set up to be seen up
close. It may be possible to use some of the 3D elements created for these games, but
in all likelihood, these objects will need some additional detail work to be used in a
prerendered cinematic sequence. 

Unfortunately, prerendered cinematics come with their own set of drawbacks. It
is very common that the assets used for these cinematics will need to be created specif-
ically for this purpose. It may be possible to share some of the models and animations
with the game engine, in order to cut down on the workload, but expect to have a team
creating unique assets for these productions. Another drawback is the access time when
playing cinematics off a disc-based media or hard drive. For this reason, it is common
to put the more involved cinematics at the transitions between levels where drive
access is already occurring, and thus the pause will be less disruptive to gameplay.

Mechinima

Using a game engine to render out cinematic sequences, a method called mechinima
for its reliance on the game engine, is really the original cinematic method used in
games. A rudimentary form of mechinima is often seen in the “demo mode” that
most games display when they are left running on the title screen or in store kiosks.
Many early cinematics were nothing more than noninteractive sequences constructed
out of preexisting game elements and scripted to run within the game engine.

A popular form of mechinima is the replay most commonly seen in sports and
racing games. The beauty of replay cinematics is that the player scripts his own video,
with the game engine adding elaborate camerawork based on a set of cinematic rules
and principles. Since the player typically doesn’t control the replay, special animations
or effects can be created specifically to enhance these sequences. A nice example of
this is in the Microsoft racing game RalliSport Challenge, where replay in the Sahara
course might show a herd of zebra running near the track as if startled by your car, a
detail not present during the race. This and other cinematic touches help create the
look of a sports channel replay immediately familiar to anyone who has watched sim-
ilar events on television. 

Tools

An important part of any production is having the right tools. For prerendered cine-
matics, the tools are the same that a small video or postproduction house might have
for creating 3D animation. The core tools are a 2D art package, like Adobe Photoshop,
a 3D animation package, such as Autodesk 3ds Max or Autodesk Maya, and a com-
positing tool, such as Autodesk Combustion or Adobe After Effects. Lastly, you will
need the addition of a nonlinear editing system for the final editing and marrying of
image and sound. 

6.8 Cinematography 757



For mechinima cinematics, the needed tools may not exist at the start of the pro-
ject. This is critical to determine at the beginning of the project so that tools can be
built. Ideally, a programmer can be assigned the task of working with the cinematic
artist to come up with a method for scripting the action, setting up camera framing
and moves, and even scripting edits between multiple cameras. For exporting levels
directly out of a third-party 3D animation program, the simplest approach is to add
camera and edit tag functionality to your exporter (the custom plug-in code that con-
verts native tool info into game-specific info). Many of these programs allow notes to
be entered on specific frames of animation. These notes can be used to add a wide
variety of frame-specific information tags that the game engine can use for playback.

Scheduling

Even if you determine the ideal approach to integrating game cinematics, cinematic
productions are riddled with technical surprises. The most important scheduling con-
siderations are purely cost/benefit comparisons that weigh the time cost against the
aesthetic value to the cinematic and game. The following are some variables to take
into consideration:

Difficult animation. Many types of animation are difficult to get right and should be
avoided if possible. If you need to use complex animation, design the sequences
using animation from the interactive portion of the game. It can be very cost 
effective to leverage the resources allocated to gameplay.

Full-shot character animation. If you can convey a walking or running animation
with a medium shot that doesn’t show the lower body, you can get the point
across with half the animation. Lower body animation, particularly when trying
to maintain contact between the foot and ground, can be tedious and time 
consuming.

Close-up shots. The closer you get to objects in your scene, the greater the level 
of detail you will need to put into your models, textures, and animation. 
Any elements that only have a brief screen time should probably be composed 
to avoid the necessity for excessive detail.

Inessential detail. Determining what details are essential can be as straightforward as
eliminating the shoe leather, those nonessential actions like getting from place to
place, when or how you get there is not important. However, subjective decisions
can be more difficult, such as determining what details are unimportant to move
the game along. 

The Cinematic Language

Once the cinematic sequences have been integrated into the overall game design and
it’s been determined whether to use a prerendered or real-time approach, it’s time to
move into the preproduction stage and understand some of the fundamentals of the

758 Part 6 Audio Visual Design and Production



cinematic language. However, don’t forget that creating clear, understandable cinematic
sequences involves a complex set of visual communication skills beyond the funda-
mentals of composition and form familiar to the visual artist. 

Framing

The fundamentals of composition still hold true with cinematic framing, but the
addition of motion as a compositional element brings with it the potential for far
more complex arrangements. By creating compositional structures that evolve, you
can illustrate ideas that can only be expressed through motion and change.

A comprehensive study of cinematic composition would require the focus of an
entire book, and there are already several good books available on the subject [AFI92,
VanSijll05]. What is important here is to form a common descriptive language to
express your cinematic designs using universal terminology. From the extreme close-
up to the long shot, every variation in the framing carries a different emotional impact
and a different set of actions it can capture well. In film, all shots are considered when
designing the final sequence. However, in game cinematics, every change in the fram-
ing opens up the potential that the framing might reveal detail that doesn’t currently
exist in the character models, textures, lighting, or other elements in the environment.
The extreme close-up, for example, is used in film to create an intimacy with the char-
acter, whereas the same shot of a game character may reveal the simplicity of the
model or texture, showing its flaws rather than the emotion you are trying to convey.

Movement: Action and Direction within the Frame

Understanding how to use movement and action to tell a story cinematically is a craft
that requires both extensive study and practice. Within the frame, movement can
sometimes convey meaning, such as witnessing a character performing a significant
action or reacting to a significant event, but on a purely visual level, it also becomes
part of the compositional structure. To control the emotion and meaning within a
cinematic scene, you need to have command over how your subject moves and inter-
acts with both the environment and other characters in the scene. 

It is important to be aware that motion works on both a two-dimensional and
three-dimensional level. At the most basic level, you are always working in a two-
dimensional medium. As the creator of the cinematic, your understanding of the
scene can easily be skewed by your detailed knowledge of the 3D layout.
Storyboarding your action will help create dynamic two-dimensional compositions by
forcing you to think two-dimensionally before you have a scene to put a camera into.
As you develop experience, you will learn to see two-dimensionally through the lens
of the camera, but this is a skill that is surprisingly difficult to do without training. 

As a point of further study into what can be accomplished compositionally
within the frame, it’s helpful to look at the films of Akira Kurosawa. Kurosawa is a
director who has pushed the use of deep focus, a film technique where everything

6.8 Cinematography 759



from the foreground to the background is in focus at the same time. Kurosawa’s 
mastery over composition using this technique provides some of the most dynamic
examples of sophisticated cinematic compositions.

Editing: Creating a Seamless Experience

At the birth of film as a form of expression, the first films were all single takes of vari-
ous actions or subjects. According to records of the time, the early filmmakers
thought that the audience would be totally lost if the film cut to the same action shot
from a different angle. It wasn’t long before directors like D. W. Griffith were rapidly
pushing the limits of the edit wildly beyond their predecessors. Many of today’s top
directors still credit Griffith with having laid the foundation for modern film. 

The key to creating cuts or transitions between shots is to maintain spatial conti-
nuity. A common rule involves what is called the line of action. The line of action is
the most important reference point in helping honor the spatial relationships of your
characters or subject. Line of action refers to an imaginary line running between the
left frame and right frame subject matter. For example, in a two-camera scene with
two characters sitting at a table, the line of action travels from one character to the
other. You would not want to cut between cameras placed on opposite sides of the
line—choose only one side of the line to place the cameras. If you break this line of
action with your camera cuts, the character will appear to jump to the opposite side of
the frame. If the rule is followed, visually the two characters will always maintain their
relative positions on the screen and the audience will not get the characters confused.
Cutting between two cameras positioned on the same side of the action line will be
smooth, and the focus will remain on the action, not the cut. 

This simple construct can be extrapolated to work with very complex problems of
staging overlapping action, shifting action, or any choreographed sequence you can
come up with. It is highly recommended to reference a good book on film directing
to learn how to handle these complex staging scenarios. Additionally, reverse engi-
neering a scene from one of your favorite movies can also teach you a lot about the art
of staging complex scenes.

Planning and Preproduction

Whether you have decided to prerender your cinematics or have taken the real-time
approach, some basic preproduction planning techniques are essential. While each
approach will have unique scheduling requirements, the preproduction should get
underway as soon as the team can be assembled. Script development is a separate
topic that won’t be discussed here other than to note that writing natural dialogue for
characters does not come easily to most people without training. It is a deceptively
complex art to do well and is often a core weakness in many story-driven games. 

760 Part 6 Audio Visual Design and Production



Research

Researching your subject matter is one of the most cost-effective preproduction tasks.
Gathering reference material defining the exact visual look and feel of every aspect of
your subject matter will save endless hours of floundering around for the look and feel
of the game. Look at any of the readily available books or DVD extras on the prepro-
duction material generated for any animated feature. While all feature films engage in
this research and design, animated features like the works by Pixar, Disney, or
DreamWorks provide the closest correlation to the games industry. Hopefully, now
that some game production budgets are starting to look more like movie budgets, the
preproduction process will be integrated at the beginning of the design process as it is
in the film industry.

As you do your research, it is critical that you keep the reference material orga-
nized. There are several things you can do to help this. The most important organiz-
ing process is to get your materials scanned and backed up with the rest of the art
assets. These materials should be easily accessible to all team members and updated as
changes occur. Keep any documents you create for detailing design directions stored
with the related materials. 

Production Illustration and Storyboards

Storyboarding is an essential part of any production. Storyboards are visualization
tools used to illustrate aspects of the story that can be described visually. You have
probably seen examples of editorial storyboards, sequences of comic strip–like frames
showing how the story will unfold, shot by shot, but this is just one form of produc-
tion illustration that is used in preproduction. The following are some of the production
illustration tools that are useful for ensuring that the cinematics and the game in 
general match the common vision for the game:

Editorial storyboards: These storyboards are a complete layout of the cinematic 
sequence with all shots and transitions described with notes on dialogue, camera
motion, framing, and timing. Editorial boards do not have to be elaborately 
illustrated, but they should indicate important content, framing, and action.

Keyframe storyboards: These boards focus on single key moments in the story or 
action, rather than the shot-by-shot coverage of the editorial boards. Add enough
detail to keyframe boards to help describe the look and feel of key scenes, as well
as the cinematic framing with these illustrations. Where editorial boards describe
the entire flow of the cinematic, the keyframe board is used to sell the look and
feel of key moments from the storyboards. 

Concept and design illustrations: These boards are used for describing details in 
the environment such as sets, props, color details, and other directions in style.
The detail depicted in these illustrations is used to elaborate on design elements
to sell the design and give detailed visual direction to the production team. 

6.8 Cinematography 761



The illustrations usually are not finished pieces; rather, they are often a combina-
tion of sketchy lines with areas of highly detailed rendering that the modeler or
level designer can extrapolate to the rest of the scene. 

Layout: Layout illustrations are essentially blueprints for the levels, set pieces, camera
staging, action paths, and any visual directions that will aid the cinematic team in
executing the cinematic design. These can be floor plans of levels/buildings or
top-down illustrations showing the position of props, characters, and cameras. It
is a useful exercise to create these staging diagrams to indicate how characters and
cameras will move during a given scene.

The more detail put into the storyboards and production illustrations, the more
accurate the schedule will be. If the level of detail is sketchy in places, build more
buffer time into the schedule, because there will certainly be more revisions as the
details are worked out during production.

Production Practices

With storyboards in hand, a detailed schedule, and a team allocated to the project, it
is time to get to work implementing your vision. By now, you will have noted many
potential problem areas and done some initial technical tests to eliminate as many
unwanted surprises as you can before production begins. However, the only certainty
is uncertainty, so be prepared to make adjustments. Some of the potential problem
areas will already be known, but there are more general problems that are not neces-
sarily related to how much detail you put into your preproduction. An experienced
production team understands that the game design is just a map and that the experi-
ence of the territory may be quite different. Once the first pieces come together and
this map of fun and entertainment gets put to the test, there will certainly be aspects
of gameplay that don’t end up working as expected. 

In-game art dependencies are another area to keep an eye on. This is of particular
concern to those who are planning to use the mechinima approach, since the cine-
matics are fully dependent on in-game assets. Look for ways to work with partial
assets. It’s easier to make minor camera adjustments if assets get moved around, rather
than rushing through the entire process once assets are complete. Finally, putting the
polish on the sequence will eat up more time than anyone will expect. Rather than
trying to guess when you need to move on to the next scene or cinematic, try to keep all
of the cinematics at a similar stage of polish. Use an iterative approach by prioritizing
issues and working through similar priority levels across the project as a whole. 

Summary

It is clear that the complex issues of creating professional-quality cinematics bring with
them the need for visual communication skills that are not necessarily required in the
real-time interactive portions of the game. An artist experienced with the principles of

762 Part 6 Audio Visual Design and Production



the cinematic language will often bring an eye for filmic quality to the game environ-
ment that the general public will immediately find familiar. Unfortunately, an experi-
enced modeler, game animator, or level builder does not inherently bring a
comparable set of skills to the design of cinematic sequences. 

To expand your game production skills to the creation of cinematics, it is imper-
ative that you be informed of the unique cinematic vocabulary and dedicate some
focused time to the study and practice of this form of communication. If you possess
a love of film, this learning process will become a lifelong passion and greatly enhance
your enjoyment of going to the movies. It is likely that you are already fascinated by
the amazing strides in computer graphics that are prominent in many new films, and
this may even be driving your interest in the games industry with its ever-expanding
ability to create fantastic worlds. If you want to become an effective cinematic designer,
you will need to expand your study into the larger body of film and animation. The
breadth of educational material on the topic of film is extensive. With the University
of Southern California’s School of Cinema and Television having celebrated its 80th

anniversary recently, it should be clear that this is a very mature field of study. 

Exercises

1. Choose a film that contains a scene that you find particularly memorable.
When picking this scene, you will get more out of the exercise if you pick a
scene from a movie that involves a subject matter or genre commonly found
in popular games. Rent, purchase, or borrow a copy of the film, preferably
in DVD format, so you can easily jump to the scene and step through the
sequence. Go through the scene shot by shot and reverse engineer the
sequence, creating the following preproduction materials:
a. Editorial storyboard. Storyboard the scene that you have chosen by

breaking down the sequence shot by shot. Include dialogue, description
of action (both verbally and with visual cues such as directional arrows),
and description of camera moves (with the type of transitions between
the shots, such as cut or dissolve). There is an Excel sheet on the com-
panion CD-ROM, storyboard.xls, which can be printed out for this
exercise. You can adjust the column widths to match the aspect ratio of
the film, or draw the top and bottom frame lines to indicate the letter-
box framing.

b. A top-down layout diagram of the set or environment for the scene.
Figure out where all the cameras in the scene are and label them by
shot. Be sure to indicate any camera moves, showing both the start and
end position and a direction indicator for the path the camera follows.
Actors and their movement within the frame should also be indicated.

6.8 Cinematography 763



c. An illustration showing the composition of tonality. Pick a few frames
that are characteristic of the play of light and dark in the scene. Do not
use lines to sketch out the detail; rather, you should use shading tech-
niques to indicate how dark and light break up the two-dimensional
space within the frame. 

2. Using the same scene you chose for Exercise 1, analyze the scene for what it
would take to re-create the sequence as a cinematic for a game based on the
same story and characters. 
a. Create an asset list that breaks down the scene into model and support

animations or effects.
b. Create a list of changes and optimizations that you can make to simplify

the resources that would be required to re-create the cinematic without
substantially changing the essence of the meaning conveyed by the scene.
The types of changes to consider are simplifying the dialogue, reducing
the number of camera angles, or changing the angles to eliminate com-
plex animation. Finally, narrow the focus of the scene to one key idea. 

References 

[AFI90] Hollywood Mavericks, American Film Institute, 1990.
[AFI92] Visions of Light: The Art of Cinematography, American Film Institute, 1992.
[Barwood00] Barwood, Hal, “Cutting to the Chase: Cinematic Construction for

Gamers,” Gamasutra, 2000, available online at www.gamasutra.com/features/
20000518/barwood_01.htm.

[Begleiter01] Begleiter, Marcie, From Word to Image: Storyboarding and the
Filmmaking Process, Michael Wiese Productions, 2001.

[Hancock00] Hancock, Hugh, “Machinima Cutscene Creation, Part One,” Gamasutra,
2000, available online at www.gamasutra.com/features/20000930/hancock_01.htm. 

[Hancock00] Hancock, Hugh, “Machinima Cutscene Creation, Part Two,” Gamasutra,
2000, available online at www.gamasutra.com/features/20001006/hancock_01.htm.

[Hancock02] Hancock, Hugh, “Better Game Design Through Cutscenes,” Gamasutra,
2002, available online at www.gamasutra.com/features/20020401/hancock_01.htm.

[Katz91] Katz, Steven, D., Film Directing Shot By Shot: Visualizing From Concept to
Screen, Michael Wiese Productions, 1991.

[Newman08] Newman, Rich, Cinematic Game Secrets for Creative Directors and
Producers: Inspired Techniques from Industry Legends, Focal Press, 2008.

[Schnitzer03] Schnitzer, Adam, “GDC 2003: How to Build a Better Cutscene,”
Gamasutra, 2003, available online at www.gamasutra.com/features/20030306/
schnitzer_01.htm.

[VanSijll05] Van Sijll, Jennifer, Cinematic Storytelling: The 100 Most Powerful Film
Conventions Every Filmmaker Must Know, Michael Wiese Productions, 2005.

764 Part 6 Audio Visual Design and Production

www.gamasutra.com/features/20000518/barwood_01.htm
www.gamasutra.com/features/20000518/barwood_01.htm
www.gamasutra.com/features/20000930/hancock_01.htm
www.gamasutra.com/features/20001006/hancock_01.htm
www.gamasutra.com/features/20020401/hancock_01.htm
www.gamasutra.com/features/20030306/schnitzer_01.htm
www.gamasutra.com/features/20030306/schnitzer_01.htm


765

Overview

Although audio in games has been around since the very first blip of Pong, there has
been a dramatic evolution over the last 30 years in regard to its production. Back in
“the old days” (the 1980s), programmers would tweak what they could of the crude
audio chips and type in the most simplistic melodies for music. Most sound FX con-
sisted of some type of electronic bleep or bloop, while the music was nothing more
than three or four voices of short, repeating, merry-go-round-like tunes.

As the industry spread its wings into the mid-1990s, the CD-ROM became a
viable storage device where “real” music could be stored on the disc. This brought in
a new wave of talented musicians who no longer needed to know C++ or assembly
language in order to create audio. On the sound design front, more channels of audio
and storage became available for samples (.wav files), so that now when you fired a
gun or witnessed an explosion, a movielike sound effect would trigger in place of the
beloved bleep or bloop. 

Audio Design and
Production

6.9

In This Chapter

Overview
Audio Team
Audio Design Fundamentals
Audio Implementation
Sound Design
Music
Voice-Over Production
Spatialized Audio
Studio Savvy
The Business
Summary
Exercises
References



Increased storage for sound also allowed for voice-overs and dialogue to be pre-
sent in games. Narrators and actors could now be used to help convey emotion and
storyline, as opposed to the player just reading dialogue off the screen. As the new
millennium rolled in, budgets grew to a point where live orchestras, choirs, union
actors, mixers, engineers, live musicians, mastering engineers, and multichannel sur-
round could be used to create realistic listening experiences that would rival the best
of the film industry. DVDs could hold gigabytes of data, hours of music, thousands of
sound effects, and tens of thousands of voice-over lines. Interactive 5.1 surround
could be achieved, and effects like real-time reverb and occlusion could now be heard.
Multiple audio streams of data could be passed through the processors, which enabled
no limits on assets such as music, ambiences, and streaming dialogue. It can even be
said that because of the interactivity, high rate of streaming, real-time 5.1 surround,
and so on, that games have now surpassed film and television in regard to overall 
production.

Game audio would have to go through some pretty tough times and changes as
the metamorphosis occurred throughout the 1990s. In the early days, game audio was
always considered postproduction, probably because most film and television audio is
exactly that. However, games are very different due to one major factor: technology.
In film and television, a scene has to be completely finished before an audio engineer
or composer can get his hands on it. In games, that is just not the case. Because of the
technology involved, each game on every system could be (and usually is) handled a
completely different way depending on the nature of the game and the engine sur-
rounding it. For example, one programmer may be working on a driving game and
using streaming to load in the track, level, and graphics data. This leaves less band-
width available for audio. Because of the game-dependent technology and the diverse
ways to incorporate game audio, the audio director, composer, sound designer, and so
on need to be involved with a project from the very beginning to help map out a plan
of attack in regard to the sound.

Today, budgets for audio production in games are up. Technology in game audio
is some of the most advanced and exciting technology in audio overall. Game produc-
ers are gaining audio savvy and understanding the important role that sound and
music have in the creation of an immersive gameplay experience. All in all, things are
good and getting better in the game audio studio—even for the people pushing the
faders and signing the licensing agreements.

So, just how does sound for games work? It’s a lot of black magic! The good news
is that, in today’s game development environment, capable teams of audio profession-
als are a black box—the game producer provides the vision, and the audio professionals
output results. This isn’t to say there aren’t complex challenges involved. Contributing
to this is the fact that there is no one standard way of creating audio (or any other
kind of asset) for games. With the exception of direct knockoffs, mods, and sequels,
each new game works differently from other games, from design to core technology,
making their respective development process as unique as they are.

766 Part 6 Audio Visual Design and Production



To deal with this, game audio professionals have a number of options for develop-
ing audio for interactive media—streaming, sequenced playback, surround sound,
adaptive scores, and more. Deciding just how a game should sound and how it will
deliver those sounds is the combined responsibility of the producer, lead programmer,
and audio director.

This chapter explores numerous aspects of audio design and production, includ-
ing the different roles and teams, audio design fundamentals, sound/music/voice-over
design, audio equipment, and audio business issues. First, we begin with the various
roles and teams.

Audio Team

Modern game projects require an entire crew of audio professionals to get the job done
well. Music supervisors, sound designers, audio directors, voice actors, implementers,
audio software engineers, casting agents, orchestral contractors, dedicated music exec-
utives, and more. In this section, we’ll look at the individual roles key to the develop-
ment of game audio content and the solutions used in providing sound for games.

Game audio production is both a science and an art. There are business, techni-
cal, and creative elements involved, and professionals in each of these areas who are
crucial to its development. In the early days of game development, one team member
filled all three roles; however, things are different in modern game development. More
and more audio professionals enter the game development industry every year, each
wearing very specific “hats.” Some are composers, others sound designers, and others
are surround sound mixers. Whereas in 1984, the “sound guy” was responsible for
writing the music, programming the sound engine, clearing any licenses of any kind,
creating sound effects, and the company CEO, nowadays each unique task calls for a
dedicated team member to provide expertise.

Producing audio for games takes skill and knowledge of music and sound and the
tools involved in creating those elements. Creating and producing good music is a
craft that takes years to hone. The same can be said for great sound design. The role of
the producer is to guarantee the best talent is working on the project—and therefore
he should have a level of familiarity with what is involved in game audio production.
This section provides an overview of the audio-specific skills and tools involved in the
production of great game audio.

Music Team: Music Director

The music director oversees the high-level decision-making regarding what music will
go into a game, including who will be contracted to create it. Like most job titles in
the games industry, the actual responsibilities of a music director will vary from com-
pany to company. For instance, the largest game publishers have music executives, with
a team of music supervisors working under them. They usually bring a large rolodex of
music industry contacts with them, have access to the top artists and composers, and

6.9 Audio Design and Production 767



understand the ins and outs of music contracting and licensing. Other smaller com-
panies may have a music director who licenses songs from whatever band happens to
be in the producer’s CD player at the time. Other companies don’t even have a music
director, with all decisions going through the production or design departments.

Music Team: Composer

Composers write custom music to be placed in games. Sometimes, game companies
have in-house writers who create music for their games, but this is becoming more
uncommon. Instead, talent is contracted on a per-project basis to help manage a 
particular project’s specific music needs. The production of the music can be done
entirely by one person writing, recording, mixing, and so forth. With larger budgets
becoming more common, composers often have a team including assistants, orches-
trators, orchestral contractors, musicians, and such who all work together to create the
finished product.

Music Team: Music Producers

Music producers are hired to maintain the creative vision of a musical recording. In the
recording industry, they are hired by the recording artist or label to ensure that the
recording process goes smoothly and that the artists, musicians, and engineers are giv-
ing their best to the project. Traditionally, it’s been uncommon for a game company
to contract a dedicated music producer to direct the music creation process, although
it has happened. Usually, only larger budget projects can contract a music producer.
As custom theme songs for games by pop musicians become more common, however,
there will be more accomplished producers entering the fray, to create hit tracks to
accompany games, as is common practice in feature films.

Music Team: Recording Engineer

The recording engineer is a staple of the music production process. They get the best
possible sounds out of each performance on the project. If your audio production
process consists of one or two sound designers producing music in a closet at your house,
then chances are that one (if not both) will wear the hat of recording engineer. In fact,
with the evolution of the recording studio moving into the home, most composer/
producers have some basic engineering chops. However, truly professional music demands
a truly professional team, which, of course, includes a dedicated recording engineer.

Music Team: Mix Engineer

The mix engineer takes the completed recorded tracks put together by the recording
engineer and balances their sonic characteristics and volumes (i.e., “levels”) relative to
one another. Mixing is an essential phase in the production of music. Although the
temptation may exist to cut corners and use the same person to do the recording as
the mixing, often a dedicated mix engineer can bring recorded music to a new level.

768 Part 6 Audio Visual Design and Production



It’s common practice in the recording business to use a separate engineer for mixing,
recording, and mastering.

Music Team: Mastering Engineer

Mastering, as it pertains to music in games, is the final stage of music production. The
mastering engineer typically has superhuman hearing, and listens for any subtle imbal-
ances, mistakes, or other problems in the mixed-down recordings. In addition, the mas-
tering engineer makes certain that the volumes of every piece of music are matched
relative to one another. For example, stick a major recording artist’s album in your
music player, and you’ll notice that each track exists in the same place regarding loud-
ness and character—that’s the work of a mastering engineer. Mastering is essential if
the music files are coming from many different sources (i.e., producer/composers).

Music Team: Assistant Engineer

Recording and mix engineers, like composers, are traditionally hired on a per-project
basis for their particular flavors they bring to the finished music product. They are
used to working in different studios, for different projects. Assistant engineers are hired
by recording studios to help visiting engineers find their way around particular rooms
containing gear and setups that may otherwise be alien to them. The cost of an assis-
tant is factored into the cost of the studio hired to host the recording project.

Sound Design Team: Audio Director/Manager

Audio directors manage sound design teams. They keep track of resources and sched-
ules, and they attend meetings with the production and design teams. Audio directors
execute the vision of the producer on the sound and dialogue front. They sit in produc-
tion meetings, work with the producer to set realistic goals, tackle problems, and make
certain that above all else, the audio assets are created to spec and delivered on time.

Sound Design Team: Sound Designer

The sound designer is a critical member of a game development team. With audio
being one-third of the gaming experience, sound designers bring the world on the
screen to life. Sound design as a craft has been around since the inception of “talkies”
(i.e., movies with soundtracks). Sound in games began as a modest affair, with limited
processing and nearly prehistoric (but downright cool-sounding) sound chips as the
only weapons in the sound designer’s arsenal. The current and future state of sound
playback in games is much more advanced, with systems supporting CD-quality
“sample playback.” This means that sound designers can capture sounds from the real
world, exaggerate them, and import them into the game environment. This gives
games the Hollywood edge, larger-than-life quality audiences have come to expect
from visual entertainment.

6.9 Audio Design and Production 769



Sound Design Team: Implementer

Implementers work in the sound design department with various production tools to
attach sounds designed by sound designers to environments, events, and characters.
They are, in a sense, the level designers of the audio department. Implementers, as
dedicated audio team members, are the most recent introduction to the game audio
circle. Only the largest companies will have a dedicated audio implementer, instead of
relying on sound designers, or in worst-case scenarios, programmers, to get the sound
into games. The reason we say “worst” is simply because programmers are, in general,
not audio professionals. They aren’t trained to understand the subtle methods involved
in placing and balancing sounds in virtual environments. The best-case scenario is to
dedicate a team member to getting the job done right.

Dialogue Team: Casting Agent

Casting agents are contracted by game companies to line up talent for voice acting
parts. Good casting agents have a wide network of voice talent, both union and
nonunion, for game companies to use. They know the best people for the jobs, the
professional actors who can get the script read right, in little time. Good casting
agents will create a demo free of charge for the audio team to review in deciding who
gets a part in their project.

Dialogue Team: Voice-Over Director

A voice-over director’s job is identical to that of a film director: to coax the best and
most appropriate performance out of the talent acting the role in a production. It’s
common for a game production to contract a dedicated voice-over director to work
on dialogue recording sessions. That’s not to say it’s mandatory yet—which is often
reflected in resultant subpar dialogue found in many games. The temptation exists to
allow the audio director or producer to direct the voice talent. This is only advisable if
the individual has experience doing so; otherwise, the quality of the performances
may suffer considerably, and often without anyone noticing until it’s too late. The
importance of a good director cannot be emphasized enough.

Dialogue Team: Voice Actors

Voice actors come in one of two flavors: union and nonunion. Union talent is expen-
sive, but the quality of their work is unmatched. Nonunion professionals are less
expensive than union talent, but can usually only do one voice very well. It is com-
mon for games to use a mix of both types of actors, relying on union talent for the
main characters and nonunion for secondary and tertiary roles.

Dialogue Team: Dialogue Editor

Once voice actors’ performances are captured, the files must be cut up and organized.
A dialogue editor’s job is to do just that. They master the files, check for errors, and

770 Part 6 Audio Visual Design and Production



submit the assets to the audio director. The job is often tedious but critical, and goes
to a junior member of the audio team.

Audio Design Fundamentals

There are three main elements to a video game that are all equally important to the
entire experience. First, there are the visuals, including art, video, and animation.
Second, there is the design, which incorporates the visuals, plus game design, pro-
gramming, feel, and movement. Finally, there is the audio, which includes everything
you hear.

Unfortunately, most companies don’t take audio as seriously as visuals and design.
Often, there should be a bigger percentage of the budget dedicated to audio, to allow
for union voice acting, intelligent script writing, or even live orchestras. Audio in
games is sometimes looked at as postproduction, similar to the film industry.
However, for video games, the composer and sound designer need to be working from
day one, figuring out technically how everything will be incorporated into each phase
or level of the game. In recent years, the situation has become progressively better,
with more and more live musicians and talented voice acting being incorporated in
games. It’s very important to know this kind of information. You may find yourself
trying to explain how important audio is and why certain creative and technical
aspects need to be focused on.

Two key points to concentrate on are creativity and integration. Creativity speaks
for itself. The tricky part is how to get sounds into the game world. Integration with
the programmers and designers/producers is half the work. Once the sound has been
created, it is important to make sure the sound is properly being triggered at the right
time, volume, pitch, and pan. Deciding on how the audio will be triggered should be
discussed very early in the project. Keep in mind that almost every project you will
ever work on will be set up and handled differently.

On the creative side, you want your work to stand out from anything anyone has
ever heard in a game before. Using elements such as ambiance, as opposed to music,
can sometimes create a more realistic and enjoyable atmosphere. The key is to think
outside the box and to bravely bring your audience to unexplored shores in terms of
sound, music, and dialogue.

One of the most difficult parts of audio in games is trying to make everyone
happy. There are many different people on a team, and almost every one is a music
critic. It’s funny—people can generally look at a piece of art in a game and tell
whether it is good. People can move a character on-screen and tell if it feels good or
not. But put a tune in a game!?!? Everyone has different music tastes! It’s hard to find
two people who agree on every single piece of music! Take country music, for exam-
ple. Some people love it, and others can’t stand it. A game designer or producer
shouldn’t choose what kind of music he likes for the game, but what type of music fits
and enhances the game the best.

6.9 Audio Design and Production 771



When writing music, it’s getting harder and harder to be original, but something
that stands out will catch people’s attention. Don’t try to have your music sound like
“video game music.” Write a great tune! Sometimes people get caught up in “exactly”
what the look or feel of the game is. If you just write a great tune, players will remem-
ber and like it.

The best instrument to learn is the piano/synthesizer/keyboard. With the knowl-
edge of that instrument, you can pretty much re-create any instrument in the world
(through devices known as samplers). It also allows you to record your compositions
into MIDI files, which can be edited and recorded easily on a computer.

There are three huge things that, to become successful, you will need to focus on:
1) the creative element; 2) the technical aspects; and 3) the business/networking
aspects. If you can study and master those three things, you will be well on your way
to becoming a success in the video game audio world.

Audio Implementation

One of the biggest transformations that game audio has gone through recently is the
creation of audio tools that enable the power of interactivity to be put back into the
audio creator’s hands. It is widely said in the games industry that creating a sound
effect or music track is merely only half the work.

The other half is the integration and implementation, which is yet another huge
difference that the games industry has over film and television. A sound designer
could create the greatest gunshot sound in the world. However, if it is integrated
incorrectly, it could quickly become the most annoying sound in the world. Things
like randomization of samples, pitch, and volume variations are all very important
when creating game audio. Knowing when and where to cross-fade a particular music
track or the use of a well-placed “musical sting” could mean all the difference in the
overall enjoyment of the game experience.

Back in the 1980s and 1990s, a sound designer or musician had to sit down for
hours and days upon end with programmers, painstakingly integrating each and every
sound heard in a game. Each 3D volume, pitch variation, and randomization had to
be set to ensure nonrepetitiveness. If the programmer or audio designer didn’t have
the time, knowledge, experience, or energy to do this, the audio would lack greatly.

Finally, the industry got smart and decided to make games data-driven, in which
the assets (audio, models, textures, and such) are not part of the code, but rather data
that drives the behavior of the game. This development put most of the power back
into the audio designer’s hands by creating amazing integration audio drivers that the
audio folks could now interact with on their own, without needing to spend the pro-
grammer’s precious time. Audio designers could now set up banks with randomiza-
tion, control 3D volume positioning, and integrate effects like reverb, randomization
of different samples, and pitches. All the programmer has to do is provide an audio
event trigger, and the sound designer can now go behind the scenes and tweak to his
heart’s content.

772 Part 6 Audio Visual Design and Production



With the proper equipment and tools, many audio drivers even offer “real-time”
tweaking “on the fly” while the game is being played. Simply stated, this means that if
the audio designer is playing a particular level and hears that the explosion sound is
too loud, he can simply turn it down in real time in the audio engine while playing
the game to get the exact volume he prefers. Again, not only volumes, but pitch, 3D
positioning, randomization, reverb effects, and so forth can all be controlled by the
audio engineer.

One important aspect of game audio is the “audio/sound driver.” This is the soft-
ware program or tool that enables sound designers, composers, and so on to interface
with the game and what the programmer is doing. Simply stated, it’s the tool that you
will put all of your sounds in so that the programmer can easily trigger them from
within the game. 

There are many different sound drivers that are capable of doing many different
things. Some may only be set up to simply trigger sounds. Other more complex dri-
vers could have complete interactivity built-in that would enable the sound designer
or composer to set up exactly how he wants the audio to perform without working
with programmers to implement every single nuance of sound. 

A good example of how sound drivers have changed the workflow would be the
footstep sound. “In the old days,” one may have had to provide the programmer four
to six different “.wav” files of footstep sounds, and then sit down with him as he wrote
code to randomly trigger one of the footstep sounds each time a foot hit the surface.
Then the programmer would have to tweak or write code to get the proper random
pitch range and volume. Needless to say, this was quite time consuming, and the final
audio quality relied on the audio programmer as opposed to the audio designer. These
days, most sound drivers enable the audio designer to go in and set (as well as audi-
tion in real time) all of these nuances. The audio programmer is now more focused on
creating audio event triggers (play sound scheme 42 when foot hits surface) instead of
having to deal with all the behind-the-scenes tweaking that should be put in the audio
designer’s hands in the first place. Bottom line, the better you know and understand
your audio/sound driver system, the more effective you will be as an audio designer.

Every console or platform is a little different, but all have memory, storage, and
bandwidth constraints. Even though every new generation has more memory for
sound than the last, you will still find yourself running out of space quickly. Instead of
sacrificing sampling quality, the challenge today is to try to keep everything at an
extremely high level of quality. Included in this is creating many more sounds and
variations, since games are getting increasingly larger each year. All of this, of course,
takes up more memory and media storage. 

Another constraint issue is how the code is handling the console’s resources (such
as memory and disc) within any given level. Many times, a game may need to access
the disc to load in level or graphic information. When this happens, the sound
designer or composer needs to figure out how the music being streamed off the disc
will be affected, since the disc resource may be tied up during the loading. Either the

6.9 Audio Design and Production 773



music must fade out, transition to ambient sound held entirely in memory, or perhaps
the code can be modified to minimize the impact of loading. There are many differ-
ent ways to engineer audio even within the same machine, and it’s the biggest audio
challenge that must be faced.

More information about audio for specific platforms can be found on the Game
Audio Network Guild (G.A.N.G.) Web site [GANG] at www.audiogang.com.

Sound Design

Sound design is an extremely important element of game development. It is easily the
most interactive element of the soundscape and one of the most focused on technical
aspects of game audio. Implementation is key when presented with a sound design
challenge. Creating a really great explosion, gunshot, or footstep sound is merely only
a small percentage of what needs to happen to get the sound effect to sound good.
Multiple and dynamic versions of each sound create a more realistic environment that
will not sound as repetitive. When creating sound effects for games, one of the hard-
est challenges is to make the game sound dynamic without being too repetitive. To
accomplish this, a sound designer must create numerous variations of the same sound.
For example, you wouldn’t want to record just one footstep sound and keep playing it
over and over for the entire game (although some games still do that, unfortunately).
It is better to record lots of footstep sounds, pick out anywhere from 6 to 20 different
ones (depending on space constraints), and randomly trigger them within the audio
sound driver. Once in the driver, you can set effects like randomization, pitch, vol-
ume, 3D, and so forth. Dynamics and being nonrepetitive are the keys to successful
audio design within games.

As far as creating unique sounds, it’s always best to combine preexisting sound
libraries with going out and recording/editing your own sounds. Sound designers
shouldn’t just rely on stock sound libraries. Sound libraries are great for certain aspects
but not for everything. Preexisting sound libraries are great for layering in with
sounds you’ve created. With all of the great audio software and tools available, it is
easy to take a sound and manipulate it into something completely different. You can
get some pretty amazing sounds just by pitching it down a few octaves. The key is to
be creative and think of things that you normally may not do. It’s more than likely
that every sound you need could be recorded with objects right in your own home.
For example, need lots of wet mucky squishy sounds? For this, you could use a thick
Jell-O mix about halfway before it gets hard. This makes a nice, thick, liquid sauce.
Need a rumbling or rolling huge metal crate? Try hitting and wobbling a metal bowl
or pan back and forth on a vent or air-conditioning unit. Being creative is not only an
important part of sound design, it is also the most fun!

Another issue to remember is that different types of microphones will produce
different outcomes. A good suggestion is to use a few different mics placed at differ-
ent areas for the sound you are trying to record. Once you get it back in your studio,
you can then decide which sounds (or layer of sounds) work best. When in doubt,

774 Part 6 Audio Visual Design and Production

www.audiogang.com


add a little low-end equalization to your sound. It will always bring up the presence
and make it sound a little bigger.

If doing a sports-related game, make sure to ask the publisher to get you into an
event to record the sounds (i.e., crowds, chants, cheers, ambiance, etc.). Many times,
the publisher is paying a great deal of money to secure professional sports licenses, and
it is very easy to get into special events if you just ask the publisher to ask the licensor.

Sound Design Example: Street Basketball

To better understand the amount of work and thinking that goes into a game, let’s
look at an example of exactly what needs to be done to create sound design. Let’s take
a street-styled basketball game for our example. For this game, you would want to cre-
ate the exact audio experience you would hear if you were actually on the court. To
accomplish this, you would have many different in-game sound effects and multiple
audio streams constantly being triggered. Here’s how it may work:

Footsteps would be one of the key sound effects. In this particular game, there
would be many different court surfaces such as concrete, wood, asphalt, and dirt.
There would also be many different types of backboards such as wood, metal, fiber-
glass, and acrylic. In addition, there would be different types of nets such as nylon,
chain, or no net at all. Each court could have any combination of these sounds, so
they must all be recorded individually. You would typically record a bunch of differ-
ent footsteps sounds on all of the different surfaces, and then pick your favorite ones
that are different enough from each other. Along with footsteps, you will also want to
record foot squeaks and foot scuffs. Once you record and then put these sounds into
your audio editing tool (e.g., Sound Forge, Wavelab), you will then have to insert
them into the audio/sound driver. In the audio/sound driver, you’ll want to trigger the
footsteps randomly and never repeat the same footstep twice. You will also vary the
pitch randomly and control the volumes depending on where the player is in 3D
space. Throw in a few random scuffs and squeaks here and there, and you have an
elaborate footstep soundscape.

One thing to note: All of the in-game sound effects are put into the driver as
mono files. This is done so that the programmer can whip the sound around in 3D.
Having a stereo file for a static sound would not work. Each player has his own set of
footsteps that are being triggered in a multichannel environment. The player that you
have control of is usually in the center of the screen, so you would want to keep him
straight up the middle and in the center. Everyone else, however, is running all around
the player. Because there may be 10 players, each with a full set of footsteps, you
would have to prioritize certain more important sounds over the footsteps because of
a limit of voice allocation or too many sounds playing all at the same time. Volume
control in this instance becomes very important.

Some of the other needed sounds are actions such as ball hits, passes, rebounds,
jumps, lands, player “oofs,” ball slaps, ball off backboard, ball off rim, baskets, swishes,
and so on. These sounds must all play in surround, with dynamic pitch, volume, 

6.9 Audio Design and Production 775



randomizing, and 3D. Most sound engines and programmers are already calculating
3D space based on position and volume, so in essence, the sound designer only needs
to concentrate on integrating the proper space, volume, and pitch positioning.

Ambience

Another extremely important and often overlooked element in sound design is ambi-
ence. Ambiences can sometimes create a mood even more than music can. Even a small
hum coming from a computer or distant waterfall or wind through trees enhances the
experience tenfold. Many times, depending on space and limits of the machine, you
will want your ambiences in full, complete surround sound. This can be accomplished
by creating a stereo ambience bed and mirroring the image in the back speakers. These
ambience beds could consist merely of wind, room hums, distant ocean waves, and so
forth. Aside from a stereo bed, there will also be specific 3D objects within the envi-
ronments that should have sounds as well (such as streams or machinery).

Music

How is music for games created? Technically, you can do it a thousand different ways.
Every project might be approached completely differently because of the technology,
the creative aspect, and the audio or game engine/tools. It’s part of the composer’s job
to figure out exactly how to pull off what you’re trying to accomplish both technically
and creatively.

Interactive Music

Interactive music is music that changes based on what the player is doing. Movies vary
the music to match the action or moods of the story, but since games are not statically
fixed in time, they must adjust the music “on the fly” to match how the player is dri-
ving the game. If the player is fighting zombies, then the music might be intense. As
the last zombie is killed, the music might transition into a more relaxed score. There
are several ways to create this interactive music.

Sometimes, you may choose to use MIDI branching for complex nonlinear inter-
active music. This is where the score is set up with specific branching points that are
able to transition into several other specially designed scores. Another simpler method
is to take one piece of music and transition it to another piece of music at a certain
time in the game when a certain event is triggered. It can be as simple as that, or as
complex as adaptive audio, in which every little thing in the game is hooked up to a
MIDI channel. Because some game hardware supports multiple streams and a large
hard drive, you’re able to take a great deal of data and have it all streaming at the same
time, even in 5.1 surround sound. For example, you could write different variations
and different intensity levels of the same song, record it all with a live orchestra, and
then crossfade in between the different intensity levels. This can be accomplished by
setting up flag points so that the programmer always knows the current part of the

776 Part 6 Audio Visual Design and Production



song, so that when the scene changes or the action gets more intense, you can then
crossfade into different variations and intensity levels of the song. Another interactive
music technique is to use short and quick musical stings as an effective way to relay
emotion and intensity. Opening a secret door and hearing a “reveal” type sting may
give the player joy. Opening that same secret door and hearing an eerie and scary sting
may bring about hesitation.

Streaming Music

Streaming music is a simple yet powerful method of providing high-quality music. The
music is stored on a disc-based media or hard drive and is read a bit at a time (as
opposed to trying to load the entire song into memory at once). This allows for fully
produced tracks of CD-quality (Redbook) audio to be used in games. Streaming
music is by far the most widely used method of providing music, now and for the
foreseeable future.

Creating Music

When creating music, you normally receive an early version of the game with no
audio whatsoever. Most of the time, you will discuss music styles with the designers or
producers. During some game productions, a level may not be completely finished, so
sometimes you will have to go just on storyboards and art. A good rule of thumb is to
provide a few different 30-second demo versions of the music to see which one the
designers/producers like best. It is a good way to get an idea of what they are thinking,
and saves you the time of creating a great two- or three-minute piece, only to have it
rejected because it wasn’t exactly what they wanted. For the audio professional, it’s
nice when the designers and producers trust the composer’s expertise. However, keep
in mind that every project, producer, designer, developer, and publisher works differ-
ently for each and every game.

Listening and referencing movie soundtracks is a very good way to get a taste of
the styles for certain games. Many times, a producer or designer may come to you and
say, “We want it to sound like Conan the Barbarian,” or whatever movie they feel best
represents the feeling they are trying to convey. Keep in mind that most movie music
is incidental or background type music, whereas video game music, for the most part,
is foreground music. Video game music is often in-your-face, heart-pounding, adrena-
line-kicking stuff. A good way to create music that matches a particular environment
or feel is by referencing and using certain instruments in the music to help convey a
scene. For example, a didgeridoo will instantly put you in Australia. Big tubular bells
or a low male choir may give you a sense of spookiness. Wind in trees and a high
female choir may give you an underwater or icy feel.

Scoring for pictures is a valuable craft in the world of entertainment production.
Regardless of whether composers deliver music for a film, a television show, or a
game, their role remains the same. They are responsible for conveying subconscious

6.9 Audio Design and Production 777



and emotional information to the audience. Without music to guide them, the audience
may be unsure how to feel about what they see on-screen. Carefully crafted musical cues
convey feelings and messages that are essential to experiencing the full production.

Film is linear, whereas video games are interactive, so you don’t know what the
player is going to do next. It’s much more challenging and much more rewarding as a
player to hear music change when you do something. 

As with many things, timing is everything, and the triggering of musical cues to
picture is no exception. Imagine what would happen if the score to Star Wars were set
to play two minutes behind the action on the screen? It would be confusing to see
Luke Skywalker staring at his uncle’s house in ruins with the cantina music playing in
the background. Fortunately, timing cues for linear media, like film, are simple since
the playback sequence is the same with every play session. When the action is hot on
the screen, the score is excited. When a scene is suspenseful, so is the music. The
music matches the mood.

Games don’t work this way, since they are nonlinear. Theoretically, the sequence
of events in a game could occur in a different order during each play session. A linear
soundtrack can quickly become disjointed in relation to the action on the screen.

Game music’s legacy is repetition. Repetition in game soundtracks has an upside
and a downside. The upside is that, just like a pop song on heavy rotation on the
radio, the music for a game can quickly become memorable and a strong element in
the title’s brand. The downside is that the music can quickly become annoying and
turned off by the audience, which is an undesirable result.

When creating video game music, it is important that the composer is aware of
not being too repetitive. For example, if you are creating a two-minute song, the main
motif shouldn’t repeat unless it changes a bit or other instruments are added, sub-
tracted, changed, and so forth. The thing to remember is that the player will be hear-
ing your song over and over again, so you want to make sure you deliver something
unique and different each time before the loop happens.

Adaptive Audio System

The key to creating music and sound effects for an ever-evolving game experience is
to adopt an adaptive audio system. On the music front, an adaptive music system han-
dles the problem of repetition. Most games feature music that repeats over and over.
While the music can be of very high quality, some players find the repetition distract-
ing and opt to turn the volume off. Adaptive music systems introduce the ability for
the music team to create musical content that never plays back the same way twice.

Another advantage to using an adaptive score is the ability to more accurately
deliver valuable information to the player about the state of the game. Since the state
of a game can be in flux, it’s impossible for a linear soundtrack to stay updated and
synced to the context of the game. An adaptive score, however, can inform the players
about their health, impending danger, or the distance between their character and
their goal. Thus, adaptive music can be a powerful design tool for communication.

778 Part 6 Audio Visual Design and Production



Adaptive music puts more control in the hands of the designer to convey emotion
in context with the current happenings in the game. Since the score reacts in time to
specific events, the music can swell with emotion during appropriate moments, or
pull back as necessary. With a repeating linear score, the music could be at any point
in its cycle—missing opportunities to deliver emotional impact.

The key is to develop audio systems that can create music, sound, and dialogue
objects that have adaptive traits programmed in. The audio programmer on the team can
develop tools to the audio director’s specs to do just that. There are also third-party game
audio tools available, such as Creative ISACT, which have the capability to introduce
variation and adaptation to music, sound effects, and dialogue. Introducing these proper-
ties to a game’s soundscape and soundtrack will improve believability and immersion.

Not every score has to be nonlinear. It is okay to use full songs for certain sec-
tions. If the section or scene changes, you can go into another new song altogether
that reflects the current mood. It is important to note that every project is going to be
different and require a different approach to audio. This is the challenge and “the fun
part” of doing game audio. Keeping an open mind to all of the technical possibilities
is very important. Don’t be afraid to speak up and try new ideas.

Voice-Over Production

An area in which games sometimes drop the ball in audio is the voice-over produc-
tion. Having the proper budget and talent becomes very important when trying to
achieve high production quality for games. Every effort should be made to hire tal-
ented union actors. You will quickly find that the extra money spent is worth it in the
end. It is much harder to find talented nonunion people to act. Although it may seem
cheaper to go nonunion in the beginning, it could end up costing much more because
of the amount of time, takes, and retakes you’ll need to record.

It is important to keep up-to-date on the rules and regulations of recording union
actors. For example, a union actor can only record up to three different characters within
the four-hour time frame you are paying for. You will have to pay extra if you want her to
do other character voices, even if it is only a few lines. The other thing to know is that you
cannot mix union and nonunion talent on a project in certain states within the U.S.

You must have all of your bases covered for the game when going into a voice-
over session. At the end of the session, you’ll want to incorporate many different voice
elements for the actual gameplay, so it’s good to grab as much as you can. The follow-
ing is a good list of situations and reactions that would be smart to record for each
character. For each of the items on the list, you will want to record at least five or six
of each; plus, you should do subtle, medium, and loud/large versions of each. You can
quickly see how one “jumping” sound turns into 15 to 20 different sounds and varia-
tions. You will want to record these last, because some of them contain screaming or
stress of the vocal chords. Take your time and have the actor improvise some of these.
They are very important to the game, and only having one or two “getting hit” sounds
for 20+ hours of gameplay will get annoying very quickly!

6.9 Audio Design and Production 779



Utterances: Taunts, vocal self-reflection (“What was that?”)
Bodily functions: Breathing (subtle and heavy), coughing
Physical exertion: Jumping, landing, throwing a punch, pushing, pulling
Emotions: Crying, scared, startled, upset, relieved
Pain: Hit in face, hit in stomach, on fire, electrically shocked
Death noises: Falling to death (short and long), violent death (scream), subtle death

(last breath), drowning

Spatialized Audio

Spatialized audio is a perfect tool for video games. Imagine playing a driving game and
hearing an opponent’s car engine coming up from behind on your right before you see
the car on-screen. The player then quickly moves to the right to cut off his opponent
without ever seeing him. That’s interactive audio, and that is the future of video games. 

The film industry uses multichannel audio, but often it’s rare that movies really
take advantage of the technology. Of course, there are exceptions, like the bullet
whizzing in Saving Private Ryan and The Matrix. Unfortunately, a common argument
in Hollywood is that the picture is in front of you and the action is in front of you so
the sounds for the most part should be in front of you. While this may be the case
with many movies, games put the player in the midst of the action, and it’s crucial for
game developers to surround the player with an immersive soundscape.

If there is a scene in a jungle, every bit of that jungle should surround the player.
The reality is that this takes much more time and energy to record and mix, but the
result is worth it.

So, as you can hear, in the real world, sound occurs 360 degrees around us. It
comes at us from every direction. Developers seek to mimic the experience of the real
world in their virtual worlds and require solutions for realistic sound playback. Proper
sound placement in game worlds falls on the shoulders of the audio director and the
sound team to deliver realistic sound behavior.

Spatialized audio involves reproducing recorded sound in such a way that it is
perceived to possess a particular location in space relative to the listener. The most
popular form of spatialized audio is stereo.

Putting “space” into a soundtrack for a linear production like film or television is
fairly straightforward, as the technology and techniques have been around for nearly a
century. These techniques and tools translate flawlessly into the linear component of
nonlinear entertainment (i.e., in-game cinematics, CGI cut-scenes, FMVs). The real
trick comes in bringing these elements to life during gameplay. Since events take place
in real time during gameplay, playing back a linear sequence of recorded sound effects
just doesn’t work. Instead, the game engine must generate spatial and environmental
characteristics of sounds on the fly. These characteristics are based on location infor-
mation provided by the objects in the game world.

780 Part 6 Audio Visual Design and Production



Mono

Mono is short for monophonic sound. This format refers to one-channel soundtracks.
Mono is used for systems that have only one speaker allocated for sound playback.
Since there is only one speaker in a mono system, there are no controllable spatial
characteristics. Even though mono hasn’t been the main format for sound playback
on home systems for quite some time, consoles usually support a mono output mode,
so this might need to be considered. In addition, sounds effects are normally recorded
in mono so that they can be placed dynamically around the player with stereo or 
surround sound.

Stereo

Stereo is the preferred playback format that has been around for decades and is a stan-
dard in music production today. Stereo music production involves two tracks, played
back over a left and a right speaker channel. Differences in the volumes of individual
instruments in each speaker create the illusion of those instruments existing in a space
between the two speakers. For instance, if the vocals in a particular song are at full vol-
ume in the left speaker but not in the right speaker at all, the vocals will sound as if
they are to the “left.” If, however, the vocals are at full volume in both speakers, they
will sound as if they are in the “center.” Gradual changes in volume between the two
speakers will cause the vocals to sound as though they are “moving” to the left or right.

Multichannel Surround

Surround sound, ever prevalent in movie theaters, involves using more than two speak-
ers. The most common configuration is referred to as 5.1, where the “5” represents the
number of full-bandwidth speakers in the system, and the “.1” represents the subsonic
bass channel, or subwoofer. In a 5.1 system, there are three forward channels (left, right,
and center) and two channels in the rear (left and right). The 5.1 mixes are generally
created such that all on-screen dialogue takes place in the center channel, music and front
sound effects are in the left and right front channels, and special sound effects and
ambience are in the rear left and right channel. Multichannel surround formats can be
created in many configurations, with some semipopular options being 6.1 and 7.1.

After a failed attempt at a four-channel consumer surround format in the 1970s,
the home theater industry backed away from multichannel in the home. Consumers
today are savvy, however, and the hunger for cutting-edge technology and the most
immersive game experience possible has created a market for surround sound systems
among gamers.

To get the massive amount of uncompressed audio data onto a fixed delivery
medium like film or a digital medium like DVD (six channels of uncompressed audio
is a huge amount of data), the audio data must be encoded. The two major formats
for surround encoding are Dolby and DTS. For more information on each of these
technologies, visit their respective Web sites [Dolby, DTS].

6.9 Audio Design and Production 781



3D Spatialized Audio

One limitation of stereo and conventional multichannel surround configurations is the
notable lack of a vertical component. Using these systems, sound can be made to seem
as though it is coming from in front, behind, or to either side, but it cannot be made
to sound as though it is coming from above or below. Another limitation involved with
multichannel surround systems is the cost, in which more speakers mean a greater cost
to the consumer purchasing the system. A third limitation lies in the placement of the
speakers by the listener. Proper playback of multichannel surround requires proper
placement, and for many people, proper placement of the six speakers involved in 5.1
is not always convenient, if they even have the space to place them at all.

To combat these limitations, audio engineers have developed 3D spatialized
audio. Using 3D spatialized audio technology, a game audio engine can create the
illusion of a sound coming from anywhere in space around the listener. This implies
the full 3D space around the listener: up, down, left, right, front, back, and all around.

The technology involves a technique using special-frequency filtering that mimics
the way sound interacts with a human’s head, ears, and chest. These filters are called
head-related transfer functions, or HRTFs for short.

The 3D spatializing software solutions have found a home in the games industry
on all major consoles and the PC market, thanks to companies such as Microsoft,
Creative Labs, Sensaura, and the legacy of the now defunct A3D. These groups poured
a great deal of money and research into the development of middleware software
capable of delivering 3D audio environments for game developer’s virtual worlds.

Unfortunately, 3D spatialization has its limitations. Much like multichannel sur-
round, proper speaker placement is necessary to enjoy the full effect the technology
offers. For this reason, 3D spatialized audio is best experienced on headphones.

Environmental Audio

Direction is only part of the picture to consider when modeling the behavior of sound
in games. Certain environmental properties are equally critical in the transmission of
sound. Qualities like air pressure, humidity, room size, room shape, and room mater-
ial all have a profound impact on how a listener hears a sound. Creating these varying
environmental effects has become an important aspect of game audio development.
Modeling the interaction of sound as it would actually occur in a real environment
would take an excessive amount of processing power to complete. Instead, modern
solutions need to somehow cheat to create a realistic reproduction of the behavior.

As sound travels through the air, it will bounce off, bend around, and penetrate
objects in its path. The objects encountered can be anything from walls, to people, to
dense air pockets. Compounding the situation, objects in the real world are made
from varying types of materials, such as wood, stone, flesh, and plastic, all of which
absorb and reflect frequencies with various measures of aptitude. Temperature, wind
gradients, and humidity all have a profound effect on the tonal characteristics of sound,
as does room size, room contents, and the physical materials used to build the room.

782 Part 6 Audio Visual Design and Production



All of these factors combine to create truly complex sonic interactions that affect
the listener-perceived quality of sound. For instance, a shout occurring on the oppo-
site side of a brick wall from the player’s in-game character should sound markedly
different than if the shout occurred in the same room as the character.

Games require special audio solutions to model the effect that different environ-
ments have on sound. Most modern audio systems for games have some inherent abil-
ity to deliver environmental effects for real-time, in-game modeling of realistic sound
behavior. Of particular note are the solutions offered by Creative Labs. Their work
has been most extensive in the development of environmental audio synthesis solu-
tions. Their solution is named EAX for Environmental Audio eXtensions. EAX allows
game audio designers to model the effect of the environment on sound. EAX has the
ability to give different material characteristics to the walls of a room. Creative has an
extensive program for developers interested in integrating EAX into their produc-
tions, including tools, training, and support [CreativeLabs]. It truly is the most com-
prehensive solution for environmental audio effects in the business.

Studio Savvy

Like animators, artists, and software engineers, audio professionals have their own
suite of tools they use to produce content. In fact, audio professionals use more tools,
both software and hardware, than any other professional in the development process.
While an animator and programmer can get away with a few pieces of key software
and a high-powered PC, audio pros need a varied pallet of sounds, processing devices,
recording equipment, and other gear to reach their full potential. This section looks at
the key tools in the audio production world.

Every musician needs a good sequencer for composing music. Both Macs and
PCs have great sequencing software. The best advice would be to go online and down-
load the different demos for each. Whether it’s Cakewalk for the PC or Digital
Performer or Cubase for the Mac, a comfortable sequencer to create music is very
important. Aside from the sequencer, you’ll need a strong set of sounds and instru-
ments. Programs such as GigaStudio or VST plug-ins enable the musician to have
thousands of different and unique sounds at their fingertips. There really isn’t any one
style for video game music; therefore, you may be asked to incorporate many different
sounds, styles, and techniques in your music writing. A good set of instruments and
sound will enable you to do this.

Many video game audio professionals use the program Sound Forge for the PC.
This is one of the most versatile, easy-to-use, and affordable audio software programs
on the market. There are tons of plug-ins available to make it even more powerful.
Another piece of equipment a sound designer will definitely need is a portable DAT
machine or digital recording device with a great microphone for grabbing all of those
in-the-field sound effects.

6.9 Audio Design and Production 783



When putting everything together for prerendered game cinematics, such as
music, sound effects, and dialogue, a good postproduction tool becomes important.
Whether it’s Digital Performer or Pro Tools on a fast Mac or Nuendo or Vegas on the
PC, a good software program for mixing takes the level of quality and convenience to
the next level.

Hardware

Modern studios center around computer production environments, limiting the his-
toric reliance on hardware audio professionals had for decades. This isn’t to say that
specific pieces of hardware aren’t necessary in a quality recording environment. There
are many great mixers, effects boxes, and other tools that audio designers can use to
create cutting-edge audio assets for games. Audio directors know what they need and
what can be replaced with software. There are some critical hardware components
that are a must for a great audio production studio.

The Triad

Arguably, the three most important components in an audio production suite are the
microphones, A/D converters, and monitors (i.e., speakers), which are all hardware
components. These three devices are necessary to get the best possible sound into the
computer environment and to monitor it once inside. These devices are deceptively
expensive but critical to the creation of great sound. If your goal is to have an in-house
sound studio, don’t flinch when you see the prices attached to these line items.

PC versus Mac

The ever-raging debate over platform superiority is no stranger to the world of audio
production. There was a time when high-end music production could only be done
on a Mac. This is no longer true, and now PCs are extremely popular platforms for
audio production.

One thing to keep in mind is that game audio tools like SCREAM and XACT
will only run on a PC, so at some point, if you’re going to be implementing sound
into a game, a PC is required. Roughly 99 percent of all audio implementation lives
in the PC world, so plan to have some PCs in the audio development environment.

Software

The cornerstone of modern audio production is the software recording/editing 
environment. Software options for production are far more cost effective than the
overhead-heavy production facilities of the twentieth century. While some of the old
guard believe that software is no replacement for tried-and-true hardware devices,
changes in the media production landscape dictate that, at least for the moment, that
software is the dominant solution, and the audio world is no exception.

784 Part 6 Audio Visual Design and Production



Applications for Audio Production

There are many great software tools for recording/producing music, editing sound
clips, and for tweaking sound effects. There are two main types of production soft-
ware: multitracking software and stereo editing/mastering software. Audio production
software is fairly standard from one industry to another, although there are some non-
commercial applications we will discuss that are specific to the game audio field.

Multitrack recording software is used primarily for producing music, although
these packages are useful for creating complex sound effects from multiple sources.
Stereo editing/mastering software is used to cut up dialogue, tweak sound effects, and
to put the finishing touches on music files.

Popular multitracking software packages include:

Cakewalk Sonar
Steinberg Cubase SX
Steinberg Nuendo
Digidesign Protocols
MOTU Digital Performer
Apple Logic

Popular software packages for editing/mastering include:

Sony Sound Forge
Steinberg Wavelab
Adobe Audition

Chances are your audio team will employ one or more of these packages in the
development of audio assets. It may be valuable to familiarize yourself with the names
of these programs, as they come up often in audio talk.

Virtual Instruments and Effects

Virtual instruments, which are software programs that create sound, are replacing
hardware workstation synthesizers and samplers. This recent surge in popularity is
bringing down the cost of the audio production studio. Some believe that the sound
of a virtual instrument cannot match that of its actual counterparts, and in some
cases, this seems to be true. However, the quality of these tools increases every year,
and in some cases, even the most well-trained ear can’t tell the difference between
actual and virtual. 

Software samplers are particularly useful in game audio production. Systems like
Gigastudio, Kontact, and Mach 5 can load mammoth sample files that, when pro-
grammed correctly, can be made to sound just like a real-life full orchestra. Orchestral
libraries from Vienna Symphonic Library, Sonic Implants, and Garritan Orchestral
Strings deliver sound quality that is near-lifelike. These tools are perfect for creating
mock scores that will later be referenced when the actual score is recorded. They are also
useful when a project is faced with extremely limited resources for the music budget.

6.9 Audio Design and Production 785



Nothing replaces the sound of an actual orchestra performing a piece of music, but
the fidelity of high-quality orchestral samples is truly amazing.

Sound Effects Libraries

Once upon a time, game audio sound effects consisted of sound chips programmed to
mimic real-life sounds. Today, game systems feature memory capable of playing back
sampled bits of recorded sound. The difference in realism has improved the quality of
games markedly.

One challenge in producing sound effects for games lies in where to get record-
ings of certain sounds. It’s not always easy to record the sound of a volcano, a WWII
attack plane, or a llama. The solution is the sound effects library. Sound effects
libraries are collections of sound recordings spanning a variety of sources, like animal
sounds, vehicle sounds, city sounds, and so forth. There are many commercial
libraries available, including The SFX Kit from Sound Ideas, the first sound library
created specifically for use in games and other media.

The Business

Just having talent and technical chops is not enough. Networking is also about 50
percent of the game for any aspiring game musician. VPs, producers, designers, and
programmers change jobs often, so if you can impress them initially, they will keep
coming back and your list of potential clients will become huge within a short period
of time.

Game Audio Network Guild

If you are serious about becoming an audio professional in the games industry, it will
be extremely helpful to join the Game Audio Network Guild [GANG]. The Game
Audio Network Guild is a nonprofit organization established to educate the masses in
regard to interactive audio by providing information, instruction, resources, guidance,
and enlightenment to its members and content providers and listeners throughout the
world. G.A.N.G. empowers its members by establishing resources for education,
business, technical issues, community, publicity, and recognition. G.A.N.G. also sup-
ports career development for aspiring game audio professionals, publishers, developers,
and students.

G.A.N.G. is a resource for composers, sound designers, programmers, musicians,
actors, engineers, producers, designers, directors, and others who have a genuine
interest in interactive audio. By banding together and providing one voice, members
can better articulate, discuss, and confront issues inside the interactive entertainment
community. One of the focuses and goals of G.A.N.G. is to encourage and promote
the creation of better sounding audio, which advances interactive industries by help-
ing produce more competitive and entertaining products. G.A.N.G. promotes and

786 Part 6 Audio Visual Design and Production



recognizes quality through the annual G.A.N.G. Awards Show. The G.A.N.G. Web
site (www.audiogang.org) provides a wealth of information pertaining to the interac-
tive audio universe and the people working in or aspiring to be a part of it.

Passion and Location

If you are passionate enough, you should never give up. Passion drives everything!
The will to succeed, to do better, and to survive becomes very important in any indus-
try. Another important element is being in the right place. If you are looking to get
into the video games industry, you need to move to a place that has many opportuni-
ties for game development. Los Angeles is the hub of the entertainment industry at
large, including the games business. San Francisco, Seattle, and parts of England are
rife with games industry activity as well. Vancouver, Boston, and parts of Texas are also
growing.

Talent and determination are the two biggest assets you could have. With enough
determination, you can achieve/find/create luck. Put together your best-written songs
on a CD and go to the E3 convention in Los Angeles and/or the Game Developers
Conference. Pass out CDs, make friends, learn, and network with people. Take your
demo and send it out to all the game companies. It’s all about being in the right place,
and it’s hard to be discovered if you’re sitting in your bedroom. That goes for getting
into any part of the industry; it’s all about working your way up and who you know.

A CD with about five or six of your best songs or sound effect demos will become
your résumé. It’s always best to present the stuff you love writing the best. Don’t send
out a demo that has lots of different varieties of music. Just send the style you love to
write. It’s always the best-sounding music because it comes from your heart.

A study of audio is always helpful, but learning software tools and being an
apprentice to someone who is already working in the field is much more advanta-
geous. It’s a great idea to go to all of the trade shows to meet people in the industry.
Going to the Game Developers Conference and E3 is also very important [GDC,
E3]. Learn about the industry through G.A.N.G., Gamasutra, and organizations like
the IGDA [GANG, Gamasutra, IGDA]. A few great books on game audio include
The Complete Guide to Game Audio [Marks08a], Game Development Essentials: Game
Audio Development [Marks08b], Game Sound [Collins08], The Fat Man on Game Audio
[Sanger03], and Audio for Games: Planning, Process, and Production [Brandon04].

Summary

Audio production is of vastly growing importance to the overall game experience. In
recent years, the process of creating and implementing audio into games has gone
from being an afterthought to a forethought. Budgets have increased, and dedicated
audio professionals are core members of production teams. With its subtle but impor-
tant emotional and informational contribution, audio provides the subconscious
underpinning to the gameplay experience that makes gaming seem “real.”

6.9 Audio Design and Production 787

www.audiogang.org


For games to deliver the quality experience that audiences have come to expect
over a great century of movie-going, game creators must be serious about preplanning,
creating, and implementing audio content into their game worlds.

Exercises

1. Why is interactive audio, as opposed to static audio, important for games?
2. Choose a popular game and study the music sound design. How does the

music influence the mood or pace? Does the music match the tension level
at all times? What’s the ratio of real music to ambiance? How does the game
handle switching music tracks?

3. Choose a popular game and study the sound design of the sound effects.
Make a list of every sound effect you hear during five minutes of gameplay
and what action or event causes it. Mark which ones are placed in 3D space
around the player. What is the maximum number of sound effects that ever
play at one time? For a given sound effect, like footsteps, how many differ-
ent variations can you detect?

4. Choose a popular game and study the voice-over sound design. How many
different voices are there? Are phrases stitched together or recorded as a 
single piece? Critique the acting quality of the voice-overs.

5. Design the soundscape for a sports game of your choice. List the types of sound
effects along with what triggers them. List the types of music and ambiance.

References

[Brandon04] Brandon, Alexander, Audio for Games: Planning, Process, and Production,
New Riders, 2004.

[Collins08] Collins, Karen, Game Sound: An Introduction to the History, Theory, and
Practice of Video Game Music and Sound Design, The MIT Press, 2008.

[CreativeLabs] Creative Labs, http://developer.creative.com/.
[Dolby] Dolby, www.dolby.com.
[DTS] DTS, www.dts.com.
[E3] Electronic Entertainment Expo, www.e3expo.com.
[Gamasutra] Gamasutra, www.gamasutra.com.
[GANG] Game Audio Network Guild, www.audiogang.com.
[GDC] Game Developers Conference, www.gdconf.com.
[IGDA] International Game Developers Association, www.igda.org.
[Marks08a] Marks, Aaron, The Complete Guide to Game Audio: For Composers, Musicians,

Sound Designers, and Game Developers, Second Edition, CMP Books, 2008.
[Marks08b] Marks, Aaron, and Novak, Jeannie, Game Development Essentials: Game

Audio Development, Delmar Cengage Learning, 2009.
[Sanger03] Sanger, George A., The Fat Man on Game Audio: Tasty Morsels of Sonic

Goodness, New Riders, 2003.

788 Part 6 Audio Visual Design and Production

http://developer.creative.com/
www.dolby.com
www.dts.com
www.e3expo.com
www.gamasutra.com
www.audiogang.com
www.gdconf.com
www.igda.org


789

P A R T

7
GAME PRODUCTION
AND THE BUSINESS

OF GAMES

Development 

Motion-capture provider 

Delivery media 
manufacturer 

Developer 

Publisher 

Platform holder 

(Sony, 
Microsoft, 
Nintendo ) 

Game 
code 

Game 
code 

Data 

Game code 
(master disk)

Finished 
goods 

Bug list

Art/animation provider 
Data 

Distributor or rep group PR firm & ad agency 

Media (TV, magazines, Internet) 

Game samples & marketing materials

Game info

Retailer ( Wal -Mart, Target, Toys "R" Us, EB )

Finished goods

Consumer 

Game info

Contract QA  provider 

Game 
code 

Finished goods

Finished goods 



This page intentionally left blank 



791

Overview 

Today, mainstream video games and computer games are made by large teams of peo-
ple. These are big, expensive, time-consuming projects. It’s not a simple or obvious
process. This chapter reveals the process, from the point of view of the person who
manages it: the producer. 

Some companies may refer to the producer by a different job title (director or
project manager, for instance, rather than producer), and may ascribe a different job
description to the job title of producer, but herein the project manager is referred to as
the producer.

There are producers who work for game publishing companies, to manage the
making of games to be published by the employer. There are producers who work for
game developers, managing the developer’s team in fulfilling a game development con-
tract for the publisher producer. This chapter, and the others in this section, cover both
internal production and external production, as managed by the publisher producer. 

There are five phases in the process of making a game: concept, preproduction,
production, postproduction, and aftermarket. Here, the first four phases are fully 
discussed. The reader may learn about the aftermarket phase in [Sloper02].

Game Production and
Project Management

7.1

In This Chapter

Overview 
Concept Phase 
Preproduction Phase 
Production Phase 
Postproduction
Summary
Exercises
References



Concept Phase 

The first phase of a game project (preceding the preproduction phase) is the concept
phase. In any of a variety of ways, the publishing company (employer) has decided to
pursue a game concept. The producer is often the first person assigned to work on a
new project. 

Where Concepts Come From

Game concepts are usually not the brainchild of a game designer. They are usually
logical or obvious business decisions based on past successes or business deals. For
example, it often happens that a publishing company already owns a successful game
franchise, and desires to make a sequel. Or the publisher has negotiated a deal with a
film studio to make a game based on a movie. Or the publisher owns game technol-
ogy, a game engine, and desires to make a new game using that existing technology.
Occasionally, new original concepts come along, either designed by internal creative
personnel or submitted by an external developer. 

For the purposes of this chapter, orders have come down that the producer must
produce a game based on the company’s successful game franchise, Ultimatt Combatt.
The producer’s job is to produce Ultimatt Combatt III. Certain guidelines are usually
handed down to the producer with the assignment. For instance, the game should be
an RTS, should use at least a few of the characters from Ultimatt Combatt II, should
include an online component, and should add new features inherent in other games
that are currently gaining wide consumer acceptance. The producer should create a
concept design document at this point.

Producing the Conceptual Design

Before serious work can begin on the game, the central concept of the game must be
written down. Form follows function, which means that the purpose of the concept
document dictates what form the concept document will take. The concept document
serves a number of purposes, but at this stage, its primary purpose is to communicate
a vision of the game so that all involved parties may agree on it. 

The concept document might be written by the producer or by a game designer.
The producer can use an internal game designer (a designer who is employed full time
by the publishing company), or might hire an external game designer, after first hav-
ing executed a contract that swears the designer to secrecy. Sometimes the concept
paper is submitted by an external development company.

The creation of the concept document probably requires one or more meetings to
achieve consensus. 

The conceptual design must briefly describe the specific story and character
developments that will occur in UCIII. The conceptual design must briefly outline
the specific improvements that will be made in the game, the user interface, and the
level design. In addition, the document should address specific ways in which UCIII

792 Part 7 Game Production and the Business of Games



will reclaim users who have been stolen away by competing products, citing research
on the user base, customer support findings, and magazine reviews. If the game is to
be published for a console (Xbox or PlayStation, for example), then additional feed-
back should be obtained from the platform holder (Microsoft or Sony) and incorpo-
rated into the concept document.

In the case of a licensed concept, the producer would also discuss the concept
with the licensor. However, since UCIII is an internal IP, an outside meeting isn’t nec-
essary in this case. If the UCII team were internal, the producer would want to brain-
storm with the people who worked on that game. Every person who worked on a
game that was released has pet features he or she wishes had been included.
Worthwhile features have a second chance for consideration in UCIII. The sales team
who moved UCII into store chains probably also has some suggestions, and those
need to be considered as well. 

The conceptual design also needs a “working title” for the game. It might seem a
simple matter; the designer chooses a name for the game and that is that. However, in
reality the game’s title is an important marketing tool, and the title chosen at the
beginning is subject to change as marketing activities heat up prior to the game’s
release. In the case of Ultimatt Combatt III, the producer and designer agree to call it
Ultimatt Combatt III: Extreme Warfare. For at least the duration of preproduction and
some (or much) of the production phase, that is the title by which everyone will refer
to the project. The final title will be determined later.

Having collected ideas and wish lists from a variety of sources, the producer 
distills it all down into a short document. It has to be short because of its intended
audience: busy executives. You’ve heard of “executive summaries?” Executives want to
hear the highlights first. Once their interest is piqued, they may stick around to hear
a few details as well. In addition, they will certainly come to the table with questions.
The concept document needs to be brief, yet provide satisfactory answers to the big
questions.

Green Light Committee

Each publishing company does things differently. However, before permitting a pro-
ducer to commit the company’s resources to a big project, the company needs to be in
complete agreement as to the details and direction of the project.

The producer brings printed copies of the conceptual design document, as well as
a PowerPoint presentation. The games Ultimatt Combatt and Ultimatt Combatt II are
installed on the machine in the meeting room in case anyone wants to have a quick look. 

Present at the green light meeting will be executives of the publisher’s studio, dis-
tribution, licensing, sales, marketing, financial, and international divisions. The exec-
utives of the publisher’s overseas operations may not be physically present in the room,
but rather participating by means of teleconference or videoconference. Each execu-
tive has his or her own views and concerns. Although they already know that they
want to make a sequel to Ultimatt Combatt II, they won’t necessary all agree as to what

7.1 Game Production and Project Management 793



form that sequel should take. The devil is in the details. Green light meetings can go
smoothly or can produce surprising twists.

Publishing executives may say, in oblique ways, that they do not disagree with the
idea of proceeding with a direction. However, they often prefer not to put their offi-
cial seal of approval on proceeding with a risky project, in case it might go badly.
However, if the publisher has a solid green light process in place, it needn’t always be
the producer who will have to shoulder all the blame if a project doesn’t go well. The
green light process is for the benefit of both sides of the table (the producer and the
studio on one side, and the executives on the other).

If all goes well in the green light meeting, the producer is given the approval (a
“green light”) to proceed and to use the publishing company’s resources: money, per-
sonnel, equipment, office space, and its internal network, among other things.
Typically, the producer is given platform, territory, scheduling, and budgetary guide-
lines at this time, if not before. 

Once the concept phase is over, the production process can be broken down into
three phases.

Preproduction: This is the phase during which planning and team building take
place.

Production: During this phase, the game is actually created.
Postproduction: Bugs are identified and fixed, the game is tweaked, and the package

and manual are created. 

Preproduction Phase 

Once the concept is fleshed out, and the producer has the go-ahead to put a project
together, serious work begins. The producer needs to have a full game design docu-
ment (GDD) written and must select a development team. Work can progress on
both fronts simultaneously.

The GDD

If the game is to be developed internally and the company has one or more game
designers on staff, the GDD can be written internally (by a company employee). If
the game is to be developed externally and the company does not have a full-time
game designer on staff who can write the GDD, then the GDD could be written by a
freelance designer, or by a designer who works for the development house that will
create the game. In the case of UCIII, it is decided that the bulk of the new program-
ming work will be done by an external development house, yet to be selected. 
In-house programmers will also be needed because the game’s online functionality
will use existing technology created and owned by the publishing company. Because
the company has game designers on staff that are already intimately familiar with the
Ultimatt Combatt universe, the GDD will be written internally.

794 Part 7 Game Production and the Business of Games



Team Selection

When a game is developed internally, the first document the producer must create is
a staffing plan. When a game is developed externally, a bid package must be created to
facilitate developer selection. Since UCIII is to use both internal and external resources,
both a staffing plan and a bid package have to be created.

Internal Staffing Plan

The producer must determine what personnel are needed and must create job
descriptions for each different type of job. Job descriptions detail the duties and pay
ranges for each individual on the internal team.

To staff an internal team, a producer has three choices:

Use existing employees, in roles they’ve performed before.
Promote or transfer existing employees from other departments, like QA.
Hire new employees.

The first of these seems like the simplest way to go, but it can be quite a manage-
ment challenge to keep creative personnel working year round. It is rarely smooth or
easy to have another project ready for a programmer who has just finished one pro-
ject. Each programmer on a project is finished with his responsibility on that project
at different times, which exacerbates the problem. Consequently, assigning internal
personnel to a new project is very much like a juggling act. 

Transferring or promoting from within is not without its own challenges. The
producer might want to bring in a talented lead tester from QA to train to become 
an assistant producer. The tester might be willing, but his manager might not.
Conversely, the manager might be delighted to give the deserving tester an opportu-
nity, but the tester might not want to work on the particular game being staffed.

Hiring new employees can be an exhausting and time-consuming task for the
producer. So many résumés to read, so many interviews to conduct. A good HR
department can help smooth out the bumps by filtering the candidates and arranging
for interview sessions. When a promising candidate comes in, not only the producer
will need to be involved. Other project leaders will also need to meet potential new
hires. New staffers need to be able to do the required duties and fit in with the exist-
ing team.

Selecting an External Developer

The producer probably has a selection of external developers with whom he or she has
worked before and would like to work with again. The producer can widen the field
by asking other producers for recommendations and by checking out developers via
other resources, such as the IGDA and Gamasutra.com.

7.1 Game Production and Project Management 795



It sometimes happens that a desirable developer cannot make a bid on a project.
Perhaps the developer is already booked, working to capacity. Or perhaps the particular
project is outside the developer’s expertise (the genre, the subject matter, or the platform).
In such a case, the developer may suggest another developer that the producer can
contact.

If a developer is interested in bidding on a project, the producer has to provide
fairly detailed information so the developer can make a realistic estimate. In an ideal
world, the developer would like to have a complete GDD. However, this isn’t always
possible. Whether or not there’s a full GDD, another document, a bid package, is
usually needed at this point. However, before the producer can send this to the external
developer, a contract called a Confidentiality Agreement or an NDA (Nondisclosure
Agreement) usually needs to be signed.

Confidentiality and Nondisclosure Agreements

The games industry is famous for its cutthroat competitiveness and secrecy. It takes a
long time to make a game, so if too much information about the game leaks out early,
a competing company could steal the publisher’s thunder by beating them to the
punch with a similar game. 

Consequently, before sharing such important and valuable information with an
outside company, the publisher asks the developer to sign an NDA. The contract says
that the developer recognizes the value and importance of confidentiality and will not
reveal the publisher’s plans to any uninvolved parties. 

It’s standard operating procedure for developers to sign confidentiality agreements
and NDAs when asked to bid on a project, even when they’ve done projects for the
publisher previously. Once the NDA is signed, the producer can share the information
with the developer. The producer can tell the developer about the concept verbally,
but the developer needs detailed information.

The Bid Package

The developer needs to know the game’s genre, platform, and target audience, and
what products the game must compete against. The developer needs to know the
publisher’s target ship date. Is this to be a triple-A game or a budget title? How many
levels, characters, or missions will the game entail? What special technologies or 
features will be included? Is the developer expected to create all the assets and technol-
ogy, and if not, exactly which aspects of the project are to be handled by the devel-
oper? Must a demo be created, and if so, what are its specs and due date?

The producer will be contacting several developers to get several bids. Each devel-
oper will have different questions, so the producer collects all the developers’ questions
and then writes a single bid package so all developers can bid based on the same package. 

The bid package includes information for the developer and questions for the
developer to answer. The developer needs to be told when the bid is needed, what for-
mat the bid should take, and what information is needed in the bid.

796 Part 7 Game Production and the Business of Games



For the developer, bidding is an art more than a science. If the bid price is low, the
developer could well win the project, but then might go broke before the project is
finished. If the bid price is high enough that the developer will make a good profit,
the project might go to another developer with a lower bid. 

Some developers ask for royalties on the game’s sales. The producer will usually
want to see a lower up-front cost (advance) if royalties are to be part of the picture.
Not every developer pins its business hopes on royalties these days [Rogers04].

A good developer will respond with a bid on the requested date, in the requested
format, and with all the requested information. A great developer will also provide a
breakdown, so that the producer can make more informed choices. On the opposite side
of the coin, a developer whose bid is late, or doesn’t provide all the requested informa-
tion, doesn’t make a good impression on the producer, and thus may lose the project.

Having collected bids, the producer can select the developer(s) who will create
the game. Now a contract is needed.

The Development Agreement

The producer and the developer can’t just shake hands and get to work. No smart
developer will begin spending resources on a project without a contract and an initial
payment.

It is usually the larger, more powerful entity in a venture that is responsible for
writing the contract. That means it is usually the publisher’s responsibility. The pub-
lisher typically has a “boilerplate,” a standard development contract that contains the
terms that the publisher prefers. The producer works with the publisher’s legal coun-
sel to fill in the blanks in the contract. The game’s working title and the developer’s
business name and address are plugged in. 

The developer’s specific duties are spelled out. The developer is to create a game
and a demo for one or more specific platforms. The game must meet certain design
criteria, per the design document, which is attached. The developer will provide
source code with the deliveries, which are to occur per a detailed schedule. 

The publisher’s specific obligations are spelled out. Payments are to occur within
X days of acceptance of a delivery. If the publisher is responsible for creation of assets
for use by the developer, those are to be delivered in the specified format according to
a detailed schedule. 

The agreement details ownership of intellectual property. In the case of UCIII,
the developer owns no IP. However, the developer may own the technology or engine.
The publisher warrants that it has the right and authority to make games based on 
the Ultimatt Combatt universe, including places, characters, and objects therein. The
developer warrants that it is not using technology patented by other parties without
having secured full rights and authority to do so. Both parties typically hold the other
party harmless. For example, if a third party sues the developer because the third party
claims ownership in some part of the UC universe, the publisher will be the responsible

7.1 Game Production and Project Management 797



party in the suit. Alternatively, if a third party sues the publisher for the use of their
patented source code in UCIII, the developer is supposed to be responsible in that
suit.

The agreement describes the circumstances under which the contract could be
terminated, and what would happen in the event of termination.

One could write an entire book about development agreements. For the purposes
of this chapter, though, the most important aspects of such agreements are the mile-
stones and the milestone approval cycles. 

Milestones

The developer is going to do a lot of work for the publisher, and in exchange is going
to be paid a lot of money. The publisher can’t just fork over the money and wait two
years to see what the developer will deliver. That’s much too great a risk. The devel-
oper might never finish the game, or might deliver a game that isn’t satisfactory. In
addition, the developer can’t work for two years, hoping to get paid upon completion.
The publisher might be unhappy with the way the game turned out, or might decide
that it no longer suits their evolving business plan, and refuse to pay. The solution is
to break the project down into chunks, called milestones.

The milestones call for the developer to do specific things in a specific order. The
features that are due in a milestone are called “deliverables.” To avoid disagreements as
to whether a deliverable has been satisfactorily fulfilled, the producer and the devel-
oper have to work together to write clear, concise milestones into the development
agreement. 

For example, it wouldn’t do to have a milestone that simply says, “Level 1.” The
developer and the producer might interpret this differently. The developer could
deliver a version of the game that contains nothing more than the game world’s first
level, and that permits the user to move a “camera” through it, without any characters
or items being therein. If the producer wanted the deliverable to include a fully
functioning player character, able to run, jump, pick up items, and interact with
NPCs, and to encounter all the NPCs and objects called for in the GDD for Level 1,
then the producer should make sure that this expectation is fully described in the
milestone.

Terms like “alpha” and “beta,” if used in milestones, should be for reference pur-
poses only, not as definitive terms. Neither term has a universally agreed definition. It
can be useful to name milestones something like “developer’s beta,” for instance, to
mean, “the developer has implemented all features and has, to the best of the devel-
oper’s knowledge, identified and fixed all known bugs.” If the publisher’s QA depart-
ment has their own working definition of beta that differs from the contractual
milestone, it would be unfair to withhold payment for milestone delivery for that,
unless the QA definition of beta were to be used in the writing of the milestone. The
developer wants its milestone approvals to come from the producer directly, not from
another entity such as a QA lead. 

798 Part 7 Game Production and the Business of Games



Milestones need to be written very clearly, so that anyone reading the milestone
would have no doubt as to what is expected. Poorly written milestones can hurt both
the developer and the publisher. Disagreements as to whether a milestone has been
met, and a payment due, can result in production delays and bad feelings. The devel-
oper can suffer damage or even go out of business if payments are not made. The
publisher can suffer by loss of an important project and a poor public image when 
the news gets out. The importance of clear milestones cannot be overstressed.

Milestone Approvals

While the writing of the milestones is of tremendous importance to both parties, the
approval of milestones is of importance primarily for the developer, whose very liveli-
hood is at stake. The developer’s business plan calls for payments to come in within a
reasonable time after acceptance of milestone deliveries. The development agreement
then must include a clause covering the approval of milestones by the producer and
the publisher. Milestones are typically not payable upon delivery, but rather upon
approval and acceptance. The well-written contract says this explicitly.

Typically, the producer contractually agrees to review a milestone delivery and
accept or reject it within seven days. Contracts have to be very clear, so even the term
“seven days” needs to be defined. Does it mean seven calendar days, regardless of
weekends and holidays? Or does it mean seven business days? Unless the milestone is
extremely large or the producer is severely overworked, there is rarely a reason why a
milestone couldn’t be reviewed within five business days or even fewer. 

The well-written milestone serves as a checklist for the producer to review the
milestone. If the milestone calls for a player character to be fully implemented, running,
jumping, ducking, and shooting, then that is very quick and easy for the producer to
check. If the milestone calls for the game to include a very large playing area that
could take the producer days to explore due to a sizable amount of interactions 
and difficult fighting, the developer might want to build in cheats of various types to
facilitate the producer in running through the deliverables.

The first two milestones are usually (1) contract signing, and (2) the technical
design document (TDD). Upon signing the contract, the developer needs a payment
to begin work. The first task is to write the TDD.

The Technical Design Document

By this time, if the GDD is not yet fully complete, there should be enough from
which the developer can begin work on the TDD. If one regards the GDD as a state-
ment of the problem, the TDD can be viewed as a statement of the solution [Blair93].
The purpose of the TDD is to lay the foundation for the programming work, identify
the technical challenges and put into place a plan for dealing with them, and to spec-
ify what technology will be used, what equipment is needed, and what personnel will
be employed in creating the game’s code. And, most importantly, to make a detailed
task list.

7.1 Game Production and Project Management 799



To some extent, there are interdependencies that make it difficult to create a
detailed list of milestones without first having the TDD in place, so it may be that the
detailed milestone descriptions are written after the TDD is accepted and the sched-
ule is finalized. The exact order of events is subject to the specifics of the project, the
concept, and the working style of the companies and managers involved.

Scheduling

One of the true black arts of the game producer is the writing of a schedule. It’s part
science and part wishful thinking. With a GDD and TDD in hand, the producer can
get to work. 

In making the game’s schedule, the producer plans for everything—the more
detail the better. 

The programming milestones
Creation of all visual assets
Creation of all audio assets
Creation of demo version(s)
Delivery of assets for marketing materials
Creation of package and manual
Creation of strategy guides
Licensor approvals
Platform holder approvals
Green light meetings
ESRB rating
Vacations
Holidays

Some producers use a project scheduling tool like Microsoft Project, and others
write schedules in a spreadsheet like Microsoft Excel. Scheduling-specific tools like
Project facilitate the use of interdependencies in the plan, so that tasks that cannot be
done until other tasks are finished can be scheduled. Whichever planning tools the
producer uses, the experienced producer always starts by planning backward from 
the target ship date. 

The Golden Spike and Game Scheduling

On May 10, 1869, the tracks of the Union Pacific railroad were joined to those of the
Central Pacific Railroad at Promontory, Utah, with a golden spike to symbolize the
importance of having crossed the entire North American continent by rail
[SFMuseum]. The builders of the cross-continental railroad didn’t start at one end
and work their way to the other. They started at both ends and worked their way
toward the middle. Building a game schedule is a lot like that.

800 Part 7 Game Production and the Business of Games



The back end (from beta to the target ship date) cannot be compressed. The 
finished goods can not be moved from the manufacturer’s warehouse to the stores’
warehouses any faster than the trucks can drive. The manufacturer requires a certain
amount of time to make the finished goods, and they can’t be cajoled into making
them faster. The console platform holder (in the case of UCIII, an Xbox game, that
would be Microsoft) requires a certain amount of time to test and approve the game
after the publisher’s QA team has certified it. Don’t even think about asking Microsoft
to speed that up! In addition, the QA team needs a certain amount of time to fully
test the game. Therefore, the producer begins by scheduling backward from ship 
to beta. 

Given the desired ship date and the firm and unchangeable tasks that must occur
just prior to shipping the finished product, the producer then knows when the game
must be at beta. Let’s call this the “target beta date.”

Scheduling from the present, forward through the programming task list, the
producer then needs the game’s assets to all be completed and implemented before
that date. All the game’s features need to be implemented and (to the best of the
developer’s knowledge) bug free by that date. The game’s levels need to be designed,
built, and incorporated by that date. If all goes well, the forward track does not over-
lap with the backward track, and the Golden Spike can be driven in. The real world,
however, doesn’t always work out that cleanly.

Using the TDD and working with the developer, the producer can determine
when the game will actually be at beta. When it is determined that the actual beta
date will be later than the target beta date, there are two options the producer can
explore. The first is to reduce development time so that the target beta date (thus the
target ship date) will be met. The second is to push back the ship date. 

To the uninitiated, it would seem that it might be simpler to push back the ship
date. However, the producer will meet stiff resistance to this option from the publish-
ing company executives. The publisher’s business model requires the timely shipping
of new products. Requests to spend more time and money are, therefore, fiercely
resisted.

So the first thing the producer has to explore is how to reduce development time
to meet the target beta date. 

Reducing Development Time

To a certain extent, it’s possible to add people to reduce workload. However, as
described in The Mythical Man-Month, adding people adds complexity to a project
and at some point becomes counterproductive. If it has been estimated that it will
take two programmers one month to implement a particular bit of code, it is not nec-
essarily true that four programmers could get it done in half a month. The existence
of the “man-month” concept does not mean that men and months are interchange-
able [TMMM82]. 

7.1 Game Production and Project Management 801



Up to this point, we have discussed the project schedule in terms of program-
ming, with little if any mention of the time it takes to create graphics, animation, 3D
models, sounds, voice, story text, or music. The reason for this apparent oversight is
simple: programming is historically the single most time-intensive task in making
interactive electronic entertainment. Creation of the assets to be used by the program-
mers can occur in parallel, and asset deliveries can be made to dovetail with the
requirements of the programmers. That said, it often happens that programmers have
a need for placeholder assets to make features work. If a programmer is spending time
creating placeholder assets, that isn’t the best use of the programmer’s time. When
looking for ways to reduce programming time, the producer is well advised to find
ways to have assets ready well before the programmers anticipate needing them.

When adding programmers and revising the schedule does not result in a com-
fortably realistic Golden Spike, the next thing the producer has to reexamine is the
game design. The initial GDD invariably lists features that are essential, features that
add to the perceived value of the game, and features that are nice but unnecessary. The
producer should look at the GDD as a wish list, and should reevaluate the importance
of the game’s features.

Prioritizing the Feature Set

The producer must first consider anew the central premise of the game, in order to
prioritize the features in light of that premise. In the case of UCIII, it has already been
determined that the game should be an RTS, should use at least a few of the charac-
ters from Ultimatt Combatt II, should include an online component, and should add
new features inherent in other games that are currently gaining wide consumer accep-
tance. If, in the writing of the GDD, the designer has added other features that go
beyond those basic requirements without significantly adding to the marketability of
the game, those features can go on the chopping block. Then, subtracting the time it
would take to implement those features, the producer can see if the target beta date
and the projected beta date can be joined with a Golden Spike. 

Looking for Bottlenecks

In addition to prioritizing the feature set, the producer should reexamine the program-
ming schedule as broken down by task. The goal is to determine anew which features
are taking the most time. Typically, the features that take the most time are also the
most important. However, perhaps there are multiple lower priority features that,
taken together, can be cut to save development time. It often happens that very 
low-priority features are quick and easy to implement. When time is tight, it’s best to
schedule those for later in the project, to be implemented only if the project is run-
ning on schedule.

It sometimes happens that cutting features to achieve the desired schedule results
in greatly reducing the game’s marketability. In such a case, the producer has no choice
but to ask for more time. And as we all know, time is money.

802 Part 7 Game Production and the Business of Games



Budgets

The budget is essentially a spending plan. It’s desirable to anticipate all costs in advance,
so that by the time the game is finished, the planned amount of money is not exceeded. 

Most producers use a spreadsheet program like Excel to make budgets. In build-
ing the budget, the producer starts with the schedule. The budget is typically broken
down by the month. Therefore, the first thing is to build a grid with each column rep-
resenting a month of the project. The rows are then used to delineate the various types
of expenses to be incurred during the project. Again, the more detail the better. For
each month of the project, the producer inputs:

Salary for each internal employee 
Payments to each external developer or vendor
Cost for equipment purchases or rental
Cost for software purchased
Cost for supplies purchased
Travel and meals
Shipment costs

When making a budget, the producer quickly realizes that a dollar amount is often
just an estimate, based on an assumption or based on an estimate made by another
individual. The producer annotates all assumptions to justify all estimates or amounts
that might be subject to interpretation or disagreement by a reader of the budget. In
the example budgets (see the included CD-ROM), the leftmost column is reserved for
assumptions, which are numbered and listed in detail at the bottom of the worksheet.

For the sake of busy executives who just want to know the bottom line without
wading through all the details, the budget should include an overview sheet that
breaks down the budget to the essential factoids.

Each publishing company calculates budgets differently. Some may go so far as to
require the producer’s budget to include the use of office space and amortization of
equipment and furniture that is already owned by the publisher. Alternatively, some
publishers may simplify this by requiring the producer to include a flat overhead cost
in the budget. Or, if these overhead costs aren’t included in the budget, perhaps
they’re included in the P&L.

Profit and Loss Analysis

Certain things not covered in the budget still need to be accounted for to determine
whether the cost of making the game will be covered. The producer, or perhaps the
marketing manager assigned to the project, will create a Profit and Loss Analysis, also
called a P&L. The P&L might alternatively be called an ROI (Return On Investment
analysis).

The P&L weighs all costs associated with the game versus all anticipated revenues,
so that it can be determined in advance whether a game should be made. 

7.1 Game Production and Project Management 803



804 Part 7 Game Production and the Business of Games

On the costs side:

Production costs (those costs covered in the game’s budget)
Cost of goods (manufacturing cost, including platform holder licensing)
Marketing costs
Licensor royalties
Developer royalties

On the revenues side:

Projected sales
Anticipated wholesale price
Ancillary sales (OEM, strategy guides)

Part of the number crunching that needs to be done, whether the producer works
for the publisher or the developer, is a break-even analysis. Having collected estimates
from various parties involved, it isn’t difficult to determine how many units need to be
sold for the venture to be profitable. Many publishers have a target profit percentage
requirement. Below a certain profit margin, a project should not be undertaken. 

Kickoff Green Light

Once the producer has made a schedule, a budget, a GDD, and a TDD, the prepro-
duction phase is complete. Once more, the producer goes before the green light 
committee. If the executives approve the plan for the game, the producer gets a green
light to proceed, committing the publisher’s resources to production of the game.

In the case of a licensed game, the licensor’s approval of the plan is needed at this
point. In the case of a console game, it would be unwise to proceed without the plat-
form holder’s approval as well.

Summary

Preproduction is all about planning. Preproduction is vital. If the producer plans
thoroughly in preproduction, production should go smoothly—or at least as smoothly
as anything can, given the vagaries of the real world. In addition, the most unpre-
dictable element in any game project is the people working on it.

Production Phase 

In the production phase, actual work begins. Think of it as analogous to building a
skyscraper. No earthmoving equipment or construction equipment is fired up until
the blueprints are finished, funding is secured, and permits are obtained.

Programming a mainstream console or PC videogame usually does not produce
any visible/playable code for the first few months. Again, consider the construction of
a skyscraper. The construction company doesn’t begin by putting girders up. Rather,



construction begins by digging a hole in the ground. Similarly, programmers have to
create the game’s foundation before they can start putting visible gameplay up on 
the screen. 

For the producer, this means a couple of things. First, he or she doesn’t have any-
thing to show for the money being spent. Second, the producer now has more time to
turn his or her attention to getting assets made. Producers (and producers’ bosses) like
to have something they can see.

Show Me

As mentioned previously, milestones are both a way of measuring progress and (in the
case of external development) a key to unlock payments. Because there is little that
the developer can show the producer during the first few months, the producer may
have to sign off on payments based on nothing more than progress reports and trust.
The producer, having worked closely with the development manager, may feel a cer-
tain amount of comfort and trust in the progress reports. However, the producer also
must have check requests signed by his superior. Therefore, the producer must feel
trust for the developer manager, and must convince superiors to trust the develop-
ment manager—and the producer.

The good news is that the producer can now focus attention on getting the visual
and audio assets created. Art is created faster than code, so the producer will have
something to show fairly quickly. 

Art assets might be created internally or externally. Externally created art might
be created by a full-service developer (a company that makes both code and art), or it
might be created by an art house. Regardless of where or by whom the art is to be cre-
ated, the first step has to be the creation of an art list.

Art Lists

Art lists are generated from the game design document. The designer (the writer of
the GDD) might create the art list, or perhaps the game’s art director creates the art
list from the GDD and then runs it by the designer for a reality check. 

The art list must include every art asset that has to be created, from the introduc-
tory cinematic, to each character and all items they can use, all the way down to the
“start” button on the title screen.

An art list is much more than a simple “grocery list” of what graphics are needed
for a game. The art list must include quite a lot of information. Therefore, an art list
usually is more like a table or spreadsheet than a grocery list. 

At a minimum, the art list needs to provide the following information about each
art asset:

Descriptive name
Asset filename
Asset type or format

7.1 Game Production and Project Management 805



What level or scene the art asset is used in
Brief description

Once work on the art has gotten under way, even more information will be
needed. A spreadsheet is a good tool to use for making art lists and taking them one
step further and turning them into tracking tools. Microsoft Excel is widely available
to all members of the team (even those using Macintosh computers), which makes it
a useful tool for this purpose. Some projects may use other tools to list or track the art
assets.

Asset File-Naming Conventions

It makes the programmer’s job easier if the assets are named according to a logical sys-
tem or convention. If one artist names one of his graphic files “knight_left_arm.3dt”
and another names one of her files “Kyra’s-eyelid-for-blink.bmp,” then a directory
listing of the files will look like a mess. They’re all different lengths and there is no
coherent naming methodology. Worse, the programmer has to be mindful of whether
he’s typing a dash or an underscore when inputting the filenames into the code. 

It’s standard operating procedure for each project to establish a convention for file
naming. The filename is specified in the art list (or sound list, etc.), and the team
member who creates the asset must give the asset file the preassigned name upon asset
completion. An incorrect filename can be grounds for asset rejection.

The first few characters of an asset filename might be based on asset type, world
location, and character name. For example, perhaps the game has a location called
“Old West Town” and a character called “Lefty.” Lefty has a unique walk, which
means his footsteps sound must be different from the footsteps sound of the other
character(s) in the location. If Lefty is encountered only in the Old West Town, the
filename for his footsteps sound might be SOWLF001.WAV. S for Sound, OW for
Old West Town, LF for Lefty, and this is the first asset in the list of sounds for Lefty
in the Old West Town. The filename for the raw form of the texture for Lefty’s face
might be TOWLF010.BMP. The filename for the third spoken line of Lefty might be
VOWLF003.WAV. 

A logical and coherent filenaming convention smoothes the process for the pro-
gramming team and neatens the directories containing assets. In the event a bug
occurs in which a problem file’s name is given, anyone reading the error message will
know what type of file caused the problem and where in the game the problem
occurs. There are other benefits as well. The importance of filenaming conventions is
a frequent topic of discussion among developers at game conferences.

Asset Tracking

The producer must be able to closely monitor the progress of all aspects of the project.
The producer needs to keep track of the following information about each art asset:

806 Part 7 Game Production and the Business of Games



Who is responsible for creating the asset
Date work assigned
Date first draft of asset completed
Date asset delivered to producer for approval
Date asset reviewed by producer
Whether asset was approved or rejected
Reason for rejection if asset rejected
Date rework assigned
Date second draft of asset completed
Date asset redelivered to producer for approval
Date asset re-reviewed by producer
Whether asset was approved or rejected
Reason if asset rejected
Date asset delivered to programming team
Date asset implemented in game

Hopefully, an asset won’t be rejected more than once before implementation.
Additional columns may need to be reserved for additional approval turnarounds.

Asset Approval Cycles

As seen previously, it isn’t enough for an asset to be created and delivered. Before it
can be passed on to the programmers and implemented, art, sound, or music assets
need to be reviewed and accepted by the producer. A clearly defined asset approval
procedure facilitates rapid payment (in the case of external art creation) and prevents
many potential problems.

Typically, the manager of the art team delivers assets for approval in batches. The
producer might designate someone to review the assets (art director, lead designer,
etc.) or might do the review himself. In any case, the reviewer should conscientiously
review the assets and provide clear and detailed feedback within the contractual
review period, or sooner. Then the art house needs to have, and should take, a reason-
able timeline to rework and redeliver. All of this is so milestone checks can be paid in
a timely manner so the project can progress smoothly.

Of course, another reason for reviewing and approving art, sound, and music
assets is to ensure the quality. If a piece of art or animation doesn’t look good enough,
or doesn’t fit stylistically, detailed commentary should be provided along with the
rejection, so that the asset can be redone appropriately and smoothly.

Asset Delivery Formats

The TDD should specify the format of all game assets. The programming team’s
engine needs 2D graphics to be in a particular format, and that goes as well for 3D
models, textures, and animations. Sound and music assets likewise need to be in a
particular format for use by the game’s engine. The asset creator must deliver assets in

7.1 Game Production and Project Management 807



those forms. It would be a waste of the programming team’s time to have to convert
assets into the proper format. To keep overall development time to a minimum, the
programming team’s time has to be used efficiently and productively. 

The producer (or whomever is reviewing assets for approval) needs to have soft-
ware tools for viewing assets to approve them. Everyone has easy and ready access to
utilities for viewing JPGs, BMPs, and TIFFs, or for hearing WAV or MP3 files or
playing AVI or MPG files. However, specialized tools are needed if less commonly
available asset formats are used in the game. It’s not difficult for a producer or art
director to get and use these specialized programs, but when it comes to marketing
managers, these programs can present a problem. It is often desirable for a marketing
manager to be able to show off game assets. If the specialized program is difficult to
obtain, clunky to use, or too expensive, that could be a problem for marketing presen-
tations. It is not unreasonable for the producer to request that some assets be provided
in common formats for marketing purposes.

Red Flags 

The most important job of the producer during the production phase is to spot “red
flags.” The producer’s job is to keep the game project on track. After all, there’s a sched-
ule to meet. Many things can go wrong. Occasionally, a catastrophe will occur without
warning, taking everyone on the team by surprise. However, most problems build
slowly over time, and usually there are warning signs. The experienced producer learns
to recognize these red flags early on and to deal with them before things get worse.

The most obvious sign of a problem is schedule delays. When a milestone is late,
or is missing deliverables, the experienced producer starts digging to find the root
cause.

Red flags usually start flying because of design problems, personnel issues, money
trouble, or technical glitches. Moreover, there is a certain amount of synergy between
the four. That is to say, personnel problems can lead to technical problems, design
problems can cause personnel problems, and so on.

Team Dynamics

By the time assets are coming in, the project team has been working together long
enough for interpersonal dynamics to come into play. Some team members develop
respect for each other. Other team members may start to show signs of dissatisfaction
due to jealousy or envy. Some personalities may simply not go well together. 

In general, programmers, being engineers, can seem “cold.” They value facts and
technical solutions. Sometimes, programmers aren’t fully aware of the way their words
and opinions can affect the sensibilities of those around them. When engineers write,
their i’s are always dotted and their t’s are always crossed, but their words often come
across as dry and without emotive impact.

808 Part 7 Game Production and the Business of Games



To make another sweeping generality, artists can sometimes seem “warm.” They
value colors, lines, and feelings. Artists might communicate using emotional ideas
and sometimes exaggerate for effect. When artists are forced to write, it can be color-
ful and dramatic, but there may be spelling or grammatical errors. Artists might omit
necessary detail or provide too much unnecessary detail.

There are exceptions to every rule. Not every programmer is like the Star Trek
character Data, and not every artist is destined to move to Tahiti and chop his ear off.
Certainly, programmers have emotions, and artists are not functionally illiterate.
Within a particular profession, there is a spectrum of personalities and attitudes.
However, it is well established that certain personality types tend to exist within 
specific professions. Programmers and artists are the classic “oil and water” mixture of
the game business. The best technical directors are those who can both command the
respect of the technical team and communicate and coordinate smoothly with 
the nonprogrammers around them. Likewise, the best art directors are those who have
a great eye for design and can lead their artists, and can also communicate and coor-
dinate smoothly with the nonartists who depend on their work.

When the art and code are being created at different locations, the natural dis-
comfort of this sometimes uneasy mix is minimized. However, when everyone is
under one roof, team meetings or encounters can sometimes be contentious.

Conflicts can arise in a game team for other reasons as well. 
Programmer A is assigned to work on a part of the code that depends on the work

of Programmer B. Programmer A may disagree with the coding structure used by
Programmer B, or may resent the fact that Programmer B has been assigned the more
prominent role. One or both of those programmers may have a less than ideal way of
handling the disagreement or resentment. 

Artist T, assigned to do textures for the 3D models in the game, may envy Artist
M who is assigned the more glamorous job of creating the 3D models. Feelings might
simmer for a while until something occurs that causes the pot to boil over.

In general, squabbles increase when development is not going well (when there
are delays, when things aren’t working, and when the game isn’t fun). Tempers can
flare over problems with the gameplay. Staffers’ differing opinions on a game’s features
can escalate into shouting matches. 

A lead programmer might have issues with authority figures. An artist with game
design aspirations might be jealous of the game designer’s “sexy” job title. A longtime
employee might covet a new hire’s larger cubicle, or (even worse) office—with a view
and a door.

Specific techniques for resolving these types of conflicts go beyond the scope of
this chapter. These problems aren’t unique to the games industry. There are many
books on management and how to deal with personality differences in the workplace.
The producer, the lead designer, the technical director, and the art director all have to
manage productivity and workplace matters, and all sorts of interpersonal issues that
may arise—with their staff and with each other.

7.1 Game Production and Project Management 809



Some common morale-boosting tactics used in the games industry are to have
networked game sessions after hours or paintball events offsite, to order in free pizza
or Chinese food, to enact flex time and lax dress codes, and to permit a playful office
décor. Game offices usually look like fun places to work. It is work to make games,
but it is enjoyable work, for the most part—and for most people.

Personnel Issues

Sometimes, problems cannot be resolved by managing them away. No amount of free
pizza and game nights can fix problems caused by someone who isn’t pulling his
weight or who stirs up trouble. 

It’s not unusual for a game company to use flex hours. For example, an employee
might be permitted to come in any time between 8:00 A.M. to 10:00 A.M., as long as
he puts in a full eight-hour day, gets his tasks done on schedule, and comes in earlier
for team meetings once a week. Most of the time, and for most staffers, that type of
loose schedule works fine. However, there is the occasional person who abuses the
privilege. He comes rolling in around 11:00 A.M. and leaves without having put in his
eight hours. When pressed, he says he took his work home and did it there. This per-
son seems to believe that he has earned the right, as though being in the games indus-
try inherently gives him perks beyond those given by his supervisor.

The mainstream video game project depends on teamwork. The prima donna
attitude is insidious. It can be infectious, diminishing the team’s strength like termites
eating the heart out of the supporting timbers of a house. If one person is permitted
to take liberties, others will follow. 

Another type of troublemaker is the rabble-rouser. A member of the team might
have strongly held opinions about game features, working conditions, or manage-
ment style. He is free to have opinions and to express them, but when he embarks on
a relentless campaign to enlist allies and to sway the opinions of others, he isn’t con-
tributing fully to the team effort, and is in fact undermining it. 

Large companies have a Human Resources department, with firm guidelines on
how to handle problem employees. The producer coordinates with HR to make sure
that the proper procedures are used. The producer meets with the problem employee.
The employee is informed that there is a problem, and is told what he must do to
continue his employment. The meeting is memorialized (i.e., the producer makes a
written record of the discussion) and both parties sign it. 

HR may require the producer to keep the employee until at least three such 
warnings have been issued on paper. Then, if the employee has not remedied the 
disruptive behavior, the employer can terminate the employee. The paper trail is an
important legal record that informs the employee of the seriousness of the issue and
protects the employer in case the employee sues after having been let go. The paper
trail establishes that there was just cause for the termination.

810 Part 7 Game Production and the Business of Games



Yearly personnel reviews are another tool used by large companies to track the
performance of the employees. Some companies even have employees write reviews of
their supervisors.

Design Problems

Depending on the type of game or the project plan, it often happens that the game’s
fun is not self-evident until the project is fairly well along. A game team needs to see
the fruits of their labors, and the longer it takes, the more opportunity for dissension
to arise. Those who sailed with Christopher Columbus, months at sea with no land in
sight, were near mutiny when the shores of the American Indies were finally seen. 

When the game eventually becomes playable, if it isn’t very fun or isn’t yet partic-
ularly impressive, morale could well take a dive. If Columbus’ men had touched down
at barren desert islands devoid of plant life, animal life, gold, or water, a full mutiny
would surely have erupted.

This underscores the importance of building the fun right into the detailed GDD
(as opposed to building in the fun later). Moreover, it behooves the producer to make
sure that the fun is self-evident as early in the project as possible.

Money Troubles

A developer might underbid a project, resulting in money troubles even when mile-
stone payments come in on time. When this happens, there are a few possible solu-
tions. The publisher might have to agree to pay additional money to the developer
(amending the contract). The publisher might pull the project and sue the developer
for breach of contract. The publisher might farm out some of the tasks to in-house
staff or another developer to get the project finished. 

A publisher might be slow in making milestone payments for a variety of reasons.
Perhaps an inexperienced producer doesn’t appreciate the importance of timely mile-
stone reviews. Perhaps the publisher’s accounts payable department has a habit of
delaying all payments as long as possible. Perhaps a young publishing company simply
hasn’t yet come to grips with the need to streamline payments to important vendors.
Sometimes, a large publicly held publisher, faced with poor quarterly results, will tighten
its belt and slow down payments in general, just to make the books look better. When
any of these things results in significant delays of milestone payments to an external
developer, there is a range of possible outcomes.

If the developer is well managed and has enough money in the bank (and enough
concurrent projects with different publishers), the developer may be able to continue
working on the project. The developer is nevertheless likely to file a complaint with
the producer and request that the publisher tighten up its act, making payments more
promptly.

7.1 Game Production and Project Management 811



If the developer is operating dependent on the income from the publisher, mile-
stone payment delays can be disastrous, for both the developer and the project (and
thus for the publisher). If development personnel are not getting their paychecks, they
might resign. The developer might tell the producer that all work on the project is
stopping until payment is received. The developer might have to file for bankruptcy
and lay off its staff. 

The producer must keep a sharp eye out for any financial red flags at all times
throughout the project. The producer must make sure that developer payments are
made promptly. 

Technical Glitches

Everything depends on the technology working. Sometimes, a game requires that
some new technology be developed from scratch. It doesn’t always go perfectly and
according to schedule. 

Sometimes, a technical problem can be worked out, after which the team can
manage to make up for lost time. And sometimes lost time is just lost. And sometimes
a technical problem cannot be fixed. The producer might have to ask his superiors for
more time, perhaps bring in different programmer(s) to save the day, or the project
might have to be canceled. 

The usual sign of a technical glitch is a milestone delay (or a milestone missing an
important deliverable). The experienced producer will be on the lookout for technical
problems before they become evident through project slowdowns.

Change Requests

Developers hate it when the publisher asks for changes. The experienced producer
hates to ask the developer for changes. However, for games to compete in the market-
place, they have to be better and cooler than the other games out there. Therefore,
change requests are an uncomfortable fact of life in the game business.

Requests for significant changes to the original design can come from a variety of
sources. Publishing executives might review the game (during a green light review, for
example) and determine that improvements or new features are needed. Marketing
might hear about a new game coming out and ask the producer to add features to
compete with the upcoming game. A tester in QA might enter a suggestion for
changes into the bug-tracking database. 

When the executives decree that a change is needed, the producer discusses the
change with the external developer or internal development team to determine what
the schedule and budget impact will be. It may be that the changes entail extra costs
or push the schedule back. Sometimes, the producer might look for a trade-off, a way
to delete previously planned features in exchange for the new requested features. That
isn’t always feasible. The producer can then present the new information to the exec-
utives and get approval for a contract amendment (in the case of an externally devel-
oped project) and/or a schedule extension.

812 Part 7 Game Production and the Business of Games



When marketing asks for changes, the producer explains to marketing the impact
on the budget and schedule. If marketing is adamant, the producer can research the
schedule and budget impact as mentioned previously. If marketing and the executives
are then in agreement that the requested changes are worth the budget and schedule
hit, the producer has an official green light to proceed with making the changes. 

When a tester suggests a significant change, the producer usually simply rejects it,
due to schedule and budget impact. 

Minor change requests from anyone may be passed along to development by the
producer, and, if easy and worthwhile, may well be implemented into the game.
Numerous such requests, however, could result in a complaint from the developer. If
the developer is an external company, there may even be a request for additional
money to cover the changes. A formalized change request process would be a useful
way to filter, track, and quantify change requests, and producers are advised to imple-
ment such a process in their projects.

Schedule Delays

As seen previously, delays in the schedule might be caused by a variety of factors: tech-
nical glitches, personnel problems, money issues, excessive change requests, or per-
haps someone simply underestimated how long it would take to learn a technology or
to perform a task. 

Each of these factors is tightly woven with the others in an intricate tapestry.
There is synergy between all the aspects of a game project. Regardless of what causes a
schedule delay, a schedule delay will cause money problems.

Anything that happens late in the schedule is, in the experienced producer’s eyes,
the reddest flag of them all. 

When a red flag pops up, the producer gets into gear. He confers with his gener-
als, both those who report to him and those to whom he reports. He finds out what
caused the flag to go up and how bad it is. He considers what can be done to solve the
problem and puts things into motion as quickly as possible.

Kicking Off Tasks

Throughout the course of the game project, there are several different things going
on, usually simultaneously. Once programming has been kicked off and is underway,
the producer kicks off the creation of graphical (visible) assets. Then, once the art
effort has been kicked off and is underway, the producer kicks off the creation of
audio assets, including music and recorded voice-overs. 

The experienced producer has made a schedule that includes even more than
that. He keeps a close eye on the calendar and makes sure that thorough preparation
is made for each planned event on the schedule, in time for each event to occur when
it’s scheduled to occur. The better prepared the producer is for the planned events, the
better he will be able to deal with unplanned events. 

7.1 Game Production and Project Management 813



Audio Kickoff

The audio task is kicked off in much the same way as the programming and art tasks
are kicked off. The game designer and/or the sound designer go through the GDD
with a fine-toothed comb to identify each sound effect, musical cue, and voice cue.
Then a sound list and music spec can be created. The voice-over script is a much more
involved matter, as will be seen shortly.

Sound List

There must be a sound for each action in the game. In creating the sound list, the
game designer and/or sound designer must consider what actions are possible and
define a sound that would be appropriate for that action. Some sounds might be
reusable (suitable for multiple different actions). 

Music Specification

The game designer writes a list of each place in the game where music is desired. Each
piece of music has to be specified as to genre, mood, length, and whether the music
will loop. Sometimes, it is useful to indicate examples, artists, or composers. The result
is a document that tells the music composer exactly what kind of music is desired, how
each piece of music is used in the game, and how long each piece should run. 

Story Text and Voice-Over Script

Story text and voice dialogue should not be fully contained within the GDD, but
rather must be defined separately. 

Story text and other in-game text is a collection of assets for use in the game. Text
must not be embedded in code but be placed in a separate file. Each block of text that
will be displayed may have to be given an asset name just like any other asset. The
game designer should consult with the programmer who will work with the text to
determine this. The programmer will also need a systematic presentation detailing
how (under what circumstances) each discrete block of text is used in the game.
Someone (probably the art director) will make a determination about fonts and font
sizes of in-game text.

Dialogue that is to be spoken aloud is written in the form of a radio script, with
the exception that each discrete speech has to be given an asset filename.

The game designer might not be the one to create the final voice-over script. The
producer might hire a professional writer to write dialogue that has color, life, and
character. Most game designers, on the other hand, have experience playing games,
and their training is in the testing or making of games. 

The game designer might write a functional or working script of the game that
the screenwriter can use as a starting point. However, the smart producer will bring in
the screenwriter sooner than that, during the creation of the GDD, to maximize the
benefits of having a professional storyteller involved. 

814 Part 7 Game Production and the Business of Games



The final voice-over script includes the lines to be spoken, information about the
characters, and how (under what circumstances) each line is used in the game.

Creation of Sound Effects

Sound list in hand, the sound engineer might create the sound effects from scratch or
cobble them together from a sound effects library. The sound engineer delivers the
assets with the proper filenaming conventions and in the formats specified in the
TDD. The producer and/or design director review, approve, and track the sound
effects using the same kind of approval cycle as described for art assets previously.

Creation or Licensing of Music

For most low-budget or low-profile games, music is created from scratch by a free-
lance musician who makes game music. Music specification in hand, the musician
may want to see the game to get a deeper appreciation of the atmosphere and mood
desired. He or she usually composes and performs the music in a home studio, deliv-
ering the music in the form of WAV files. The producer and/or lead designer review,
approve, and track the music. Unless he or she is very much in demand and has the
clout to demand otherwise, the freelance musician is usually paid on a work-for-hire
basis, per minute of music contracted.

Increasingly, high-profile games have come to use recorded music or newly com-
missioned music from popular artists. Video games have featured music by Outkast,
MC Hammer, Mark Mothersbaugh (Devo), LL Cool J, INXS, and Sarah McLachlan,
to name a few [IGN04].

When the producer plans to use popular music in the game, deals must be struck
and contracts must be signed through the musicians’ agents. If the music has been
published through a recording company, the recording company also has to be dealt
with and credited. In addition, all musicians’ compositions are protected by associa-
tions like ASCAP (the American Society of Composers, Authors, and Publishers).
Each of these entities may have different requirements for how their rights are to be
respected and how they are to be compensated from game sales. Royalties are likely to
be required rather than a flat payment. Further information about how producers
license music can be found in [D’Arcy04].

Recording of Voice-Overs

Many large game publishers have signed contracts with the Screen Actors Guild
(SAG), and are required to use union actors for their voice-overs. Union actors are
usually represented by an agent. The game’s producer can call some agencies and get
numerous demo reels of available voice actors. 

Sometimes, the producer or director might want to provide a few lines of dialogue
so an actor could audition for a part. Some voice actors might have a home recording
setup, and can send in recordings to audition.

7.1 Game Production and Project Management 815



In the case of games based on films or TV shows, the voices of the show’s actual
cast are usually desired. No auditions required! Working with big name stars can be a
real thrill for the team. 

Some game companies have internal voice recording facilities. If not, the pro-
ducer can rent time at a recording studio. As actors perform their roles, there is SAG
paperwork that must be completed. The producer and/or director and the lead
designer and/or screenwriter may be needed at the recording session to ensure that
each speech has the proper inflection and meaning appropriate to its use in the game.
The sound engineer delivers the recorded assets, properly named according to con-
ventions and in the format specified in the TDD, and they are reviewed, approved,
and implemented in the game.

Payment to union actors is often done through a payroll company rather than
through the publisher’s Accounts Payable department directly to the actors.

First Playable—Proof of Concept

The first major turning point in the production of a mainstream console game or PC
game is when the assets are implemented and the game starts to look, sound, and play
the way it’s supposed to. If there had been any doubt about whether the design is fea-
sible, this stage might be called “Proof of Concept.” Many producers call this the
“First Playable” milestone. As seen previously, a lot of hard work has resulted in bring-
ing the game to this stage of development, so many people have been waiting expec-
tantly for this moment. 

The producer has been waiting for this moment to gauge the project’s progress.
He or she has seen and approved the graphics and sounds, but now the pieces are to
be joined together and made interactive. He or she profoundly hopes that the result-
ing whole will be considerably more than merely the sum of the various parts. It also
has to be entertaining and enjoyable.

The experienced producer knows that significant judgments about the game will
be made when the most important decision-making parties see the game at this stage.
Those parties are the licensor, the platform holder, and publishing company execu-
tives and marketing.

Decision makers are accustomed to making rapid judgments. When they see the
game, if it looks impressive and lives up to or exceeds their expectations, they’ll be
happy. If anything is missing and has to be explained or apologized for, they won’t. If
one of the key features that the producer had hyped to get the decision makers excited
about the game is not yet implemented, there could be trouble for the project. 

In pitching the hypothetical Ultimatt Combatt III project, the art director had
created an image of Napoleonic-era armies doing anachronistic battle against flying
saucers. The decision makers had been excited by that image in particular. It exquis-
itely conveyed the essence of UCIII, which would permit players to set up imaginary
battles between armed forces of all nations and eras.

816 Part 7 Game Production and the Business of Games



If the first playable build of UCIII has Napoleonic armies but no flying saucers,
or does not yet enable these differing forces to battle one another in an interesting
way, the decision makers may well conclude that they had been led down a primrose
path. After the presentation, they might start expressing doubts that the project will
turn out well. They might start to find fault with the job that the producer is doing.

Therefore, if the first playable milestone is less than spectacular, the experienced
producer will want to hold off showing it to the decision makers a while longer, if 
possible.

Keeping Everyone On Board

Even when the first playable build looks and plays wonderfully, politics are bound to
begin taking an important role in the project at this point. It is the producer’s job to
control the impact of politics on the project. The best tactic for this is “divide and
conquer.” When the decision makers are brought together for a major green light
meeting, the producer is less able to control events. It’s best if the producer meets each
of the parties, individually, beforehand and lobbies for their support by addressing
their concerns.

Executives

When the producer is satisfied that the build makes an excellent first impression, he
can simply wander over to the executives’ offices and tell them he has something to
show. The executives may be too busy to follow the producer back and have a look,
and that isn’t a bad thing. It’s best if executive sneak peeks are given on an individual
basis, so that the “divide and conquer” tactic can be put into use. When executives
review a game together, one person’s comment can have a subtle yet profound impact
on the thinking of the others. The wise producer listens and responds to the com-
ments of each executive, individually, establishing rapport and mutual respect on a
personal level.

Licensor(s)

When the project is based on a licensed property, the producer develops a working
relationship with the IP owner’s licensing contact. The producer needs to have easy
access to this person. A formalized approval process is important, so that all submis-
sions, approvals, and reasons for rejections are clearly understood. When the producer
has a first playable build that looks and plays great, it needs to be shared with the
licensor. Although there is a formal approval process, perhaps the new build is simply
sent for informal comments or just to get the licensor excited about the game’s
progress. Any comments that come back should be noted and taken into considera-
tion. Licensors appreciate being kept in the loop throughout the project.

7.1 Game Production and Project Management 817



Platform Holder(s)

When the UCIII producer has an exciting, first playable Xbox build, he calls his con-
tact at Microsoft and offers a look. The Xbox account representative will most likely
be enthusiastic and may want to see it. Any resulting feedback should certainly be
taken into consideration. Platform holders appreciate being kept in the loop.

The Team

On a daily basis, the successful producer establishes rapport and mutual respect with each
member of the team on a personal level. The producer listens to the team members’
thoughts and suggestions about the game, the features, the project, and the working
conditions.

Achieving the first playable build is a major milestone, and the team deserves 
special acknowledgment of the fact. The producer might organize an offsite lunch or
dinner, perhaps as an adjunct to a bowling or paintball outing. An important part 
of such a gathering would be a short speech by the producer and perhaps one or two of
the other team leaders. The producer acknowledges the teamwork that brought the
project to this point and energizes the team to take it the rest of the way. The producer
addresses any doubts or concerns, and offers a plan for dealing with them. The pro-
ducer restates the primary objectives: to make the game fun and to get it done. 

An Alternate Method

Sometimes, the plan from the beginning is to build the game as a series of iterative
prototypes. This approach to production, sometimes called “the Cerny method,” rec-
ognizes that although a design feature might sound good on paper, it can be difficult
to implement and have it turn out to be fun [Fristrom04, Price03].

When this method is used, the team pushes in a series of efforts, each building on
the last, somewhat like the steps in a stairway. It is natural for a bit of an emotional
dichotomy to occur when a leveling off occurs in the upward push.

Keeping the Momentum Going

Having attained a first playable build or an interim prototype, the team can experi-
ence two opposing impulses. One is to relax and take a break because something has
been accomplished. The other is to pour on more coal because although the game is
starting to look cool, it doesn’t have everything in it yet. The former impulse has to be
discouraged so that the latter impulse can prevail. Both impulses are contagious, so
the producer can encourage the desirable impulse by setting an example and pouring
on more coal.

Phases within Phases

Just as game production can be broken into three phases (preproduction, production,
and postproduction), the production phase can be thought of as occurring in three

818 Part 7 Game Production and the Business of Games



parts (early production, midproduction, and late production). Each part of the pro-
duction phase has its own character. The first part, discussed previously, ends when
the game has started to come together. The second part, midproduction, is largely a
frenetic buzz of activity as asset creation is fully underway while the programming
effort continues and marketing activities begin. 

The terms alpha and beta are often heard, but precise definitions of those terms
vary from company to company. Alpha might mean that most or all of the assets are
implemented, and most or all of the features are functioning. Beta might mean that
all of the assets are implemented, all of the features are functioning, and the develop-
ment team believes that there are no serious bugs remaining. Alpha might mark the
transition from midproduction to late production, and beta usually marks the transi-
tion from production to postproduction.

The Multitasking Producer

The producer is in high demand from many directions during midproduction. He is
in the middle, fielding information requests, problem reports, and meeting requests.
There are assets to approve, milestones to pay, and numerous paperwork demands.
These attempts to get some of the producer’s precious time come from developers,
platform holders, licensors, agencies, and numerous internal departments. He is also
besieged with calls from new developers pitching their services, applicants seeking
jobs, recruiters waving job offers, kids with game ideas, and even the media wanting
information or an interview. 

While the producer is on the phone, someone drops in with a piece of paper.
While he’s talking to one person, another is standing nearby waiting for an opening.
The phone is ringing, the pager is beeping, the computer is saying “You’ve got mail,”
and papers are emerging from the fax machine and the printer. 

The producer learns quickly how to manage his time. He sets priorities in the
morning and resets them in the afternoon. He may occasionally close the door and
put up a Do Not Disturb sign. He might seek a location where he can get some work
done without interruption, if such a thing is possible as long as iPhones and
Blackberries exist. It’s a wonder that he manages to get things accomplished, but he
finds a way.

Managing Midproduction

Two factors can help the producer in this difficult phase. 
First, on a very large project, there are managers handling various aspects so the

producer doesn’t have to do it all himself. The more people there are to manage, the
more managers are needed. In the case of an internal project, there would be a leader
of the programming team, a leader of the graphics team, a leader of the design team,
and someone in charge of getting all the audio created. In the case of an external 
project, the producer manages the managers at the external sites.

7.1 Game Production and Project Management 819



Second, midproduction doesn’t last forever. As the keeper of the schedule, the
producer knows where the end of the tunnel is. When the assets are finished, approved,
and in the can, the pressure on the producer will reduce in intensity—a little, maybe.

Expecting the Unexpected

The experienced producer knows that no matter how well planned the project,
unforeseen events will crop up. There’s an old saying that advises, “roll with the
punches.” The producer deals with surprises as a matter of due course, confident in
the team’s ability to handle just about anything. That isn’t to say that all unexpected
events are equal, no matter when they occur. The later in the project a surprise occurs,
the more difficult it can be to deal with.

Red Flags in Midproduction

By midproduction, the project is “snowballing” [Sloper03]. With the project’s target
beta date now being much closer, things going wrong at this point can be more diffi-
cult to remedy. Delays at this phase are likely to cause delays at the end. As discussed
previously, the most common causes of delays and red flags are design problems, per-
sonnel issues, technical glitches, and money troubles.

Design problems at this phase may be fixable, but the risk to the ship date and
product quality is increased. There is still some time to take up the slack. Missing the
ship date is not necessarily certain at this point. Design challenges should have been
identified and addressed in earlier phases.

Personnel problems in midproduction (especially the loss of a key team member
in programming or project management) can jeopardize the ship date. If someone
new has to be brought in, there will be downtime while the new person is hired and
comes up to speed. Hopefully, someone experienced and already familiar with the
technology and the design can step in to fill the gap. 

Technical glitches at this phase would be unusual, especially if the iterative proto-
types method of production is being used. It’s good development practice to tackle
the hard stuff earlier in the project.

Money troubles at this stage are (perhaps counterintuitively) the easiest to fix.
The publisher simply has to determine whether the project is worth spending the
extra money. If it is, the money will be spent. If it isn’t, the project may be canceled.

Design by Committee—Another Name for Consensus?

As the game comes together, everyone who looks at it seems to experience a sudden
burst of creativity. New ideas spring forth from every quarter. The producer’s sugges-
tion box overflows with change requests: new directions, new features, new charac-
ters, new missions, and new worlds. For the producer to reject them all might be
politically unwise. Team members might feel that they are getting the mushroom
treatment. Moreover, suggestions from marketing and executives cannot be ignored.

820 Part 7 Game Production and the Business of Games



The producer may have to make a plan to incorporate significant changes, including
the time and money to implement the changes. To make midstream course correc-
tions will probably require a high-level green light meeting.

It’s likely that some changes will be green-lighted. And it sometimes happens that
the changes feel like a kludge. Some type of shortcoming of the design had been iden-
tified, and because a lot of money had already been spent, it was decided to put a
patch over the hole. The fix sometimes seems inelegant, but the decision makers agree
that it’s the best way to deal with the situation and move forward.

Late Production

Late production is that phase of production in which all the assets have been created,
but coding has not yet been completed. 

At this point, depending on the type or genre of game, the level designers might
still be working (making new levels, but without generating any need for new assets).
The game is not yet at beta, but QA should be in the picture by now. Marketing has
probably been started before this, or gets going in earnest at this point. 

This period can be challenging for a producer who isn’t knowledgeable about mar-
keting, or who is working with a marketing person who isn’t knowledgeable about
game development. 

The Working Title Is Dead—Long Live the Final Title

Many game projects are started with the game having only a “working title.” The
designer or the producer may have chosen what to call the game, and the team has
become accustomed to referring to the game by that title. Then, one fine day, the
marketing department says they need a title that will sell the game better.

In the case of our hypothetical UCIII project, the producer and designer had
agreed early on to call the game Ultimatt Combatt III: Extreme Warfare, and the green
light committee had not objected. Marketing has now done some focus testing and
has gotten some unfortunate feedback. It seems that the term “extreme” has been
overly used in the marketplace, and has been tacked onto everything from racing to
skating to fishing. Marketing now proposes that the focus of the game is warfare that
crosses historical eras, the present day, and hypothetical future times. Thus, the new
title recommendation is Ultimatt Combatt III: War of the Ages, or perhaps Ultimatt
Combatt III: Beyond the Bounds of Time. Marketing suggests trying one on for size for
a while, and then perhaps trying on the other one. The wise producer knows, how-
ever, that the team will not take kindly to even one name change, much less two.
Since marketing would be happy with either title, the team is permitted to decide
between the two. 

The title now being finalized, title art can be created for Ultimatt Combatt III:
War of the Ages. The press blitz can begin. 

7.1 Game Production and Project Management 821



Screen Shots and More

Marketing needs to have exciting imagery from the game. Each magazine needs images
that are unique. Therefore, someone, perhaps the art director or the game designer,
sits down with marketing and works to make a set of screen shots. It may be necessary
to have a cheat-enabled version of the game to make the screen shots, or level design
tools that permit the creation of any desired combination of game characters. The art
department has to create high-resolution images for use on magazine covers.

The magazines want interviews. They don’t want the producer, of course—he or
she is just a manager. They ask to interview the game designer, but marketing wants
someone more photogenic. One of the artists or one of the programmers is good-
looking, so that person is enlisted for the photo shoot. Somebody tells the interviewer
some stuff and the interviewer has what is needed. 

A few short interruptions like that and the PR machine is off and running.

E3 Demo

The Electronic Entertainment Expo (E3) is an important game industry trade show.
The producer cannot control when E3 will happen, but can plan to have a demo
ready for E3, depending on what phase of development the game is in at that time.
The team may well be working on the game throughout two E3 shows. If the first E3
happens during preproduction, there won’t be a demo that year. If the next E3 hap-
pens during the project’s production or postproduction phase, management would be
unlikely to forego having a demo of the game at E3.

When the programming team is focusing on making a solid demo of the game for
a trade show, it is not necessarily able to continue working toward getting the game
finished. Code that goes into a demo doesn’t necessarily all go into the final product.
Therefore, any demo is, in effect, an interruption of the overall effort. However, when
the demo makes an excellent impression on the trade show attendees, the morale
boost can counteract the interruptive effect.

It’s important to schedule the demo into the project early on, so that the team
knows well in advance that this interruption will occur. The exact specifications of the
demo should be worked out with marketing during the preproduction phase. As the
time to work on the demo approaches, there are likely to be some new thoughts about
the demo specs. If marketing requests changes that affect the ship date, the producer
explains the schedule impact to marketing. The producer rolls with the punches and
adapts the demo spec insofar as is feasible, keeping an eye on the ultimate ship date
throughout the creation of the demo.

Magazine Demo

Another type of demo is the magazine disc demo. The best time to have a demo
appear in a magazine disc is during the month prior to the date that the game will be
appearing in the stores. Typically, the game is to appear on store shelves in November,
in time for the Christmas peak selling season. The issue that circulates in October,

822 Part 7 Game Production and the Business of Games



confusingly, usually says “November” on it. Magazines have about a three-month lead
time, so the demo probably has to be out of QA and at the magazine’s office in July, if
not sooner. Typically, that is a very busy month for the programming team, feverishly
working to fix a large list of bugs found in QA.

Magazine demos create user demand for the full game, so although the timing of
the demo comes at an awkward time, it’s important to get the demo done.
Fortunately, the E3 demo can be largely repurposed for the magazine demo. Any bugs
or shortcomings of the E3 demo can be addressed and thoroughly tested before going
to the magazine.

Platform Holder Promotional Demo

Sometimes, the platform holder will request a demo to put on a promotional disc. In
the case of UCIII, Microsoft might request a demo to put on a disc that would ship
with new Xbox units or in an Xbox magazine. The platform holder provides require-
ments and due dates. The schedule hadn’t included a promotional Xbox demo, but
such a demo will enhance the publisher’s relationship with the platform holder and
enhance sales of UCIII. The E3 demo provides a solid framework for an Xbox demo,
so producing this demo won’t be as bad an interruption as making the E3 demo was.
Therefore, the producer rolls with the punches and makes sure that this unexpected
demo goes out. It has to be tested by the publisher’s QA department, and will be thor-
oughly tested by the platform holder’s QA department as well. 

Red Flags in Late Production or Postproduction—Big Red Flags

Any red flags that had been ignored previously, in the hope that they might go away
over time, have not done so. Rather, they have only grown bigger or redder. At this
point in the project, things are bound to catch up with the unwise producer who tried
to ignore red flags.

By late production, any unfortunate events can have serious consequences
indeed. Design problems at this phase are not fixable without pushing back the ship
date. Personnel problems (especially the loss of a key team member in programming)
likely spell doom for the ship date. Technical glitches at this phase could be fatal for
the ship date. Money troubles at this stage might coincide with serious publisher-
developer relationship problems, spelling big trouble for the ship date.

At this point in the project, the wise producer immediately hammers red flags the
instant they try to pop up.

Postproduction

When all assets have been created and integrated, and all features have been imple-
mented, the production phase has ended and postproduction begins. In the film
industry, postproduction refers to the activities that go into finalizing a movie after
the cameras have been put away and the actors have gone home: editing, dubbing,

7.1 Game Production and Project Management 823



titling, general cleanup, and the marketing and distribution of the film. In the games
industry, postproduction is that period in which QA tests the game, identifying bugs
and places where adjustments are needed. Marketing creates the box and paper mate-
rials (“box & docs”) and arranges broadcast, online, print, and in-store advertisements
and promotions. The sales department forecasts how many units will be needed. The
operations department arranges to have the game manufactured. 

The artists and design personnel are all gone, having moved on to other projects,
but the programmers and production staff are working just as hard as ever. The sound
engineer might still be at work, recording foreign-language voice-overs.

Personnel Transfers

As the game project nears completion, some team members’ talents are no longer
needed after their tasks are finished. When a game is developed internally, and when
the personnel structure is such that the personnel report to a project team, this means
that some personnel need to be transferred to different projects. 

The producer then meets with HR, department heads, and other producers to
determine how this shift should take place.

The producer also meets with each individual to discuss that person’s career
development and to do a performance review. Performance reviews aren’t always
pleasant to give or receive, but they are necessary to chart an individual staffer’s
growth within the company and to inform the staffer’s next supervisor. 

Even when a project is developed externally, personnel shifts often coincide with
the completion of a project or phase.

Localizations

At one time, games were merely translated. However, users complained about the
poor use of their language. Sometimes, just translating the words doesn’t result in an
enjoyable play experience. Most American gamers are familiar with butchered English
in games (or films) coming from other countries, particularly Asian countries. A clas-
sic example is the line “All your base are belong to us,” from the game Zero Wing, pub-
lished by the Japanese publisher Toaplan for the Sega Genesis [Bradk]. 

However, American games that are merely translated (rather than localized) for
non-English-speaking territories can also generate such snickers. The wise producer
doesn’t short-shrift the localization process [Swartz04].

It’s always ideal to ship localized versions simultaneously with the primary lan-
guage version of a game, but for a variety of reasons, it’s easier to build and tweak the
primary language version first. Easier doesn’t mean better, so the experienced producer
strives for “sim-ship” (simultaneous shipment of versions for various territories).

To begin, the international department determines which territories the game
should be localized for. In the case of a game developed externally, the contract usually
specifies that the developer will be responsible to develop localized versions. Typically,

824 Part 7 Game Production and the Business of Games



a publisher’s contract specifies the publisher’s standard territories, or perhaps simply
mentions a specific number of localizations. Localizations requested beyond those
called for in the initial contract probably require a contract amendment. Hopefully,
new localization requests made late in the production process do not require sim-ship.
The team members can only crunch so much and still get the main SKU (the main
version, usually the English version) finished on schedule.

Some territories are more challenging to localize for than others are. German text
uses more characters than English text, which means that when there are text boxes,
the translated text often won’t fit. Japanese and Chinese use fewer characters but the
characters are more complex, so the text sometimes needs to be larger. However, even
enlarged text for Asian languages may not adequately fill a text box that had been
sized for English text.

Voice-overs should be recorded in the localized language as well. People in a
country can tell when they hear their language spoken by someone who isn’t a native
speaker. In addition, of course, the writing of the dialogue needs to be artful. It
wouldn’t do to simply have a translator write the voice-over dialogue. Translators
aren’t necessarily trained in the art of screenwriting.

Cultural aspects also must be considered when localizing a game. Many games
created in America or Asia might use swastikas for an evil-looking enemy symbol,
especially if the game takes place during World War II or its story involves latter-day
Nazis. However, if such a game is to be marketed in Germany, where people are still
sensitive about this regrettable part of their history, swastikas cannot be used. Some
countries also have laws against realistic blood. The localizing producer needs to be
aware of these things, and in fact, the designer should be aware of these things when
writing the initial GDD.

Artful writing, coupled with well-informed cultural awareness, marks the differ-
ence between localization and mere translation. A full discussion of game localization
goes beyond the scope of this chapter. For more on this topic, see [Chandler04].

ESRB Rating

Marketing or the producer does the necessary ESRB paperwork to obtain the rating
to put on the box, manual, and disc printing (or cartridge label). This paperwork has
to be done prior to finalizing the box & docs. 

The publisher usually knows what rating the game will have, since the ESRB
guidelines are clearly stated. Some companies might desire a rating that indicates that
the game is suitable for older audiences only, in order to generate controversy. There’s
a saying in marketing, “there’s no such thing as bad press.” This isn’t strictly true, of
course, but it is true that some controversy can increase awareness, which can some-
times lead to increased sales. 

If the ESRB were to assign the game a higher rating (a rating for an older audi-
ence than anticipated by the publisher), and if marketing or sales had concerns about
the effect on sales, the game would have to be changed to achieve the desired rating. 

7.1 Game Production and Project Management 825



Box & Docs

As the game nears completion, marketing creates the packaging and manual.
Marketing might ask the creative services people (be they an internal department or
an outside vendor) to prepare box comps (composites of different packaging ideas).
Several of the best ones then might be circulated among the team to get their reac-
tions. Marketing might bring in some gamers to get their reactions. Such focus groups
can be used to get feedback on the packaging, the ads, the game’s overall concept, its
title, platform, features, and even the bullet points that go on the package. 

The package front typically includes an artist’s rendition of an exciting moment
from the game. It always includes the logo of the publisher, and sometimes the logo of
the developer (if the developer is one who has brand-name recognition). It also includes
some “selling points,” which may be a descriptor of the game’s genre or primary fea-
tures and perhaps a superlative quote from a game reviewer. And, of course, the ESRB
rating symbol.

The package front also includes an indication of the platform for which the game
is intended. If the game is, like our hypothetical UCIII game, an Xbox game, the
package is in the standard Xbox format with Xbox packaging design elements. These
design elements are strictly enforced by Microsoft and by Sony and Nintendo for
games on their platforms. 

If the developer’s logo is not shown on the package front, it’s usually on the pack-
age back, unless the developer is a new unknown entity who didn’t have the clout to
negotiate having its logo on the package. Sometimes, the publisher’s creative services
people might not know that they are supposed to put the developer’s logo on the
package back, especially if the producer didn’t tell them. Console platform holders
regulate the number of logos that can be on a game package. If a game uses IP owned
or controlled by numerous parties, requiring numerous logos on the package back,
then some parties’ logos simply cannot be on the console game package. Sometimes,
the owners of technology used in making the game (the engine, the audio system,
other middleware) also require that their logos be on the box. The lucky producer gets
to be the one to negotiate these details.

The most important things about the back of the box are the descriptions and the
screen shots. The goal of the box front is to get a consumer to pick it up and look at
it. A bad box front (one that is just good enough for a consumer to pick it up) would
result in the consumer returning the box to the shelf. A good box front should make
the consumer want to turn the box over and look at the back. A bad box back would
result in the consumer returning the box to the shelf. A good box back should make
the consumer want to put the box in his shopping basket and take it to the cashier.

The way to make a good box back is to show numerous exciting scenes from the
game, with each scene looking markedly different from the others. In addition, it
should include lots of information about the game’s best features, described in such a
way that the consumer sees that this game should be purchased instead of another game.

826 Part 7 Game Production and the Business of Games



For a PC game package, system requirements need to be shown. This goes on the
box bottom or on the back. System requirements can be a subject of interdepartmental
contention. QA won’t permit the system requirements to list systems they weren’t able
to test, while sales wants as broad a range of systems as possible. 

The back of the box also includes all legal language to cover copyright and trade-
mark ownership, and sometimes even liability declaimers. The game’s rating is explained
more fully on the back than it was on the front.

The instruction manual must be written and laid out attractively. Some PC
games don’t include a paper manual, but it’s standard and expected to make an
instruction manual for console games. As with the package, the manual for console
games must adhere to the platform holder’s standards. 

The game designer or the producer might write the first draft of the manual, and
then it might be rewritten by creative services. Development provides images and screen
shots as needed.

The box and the manual (and any other printed materials, including the design
to be printed on the disc or on the cartridge label) circulate among production, QA,
development, marketing, and creative services until all parties agree that no errors,
inaccurate claims, or omissions remain.

As will be seen shortly, all these paper materials have to be finished at least two
weeks before the game is released by QA. If QA were to find a problem that necessitated
a change after the manual went to press, that could be a headache for the producer.

Strategy Guide

Many publishers have a department, sometimes called Business Development (“bizdev”)
or New Business, that looks for alternate methods of making money from the company’s
games. New business might make a deal with a company that makes strategy guides. One
challenge for the producer is that the effort to make a strategy guide for a game often can’t
take place until the game is in QA and the strategies for playing the game are fully
known. The game designer is the ideal person to coordinate this effort. If the game
designer wears just one hat (one that says “game designer” on it), this is a reasonably good
time in the project for this task to occur. However, if the game designer wears another
hat, especially that of lead programmer or producer, this timing can be a challenge.

Quality Assurance

Other than marketing, the biggest effort underway during postproduction is the mas-
sive testing push that goes on in QA. Depending on the scope of the game, the num-
ber of testers might number in the dozens. 

Each tester plays the game and writes reports on the problems found. Testers have
to be patient, computer-literate workers capable of clear written communication. It
isn’t enough to simply find a bug; the tester has to describe how the bug occurred and,
if possible, how to replicate it. The tester has to explain what was expected, what
occurred instead, and why it’s a problem. 

7.1 Game Production and Project Management 827



The lead tester (sometimes called the QA lead) creates the test plan, a budget for the
game’s QA effort, and the customized database for tracking, reporting, and analyzing
the bugs.

Test Plan

The lead tester analyzes the game, using the GDD, TDD, and the current build of the
game. The lead needs to determine how many testers will be needed, what kind of test
techniques or procedures are appropriate, and how long the test process is likely to
last. From this, the lead can determine a test budget. 

A single-player game with just a few different play modes is easier to test than a
large, multiplayer game with many play modes, user selectable options, and player
characters. A game that is played offline on a single console requires a different test
process than a game played online on a wide variety of PC hardware configurations
and operating systems. The lead incorporates such considerations into the test plan.

The QA Database

Different game publishers use different bug-tracking software packages, such as
DevTrack, Bugzilla, Mantis, TestTrack, and FogBUGZ. Some publishers create their
own bug-tracking systems from database software. Bug-tracking systems may reside
on an internal network or external server and may have a Web-based front end.

The bug-tracking database offers a click-and-type interface for testers to report
bugs. A bug report form typically includes fields used for all games, and fields that are
specific to one game.

Generic fields for a PC game might include, for example:

Tester name
Build number (date)
Version or SKU
Computer ID (which machine)
Operating system
Bug status (new, open, closed)
Bug severity (fatal, severe, mild, suggestion)
Bug type (crash, unfriendliness, graphic glitch, etc.)
Replicability (can the bug be replicated)
Location of bug (where in program the bug occurred)
Name of bug (a one-line description akin to an e-mail subject line)
Detailed description of bug

Most of these should be self-explanatory. Bug status is always “new” when the bug
has just been written and has not yet gone through the filtration process with the QA
lead and the producer. A bug awaiting work is said to be “open.” A bug that has been
fixed or is not going to be fixed is said to be “closed.” 

828 Part 7 Game Production and the Business of Games



The bug severity field gives the tester a chance to give his or her opinion as to how
bad the bug is. The lead and the producer will also be providing input in this regard.
Should their judgment of the bug’s severity differ from the tester’s, the field is likely to
be changed.

When a tester has found a problem in a particular part of the game, depending on
the specifics of the problem found, the tester tries to make the problem happen again.
A replicable bug is a bug that can be fixed. It sometimes happens that a sharp-eyed
tester may spot something that happened once, but he or she isn’t able to make it hap-
pen again. A one-time event might never happen again, but the fact that a problem
was seen has to be reported. The report may be left open for a while (perhaps weeks)
until the lead determines that it is unlikely to happen again.

The tester’s choice of a name for the bug is important. It might sometimes suggest
greater or lesser severity. Moreover, because there are many ways to express a thought,
the wording of the bug’s name might mask the fact that the problem has already been
reported.

The most significant field, the detailed description, is also the hardest one to write.
The tester has to clearly communicate the problem so that all readers can understand
it clearly. 

What the problem is.
Where in the game the problem was spotted.
What the tester and/or player character was doing just prior to the incident.
What was supposed to happen.
What happened instead.
Why it’s a problem.
What might be the cause of the problem.

It might be possible or desirable for the bug description field to be broken down
into separate fields for each of the preceding, but often it’s unnecessary to fill in each
of them. When the game crashes, everybody knows what was supposed to happen
instead—that the game not crash. 

Some teams might prefer that testers not speculate as to the cause of the problem.
However, sometimes the tester could have valuable insights into causes. 

It can be a little irritating to the tester to have to write each of these out (and 
it can be a little irritating for the development team to have to read each of them), so it
is common practice that the tester uses his or her discretion to write a detailed
description.

Some games may, by their very nature, require special fields or radio button
labels. For our hypothetical Ultimatt Combatt III game, for instance, the “location”
field might instead be labeled “era,” and to fill in the field, the tester might click a
radio button or select an entry from a drop-down list.

7.1 Game Production and Project Management 829



Era:

Old Testament
Greek Empire
Roman Empire 
Crusades
Napoleonic

In addition, when testing UCIII, the tester probably also has to specify which
army types were involved in the bug.

Attacking Force:

Ancient Egyptian
Trojan
Roman
Crusaders
Hessians

Defending Force:

Minutemen
Doughboys
Confederacy
Nazi storm troopers
Green aliens

The lead, in setting up the bug-tracking database, takes into consideration the
fact that some bugs might exist solely when one type of army clashes with another
type of army, and only in a particular level of the game. 

The QA lead can use the database to perform an analysis. Which parts of the
game are the most buggy? Which programmer’s code is the most buggy? Are bugs
being fixed quickly? Will the game be released in time? The QA lead needs to have a
firm grasp on the forest, not just the trees, especially if he or she is called to participate
in an operations or green light meeting.

QA—The View from Inside

Testers are the grunts of game production. Their pay is at the bottom of the scale.
Their opinions about the game design aren’t sought until it’s far too late. The result of
their work is sometimes resented by the programmers whose work is called into question. 

Despite the outsiders’ frequently held notion of testers as people who just play
games all day, testers exhibit technical expertise when they have to reconfigure a PC to
perform a specific test. They exhibit patience and fortitude when they play the same
game hour after hour, day after day, to test and retest specific modes, features, and
bugs. They exhibit clarity of communication when they write detailed bug reports. 

830 Part 7 Game Production and the Business of Games



Throughout the testing of a game, testers endure the humdrum grind of the
workaday world, especially if they work for a large publishing company. The tester
clocks in early in the morning and clocks out at the end of the day. There are meetings
to attend; lunch hours and break times are tightly controlled. Coworkers wander by
to chat while the tester is trying to concentrate on his task. Overtime pay goes to the
test budget’s bottom line, so overtime is tightly controlled. When overtime is
demanded, the tester’s private time is shortened. When the project is over, if the tester
isn’t needed for another project, the tester may be let go. 

The producer’s response to the tester’s bugs can add to the tester’s frustration.
Often, the producer simply dismisses a bug as WNF (will not fix), CNR (cannot
replicate), WAD (works as designed), or NAB (not a bug). Moreover, later in the QA
process, the producer may refuse to even look at bugs of severity below “severe.”

Many testers see these frustrations and shortcomings of the tester’s life as justifica-
tion for doing no more than what is demanded of them. For these testers, QA can be
a dead-end job. 

However, for many other testers, the QA job is a fascinating challenge because
each game is unique. These testers grow to become QA leads. With solid QA lead
experience, the step up to the studio is a natural progression. A large number of pro-
ducers, designers, and executives got their start in QA.

The QA-Producer Relationship

Because QA’s job seems to be to find reasons why a game is not yet ready to release, it
sometimes occurs that an adversarial relationship develops between QA and produc-
tion. It is unnecessary for this relationship to become adversarial. The experienced
producer recognizes the vital service performed by each tester who reports bugs found
in the game. QA and production both share a common goal for the game: they both
want the game to be good so it will sell well. The wise producer works to smooth the
communication and the relationship between QA and the development team. When
the development team is internal, it’s a good idea for team members (especially the
designer and the producer) to test the game alongside the testers, entering bug reports
and participating fully in the QA effort. 

Even so, the producer often has to play the role of “bad cop,” rejecting some bugs
rather than letting them pass on to the development team. Some testers might be
overly zealous in reporting minor shortcomings that can’t be fixed without delaying
release. Sometimes, a new tester will come on board the test cycle and not know that
a particular problem has already been reported. The lead tester might be filtering the
bugs before they go to the producer, but because ideas can be described using differ-
ent wordings, it might not be realized that a bug has been duplicated.

On the other hand, a producer might reject a bug, saying that it isn’t a bug at all.
The tester has perhaps merely misunderstood a feature. The game works as designed,
so the “bug” will not be fixed. 

7.1 Game Production and Project Management 831



As the QA cycle nears its scheduled completion, the producer and lead tester
work out a bug prioritization system. For example, “A” bugs might be those that
absolutely must be fixed. The game crashes, a highly visible feature doesn’t work, or a
virus is present in the code, for instance. Releasing the game with an “A” bug not fixed
would be catastrophic for the product and for the publisher. 

“B” bugs might be those that are highly desirable to fix, because left unfixed they
would be noticed by many users. For example, there might be a visible graphical
glitch, or a desirable feature might be left out. An unfixed “B” bug might generate
some negative comments, but the game is still enjoyable.

If someone describes a problem by starting with the words, “it would be nice to
fix,” that can be classified as a “C” bug. If someone talks about a feature and says, “it
would be nice if we could add it,” that could be classified as a “D” bug.

Nearing the scheduled completion date, the producer and lead tester could first
agree to reject all “D” bugs out of hand, and then a week or two later, all “C” bugs. If
severely pressed for time, they might agree to fix nothing but “A” bugs so the game
can be finished and released.

The publisher is in business to sell games. If the game is never released, the game
can’t be sold. If games aren’t sold, the testers, programmers, artists, and producers can’t
continue receiving paychecks. “Ship it” becomes a catchphrase heard throughout QA
when the code release date comes nigh.

Operations

Operations is the department that coordinates manufacturing (some publishers may
use a different nomenclature for this department). Console games are usually manu-
factured by the platform holder, but PC game manufacturing is handled by the pub-
lisher. Operations coordinates both. 

Operational planning for a new product kicks off once the game hits QA. A bill
of materials (BOM) is created to determine exactly what goes into a particular prod-
uct. Operations coordinates with sales to determine how many units are to be manu-
factured. The game’s progress through QA is closely monitored to make sure the game
will release and ship on time. Operations coordinates with marketing and creative ser-
vices to make sure that the circulation of the paper materials is on schedule.

The paper materials take longer to manufacture than the game media does. A CD
manufacturer can churn out hundreds of thousands of copies of a CD in a day
(including inserting all paper materials, and then shrinkwrapping and boxing the
assembled product). However, the printed materials usually take two weeks to pro-
duce. Besides the manual and the package cover art (usually a sheet of paper that slips
under the clear plastic skin of the CD case), the publisher may want to include other
paper materials in the package. There may be a user registration card (collected for
marketing research), an insert that advertises the publisher’s other games, or a poster
that the enthusiastic player can hang on the wall.

832 Part 7 Game Production and the Business of Games



Sometimes, new information comes along after the package has already been put
to rest, necessitating putting a sticker on the shrinkwrapped product. This costs only
a couple of cents per unit, but a million units times 2¢ is $20,000.00. Therefore, it’s
desirable to plan things thoroughly so stickers are not necessary.

Most new game releases occur during the Christmas selling season. The most
important sales weekend is the weekend just after Thanksgiving (the last weekend in
November). The game has to be in the store warehouses in early November so the
stores can include the game in Sunday newspaper supplements before Thanksgiving. 

CD manufacturers are understandably, then, under a lot of pressure in the
months of September and October. Operations coordinates with the manufacturer to
get a slot in the manufacturer’s very tight schedule. A PC game might be manufac-
tured between a music CD and a movie DVD, since the manufacturing process is
largely the same. 

Operations takes care of getting the printing done, and then the materials are
delivered to the disc manufacturer. Operations also handles getting the finished prod-
uct shipped to the warehouses of the stores that will sell the finished goods.

OEM and Bundled Versions

PC games can be bundled (shipped together) with new PCs or new PC peripherals or
accessories. The company that makes the PCs or accessories is known as an original
equipment manufacturer, or OEM. Requests for OEM versions typically come through
the new business department.

The timing of a new business request for an OEM or bundled version of a game
can vary. Usually, such requests occur after a game has been released and has been on
the market for a while, which means that the producer is asked for the new version
while he or she is busy working on a later project. However, sometimes new business
might request an OEM version while the game is in production. The timing of these
requests is usually not under new business’ control. Rather, the OEMs themselves might
be looking for products to bundle with a device they’re releasing on their own timetable.
If the producer cannot meet the request, this moneymaking opportunity is lost.

Post Mortem

It’s a common practice, after completion of a project, to write a detailed report called
a post mortem. “Post mortem” means, literally, “after death,” so the name isn’t entirely
apropos (usually, no furry programming creatures were killed or injured in the making
of a game), but that’s what they’re commonly called, and we’re stuck with it. The 
project is dead; long live the game itself.

The post mortem typically has three sections:

What went wrong?
What went right?
What we can learn from the experience?

7.1 Game Production and Project Management 833



There are good reasons for writing a post mortem. 
The team managers can learn valuable lessons that they can apply to future 

projects. Moreover, post mortems can put a lesson into clear sharp focus, further
strengthening the learning.

Managers of other projects can also learn from the experiences of the team who
shares their lessons in a post mortem. Typically, the post mortem is written for the
benefit of others who work for the same publishing or development company.
Sometimes, a post mortem is published, in a print publication for game developers or
as a speech at a conference for game developers. Hard-won knowledge should be
shared, so that others can get the benefit without sharing all the pain.

Summary

This chapter discussed the job of the producer, especially his or her role in creating a
game. From concept to preproduction, through production to postproduction and
even into after-market, the producer manages and pushes and cajoles. The producer is
the man or woman in the middle, under pressure from all directions and communi-
cating outward, upward, and downward. It’s a tremendous amount of work, but the
reward is the satisfaction of seeing a finished product on the store shelf.

Exercises

1. Research a list of the top 100 games of the past year. What percent are
sequels, what percent are licenses, and what percent are original concepts?

2. Write a one-paragraph description of the current best-selling video game
(no less than 90 words, no more than 110). Use your own words.

3. Distill your paragraph down to four or five short bullet points intended to
make a consumer buy the game. Use your own words.

4. Distill it down further, to one short sentence. Use your own words.
5. Research Web sites where lists of game developers may be found. Make a

list of all developers within a 100-mile radius of your present location. If
there are none, list the five developers nearest to your location.

6. Research game contracts at the IGDA Web site. Write a clause for a mile-
stone approval cycle.

7. Schedule the phases of a fictional game project from start to finish given
that the game must be on shelves by Thanksgiving of next year. Create a list
of questions that must be answered to make your schedule more accurate.

8. Since the completion date is nonnegotiable, how can the schedule be
tweaked to meet the deadline?

9. Research what programs exist for making a schedule and managing tasks.
Briefly compare features and price.

10. Budget a fictional game project to be developed internally using the most
recent salary survey from GameCareerGuide.com.

834 Part 7 Game Production and the Business of Games



11. Write a milestone description for a “first playable” build for a game of your
choosing. Make the description detailed and specific, quantifiable, and
measurable.

12. Research books on time management and dealing with difficult personali-
ties in the business world.

13. Research the finances of a recent hit video game. Considering the game’s
unit sales (at a known retail price) versus the game’s gross take, determine
the average wholesale price. For extra brownie points, research how much
the publisher spent to produce the game to determine a rough net profit.

14. Research what programs exist for tracking bugs and briefly compare features
and price.

References

[Blair93] Blair, Gerard M., “Planning a Project,” 1993, available online at
www.see.ed.ac.uk/~gerard/Management/art8.html.

[Bradk] “History of ‘All Your Base,’” available online at www.planettribes.com/
allyourbase/story.shtml#hist.

[Chandler04] Chandler, Heather M., The Game Localization Handbook, Charles
River Media, 2004.

[D’Arcy04] D’Arcy, Keith, “Music Licensing for Videogames: How Popular 
Music & Artists Can Make Games Pop,” 2004, available online at
www.gdconf.com/conference/ 2004.htm.

[Fristrom04] Fristrom, Jamie, “Postmortem: The Swing System of Treyarch’s 
Spider-Man 2 Game,” Game Developer Magazine (September 2004): p. 28.

[IGN04] IGN Insider, “Music,” 2004, available online at
http://music.ign.com/gamemusic.html.

[Price03] Price, Ted, “Postmortem: Insomniac Games’ Ratchet & Clank,” 2003,
available online at http://www.gamasutra.com/view/feature/2842/
postmortem_insomniac_games_.php.

[Rogers04] Rogers, Dan Lee, “Necessary Evil; The Rapid Retreat of Advanced
Royalties,” Game Developer Magazine (June–July, 2004): p. 44.

[SFMuseum] The Virtual Museum of the City of San Francisco, 1996, “Driving the
Last Spike,” available online at www.sfmuseum.org/hist1/rail.html.

[Sloper02] Sloper, Tom, “Following Up After The Game Is Released: It’s Not Over
When It’s Over,” Game Design Perspectives, Charles River Media, 2002: p. 261.

[Sloper03] Sloper, Tom, “Managing the Development Process,” Secrets of the Game
Business, Charles River Media, 2003: p. 262.

[Swartz04] Swartz, Bill, “There’s No Excuse for Bad Localizations,” October 6, 2004,
available online at www.gamedaily.com.

[TMMM82] Brooks, Frederick P., Jr., The Mythical Man-Month; Essays on Software
Engineering, Addison-Wesley, 1982: p.16.

7.1 Game Production and Project Management 835

www.see.ed.ac.uk/~gerard/Management/art8.html
www.planettribes.com/allyourbase/story.shtml#hist
www.planettribes.com/allyourbase/story.shtml#hist
www.gdconf.com/conference/2004.htm
http://music.ign.com/gamemusic.html
http://www.gamasutra.com/view/feature/2842/postmortem_insomniac_games_.php
http://www.gamasutra.com/view/feature/2842/postmortem_insomniac_games_.php
www.sfmuseum.org/hist1/rail.html
www.gamedaily.com


This page intentionally left blank 



837

Overview

Delivering a big-budget game into a consumer’s hands is an increasingly complex,
lengthy, and costly process. Game industry veterans constantly debate the relative
importance of developers as creative auteurs versus publishers as soulless businesspeople,
or retailers as channel arbiters versus media as opinion-mongers. However, each “driver”
entity on the highway to the consumer—developer, publisher, platform owner, retailer
—is essential to the transaction, as the industry’s economic structure demonstrates.
“Adjunct” entities that feed into the channel also offer a plethora of service alternatives
that reduce cost, save time, or improve quality.

In this chapter, we examine the economics and roles of 11 entities that collaborate
to bring a game to retail stores (Figure 7.2.1).

In the past five years, with rapid penetration of broadband to more households
and a broadening of the “traditional” gamer demographic, online distribution of video
games has increased dramatically. Traditionally limited to casual games of small file
size, accessible controls, and shorter play periods, the advent of Steam, Microsoft’s

Game Industry Roles 
and Economics

7.2

In This Chapter

Overview
Game Developers
Publishers
Platform Holders
Summary
Exercises
References



Xbox Live Arcade, and Sony’s PlayStation Network hints at future availability of big-
budget titles downloadable on demand. However, this chapter will concentrate on
traditional retail channels where the vast majority of sales still occur.

Game Developers

Without game developers, entertainment would no doubt be a duller and more com-
placent activity. Whether independent companies of 15 to 400 people or subsidiaries
of larger publishers, developers create the immersive experiences that inspire millions
to forego reality for fantasy. Game development involves the very technical disciplines
of programming, including code optimization for target hardware, physics and artifi-
cial intelligence simulations, camera and interface development, and creation of tools
to improve development efficiency. The art of game development lies with designers
who envision everything from game balance to placement of doors in a level, artists who
realize previously unimagined characters and worlds with an eye toward technical effi-
ciency, and animators who marry a character’s appearance and personality through
motion. Producers keep the train on the track, identifying roadblocks before (or as)
they occur and negotiating solutions among all stakeholders.

Full-Service Game Developers

Game developers in this category incorporate all the disciplines necessary to create
millions of lines of game code from a single idea. Projects range from six-month,

838 Part 7 Game Production and the Business of Games

Development 

Motion-capture provider 

Delivery media 
manufacturer 

Developer 

Publisher 

Platform holder 

(Sony, 
Microsoft, 
Nintendo ) 

Game 
code 

Game 
code 

Data 

Game code 
(master disk)

Finished 
goods 

Bug list

Art/animation provider 
Data 

Distributor or rep group PR firm & ad agency 

Media (TV, magazines, Internet) 

Game samples & marketing materials

Game info

Retailer ( Wal -Mart, Target, Toys "R" Us, EB )

Finished goods

Consumer 

Game info

Contract QA  provider 

Game 
code 

Finished goods

Finished goods 

FIGURE 7.2.1 Position of each entity in the product path for a console game.



tightly focused opportunistic releases to three years of complex asset integration into a
whole that is vast in scope. More than one recent project has exceeded five years and
$50 million to complete. The current cost for a multi-SKU console release (PS3,
Xbox 360) now ranges from $12 to $20 million, with team sizes of 50 to 350 people.
However, titles on the Wii and PC cost generally less, around $5 million, and titles on
handhelds such as the Nintendo DS and PSP can cost between $1 to $2 million.

Given such financials, the proverbial brainstorm-turned-million-seller is rarer than
industry aspirants care to believe. The majority of best-sellers are based on existing
intellectual property owned or controlled by the publisher, initiated by the publisher
with a team whose qualifications (not the least of which is cost) complement that IP. 

Publishers can initiate “surefire” projects based on a blockbuster movie or book
license, or “questionable” pet projects of a particular executive. Larger publishers can
mine the seam of past releases for remakes, due to the hotly debated publisher practice
of acquiring intellectual property rights to a promising developer’s original game idea.
Two truisms unite all these methods: a “no-brainer” concept does not guarantee a
great game, and an offbeat idea, well executed, sometimes sells spectacularly.

Developers interact primarily with their publisher and, on occasion, with the
platform provider, who provides them with direct technical assistance for the target
platform. Developers also promote themselves and their titles to the media, frequently
in conjunction with their publisher.

Independent development companies work with publishers on a contract basis.
The publisher pays the developer upon completion of various development mile-
stones. These are technically advance payments against a negotiated royalty based on
unit sales; however, the royalty is only paid after the publisher’s advance payments
have been recouped. In one recent example, a publisher and developer negotiated
$4/unit royalty, but recoupment against significant development advances ensured
the developer would only receive royalties after the 900,000th unit sold. Scenarios
like this feed ongoing industry debates about more equitable revenue sharing for
developers. Many developers have quietly resorted to building their profit margin into
their milestone payment schedule.

Another tightly negotiated contractual term is “net receipts.” Simply, this is the
amount of money a publisher actually receives from the sale of the game; net receipts
are the basis upon which royalty is calculated. In practice, it can be extremely difficult
for developers to figure out exactly how much royalty is due, since each publisher
deducts different items from gross receipts to arrive at net receipts. For example, a
“generous” (for the developer) definition of net receipts could be limited to actual
costs, could be capped at a particular percentage, and could cover only cost of sales,
cost of goods, and a reserve for retail markdowns. However, publishers have been
known to claim marketing and overhead charges as well—and to deduct all items as
fixed percentages, without the necessity of proving actual outlays. Wise developers
always work with legal counsel on such negotiations.

7.2 Game Industry Roles and Economics 839



Development groups also exist as wholly or partially owned subsidiaries of pub-
lishers. As employees of either the parent company or the subsidiary, internal team
members draw corporate salary and benefits. Stock options, bonuses for achieving
sales targets, and profit-sharing programs vary widely by publisher; the development
community generally acknowledges that the relative stability of working for a major
publisher goes hand in hand with a smaller piece of the profit pie on momentous 
successes.

Other funding alternatives such as venture capital, completion bond funding, and
angel financing play only a small part in game development. By and large, venture
capitalists prefer investing in proprietary technology or infrastructure, rather than a
“pure content” play. Completion bond funding—where a publisher or developer
obtains funding from a third party in exchange for a guaranteed cut of sales—may
solve the problem of a publisher lacking available cash to start projects, but is no greater
a guarantee of ultimate success than traditional funding. Angel funding is completely
dependent on securing the trust of high-net-worth individuals; no systemic way of
tapping such people for investment has yet been established.

Historically, many development groups have gotten their technological start cre-
ating PC games. Wide availability of technical information and an active engineering
community supported many of today’s marquee developers as they created early hits
such as Doom. Today, developers such as BioWare, Maxis, Epic Games, and Valve
include user-creation modules in their games, with which their player communities
can modify parts of their games. Many entry-level designers or programmers in the
industry today earned their position through a compelling “mod” presented as part of
their portfolio.

Development for today’s consoles—Sony’s PlayStation 3, Microsoft’s Xbox 360,
and Nintendo’s Wii—is harder to break into. The expense of proprietary develop-
ment kits and the requirement of a preexisting relationship with a publisher closes the
door to all but the most organized and connected startup groups with previous plat-
form experience. Consequently, many developers earn their credentials in PC gaming,
and then make the leap to console on the strength of proven technology, design, and
relationships.

Motion-Capture Service Providers

As hardware platforms follow Moore’s law of increasing computing power, consumers
and publishers have demanded increasing realism in their games. In particular, devel-
opers can now replicate the uniquely identifiable characteristics of human motion with
great accuracy for the first time in gaming. Mechanical leg movements on a football
player gliding as if on ice have been replaced by true running steps with the inherent
force, momentum, and style of the original human player. To be sure, we cannot
ignore the stunning contributions of painstaking manual animation to this advance-
ment. However, for the speed and efficiency of achieving realism in human movement,
we have motion-capture technology to thank.

840 Part 7 Game Production and the Business of Games



Motion capture is the technological process by which scripted movements of
human actors are “captured” by magnetic or optical sensors, yielding data that is then
inserted into the game engine. Mocap is usually used when lifelike human movement
is essential to the game concept. For example, a perfectly replicated signature move in
a football video game is a selling point to consumers playing as their favorite wide
receiver, while a cartoon character might benefit from manual exaggeration of certain
animations to emphasize its unreality. A mocap session is similar to a movie shoot,
usually involving a director, a script or “moves list,” an engineer manipulating the
software that processes captured data, and actor(s) selected for their ability to repeat
the desired action sequence accurately. Once the session is complete, the animation
team works through the raw data, tweaking an elbow position or sword arc until the
model behaves exactly as desired in-game.

Developers access motion-capture facilities in two ways: the publisher makes its
onsite studio available, with costs allocated internally to the project, or directly sub-
contracts an external mocap service provider. As with any marriage of the subjective
with technology, mocap works best with trained specialists at every level. Publishers
with key franchises requiring mocap (such as football games) can recoup on the
investment and training for an in-house studio; for most others, mocap is contracted
out at costs around $100,000 for a full-service session.

As demand has increased for motion-capture services, the competition among
independent mocap studios has led to price pressure. Some leading providers have
honed their service-side offering as a result, providing shoot management and data
processing, animation tuning, assistance with engine integration, and post-shoot
troubleshooting. One provider has productized their data processing software, offer-
ing it for license independently of its services. All providers continue to refine the
accessibility of data throughout their processes, so developers can benefit from the
efficiency of mocap without sacrificing the artistry of keyframe animation.

Art and Animation Service Providers

The increase in computer processing capability in game hardware has provoked an
exponential increase in the quantity of art assets required. On-screen processing 
limits of several characters comprising a few hundred textured polygons have
exploded to millions of polygons making up a main character, several AI characters, a
3D deformable environment with actionable objects, extensive special effects, and
realistic environmental lighting. The resulting productivity demands sometimes
require outsourcing of the art production process.

Generally, the publisher and developer agree upon the outsourcing of art at con-
tract. A full-service developer might bring an art group to the table based on a previ-
ous working relationship, or a publisher might specify a group on its vendor list. In
either case, the cost of outsourcing is factored into the project cost and paid during
the advance period. Developers generally list contracted art as a separate line item in
their proposal.

7.2 Game Industry Roles and Economics 841



Art production is one way for fledgling developers to build their reputation on a
console platform, particularly if the group’s members do not yet have console devel-
opment experience. The developer not only gains access to the proprietary develop-
ment systems, but also learns the constraints of art production for the target platform
and game engine—from simpler matters such as per-character polygon count to the
bedeviling issue of limited texture memory. Art production teams who master these
issues build impeccable working relationships with their partner publishers, and care-
fully hire top-flight programmers that have the best chance at breaking through to
full-service independent development.

The cost of art production varies wildly with desired quality level, quantity of
assets requested, duration of project, geographic location of the artists, and extent of
process/logistical integration with the full-service development team. In addition, art
production houses run the gamut from long-established, full-time art houses charging
top dollar for experience, to startup groups and offshore companies looking to break
in at any price. Billing can be per man-month, per minute of cut-scene animation, or
flat-fee, and can include royalties if the artwork is integral to the project’s brand iden-
tity. For the pressured development team who receives a perfectly executed art asset
delivery in time to hit a key milestone, and for the publisher whose high expectations
for graphic quality were met in that milestone, every dollar is worth it.

Publishers

If developers are the artistic brain behind video games, publishers are the muscle and
nerve that coordinate all aspects of bringing a game to a consumer. The publisher’s
role is so extensive and influential that publishers have taken on the aura of medieval
fiefdoms, where money flows in mysterious directions and decisions are made by
cabal. Acting as the “suits” to developer “geeks,” publishers make up the second half
of the classic “art versus commerce” conflict that inspires hyperbolic excesses on games
industry message boards. If we step back from the rhetoric, we see wide variation
within the category: global conglomerates with multiple regional divisions covering
internal and external development, marketing and sales, quality assurance, finance
and licensing for any viable delivery platform; smaller companies specializing in mar-
keting and sales of certain genres for certain territories; groups specializing in specific
platforms such as PC or iPhone; entities focusing on discovering gems in one territory
for distribution in another; and Web sites offering pay-per-play downloads. To choose
the best partner, developers must extensively research prospective publishers’ strategic
priorities, business model, and execution strengths and weaknesses—much of which
can be inferred from publicly available information. Mismatched expectations on any
of these fronts can doom the best-executed game to the bargain bin.

842 Part 7 Game Production and the Business of Games



Console and PC Publishers

For brevity, and because the vast majority of packaged games wind up in consumers’
hands through this model, we will focus on “traditional” console/PC publishers such
as Electronic Arts, Activision Blizzard, Ubisoft, and Sega. We examine the role of
publishers who also control a hardware platform (such as Sony or Nintendo) in a later
section. Finally, since we reviewed game development previously, for this overview we
will set aside that function of a publisher’s role.

Traditional publishers sit in the conceptual center of the video game industry, 
primarily because they bear the financial burden and responsibility to execute every
process between code creation and game purchase. Responsibilities and accountabili-
ties include the following:

Management of the game development process: Publishers are involved in every-
thing from time-to-market scheduling to creative input. The foundation of a
publisher’s relationship with retail partners is a good product shipped on time in
the right quantities.

Debugging, playtesting, and other quality assurance: Publishers are legally liable
for the game’s quality to both consumers and the platform holder.

Securing all necessary licenses: These include in-game music; creative properties,
trademarks, or technologies controlled by other companies; athletic leagues and
players; and the right to publish on controlled platforms (consoles). Experienced
developers obtain an indemnity from the publisher against any licensing omissions
the publisher might make.

Manufacturing and shipping the finished game: This responsibility includes writing
and printing the manual, designing the cover, buying the case, placing orders
with media manufacturers, assembling all the elements into a game package, 
and shipping it to the channel. Aside from the QA implications of an unstable 
assembly process, lackluster packaging encourages consumers to look elsewhere
on the store shelf.

Maintaining good relationships with retailers via cooperative channel inventory
management: More than just the “schmooze” of golf and expensive dinners,
publishers’ sales efforts must include in-store merchandising programs, funding
for product placement in retail circulars (“white space”), joint assessment of a
title’s sales potential, and markdowns or returns at publisher cost if the title does
not perform as expected.

Communicating title features and availability to the consumer: Whether via
“meta-channels” such as press events for games industry media, or direct commu-
nication with gamers via television, print, demo opportunities, Web site, or 
Internet/direct mail, publishers are responsible for letting the public know what’s
out there.

Housekeeping: This responsibility includes all the human resource, tax and finance,
investor relations, and legal services issues involved in running the company.

7.2 Game Industry Roles and Economics 843



Industry voices frequently criticize publishers for “unfairly” sharing revenue with
their developer, without whose creativity there would be nothing to sell. Since rev-
enue sharing is established at contract, a knowledgeable and firm negotiating stance
goes far in ensuring fairness for the developer; the many factors that can strengthen a
developer’s negotiating position are covered elsewhere in this book. In pure financial
terms, however, the market law of risk versus reward explains why publishers keep 
the lion’s share of revenue, if not of profit. Table 7.2.1 answers the gamer’s frequent
question: “Where does my $50 go?”

Table 7.2.1 Generalized Breakdown of Revenue from a $50 Console Game

Amount Purpose Paid By Paid To

$3 Cost of goods Publisher Media manufacturer
$7 Publishing license royalty Publisher Platform holder
$13 Retailer profit Consumer Retailer
$3 Markdown reserve Publisher Retailer
$8 Development cost Publisher Developer
$10 Operating cost Publisher Internal (overhead, freight,

co-op, bad debt)
$6 Marketing Publisher Ad agencies and media

Items in bold can be converted to profit through careful publisher cost management.

Recent years have seen the $50 price “ceiling” broken more and more frequently,
as publishers look to recoup increased development costs by selling their titles at a
wholesale price high enough to force a $59.99 retail price. By and large, the relative
margin (% of total price) retained by the publisher and retailer has remained the
same; the additional dollars generally cover development cost, and in some cases, an
increased allowance for returns and bad debt.

Quality Assurance Service Provider

Occasionally, a publisher will decide not to maintain quality assurance (QA) as an
internal core competency. Companies such as Volt provide complete debugging and
gameplay evaluation to such publishers on a contract basis. The clear advantage is
peace of mind about product quality without the necessity of managing the signifi-
cant human-resource issues and financial overhead of an in-house test team.

Contracted QA has a long history of success with PC publishers, who bear the
unique burden of ensuring that their latest release works within a range of hardware
specifications. Depending on the publisher’s defined compatibility set, the contract
QA house can be asked to test hundreds of variants on PC game software + operating
system software + hardware + peripherals, and project results for configurations not
tested. Such companies can recoup the significant investment in equipment repre-
senting the current gaming market (the “test bed”) over multiple projects.

844 Part 7 Game Production and the Business of Games



Console publishers are gradually warming up to the idea of contract testing. One
obstacle to date has been the expense and proprietary nature of development and
debugging systems for controlled platforms. If the publisher provides such equipment
to its external QA partner, the platform holder holds the publisher responsible for
proper security and authorized use. Another more emotional than factual objection is
the perceived risk of code leaks from sources beyond the publisher’s own walls; if a
game is to be pirated, better to control the leak internally than pursue legal remedies
against a partner. During the most recent console transition, contract QA houses
made great strides in accommodating these issues, and have since worked closely with
both publishers and platform holders to ensure that the figurative firewall includes
rather than excludes their services.

Public-Relations Firms, Advertising Agencies, 
and Merchandising Teams

Few heads of marketing deny the efficiencies of contracting external firms for public
relations, advertising generation, and in-store merchandising assistance. Much more
than additional heads and hands, such companies combine effectiveness through rela-
tionships, the creativity that comes from time to brainstorm, and a reach that falls just
short of handing a game directly to the consumer.

Publishers occasionally learn to their dismay that some brand-name PR firms 
specializing in national media such as USA Today and Newsweek can fail miserably 
at communicating their message to the video games industry media such as GamePro,
Kotaku.com, and 1up.com. The best games industry communications managers 
successfully pitch the latest role-playing game to a sophisticated news outlet while, on
the other phone line, explaining this year’s business plan to the local game journalist. 
The publisher gives the PR firm complete access to its game’s development, while the
PR firm coaches the publisher on speaking skillfully and consistently to all of its 
constituencies.

Similarly, a lack of alignment between publisher and ad agency on the creative
vision for the marketing plan directly impacts sales. Many top-shelf ad agencies
approach the video games industry as a creative soul mate, believing that innovative
interactive entertainment requires bleeding-edge advertising. Experienced games
industry marketing executives, on the other hand, know that their audience wants to
see in-game footage. (Such creative tension results in either a memorable commercial
or a new ad agency.) Agency partnerships range from a fully retained relationship cov-
ering all software releases, to different agencies retained for distinct product lines, to
per-title arrangements. 

In-store merchandising assistance is a luxury best afforded by platform holders.
With anywhere from 4 to 24 linear feet devoted to its hardware and software in key
retailers, for example, Nintendo is legendary for its merchandising team’s deep relation-
ships with store managers, enabling them to update signage, straighten displays, restock
empty shelf slots, and chat up the electronics section manager on upcoming releases.

7.2 Game Industry Roles and Economics 845



Publishers whose key releases are integral to a platform holder’s lineup can obtain
preferential placement and subsequent coddling of their titles by the platform holder’s
in-store team. Publishers have been known to maintain merchandising teams for
shorter or longer periods, but the justification for such cost begins with shelf space;
sending staff to straighten up just a few facings is desirable in principle but question-
able in financial practice.

Platform Holders

“Platform holders” are companies that manufacture the hardware (and in some cases,
the software) on which game software runs. As with publishers, a wide variety of com-
panies comprise game platform holders: cell phone carriers and manufacturers, hand-
held device manufacturers, PC makers (both the boxes and the chips inside them),
video game console manufacturers, and development software/tools providers such as
Microsoft and Dolby. Such companies share the characteristic of owning, controlling,
or influencing the software that appears on their platform, whether by providing 
software development kits (SDKs) to help developers access the features of their hard-
ware, or by outright permission-based control of anything that involves the platform.
Frequently, platform holders also create software for their own hardware; in this 
section, we’ll review the platform holder’s role exclusive of publishing functions.

Platform holders derive their revenue from any of the following sources:

Sales of the hardware itself
Sales of (or licensing fees from) any peripherals compatible with the hardware
Sales of their own games compatible with the hardware (“first-party games”)
Licensing fees from compatible games made by other companies (“third-party
games”)
Licensing of development tools or SDKs necessary to create games for the 
hardware
Manufacturing proprietary delivery media for the hardware (such as game cartridges)

Consoles and PCs differ fundamentally in that console makers strictly regulate
access to their platform via various licensing permissions, while the companies that make
up the PC development “ecosystem” usually provide their tools for free to any interested
developer. For this reason, we categorize the PC platform as “open” and consoles as
“closed.”

PCs as a Platform

The “PC platform” is in fact a conglomeration of intersecting partnerships among
CPU manufacturers, development software/tools providers, graphics chip manufac-
turers, and box assemblers. Look in the manual for your new PC and you might see:

Intel Core 2 Duo primary processor (CPU)
ATI Radeon graphics processor

846 Part 7 Game Production and the Business of Games



Microsoft DirectX 
Assembled and sold by Dell

Each of these categories provides support to game developers, mostly for free,
with the intent of making money from compatible software or hardware sales.

As the most visible example of successful “ingredient marketing,” Intel has spent
years courting game developers to maintain its image as provider of the fastest CPUs
available. It provides sample boards and technical assistance to game developers, and
will even work closely with leading game developers on R&D for its future genera-
tions of chips. The objective, of course, is for gamers to specify “Intel Inside” when
they purchase their next gaming PC.

Graphics chip companies such as NVIDIA and ATI have built a healthy comple-
mentary market to CPUs by creating graphics chips customized for multimedia and,
of course, games. In addition to the developer benefits already listed, graphics chip
companies will secure cutting-edge games under development on an exclusive basis,
paying the developer to incorporate the technological bells and whistles that set their
chip apart from the rest. Graphics chipmakers also create SDKs that allow developers
to take advantage of their chip’s unique features. Once “hardcore” gamers realize that
their longed-after new releases look best when run on a particular graphics chip, they
gladly upgrade.

Two well-known technology companies have made names for themselves in the
development software/tools space. Microsoft, with its DirectX API, has succeeded over
the years in stabilizing the technological risk of game development on PCs, much as it
has standardized its operating system for the user. Dolby Labs has revolutionized
computerized sound with its 5.1 audio compression technology—ensuring develop-
ers have a straightforward and standardized way to create surround sound. Both com-
panies give their SDKs away to qualified engineers for free, encouraging information
sharing among their developer communities and placing as few limitations as possible
on use. The advantage for developers is learning a software platform that is invisibly
compatible with the multiple hardware combinations available in the market.

PC “box-makers” such as Dell, Acer, and Lenovo play a less active part in promot-
ing game development on their PCs, since the tough work is done by their “ingredient”
companies. However, to the extent they target gamers as potential customers, they might
secure an exclusive set of games to preload on the PC before it’s sold to consumers.

One important factor in PC publishing for developers and publishers is the lack
of royalty paid to the hardware company for the privilege of platform compatibility.
The beneficial effects are lower cost-of-goods and higher profit margins for publishers,
and easier access to both development and self-publishing for developers. However,
since nearly any competent and inspired PC development group can complete and
ship a PC game at relatively low cost, many groups do so. The resulting competition
among thousands of titles for shelf space at retail has created a cutthroat sales channel
for PC games, where retailers return units unsold after eight weeks to publishers, and
only the top 30 games sell more than 300,000 units.

7.2 Game Industry Roles and Economics 847



Consoles as a Platform

In direct contrast to the open and loosely affiliated PC game development scenario,
development for game consoles such as Sony’s PlayStation 3, Microsoft’s Xbox 360,
and Nintendo’s Wii is tightly controlled at all levels by the respective companies. To
create and sell games on these platforms, a developer/publisher requires the following
licenses and permissions:

License to use development software and hardware: Only provided after the 
console platform holder’s favorable evaluation of the applicant’s potential for
bringing quality games to market. For developers, a publisher’s recommendation
carries great weight in obtaining development systems. 

License to conduct general marketing and sales activities: Again, granted only 
if the platform holder believes the company has the structure and resources to
succeed. Smaller publishers without a direct sales force or consistent product flow
struggle to establish credibility on a console platform, sometimes signing its
products over to a licensed publisher for distribution.

License to use the platform holder’s trademarks and logos in-game, on packaging,
and in advertising: Platform holders provide templates for all logo and trademark
use, and review all materials for correct use before the product can be assembled.

Permission to create a game: Granted after platform holder review of the game 
concept early in the development process. Instances in which platform holders
reject a concept, although rare, cause great vexation, as usually the publisher has
already sunk funding into the project.

License to release the game to the channel: After extensive testing by developer,
publisher, and platform holder. Platform holder certification is a tense part of 
the process, as the game can be rejected any number of times for bug fixes or
standards violations.

According to industry logic, the company that creates the console, engineers the
SDKs that developers use to build games for the hardware, and incurs the cost for
marketing and selling the hardware to consumers is entitled to royalties from game
sales—generally around $7/unit—to cover those costs. At launch, the retail price of
the console rarely covers its actual component cost, and that cost doesn’t include
R&D amortization. Many millions of units later, after multiple reengineering efforts
to reduce the actual bill of materials (“BOM”), successful console platforms can gen-
erate vast software-side profits while the platform holder breaks even on the hardware.
Over a successful console’s lifespan of five to seven years, the platform holder recoups
the current console’s R&D costs over the first few years and invests in R&D for the
next-generation console during the last few years. An imbalance of software revenues
against hardware costs has driven console platform holders such as Atari, 3DO, and
Sega out of the hardware business entirely.

848 Part 7 Game Production and the Business of Games



Delivery Media Manufacturers

An often-overlooked cog in the publishing machine is the actual game manufacturing
and assembly company. With the exception of the Nintendo DS, today’s platforms are
disk-based; this welcome change reduced cost of goods for publishers and cut manu-
facturing time dramatically, enabling (almost) just-in-time inventory management.
Manufacturers obtain a license from console platform holders to work with the pro-
prietary disk medium or other antipiracy technology on the disk, and pay a nominal
per-unit royalty for that technology to the platform holder.

Historically, console platform holders have always controlled manufacturing
directly, with Sony and Nintendo continuing this model. Publishers submit their
orders directly to the platform holder, or simultaneously to the platform holder and
the manufacturer. The publisher pays both manufacturing cost and royalty directly to
the platform holder, sometimes on a cash-in-advance basis. During busy seasons
when manufacturing capacity is strained, the platform holder has final say over which
products receive priority. However, in general, the manufacturer adheres to a certain
turnaround time as part of its terms of service. All the same, for an AAA title release
date when every day in the schedule counts, even one day over “the standard turn-
around time” can cause urgent telephone calls up and down the publishing chain.

With its Dreamcast, Sega was the first to offer complete publisher control of the
manufacturing process. Microsoft has continued this trend with its Xbox and Xbox
360. In this scenario, once the platform holder releases tested game code to the man-
ufacturer, the publisher is free to negotiate turnaround times and pricing based on the
strength of its relationship with the manufacturer. In practice, the cost of goods does
not vary widely, but the licensing of three or four manufacturing companies ensures
an alternative supplier.

To save additional time or cost, publishers often receive their goods from the
licensed manufacturer as unpackaged disks on spindles and ship them to a separate
facility to assemble. Since such “pack-out houses” are not licensed or controlled by the
console platform holder, the publisher is free to pursue the most advantageous part-
nership based on cost, turnaround time, proximity to the publisher’s distribution 
center, or expertise with different kinds of packaging. Such processes must be managed
carefully to prevent Murphy’s law from afflicting the extra shipping and handling steps.

Retail

As the most visible part of the video game publishing trail to the consumer, retail is
rewarded handsomely with as much as a 30 percent margin on a game sale, with sales
of used games garnering even more profit. Gamestop announced 48% margin on used
title sales in late 2008. Many routes a game takes to a consumer’s hands are not visible
to the consumer, but certainly influence the game choices with which he’s presented.
For the purposes of this discussion, we examine primarily brick-and-mortar stores. 

7.2 Game Industry Roles and Economics 849



Distributors

Although it might seem odd to begin a discussion of retail with the middleman, it’s
useful to know that distributors enable smaller regional store chains, individual “mom
and pop” stores, and other niche retail outlets to service their customer base uniquely
in the face of stiff competition from national discount chains. Distributors buy nearly
every game a publisher releases; their strengths are breadth of selection, close cost
management, and the ability to sell to stores whose size or business practices preclude
dealing directly with the publisher. In short, the distributor brings the publisher
incremental sales more efficiently than if the publisher were to service those accounts
directly. 

Distributors might specialize in differing product lineups. Some distributors
located closer to major population centers claim the advantage of quickest delivery of
the latest releases. Although publishers frown upon the service, distributors also try to
boost their allocation of high-demand titles to supplement national retailers’ supply
in the critical days between sellout of the first shipment and arrival of the next. Others
might focus on “closeouts”—marked-down or discontinued games that make their
way from the publisher or retailer’s warehouse to the bargain bin at a loss for the pub-
lisher but profit for the distributor and retailer. Some distributors focus on making
games “rental-ready,” repackaging games in sturdy cases for small rental chains. Some
distributors act as publishers on import or other low-visibility titles, taking the finan-
cial risk on the hope that one might turn out to be a gem.

In its role of making the market for games more efficient, the distributor itself
must be extremely efficient to secure its roughly three percent margin on sales.
Generally, distributors secure massive warehouse space in low-rent areas, depend on
the publisher for sales materials rather than creating their own, and pay their salespeo-
ple with heavy emphasis on commission. The cliché of “making it up on volume” is
possible for a distributor that works every angle to its benefit.

Manufacturers’ Representatives

Manufacturer’s representatives, or “rep groups,” are a testament to the power of rela-
tionships in a high-tech world. Usually small companies of just a few people, rep groups
secure agreements allowing them to act as contracted salespeople on the publisher’s
behalf. They’re responsible for knowing the product line, the target retailer’s opera-
tion, publisher practices, and when to sell more versus mark down (although they
must recommend the latter to their publisher first). For these services, the publisher
pays them a percentage of net sales (all sales minus any returns).

Rep groups are usually of most value in situations where the rep group’s relation-
ship and credibility with a retailer is stronger than the publisher’s is. This includes
launches of new product lines, a new publisher’s entry into the market, or reaching
out to a retailer not yet included in the publisher’s existing retailer base. The rep group
acts as a go-between, advising both publisher and retailer on how to work through

850 Part 7 Game Production and the Business of Games



new processes on each side. Despite hard work and sincere commitment by leading
rep groups, publisher sales executives constantly reexamine the wisdom of contracting
external companies for such a vital task. Perhaps disappointing sales on a key product
prompts the initial questioning, or cost watchers eyeing the rep group’s commission
percentage. The result in either case, and the bane of every rep group, is the publisher’s
call informing them, “we’ve decided to go direct.”

Regional Retailers

Despite the increasing standardization of the retail experience nationwide, successful
regional retailers have learned the keys to survival: know your customer, provide
exactly what he wants, give great service, and offer occasional surprises. These pre-
cepts apply perfectly to the game market, where smaller video game–only retailers and
mom-and-pop stores can’t compete on price or speedy availability of new releases. The
smaller retailer can provide detailed knowledge on the latest game or on an obscure
release from years back—and if the store manager or buyer is very good, he will know
where to lay his hands on both.

The key to regional retailers’ success is good relationships with both their distrib-
utor and, ideally, with each publisher. Although economies of scale prevent a publisher
from servicing regional retailers directly, solid chains with several stores can attract the
publisher’s notice, either through the grapevine or via distributor’s advocacy with 
the publisher on their behalf for things such as in-store merchandising items and,
rarely, markdowns. Since hardcore gamers frequently staff regional chains, publishers
can use such chains to create word-of-mouth recommendations from “experts” for
their latest releases.

Rental Retailers

Rental retailers such as Blockbuster and Hollywood Video have emerged from relative
obscurity as a retail category to major drivers in the channel. Until recently, publish-
ers treated rental retail with respect but not much attention; although the sell-in
quantity “per door” was less than at traditional retailers, those units were never
returned or marked down. Recently, however, industry market research from many
sources has shown that the primary driver behind consumer purchase intent is hands-
on experience with the game. As rentals can encourage sales of a good game, so 
can they stop a bad game’s sales dead at launch. As a result, publishers now work out
their lineup carefully with rental retailers, evaluating rental retailers’ value in advance 
promotion side by side with actual units sold. 

Rental retailers, in turn, have identified the game market as a potential growth
segment of their business. Some chains are experimenting with revenue-sharing 
models. Other rental retailers are moving into sales as well; having created a potential
buyer for a game through rental, such retailers have stopped sending the buyer to 
a competitor for the purchase. In short, rental retailing is transforming into a new 

7.2 Game Industry Roles and Economics 851



service model for gaming consumers. Finally, GameFly has replicated the Netflix busi-
ness model for movies: subscribers create a wishlist, and GameFly sends them their
first game to play as long as they want. Once the gamer returns the first game,
GameFly ships them the next on the list, and so on.

National Retailers

Finally, we come to the names that consumers know: Wal-Mart, Target, Best Buy, Toys
“R” Us, and GameStop. The lineup varies slightly from publisher to publisher, but
this group of national retailers makes up the core of the industry’s sales efforts, and
represents the most direct way for publishers to get a game into a consumer’s hands.

National retailers have direct relationships with the publisher, which means that
the publisher provides them with:

Games shipped directly to the retailer’s warehouse, or direct to store if the retailer
can accommodate.
In-store merchandising materials, such as standees, posters, shelf talkers, and box
fronts for display.
Extensive sales materials on each title, usually including a direct pitch by the 
publisher’s marketing and sales staff to the buyer.
Generous terms on sales (average net 60, although retailers with clout stretch this
as desired).
Hands-on inventory management, including publisher sales staff poring over
store-by-store inventory to increase sales efficiency.
Various relationship-building perks, such as tickets to a local sports event or an
expensive dinner after the sales call. (Wal-Mart is notably strict in its policy of “no
freebies” to its buyers.)
Credits against existing invoices or free goods to help the retailer mark down and
move through stagnant inventory.
Unique sales programs customized by retailers, whether a gift-with-purchase, 
in-store event or celebrity appearance, or sales contest for in-store staff.

The retail buyer has tremendous influence in the process of getting a game to
consumers. The buyer is usually responsible for the entire video game category, but
depending on the relative importance of video games to the retailer’s revenue, video
game buyers might also be responsible for related categories such as video, electronics,
or toys. The best buyers listen to the salespeople but also conduct their own research,
accepting the publisher’s stance but listening to the wants of their own customers.
The worst buyers pay little attention to video games, failing to keep abreast of trends
or failing to pass information along to store-level employees. Frequently, the differ-
ence between a coherent, well-stocked video game department at one retailer and a
disorganized jumble of last year’s games at a different chain is directly attributable to
the buyer.

852 Part 7 Game Production and the Business of Games



For publishers, the buyer controls several elements that can mean sales success or
failure: whether to stock a game at all, how deeply to stock it, “white space” or co-op
advertising in retail circulars, and in-store pricing. The decision to pass on a game can
mean forecast deficits of thousands of units if that retailer is responsible for 40 percent
of a game’s launch volume. Smaller publishers suffer from buyers “cherry picking”
their best titles only, while larger publishers and platform holders can benefit from the
buyer’s courtesy in taking the entire product line. A buyer’s decision to stock a game
in “gamer-heavy” stores in key locations, but not in minor secondary locations, is a
strong sign to a publisher to redouble its in-store efforts to achieve chain-wide distri-
bution. A buyer’s decision to show a title in the retailer’s “white space” circulars 
(usually bundled with the daily newspaper) creates a measurable sales spike the week
the ad is viewed by millions of avid gamers watching for the next release. Finally, buy-
ers have the authority to designate a key title as a loss-leader, pricing it below the usual
$49 or $59 at launch to drive store traffic to higher margin purchases. For hot
releases, publishers designate a manufacturer’s advertised price (“MAP”) program, in
which any retailer who reduces their advertised price below a certain level is denied
co-op funding for the offending ad. However, this relatively weak penalty is only
effective when combined with a strong buyer-salesperson relationship that neither
party wishes to damage.

Much as “going direct” are two words rep groups dread, “no open to buy” are four
words that bedevil publishers. “Open to buy” is the amount of money the buyer can
spend buying games within a certain period, usually quarterly or 30 days. Essentially
a budget, it’s calculated from a combination of cost of inventory on hand, sales rate or
“turnover” of that inventory, and revenue expected against that inventory for the
period. Open to buy is very restricted around the Thanksgiving–Christmas holiday
interval, when large numbers of games are expected to sell huge quantities. A pub-
lisher salesperson pitching an excellent game who receives the response “no open to
buy” is chastised by his or her management for not pitching the buyer earlier on the
game’s quality. A salesperson hearing the phrase in response to a poor-quality game
should understand this message: Your game isn’t good enough to compete with the
other releases during this time period. In short, if the publisher manages its retail rela-
tionships well, limited open to buy should not become an excuse.

To manage such relationships to this degree, publishers require voluminous data
quickly and frequently. Publishers can derive sales data of their own games from inter-
nal sales information, of course, but sales data on competitive games or titles released
during the same period puts an important context around one’s own sales. For exam-
ple, poor sales of a publisher’s franchise platform title can mean anything; poor sales
of the next platformer to appear might mean that that console’s audience doesn’t look
for the platform genre; and poor sales of all games during that period might indicate
overall industry softness, or poor supply of the hardware platform at retail. For such
data, a company called NPD offers a subscription service called TRSTS (Toy Retail
Sales Tracking Service) [NPD]. Major retailers report their weekly sales, which then
are aggregated and sent back to subscribing publishers on a monthly or weekly basis.

7.2 Game Industry Roles and Economics 853



Summary

The video games industry is now in its fourth decade of providing interactive enter-
tainment to the consumer market. Through the years, although industry entities have
largely retained their roles in the channel, the balance of power (and flow of money)
among them has fluctuated widely. Given the amount of money in play, a major
stumble by any part of the value chain—or a paradigm shift in technology or business
model—could turn the entire industry’s balance of power on its head.

Exercises

1. Using Microsoft Excel and the data in Table 7.2.1, construct a basic spread-
sheet modeling the relationships among cost, unit sales, and profit. 

2. Using the cost structure in Table 7.2.1, how many units of this game would
you need to sell to break even? To make $1 million in profit?

3. Using the break-even sales quantity in the preceding exercise, manipulate
the values given you in Table 7.2.1 to reduce your break-even number.

4. Discuss the advantages and disadvantages of making the following games.
Consider budget, project management, marketing, technology, sales forecast,
profitability, risk, and quality.
a. An NFL football game.
b. A game based on an original idea from your company’s most famous

designer.
c. A sequel to last year’s game from your company’s most famous designer.

5. You are the president of a small development company under contract to 
a publisher for a game based on your original idea and on your custom-
developed technology. You’re located in Austin, Texas, and you’ve been
together as a group for five years. The project budget is fairly generous. You
realize that you don’t have enough artists and animators on staff to achieve
your next five art milestones. Do you hire or outsource? Discuss in terms of
schedule, technology, budget, company culture, and quality.

6. You are the manager of a video game store in Seattle, Washington. Your store
is one of four within a regional retailer selling console and PC games; you
order titles for your store through corporate HQ. You know your games,
and you’ve been careful to hire staffers who know the industry and pay
attention to regular customers’ desires. A Best Buy has just opened in the
local mall, and last weekend you saw to your shock that they are selling this
year’s #1 console game at $10 below your price. What do you do to ensure
your shop’s continued success? Consider short- and long-term strategies.

854 Part 7 Game Production and the Business of Games



References 

[Bethke03] Bethke, Erik, Game Development and Production, Wordware Publishing,
2003.

[Chandler06] Chandler, Heather, Game Production Handbook, Charles River Media,
2006.

[Gibson03] Gibson, Elizabeth, and Billings, Andy, Big Change at Best Buy: Working
Through Hypergrowth to Sustained Excellence, Davies-Black Publishing, 2003.

[IGDA06] IGDA Contract Walk-Through—Third Release, 2006, available online
at www.igda.org/biz/contract_walkthrough.php.

[Kushner04] Kushner, David, Masters of Doom: How Two Guys Created an Empire
and Transformed Pop Culture, Random House, 2004.

[Liverman04] Liverman, Matt, The Animator’s Motion Capture Guide: Organizing,
Managing, Editing, Charles River Media, 2004.

[NPD] NPD, www.npd.com.
[Sheff93] Sheff, David, Game Over: How Nintendo Zapped an American Industry,

Captured Your Dollars, and Enslaved Your Children, Random House, 1993.

7.2 Game Industry Roles and Economics 855

www.igda.org/biz/contract_walkthrough.php
www.npd.com


This page intentionally left blank 



857

Overview

It’s unlikely you will have failed to notice the increasingly frequent comparisons being
drawn between video games and the traditional entertainment superpowers of music
and film, most notably the record-breaking first-day sales of Rockstar’s epic: Grand
Theft Auto IV. What may come as more of a surprise is that the processes and costs
involved in taking a modern video game from abstract concept to the shelves of your
local retail store are becoming equally comparable to and even regularly eclipsing
those of the latest blockbuster Hollywood films. In this chapter, we explore exactly
how a game is commissioned, what the deal will consist of, and the key stages of
development thereafter.

Just as the games we play today are dramatically different from those 10 or 20
years ago—from the look, feel, and content to the multidigit ergonomics of the mod-
ern game controller—the makeup and complexion of the companies, individuals, and
processes involved in the production of games has evolved. Of course, much of this is
simply a result of the extraordinary growth of the leisure software industry, from its
roots in university activity clubs, arcades, and bedrooms to the $40+ billion entertain-
ment giant that exists today.

The Publisher-Developer
Relationship

7.3

In This Chapter

Overview
Sowing the Seeds
The Developer/Publisher Divide
The Pitching Process
The Deal
Deal Dynamics 
Payment Negotiation
Development Milestones
Summary
Exercises



Hopefully, this chapter will go some way toward helping you to build a basic
understanding of the delicate and not so delicate power struggles that occur on a daily
basis in game development.

Sowing the Seeds

The first playable video game, Spacewar, was a university club project completed in
1962 by MIT student Steve Russell. Russell could not have possibly known that, less
than half a century later, his simple space rocket duel controlled with toggle switches
and stored on tickertape would be superseded on a mass-market scale by globally 
connected miniature supercomputers smaller than a shoe box, with gigabytes of stor-
age, multimedia capabilities, responsive analog control, and 3D visuals approaching
photo-realism.

It is possible, however, that “godfather of the video game industry” Nolan Bushnell
did have this vision. The University of Utah undergraduate trumped Spacewar with
his own Computer Space, the first coin-operated video game in 1971, but it was along-
side Al Alcorn with their now-legendary startup company, Atari, that Bushnell practi-
cally invented the games industry as we know it with the 2D bat and ball game, Pong,
and subsequently taking digitized “TV games” from the arcades and into people’s
homes in the form of cartridge-based consoles.

However, it was the advent of programmable home computer systems such as the
Sinclair Spectrum, BBC Micro, and Commodore 64 (and subsequently the
Commodore Amiga and the Atari ST) that transformed the video game development
industry. A legion of technically minded teenagers turned their attention to creating
wonderfully abstract light and sound shows. Most importantly, these systems gave
them the means to develop their own fully playable videogames, with recognizable
characters, structured levels, and rudimentary sound samples and effects.

What began as an underground scene soon developed into a bedroom industry.
The combination of a uniquely level and relatively inexpensive technological playing
field, healthy peer competition, growing consumer penetration, and (unlike previous
home entertainment systems that required expensive specialist cartridges) simple
recordable magnetic tape and disc media, a new industry grew almost overnight.

Of course, unlike today where global data transfer is an everyday phenomenon,
thanks to the Internet, back then these often one-man development teams needed to
get their lovingly crafted games to a paying audience through more traditional retail
distribution methods.

And here is where the lines were (and still are) drawn between developer and 
publisher.

858 Part 7 Game Production and the Business of Games



The Developer/Publisher Divide

In the very simplest of terms, where a developer of a game was able to conceive and
subsequently implement their abstract ideas into a piece of accessible software that
was entertaining, exciting, and engaging, the same people rarely possessed the requisite
commercial knowledge or ability to then successfully package, promote, and sell the
title through the retail channels. And so began the complex rights, financing, and
power struggle between creative talent and commercial savvy.

There are many variations on this theme, some of which are discussed later in this
chapter, but as a rule the developer conceives, documents, and prototypes game ideas
to a stage where the creative and commercial merits can be tangibly assessed, at which
point a publisher will be sought to option the right to fund, market, and distribute
the title. The complications begin when it comes to agreeing to the structure of the
deal. How much will the game cost to develop? How long will it take? How many
people are likely to buy it? What percentage of profits will the developer receive? How
much and which kinds of marketing should the publisher commit to?

All these points and many more need to be thought out, discussed, and agreed on
before a game can be added to a release schedule, and even then, issues during devel-
opment can (and do) sometimes mean that even a complete game may not actually
reach the shelves, regardless of the time and money already invested.

One of the most important parts of this chain of events and a starting point for
most is the pitching process, which is the single most important initial factor in 
getting a game from the developers’ collective mind to the hands of the consumer.

In this next section, we look at the different stages of a modern-day game pitch
and the various interactions that take place along the way.

The Pitching Process

With mainstream multiplatform videogame titles now regularly costing upward of
$10 million to develop, and often more than that again to distribute and market,
publishers have to be completely convinced of the ability of a title to perform com-
mercially before committing it to their portfolio. However, with development timescales
now averaging around 18 months (and sometimes several years), and the nebulous
nature of “good gameplay,” it’s extremely difficult to judge these factors at a sufficiently
early stage in a title’s gestation. This is one of the key factors in the ongoing trend for
licensed titles and high-profile sequels.

What this all means is that even before a contract has been signed, there is an
immediate power struggle between the (comparatively) cash-poor developer, who is
unable to sustain the cost of developing a game to completion without the security
and financial incentives of a guaranteed publishing deal, and the risk-averse publisher
who must be careful not to back an unsuccessful title, but who also does not want to
miss out on signing the next potential Grand Theft Auto or Halo super-franchise.

7.3 The Publisher-Developer Relationship 859



These factors have developed over the years into a fairly standardized pitching
process, and an independent development team looking to pitch a new concept to a
publisher would usually be expected to provide the following assets as part of their
presentation:

Game prototype
Pitch presentation
Outline game design
Technical design
Project schedule and budget

Let’s look at each of these in turn.

Game Prototype 

In many respects, the games industry has come full circle. In the early days, publish-
ers were often approached with completed or near complete titles, practically ready to
put on the shelves. As the industry grew, and flush with success and money, a period
of time elapsed where developers and publishers seemed to believe they could do no
wrong, and developers were able to get new ideas commissioned over a game of pool
and a beer with little or no documentation or technology. (This isn’t idle industry
folklore; this author has personally been responsible for at least three such titles!)

Of course, development costs and team sizes have now spiraled dramatically, and
the game prototype has become one of the most important factors in showing proof 
of concept.

The publisher will normally look for the following features in a prototype:

Core gameplay mechanics or key gameplay points of difference
Demonstration of control method/camera system
Demonstration of team proficiency with proposed technology and tools
A good approximation of “final quality” proposed visual styling for at least one
part of the game

Many developers today aim to complete a full working level of the game to give
the best facsimile of how the finished game will look and play. For example, a racing
game would likely include a full track and at least one car to demonstrate the han-
dling, styling, and type of racing, or an action adventure title would have a fully tex-
tured and animated character negotiating a single game level, including the key
control or game features that make it different from other action adventure titles, as
well as some example adversaries displaying rudimentary AI (artificial intelligence).

Larger developers will also often use a separate smaller team to create the proto-
type so that clever shortcuts can be used to produce the necessary results without
affecting the development schedule of the full game.

860 Part 7 Game Production and the Business of Games



Pitch Presentation

The role of the pitch presentation is to deliver a complete yet brief overview of the
critical factors of the game in the most attractive and exciting way possible. Aimed at
the marketing department, this is usually delivered as a PowerPoint presentation and
should contain the following:

Concept overview and genre profile including target market
Concept USPs (unique selling points—what makes it stand out from its 
competitors)
Proposed technology and target platform(s)
Team biographies and heritage
Outline marketing information, including potential licensing opportunities

The developer will also include any marketing-focused visuals such as game logo,
high-detail renders of key characters, and an exciting promotional video, preferably
including early gameplay footage.

Outline Game Design 

The outline game design documentation is much more thorough than the pitch pre-
sentation, and focuses on intimate design detail such as storyline, control dynamics,
camera system, user interface, inventory, and so forth. This documentation is primar-
ily for the core development team to reference their work from, but is often given to the
producers and technical workers at publishers so they can see the substance behind
the glossy prototype.

As well as detailed written descriptions, the game design document will also
include representative diagrams, schematics, and concept visuals to ensure that no
room for misinterpretation of features between the design team and the programmers
and artists who will create the content.

Technical Design

The technical specification appendix is usually broken into two sections; one section
written by the lead programmer who will cover the technical and code-specific aspects
of the concept, with the other section written by the lead artist covering the technical
art and content requirements of the concept. Whereas the design document focus is
very much on the core concept idea and how gameplay and the associated compo-
nents will fit in with the plot or storyline, the technical design will cover the practical
details on how the proposed design will use the various platforms, development tools,
and technologies. 

From the programming side, the content of this document will cover topics such
as AI requirements, special effects, the proposed rendering and animation technology,
any tools or middleware that are going to be used, and what kind of programming
needs and skill sets will be required by the technical team. 

7.3 The Publisher-Developer Relationship 861



There will also be some indication on how version management will be maintained
and what processes and asset management tools will be put into place to achieve this,
as well as backup procedures to ensure that vital assets do not get destroyed as a result
of unforeseen data loss disasters.

The technical design will also be used to outline the structure of the proposed
game systems that are required for the project. At this stage, this information only
needs to be “top level,” but with sufficient detail that a programming schedule could
be ascertained. Taking the time to produce this structure at this stage can also be used
as a heads-up to help identify any requirements that differ from the norm or may
need special skills.

Project Scheduling and Budget

As you would expect, this is the most important element of any modern game pitch.
A developer may have a fantastic and original idea for a game, complete with a killer

prototype, but if the publisher suspects for one second that the development team is
unable to manage the product to strict schedule and budgetary constraints, while main-
taining the originally proposed vision, it’s extremely unlikely the game will get signed.

The publishers’ main aim when viewing this part of the pitch documentation will
be to look for considerable detail and transparent accounting in the proposed budget,
alongside detailed schedule information. Publishers are particularly keen to see that
the budget and schedule will allow for contingency scenarios. They look for these
indicators to ascertain how realistic a concept timeline/budget really is. Often, pub-
lishers will use similar in-house and third-party projects as benchmarks to help vali-
date this, so if a title is considerably more or less expensive than they usually
experience, they will want a good reason as to why that is the case. 

Discrepancies between what the developer has pitched and what the publisher
believes is attainable are often the cause for much negotiation and alteration at this
stage. To try to alleviate such a situation, developers will usually have several sets of
budget figures and schedules that have been specifically tailored to match typical pro-
ject spends and portfolio profiles of the publishers in question. It is also worth men-
tioning again that while the overall cost is obviously important, it’s actually the
developer’s ability to deliver the product to the agreed quality on time that is most
critical, as even small schedule slippages can be enough to cost the publisher dearly.

In this super-competitive market, publishers book advertising space, in-store
point-of-sale, OEM deals, and press coverage months in advance of release. Therefore,
missing the original release slot for a title can have catastrophic consequences, as it
may not be possible to rebook these activities to accompany the new launch date, and
the carefully timed press and PR activities will be wasted as the fickle game-buying
public focuses on the next big launch.

It’s situations like these where already borderline releases may be cancelled, as the
extra costs on top of duplication and distribution simply no longer make commercial
sense.

862 Part 7 Game Production and the Business of Games



The Deal

Once a publisher expresses interest in a product, this is simply the start of the process
and is by no means a guarantee that they will take it on board. It merely shows their
intent to enter into commercial negotiations.

Unlike the early days of video game development where publishers were little
more than duplication and distribution companies, today’s mass-market climate
demands a much more integrated and global operation, and with such significant
budgets and potential market scope, it is crucial that the deal is structured fairly and
leaves no room for interpretation on any aspect of the agreement.

In this section, covering the deal, it is assumed that the publishing agreement is
being signed between a global publisher and an independent developer for a single
product that is not using any existing IP (intellectual property), and that it is to be
developed for one or more of the main gaming platforms. 

The publisher in this instance will be marketing and distributing the product
across all of their applicable territories. A publisher who operates at this level will usu-
ally allocate a much larger marketing budget for the game to maximize awareness and
promotion across all available forms of media, which in turn should be reflected in
the consumer awareness and purchasing of the game, and therefore the gross returns
for both the publisher and the developer. By working with a single global publisher,
the developer can also usually expect streamlined communication, consistent product
marketing and messaging, and clearly defined street dates in each territory. Of course,
the risk here is that if the publisher hits any financial difficulties themselves, there is a
much greater chance of that impacting the developer.

Deal Dynamics 

The following section covers the main considerations and actions at the contract stage
of negotiations.

Research

An often-overlooked part of the deal stage is researching the prospective publishing
partners thoroughly. Many developers are just looking to get a deal signed quickly so
that funding for their project is secured, relying on good faith and lawyers to ensure
that contractual obligations are met. However, research carried out at this stage into
how the publisher runs their business can be invaluable when it comes to the final
negotiations.

The majority of independent developers in today’s climate belong to local,
national, and international bodies and forums such as the IGDA, who encourage com-
munity and information sharing within the development network, as well as working
directly toward a more sustainable environment and business model. Therefore, this is a
great way for developers to find out this kind of information directly from their peers.

7.3 The Publisher-Developer Relationship 863



It doesn’t take much networking to find somebody who is either working with or
has previously worked with any given publisher, and the questions developers should
seek answers for as a minimum include the following:

What type of publishing deal was it (multiterritory, multiplatform, licensed)?
Did the publisher give prompt and accurate invoice payments (milestones)?
Were prompt, detailed, and accurate royalty reports/payments given?
Was marketing and PR support delivered as agreed?
Did the publisher force any unwanted/unnecessary game changes?
Would the developer recommend the publisher?

The other method is to ask the publisher for this information directly. Many
developers won’t do this, as they feel that they are not in the position to make such a
request, and certain publishers will rely on this fact to ensure that the contracts are
drawn up entirely in their favor. Asking for such basic information of any business
partner is essential, regardless of the industry, and should never be skipped.

IP Rights

It was historically often the case with developers’ proprietary ideas that the work done
to build a game world, its characters, and unique gameplay mechanics should remain
the property of the developer. Generally, a publisher is expected to pay an additional
fee and increased royalty to purchase the rights to this IP from a developer, if at all. 

In today’s climate, however, many publishers will no longer sign a publishing
agreement unless they are able to acquire these rights, as they risk spending millions
building a valuable new franchise only for the developer to take it elsewhere. When
this happens and the developer decides to sell the rights to its IP as part of a publish-
ing deal, they need to ensure that they will be the team responsible for developing all
future games based on this IP, or at the very least ensure there is an option that they
will have first refusal if the opportunity arises.

While developers are always adamant that they will never give their IP to a pub-
lisher, it is important to bear in mind that a publishing partner will have more to gain
when they are promoting a franchise in which they have a long-term stake. If this
route is taken, the developer will need to ensure that if the IP is no longer being used
by the publisher, it should revert back to the developer so they can market it to other
potential partners.

Within the agreement, the following areas of IP should be covered and clarified:

Ownership of game name
Trademarking 
Logos
Who owns the Web URL 
Who will run the online presence for the game 

864 Part 7 Game Production and the Business of Games



Unique characters 
Source code including artwork and associated assets
Music (if relevant) 
Any alternative revenue channels such as microtransactions, subscriptions, or 
in-game advertising rights 

The creation and ownership of IP is one of the hardest parts of the negotiation
process, and the publisher will usually want to entirely own the franchise to maintain
their total control over the project. From a developer’s perspective, their IP is the most
valuable asset they have, and where possible they should try to retain the rights or at
least allow for a reversion of rights against some form of payment from the publisher.
In the situation where a developer is selling their entire IP to a publisher, the devel-
oper should always research similar franchises to better estimate the potential “value”
of this IP to the publisher to give them a stronger hand at the negotiating table.

Of course, with new and untested IP, it will take some effort to try to convince a
publisher that it is worth as much as a title already established on the market—
another catch-22 scenario.

Future Products

It’s unlikely that you haven’t noticed the game market becoming flooded with
licenses, sequels, and ports (conversions from a different game platform) of popular
IPs in recent years. This is where publishers expect to capitalize on previous calculated
risks, be it with a new game franchise or the purchase of game rights for a film or
sports license. 

Most publishers expect every project they sign to have potential for extra expo-
sure, and developers need to be aware of this to be able to make good any opportunity
to extend the life of their concept, and therefore its value with a publisher. Being able
to talk to a publishing partner about ideas that a developer has for potential expansion
packs or sequels, even at the pitch stage, will demonstrate to the publisher that the
developer is aware of the way the market works and may even plant the seed for future
projects.

Future Products: Ports

When a publisher decides to port a product to a platform that wasn’t part of the orig-
inal agreement, they may choose not to use the original development team, or
depending on how successful the title is, the original development team may choose
to focus on the sequel or a completely new franchise. Even if this is the case, the orig-
inal developer should always be entitled to some form of royalty payment from the
publisher—if only at a nominal rate. Moreover, while the exact amount of this royalty
may not be stated at the start of a project, if it is included in the contract, it will be
something that can be addressed at a later date should the situation arise. 

7.3 The Publisher-Developer Relationship 865



Future Products: New Franchises

In a situation in which a partnership between a publisher and developer worked well,
it is common that the publisher will want to work with that developer again. 

Although this situation is not guaranteed and may be months or years in the
future, the terms of such a situation will increasingly be laid out in the initial publish-
ing agreement. While there may not be a great deal of information pertaining to such
a situation, the publisher and developer will usually agree to a first right of refusal or
an exclusive “first pitch” period before the developer is allowed to seek an alternate
publishing partner, even for completely new titles.

In the case of one well-known development studio, the publisher asked for first
refusal on any future project that the developer should produce over a five-year
period, and in this instance the developer was paid a rather large one-off sum for this
privilege. This is known as an exclusivity clause, and is becoming increasingly popular
among publishers who have learned expensive lessons from buying up lots of develop-
ment houses in the 1990s.

Future Products: Technology

When a developer is creating proprietary technology for their game, the publisher will
almost certainly want to own the code entirely and have free access to all software
tools for unrestricted use. This allows a publisher to take over development should the
publishing agreement be breached by the developer. Ownership of the tools and core
technology will also allow the publisher to contract with third parties to complete ports
of the original game; for instance, when the original developers are not being used. 

This becomes a largely moot point when developers are using middleware during
production, although any tools that a developer may create to supplement or enhance
the middleware still need to have rights clarified in the agreement to protect both par-
ties from misunderstandings or confusion. This is especially important in the case of
a breach of contract from either side, and can mean the difference between the game
being finished and spending the rest of eternity on a backup tape.

Payment Negotiation

Of course, what every commercial agreement boils down to is money, and video
games are no exception. In terms of pure development cost, the amount paid to devel-
opers varies dramatically. For instance, the current top tier of major global publishers
will generally pay around $12–15 million for a PS3/Xbox 360 game, and around 
$2 million for Wii and PC titles.

Other increasingly popular options include titles specifically made for download
via PSN (PlayStation Network), Xbox Live, and WiiWare, for which budgets of
$500K–$1 million can be expected.

These figures are of course dependent on the individual product, and they may
not take into account any licenses or associated talent, which may significantly drive

866 Part 7 Game Production and the Business of Games



up the development cost of the product. From the outset, it should be clear who is
responsible for payment of these services, and some developers will even insist that
these are accounted for separately from the main project, and paid for directly by the
publisher.

Projected budgets can also rise and fall depending on the technology being used.
For example, developers who use middleware (“off-the-shelf ” third-party technology)
can sometimes receive discounted rates for licensing by going through the publisher
—who may already receive preferential rates by bulk-buying licenses—instead of
approaching the vendor directly. 

As previously mentioned, developers are always recommended to have several 
sets of budgets and even a scalable game design document that is tailored for such 
varied situations, as that will allow them to modify their idea to meet the publisher’s
requirements. However, it always makes sense to pitch initially with a single vision,
only reverting to the other options if necessary.

Deal Structure

Once a budget and schedule are agreed to in principle between a developer and the 
publisher, certain decisions can be made about the type of deal a developer wants to
structure, and this will determine how negotiations proceed. 

For example, if the projected cash flow generated from milestone payments 
during the development period looks strong, and the developer is sure there is enough
contingency throughout the schedule to ensure that the game can be taken to comple-
tion, the developer may decide to concentrate on negotiating a stronger royalty rate
with the publisher. They may also look to secure fixed guarantees and clearly defined
and agreed levels of marketing and PR support. 

If the developer is concerned about the schedule and budget, especially if their
milestones are tightly packed, they may decide to focus their contract negotiations on
securing guaranteed payments at defined stages (on signature of the contract and then
alpha, beta, gold, primary territory launch, subsequent territory launches, etc.). Either
way, developers should always look to secure as much of the overall development cost
in the form of an initial advance payment from the publishers as possible. (More
information on payment definitions later in this chapter.)

Developers also need to consider the prospects and benefits of royalties versus
larger milestone payments. Generally, this equates to the smaller the milestone pay-
ments, the higher the royalties will be (although even this metric only operates within
a certain window). 

Avoiding Contract Breach

What should be at the forefront in all developers’ minds throughout the contract
signing process is that any slippage caused by poor scheduling or lack of contingency
by the developer that is the result of projections agreed upon at this stage (financial or
product feature) will almost always result in a breach of publishing contract. This will

7.3 The Publisher-Developer Relationship 867



more often than not result in the publisher withholding milestone payments until the
project hits the agreed timetable or feature list. It cannot be emphasized enough how
important it is for developers to be realistic about scheduling and budgets rather than
just trying to get a deal signed and worrying about it later, as countless developers
have found out to their detriment in recent years.

Such is the level of publisher control that even when the issues that caused slip-
page or feature reduction are overcome, the publisher may still not pay the developer
the full amount of money owed to them because of the breach. As a result, it is impor-
tant for developers to build in contingency “burn” to their entire budget so that if the
worst should happen, they (hopefully) won’t go out of business. 

While the process may conform to a template, the actual detail of the deal never
will, so having as much data available will allow the developer to enter into negotiations
on a stronger footing. Once the budgetary details have been agreed on, the developer
must then use the agreed information and their own individual scenario to decide the
best payment model to negotiate toward.

Advance Payment against Royalties

An advance royalty payment is usually the agreed royalty rate multiplied against a 
percentage of the total unit guarantee decided on by the publisher via their retail and
distribution channels. Advance royalties will generally fit in around the 60 to 100 
percent mark of the predicted first-year unit guarantee, although not all publishers use
a scientific percentage model. Some development teams aim to recoup most of the
actual development cost or at least six months’ team “burn” at this stage to give them
a comfort zone in which to operate. This up-front payment is used to cover setup
costs and any required preproduction phase.

Guarantees

Guarantees usually come in two forms: a figure that is contractually guaranteed by the
publisher and must be paid for regardless of how well the game actually sells, or a
guarantee that is based on an amount of units sold necessary to maintain exclusivity
with that publisher. If the game fails to sell the units that the publisher has agreed
upon, the developer is free to try to secure a new publishing partner. Option two is
generally the most common guarantee used by a publisher.

Milestones

Milestone payments represent the rate of release for development funding that was
agreed on between the publisher and developer during the contract negotiation stage.
The exact content of each milestone is always agreed on in advance by both the devel-
oper and publisher. It is vitally important that the developer raise any potential issues
at this negotiation stage rather than trying to get a publisher to change a milestone
specification after the initial agreement or when a situation arises, as practically no
publisher will accommodate this kind of action. 

868 Part 7 Game Production and the Business of Games



When a publisher verifies that a milestone has been reached, they will check to
the very letter of the original agreement before releasing any monies to the developer.
A single point missed by the developer can result in payment being withheld until the
point in question is addressed.

The developer will need to keep in mind that a publisher can usually cancel (known
in the industry as “canning”) or suspend a project at any point. The one and only con-
cern of a publisher through the development timeline is to protect their investment—
the game project—so that slippage and features cut through poor scheduling and bad
management will all work against a developer when it comes to milestones. 

Publishers as a rule want the relationship between themselves and the developer
to be profitable, and developers should be transparent on what can and cannot be deliv-
ered at the earliest possible stage so corrective action or rescheduling can take place.

Milestone Payments

In almost all publishing agreements, the milestone payments are viewed as an advance
against royalties, and are recouped out of the profits that would otherwise be payable
to the developer once the game has shipped.

In high-level terms for each $1 million the game costs, you need to sell 100,000
units to break even, so if a product is costing $15 million you need to sell 1.5 million
units. For most developers they have to recoup this development cost before they earn
royalties. After the initial advance sum is paid, the remainder of the development
funding would likely then be divided into equal monthly payments across the pro-
duction cycle, with the final payment being slightly larger than the normal milestone
payments to “encourage” the developer to supply a gold master candidate on time,
and to give the developer a small reserve of money to hopefully see them through
until the next project or further royalties being realized. More established and high-
profile developers are usually able to negotiate faster recoupment rates and therefore
potentially earn more, if their games are good enough.

As already mentioned, developers will also need to have on hand several sets of
figures that will allow them to adjust the schedule to match the milestone payments
so they can meet the requirements of development. These figures need to cover all of
the teams’ salaries and an amount set aside to cover potential areas of risk, and when
the worst happens and the schedule needs to be reworked to take into account an
unforeseen event. 

In addition, it is recommended that a developer have a working document that
keeps track of ongoing project costs. The developer needs to be aware of this “bottom
line” throughout the duration of the project and use the internal document to chart
progress and see what changes need to be made on a daily, weekly, or monthly basis to
remain successfully on target. This document will also be vital for creating the next
budget and schedule for any future projects, and it is much of the reason that estab-
lished teams are generally given precedence over new “startups.”

7.3 The Publisher-Developer Relationship 869



Completion Bonus

Dependent on the publisher, the completion bonus is paid at either the gold master or
when the product ships to its primary launch territory. Most developers will look to
generate one or two months’ “burn” from the completion bonus—this is usually to
keep the developer in business until their next project is signed. 

The completion bonus is still largely looked at as a “potential” bonus rather than
a fixed amount, as there will usually be conditions laid out by the publisher as to
whether the developer is entitled to it. These conditions will usually include hitting all
deadlines, which most importantly would include the street date, early project com-
pletion, and providing the right assets for sales and marketing such as demo materials
and other promotional assets. 

Most developers will try to load the milestone payments across the development
period to cover any potential completion bonus in case they do not meet any criteria
for such a payment.

Royalty Negotiation

Typically, the royalty rates used by publishers are arrived at as a percentage of the
wholesale price of the product. While royalty rates can be up to 70 percent of 
the wholesale price, those levels are only really possible through self-publishing and
digital distribution via platforms like Steam or PlayStation Network. For a retail box
product via a publishing deal, they more often than not sit somewhere between 18 to
25 percent with some of the more established and successful developers seeing up to
35 percent. 

To put this into perspective, a game project that costs $10 million to develop will
need to sell around 1,000,000 units to start generating any kind of royalty for the
developer—the so called “break-even” point—so it is very important that a developer
considers fixed-rate guarantees in place of royalties if they feel that this level of sell-
through may not be realistically achievable for their product. In terms of what this
usually means, in a per-unit situation, a publisher will typically receive $24 for every
unit sold, so the developer usually receives around $4 for every copy sold (past the
break-even point). 

An alternative model is to offer a step-up rate of royalty payments on volume of
units sold. For example, a project that has been signed with an agreed base royalty rate
of 15 percent may increase the royalty to 20 percent if the product sells more than
100,000 units over the break-even point, and then increase again to 25 percent when
the product sells a further 150,000 units past the break-even point. This is a much
fairer way of dealing, as it ensures that the developer shares in any significant or 
unexpected success, such as what happened with the development team behind the
original Tomb Raider game.

870 Part 7 Game Production and the Business of Games



An important aspect of negotiating the correct royalty rate is to have a clear 
definition and understanding of what the publisher considers the wholesale price.
Most developers will start at 35 percent and work down to a royalty rate that is agree-
able to both parties. Some publishers will simply arrive at the wholesale price as the
full retail cost of the product less the costs of materials such as box, disc, manual, and
so forth (this is sometimes referred to as COGS or cost of goods sold), while others
will have very broad definitions and may incorporate deductions such as marketing
spending, promotional costs, and sample/review copies on top of the COGS. Of
course, physical packaging is irrelevant for digitally distributed titles; another reason
for continued momentum in this area. 

As the earlier section on research outlined, it’s important for the developer to
understand the publisher’s individual business to ensure they get the best possible deal
for their game. Many developers will never see a royalty payment due to the way in
which the wholesale price is calculated by their publisher, and since no two publishers
work in quite the same way, it is recommended that the developer clarifies any issues
with a good lawyer or agent before signing the publishing contract. 

Royalty Payment

Most developers will have royalties paid to them in their native currency rather than
in the currency of the publisher. This is not so much an issue for European developers
who largely are now paid royalties in the Euro, but with the majority of Western pub-
lishers based in the United States, exchange rates still often come into play. 

When negotiating, the developer should always make clear what currency is being
referred to for each territory, and if possible, request that royalty payments are made
to the developer in their preferred currency rather than in numerous types of different
currencies from different territories. Another factor to take into account that relates to
Europe in particular is that all video games will be subject to VAT (Value Added Tax)
that ranges from 13–25 percent depending on the country. It should be clear in the
royalty agreement how this is being calculated against the wholesale price, and there-
fore what impact it will have against the royalty the developer will receive.

Contractually, a developer should also ask for the right to audit the financial
records of the publisher to verify that the correct royalty payments are being made. If
the publisher refuses access to these books or upon audit are found to be in breach of
the royalty agreement, they could be open to legal action from the developer.
However, a publisher’s resources are much greater than almost any developer’s, and it
can often be the case that the developer will go bust or be forced to cut their loses
rather than fight royalty rights through the courts. 

Tellingly in recent years, a large number of developers in the UK, Europe, and the
United States have been forced into liquidation due to royalty payment issues with
their publishers.

7.3 The Publisher-Developer Relationship 871



Development Milestones

In this final section, we look at the main stages of the game development process once
full development has begun.

Development Timeline

The development period for a game project varies wildly between companies (and per-
platform), and there is nothing set in stone to dictate how long any specific project
should take to complete. 

Projects can vary in length from 10- to 12-month movie tie-in titles or annual
sports franchise updates, to the “common” 18- to 24-month cycle for an original game. 

Here are some example development periods for different platforms: 

4–6 months for a high-end mobile phone game 
18–24 months for a PlayStation 3 or Xbox 360 game
10–14 months for a film-licensed game or annual sports franchise
12–18 months for a Nintendo Wii game or an original IP PC game

Of course, there are projects that constantly push the boundaries at either end of
the spectrum, such as Valve’s five-year opus, Half Life 2.

Almost all projects share the same milestones described in this chapter, and gen-
erally share the same proportionate amount of time in each stage. Figure 7.3.1 shows
an average timescale of 20 months from the creation of the core concept document
through to duplication.

Alpha Stage

The definition of the alpha stage varies from developer to developer; however, in gen-
eral it usually means that the game’s “functionality” is basically complete. This usually
translates to all of the required features of the design having been implemented, but
not all necessarily working exactly in the desired manner.

872 Part 7 Game Production and the Business of Games

Preproduction - Core Concept Doc 
Full Concept Proposal 

Project Scheduling and Cost 

Proof of Concept 

Alpha Stage 

Beta Stage 

QA  Testing 

Gold Master 

Production and Duplication 
Platform Specific Testing 

Milestone Phase Month 1–3 Month 16–18 Month 4–6 Month 7–9 Month 10–12 Month 13–15 Month 19–21 

Ship D
ate 

FIGURE 7.3.1 Amount of time spent in each milestone phase of game development.



From the start of development to reaching the alpha stage is the longest part of
the development cycle. This is usually where some slippage can occur as features take
longer to implement than planned, or the chosen technology either doesn’t deliver the
necessary requirements or demands more work to bring to the expected state. 

It is during alpha that most gameplay feedback from focus groups (including
QA), the design team, and the publisher can be incorporated without too much of an
impact to the schedule. This is largely due to the core gameplay features not being
totally completed and therefore more open to modification and tweaking. However,
this can also be a double-edged sword and needs to be closely managed by the pro-
ducer to ensure that the project is kept on track and doesn’t start to take on slippage
due to lots of additional (unplanned) features being added to or changed from the
original design specification.

During alpha development, some of the sounds, language localization, music,
and voice talent (if applicable) may still consist of temporary placeholders, with final
content in these areas implemented in the beta stage. However, artwork should be
largely final during this stage with all placeholder graphics removed before beta.

The alpha stage can also be a great sounding board for the design team to validate
gameplay mechanics, and the publisher’s QA department can assist in functionality
testing and feedback. This can help refine control methods and the user interface
ahead of formal bug testing. It is sometimes the case that what looked great on paper
can often prove too difficult or not practical when executed. In addition, ideas that
were written off during the core concept or full proposal stage, which looked too dif-
ficult or unattractive, can suddenly be realized and incorporated due to the technol-
ogy being in place.

It is also at the alpha stage that the world at large will start hearing about the
game in greater detail via magazine and Internet Web sites through “first look” arti-
cles, interviews, and PR by the publisher. 

Quality Assurance—QA

The role and methodology of QA testing varies from company to company; most
developers don’t have full-time “in-house” QA departments and rely on various self-
moderated ways of bug-fixing their own code, often leaving most of the shortfall or
noncritical minor bugs to the QA departments of their publisher to pick up during
the beta stage.

During the beta stage and through to the completion of the project, the game will
be under constant test from the publisher’s QA department (or increasingly by dedi-
cated “professional” test teams at testing service outsourcing companies). Most feed-
back given to the team will come in the form of gameplay flaws, difficulty issues, and
technical bugs relating to graphics, sound, or hardware incompatibility, the latter of
which being particularly important for PC products. 

7.3 The Publisher-Developer Relationship 873



For developers of console products such as the Microsoft Xbox and Sony
PlayStation systems, there will be an additional layer of QA at the platform holder’s
location (sometimes in several different countries) where further guideline or technical
requirement checklist (TRC) testing is carried out to ensure the game adheres to the
various quality control standards that platform holder has put into place. 

The testing procedures for console products are much tighter than developing for
any other platform, since patching is more difficult due to limited online connectiv-
ity, whereas PC developers are often forced to leave minor bugs to fix until after
launch, safe in the knowledge that they can always patch the problem later. This is
often done with an additional download from a support site or specialist online game
sites and magazine cover disks.

The timeline for platform TRC testing varies slightly, but Sony final approval 
(or submission as it’s referred to) takes between four to six weeks to complete, with a 
further two to four weeks added if the game “fails” submission and needs to be
fixed/sent back.

The producer and the publisher’s external producer will act as the buffer between
QA and the development team to ensure they are not flooded with haphazard bug
reports. 

Most companies use bug-tracking programs, automated spreadsheets, or Oracle
database systems to manage and prioritize bug feedback from QA. Key team members
will also have periodic bug update meetings to ensure that fixed bugs are being
removed from the project and the reports from QA are focusing on the immediately
important areas.

Beta Stage

The beta stage effectively occurs when all of the features that were delivered during
the alpha stage are now working and locked down so no core functionality at this
stage is changed. Since all of the proposed gameplay mechanics and technological 
features have been implemented, the testing department is largely spending its time
trying to “break” the game and providing minor gameplay tweaking feedback on areas
such as difficulty settings, scoring or points systems, and so forth. 

During beta, the final sound effects, musical score, voice talent, and localization
are all added and completed, with constant testing and feedback from QA to ensure
that all content is up to the desired standard and in the right places. These tasks are
usually handled during beta simply due to the developers being able to focus more on
content-driven issues over the technical tasks that dominate alpha.

During beta, the press and public will be given more information about the game
in the form of in-depth “hands-on” features, and as the game nears completion, pre-
view reports. 

For PC titles featuring an online component (and even for some console games),
it is becoming increasingly common for developers to release reduced content “beta
test” builds of their game for controlled public testing. This helps with nailing down

874 Part 7 Game Production and the Business of Games



hardware compatibility issues unique to PC titles, and gives the development team
genuine consumer feedback to supplement that provided by QA. Public beta tests can
also help developers see their content in a real-world setting that is impossible to re-
create in all but the largest corporate QA departments. Factors such as stress testing
can be viewed with the appropriate action to fix problems or issues before release.

It is also during beta that games are under the biggest threat of being leaked ille-
gally to the public. Usually, this happens through an internal company leak (e.g., by
unscrupulous freelance QA testers) or through rogue journalists and sometimes even
hardware partners. In most cases, developers and publishers have internal procedures
to help try to prevent this, such as digital watermarking, although there are still numer-
ous unauthorized releases of beta code each and every quarter, often on the highest
profile titles.

Gold Master

The gold master is named after the gold-colored recordable discs originally used to
send final mastering assets to the publisher for mass duplication.

It is at this final development stage for PC titles that copy protection is added,
installation software is integrated, and device drivers can be added to the game. 

Once all of the critical bugs have been removed from the game and all parties are
in agreement that the requirements of the beta definition have been met, the game is
declared a gold candidate and is sent for duplication. 

It is usually at this point that work will be finalized on a specific demo for maga-
zine cover mounts and online distribution, although increasingly teams are building
specific demo content and previews into the original schedule and cost breakdown,
especially in the case of console developers, due to the lead times on magazines.

Production Summary 

Throughout these processes are many regular mini-milestones, as it’s often necessary
for publishers to have some means of ensuring targets are being hit and the project is
moving at the rate indicated in the schedule and on budget, and for the developers it
generally dictates them getting paid. 

These mini-milestones usually happen once a month at most companies with
senior management and key development team members being present. While they
can be annoying to the development team, who largely just want to get on and
develop their game, they are a vital way of making sure that everything is on track.
This ensures that all the components of the team are communicating and any change
in the status of the project is known or problems are highlighted with the appropriate
action taken.

Badly managed projects that have irregular milestone meetings often slip. Slippage
results in budget overspends, so it is vital that development management and the 
publishers or investors involved have a process in place that is adhered to. This pro-
tects the investment and ensures that the game project hits its target and makes retail. 

7.3 The Publisher-Developer Relationship 875



Summary

While few people outside of senior management will ever need to apply the full range
of knowledge given in this chapter, regardless of your chosen game development role
or level you will inevitably be a part of this process in one way or another as it repre-
sents the framework for game development itself. The better your understanding of
the process as a whole, the more effective you can be when operating as part of a team
involved in an occasionally difficult but often hugely rewarding industry. 

It is clear from this chapter that the game development process, particularly pro-
ject funding and the developer/publisher relationship, has evolved considerably dur-
ing the market’s transition from niche hobby to mass-market entertainment industry.
Game prototypes and the pitching process as a whole have become critical and costly
core competencies for developers, and many companies too slow to add business tal-
ent to their creative teams, regardless of their talents, have paid the ultimate price.

However, it is also important to remember that this evolution is still happening.
The more proactive developers are learning to take advantage of this changing cli-
mate, from giving up developing of new IP and focusing on fast, reliable, and cost-
effective work for hire partnerships with publishers developing ports and licenses,
through to the opposite end of the scale working with film-style investment funds,
allowing them to fund development of their new titles through to completion, and
thus retaining ownership rights and maximizing their royalty share. Some analysts
also predict an increasing move to film-style production, where development teams
are assembled specifically for each title according to their respective skills, and this is
already starting to happen on a modest scale.

We are also working in industry that never sits still. With each new hardware 
generation, the average development timescale, budget, and team size can be expected
to increase, putting further pressure on independent developers. However, with the
new handheld consoles and even mobile phones fast approaching the fidelity of 
last-generation console titles, smaller developers will at least have the opportunity to
transfer their relevant and proven skills to these platforms, not to mention burgeoning
online distribution channels such as Steam, Xbox Live, PSN, WiiWare, and DSiWare.

Hopefully, this reinforces the importance of further reading and research
throughout your study and into whichever role you choose to pursue in game devel-
opment. The following exercises will help to give you a more practical understanding
of the topics covered in this chapter.

876 Part 7 Game Production and the Business of Games



Exercises

1. Take either your own game design idea or your current favorite video game
and create a pitch presentation as described earlier in the chapter. If using
an existing video game, use the Internet to find existing promotional assets
such as concept art, screenshots, and gameplay movies to add substance to
your presentation.

2. Using the same game, list the key gameplay features that will need to be
developed for the prototype to convince the publisher of proof of concept.
Remember, the prototype stage must be rapid and cost effective, so don’t get
carried away! Really think about what the game in question does differently
or better that would need to be conveyed in a playable demo. Taking the
aforementioned Halo series, for example, you might list: 
a. The rechargeable shield health system 
b. Dual weapon wielding 
c. Cutting-edge graphics engine details like shaders and bump mapping. 
d. One or two active enemy types 
e. One or two weapon types
f. A single fully detailed area of the environment showing visual styling
g. Some basic animations/physics like running, jumping, firing, and

reloading
3. Taking a development schedule of 18 months and a headcount of 28 people

for a single platform title, use the information in the development mile-
stone section, as well as the rest of this book and the Internet, to split the
team into relevant departments, devise a basic schedule, and calculate an
approximate budget. The Web site www.igda.org is a good place to start
researching average department salaries for the video games industry.

4. Using the information you created in Exercise 3, formulate a chart as shown
in Figure 7.3.1 to show the game development stages as a percentage of
total project time.

7.3 The Publisher-Developer Relationship 877

www.igda.org


This page intentionally left blank 



879

Overview

Game developers have a tremendous number of tools to use to promote their companies
and the video games they create. For one thing, the sheer number of different media
—print, broadcast, and online—allow for marketing at all levels of the spectrum, from
high-budget TV ads to online game site ads. 

Moreover, that doesn’t include the literally thousands of Internet sites that have
been set up by players themselves for further discussion between gamers. These “fan”
sites, offering news and views for the hardcore gamer, offer specialized advice on a cer-
tain current or upcoming platform or title or might drill down to every aspect of play
in a single game.

There are dozens of ways to market games, brands, and even the companies
themselves to obtain maximum visibility for a video game. This chapter explains how
each of these channels works and how they can be leveraged. Being heard above the
noise is difficult, especially with the large number of games launched every year, but
this chapter discusses both traditional and innovative ways that this can be achieved.

Marketing7.4

In This Chapter

Overview
The Publisher’s Marketing Promise
Traditional Advertising 
Retail Advertising
Getting Heard in the Media 
Publicity Opportunities for a Console or PC-Based Game
Contacting the Media
Marketing at Trade Shows
Consumer Media Coverage for Console and PC-Based Games
Generating Press for Casual Games
Online Advertising
Corporate PR: How to Build a Brand for the Company
Summary
Exercises



The Publisher’s Marketing Promise

Before the advent of self-publishing, made possible by the Internet, most marketing
activities were carried out by the publisher. Before a developer signs on with a pub-
lisher, the terms for promoting the game during development and after completion
should be clearly understood by both parties and spelled out in the contract. The
developer and publisher should agree on a list of marketing activities, along with who
is responsible for each activity. While some publishers may not want to guarantee
such activities, it is important for each side to clearly understand what the other party
intends to do to promote the game.

Usually, publishers have “template” programs for their third-party titles. A AAA-
tier title intended for a general audience as well as gamers—a big franchise game like
Harry Potter, for example—might get considerable support: promotion to the con-
sumer media, as well as the game media, including a media tour and perhaps even a
kick-off event at launch is possible. A game considered a B-tier title aimed at true
gamers only might get a very thorough push to the game media, including a mini
media tour, but may not be given much effort to gain consumer media coverage.
Finally, C-tier titles might only have a preview/review program to game writers. 

The following are some questions that should be posed before a development
contract with a publisher is signed.

What PR activities will the publisher perform?
Will the publisher want or need the participation of the developer for interviews,
attending trade shows, and so forth?
Can the developer be mentioned in all of the releases? 
Will the developer be able to view and fact check press releases?
What advertising (magazine, TV commercials, or online advertising) is planned
for the title?
How does the title compare to the other games the publisher will be releasing 
during the same fiscal quarter?
Will the title be grouped with other games or promoted independently? 

These questions will give developers a sense of where they stand and how their
title will be marketed. Even if the publisher doesn’t intend to put much marketing
muscle behind the title, there are many things a developer can do to help promote the
title, as discussed in this chapter.

Traditional Advertising

The video game industry is in the business of selling products. Advertising and promo-
tional campaigns are valuable in attracting customers, albeit expensive. Unfortunately,
only the games that publishers feel are capable of selling in big numbers will warrant
that kind of marketing support. Traditional advertising consists of television commer-
cials, magazine ads, in-store displays, promotion on retail ad flyers, and tie-ins with

880 Part 7 Game Production and the Business of Games



other products that target a similar demographic such as cereal and fast food or pro-
motions with celebrities such as musicians or actors. Recently, advertising is starting
to run on new mediums, such as smart phones, which allows publishers to target their
messages even more tightly. 

With the advent of the Internet, advertising is moving online. Although costs are
rising, Internet advertising is far less expensive than traditional advertising. Publishers
can select sites that offer them a great demographic match for their product and mea-
sure the traffic and “click-throughs” when visitors view their banner ads and decide to
click on the ad to get more information. Publishers promote titles they think gamers
are excited about on their Web sites with banners and sometimes even video. Video
commercials are also posted on sites like YouTube.

Retail Advertising

If a high-profile game targets a particular console, such as the PS3, the console manu-
facturer might be interested in promoting the title as a way to promote their own 
console. These higher profile games are then placed on demo kiosks inside stores. Often,
these kiosks will offer a playable demo or sometimes a movie preview of a hot new
game, depending on what the developer can offer the console maker. With thousands
of kiosks at retail stores, this can be a very effective way to get potential buyers to 
sample a game.

Publishers pay a good deal of money to retailers to ensure that their games are
advertised in the retailer’s circulars and prominently displayed within the store. It is
no accident that particular games are clustered at the ends of aisles, known as end caps.
Another place where high-profile games are featured is in cardboard standup displays,
which also cost additional dollars. Even getting a game to be at eye level on a shelf can
cost more money at many retailers. Other advertising at the retailer can be seen in the
form of posters, cardboard standup promotions, and oversized empty boxes of a
future title.

Getting Heard in the Media 

To maximize visibility for a game, all media and nonmedia categories should be eval-
uated and a plan should be created that promotes the game at the right time.

The enthusiast media consists of several categories: publications that focus on
console games like GamePro, and Game Informer; magazines that cover only PC and
online titles like Maximum PC, PC Gamer, and PC World; online sites catering to the
game fan, such as GameSpot, IGN.com and Adrenaline Vault; and the cable channels
that feature games all the time or in concert with covering hardware and software for
the early adopter: like G4. A few radio shows cover games, such as David Graveline’s
syndicated “Into Tomorrow.” There’s also a radio show on the Online Gaming
Network and both C/Net Radio and CNN Radio have game segments.

7.4 Marketing 881



In addition to mediums run by journalists, PR people can take advantage of
online sites run by gamers themselves. These are often passionate fans who decide to
follow the progress of certain genres of games or even a single game, from the time
development is announced, through the beta period, and even post launch. Groups of
gamers who form “guilds” to play multiplayer games are often quite active in running
online sites once a game has launched.

The enthusiast and “fan” media offer developers and publishers one of the best
ways to develop early interest in a title developed for the so-called “hardcore” or seri-
ous gamer. This process can be started as much as two years before the launch of a
massively multiplayer game or MMO. 

Phone and E-Mail versus Face-to-Face Visits

The quality of a game accounts for about two-thirds of the reason a title is covered.
One-third is based on a PR or marketing person’s knowledge, creativity, and persistence.

E-mail works at first as a contact medium for getting editors and fan site Web
masters interested. News releases can be sent as an e-mail blast. Brief, friendly cover 
e-mails (usually described as “pitch” letters) should accompany them. 

Once a game is pretty far along, it is better to have a face-to-face meeting with
editors to demonstrate the game and let them try it. This involves requesting an
appointment, preparing for the meetings, and then traveling to editor offices, usually
referred to as a “media tour.” Most of the writers for the enthusiast media are in the
San Francisco Bay Area, Los Angeles, or New York. Minneapolis and Richmond,
Vermont, would also be stops for the thorough approach. Unfortunately, it’s pretty
much impossible to visit online “fan” sites because they can be located anywhere in
the world and rarely disclose their home location.

Working with Fan Sites

One of the more interesting ways to create interest in game titles is through the fan
sites. With the growth of the Internet, game fans have found a voice, building their
own sites where endless news, rumor, and discussion rules.

Gamers, in particular, seem to love engaging in discourse about anticipated titles
and discussing every aspect of a published game, down to strategies on how to get past
a tricky level or complete a mission in a game. As a result, thousands of bulletin
boards and Web sites have sprung up where fans can have discussions.

With some searching, title-specific communities or sites focused on a category of
games (e.g., first-person shooters (FPS) or massively multiplayer online role-playing
games (MMORPGs)) can be located. 

The most dedicated fan sites will post stories that most traditional gamer media
wouldn’t consider newsworthy. For instance, patch changes, online server status, com-
petitions, and so forth give marketing people the opportunity for constant visibility.

The fan sites can definitely help spread the buzz, but they can be even more help-
ful when provided with free stuff as payback. For instance, perhaps the developer or

882 Part 7 Game Production and the Business of Games



publisher has produced swag (T-shirts, mouse pads, key chains, posters, or other
branded merchandise or giveaways for the game). These gifts can go a long way
toward generating fan site coverage. Fan site writers do their own reviews, so they will
take beta copies and gold masters (or free subscriptions for a MMORPG). However,
the main media should be served first. If there is enough swag, multiple items, or
other freebies to give away, banners or other promotions for the game can be negoti-
ated in return for these items.

While fan sites are great free advertising, games with particularly dedicated fans
need a dedicated in-house employee to deal with fan questions. FPS titles and
MMORPG games attract fanatical communities whose inquiries and questions need
to be answered.

Publicity Opportunities for a Console or PC-Based Game

PR for a console or PC-based game should start very early and take advantage of each
stage of development. The following information outlines most of the opportunities
to promote a game. 

Announce the product in development: This would be a medium-length press 
release, mentioning the developer (and publisher if known). If the lead designer
is a known entity, he should be mentioned, as well as previous games he has 
designed. The press release should end with a paragraph each for the developer
and the publisher. This paragraph, a general description of the company, should
be well thought out. It’s referred to as the “boilerplate,” because, once developed,
it is used on every release.

Provide early screen shots: Once development is underway, the developer/publisher
team may want to distribute early screen captures to the game media.

Send more screen shots and character art: Once the title is well underway, the 
developer will be able to provide more screens and perhaps character art. It’s 
recommended to create an “Asset Calendar” grid that lists the items that can be
doled out to the media. Everything should not be given to everybody. Select the
best screens and art and offer these on an exclusive basis to the top print books
and sites. Have a group of assets that can be sent to everyone else. The offerings
should be spaced out so the top media is continually receiving new material to
use to publicize the game.

Push “First Looks” when the game is in beta: Alert editors; highlight features of
the game and send them anything they need to see or play the game. It is also
critical to follow up afterward to ensure they are having a good experience. A
technical person might be required to talk them through any problems.

Offer developer Qs and As: Fans are always interested in stories behind the game—
anything particularly interesting or unusual. Several select media outlets should
each be offered an interview on a unique topic.

7.4 Marketing 883



Reviews: Reviews of the game are the bread and butter of the industry. The writers
should be checked in with occasionally to be sure everything is going well.

Tips & tricks: After the title is launched, fans are interested in ways to conquer the
game. Game and fan sites will post tips and tricks, offered exclusively.

Promote any award the game wins: A short, not too commercial release can be 
issued if a game receives a site’s publication or retailer award. These awards
should be distributed to fan sites only. The icon for the award can also be 
posted on the game’s promotional Web site and the developer’s Web site.

Contacting the Media

Most of the visibility achieved for a title will be done through media relations.

Create an Editor Database

A PR agency that specializes in games can be hired or a developer can buy a media
database from Cision or Vocus, the two major industry resources. But either resource
will need to be supplemented by research, because the game industry is quite special-
ized. Lists also need to be updated regularly as editors often change beats, or assign-
ments, and move around between publications. Feature sections are also eliminated or
added. New media start and go away.

Armed with a list of editors, some Internet research should be done on the edi-
tors. It’s important to know who reviews particular genres. Eventually, the editors
should be separated into categories. For example, it’s best to separate the enthusiast
press from consumer editors. It may also be helpful to specify editors by game genre,
traditional media versus fan sites, and so forth. 

News Releases

The standard form for distribution of information to journalists is a news release, which
implies it contains something “new” or “news.” It’s important to know that news is
generally made when it is announced. Therefore, if the “new” information is known
only in-house, it can be planned when to release it (governed only by Security &
Exchange [SEC] regulations if the company is public).

Releases are becoming more and more formatted, consisting of a lead paragraph
of 35 words or less announcing the “news” followed by short paragraphs giving more
detailed information. (This is called the inverted pyramid format.) A quote or two are
usually also included. This is the place—and the only place—for opinion. The rest of
the release should be factual.

Short declarative sentences with active verbs are best. Without journalism train-
ing, it’s best to find a worthy competitor and copy the style of their releases. It’s also
worth picking up a copy of the writing stylebook issued annually by the Associated
Press (AP), because journalism writing calls for capitalizations and abbreviations not
taught in high school.

884 Part 7 Game Production and the Business of Games



It is important to learn journalism style and not be overcommercial. The goal
should be to write such scintillating copy that much of the material is used word for
word. An evaluation of what does happen to previous releases is often a good lesson in
how to improve upon them.

It’s a good idea to space out news, about four to six weeks apart. The most fervent
media will not likely take more news than that, preferring to give other companies a
chance for space in their publication. Fan sites might be an exception, especially when
working on an exceptionally hot property.

Pitch Letters

News releases are usually sent through e-mail and are accompanied by a short cover
letter or a pitch letter that sums up the key points more succinctly. The subject line
should give a hint of the topic to make the editor open the e-mail. Clever is good, as
long as it conveys a brief message; for example, “Harry Potter Title to Include New
Technology” or “Harry Potter Technology Enhances Game Wizardry.”

After a simple salutation, the e-mail should immediately list what differentiates
the title. (Most editors will only read the first paragraph.) For important editors, the
pitches should be personal, perhaps referencing other stories or reviews the editor has
written. Everyone is flattered to know someone has paid attention to his or her work.

The news release should be in plain text within the body of the e-mail. Editors
prefer not to get attachments. Screens and artwork should be offered rather than
attaching them to the e-mail. One option is to use a subject line like, “Hit Reply for
new Harry Potter Screens.”

A follow-up call should be done three or four days after the e-mail is sent to check
that they received it. Only one message (even if several calls have been made) and one
e-mail should be left. If there is no reply, assume the writer is not interested. Be ready
to “pitch” again on the phone, instead of stupidly asking, “Did you get my e-mail?”
Editors get dozens, if not hundreds of e-mail pitches in a day.

If the writer does answer and gives a “No thanks,” it doesn’t help to argue. A bet-
ter answer is the question, “Can you tell me what I need to make our releases more
appealing to you?” Some writers will be kind enough to help determine how to get
their attention in the future. By reading up on the editor before the call, the success
rate can be dramatically improved.

Media Tours

Face-to-face meetings with editors are better for building relationships, so when there
is something really important to impart, it might be worth seeking the budget to
travel. Fortunately, for the games industry, more and more of the key enthusiast press
are located in San Francisco or Los Angeles, which means fewer days on the road,
especially if appointments are scheduled back to back. Generally, about 45 minutes
should be allowed for each meeting. (Restrict the demo to 10 minutes and use the rest

7.4 Marketing 885



of the time to let the press play the game and ask questions.) If the title is not far
enough along, explain that at the beginning. At the conclusion of the meeting, it’s a
good idea to leave behind a PowerPoint presentation giving basic background on the
company. Renting a car is best to move quickly from one office to another.

Reviews

Positive game reviews are, of course, the primary goal of any developer/publisher. It’s
not possible to control what the reviewer thinks, but it helps to direct attention
toward areas of the game that shine.

Reviewer’s guides for a complicated game might be in order. These are designed
to suggest how the writer approaches the review. The guide highlights certain aspects
of the game and suggests how the editor can get more enjoyment out of playing, and
can be useful in avoiding startup confusion if the title is more complicated.

One MMORPG company offers reviewers “virtual tours,” a chance to ride along
with a game master as he gallops invisibly through the game/story line. This is a great
way for new players and reviewers, who don’t have the time to play through the enor-
mously complicated MMORPG genres, to learn more about the title. The writer and
game master (who visits the game frequently all day to monitor play) can be hooked
up over a phone line with the editor following on his or her own PC.

Beyond Reviews: Pitch Feature Stories

This advanced PR technique offers a way to get even more coverage. The idea is to
give the writer a new angle. However, features must be offered on an exclusive basis. A
writer isn’t going to go to much trouble developing a longer piece, only to find that
his or her competitor has the same story. If this occurs, it will burn bridges forever
with that writer.

For the enthusiast press, look at how the title might be advancing the industry or
is part of a trend. For example, when video game companies first started contracting
with Hollywood celebrities to star in their games, the industry rags, and later the con-
sumer media, heavily covered the story. When claymation was first used for games
(and movies), it was covered as much as the titles were. Key questions are: What is
unique about the game or the development of the game? Is there a good “behind the
scenes” angle to the title?

Covers, Ears, and Top Lines

Magazine covers are tough to obtain, and the number of print publications devoted to
games is dwindling; the game has to be a big license or a blockbuster to be considered.
Ears are a better bet if you have a title that editors recognize is advancing the industry
(a brief teaser line on the cover), and, of course, ideas for a bigger feature can be
pitched. For example, is the technology developed for a game going to have an impact
on future titles in its genre? Does the developer “own” a big designer whose comments

886 Part 7 Game Production and the Business of Games



on the future of games would be worth an interview? The key is emphasizing what is
different about a game.

If you really think you have a title worthy of a cover, start pitching your game a
minimum of six to nine months ahead of your launch date. Avoid the October–
December months, since those are the most competitive, if you can. Generate com-
munity following, to demonstrate to the publisher that gamers are likely to buy his
publication if your title is on the cover.

Marketing at Trade Shows

Studios can generate visibility for their games at trade shows for the games industry.
Two important ones are the Game Developers Conference (GDC), held in San
Francisco in March, or the Electronic Entertainment Expo, better known as E3, held
in Los Angeles in a summer month. Media covering games cover both shows. Buyers
from major retailers such as Wal-Mart, Toys “R” Us, and GameStop attend E3.

The best way to promote a game with the editors who attend is to have a booth
or be part of someone else’s. For example, an unknown MMORPG company was able
to manage 125 interviews by hanging off one island in a larger booth one year at E3.
Editors will make appointments to see games they are interested in. Start booking a
full six weeks ahead.

Consumer Media Coverage for Console and PC-Based Games

Consumer magazines, with their long lead times, have to compete with online media
that can have information posted in minutes, so they don’t follow the development
progress of games. They mainly write about games at or after launch and look for a
story that no one else has done. An editor may be intrigued by a broader story on how
a certain title breaks ground or how an interesting feature or technology element is
used in a title, such as speech recognition. Those that cater to the male reader like
Wired (and its online site www.wired.com), Playboy, Rolling Stone, and Maxim do
cover a few big console and PC games, but space for games is limited. 

One of the best strategies for generating consumer press is to pitch an editor on
showcasing several new games in a “round up” within a particular category. For exam-
ple, USA Today might do a roundup on new movie-based games or a story on titles for
kids K–8. Key in on what makes a title different or how it fits into a trend, and then
develop an enticing pitch for a single writer.

In the short-lead space, there is Newsweek, Time, and U.S. News & World Report,
and the larger daily newspapers like The New York Times, USA Today, and the Los
Angeles Times.

Another great way to generate mass audience visibility is by pitching to a reporter
who covers games for a newspaper syndicate like Gannett or Knight Ritter, or better
yet, a wire service like AP or Reuters. If successful, the story will run in dozens or even
hundreds of newspapers all at once.

7.4 Marketing 887

www.wired.com


The key thing for any reporter, but especially for consumer writers, is to empha-
size what differentiates a particular title:

Is it the first title to . . . ?
Is it based on a new engine/technical breakthrough?
Is it a hot franchise?
Does it have celebrity tie-ins: author, actor, voice actors?
Does it have an unusual story line?
Does it launch a great, original character?

In working with consumer editors, long or short lead, always provide great art.
High-quality art makes a huge difference in generating coverage; however, it is better
to provide concept art rather than in-game screenshots. While screenshots accurately
provide a single frame of the game, they generally don’t convey the action, excitement,
or characters very well. The consumer writer might also be interested in pictures of
celebrities involved with the game.

Broadcast coverage is trickier, but well worth the effort because TV provides the
opportunity for mass exposure. As a visual medium, TV also brings a game to life. 

The TV station should be offered B-Roll (professionally shot film footage) of the
development studio, showing people at work and the game in development. In addi-
tion, a few practiced sound bites with the game designer should also be filmed. Make
an articulate spokesperson available for in-studio interviews. Think visual, talking
heads are boring; suggest a prop—a peripheral such as a driving wheel or a flight
jacket representing the military branch in an aviation title.

Ideally, the reporter should get involved in the demo, so it’s critical to prebrief him
on game features. Arrive at the studio early enough to engage him in conversation and
cover the main points of the game. Send ahead to the producer a list of some good ques-
tions that the reporter might want to ask about the game. Find out the reporter’s own
interests and game knowledge in order to mention something of particular interest.

Events: Generating Mixed Media Coverage and Buzz

Events can be expensive; choose the titles to promote, carefully. As an example, an
event staged in New York in Central Park for a Game Boy Advance title starring Bugs
Bunny helped Atari win the PC license for Warner Bros. Looney Tunes titles.

Pick a media capital to generate more attendees. New York is best for consumer
media coverage. San Francisco and Los Angeles have become the centers for the game
press. Alternately, do your event in a small city and send B-Roll to the other markets.

Doing Your Own PR When the Publisher Fails to Deliver

Many developers lament that their publisher, after promises to the contrary, is not
mentioning them in the game’s publicity, or the game is not getting much coverage
because the publisher has other titles considered more important to promote.

888 Part 7 Game Production and the Business of Games



One solution is for developers to hire their own PR agency. The developer can
then offer to have their agency supplement the publisher’s efforts. Since the publisher’s
PR team usually does not have the budget or time to do more than reviews with 
the core enthusiast media, this supplemental PR agency can focus on all of the other
opportunities with peripheral media.

A developer’s PR agency can:

Help expand the editorial contacts made by the publisher’s in-house team at the
time of launch.
Identify weaknesses in the publisher effort and tactfully offer to make some calls to
writers the publisher’s staff does not know or hasn’t been able to interest in the title.
Help edit press materials submitted by the publisher and check to see that the
publisher gives the developer credit for their work in all materials.
Support the publisher for press events. Extra contacts can be added to press lists
used by the publisher, increasing attendance.

Another way to supplement publisher activities is for the developer to contact
editors who decline an event invitation to see if they have time for an appointment
the next day. Unfortunately, some writers rarely attend off-site events. In one exam-
ple, Vicarious Visions, a developer, was able to schedule a full set of interviews within
editor offices the day after a publisher event. That gave Vicarious Visions the full
attention of magazine editors, and it wouldn’t have occurred if the developer relied
solely on the publisher.

Generating Press for Casual Games

With the introduction of free-to-play sites, streaming game services, and most recently,
the Nintendo DS and the Wii game platforms, the market for games has expanded.
Studios now make titles that appeal to consumers who enjoy games but do not want
to play for hours and hours. These consumers do not generally engage with games
during development; they don’t read the game specialty media. They read consumer
magazines and newspapers. They may also be a part of specialized online groups fol-
lowing their special interests. They may even be writing or commenting for online
sites. These consumers are interested in games, but only when the game is finished
and they can buy it.

If a studio is developing games for this consumer, opportunities exist to promote
them, but the PR plan looks quite different. The main effort starts a few months
before launch and focuses on generating sales or downloads quickly.

The best opportunities are usually online. Many consumer print publications have
added game columns. USA Today, for example, has both a column on teen and adult
games and an online columnist that covers only children’s games. Follow the same gen-
eral guidelines about approaching consumer editors as suggested for noncasual games.

7.4 Marketing 889



In addition to generating reviews from game writers, PR people can often identify
niche communities online that might be interested in a particular title. For instance,
mommy bloggers might be interested in children’s games. Food sites and foodie blog-
gers might be interested in an educational game that teaches valuable information
about diet. The benefit of looking to the online media is that many of them include
social networking sections where visitors to the site link to other locations on the
Web, exposing more and more people to your product.

Online Advertising

For most developers, advertising in the major game print or consumer publications is
out of the question, because of the expense. However, running advertising on the
online gamer sites is still relatively inexpensive in terms of how many people can be
reached. One good way to obtain advertising is in “trade,” giving something to the
medium in exchange for the space.

The fan sites are a particularly good place to start. Many of these online sites are
run by game lovers in their spare time. The Webmasters can use any kind of support,
including small fees or even free products they can give away, because it helps them
attract traffic.

Corporate PR: How to Build a Brand for the Company

Once a developer gains some stature in the industry (usually after they’ve completed a
few contracts or sold their first original title), they start to be concerned about build-
ing the reputation of the company. Several sites read by game professionals cater to
company news.

First, there is the media that are concerned specifically with developer topics. 
The lead publication here is Game Developer magazine and its accompanying

online news site, gamasutra.com. If the developer has strong artist skills on staff, they
might also be able to appeal to Computer Graphics World or Animation magazine.

A number of industry newsletters also sprang up in the last few years: GameDaily
and GameDaily BIZ

When a developer is covered in these trade publications, it gets their name out 
in the community. This can help a developer be known as an innovator or as a hot
company. It might also help get partnerships, attract top talent, or be acquired.

Studios can also look for local business journals, who report on companies, espe-
cially if they are hiring.

At the top of the food chain are the business publications: Fortune, Forbes, and
BusinessWeek. These service publications are looking for stories that appeal to top
management. Again, the online sites may offer the best opportunity.

890 Part 7 Game Production and the Business of Games



Positioning Discussion

Before a developer invests money in a corporate PR effort, they must get their 
company positioning or differentiated messages down. This usually involves a full-day
discussion, led by a senior PR professional, designed to help articulate what is unique
about the company and the priorities for moving the reputation of the organization
ahead. In this type of session, the following should be considered:

What is the best way to describe the company? Does everyone on the executive team
use the same words? Is the company described the same way with various audiences? 
Who are the target audiences that the company needs to reach and influence to
move the company ahead? Just publishers? Specific publishers? 
How important is the company’s reputation in the industry? Is it important for
peers to recognize the company’s talents?
Do the company’s audiences associate the reputation of the company with one or
a few individuals? Is this a problem, or something to build on?
Are any other audiences important in building the business of the company?
What differentiates the company’s work from other developers?
Would the target audiences currently associate differentiating factors with the
company?
Where should the company be in five years? Will that require any changes to the
company?
Considering all these things, what are the key messages the company wants to get
across to their target audiences?

PR companies, such as The Bohle Company, typically offer a one-day positioning
meeting that gets everybody thinking and all executives on the same page. A corporate
PR plan can then be structured with these goals in mind.

The following are some tactical corporate activities that might be considered.

Speaking Opportunities

Game developers can raise the visibility of their company through speaking opportu-
nities. Within the developer community, the most prestigious place is the Game
Developers Conference (GDC), where developers and publishers from all over North
America come to the greater San Francisco area usually during the month of March
(www.gdconf.com). Getting a speaking opportunity at GDC requires building a
resume at smaller shows or regional gatherings, like the Austin Game Conference
(www.gameconference.com); Casual Connect (www.casualconnect.com), LOGIN.com,
or one of the Independent Game Conferences run by Game Path events
(www.gamepath.com). Opportunities also exist at the smaller monthly IGDA gather-
ings all over the world (www.igda.org). For exposure to publishers and retail buyers,
the Electronic Entertainment Expo (E3, www.e3expo.com) is also worth pursuing,
but again, making it past selection judges is tougher. 

7.4 Marketing 891

www.gdconf.com
www.gameconference.com
www.casualconnect.com
www.gamepath.com
www.igda.org
www.e3expo.com


The big conferences book a minimum of nine months in advance. Being accepted
is not guaranteed, so a great abstract is key. If the speaker is a respected industry expert
or the developer has put out a recent hit game, a one-hour presentation may be best.
Otherwise, it is advisable to suggest a panel, where a company’s spokesperson would
be one of the participants.

Generating Business Press

While the national business press focuses on large, public companies, opportunities
exist for the small company with a clever way of doing business.

To get the attention of a business reporter, stories must be proposed that have 
a business or economic angle. Reporters need to be told what is different about how a
company operates or what was done to make the company successful that might be
helpful for other small businesses. These stories must also be offered exclusively, since
these magazines are highly competitive. 

Summary

As seen in this chapter, an effective marketing strategy for video games for the serious
gamer is a comprehensive web of getting the right people to see and talk about the
title at the right time. It begins early in the development process by building buzz
with the online game enthusiast sites and amateur fan sites. It then progresses to
playable demos for trade shows, magazines, and other enthusiast media. Meanwhile,
it helps to promote the company and people developing the game by obtaining addi-
tional media coverage in related media. Near completion of the game, the rounds must
be made with editors to obtain magazine publicity and reviews. Finally, traditional media
kicks in with magazine advertising, television advertising, and in-store promotions.
Then, to maintain the momentum once the game is released, fan sites and enthusiast
media must be serviced.

For casual games, much of the effort is delayed until close to launch and then must
be closely cordinated to achieve maximum effect in a few short months. Online visibil-
ity is extremely important and should take into consideration niche communities that
might cover a wide variety of other products for the audience other than games. 

Exercises

1. Pick a high-profile game, like EA Sports’ Madden NFL 09, and search the
Internet for all related press releases distributed by the publisher. For example,
Electronic Arts has a database of its press releases at http://news.ea.com/
portal/site/ea/. For each press release you find, what purpose does it serve?

2. Visit a game retailer and inventory what kinds of game product promotions
are being displayed in the store. What games are stored on the end caps 
and stand-up displays? What posters or other promotional material exist?

892 Part 7 Game Production and the Business of Games

http://news.ea.com/portal/site/ea/
http://news.ea.com/portal/site/ea/


What demo kiosks are there and what demos/movies are available on them?
Given each game platform, what percentage of shelf space does each have?

3. Go to the E3 Web site (http://www.e3expo.com) and obtain the exhibitor
floor plans for the next conference. Based on examining the floor plans and
companies listed, which two halls are the most desirable? Name the top five
companies that probably spent the most money for their space.

4. Pick a high-profile MMORPG game, like Blizzard’s World of Warcraft, and
create a list of Internet fan sites. What percentage of these sites have adver-
tising as well as writer-generated copy? What products are being advertised?
Why?

5. Search for “children’s games” on Google and write down all the different
places you find reports on this topic. 

7.4 Marketing 893

http://www.e3expo.com


This page intentionally left blank 



895

Overview

To the creative, technological, managerial, and financial layers of video game study
add another: the law of intellectual property. Where a player sees seamless on-screen
interactive gameplay, and a developer sees original characters, artwork, backgrounds,
storylines, dialogue, music, and sounds brought to life by software game engines and
tools, a lawyer sees an amalgam of patents, copyrights, publicity rights, moral rights,
trademarks, and trade secrets. To an increasing extent, video game development
choices, and ultimately what appears on the player’s screen, are shaped by the web of
rights and remedies the legal system collects under the heading of intellectual prop-
erty. Intellectual property often is abbreviated IP, and that designation will be used here. 

A working definition of intellectual property is the bundle of rights to the intan-
gible creations and inventions of the human intellect. 

It is useful to think of IP rights as a bundle because it is possible to subdivide rights
based on factors such as use, duration, exclusivity, transferability, and geographic scope.
IP rights have complementary parts: the right to exploit and the right to control

Intellectual Property
Content, Law, and Practice

7.5

In This Chapter

Overview
Categories of IP Protection
The IP Content of Video Games
Patents
Copyrights
Trademarks
Transfers of IP Rights
Trade Secrets
Avoiding IP Infringement
Summary
Exercises
References



exploitation by others. For example, a developer’s right to prevent others from repro-
ducing a game is fundamental to the developer’s right to be compensated for the
assignment of the game IP to a publisher. IP is intangible. IP is not the book or CD,
but rather ownership rights to the written expression contained in the book or audio-
visual recording on the CD. A book and CD can be physically possessed and have a
finite presence. The written expression or audiovisual recording can be perceived
through an expanding array of technology, including the Internet. Consequently, they
can have virtually limitless presence. This combination of factors, the intangible
nature of IP rights and technological advances in IP reproduction and distribution,
present the great challenge to the enforcement of IP rights today. 

The allocation and enforcement of IP rights is governed by national and some-
times local laws, government agencies, and international treaties that pertain to patents,
copyrights, trademarks, and trade secrets. These laws, primarily the IP laws of the
United States, are the focus of this chapter. The emphasis will be on video game IP.
However, the application of these laws extends far wider, to all manner of scientific,
technological, literary, artistic, and commercial creations, discoveries, and inventions.

This chapter is a distillation of what are complex and evolving IP laws and prin-
ciples. It should be noted that the description of particular laws and principles may be
subject to unstated qualifications or omissions. IP laws and principles can and do
change and can vary significantly among different jurisdictions. This chapter does not
constitute legal advice, which should be obtained through consultation with an attor-
ney in the context of specific facts.

Categories of IP Protection

It will be useful to start with an introduction to the principles that govern the major
forms of IP protection and to consider their interrelation.

A patent protects certain novel, useful, and nonobvious inventions having a utili-
tarian function. 

The owner of a United States patent has rights superior to all subsequent inven-
tors, but for a limited term that is currently 20 years. Rights to an invention are not
protected from use by others unless a patent is obtained from the United States Patent
and Trademark Office (USPTO). In exchange for the monopoly IP rights granted to
the patentee during the patent term, the patentee must make a full public disclosure
of the invention in the patent. This disclosure may be freely exploited by anyone once
the patent expires. Patents permeate the hardware technology on which video games
are played. So-called method patents are used to secure a monopoly in particular
forms of gameplay or software functionality, although as later discussed such method
patents are the subject of increasing criticism and judicial limitation.

Unlike the 20-year term of patents, exclusive IP rights to an invention, discovery,
or other confidential and commercially valuable information can be maintained indef-
initely as a trade secret. The owner of a trade secret can preclude others from disclosing
nonpublic information obtained from the owner. However, unlike a patent holder,

896 Part 7 Game Production and the Business of Games



the owner of a trade secret cannot stop independent discovery and use of such infor-
mation. A patent does not protect ideas, only the functional embodiment or imple-
mentation of an idea in a new and useful device or method. A trade secret can be used
to protect the idea itself from use by others. The protection accorded trade secrets is a
matter of federal and individual state laws, the latter of which often are modeled upon
the Uniform Trade Secrets Act. 

A copyright protects creative expression in any fixed medium such as books, film,
CDs, videotape, records, and computer hard drives. As with patents, copyrights do
not protect ideas, only their expression. This limitation applies to so-called scenes a
‘faire—stock literary devices like plots, incidents, scenes, and characters. In the field of
video games, this concept is captured in the term “genre.” It enables such similar
games as Street Fighter, Virtua Fighter, and Mortal Kombat to coexist without copy-
right infringement. Copyright protects against only actual copying; therefore, another
person can claim rights to identical expression so long as it was not copied.
Theoretically, two people working without knowledge of each other could paint the
same picture, write the same software, or take the same photograph. Each could copy-
right their creative work. The concept of copyright “expression” does not include
individual words, names, or titles. Hence, the title of a video game such as Halo can-
not be copyrighted. However, it may be trademarked if it serves to identify the source
of the game to consumers. The duration of a copyright currently is the life of the
author/artist plus seventy years, or a fixed period, as discussed below, for anonymous
or corporate authors. It is not necessary to register a copyright, although important
enforcement benefits are conferred by doing so. Copyright registration is the statutory
responsibility of the United States Library of Congress. 

A trademark or mark is any word, symbol or device that serves to identify the
source or origin of particular goods or services. INSOMNIAC GAMES, GRAND
THEFT AUTO and PLAYSTATION are examples of famous word marks of Insomniac
Games, Inc., Take-Two Interactive Software, Inc., and Sony Computer Entertainment
Inc., respectively. Sega Corporation’s classic “Sonic the Hedgehog” graphic character
design and Nintendo of America Inc.’s equally famous “Mario the Plumber” graphic
character design are examples of widely recognized design trademarks. The white 
and red stylized GAMESTOP lettering is a combined word and design mark of
Gamestop, Inc. The nonfunctional trade dress of a product—the product’s “total
image”—is also capable of serving as a trademark. An example is the case design of the
Microsoft Xbox 360. Unlike a copyright, a trademark can be obtained for a word or
title, as long as the word or title signifies the source of the product or service. For
example, the words “star wars” and “Harry Potter” cannot be copyrighted as the title
of a single book or film, but they can serve as a trademark for a series of books or films
and for merchandise related to the book or film that originates from one source.
Moreover, the creative content of the Star Wars and Harry Potter stories, including the
text or screenplay and such subcomponents as characters, costumes, dialogue, scenes, and
plot, is protectable by copyright. Ownership of a trademark is established by first use.

7.5 Intellectual Property Content, Law, and Practice 897



It is not necessary to register a trademark to secure exclusive rights but, as with a copy-
right, registration confers significant benefits. The USPTO registers trademarks, as do
the individual states. The federal trademark law is known as the Lanham Act. The
duration of a trademark potentially is perpetual. It lasts as long as it is in use to iden-
tify the source of goods or services. A federally registered trademark is renewable every
10 years as long as the mark continues in use in interstate commerce.

The foregoing IP categories are by no means mutually exclusive. Take, for example,
a game controller named the WIGLI with an unusually sculpted design that incorpo-
rates a novel motion sensor. WIGLI serves as a trademark identifying the controller
creator as the seller. The WIGLI creator also may be able to claim copyright protec-
tion in the controller’s shape as a sculpture, apply for a design patent to protect the
ornamental features of the controller, and apply for a utility patent on the motion
sensor invention. Over time, if the public associates the controller’s distinctive design
with the source of the controller, as the public has come to associate the curved shape
of the Coca-Cola glass bottle with cola originating from Coca-Cola Company, then
the controller’s shape could be claimed separately as a trademark. This IP overlap is
well illustrated in the context of video games.

The IP Content of Video Games

The typical video game is protected by an umbrella of patents, copyrights, trade-
marks, and trade secrets that may be owned by different parties. Because copyright
covers creative expression fixed in a tangible medium, it is the most prevalent form of
IP protection in video games. Software in the form of game engines and tools, soft-
ware documentation, artwork, storyline, backgrounds, characters, costumes,
weapons, dialogue, text, sound effects, and music are among the forms of copy-
rightable expression found in games. Copyright ownership originates with the author
or creator. This can be the employee who draws the artwork or an independent con-
tractor who scores the music. Under “work-for-hire” principles later discussed,
employee contributions normally become the property of the employer by operation
of law. Independent contractors generally must assign their rights in a written agree-
ment to the party who commissions the work. Copyrights are subject to transfer by
assignment or license. An assignment conveys all rights to the copyrighted IP. A
license conveys less than all of such rights; for example, the nonexclusive, nontransfer-
able, perpetual right to sell the copyrighted work throughout North America.
Independent developers typically assign rights to those portions of the game that are
experienced by a player to the publisher that funds development of the game. They
grant an irrevocable and nonexclusive license to the publisher for the software that
enables the game to run. The game may be based on a copyright license, such as when
a film, book, or comic is made into a video game.

Patents may apply to the technology embodied in the hardware on which the
game is played, on the media (diskette, CD, cartridge, hard drive) on which the game
is recorded, and on software that enables the game to perform particular functions.

898 Part 7 Game Production and the Business of Games



Hardware patents are owned or licensed by the manufacturer, who also may be the
publisher, in the case of Sony, Microsoft, and Nintendo, and at times also the devel-
oper of the game. Because patents are expensive to acquire and to enforce, they are
rarely sought by independent developers.

Video games also provide a fertile environment for trademarks. The publisher
and developer of the game, often separate parties, may each trademark their business
name as a word mark and may create a design such as fanciful lettering or a graphic as
a further source of their identification. The title of the game may be the separate sub-
ject of trademark protection. If a particular feature of the game also acts as a designa-
tion of the source of the game, it may function as a trademark. As already mentioned,
Sega’s adoption of Sonic the Hedgehog as its corporate mascot, Nintendo’s similar dis-
play of Mario the Plumber, and Sony’s de facto use of Crash Bandicoot as its mascot in
connection with the original PlayStation games, have served as widely recognized
brands of these companies.

Lastly, confidential aspects of the know-how used to program the game, budgets
and financial statements, and the terms of the agreements between the developer and
its publisher, its employees, and its independent contractors, may be secured from use
by others as trade secrets. Prior to the release of a much anticipated game to the pub-
lic, the entire contents of the game may be maintained as a trade secret to build inter-
est and thwart simultaneous-release knockoffs.

Patents

American patent law is based on the United States Constitution and a federal statute,
the Patent Act, as amended. There is no applicable state law. 

Works Protected

Patent law protects inventions and processes (“utility” patents) and ornamental
designs (“design” patents). Section 101 of the U.S. Patent Code provides that inven-
tions and processes protected by utility patents can be “any new and useful process,
machine, manufacture or composition of matter, or any new and useful improvement
thereof. . . .” In general, laws of nature (E=mc2), physical phenomena (tidal motion),
and abstract ideas (perpetual motion), even when they may appear in the form of a
“process,” are not patentable. Responding to the high cost and extended period often
required to secure a utility patent, Congress has authorized an abbreviated process
known as a provisional patent application. A provisional patent application constitutes
an official record the date and content of the invention. It will not result in issuance
of a patent, but it may be converted to a utility application within one year of its
submission.

The issue of patentability, whether an invention relates to patentable subject matter,
is as old as the patent laws themselves. Most recently, there has been much debate
regarding whether patent protection does and should extend to the mere methodology

7.5 Intellectual Property Content, Law, and Practice 899



or concept for accomplishing a particular outcome, when the method or concept is
not itself combined with one of the statutory bases of patentability: process, machine,
manufacture, or composition of matter. The debate has been intensified by the prac-
tice of so-called “patent trolls” who secure broadly phrased method patents without
the intention of putting the technology to use. Rather, they are accused of lying in
wait (like the fairy tale troll under a bridge) for a company to begin practicing the
invention not knowing of the issuance of the patent. To be sure, patent holders see the
matter quite differently. They assert one of the pillars of patent protection is the right
to exclude others or to grant licenses regardless of whether use of the same technology
by others was the result of independent discovery.

In the video game business, patent infringement contests typically revolve around
conventional patent subject matter, namely “machines” such as a game controller,
touch screen, or wireless device. However, that is not always true. Sega of America
sued Fox Interactive, Radical Games, and Electronic Arts for infringement of United
States Patent No. 6,200,138 entitled “Game Display Method, Moving Direction
Indicating Method, Game Apparatus and Drive Simulating Apparatus.” Sega claimed
its patent covers the gameplay in Sega’s Crazy Taxi, in which the player races his taxi
around obstacles and pedestrians and careens through a tortuous road course in an
effort to deliver his passenger as fast as possible. The defendants are the licensor,
developer and publisher of Simpson’s Road Rage, which Sega asserts involves much the
same gameplay. In this case Sega practiced the gameplay itself, so it was not “trolling.”
The defendants asserted that Sega’s patent was invalid and unenforceable because the
gameplay involved was “obvious” and lacking in the required inventiveness. As with
most patent suits, which are extremely costly to prosecute, the parties settled this case
without a determination of either patent validity or infringement. 

Sega is hardly alone in its pursuit of gameplay patents. Among gameplay patents
issued to Nintendo of America Inc. is one which claims a “game system and game
program for providing multi-player gameplay” through separate player screens joined
to a common display. Nintendo recently applied to patent a method of gameplay that
enables players to jump in and out of the game action at will, and without having to
play the game in a prescribed progression. Included in the gameplay patent portfolio
of Sony Computer Entertainment Inc. is one described as “a method for providing
affective characteristics to a computer-generated avatar during gameplay.” Microsoft
Corporation’s gameplay patents include one involving “a secured cross-platform net-
worked multiplayer communication and gameplay.”

The United States Court of Appeals for the Federal Circuit, which is granted
exclusive intermediate appellate jurisdiction in patent cases, is commonly viewed to
have swung open the door to method patents, such as those for gameplay, by its deci-
sion in State Street Bank & Trust Co. v. Signature Financial Group, Inc., decided in
1998 (149 F.3d 1368). However, after grappling to differentiate patent-eligible meth-
ods from the myriad abstract concepts for which patents also were sought, the same
appeals court significantly curtailed the scope of allowable method patents a decade

900 Part 7 Game Production and the Business of Games



later in In re Bilski (545 F.3d 943), presently on appeal to the Supreme Court. Like
State Street, Bilski involved a method applied to business transactions, in this case a
method for hedging risks in commodities trading. State Street determined a process
invention could be patented as long as it involves some practical application and “it
produces a useful, concrete, and tangible result.” Bilski requires more, overruling State
Street’s “useful, concrete, tangible result test” in favor of a standard that the method
either be tied to a particular machine or apparatus, or transform a particular article
into a different state or thing. The Bilski opinion does not declare categorically that
business methods are patent-ineligible, but it fails to make clear the conditions that
would satisfy patentability. Most significantly for the continued efficacy of gameplay
patents, the opinion does not elaborate on the meaning of “particular” machine or
apparatus, leaving this analysis to future decisions. Is it sufficient that a method of
gameplay be implemented by a computer or, more narrowly, a dedicated game con-
sole? In State Street, the business method upheld was enabled by a computer. Yet it is
unclear whether the State Street business method, and others employing computers,
can be patented in the wake of Bilski.

The patent-eligibility of computer software, which is comprised of “mathematical
algorithms,” has been considered settled, a status that is less certain following Bilski. A
mathematical algorithm has never been patentable subject matter to the extent that it
is merely the embodiment of an abstract idea. However, the practical application of a
mathematical algorithm to achieve a useful, concrete, and tangible result is conven-
tionally viewed as patentable subject matter. The Bilski “machine or transformation”
test leaves open whether the implementation of algorithms by a standard computer,
when the outcome engenders a method or process, now is sufficient. Software that
enables a processor to convert data into animated figures on a screen—for example, a
video game engine—arguably is more than a method or process due to its transforma-
tive feature. Hence, it would appear to comprise patentable subject matter under the
alternative “transformation” prong of the Bilski test. But even this is in doubt at pre-
sent. The Bilski decision defines transformation narrowly to mean the conversion of
physical objects or substances, and not mere data. Is data rendered into a screen image
sufficiently tangible under this analysis? Both the courts and Congress are likely to
play a role in the resolution of the many questions left unanswered in Bilski.

It warrants comment that at a time the United States may be narrowing the
patent-eligibility of software, the United Kingdom is embarking on a judicially led
extension of patent protection to computer programs. The laws of other developed
nations fall somewhere between the United States and the United Kingdom. As the
ramifications of the Bilski opinion become known, it may be that the accommodating
American view of software patentability will converge with the more restrictive posi-
tions of other countries.

The Patent Act also provides for design patents. In contrast to utility patents,
design patents cover only nonfunctional aspects of a tangible object, such as the fea-
tures of action figures based on the characters and costumes appearing in a game. 

7.5 Intellectual Property Content, Law, and Practice 901



Standards

To qualify for a utility patent, in addition to patent-eligible subject matter described
in the preceding section, an invention must be (1) new, (2) useful, and (3) nonobvious
to a person of ordinary skill in the art to which the invention pertains. To satisfy nov-
elty, the invention must not have been known or used by others in this country before
the patent applicant invented it, and it also must not have been patented or described
in a printed publication in the U.S. or a foreign country before the applicant invented
it. The utility criterion is easily met. The invention must have some practical use and
not be merely frivolous. Efforts to secure a patent for the ever-illusive perpetual
motion machine fail because they have yet to achieve perpetual motion.

To meet the nonobvious requirement, the invention must be sufficiently different
from existing technology and knowledge so that, at the time the invention is made,
the invention as a whole would not have been obvious to a person having ordinary
skill in that field. The expression “inventive step” is used in other nations such as
Germany and the United Kingdom, and under the European Patent Convention, in
place of “nonobvious;” however, the overall concept is similar. In a landmark ruling 
in 2007 captioned KSR International Co. v. Teleflex Inc. (550 U.S. 398), the United States
Supreme Court tightened the standard of nonobviousness, with the result that inven-
tors now face a higher burden to show patentability. So-called “prior art” in the form
of existing patents, publications, or other teaching, no longer need precisely teach the
specific subject matter of the claimed invention to render it obvious. Moreover, 
the hypothetical “person of ordinary skill in the art” against whom obviousness is
measured is now assumed to have a more common sense and expansive approach to 
solving problems by exploring prior art outside the specific subject area. The KSR
decision and the previously discussed decision in Bilski reflect a retrenchment from
the trend in previous decades favoring the rights of inventors and patent owners.

Both novelty and nonobviousness often pivot on whether the claimed invention
is disclosed in one or a combination of prior art disclosures, such as previously
granted patents. For this reason, a patentability opinion from patent counsel based on
a comprehensive search and analysis of prior patents is commonly the first step to
determine whether to proceed with a patent application.

Procedure

Patent protection is obtained by demonstrating in an application filed with the USPTO
that the claimed invention meets the stringent standards for grant of a patent. Even 
if an invention or process appears to satisfy the requirements of novelty, utility, and
nonobviousness, a patent will not be granted if the invention was patented, described
in a printed publication in the United States or abroad, or in use prior to the applica-
tion date. This is true even if the inventor was unaware of the publication or use.
Pursuant to the “on sale bar,” if the invention is ready for patenting and is in public
use or on sale in the U.S. more than one year before the application date it is ineligible
for patent.

902 Part 7 Game Production and the Business of Games



As of this writing, it is common for a patent application to take more than two years
to be processed by the USPTO. The cost in processing and legal fees for the 
typical software patent exceeds $10,000, and can easily increase to several times that
amount for complicated subject matter. In contrast, the abbreviated provisional patent
application process may cost a quarter to a third as much. The fees for a provisional appli-
cation are also less than a formal application and it is subject to less stringent USPTO
review. There are limitations to a provisional application that should be understood
before it is undertaken. One drawback of a provisional patent application is that the
scope of disclosure cannot be later expanded to claim additional inventive subject matter.

Ownership

In general, the inventor is the owner of the patent. There may be multiple inventors,
each of whom must be identified as a co-inventor on the patent application.
Employee ownership of an invention raises a number of issues. An employee may be
the absolute owner of a patentable invention if the invention occurs outside the scope
of the employee’s employment and on the employee’s own time, and it does not
involve use of the trade secrets, property, or facilities of the employer. A patentable
invention created by an employee within the scope of his or her employment is still
“owned” by the employee for purposes of listing on the patent. However, an employee
may have a legal obligation to transfer complete ownership by assignment to an
employer under patent law’s “hired to invent” doctrine. In the absence of a contract
specifying the respective rights of employer and employee to inventions made by the
employee within the scope of employment, an employee may have a legal obligation
to assign all rights to the employer if the employee was hired for the specific purpose
of creating the invention. In a second category are employees hired for their general
creative or inventive skills, but not specifically to create an invention. Provided the
skills and duties are sufficiently related to the invention, courts have upheld a duty to
assign the invention rights to the employer. In a third category is an employee whose
job duties are unrelated to invention. This employee has no duty to assign rights in
inventions to the employer. Nonetheless, the employer may be entitled to a royalty-
free, nonexclusive, nontransferable license to use the invention if it was created on the
employer’s time and using the employer’s property and facilities. This is commonly
referred to as a “shop right.” In view of the uncertain interpretation a court may give
to particular employment facts, the subject of ownership of employee inventions, as
well as ownership of other forms of IP, should be addressed in a written employment
agreement signed by the employee at the outset of employment. In states such as
California, employers are statutorily limited in the waiver of invention rights they
may demand from employees by contract.

Inventors have used a variety of devices, short of incurring the expense of a formal
patent application, to establish the priority date of their invention. Common are nota-
rized notebooks and diaries. The ineffectual practice of mailing a sealed self-addressed
envelope containing the invention description to obtain the post office date stamp

7.5 Intellectual Property Content, Law, and Practice 903



remains popular. As mentioned, the provisional patent application enables an inven-
tor to claim as the filing date of a subsequently filed formal application the date of the
provisional application provided it properly discloses the subject matter. 

Exclusive Rights 

A patent owner has the right to exclude others from making, using, or selling the
patented invention or design in the United States during the term of the patent. A
person can infringe the patent even if they did not copy the patented invention or
even know about it. A utility patent covers not only the exact invention claimed but
also its functional equivalent that achieves the same result by comparable means. A
design patent covers designs that are substantially similar to the patented design.

Duration

A utility patent is granted for 20 years from the date the patent application is filed.
The previous period was 17 years from the date the application was granted for
patents issued prior to June 8, 1995. There are statutory provisions to extend the
duration of a patent for applications whose approval is delayed by certain USPTO or
Food and Drug Administration (in the case of pharmaceuticals) action. A design
patent is granted for 14 years. Once the patent on an invention expires, anyone is free
to make, use, or sell the invention or design. Moreover, the patent supplies a detailed
description of the invention, facilitating its lawful copying once the patent expires.

Notice

Notice of a patent must be displayed on a product where practicable in order to secure
damages. Patent marking is satisfied by a statement that the product is patented or by
printing the patent number and date on the article or affixed label. There is no official
patent notice symbol as such.

International Patent Law

The oldest and most important international treaty relation to intellectual property is
the International Convention for the Protection of Industrial Property originally
signed in Paris in 1883 (Paris Convention). The Paris Convention covers patents,
industrial designs, trademarks, trade names, and unfair competition. It requires each
signatory nation to protect the IP of foreign nationals to the same extent and under the
same conditions as that nation protects the IP of its own citizens. The Paris Convention
also provides priority rules that enable a filing in one signatory nation to relate back to
an earlier filing in another. The Patent Cooperation Treaty goes further and creates an
international patent filing system under which patents filed in national and certain
regional patent offices may eventually mature into patents in any one or more of the
signatory countries. The European Patent Convention establishes a European Patent
Office as a single place to file patent applications for member countries. 

904 Part 7 Game Production and the Business of Games



Copyrights

American copyright law is based on the United States Constitution and a federal
statute, the Copyright Act of 1976, as amended. There is no applicable state law.

Works Protected

Almost any original expression can be the subject of copyright protection. The
Copyright Act refers to “original works of authorship,” specifically including literary
works; musical works, including any accompanying lyrics; dramatic works, including
any accompanying music; pantomimes and choreographic works; pictorial, graphic,
and sculptural works; sound recordings; and architectural works. Software code is
considered a work of authorship. The subject matter of copyright includes compila-
tions and derivative works. Copyright protects multimedia works such as video games
under the copyright categories of audiovisual works, compilations, or derivative
works, or a combination of these. Original music in a game may be separately pub-
lished and copyrighted as a musical work. Copyright protection extends to the under-
lying computer software which implements a multimedia work, as well as the “look
and feel” of the user interface in a multimedia work. 

Equally significant is what copyright does not protect. The Copyright Act
expressly states: “In no case does copyright protection for an original work of author-
ship extend to any idea, procedure, process, system, method of operation, concept,
principle, or discovery. . . .” The line between an unprotectable idea and copy-
rightable expression can be illusive. In a series of court opinions that emerged from
the development of early arcade games such as Pac-Man, Space Invaders, Asteroids, and
Scramble, the contours of protected expression were identified. General game concepts
such as the maze chase and scoreboard in Pac-Man were ruled unprotectable ideas
open to all to use. The unique Pac-Man features of the gobbler and ghosts and the
sound effects were protectable expression. The protected features were not essential to
a maze chase game and involved sufficient, albeit minimal, creativity to satisfy copyright
statutory requirements.

Titles and names standing alone are not copyrightable. Even renowned titles like
“Star Wars” and “The Wizard of Oz” are not subject to copyright protection. It also is
impossible to copyright facts apart from the original expression of the facts. For exam-
ple, telephone numbers are “facts” that cannot be separately copyrighted. A directory
of telephone numbers arranged alphabetically by customer cannot be copyrighted for
the additional reason that it lacks originality. But a directory listing telephone num-
bers in a novel manner that requires effort to create, perhaps arranged by customer
age, nationality, or type of dwelling, may be granted “thin” copyright protection. The
copyrightable subject matter would be the arrangement of the telephone numbers in
a new way. It would not include the telephone numbers (“facts”) themselves.

7.5 Intellectual Property Content, Law, and Practice 905



Standards

There are two criteria that must be met for copyright protection: originality and “fix-
ation in a tangible form.” The originality threshold is low. The work merely must be
the author’s own work product and not be copied. A federal appeals court has ruled
that the “modicum of creativity” embodied in the classic video game Breakout, in
which players move a “paddle” to hit a “ball” against a “wall” of rows of rectangles,
was sufficient to warrant issuance of copyright registration. 

To satisfy the requirement of fixation there must be a physical embodiment of the
work. The fixation test is met even if images only can be perceived with the aid of a
device, such as a computer or CD. Unfixed works, such as an untaped live broadcast,
are not subject to federal copyright protection. The text of Martin Luther King’s “I
Have a Dream” speech is copyrighted because it was written in advance. His actual
delivery (performance) of the speech is separately copyrighted as a film and separately
as a recording. Had it not been fixed on film, the delivery of the speech could not be
copyrighted. The publications and official speeches of government officials are public
works that cannot be copyrighted. Thus, President Lincoln could not copyright “The
Gettysburg Address.” 

Procedure

If a work meets the minimum requirement of originality and is fixed in a tangible or
perceptible medium, it is automatically the subject of copyright protection. It is no
longer necessary to obtain a copyright registration from the Library of Congress in
order to claim copyright protection. However, suit to enforce the copyright through
injunction and recovery of damages may not be brought until the copyright is regis-
tered. Registration also enables the copyright holder to seek statutory damages in
place of proof of actual damages. The range of such statutory damages is $200 per
work for innocent infringement up to $150,000 per work for willful infringement in
the court’s discretion. If infringement is neither innocent nor willful, a damages range
of no less than $750 nor more than $30,000 for each infringing work is provided as
the court determines is just. Attorney fees and litigation costs may be awarded to the
prevailing party, whether plaintiff or defendant, at the discretion of the court.
Registration requires completion of a copyright registration form along with a small
registration fee and two copies of the work. Criminal penalties are available in cases of
willful infringement brought by the government. It should be noted that software
publishers are banding together to bring enforcement actions against companies large
and small that use their software without valid licenses. A copyright registration may
be filed with the United States Customs Bureau in order to protect against the impor-
tation of illegal copies.

906 Part 7 Game Production and the Business of Games



Ownership

Ownership of copyright initially belongs to the author or authors of the work. The
“author” is generally the individual who created the work, but there is an exception
for works made for hire. The author of a work made for hire is the employer or hiring
party for whom the work is prepared. A work created by an employee within the
scope of his or her employment is a work made for hire. If outside the scope of
employment, the author is the employee unless there is a written agreement giving the
employer rights. For a specially ordered or commissioned work created by an inde-
pendent contractor, the commissioning party is the author only if there is a written
agreement expressly providing and the work falls within one of eight special categories
of commissioned works (e.g., translations, compilations, part of a motion picture or
other audiovisual work). Where there are two or more authors, and in the absence of
a written agreement, each is a joint owner and can use or license the work without the
consent of the other owner provided the use does not destroy the value of the work. 

Exclusive Rights

A copyright owner has five exclusive rights in the copyrighted work: reproduction
right (copy, duplicate, or imitate); modification right; distribution right; public 
performance right; and public display right. A visual artist’s moral right to object to
improper attribution of authorship and to require others to respect the integrity of the
work is recognized in the Visual Artists Rights Act of 1990. Moral rights are given
considerably more prominence in European countries where such rights cannot be
surrendered or sold. Nonvisual artists, including creators of literary, musical, and
audiovisual works, are not covered by this law. They must find protection through
other means such as contract. The fair use of a copyrighted work, including use for
purposes of criticism, comment, news reporting, teaching, scholarship, or research, is
not an infringement of copyright. Fair use can also occur when an existing image,
such as a photograph, is digitally “transformed” into a different work having a differ-
ent audience. The transformation standard continues to evolve. A parody of a copy-
righted work such as portraying children’s cartoon characters engaged in adult
entertainment also does not constitute infringement. What is a fair use or legitimate
parody depends upon a balancing of factors applied to the particular facts of each
case. Another exception to copyright infringement is the so-called first sale doctrine
that terminates the copyright of the author in a specific embodiment of the work,
such as a book, upon the initial sale of the work. The new owner is thereafter free to
use, lend, display or sell the work. The Uniform Computer Information Transactions
Act (UCITA) relating to licensing of computer software significantly limits the first-
sale doctrine by permitting copyright owners to restrict the rights transferred to a
revocable “license” rather than outright sale. It now appears UCITA will be of limited
effect as many more states have indicated opposition to it than the two states
(Maryland and Virginia) that thus far have adopted it.

7.5 Intellectual Property Content, Law, and Practice 907



Electronic publishing rights and the right to share copyrighted works online is
hotly debated and the subject of increasing Congressional and judicial attention. A
common thread in court rulings is that conventional copyright protection is not lost
merely because the medium may be Internet transmission instead of a tangible text or
recording. Congress has attempted to update the Copyright Act to keep pace with
technological advances, most notably with the Digital Millennium Copyright Act
(DMCA) in 1998 and more recently with the Prioritizing Resources and Organization
for Intellectual Property Act (PRO-IP) in 2008. The DMCA makes significant
changes in United States law affecting Internet-related practices and businesses and
bans circumvention of technological measures employed to prevent infringement.
Copyright holders are now focusing on industry-wide development of such techno-
logical measures. Well-publicized lawsuits have been filed to prevent the unauthorized
downloading of music. Sony has brought suits in several countries seeking to stop the
proliferation of so-called “mod chips” enabling console games to be run on unautho-
rized hardware. The PRO-IP Act establishes an “IP Czar” to coordinate United States
efforts to protect American copyright holders domestically and internationally.

Duration

The duration of a copyright depends upon the date the copyright was created because
statutory changes over the years have created differing rules. Under present law, the
copyright term for works created by an individual on or after January 1, 1978, is 
the life of the author plus 70 years. Anonymous works and works made for hire have
a term of 95 years from the date of first publication, or 120 years from the date of its
creation, whichever is sooner. Pre-1978 copyrighted works in their first term of copy-
right under the prior statute are granted a 75-year copyright term from the date of
registration of the work. The current duration periods were upheld recently by the
Supreme Court against the claim that they extended copyrights beyond the constitu-
tionally permissible “limited times.” 

Notice

The use of copyright notice is optional for works distributed after March 1, 1989.
Copyright notice is beneficial to establish willful infringement. It can take any of
these three forms: © followed by a date and owner’s name; “copyright” followed by
date and name; or “copr.” followed by date and name. It is also customary, but not
required, to add such words as “all rights reserved.” 

International Copyright Law

The United States is a member of The Berne Convention for the Protection of Literary
and Artistic Works, an international copyright treaty for the protection of works of
authorship administered by the UN World Intellectual Property Organization (WIPO).

908 Part 7 Game Production and the Business of Games



The Berne Convention is based on principles of national treatment with the result
that copyright registration is done on a country-by-country basis. At present, the
United States is the only treaty member to require copyright registration as a condi-
tion to commencement of an infringement action. Signatory nations to the Berne
Convention agree to uphold the copyright of foreign authors pursuant to their respec-
tive national copyright laws. Nonetheless, enforcement vigor varies considerably among
member nations. The North American Free Trade Agreement (NAFTA) provides
multilateral copyright protections among the United States, Canada and Mexico. 

Trademarks

American trademark law is based upon the common (judge-made) law, the federal
Lanham Act, and various state laws.

Works Protected

Any word, symbol, name, slogan, picture, design, shape, color, sound, or smell that
serves to identify the source or origin of goods or services can be a trademark. There
are actually four types of trademarks. A trademark is a mark (brand, logo) used on
goods (e.g., NINTENDO DS for Nintendo of America’s handheld video game
player). A service mark simply is a mark used in connection with services (e.g.,
GOOGLE as the service mark for an Internet search engine). A certification mark is
used by the owner to certify qualities or characteristics of the goods or services of 
others (e.g., the C/EARLY CHILDHOOD, E/EVERYONE, E10+/EVERYONE
10+, T/TEEN, M/MATURE and AO/ADULTS ONLY game rating logos of the
Entertainment Software Rating Board). A collective membership mark is used by 
the owner to signify membership in a group or organization (e.g., TEAMSTERS for
a labor union). Only trademarks and service marks are considered here, and following
conventional usage, they are referred to collectively as trademarks. 

Standards

The word, name, symbol, or device must be capable of distinguishing the owner’s
goods or services from the goods or services of others. Trademarks are commonly clas-
sified based upon the degree of protection they are accorded. In descending order of
enforcement strength, they are:

Arbitrary or coined: A term that bears no relationship to the product or service and
often has no meaning other than as a designation of source of the product such 
as NAUGHTY DOG, POP CAP, EIDOS, and READY AT DAWN for games,
KODAK for cameras and film, and EXXON for gasoline.

7.5 Intellectual Property Content, Law, and Practice 909



Suggestive: A term that subtly suggests something about the product such as 
ELECTRONIC ARTS, 3D REALMS for games, GAMECUBE and 
PLAYSTATION for game consoles, STAPLES for office supply stores, and 
FEDERAL EXPRESS for national overnight delivery service. 

Descriptive: A term that describes something about the product such as 
RENDERWARE for rendering software, ELECTRONIC ENTERTAINMENT
EXPO for an annual game exposition (E3), VISION CENTER for optical 
clinics and eyeglass stores, and QUIK PRINT for fast printing and duplicating
services. 

Generic: The common name for the kind of product such as Greatest Hits, 
Handheld, and ThreeDee for games, Super Glue for strong and fast bonding
glue, and Lo-cal for reduced-calorie foods and beverages. 

Arbitrary and suggestive marks can perform as a trademark immediately upon
use. A descriptive mark only serves as a trademark after some period of exclusive use
in which the mark acquires a “secondary meaning” in the minds of consumers apart
from its descriptive connotation. It is on this basis that the highly descriptive mark
TV GUIDE qualifies for registration for a television programming publication.
Generic terms can never serve as a trademark, no matter how long in exclusive use. 
An example is the unsuccessful effort by Miller Brewing Co. to register “Lite” as a
trademark for its low-calorie beer. When Microsoft Corporation, owner of the 
WINDOWS mark for a user interface system, sued Lindows.com, owner of the LIN-
DOWS mark for a computer operating system, the defense presented was that “win-
dows” was a generic term for a user interface system at the time of Microsoft’s
adoption and cannot be transformed by use into a trademark. After years of litigation,
Microsoft settled with Lindows.com by payment of a large cash settlement in
exchange for Lindows.com abandonment of its mark. Conversely, a term originally
valid as a trademark can become generic through indiscriminate public use.
Cellophane, nylon, aspirin, thermos, yo-yo, Murphy bed, refrigerator, and escalator
are among examples of once-famous trademarks lost through “genericide,” the trans-
formation of a mark through indiscriminate public use into the common name of a
product or service. XEROX, FEDEX, and FRIGIDAIRE thus far have avoided this
fate through extensive promotional effort. 

Procedure

Trademark rights are created by adoption and use of a distinctive mark or brand. The
most effective trademark protection is obtained by filing a trademark registration
application in the USPTO. Federal law also protects unregistered trademarks, but
such protection is limited to the geographic area in which the mark is actually used.
To qualify for federal protection, the trademark must be used in interstate commerce.
Federal registration is available not only for trademarks in current use in interstate
commerce but also for trademarks whose owners have a bona fide intent-to-use the

910 Part 7 Game Production and the Business of Games



mark at a future date in commerce. Registration will not be granted until the trademark
is in actual use. The current fee for federal registration for each category (class) of
goods or services varies depending upon whether written submission is made by mail
(currently $375) or online (currently $275 or $325 depending on complexity). State
trademark protection exists under common law simply by adoption and use.
Protection is limited to the area of actual use within the state. State statutory registra-
tion is also available.

Ownership

A trademark is owned by the first party to use it in connection with goods or services,
or the first to apply to register it under the federal intent-to-use procedure if the mark
was not previously in use. The American rule of first to use differs from many other
nations in which the principle is first to register.

Exclusive Rights

Trademark law in general, whether federal or state, protects a trademark owner’s com-
mercial identity (goodwill, reputation, and investment in advertising) by giving the
trademark owner the exclusive right to use the trademark in connection with specific
goods or services. Any person who later uses the same or similar trademark in connec-
tion with goods or services in any way that is likely to cause confusion or mistake or
to deceive is an infringer. Similarly, the law provides a right of action for “unfair com-
petition” to protect against a wide variety of deceptive commercial practices causing
product or service confusion, the two most common being false designation of origin
(trademark or trade dress infringement) and false description or representation (false
advertising). The general test for likelihood of confusion is said to be whether an ordi-
nary consumer, exercising due care under the circumstances, is likely to regard a trade-
marked product or service as coming from the same source as the product or service
of the challenged trademark. Among the factors courts will consider in making this
determination are (1) the degree of similarity between the marks in appearance, pro-
nunciation of the words used, meaning, and overall impression; (2) the intent of the
later user in adopting the trademark, including evidence of the intention to trade on
the good will of the earlier user; (3) relatedness of the goods or services; (4) similari-
ties in marketing and channels of distribution; (5) evidence of actual confusion; (6)
public awareness or “fame” of the earlier trademark; and (7) the degree of care likely
to be exercised by purchasers. Application of the test is unavoidably subjective and fact
specific. As just one example, similar pronunciation of differently spelled trademarks
may be a significant factor when the marks are used in connection with goods that are
ordered orally over the counter, such as cigarettes, but may be insignificant when used
on goods sold exclusively through self-service outlets, such as candy sold through
vending machines. A likelihood of confusion standard is applied not only by courts to

7.5 Intellectual Property Content, Law, and Practice 911



determine infringement and unfair competition, but also by the USPTO to deter-
mine whether to grant registration of an application that is found to be similar to an
existing registered mark or a mark for which an earlier application is pending.

In cases of proven infringement, the trademark owner can obtain injunctive relief
and damages against the infringer. If the trademark is not registered, then the geo-
graphic area of exclusivity is the actual area of use and any adjacent area of natural
expansion. A key advantage of federal registration is that it expands the geographic
area to nationwide protection regardless of the area of actual use. State registration
extends the borders of protection statewide. Federal registration also confirms advan-
tages of additional enforcement remedies, including up to three times actual damages
and attorneys’ fees in appropriate cases. A federal trademark registration may be filed
with the Customs Bureau to protect against the importation of misbranded goods.
Congress enacted the AntiCybersquatter Consumer Protection Act in 1999 to afford
protection to the owners of trademarks from the bad-faith registration of the same or
confusingly similar designation as a domain name.

As stated, actions for trademark infringement and unfair competition require
proof of the likelihood of confusion. The Lanham Act was amended by the Federal
Trademark Dilution Act of 1995 to provide a federal right of action for trademark
dilution. Owners of “famous” marks may now sue those who use a mark that “causes
dilution of the distinctive quality of the mark” without the requirement of demon-
strating a likelihood of confusion between the marks. The focus of a dilution action is
not to protect consumers from confusion, but to protect the investment of owners of
famous marks from “blurring” or tarnishment by other businesses. In a recent
Supreme Court decision, the seller of lingerie, adult novelties, and gifts using the
mark VICTOR’S LITTLE SECRET was found not to have diluted the famous 
VICTORIA’S SECRET registered trademark for lingerie. Although consumers might
“mentally associate” VICTOR’S LITTLE SECRET with VICTORIA’S SECRET, in
2003 the Supreme Court held in Mosely v. V Secret Catalogue, Inc. (537 U.S. 418) that
there was no evidence that the owner of the VICTORIA’S SECRET mark had lost
any ability to distinguish its products from those sold by others. In part reacting to
the VICTOR’S LITTLE SECRET opinion, Congress enacted the Trademark
Dilution Revision Act in 2006 to re-emphasize the prohibition of “dilution by blur-
ring or tarnishment of the famous mark regardless of the presence or absence of actual
or likely confusion.” 

Actions for trademark dilution are also provided under state law. The standard to
prove dilution varies from state to state.

Duration

A trademark continues as long as it remains in use. Federal registrations are subject to
renewal every 10 years from the date of issuance. The duration of state trademark 
registrations varies by state.

912 Part 7 Game Production and the Business of Games



Notice

While notice of trademark ownership is not required, it is advisable and aids in the
establishment of willful infringement. Only a trademark for which federal certificate
of registration has issued may use the notice symbol of ®. All other trademarks,
including state-registered trademarks use the superscript letters “TM” for trademarks
and “SM” for service marks. 

International Trademark Law

The United States became a signatory to the Madrid Agreement Concerning the
International Registration of Trademarks (Madrid Protocol) on November 2, 2003,
becoming the 59th member country. The Madrid Protocol promises to effect a major
change in the feasibility of international registrations for American trademark owners.
Briefly, the owner of an application or registration in the USPTO can submit one
international application to the USPTO. The application permits the designation of
the Madrid Protocol member nations to which it will apply. The USPTO reviews the
international application for compliance and then forwards it to the International
Bureau of WIPO (World Intellectual Property Organization), a United Nations
agency. After resolving any deficiencies, WIPO issued an International Registration
with a registration date and number. WIPO then forwards the International
Registration and “extension applications” to the trademark office in each of the
nations designated by the applicant. The extension application is subject to examina-
tion in each country designated. If no refusal is issued within a stated period the
trademark is automatically registered in that member country. Besides permitting one
filing in the home country, streamlined procedure, and lower filing fees, the Madrid
Protocol provides for a uniform 10-year renewal cycle. For transnational products
such as video games that are often localized for North American European and Asian
markets, the ratification of the Madrid Protocol by the United States is a major
advance. In addition to the Madrid Protocol, the Paris Convention has long provided
for reciprocal treatment of trademarks and priority filing dates among signatory coun-
tries, including the United States. However, it is necessary to apply for trademark 
registration in each such country in which the trademark is in use at a typical cost of
several thousand dollars for each country. As a general proposition, a single trademark
application can be submitted to the European Union and, if approved, is effective
within EU members. The North American Free Trade Agreement (NAFTA) provides
multilateral trademark protections among the United States, Canada and Mexico. 

Trade Secrets

Trade secret law is governed by the individual states. A growing number of states have
enacted versions of the Uniform Trade Secrets Act.

7.5 Intellectual Property Content, Law, and Practice 913



Works Protected

The Uniform Trade Secrets Act (UTSA) defines “trade secret” as:

information, including but not limited to, a formula, pattern, compilation, 
program, device, method, technique, or process, that:

1. derives independent economic value, actual or potential, from not being
generally known to, and not being readily ascertainable by proper means by,
other persons who can obtain economic value from its disclosure or use, and

2. is the subject of efforts that are reasonable under the circumstances to 
maintain its secrecy. 

The few states that have not adopted the UTSA commonly apply the definition
appearing in the Restatement of Torts:

A trade secret may consist of any formula, pattern, device, or compilation of
information which is used in one’s business, and which gives him an opportunity to
obtain an advantage over competitors who do not know or use it. It may be a formula
for a chemical compound, a process of manufacturing, treating or preserving materi-
als, a pattern for a machine, or other device, or a list of customers. 

Standards

Under the UTSA definition, economically valuable information in any format can be
a trade secret. Unlike copyright, there is no requirement that information exist in
some “fixed” form in order to be a protectable trade secret. Nor does the trade secret
have to be novel, original, or creative. Instead of novel, the information must be secret.
Secrecy is the determinant in most cases; commercial value is a minimal requirement.
Most clearly, information generally known to the public is not entitled to trade secret
protection. The general business experience, memory, and skill that inure to an indi-
vidual over the course of employment also cannot be claimed as a trade secret. Employees
who acquire such knowledge in the course of their work for a game company typically
are free to use the experience when they leave. Matters which are completely disclosed
by the nature of the goods or services are not deemed to be secret if determinable
upon inspection. Customer lists present a special case. They are likely to constitute
trade secrets in situations in which the trade secret owner can demonstrate that cus-
tomers are not generally known and that the customer list is not one that may be
compiled easily from a telephone directory, trade association member list, or other
readily available public documents. 

The owner of a trade secret may disclose it to others, so long as disclosure is
accompanied by an enforceable pledge of secrecy. The secrecy test has two prongs: (1)
whether the information is generally known or available; and (2) whether the trade
secret owner takes affirmative steps to safeguard the confidentiality of the information.

914 Part 7 Game Production and the Business of Games



Companies utilizing trade secret protection should adopt a trade secret protection
plan; put the secrecy policy in writing and have it acknowledged by all employees;
clearly identify the information as secret; and provide for secure storage and restricted
access. Transmission of unencrypted trade secrets over the Internet presents particular
risks of interception or misdirection and should be avoided. 

Procedure

There is no registry or other direct government regulation of trade secret information.

Ownership

An employer or hiring party generally owns trade secrets developed by employees and
by independent contractors who are hired to invent or create such information.
Explicit language protecting the employer’s trade secrets in employment contracts is
highly recommended. Disclosure of confidential information to third parties as may
be required in making a presentation can be secured by a nondisclosure agreement
(NDA) that protects defined confidential and trade secret information from unautho-
rized disclosure and use by the other party. 

Exclusive Rights

The UTSA protects trade secrets from “misappropriation.” Misappropriation is defined
in the Act to cover situations in which the information is knowingly acquired, dis-
closed, or used by improper means. “Improper means” is not defined in the UTSA,
but would include acting without the consent of the trade secret owner and using the
information in a manner adverse to the interests of the owner. Suits alleging misappro-
priation under the UTSA must be brought by the trade secret owner within three years of
actual discovery or of an obligation to know due to surrounding circumstances.

Duration

A trade secret lasts as long as it meets the definitional test. The UTSA provides a
three-year statute of limitations in which to sue for misappropriation.

Notice

There is no notice practice in view of the secret nature of the trade secret. Internal
procedures within an organization to assure maintenance of trade secret treatment are
advisable by stamping documents and restricting access.

International Trade Secret Law

There are no multinational treaties or agreements specifically pertaining to trade
secret law.

7.5 Intellectual Property Content, Law, and Practice 915



Transfers of IP Rights

The value inherent in IP is realized by the ability to transfer a portion or all of the IP
rights to others. A publisher contracting with an independent developer wants to own
the developer’s game IP free of the claims of others so that it might be sold to end
users. The developer not only must convey title to the IP, but also must represent that
the IP does not infringe the patents, copyrights, trademarks, and trade secrets of oth-
ers. Developer employees or independent contractors may assert IP claims based on
their contributions to the game. The developer must capture these rights through
employment or contractor agreements in order to solidify its own rights and to satisfy
the publisher’s demand for complete IP ownership. This transfer of rights by employ-
ees and contractors to the developer is an implicit part of their compensation, absent
which they are unlikely to be hired. If the game embodies third-party IP such as soft-
ware, characters, story or music, the developer or publisher must secure licenses or
releases to these. The third parties realize the value of their IP by granting such rights
in exchange for commissions, royalties, or fees.

The owner of IP has the right to transfer all rights by assignment, or a portion of
the rights by license. The rights may be placed in the public domain, either intention-
ally, through IP misuse or neglect, or as the result of expiration of a registration. Or
the owner may elect to make no use of the IP rights and to prohibit others from use.
It has been charged that some patents are procured not to protect the owner’s use but
to prevent use of the invention by competitors.

There are three issues to be resolved in evaluating the transfer of IP rights: identi-
fication of the owner, the nature of the rights transferred, and the form of the transfer. 

The law presumes that the person who creates the IP is the owner. Because 
multiple parties can contribute to the creation of IP, as is the norm in video game
development, it is necessary to analyze who has made a contribution and what they
have contributed. In the case of a popular song, for example, the composer, lyricist,
vocalist, and the musicians may be different people, all of whom may claim some 
portion of the bundle of rights in the song. The composer and lyricist do not have
rights to the performance of the vocalist and musicians unless they contract for 
those rights. Conversely, the performers do not own the music and lyrics. Moreover,
one or more of these parties may have assigned or licensed their rights to others.
Tracking down all of the rights holders can be an arduous task, particularly if a large
number of owners is involved and considerable time has elapsed. As the purchaser of
IP created by others, the game creator must be in a position to assess ownership rights
and assure that all necessary rights are being transferred.

An assignment is the contractual device used to irrevocably transfer all rights in
particular IP. Any transfer of less than all rights is deemed a license. A licensor, the
person granting the license, retains one or more rights to the IP such as the right to
license others or to use the IP itself, to approve quality, to limit quantity, to restrict
geographic area, to collect royalties, or to reacquire the rights at license termination.

916 Part 7 Game Production and the Business of Games



In most instances, an assignment is not enforceable unless in writing. In the case of
patents, copyrights, and trademarks, all of which are listed in government registries,
an assignment can be submitted to the relevant government agency for recordation. A
recorded assignment serves as notice to future purchasers that ownership rights have
been transferred. 

Most transfers of IP rights take the form of a written agreement. In some employ-
ment contexts, IP rights may transfer by operation of law. This is true of the limited
shop rights acquired by an employer in an employee’s patentable invention and the
copyright acquired by an employer in the work-for-hire of its employees. IP rights
also are capable of transfer by inheritance where the right is owned by an individual.
Inheritance has an important place in copyright transfers. For example, the period of
statutory copyright protection for works created after 1978 extends 70 years beyond
the life of the individual author or artist. This requires particular diligence when
undertaking to identify ownership of a longstanding copyright. IP rights may be
transferred from private control to the public domain by the owner’s intention, inat-
tention, or mistake. There are many opportunities for this to occur such as the failure
to file a patent application before the end of the on-sale period, failure to enforce a
trademark against infringing users, failure to maintain the confidentiality of trade secret
information, and failure to secure copyright ownership in publisher or employment
contracts. The services of an attorney skilled in IP law is a necessary adjunct to IP
ownership to avoid just these and many other pitfalls.

Avoiding IP Infringement

The vast amount of IP that is created makes it inevitable that rights of two or more
creators will overlap. Anyone who has sought to name a company or game, secure a
domain name, or create original characters, stories, or gameplay has experienced the
frustration of discovering someone has gotten there first. Even worse is investing sub-
stantial effort and funds to create IP only to learn, after the fact, and perhaps in the
form of a complaint seeking significant damages, that what was thought to be original
in fact clearly infringes another person’s patent, copyright, trademark, or trade secret.
This revelation is all too common in the game industry and elsewhere in the enter-
tainment and technology fields. With a contested patent infringement lawsuit costing
each side a million dollars in legal fees alone, it is a risk that must be avoided. With
some effort, it can.

By their nature, trademarks are the most visible form of IP; trade secrets are the
least. The Internet now provides a means to search federal trademark registrations and
applications through the official USPTO Web site (uspto.gov). Microsoft would have
been better served if it had understood in advance that its proposed title Mythica 
for a multiplayer online role playing game (MMO) was too similar to the registered
trademark MYTHIC ENTERTAINMENT. Mythic Entertainment, now a subsidiary
of Electronic Arts, previously had developed the MMO Dark Age of Camelot.

7.5 Intellectual Property Content, Law, and Practice 917



Microsoft settled a trademark infringement lawsuit brought by Mythic Entertainment
and ultimately abandoned its MMO. Domain name registries are also searchable.
Many game companies maintain Web sites or can be located through Internet search
engines. Commercial services are available that will conduct searches of proprietary and
public trademark, business name, and domain name databases for a fee. Consequently,
before adopting a trademark, it is both possible and prudent to determine whether
the same or a similar mark is in use in connection with substantially the same goods
or services. To illustrate, adopting the trademark “Hims” for a strategy game in which
male characters interact in daily “guy” activities would produce legal howls from Electronic
Arts, owner of the registered trademark THE SIMS for a strategy game. Intentional
infringement carries enhanced penalties. In instances in which the trademark similar-
ities are not free of doubt, an attorney familiar with trademark practice should be 
consulted. Attorney clearance may avoid exposure to damages ties to willful violation.

Trade secrets cannot be researched, but infringement occurs in rather predictable
contexts. Recall that trade secrets are only violated if they are misappropriated.
Independent knowledge from an untainted source is a complete defense. Workers can
be the knowing or unwitting transmitters of infected trade secrets when they change
employers. The new employer should take measures to block the use of trade secrets
previously acquired by the employee by written policy and contract. In many cases of
misappropriation that find their way to court, an employee has been hired precisely
because of the valuable trade secrets acquired from a rival company. The new
employer will be hard pressed to mount a defense. Publishers and developers face a
different side of this issue. To begin a game, the developer must pitch confidential
concepts and ideas. The developer wants all of this information, as broadly construed
as possible, to be treated as trade secrets. The publisher wants to hear the pitch, but
does not want to be prevented from considering similar concepts and ideas from oth-
ers if a deal is not struck. A well-drafted nondisclosure agreement (NDA) is the solu-
tion, but the parties may struggle with the scope of protected information and the
publisher’s permitted uses. Publishers commonly have the greater leverage in negotiat-
ing an NDA. Developers may be put to the choice of complete protection by making
no disclosure, and therefore no deal, or taking their chances by disclosing their cre-
ative ideas with less than perfect safeguards.

Copyrights, like trademarks, are searchable in a government registry. In this case,
it is maintained by the Library of Congress (loc.gov). The dilemma presented by
copyright infringement analysis is that the accused infringer is only liable if there is
copying of a commercially significant portion of a copyrighted work. Ignorance,
while not bliss, may be a perfectly effective defense. Conversely, knowing infringe-
ment of a copyrighted work subjects the infringer to substantial enhanced penalties
and costs if prosecuted. In cases in which a copyrighted work “influenced” or is the
“inspiration” for a new work, it is important to avoid copying material portions of the
prior work and prudent to avoid any duplication. What was plagiarism in high school
can be an expensive copyright lawsuit in game development. If a prior copyrighted

918 Part 7 Game Production and the Business of Games



work is the known basis for a new work, and a license or other permission is not
sought, the author or artist must either assure that the new work will be viewed as an
original creation, or that it satisfies the fair use or parody exceptions to copyright
enforcement, or that relies upon those portions of the prior work that constitute
uncopyrightable ideas or scenes a ‘faire. The statutory penalties imposed for copyright
infringement are sufficiently severe to render any degree of copying of a protected
work foolhardy. Recently, Robert Crais, author of the best-selling crime novel L.A.
Requiem, sued Activision after the lead designer of its best-selling game True Crime:
Streets of L.A. volunteered that he was “inspired” by Mr. Crais’ book.

Like copyrights and trademarks, the federal government maintains a registry of
searchable patents (uspto.gov). Other Web sites, most notably the database main-
tained by Google (google.com/patents) and IBM (patent.womplex.ibm.com), contain
useful patent search capabilities and resources. Also, like copyrights and trademarks,
knowing infringement of a patent subjects the infringer to enhanced damages. But
unlike copyright, the absence of copying is not a defense to infringement of patented
subject matter. This raises the dilemma of whether to conduct a search of prior
patents to determine if the proposed invention is the subject of existing patents. One
school of thought counsels against a search to avoid a later charge of willfulness if a
patent is discovered and then ignored. The other school of thought advises conduct-
ing a search to understand what patents may present a problem and to work around
them. In fact, general knowledge obtained from patents may facilitate the invention
effort. Overlaying these conflicting approaches is the fact that patent infringement
searches are difficult to properly conduct and may be inconclusive in outcome. An
opinion from patent counsel that an invention does not infringe prior art patents may
be used to counter a charge of willfulness in a later lawsuit, but such opinions can cost
thousands of dollars depending on the complexity of the subject matter. Moreover, to
a greater degree than copyrights and trademarks, patents are subject to challenge. In
the case of method patents, a substantial number fail to be upheld by courts. As with
the other fields of IP law, sensitivity to the possibility of infringement is essential.
Caution in avoiding the more obvious opportunities for infringement is crucial to the
successful development of video games. 

Summary 

As multimedia combinations of the creative and inventive efforts of diverse contribu-
tors, video games are a case study in the nature and scope of intellectual property.
Games are entertainment. But they would not be made, especially at the huge budgets
required, were it not for the fact that IP ownership can be acquired and enforced,
rights can be transferred, and value can be received. The impact of effective IP laws
can be seen in the state of technological development in countries that honor IP rights
and those that do not. It is not happenstance that the strongest world markets for
video game creation and sales are North America, Europe/Australia, and Japan, all
nations with a long tradition of IP rights registration and enforcement. 

7.5 Intellectual Property Content, Law, and Practice 919



Exercises

1. A game developer has an idea for a first-person shooter (FPS) game that he
believes involves original gang member characters. The title for the game,
the names and appearance of the lead characters, a preliminary design 
document sketching the plot and the first few levels, and several screens of
computer artwork have been created. The developer is concerned about
protecting the ownership of his ideas, only some of which are embodied
in his documents and artwork, when he makes presentations to potential 
publishers. What protections are available to the developer under IP law?

2. The FPS game in Question 1 is set in a fictional American city that has 
skyscrapers, apartment buildings, public parks, a subway system, taxicabs,
and other big city features. Another very popular FPS game involving gang
members has as its setting a fictional American city with highly similar sky-
scrapers, apartment buildings, public parks, subway systems, and taxicabs.
Is it permissible for the developer to include in its FPS game similar big city
features as are present in the existing FPS games? 

3. The developer in Question 1 has now obtained a contract from a publisher.
In the contract, the developer assigns “all of his intellectual property rights
to the game” to the publisher. Because the developer is the creator of the game,
can the developer later sell the film rights to the game to a film producer?

4. The developer in Question 1 is about to hire his first employee. What IP
rights belonging to the employee should the developer secure in the
employment contract?

5. Immediately after the release of the game, the developer in Question 1
receives a letter claiming the RPG gameplay infringes the patent of the 
letter writer. On what grounds may the developer challenge the validity of
the patent?

6. When the game is released, the developer in Question 1 notices that there 
is no mention of the developer on the box; only the publisher’s name and
logo appear. The publishing agreement is silent on the matter of developer
credits. Does the developer have the right to be listed on the box?

7. Search the patent database (uspto.gov) for the title “Sanity System for Video
Game,” which is currently in the “Published Applications” database. Read
the full application and determine the game and company to which it
applies. (Hint: use pertinent keywords in google.com, use mobygames.com
to locate games people worked on, and/or use gamespot.com to track down
reviews.)

8. Search the federal trademark database (uspto.gov) for the game title “Dead
Ringer.” Is Dead Ringer available for use as a video game title based on your
search? What additional searches could you undertake before determining
the availability of Dead Ringer for use as a game title?

920 Part 7 Game Production and the Business of Games



References

[ALI95] Restatement of the Law Third: Unfair Competition, American Law
Institute, ALI, 1995.

[CopyrightAct76] Copyright Act of 1976, as amended, 17 U.S.C. §§ 101–810,
1001–1010; 1101; 1201–1205; 1301–1332 [United States].

[Hirtle04] Hirtle, Peter B., Copyright Term and the Public Domain In the United
States, available online at www.copyright.cornell.edu/training/
Hirtle_Public_Domain.htm.

[IGDA03a] Contract Walk-Through, Business Committee, International Game
Developers’ Association, 2003, available online at www.igda.org/biz/
contract_walkthrough.php.

[IGDA03b] Game Submission Guide, Business Committee, International Game
Developers’ Association, 1st ed., 2003, available online at www.igda.org/biz/
submission_guide.php.

[IGDA03c] White Paper, Intellectual Property Rights Committee, International
Game Developers’ Association, Final Draft, 2003, available online at
www.igda.org/biz/ipr_paper.php.

[PatentAct] Patent Act, as amended, 35 U.S.C. §§ 1–136 [United States].
[TrademarkAct46] Trademark Act of 1946 (“Lanham Act”), as amended, 15 U.S.C.

§§ 1–46 [United States].
[ULC85] Uniform Trade Secrets Act, Uniform Conference of Commissioners on

Uniform State Laws, www.nccusl.org (Final Acts and Legislation).

7.5 Intellectual Property Content, Law, and Practice 921

www.copyright.cornell.edu/training/Hirtle_Public_Domain.htm
www.copyright.cornell.edu/training/Hirtle_Public_Domain.htm
www.igda.org/biz/contract_walkthrough.php
www.igda.org/biz/contract_walkthrough.php
www.igda.org/biz/submission_guide.php
www.igda.org/biz/submission_guide.php
www.igda.org/biz/ipr_paper.php
www.nccusl.org


This page intentionally left blank 



923

Overview

Video games have passed many mileposts on their path to becoming a financial and
cultural powerhouse of the entertainment industry. Somewhere between Pong and the
latest console game, technology and creativity combined to enable games to reach a
level of realism and expressiveness that is as immersive and as popular as the books,
plays, motion pictures, and television that came before. Just when this milestone was
reached is hard to pinpoint. Arcade games no doubt led the way, but increasingly
powerful PCs beginning in the early 1980s, followed by game consoles later in the
decade, established video games as an engaging interactive medium for character 
portrayal and storytelling. 

By the early 1990s, Nintendo and Sega were battling for the mass market with
games featuring cute and cuddly Mario and Sonic. The medium was now in place,
soon to be followed by efforts to control it. In 1993, the realism and gore of Mortal
Kombat made it an overnight sensation. It and a then-obscure PC game featuring
vampires and scantily-clad women called Night Trap, were sensationalized by those
enduring elements in society dedicated to rooting out what, by their lights, was offen-
sive, indecent, obscene, degenerate, sacrilegious, and subversive expression. The battle
over video game content had begun. 

Content Regulation7.6

In This Chapter

Overview
A Brief History of Censorship in America
Congress Takes a First Look at Video Games
The Advent of Industry Self-Regulation
Criticism of the ESRB Rating Program
Video Game Content Regulation in the Courts
Content Regulation in Other Countries
Summary 
Exercises
References



A Brief History of Censorship in America

Video games are only the latest medium of expression to be subject to public outcries
for regulation, if not outright censorship. The battle over game content is being
waged in a legal arena whose rules reflect more than two centuries of changing public
mores and evolving attitudes toward government control. The touchstone of analysis,
the First Amendment to the United States Constitution, was ratified by the states
with the other nine “Bill of Rights” in 1791. As relates to the suppression of speech, it
provides in ten protean words: “Congress shall make no law . . . abridging the free-
dom of speech. . . .” The Fourteenth Amendment extended this prohibition to state
and local government abridgment of speech in 1868. 

The notion of free expression is engrained in American political philosophy. But
implementation of the seemingly absolute protection of the First Amendment by the
courts, and most particularly by the Supreme Court of the United States, has been
anything but absolute, or even consistent. Indeed, for most of the Amendment’s his-
tory, only conventional forms of political expression were deemed constitutionally
secure; many other forms of speech were deemed beyond the First Amendment’s
shield. These included sedition (speech intended to undermine the government),
fighting words inciting to violence, defamation (libel and slander), group libel (hate
speech), and obscenity. Books, plays, and films for a good portion of the nation’s 
history were truly “banned in Boston,” and in other jurisdictions large and small
across the country. Church leaders often were at the forefront of censorship campaigns.
High water marks were reached when state censors attempted, but failed, to ban
James Joyce’s Ulysses in 1934 and Henry Miller’s Tropic of Cancer thirty years later.
Propelling this censorship effort was an encompassing definition of obscenity, which
extended beyond explicit sexual content to include profanity and sacrilegious lan-
guage that are taken for granted today. In contrast to obscene and profane expression,
the depiction of violence per se received little attention until very recent times. Judges
gave “smut” censors wide range. Obscenity was deemed by the courts as utterly with-
out redeeming social importance, and therefore not entitled to any First Amendment
safeguards. 

A profound liberalization in public values and tolerance for social differences after
the Second World War eventually influenced the Supreme Court to extend First
Amendment protections to nonpolitical forms of speech, but in a gradual and halting
manner. Profanity and sacrilegious language are now protected, but sexually explicit
forms of expression that are found to be “obscene” continue to be outside the consti-
tutional protection. The Supreme Court continues to uphold bans on the dissemina-
tion or exhibition of sexually explicit material, particularly “when the mode of
dissemination carries with it a significant danger of offending the sensibilities of
unwilling recipients or of exposure to juveniles.”

The current position of the Supreme Court is that sexually obscene expression
can be suppressed, but only if the material, taken as a whole, appeals to the prurient

924 Part 7 Game Production and the Business of Games



interest in sex, portrays sexual conduct in a patently offensive way, and does not have
serious literary, artistic, political, or scientific value. Whether such material appeals to
a “prurient interest” or is “patently offensive” is measured by the moral standards of
the local community where the trial court happens to be located. Only so-called “hard
core” materials are deemed outside the First Amendment shield. The Supreme Court
has given these examples of hardcore expression: “(a) Patently offensive representa-
tions or descriptions of ultimate sexual acts, normal or perverted, actual or simulated.
(b) Patently offensive representations or descriptions of masturbation, excretory func-
tions, and lewd exhibition of the genitals.” 

Supreme Court Justice Potter Stewart’s cynical definition of pornography—“I
know it when I see it”—distills for critics the unchanneled nature of the inquiry. To
be sure, not all sexually explicit expression is obscene. In fact, the depiction of nudity
or the use of offensive language is not even presumptively obscene, and it cannot be
prohibited by government merely because it offends someone somewhere. Yet, sexu-
ally explicit but nonobscene expression can be regulated in a variety of ways, such as
restrictive zoning of “adult” theaters or prevention of retail access to sexually explicit
material by children. 

In the 1920s, the popularization of the new medium of motion pictures gave rise
to a wave of local censorship laws that threatened to overwhelm the fledgling studios.
The First Amendment as then interpreted by the Supreme Court provided no sanctu-
ary from this onslaught. Questions were raised whether an Amendment adopted in
the age of print to protect political expression even applied to the medium of moving
pictures intended for amusement. Rather than fight the censorship laws of each city
and village, the film industry sought to side-step them by adoption in 1930 of a
Motion Picture Production Code. The Code was voluntarily administered by the
Motion Picture Producers and Distributors of America under its imposing chairman,
Will Hays. By most accounts, the idiosyncratic regulation of the Hays Office, as it
was known, traded decades of film banality for immunity from unchecked govern-
ment censorship. In one famous example, the Hays Office fined the producer of Gone
With the Wind the then substantial sum of $5,000 for Clark Gable’s signature utter-
ance of the word “damn.” The successor to the Hays Office is the Motion Picture
Association of America (MPAA). The MPAA functions today in a very different First
Amendment environment, one which accepts all mediums of expression as equal and
places a substantial burden on the government to justify limitations on expressive
content claimed to be objectionable. 

Congress Takes a First Look at Video Games

Much like the film studios in the 1920s, video game publishers confronted threats of
wide-scale censorship following release of more realistic and more violence-dominated
games in the early 1990s. But the focus was different. In the 1920s, the concern was
mainly with sexual immorality of motion pictures viewed by a mainly adult audience.

7.6 Content Regulation 925



In the 1990s, the concern was the marketing of violence to minors. The conventional
wisdom is that Senator Joseph Lieberman (I. Conn.), then chairman of the
Subcommittee on Regulation and Government Information, scheduled hearings on
video game violence in late 1993 and early 1994 after receiving complaints and then
personally viewing Mortal Kombat and Night Trap. While violent games constituted
only a small percentage of game sales at that time, and video games increasingly were
being marketed and sold to an older audience, the public perception of video games
was that they were children’s toys and that fighting games like Mortal Kombat and
Street Fighter II dominated sales.

Joined by Senator Herb Kohl (D. Wisc.), chairman of the Subcommittee on Juvenile
Justice, Senator Lieberman called the executives of Nintendo and Sega to testify, then
two of the leading game publishers, representatives of the Software Publishers
Association and the Amusement and Music Operators Association, and a panel of
“experts” involved in the effects of media on children. While one member of the expert
panel testified that video games are overwhelmingly violent, sexist, and racist, the main
concern throughout the hearings appeared to be the impact on children of the depic-
tion and interactive commission of violent and gory acts on realistic characters, par-
ticularly digitized human images, in games like Mortal Kombat and Night Trap. None
of the expert panelists offered evidence that violent games had any adverse effect on
children, but all decried the exposure of children to such violence and some presumed
such an adverse effect. 

The most compelling testimony was offered by executives of the two dominant
publishers and arch rivals, Nintendo and Sega. Sega was the first to publish Mortal
Kombat, and Night Trap also was released on its system. While Nintendo later pub-
lished a version of Mortal Kombat, much of the gore had been removed to comport
with Nintendo’s view of itself as a marketer of games to children. In fact, the
Nintendo licensing system required games developed for its systems to be screened for
blood, nudity, and religious content. Nintendo used this difference to attack Sega,
and in the process gave credence to the charge that publication of the Sega versions of
Mortal Kombat and Night Trap were harmful to children. In its defense, Sega noted
that its games were sold to an older audience, and that it had adopted a rating system
to identify violence and other features in its games that might be inappropriate for
younger players. However, this did little to appease critics.

While the hearings did not result in proposed legislation, their impact on the
video game industry was both immediate and lasting. Coincidentally, the hearings
transformed Night Trap into a best seller.

The Advent of Industry Self-Regulation

The Senate hearings on the effects of video game content were totally unexpected and
taught industry leaders the necessity of organization and public relations. It was obvi-
ous that the industry needed its own trade group to monitor the expanding efforts to

926 Part 7 Game Production and the Business of Games



regulate game content at the national, state, and local levels, to present a united and
coordinated response to such efforts, and to promote the positive aspects of games.
The Interactive Digital Software Association, recently renamed the Entertainment
Software Association (ESA), was formed in the aftermath of the hearings to serve
these functions. 

Game publishers then set about to create a voluntary rating system, much as the
MPAA had done for motion pictures, to forestall government-imposed regulation and
to blunt the criticism that consumers, especially parents, could not exercise informed
choice in avoiding games that are violent, sexually explicit, profane, or in some other
manner personally offensive. The Entertainment Software Rating Board (ESRB) was
established in 1994 to formulate a system for rating video games based on the age
appropriateness of their content and to implement voluntary adoption and use by the
video game industry. Today, the ESRB independently applies and enforces ratings,
advertising guidelines, and online privacy principles adopted by the industry. The rat-
ing system that was devised has two parts: rating symbols (on the front of the game
box) suggest age appropriateness for the game and content descriptors (on the back of
the game box) indicate elements in a game that may have triggered a particular rating
and may be of interest or concern. In its first 10 years, the rating system has become
ubiquitous on console games and on most PC games. 

The rating symbols are comprised of stylized alphabetical letters intended to cap-
sulate a game’s suitability for one of five age groups, with a sixth symbol for pending
ratings.*

There are currently 30 content descriptors, such as Blood and Gore—depictions
of blood or the mutilation of body parts; Cartoon Violence—violent actions involv-
ing cartoon-like situations and characters. May include violence where a character is
unharmed after the action has been inflicted; Fantasy Violence—violent actions of a
fantasy nature, involving human or non-human characters in situations easily distin-
guishable from real life; Intense Violence—graphic and realistic-looking depictions
of physical conflict. May involve extreme and/or realistic blood, gore, weapons, and
depictions of human injury and death; Nudity—graphic or prolonged depictions of
nudity; Sexual Violence—depictions of rape or other violent sexual acts; Strong
Lyrics—explicit and/or frequent references to profanity, sex, violence, alcohol, or
drug use in music; Strong Sexual Content—graphic references to and/or depictions
of sexual behavior, possibly including nudity; Use of Drugs—the consumption or
use of illegal drugs; Use of Alcohol—the consumption of alcoholic beverages; and
Use of Tobacco—the consumption of tobacco products.” The ESRB Web site contains
the full list and explanation of content descriptors at ESRB.org/ratings/ratings_guide.jsp. 

Ratings are determined by a consensus of at least three raters trained by ESRB.
The raters are of various ages and backgrounds, have no ties to the computer and
video game industry, and to ensure diverse views are not expert game players. To obtain
a rating, publishers fill out a questionnaire describing in detail what the game contains.

7.6 Content Regulation 927



928 Part 7 Game Production and the Business of Games

EARLY CHILDHOOD
Titles rated EC (Early Childhood) have
content that may be suitable for ages 3 and
older. Contains no material that parents
would find inappropriate.

EVERYONE
Titles rated E (Everyone) have content
that may be suitable for ages 6 and older.
Titles in this category may contain minimal 
cartoon, fantasy or mild violence and/or
infrequent use of mild language.

EVERYONE 10+
Titles rated E10+ (Everyone 10 and older)
have content that may be suitable for ages
10 and older. Titles in this category may
contain more cartoon, fantasy or mild 
violence, mild language, and/or minimal
suggestive themes.

TEEN
Titles rated T (Teen) have content that may
be suitable for ages 13 and older. Titles in
this category may contain violence, sugges-
tive themes, crude humor, minimal blood
and/or infrequent use of strong language.

MATURE
Titles rated M (Mature) have content that
may be suitable for persons ages 17 and
older. Titles in this category may contain
intense violence, blood and gore, sexual
content, and/or strong language.

ADULTS ONLY
Titles rated AO (Adults Only) have con-
tent that should only be played by persons
18 yrs and older. Titles in this category
may include prolonged scenes of intense
violence and/or graphic sexual content 
and nudity.

RATING PENDING
Titles listed as RP (Rating Pending)
have been submitted to the ESRB and 
are awaiting final rating. (This symbol 
appears only in advertising prior to a
game’s release.)

*Please be advised that the ESRB Ratings icons, “EC”, “E”, “E10+”,
“T”, “M”, “AO,” and “RP” are trademarks owned by the Entertainment
Software Association, and may only be used with their permission
and authority. For information regarding whether a product has been
rated by the ESRB, please visit www.esrb.org. For permission to use the
Ratings icons, please contact the ESA at esrblicenseinfo.com.

They also submit actual videotaped footage of the game, showing the most extreme
content and an accurate representation of the context and product as a whole. The
raters then separately view the game footage and recommend the rating and content
descriptors they believe are most appropriate. ESRB then compares the recommenda-
tions to determine if there is consensus. When the raters disagree, ESRB may enlist
additional raters to review the game in order to reach broader consensus. After con-
sensus on a rating and content descriptors is reached, ESRB issues an official rating
certificate to the publisher. When the game is ready for release to the public, publish-
ers send copies of the final product to the ESRB. The game packaging is reviewed to
make sure the ratings are displayed in accordance with ESRB standards. Random
checks are conducted to verify that the information provided during the rating
process was accurate and complete. Over one thousand video games are subject to the
ESRB rating system each year.

www.esrb.org


Criticism of the ESRB Rating Program

While the ESRB rating system enjoys wide adoption today, even receiving praise from
Senator Lieberman, it continues to generate criticism. There are, of course, groups
that would prefer outright censorship of video games and other forms of expression
that they find offensive. To them, a voluntary rating system can never eliminate the
possibility that games will slip through the net and reach inappropriate players. The
National Institute On Media and the Family and the Interfaith Center On Corporate
Responsibility are among private organizations that publish their own lists ranking
the “best” and “worst” games for children. At the opposite pole are groups that believe
the current ratings are a form of compelled self-censorship and go too far. As in the
movie industry, an “M—Mature” or “AO—Adults Only” game rating can restrict the
potential market for a game. A publisher may feel coerced to make concessions to
avoid the potential loss of sales. Indeed, to the extent that the ESRB ratings may be
incorporated in government regulations, as some have proposed, implicit censorship
becomes explicit. 

There also is the issue of the accuracy of the ratings. Quite apart from the obvious
subjectivity of the content descriptors themselves, the element of player interactivity
can materially alter the game experience between different players. The ESRB explic-
itly acknowledges this gap by requiring the notice “Game Experience May Change
During Online Play” to warn purchasers that player-generated content has not been
rated. Dynamic user-generated content in such games as LittleBigPlanet pass com-
pletely outside ESRB review. Also, the duration of gameplay can extend over 50 or
more hours, making it problematic whether any reviewer can absorb the entire con-
tent and accurately rate it. In a few instances, including the sexually-explicit “Hot
Coffee” minigame concealed in Grand Theft Auto: San Andreas, highly pertinent game
content was inaccessible to ESRB reviewers.

Enforcement of the rating system is another area that has drawn repeated criti-
cism. While some retail chains such as Wal-Mart are reported to have a policy to
check the age of young purchasers and not sell “M—Mature” rated games to minors
under 17, many others do not. Legislation in Congress and state legislatures that
would impose penalties on sellers of variously defined mature-content games to
minors continues to be introduced across the country. Congressman Joe Baca (R.
Cal.) for one has introduced several bills over the years to regulate and penalize certain
forms of video game content. His most recent effort is the Video Game Health
Labeling Act which would require games with a ESRB rating of “T—TEEN” or
higher to be sold with a health warning to be administered by the Consumer Products
Safety Commission (house.gov/baca). 

Yet another area of condemnation is the industry practice of marketing adult games
to children. The ESA has promulgated an Advertising Code of Conduct to eliminate
this practice, followed by creation of the Advertising Review Council in 1999, and
ESRB’s Principles and Guidelines for Responsible Advertising Practices in January 2000.

7.6 Content Regulation 929



But in a report to the President and Congress in 2000 entitled Marketing Violent
Entertainment to Children: A Review of Self-Regulation and Industry Practices in the
Motion Picture, Music Recording & Electronic Games Industries, the Federal Trade
Commission found widespread marketing of “M—Mature” rated video games to
children under 17. The same FTC report found only limited consumer awareness of
the ESRB rating system, citing a 1999 ESRB study that only 45 percent of survey par-
ents had any awareness of the ratings. This compares with 94 percent of parents who
claimed familiarity with the MPAA movie rating system. Other studies cited by the
FTC showed that an equally low percentage of parents actually use the ESRB rating
system. In three updates, the most recent in 2004, the FTC concluded the ESRB had
made progress in increasing awareness and use of the game rating system, and in
enforcement of its advertising code. However, the FTC continues to find lax obser-
vance among retailers of “M—Mature” rated games.

A more recent limitation on the efficacy of the ESRB ratings results from the fact
that so-called boxed games sold at retail on which the ratings appear are declining as a
percentage of total games sold, replaced by rapid growth in sales of downloadable
games through the Internet and mobile devices. These sales presently are not covered
by the ESRB rating system.

Video Game Content Regulation in the Courts

What the FTC Report and follow-up reviews did not find, indeed what no authorita-
tive source has yet to find, is of equal importance. There is no scientific study that
shows a credible link between the violent or sexually explicit content of video games
and harm to children or others who play them. Anecdotal evidence is offered in the
form of events such as the Columbine High School shootings in 1999. Instances in
which avid teenage players of violent games are involved in real-life violent crimes do
make headlines, often become lawsuits, and may inspire legislation and ordinances to
suppress game content or distribution. Each time a new game breaks sales records by
ratcheting up the depiction of violence, nudity, or some other perceived vice—including
the wildly popular Grand Theft Auto and Halo series—the advocates of control are
reinvigorated. 

Thus far, the courts have rebuffed government attempts to censor video games.
Four recent federal court decisions address, in different contexts, what proved to be
unsuccessful attempts to regulate game content. They cast light on the future of cen-
sorship efforts.

In the first of these cases, American Amusement Machine Association v. Kendrick
decided in 2001 (244 F.3d 572), the Court of Appeals for the Seventh Circuit granted
a preliminary injunction to manufacturers and distributors of arcade machines and
their trade association blocking enforcement of an Indianapolis ordinance that lim-
ited the access of minors to games that depict violence. The ordinance forbids any
operator of game machines to allow a minor unaccompanied by a parent, guardian, or

930 Part 7 Game Production and the Business of Games



other custodian to use “an amusement machine that is harmful to minors.” It also
requires warning signs, and, in the case of locations with five or more machines, the
screening of the machines from observers. The ordinance defines “harmful to minors”
as “an amusement machine that predominantly appeals to minors’ morbid interest in
violence or minors’ prurient interest in sex, is patently offensive to prevailing stan-
dards in the adult community as a whole with respect to what is suitable material for
persons under the age of eighteen (18) years, lacks serious literary, artistic, political, or
scientific value as a whole for persons under” that age, and contains either “graphic
violence” or “strong sexual content.” In this case, only “graphic violence” was at issue. 

Judge Richard Posner, a noted federal jurist, wrote the opinion of the Court. He
first observed that the ordinance imports traditional First Amendment sexual obscen-
ity standards to the regulation of content that depicts violence. For obscenity, which
is unprotected speech, the test is its appeal to prurient interest and patent offensive-
ness to community moral standards. “But offensiveness,” Judge Posner concluded, “is
not the basis on which Indianapolis seeks to regulate violent video games. Nor could
the ordinance be defended on that basis. The most violent game in the record, “The
House of the Dead,” depicts zombies being killed flamboyantly, with much severing
of limbs and effusion of blood; but so stylized and patently fictitious is the cartoon-
like depiction that no one would suppose it to be ‘obscene’ in the sense in which a
photograph of a person being decapitated might be described as ‘obscene.’ It will not
turn anyone’s stomach. The basis of the ordinance, rather, is a belief that violent video
games cause temporal harm by engendered aggressive attitudes and behavior, which
might lead to violence.” 

Hence, to regulate speech on grounds that it is harmful to minors requires
Indianapolis to show a compelling government interest. Children, Judge Posner
wrote, have First Amendment rights, and Indianapolis has a heavy burden to justify
their restriction. Indianapolis offered “social science studies” in support. Judge Posner
responded: “There is no indication that the games used in the studies are similar to
those in this case or other games likely to be marketed in game arcades in
Indianapolis. The studies do not find that video games have ever caused anyone to
commit a violent act, as opposed to feeling aggressive, or have caused the average level
of violence to increase anywhere.” Absent such a showing of compelling state interest
the Indianapolis ordinance was unlikely to withstand First Amendment scrutiny and
a preliminary injunction blocking enforcement was ordered.

Concern about the link between violent video game content and the commission
of a violent act by a minor also present in the second case, James v. Meow Media, Inc.,
decided in 2003 by the federal Sixth Circuit Court of Appeals (300 F.3d 683). The
parents and estate of students killed by Michael Carneal during a shooting rampage at
Heath High School in Paducah, Kentucky, sued video game, movie production, and
Internet content-provider firms for the deaths. They alleged Carneal regularly played
video games, including Doom, Quake, Castle Wolfenstein, Resident Evil, and Final Fantasy,
watched movies, and viewed Internet sites that “desensitized” Carneal to violence and

7.6 Content Regulation 931



“caused” him to kill the students at Heath High School. Although the law suit was
brought as a civil wrongful death action to recover damages, the Court of Appeals 
recognized that the imposition of civil liability on protected speech can violate the
First Amendment. Citing among others the American Amusement Machine Association
decision, the Court stated: “most federal courts to consider the issue have found video
games to be constitutionally protected.” 

The parents of the dead students argued that they were not seeking to regulate all
speech, but only violent speech directed to young, impressionable children, or even
more specifically at Carneal. The Court of Appeals found some merit in this position.
“The protections of the First Amendment have always been adapted to the audience
intended for the speech. Specifically, we have recognized certain speech, while fully
protected when directed at adults, may be restricted when directed toward minors. . . .
We have also required, however, that such regulations be narrowly tailored to protect-
ing minors from speech that may improperly influence them and not effect an
‘unnecessarily broad suppression of speech’ appropriate for adults.” Such narrow tai-
loring was more properly the task of a legislature, and not litigants in a private action
seeking to recover damages. The Court of Appeals said the parents could not proceed
with their private claims in such circumstances. 

In the next decision, decided in 2004, the United States District Court for the
Western District of Washington permanently enjoined enforcement of a Washington
law that penalized distribution of video games to minors that contain “realistic 
or photographic-like depictions of aggressive conflict in which the player kills, injures,
or otherwise causes physical harm to a human form in the game who is depicted, by
dress or other recognizable symbols, as a public law enforcement officer.” The plain-
tiffs in this case, captioned Video Software Dealers Association v. Maleng (325
F.Supp.2d 1180), were game creators, publishers, and distributors who asserted the
Washington statute infringed their First Amendment rights. The District Court observed
that “[s]imiliar disputes have erupted across the country as state and local governments
have attempted to regulate the dissemination of violent video games to children. As of
this date, no such regulation has passed constitutional muster.” The Washington law
would prove no exception. With earlier cases showing the way, the District Court
rejected the legislature’s characterization of speech depicting violence as obscenity, and
thus entitled lesser constitutional protection. The District Court held that “obscenity”
in the context of the First Amendment means material that deals with sex. Finding
the video games at issue are expressive speech entitled to the full protections of the First
Amendment, the District Court said content-based regulations are presumptively
invalid. They will only be upheld if the legislature can show regulation is necessary to
serve a compelling state interest, and that it is narrowly tailored to achieve that inter-
est. The legislature, the District Court explained, “must do more than simply ‘posit
the existence of the disease sought to be cured.’” While the state has a legitimate and
compelling interest in safeguarding the physical and psychological well-being of
minors, it must show the legislation will accomplish the intended remedy. 

932 Part 7 Game Production and the Business of Games



As in American Amusement Machine Association, the expert reports and studies
offered to show this connection in the Maleng case were found to be insufficient. The
District Court explained that most of the studies relied on by the state had nothing 
to do with video games. None were designed to test the effects of such games on the
player’s attitudes or behavior toward law enforcement officers, the specific harm 
the legislature sought to address. Nor was the statute narrowly tailored. Having
rejected the Washington law, the District Court said: “Given the nationwide, on-going
dispute in this area, it is reasonable to ask whether a state may ever impose a ban on the
dissemination of video games to children under 18. The answer is ‘probably yes’ if the
games contain sexually explicit images . . ., and ‘maybe’ if the games contain violent
images, such as torture or bondage, that appeal to the prurient interest of minors. . . .”

The final case to be discussed here is Entertainment Software Association v.
Swanson, decided by the United States Court of Appeals for the Eighth Circuit in 2008
(519 F.3d 768). Minnesota passed a law that provides in part: “A person under the age
of 17 may not knowingly rent or purchase [a video game rated AO or M by the
Entertainment Software Rating Board].” Violation carries with it a civil penalty of not
more than $25. The act also requires game retailers to post a sign notifying minors of
the law and penalty. When the law was challenged on First Amendment grounds,
Minnesota submitted a “Meta-analysis” (an analysis of other analyses) in support of its
contention that substantial evidence allowed the inference that children’s interaction
with violent games causes violent behavior. It also produced a joint statement of med-
ical and public health organizations asserting “well over 1000 studies...point over-
whelming to a casual connection between media violence and aggressive behavior in
some children” and suggesting the correlation between violent video games and such
behavior is even greater. Among the games cited by the state as M-rated and whose
purported violent content is described are Resident Evil: 4, Manhunt, and God of War.

In the District Court, the act was held unconstitutional on multiple grounds. The
District Court found violent video games are protected speech even for children. It
therefore applied a strict scrutiny analysis. The Minnesota act failed to survive strict
scrutiny because the state’s evidence was founded to be based on flawed or irrelevant
studies that failed to establish a link between playing violent video games and violent
behavior in children. Even if it had presented credible evidence of a violence link, the
District Court found the act under-inclusive because it failed to address other forms
of violence in the media. The act also was unconstitutional, the District Court 
concluded, because it imposed a civil penalty based solely on the rankings of a private
organization, the ESRB, without judicial oversight. 

The Court of Appeals based its affirmance of the District Court exclusively on
the first ground, namely the lack of foundation for the Minnesota’s contention that
violent games are psychologically harmful to children. However, the Court Appeals
was not prepared to dismiss the state’s evidence out of hand. Indeed, it declared
“Whatever our intuitive (dare we say commonsense) feelings regarding the effect that
extreme violence portrayed in the above-described video games may well have on the

7.6 Content Regulation 933



psychological well-being of minors, [earlier precedent] requires us to hold that, hav-
ing failed to come forth with incontrovertible proof of a casual relationship between
exposure to such violence and subsequent psychological dysfunction, the State has
not satisfied its evidentiary burden.” The First Amendment distinction between such
judicial “intuition” and the required “incontrovertible truth” may not be so scrupu-
lously observed by other courts.

Several principles can be derived from these decisions and others addressing the
First Amendment protections afforded video game content. 

1. Video games are entitled to the same First Amendment protections as tradi-
tional forms of expression such as books, plays, art and motion pictures. The
First Amendment protects entertainment as well as political and ideological
speech. The interactive nature of video games is immaterial to the protection
of their content.

2. Only video games challenged on the basis of sexual content will be evalu-
ated under the lower First Amendment safeguards applicable to obscenity.
In such cases, the test is whether the game, taken as a whole, appeals to the
prurient interest in sex, portrays sexual conduct in a patently offensive way,
and does not have serious literary, artistic, political, or scientific value. 

3. Government efforts to suppress video game content based on violent con-
tent are subject to a higher “strict scrutiny” burden. The government must
show a compelling interest in regulation and that the means chosen are the
least restrictive means to achieve the objective.

4. Children have an equivalent right to First Amendment speech protection as
adults.

5. The government has a compelling interest in protecting the physical and
psychological well-being of minors. Nonetheless, to support speech restric-
tions, the harm to children must be shown to be real, not merely conjec-
tural, and the regulation must be shown to alleviate that harm in a direct
and material way.

Content Regulation in Other Countries

As can be seen, content regulation of video games in the United States is shaped by
political, legal, and cultural forces that are unique to this country. While video games
have become a global phenomenon, individual nations react differently to the censor-
ship issues surrounding game content. Germany, for example, has general laws 
banning public displays of the swastika and other Nazi symbols. Wolfenstein 3D and
Return to Castle Wolfenstein, although anti-Nazi in content, fell under this prohibition.
The Chinese Ministry of Culture has banned a foreign game that depicts Manchuria
and Tibet as sovereign nations. China also announced concern about the 10 percent of
China’s Web users under the age of 18 who are said to be “Internet addicted teenagers”
playing “unhealthy” games that are too violent, pornographic, or unpatriotic.

934 Part 7 Game Production and the Business of Games



Japanese video games tend to be less bloody than elsewhere, but more than make up
in brutal sexually explicit content that generates calls for regulation. The Australian
Office of Film and Literature Classification (OFLC) initially banned Grand Theft
Auto: Vice City due to its depiction of violence against prostitutes, until the offending
material was removed. Fallout 3 was initially refused classification by the OFLC due
to its depiction of morphine use to ignore pain. Neighboring New Zealand bans
Manhunt. The Greek Parliament went so far as to ban all video games in 2002, which
it substantially narrowed under pressure from the European Union and the United
States. The Parliament of the European Union formally announced the need to elim-
inate sexism from video games, which it believes contain messages that “are contrary
to human dignity and which convey gender stereotypes.” Video games, it would
seem, have the attention of governments around the world. 

Many countries have adopted self-regulatory rating systems for reasons similar to
those motivating the ESRB. Canadian companies voluntarily apply the ESRB ratings
although they are not ESRB members. The European nations have combined to
implement the Pan European Game Information (PEGI) rating system similar in
concept to ESRB ratings, but with formal government participation. China and
Australia have adopted government-run rating systems. Germany promulgates a
“banned list” of video games that depict the gory killing of people or showing cruelty
to humans. South Korea has similar “no blood” regulations. The United Kingdom
trade group Entertainment and Leisure Software Publishers Association (ELSPA)
recently implemented simplified rating symbols based on the PEGI code.

Summary

Game developers and publishers who intend to push the envelope of acceptable con-
tent must take careful note of the laws and culture in which the games will be played.
They face choices based on the economic as well as the creative costs of triggering cen-
sorship. Sex and violence may indeed sell games, but only if the sex and violence are
permitted to reach consumers. By and large, publishers have bent content to the dic-
tates of local markets, modifying or removing content to avoid outright censorship or
a restrictive rating. 

Exercises

1. In what ways does regulation of video game content differ from regulation
of books, art, plays, and motion pictures?

2. How does the ESRB ensure that its reviewers fairly and effectively evaluate
the entire content of a video game? Is the procedure successful? Should the
reviewers be required to play the games that they review? State your reasons. 

3. Should online games that rely on player content be rated by the ESRB? 
4. Does self-regulation such as the ESRB rating system constitute censorship?

What are the negative effects of an industry rating system on game creativity?

7.6 Content Regulation 935



5. Should major retail outlets like Wal-Mart be permitted to refuse to sell a
video game simply because they disagree with its content? What legal
defenses do you anticipate will be presented by Wal-Mart if it were to be sued
by a publisher for refusing to sell its video game? Should Wal-Mart be able
to assert that it has a First Amendment right not to sell a game whose content
it finds objectionable?

6. In what ways does the First Amendment analysis applied by the courts 
differ between sexually explicit and graphically violent video game content?
Do you believe there should be a distinction between the two? What is the
best argument for treating violent games under the less constitutionally 
protective standard for sexually explicit games?

7. Is private self-regulation always preferable to government mandatory regu-
lation? Can you make the argument that self-regulation is potentially more
suppressive of free speech then public controls? 

References

[AAMA01] American Amusement Machine Association v. Kendrick, 244 F.3d 572 
(7th Cir.), certiorari denied, 534 U.S. 994, 2001.

[ESRB04] Entertainment Software Rating Board, http://esrb.org, December 1, 2004. 
[FTC00] Federal Trade Commission, Marketing Violent Entertainment to Children: 

A Review of Self-Regulation and Industry Practices in the Motion Picture, Music
Recording & Electronic Game Industries, September 2000.

[FTC04] Federal Trade Commission, Marketing Violent Entertainment to Children: 
A Fourth Follow-up Review of Industry Practices in the Motion Picture, Music
Recording & Electronic Game Industries, July 2004.

[GameDaily04] GameDaily, Developing for a Mature Audience, November 30, 2004, avail-
able online at http://biz.gamedaily.com/ features.asp?article_id=8179§ion=feature. 

[IDSA03] Interactive Digital Software Association v. St. Louis County, 329 F.3d 954
(8th Cir.), 2003.

[IGDA04] International Games Developers Association, Anti-Censorship, December
1, 2004, available online athttp://igda.org/censorship.

[James02] James v. Meow Media, Inc., 300 F.3d 683 (6th Cir. 2002).
[Kent01] Kent, Steven L., The Ultimate History of Video Games, Ch. 25, 2001.
[Miller73] Miller v. California, 413 U.S. 15, 1973.
[NIMF04] National Institute on Media and the Family, Ninth Annual Mediawise

Video Game Report Card,  November 25, 2004, available online at 
http://mediafamily.org/research/report_vgrc_2004.

[Reno97] Reno v. American Civil Liberties Union, 521 U.S. 844, 1997.
[VSDA04] Video Software Dealers Association v. Maleng, 325 F.Supp.2d 1180 

(W. D. Wash. 2004). 
[Wikipedia04] Wikipedia, Video Game Controversy,  December 1, 2004, available online

at http://en.wikipedia.org/wiki/ Video_game_controversy.

936 Part 7 Game Production and the Business of Games

http://esrb.org
http://biz.gamedaily.com/features.asp?article_id=8179�ion=feature
http://igda.org/censorship
http://mediafamily.org/research/report_vgrc_2004
http://en.wikipedia.org/wiki/Video_game_controversy


937

This CD-ROM contains source code, demos, art files, and other material that 
is described in the book. For example, files referenced within Chapter 6.7 can 

be found in the directory “Chapter Content\Part 6 AV Design and Production\ 6.7
Animation.” Every attempt has been made to ensure that the source code is bug free and
will compile easily. Please refer to the Web site www.introgamedev.com for errata 
and updates.

System Requirements

Intel® Pentium®-series, AMD Athlon or newer processor recommended. Windows XP
(64MB RAM) or Windows 2000 (128MB RAM) or later recommended. 3D graphics
card required for some of the sample applications. DirectX 9 or newer also required.
The following software is required in order to take advantage of all the files provided
on the CD-ROM: Microsoft Visual Studio .NET 2003, 3ds max 6, Microsoft Word,
Microsoft Excel, Microsoft PowerPoint, Adobe Reader, and QuickTime Player.

About the CD-ROM

www.introgamedev.com


This page intentionally left blank 



939

Numbers
-1 notation, using, 337
2 × 2 matrix

determinant of, 346
inverse of, 346

2 × 3 matrix, example of, 343
2D file-based images, using for texture mapping,

688–690
2D textures, placing in 3D models, 691
2D versus 3D animation, 730
3 × 3 matrix

inverse of, 347
orthonormal, 487
using, 481–482

3D audio, using, 589–591
3D environments

artistic approach, 680–684
camera viewpoint, 680–681
consistent style and setting, 680
distance effects, 682–683
faking detail, 684
preplanning, 680
scheduling, 684
volume enhancements, 681–682

3D modeling
BSP (binary space partitioning), 672–673
critical analysis, 677–678
low-polygon, 675
methodology, 676–677
NURBS (Non Uniform Rational Basis Spline),

669–670
reverse engineering, 671–672
subdivision surfaces, 670
See also box modeling with polygons

3D models, placing 2D textures on, 691
3D sculpting, overview of, 670–671
3D spatialized audio, overview of, 782

3DO company, 32
3ds Max plug-ins Web site, 415
4 × 3 matrix

decomposing, 486
representing transforms as, 479

4 × 4 matrix, form of, 347

A
A and A# music notes, frequencies in hertz, 580
A* algorithm, using in pathfinding, 537,

565–568, 572–574
AABBs (axis-aligned bounding boxes), using, 375
abstract model, defined, 66–67
abstractions, high-level leaking of, 322
acceptance tests, performing, 178
acting, modeling for game agents, 528
action games, described, 37, 141
action-adventure game genre, described, 37
actions

considering in cinematics, 759–760
constraints on, 104
dimensions of, 71
enhancing, 98
goals, 98
meanings of, 97
reactions to, 395
real world to game world, 99–100
seven stages of, 99
See also rising action

Activision studio, 8, 31–32
actors, considering costs associated with, 143
Adams, Ernest, 147
adapter design pattern, described, 237
adaptive audio system, using, 778–779
AddAddress function, using with game entities, 309
AddRef() function, using in reference counting,

301–302

Index



Address Any IPv4 address, explained, 612
AddressTranslator class, using with game entities,

308–309
Adham, Allen, 36
ad-hoc architecture, overview of, 240
ADPCM compression, using, 587
ADSR (Attach, Decay, Sustain, Release)

envelopes, using, 588–589
advance royalty payment, overview of, 868
adventure game genre

described, 37
narrative elements of, 141–142

advertising
agencies, 845–846
online, 890
retail, 881
traditional, 880–881

aesthetics and emotions, considering, 70
Afterburner game, 12
Age of Empires game, 14
agency, creating illusion of, 158
agents. See game agents
agile methodologies, using, 173
AI (artificial intelligence) for games, overview of,

522–523
AI assist, considering in synchronization, 626
AI game agents

acting, 528
cheating, 529
learning and remembering, 528–529
making stupid, 529
sensing, 524–526
thinking, 526–527

AI problems, diagnosing, 323
AI techniques

A* pathfinding, 537
behavior tree, 537
blackboard architecture, 544–545
Byesian networks, 544
command hierarchy, 537–538
dead reckoning, 538
decision tree learning, 545
emergent behavior, 538
filtered randomness, 546
flocking, 539

formations, 539
fuzzy logic, 546
GA (genetic algorithms), 547
influence mapping, 539–540
LOD (level-of-detail), 540
manager task assignment, 540–541
neural networks, 548
n-gram statistical prediction, 547–548
obstacle avoidance, 541
perception networks, 548–549
planning, 549
player modeling, 549–550
production systems, 550
reputation system, 550–551
RLL (reinforcement learning), 550
scripting, 541–542
smart terrain, 551
speech recognition, 551–552
stack-based state machine, 542–543
state machine, 542
subsumption architecture, 543
terrain analysis, 543
text-to-speech, 551–552
trigger system, 544
weakness modification learning, 552

Akalabeth game, 20
Alcorn, Al, 7
algorithmic interactive storytelling, 153–154
algorithms

A*, 565–568, 572–574
anisotropic filtering, 448
Best-First, 569–570
Breadth-First, 566–569
Dijkstra, 570–572
genetic, 547
GJK (Gilbert-Johnson-Keerthi), 383
Gram-Schmidt orthogonalization, 351
plane sweep, 377
Random-Trace, 564–565
speed and efficiency of, 439–440

aliasing, identifying, 448. See also antialiasing
Allen, Paul, 14
allocated memory

adding guard number to, 282–283
saving size of, 282–283
See also memory allocation

940 Index



allocated objects, determining size of, 286
allocation count, keeping, 284
allocation number, returning, 284
alpha and beta terminology, 815–816
alpha maps, using in texture mapping, 689
alpha stage, overview of, 872–873
alpha transparency channel, abbreviation of, 429
alpha-blend operations, process of, 469–470
ambient light, using, 455, 723–724
American Amusement Machine Association v.

Kendrick, 930, 933
Amiga, release of, 16
amplitude of sound, defined, 581
Andromeda company, 24
angles

identities for, 335–336
trigonometric functions for, 333
See also Euler angles

animating for real-time playback, 729–732
animation clips, saving and loading, 743
animation service providers, overview of,

841–842
animation storage

constant elimination, 485–486
decomposition, 485–486
higher order interpolation, 489–492
keyframes, 486–489
linear interpolation, 486–489
looping, 492–493
overview of, 484–485

animations
facial, 745–747
fluidity of, 744
multiway blending, 498–499
picking time for, 493
recommendations, 743–745
sampling, 494
simulation, 750
See also character animation; playing animations

animators
expectations of, 728–729
responsibilities of, 728–729

anisotropic filtering, using with textures, 448
answers, finding in games, 94

antialiasing
importance of, 424
process of, 468
See also aliasing

anticipation, expressing, 730–731
AO rating, explained, 47
APIs (application programming interfaces), using

with audio, 578
Apogee company, 36
Apple Computer, beginning of, 15
Application layer

input reflection, 624–625
state reflection, 625–626
synchronization, 626
update models, 623–626
version verification, 623

Arakawa, Minoru, 24
Aran, Samus, 30
arbitration, considering in synchronization, 626
architecture types

ad-hoc, 240
DAG (Directed Acyclic Graph), 241–242
layered, 242–243
modular, 241

Archon game, 32
area light, using, 723
ARGB texel formats, explained, 444–445
arms

building in box model, 666
constructing in box model, 661–662

arrays, overview of, 209–210
art lists, generating in production phase, 805–806
art service providers, overview of, 841–842
artifacts

cognitive, 66
defined, 64
distinguishing, 64
using to convey storylines, 156

artificial intelligence (AI) for games, overview of,
522–523

asserts, verifying assumptions with, 325
asserts and crashes, managing, 176–177
assets, managing in production phase, 806–808
assistant engineer, role on music team, 769
A-Stable implicit methods, using, 407–408

Index 941



asymmetric encryption, using, 631
asynchronous environments, overview of, 630
Atari

2600, 8
beginning of, 7–8
programmers at, 31
role in video game crash of 1983, 9
settlement with Magnavox, 8
Video Computer System, 8

Attach, Decay, Sustain, Release (ADSR)
envelopes, using, 588–589

attachments, overview of, 517
attention

getting in hidden object games, 79
process of, 78–79

audiences
aiming at, 81–82
identifying, 140–142
for video games, 45–47
See also players

audio
implementation, 772–774
spatialized, 780–783
See also sounds

audio business
GANG (Game Audio Network Guild), 786–787
passion and location, 787

audio data
processing in real time, 585
transferring, 584–585

audio design, fundamentals, 771–772
audio director/manager, role on sound design

team, 769
audio effects, including in interface designs,

106–107. See also environment sounds
audio files, as samples, 585
audio formats, compressed, 587–588
audio mixing, trends in, 579
audio problems, examples of, 599
audio production, applications for, 785
audio programming

3D audio, 589–591
ADSR (Attach, Decay, Sustain, Release)

envelopes, 588–589
audio pipeline and mixing, 584–585

compressed audio formats, 587–588
digital representation of sound, 582–583
environmental effects, 591–593
overview of, 578
physics, 579–581
sample playback and manipulation, 585
streaming audio, 586–587
terminology, 579–581

audio scripting and engine, integrating, 598–600
audio team

dialogue team, 770–771
music team, 767–769
sound design team, 769–770

audio tools
hardware, 784
overview of, 783
PC versus Mac, 784
software, 784
sound effects libraries, 786
triad, 784
virtual instruments and effects, 785–786

Austin Game Conference Web site, 891
authentication, defined, 631
axis-aligned bounding boxes (AABBs), using, 375

B
B music note, frequencies in hertz, 580
backface culling, explained, 466–467
backstory, overview of, 150. See also storytelling

techniques
backward tracing, applying to lighting, 451
Baer, Ralph, 6–7
balance, symmetrical versus asymmetrical, 644
Baldur’s Gate game, success of, 34
ball joints, support for, 413
Ballblazer game, 34
Bandicoot, Crash, 29
bandwidth

in connection models, 629–630
in Physical layer, 609–610

banned list, use in Germany, 52
The Bard’s Tale game, 32–33
barycentric coordinates, computing for points, 380
Bateson, Gregory, 75
Battle Chess game, 33

942 Index



Battlehawks 1942 game, 35
Bayesian networks, potential of, 544
behavior online

good versus bad, 53–54
ugly, 54

behavior tree AI technique, using, 537
Best Buy, Federal case against, 49
Best-First algorithm, using in pathfinding, 569–570
beta stage, overview of, 874–875
Bethesda Softworks company, 34
Bézier curve, cubic, 489–491
bid package, contents of, 796–797
bilinear filtering, using with textures, 448
billboard particle, described, 704
Bilski opinion, 901
binary space partitioning (BSP)

overview of, 436
speed and efficiency of, 439

Biohazard game, 26
BioShock game

backstory of, 150
elements of, 141

BioWare company, 34
bisection technique, using with overlap testing,

368–369
bit depth of sample, explained, 583
bit packing

drawback of, 217
explained, 213
flags, 214
network communication, 215–216

bitmap versus TrueType fonts, 653
bit-reduction scheme, using with audio, 587
Black Hat creativity approach, 131
blackboard architecture, potential of, 544–545
blend shaders, using with special effects, 710
blending animations

bone masks, 499–500
hierarchical blending, 500–501
lerp (linear interpolation), 495
masked lerp, 500
multiway blending, 498–499
quaternion methods, 496–497

Blinn specular lighting, using, 462–463
Blizzard Entertainment company, 36

Blue Hat creativity approach, 131
Blu-Ray drive, impact on Sony, 14
board games, playing for inspiration, 132
bone data, ordering to increase speed, 509
bone masks, using, 499–500
bones

displaying trajectories of, 744
proper placement in rigs, 737
storage of, 485–486
transforming into world space, 507
transforms of, 478
See also root bone; SRB (synthetic root bone)

BookWorm, levels in, 123
Booleans, using with flags, 213–214
Boost, features of, 193
Border Color mode, using with textures, 448
boss enemy, implementing, 218–219
bottlenecks, looking for, 802
boundary conditions, checking, 318
bounding volumes, using with collision detection,

374–376
box modeling with polygons

concept sketch, 658–659
refining model, 662–669
roughing out character, 659–662
See also 3D modeling

Box2D physics engine Web site, 410
boxes, AABB and OBB, 375
brainstorming, 130
branching plot, structure of, 147–148
branching progression, explained, 124
brand, building for company, 890–892
Breadth-First algorithm, using in pathfinding,

566–569
broadcasting over IP networks, 614
Brøderbund company, 17, 35
Brookhaven National Laboratory, 4–5
browser and downloadable games, developing,

183–184
BSP (binary space partitioning)

overview of, 436, 672–673
speed and efficiency of, 439

budgets
creating, 862
developing in preproduction, 803
limitations of, 142–143

Index 943



buffering
improving file performance with, 292–294
in Presentation layer, 622–623
streaming audio, 586

BufferingLayer class, creating, 294
buffers

depth, 424–425
frame versus back, 424
index, 442
stencil, 425–426
using with audio files, 585
vertex, 442

bug database, using, 178–179
bugs

AI problems, 323
on consumer console hardware, 320
disappearance during changes, 320–321
explaining, 319
intermittent problems with, 321
internal compiler errors, 321–322
preventing, 325–326
in release but not debug, 320
unexplainable behavior of, 321
See also debugging; problems

builds, daily automated, 174–175
bullet entity, example of, 227–228
Bullet physics engine Web site, 410
Bullfrog game, 33
Bullfrog Productions, formation of, 22
bump maps, using in texture mapping, 689
Bushnell, Nolan, 6–7, 15
business press, generating, 892
buzz, generating, 888

C
C and C# music notes, frequencies in hertz, 580
C# versus C++, 198
C++

bit packing flags, 213–215
creating sword in, 227
FSM coded in, 531–532, 534–535
interface class in, 223
virtual inheritance in, 223

C++ development
C heritage, 191
guidelines for use of, 195
high-level features, 190–191
libraries, 191–192
performance, 190
versus scripting languages, 200–201
weaknesses of, 193–194

CAL (Compute Abstraction Layer) Web site, 416
calculations, breaking into steps, 318
Call of Duty game, 147, 155
Capsule Command (Capcom) company, 26
Carcassonne game, 95
Carmack, Adrian, 36
Carmack, John, 36
Carneal, Michael, 931–932
cars, modeling, 673–675
casting agent, role on dialogue team, 770
Castles game, 33
Casual Connect Web site, 891
Catto, Erin, 405
censorship, history of, 924–925
certificates, using in encryption, 632
challenges

framing, 80
gauging, 114–115

channels of communication, use in World of
Warcraft, 55

character animation
3 × 3 rotation matrix, 481–482
controls, 484
versus deformation, 483
Euler angles, 480–481
models and instances, 483–484
production workflow of, 732–745
quaternions, 482–483
skeletal hierarchy, 478–479
transforms, 479–480
See also animations; playing animations

character physics, applying to ragdoll, 413–414
characters

attributes of, 160
credibility of, 160
establishing goals for, 144
keeping separate logs for, 324

944 Index



texture mapping, 693–699
writing, 160–161

checkpoint saves, using, 119
child class, inheriting from, 219
China, video games banned in, 52
choices of players, basis of, 94, 96–97
Chopper Command game, 31
cinematic effect, described, 705
cinematic language

action and direction, 759–760
editing, 760
framing, 759
movement, 759–760
overview of, 754
production illustration, 761–762
production practices, 762
research, 761
story boards, 761–762

cinematics
advancing the plot, 755–756
delivering emotion, 754
hints, clues, and instruction, 756
intros, finales, and back story, 755–756
mechinima, 757
offering rewards, 755
pacing, 755
prerendered versus in-game, 756
prerendering, 756–757
scheduling, 758
tools, 757–758

ciphers, using in encryption, 631
circuit gateways, use in firewalls, 635
circular buffers, using in streaming audio, 586
Citizen Kane, 142
City Builder game, 17
City of Heroes game, 87
Civilization games, 19
clamp, measuring for lighting, 454
Clamp mode, using with textures, 447
class hierarchy, organizing, 226
classes, using in object-oriented design, 217
climax, including in stories, 145
clip space, defined, 429
clock, using in game loop, 249

cloth soft body, support for, 412–413
clubs or kings, looking for, 117
clues, collecting for debugging, 314–315
CME (composite motion extraction), using,

502–504
code

avoiding duplication of, 326
game-specific versus game-engine, 239–240
leveraging existing, 179–181
reuse and maintainability of, 241
suspecting and debugging, 322
See also programming practices

code and fix methodology, using, 171
code changes, debugging, 319
code coverage, verifying when testing, 326
code obfuscation, explained, 632
code reviews, performing, 175–176
coding standards, documenting, 174
coefficient of restitution, example of, 396
cognitive artifact, defined, 66
COLLADA format Web site, 415
collections and inventories, considering in games,

91–92
collision checking, performing with quadtrees,

437
collision detection

achieving O(n) time complexity, 376–377
bounding volumes, 374–376
complexity of, 372
intersection testing, 370–372
between moving spheres, 371
overlap testing, 368–370
overview of, 367–368, 517–518
plane sweep, 376–377
simplifying geometry, 373–374
See also frictionless collision response; terrain

collision detection
collision detection and response, including in

game loop, 251
collision resolution

collision, 381–382
epilogue, 382
intersection testing, 384
overlap testing, 382–384
prologue, 381

Index 945



collision response
alternative methods, 404–405
complexities in, 403–404
diagram of, 395
in simulation loop, 403

color gamut, limitation on computers, 453
color maps, using in texture mapping, 689
color theory, overview of, 646–647
colors

considering in graphic design, 646, 648–649
diffuse, 689
portraying depth with, 683

Colossal Cave game, 19
Columbine High School, shootings at, 49
combat system, example of, 110. See also fighting
Command & Conquer game, 36
command design pattern, described, 237
command hierarchy AI technique, using, 537–538
Commander Keen game, 36
Commodore, beginning of, 15–16
Commodore computers, role in crash of 1983, 9
communication

modeling for game agents, 526
tiers of, 55
See also real-time communication

company brand, building, 890–892
compiler errors, debugging, 321–322
compilers

compiling games on, 325
setting warning levels of, 325

completion bonus, overview of, 870
component systems

data-driven composition, 228
drawbacks and analysis, 229–230
limitations of inheritance, 224–226
organization of, 226–228

components, representing as visual units, 228
composite design pattern, using, 235–236
composite motion extraction (CME), using,

502–504
compositions, balance in, 644
compressed audio formats, using, 587–588
compression, adding to file systems, 297
compression, role in Presentation layer, 621
Compute Abstraction Layer (CAL) Web site, 416

Computer Quiz game, 7
Computer Role-Playing Games (CRPGs)

from BioWare, 34
Wasteland, 33

Computer Space game, 7, 858
computers. See home computers; PCs (personal

computers)
Compute-Unified Device Architecture (CUDA)

Web site, 416
concept phase

conceptual design production, 792–793
green light committee, 793–794
origin of concepts, 792

concepts, creating, 129
concussiveness of special effects, critiquing, 709
conditioning

classical, 80
defined, 80
operant, 81

Condor development house, 36
confidentiality agreement, using, 796
Congress, review of video games, 925–926
Conker’s Bad Fur Day game, 46
connection models

bandwidth, 629–630
broadcast, 628
client/server, 628–629
connection complexity, 629
peer-to-peer, 628

connectivity, real-time, 606
connotation versus denotation, 121
consequences, considering for choices, 96
console games

breakdown of revenue from, 844
consumer media coverage for, 887–889
entities in product path for, 838
publicity opportunities for, 883–884

console publishers, overview of, 843–844
consoles, using as platforms, 848
constraints

including in interface designs, 104–105
resolution by physics engines, 405
using, 413

constructor, initialization in, 276
consumer media coverage, overview of, 886–889

946 Index



content
difficulty progression, 126
dividing into stages, rounds, and levels, 123–124
environment sounds, 126–127
game setting, 122
level design, 123–124
overview of, 120–121
premise, 121–122
and progression, 122–125
theme, 121

Content Descriptors, assigning to video games, 47
content descriptors, examples of, 927–928
content regulation

in courts, 930–934
in other countries, 934–935

context sensitivity, including in interface designs,
104–105

contract breach, avoiding, 867–868
controls, including in interface designs, 101–102
coordinate spaces, overview of, 426–429
coordinate system transformations, using, 355–356
“coprocessor systems,” running video games on, 71
copy protection, overview of, 632
copyrights

duration, 908
exclusive rights, 907–908
international copyright law, 908–909
notice, 908
ownership, 907
procedure, 906
protection offered by, 897
standards, 906
works protected, 905

Core i7 architecture, features of, 256
cosecant function, symbol and definition, 332
cosine function

changing sign of, 335
law of, 337–339
symbol and definition, 332
using, 334

costs, considering, 142–143
cotangent function, symbol and definition, 332
coupling

in game loop, 253–254
occurrence in inheritance, 224
relationship to architectures, 240

CPU versus GPU particles, 715
Crane, David, 31
Crash Bandicoot franchise, 204
crashes and asserts, managing, 176–177
Crawford, Chris, 153
Crazy Taxi game, 900
creativity

defined, 129
encouraging, 134

creativity models
brainstorming, 130
inspiration, 131–132
Six Thinking Hats, 130–131
Wallas approach, 129–130

Croft, Lara, 30
cross product

as anticommutative operation, 355
application to three-dimensional vectors, 352
explained, 351–352
expressing as matrix product, 352
magnitude between vectors, 353
right-hand rule of, 354

CRPGs (Computer Role-Playing Games)
from BioWare, 34
Wasteland, 33

Csikszentmihalyi, Mihalyi, 84
cube maps, using with textures, 447
CUDA (Compute-Unified Device Architecture)

Web site, 416
cuffs, creating in box model, 664
cull triangles, backfacing, 467
culling, process of, 433
cultural issues

in China, 52
cultural acceptance, 53
foreign diplomacy, 52
in Germany, 52
humor, 51–52
in Japan, 53

Cumberbatch, Guy, 50
The Curse of Monkey Island game, 35
curves

controlling tangents on, 489–490
types of, 491–492

custom memory manager. See memory manager

Index 947



cut scenes
including in stories, 154–155
as scripted events, 156

cycle of motion, example of, 391
cyclic coordinate descent, using with multibone

IK, 511

D
D and D# music notes, frequencies in hertz, 580
DAG (Directed Acyclic Graph) architecture,

overview of, 241–242
daily automated builds, implementing, 174–175
Dark Age of Camelot game, 122
Dark Forces game, 35
Data Link layer, overview of, 610
data structures

arrays, 209–210
bit packing, 213
dictionaries, 211–212
flags, 213–215
floating-point numbers, 216
linked lists, 210–211
network communication, 215–216
queues, 212
stacks, 212

DataStream classes
extending, 297
inheritance diagram for, 293

Davis, Bruce, 31
dead reckoning

AI technique, 538
relationship to synchronization, 626

deals
franchises, 866
future products, 865
IP rights, 864–865
overview of, 863
ports, 865
research, 863–864
technology, 866

debugger tools
exploiting, 319
using, 323

debugging
adding infrastructure for, 323
FSMs (finite-state machines), 535
getting help with, 319
with partners, 319
scenarios and patterns, 320–322
tips, 317–319
understanding underlying systems, 322–323
See also bugs

debugging steps
collecting clues, 314–315
pinpointing errors, 315–316
repairing problem, 316–317
reproducing problem, 314
testing solution, 317

decibel, defined, 581
Decision in the Desert game, 18
decision tree learning, potential of, 545
decisions in games

increasing efficiency of, 96–97
making for game agents, 527

decomposition, applying to 4 x 3 matrix, 486
decorator design pattern, described, 237
Deer Hunter game, 45
deformation

versus animation, 483
of vertex normals, 508–509
of vertex positions, 508

degrees and radians, converting between, 333
deindividuation, defined, 54
delete class-specific operator, creating, 279–281
delete global operator

creating, 277–279
overriding for memory pools, 288–289

delivery media manufacturers, overview of, 849
delta

finding from rest pose, 507
producing for root-bone, 504

demilitarized zone (DMZ), use in firewalls, 636
Deming Cycle PDCA diagram, 128
demographic variable, defined, 82
demographics of video games, 45–47
denotation versus connotation, 121
density of special effects, critiquing, 709
depth, conveying through color, 683

948 Index



depth buffer
enhancing visibility with, 424–425
precision in, 428

design patterns
adapter, 237
command, 237
composite, 235–236
decorator, 237
facade, 237
flyweight, 237
object factory, 232–233
observer, 234–235
singleton, 230–231
visitor, 237

designers
Garriott, Richard, 20–21
Meier, Sid, 18–19
Molyneux, Peter, 22
Williams, Ken and Roberta, 19–20
Wright, Will, 17–18

Desktop Tower Defense game, 104
Destination Games, formation of, 21
destructible effect, described, 705
destruction, implementation of, 416
determinant of matrix, defined, 346
Deux Ex, 142
developers

versus publishers, 858–859
selecting during preproduction phase, 795–796

development agreement, using, 797–798
development methodologies

agile, 173
code and fix, 171
iterative, 172
waterfall, 172

development milestones
alpha stage, 872–873
beta stage, 874–875
gold master, 875
production summary, 875
QA (quality assurance), 873–874
timeline, 872

development time, reducing, 801–802
development tools, in-house, 243–244
Diablo game, 36

dialogue, using, 143
dialogue editor, role on dialogue team, 770–771
dialogue team, members of, 770–771
dialogue trees, using, 162–163
dice example, applying probability to, 115–117
dictionaries, using, 211–212
Dietrich, Sim, 133
difficulty level, gauging, 114–115, 125–126
diffuse lighting

normal maps, 458–459
overview of, 457–458
PRT (precomputed radiance transfer), 460–461
versus specular lighting, 461
tangent space, 459–460

diffusion versus occlusion, 592
Digital Anvil studio, formation of, 22
digital audio stream player, overview of, 595
Digital Molecular Matter (DMM) physics engine,

416
Dijkstra algorithm, using in pathfinding,

570–572
Direct Broadcast IPv4 address, explained, 612
Directed Acyclic Graph (DAG) architecture,

overview of, 241–242
direction

associating with magnitude, 339
considering in cinematics, 759–760

directional light, using, 723
director entity, including in interactive stories,

159
DirectX, compute shader in, 416
dirt, adding to rocket detonation, 707
discontinuity, occurrence of, 491
dispersion of special effects, critiquing, 709
distributors, overview of, 850
DLL shims, explained, 633
DLS (DownLoadable Sound) format, use of, 594
DMM (Digital Molecular Matter) physics engine,

416
DMZ (demilitarized zone), use in firewalls, 636
domain name, role in Network layer, 612–613
Donkey Kong game, 10
Doom games

controversy about, 49–50
fixed-path arithmetic in, 216
success of, 36–37

Index 949



dot product
angle related to, 349
defined, 347
expressed as matrix product, 348
importance of, 348
scalar quantity of, 347
sign of, 350
in three dimensions, 348

dot-product operation, using with normal maps,
458

double buffering, using in streaming audio, 587
Douglas, A. S., 40
DownLoadable Sound (DLS) format, use of, 594
D-Pad, invention of, 10
Dragon Quest series, 26
Dragon’s Lair, 147, 753
Dreamcast console, release of, 12
Dungeon Keeper game, 33
Dvorak, Robert V., 4
dynamic memory allocation

best practice for, 282
implementing, 276–277

E
E music note, frequencies in hertz, 580
E rating, explained, 47
E3 (Electronic Entertainment Expo)

demo, 822
Web site, 891

E10+ rating, explained, 47
EA (Electronic Arts) studio, 32–33
EarthSiege game, 20
Earthworm Jim game, 34
EAX (Environmental Audio eXtensions), use of,

783
EAX reverberation model, overview of, 593
EC rating, explained, 47
economies versus resources, 119–120
Edgar, Les, 22
editing, considering in cinematics, 760
editor database, creating, 884
education game genre, described, 41
Edwards, Dan, 5
effect, defined, 703

Electronic Arts (EA) studio, 32–33
Electronic Entertainment Expo (E3)

demo, 822
Web site, 891

Electronorgtechnica (ELORG), 24–25
“Elemental Tetrad” model, 67
ELORG (Electronorgtechnica), 24–25
ELSPA (Entertainment and Leisure Software

Publishers Association), 935
emergent behavior AI technique, using, 538
emitter, defined, 703
emotions

and aesthetics, 70
delivering in cinematics, 754
of players, 76–78
theory of, 77
See also feelings

emphasis, creating, 645
emulation versus simulation, 113–114
encryption

asymmetric (public key), 631
certificates, 632
ciphers, 631
goals of, 631
message digest, 632
in Presentation layer, 621
symmetric (secret key), 631

end effector, using in multibone IK, 511
endian order, considering for packets, 607
Enemy class

creating, 218
revising for polymorphism, 221

enemy classes, relationships between, 219
entertainment

negative feelings experienced in, 65–66
video games as, 44

Entertainment and Leisure Software Publishers
Association (ELSPA), 935

Entertainment Software Association (ESA),
46–47, 50, 927, 933

Entertainment Software Rating Board (ESRB),
47, 49, 825
criticism of, 929–930
establishment of, 927
process of, 928

950 Index



entities
class hierarchy diagram, 225
communication, 266–268
creating, 259–263
creating objects for, 307
with duplicate data, 264
identification, 265–266
interactions between, 227
level instantiation, 263–265
loading, 307–310
loading pointers for, 308–310
organization of, 258
overview of, 257–258
of same template type, 264
state of, 263
updating, 258–259
using templates with, 264

entity templates, using, 264–265
envelopes, using in rigging, 740
environment effect, described, 705
environment maps

using with shiny surfaces, 456
using with specular lighting, 463–464

environment sounds, considering in games,
126–127. See also audio effects

Environmental Audio eXtensions (EAX), use of, 783
environmental effects

3D audio integration, 596–598
generating, 591–592
standards, 593

environmental spatialized audio, overview of, 782
equal tempering tuning, system of, 580
equations, using consistent units in, 388, 392
error checking, performing in memory manager,

282–284
errors

internal compiler, 321–322
pinpointing for debugging, 315–316

ESA (Entertainment Software Association),
46–47, 50, 927, 933

ESRB (Entertainment Software Rating Board),
47, 49, 825
criticism of, 929–930
establishment of, 927
process of, 928

E.T. game, 9

Euler angles
describing rotations with, 480–481
orientation considerations, 488
See also angles

Euler integration
explicit, 400–402, 406–408
symplectic, 407

EVE Online game, 91
event timing, turn-based versus real-time, 604
EverQuest game, 53–54
exception handling, dealing with, 247
excitement, occurrence of, 86
Execute construct, using in FSM scripting, 533
execution cryptography

code obfuscation, 632
DLL shims, 633
heap hopper, 633
no op hacks, 633
stack overrun execution, 633
timer hacks, 633

Expensive Planetarium, 5
experiences

defined, 83
Flow, 84–85
immersive, 85–86
internal, 86–87
mastery, 83–84
role in Player half of model, 69–70
session length, 88–89
social, 87–88
tempo and rhythm, 88

expert knowledge, modeling for game agents,
526–527

explicit Euler integration
alternatives to, 406–408
example of, 400–402

explicit rules, considering in game design, 74
explosion, creating, 707
expressions, monitoring, 83

F
F and F# music notes, frequencies in hertz, 580
Fable 2 game, 22

interactive techniques in, 158
scripted events in, 155

Index 951



facade design pattern, described, 237
Façade game, 154
facial animation, overview of, 745–747
FACS technique, 83
Fairchild VES console, 8
falloff, using with lighting, 454
Fallout games, 34, 151
Falstein, Noah, 35
fan sites, working with, 882–883
fans, triangle, 440–441
Far Cry 2 game, 149, 157
Fargo, Brian, 33
Fear Factor game, controversy about, 50
feature set, prioritizing, 802
feedback, including in interface designs, 102–103
feedback loops

balancing versus reinforcing, 111–112
designing, 111–113
diagramming, 111

feelings
judging through games, 66
of players, 76–78
thinking is feeling, 78
See also emotions

Fight Night 2004 game, 102
fighting, classification of, 91. See also combat

system
fighting game genre, described, 37–38
File class, creating, 291–292
file I/O

buffering, 292–294
extensions and advanced uses, 297
files, 291–292
overview of, 289–290
pack files, 295–296
unified, platform-independent file system, 290–291

file system
adding compression to, 297
declaration for, 290
implementing, 291
improving, 290–291
manipulating current path, 290
mounting parts of, 290
using hash table with, 291
See also pack files

FileSystemOpen function, changing, 294
filtered randomness, potential of, 546
filtering, trilinear, 448
Final Drive Nitro online game, 673–675
Final Fantasy series, 13, 26
finite difference methods, using, 399–401
finite-state machines (FSMs)

debugging, 535
defining, 531–535
extending, 535
features of, 530–531
hierarchical, 535
multiple, 535
See also state machines

firewalls
circuit gateways, 635
determining WAN IP, 636
DMZ (demilitarized zone), 636
NAT (network address translation), 635
packet filters, 634–635
port forwarding, 636
port triggering, 636
proxies, 635

First Amendment, interpretation of, 925, 934
first- versus third-person perspective, 104–105
first-person shooter game genre, described, 38
fixed versus variable frame duration, 249–250
fixed-point numbers, using, 216
Fixup function, using with game entities, 308–309
FK (forward kinematics)

defined, 478
using, 742
See also IK (inverse kinematics); kinematics

flags, using, 213–215
flipbooking technique, using, 711
flip-flopping, modeling for game agents, 527
floating-point numbers, using, 216
flocking

AI technique, 539
as emergent behavior, 538

Flow, process of, 84–85
flow diagrams of difficulty progression, 126
flows and stocks

considering in system dynamics, 109
diagrams, 110

952 Index



fluid dynamics, simulating, 414–415
flyweight design pattern, described, 237
fonts

creating, 653
serif versus sans serif, 651
TrueType versus bitmap, 653

foreign diplomacy, considering, 52
formations AI technique, using, 539
Forrester, Jay, 109
forward kinematics (FK)

defined, 478
using, 742
See also IK (inverse kinematics); kinematics

forward tracing, applying to lighting, 451
Four Keys, 83
Fox Interactive, Sega of America suit against, 900
fragmentation of memory, 273–274
frame duration, variable versus fixed, 249–250
frame versus back buffers, 424
frame-rate independence, importance of, 408–409
frames of games, defined, 75
framing, considering in cinematics, 759
free expression, notion of, 924
frenetic special effects, critiquing, 710
frequency of sound waves, defined, 580
frictionless collision response, overview of,

394–398. See also collision detection
FrontEnd class, using with RAII, 246
frustum, defined, 428
frustum checking, performing with quadtrees, 437
FSM scripting language, example of, 532–533
FSMs (finite-state machines)

debugging, 536
defining, 531–535
extending, 535
features of, 530–531
hierarchical, 535
multiple, 536
See also state machines

full screen multiplayer mode, overview of,
604–605

Fullerton, Tracy, 89
fun, defined, 65
funneling, explained, 604
fuzzy logic, potential of, 546

G
G and G# music notes, frequencies in hertz, 580
Gabriel Knight’s adventures, 20
Game, concept of, 68
game agents

cheating, 529
making stupid, 529
modeling acting for, 528
modeling learning and remembering for, 528–529
modeling senses for, 525–526
modeling thinking for, 526–527

game and render, interactions between, 431
Game and Watch series, 10
game architecture

initialization/shutdown steps, 245–246
optimizations, 247–248
RAII (Resource Acquisition Is Initialization),

246–247
game artifact, elements of, 67
game assets, managing in production phase,

806–808; game resources
Game Audio Network Guild (GANG), joining,

786–787
Game Boy, creation of, 10
game buyer, average age of, 46
game code, programming, 168
game consoles, developing on, 182–183
game content, explained, 69
game design

frames, 74–75
objectives of, 73
outcomes of, 73–74
rules and structure, 74–75
uncertainty, 74

game design document (GDD), developing, 794
Game Design Perspectives book, 133
Game Design Workshop, 89
game designers

five tips for, 133–134
qualities of, 62–63

game developers
art and animation service providers, 841–842
full-service, 838–840
motion-capture service providers, 840–841

Game Developers Conference (GDC), 41, 891

Index 953



game engine, programming, 168–169
game entities

class hierarchy diagram, 225
communication, 266–268
creating, 259–263
creating objects for, 307
with duplicate data, 264
identification, 265–266
interactions between, 227
level instantiation, 263–265
loading, 307–310
loading pointers for, 308–310
organization of, 258
overview of, 257–258
of same template type, 264
state of, 263
updating, 258–259
using templates with, 264

game feedback, defined, 103
Game Freak magazine, 27
game genres, overview of, 37–41
Game half of model, considering, 68–69, 72
game interface. See interface designs
game logic, structuring, 431
game loop

collision, 251
coupling, 253–254
execution order, 254–257
input, 250
iterating through tasks in, 253
networking, 250
object updates, 251
parallelized example of, 256
rendering, 252
simulation, 251
structure, 252–253
tasks, 248–249
time step, 249–250

game mechanics, defined, 70
game models

Player half of, 69–70
third half of, 71
See also models

Game Object Assembly List (GOAL) scripting
language, 204

Game Path Web site, 891
game physics, implementation of, 409
game players. See players
game prototype, pitching, 860
game resources

explicit lifetime management, 301
reference counting, 301–302
resource lifetime, 300–301
resource manager, 298–300
resource precaching, 303
resources and instances, 302
working with, 297–298
See also game assets

game setting, considering, 122
game state information, considering, 103
game systems

dynamics of, 109–111
elements of, 107–109
feedback loops in, 111–113
probability in, 115–118
resources and economies in, 119–120
save/load systems in, 118–119
simulation versus emulation in, 113–114
variable difficulty in, 114–115

game variables, altering during gameplay, 323
game world, interactivity of, 158–159
GameObject class, creating with new, 280
gameplay effect, described, 705
gamers, gender statistics for, 46
games

banning of, 52
cultural issues associated with, 51–53
decoupling, 254
definitions of, 63
effects on youth violence, 50–51
facilitating play in, 64–66
frames of, 75
generating press for, 889–890
hidden object, 79
“laws” of, 74
legal issues related to, 48–50
as models, 113
perception of, 48
production budgets for, 3
qualities of, 63

954 Index



separating from graphics, 506
sequence of events in, 244
societal reaction to, 48–51
society within, 53–55
spine of, 152
winning and losing, 73–74
See also video games

game-specific versus game-engine, 239–240
gamut, using with IK by interpolation, 515
GANG (Game Audio Network Guild), joining,

786–787
gate the story, explained, 158
Gates, Bill, 14
GDC (Game Developers Conference), 41, 891
GDD (game design document), developing, 794
Genesis, release of, 12
genetic algorithms, potential of, 547
genres, overview of, 37–41
geometry

constructing, 673–676
distance from points to lines, 363–364
intersections of lines and planes, 364–365
lines, 361
planes, 362–363
simplifying for collision detection, 373–374

Geometry Wars games, 86, 104
Germany, banned list in, 52
GetMemoryBookmark function, creating, 284
gimbal lock, resulting from Euler angles, 480
GJK (Gilbert-Johnson-Keerthi) algorithm, using,

383
global time, use of, 493
glow, adding to rocket detonation, 707
GOAL (Game Object Assembly List) scripting

language, 204
goals

versus actions, 98
establishing for characters, 144
forming in players’s minds, 100

“God games”
Populous, 22
Railroad Tycoon game, 19
The Sims, 19

gold master, overview of, 875

golden path
including in interactive games, 152
keeping players on, 152–153

Gouraud shading, defined, 452
GPU (graphics processing unit), emerging trends,

416
GPU versus CPU particles, 715
Graetz, J. Martin, 5
Gram-Schmidt orthogonalization algorithm, 351
Grand Theft Auto series

IV, 102, 159
controversy about III, 49
controversy about Vice City, 49
success of, 13–14, 33, 47, 149

graphic design
elements of, 645–646
overview of, 644–645

graphical user interface (GUI), including in 
interface designs, 105–106

graphics, separating from games, 506
graphics processing unit (GPU), emerging trends,

416
graphs, common use of, 433–434
Green Hat creativity approach, 131
green light committee, overview of, 793–794
Greenfield, Patricia Marks, 44–45
grids

using in search space, 560–561
using in UI design, 650

Grim Fandango game, 35
grounding of special effects, critiquing, 709
GTA IV video game, 49
guarantees, forms of, 868
GUI (graphical user interface), including in 

interface designs, 105–106
Guitar Hero game, 28–29, 45

H
Haitian-American rights groups, protest of, 49
half vector, using in specular lighting, 462
Half-Life game, 20

elements of, 141
scripted events in, 155

Hall, Tom, 36

Index 955



Halo series
levels in, 123
success of, 14, 30

hand, building in box model, 665–666
handhelds and mobiles, developing on, 183
hand-keyed animation, overview of, 740–745
Hang-On game, 12
Hard Hat Mack game, 32
hardware vertex caches, entries in, 443
hardware-rendering pipeline

alpha-blend operations, 469–470
antialiasing, 467–468
fixed-function pipelines, 472–473
input assembly, 465
multiple render targets, 470
overview of, 464–466
pixel shading, 468–469
primitive assembly, culling, and clipping, 466–467
projection, 467–468
rasterization, 467–468
shader characteristics, 471–472
shader programming languages, 472
stencil operations, 469–470
vertex shading, 466
Z operations, 469–470
See also rendering primitives

Harmonix Music Systems, 28
hash table, using with file system, 291
Havok Physics physics engine Web site, 410
Hawkins, Trip, 32
Hays, Will, 925
head, approximating in box model, 660, 666, 668
Head Relative Transfer Function (HRTF) 

encoding, use of, 590, 782
Heap class, using with custom memory manager,

277–278
heap hopper, explained, 633
hearing, modeling for game agents, 525–526
Hearts of Iron, ban in China, 52
height fields

finding colliding triangles in, 378–379
representing terrains as, 378

Hellcat Ace game, 18
hemisphere lighting, using, 455–456
Hermite curve, creating, 490

heroes, identities of, 161
Hertz, frequencies in, 580
heuristic searches, using in pathfinding, 569–570,

572
hidden object games, getting attention in, 79
hierarchical blending, using, 500–501
Higinbotham, William, 4–6
hinge joints, support for, 413
hinting, considering in UI design, 653
Holland, Larry, 35
home computers

Apple, 15
Commodore, 15–16
IBM, 16–17

HomingProjectile class, Fixup function for, 309
homogeneous coordinates

defined, 426
using, 356–357

HRTF (Head Relative Transfer Function) 
encoding, use of, 590, 782

hub-based progression, explained, 124
hue, defined, 646
Huizinga, John, 75
humor, subjectiveness of, 51–52
HyperCard stack, creating Myst from, 27
hypotenuse, defined, 332
hypothesis, proposing for debugging, 315–316

I
I3DL2 (Interactive 3D Audio Rendering Level 2)

standard, overview of, 593
IBM PC, release of, 16–17
Ico game, 142
ID Software studio, 36–37
ideas

killing bad examples of, 134
writing down, 133

identities, trigonometric, 335–336
identity matrix, importance of, 346
if construct, using in FSM scripting, 533
if statements, bracketing, 325
IGDA Web site, 891
IK (inverse kinematics)

defined, 478
by interpolation, 514–516

956 Index



multibone, 511–513
overview of, 510
single-bone, 510–511
two-bone, 513–514
using, 742
See also FK (forward kinematics); kinematics

illuminated textures, using, 724–725
image formats, examples of, 444
image projection mapping, explained, 692
immersion

creating sense of, 140
occurrence in games, 85–86

implementer, role on sound design team, 770
inciting incident, including in stories, 144
Independent Game Conferences Web site, 891
index buffers, using with triangles, 442
index list, use in Germany, 52
indexed strips, converting triangle strips to, 443
indices, using with triangles, 442
inflows and outflows, considering in system 

dynamics, 109–110
influence mapping AI technique, using, 539–540
Infocom studio, 31–32
information, open versus hidden, 94–96
inheritance

diagram for DataStream classes, 293
limitations of, 224–226
multiple, 222–224
using in object-oriented design, 218–219

in-house development tools, using, 243–244
initialization step, purpose of, 245–246
inner product. See dot product
input, gathering in games, 250, 255
input assembly, process of, 465
input reflection model, using in Application

layer, 624–625
inspiration, encouraging, 131–132
instances

and models, 483–484
versus resources, 302
using in object-oriented design, 217

Intel Core i7 architecture, features of, 256
intellectual property (IP) rights, overview of,

864–865

interaction patterns, defined, 89
interactions and interference, minimizing, 318
Interactive 3D Audio Rendering Level 2 (I3DL2)

standard, overview of, 593
Interactive eXtensible Music Format (iXMF),

overview of, 595
interactive stories

aim of, 151
algorithmic, 153–154
elements of, 140
golden path in, 152
including directory entities in, 159
keeping players on paths in, 152–153
player agency in, 151–152
spine of, 152
techniques for, 158–159
See also stories

interface designs
audio effects, 106–107
constraints in, 104
context sensitivity in, 104
controls in, 101–102
feedback in, 102–103
GUI (graphical user interface), 105–106
improving, 99
overview of, 100–101
viewpoints in, 104–105

interfaces, connecting Player and Game through,
71

internal compiler errors, debugging, 321–322
internal monologues, implementing, 157
international fonts, considering, 652
Interplay studio, 33–34
interpolation

high order, 489–492
IK (inverse kinematics) by, 514–516
linear, 486–489
slerp (spherical interpolation), 496
See also lerp (linear interpolation)

intersection testing
overview of, 370–372
resolving, 384

inventories and collections, considering in games,
91–92

Index 957



inverse kinematics (IK)
defined, 478
by interpolation, 514–516
multibone, 511–513
overview of, 510
single-bone, 510–511
two-bone, 513–514
using, 742
See also FK (forward kinematics); kinematics

inverse trigonometric functions, using, 336–337
I/O. See file I/O
IP (intellectual property) rights, overview of,

864–865
IP addresses, considering in Network layer, 611
IP content of video games, overview of, 898–899
IP infringement, avoiding, 917–919
IP networks, broadcasting over, 614
IP protection, categories of, 896–898
IP rights, transfer of, 916–917
IPv4 addresses, overview of, 611–612
ISerializable interface

extending, 308
using, 304

iterative methodologies, using, 172
Iwatani, Toru, 23
iXMF (Interactive eXtensible Music Format),

overview of, 595

J
James, William, 76
James v. Meow Media, Inc., 931
Japan, video games banned in, 53
Japanese-American community, reaction to “Lo

Wang,” 51–52
Java

overview of, 195–196
performance, 196–197
platforms, 197–198
use in games, 198–199

Jax and Daxter franchise, 204
Jedi Knights game, 35
JIT (Just-in-Time) compiling, using with JVM,

196
Jobs, Steve, 15
Johnson, David, 669

joint limits, use of, 413
joints, placing geometry near, 735
Jolie, Angelina, 30
Jumpman character, creation of, 10
Juul, Jesper, 67
JVM (Java Virtual Machine), features of, 196

K
Kaplan, Larry, 31
Karaoke Revolution game, 28
Katarn, Kyle character, 35
kerning, considering in UI design, 652
keyframes

and linear interpolation, 486–489
problems associated with, 488

Kill Bill film, 148
kinematic objects, support for, 410
kinematics

defined, 742
forward versus inverse, 742
See also FK (forward kinematics); IK (inverse

kinematics)
Kingdom Hearts series, 26
kings or clubs, looking for, 117
King’s Quest game, 20
KKK (Ku Klux Klan), 54
Knights of the Old Republic game, 35
Kohl, Herbert, 49, 926

L
L1-L3 caches, using with Intel Core i7, 256
Lambert lighting, using, 457
Larrabee processor Web site, 416
latency, considering in Physical layer, 609
“laws,” considering in games, 74
layered architecture, overview of, 242–243
Lazzaro, Nicole, 83
leaf nodes, using in BSP (binary space partition-

ing), 436. See also nodes
learning, modeling for game agents, 528–529
LeBlanc, Mark, 67, 113
Left 4 Dead game, 77

directory entity in, 159
left arm, creating in box model, 662
left leg, creating in box model, 662

958 Index



legs
adding details to, 664
constructing in box model, 661–662

Leisure Suit Larry game, 20
lerp (linear interpolation)

versus high order interpolation, 489
masked, 500
normalizing, 497
overview of, 495
using with keyframes, 486–489
See also interpolation

level design, considering, 123–124
level instantiation, implementing, 263–265
level system, using with MMORPG, 112–113
level-of-detail (LOD) AI technique, using, 540
Levy, Jim, 31
Lieberman, Joseph, 48–49, 926, 929
light intensities, magnitude of, 454
light models

ambient light, 723–724
area light, 723
directional light, 723
overview of, 721
point light, 722
spotlight, 722

lighting
accent on form, 721
backward tracing, 451
components, 451–452
diffuse, 457–461
directing focus with, 721
falloff, 454
forward tracing, 451
Gouraud shading, 452
hemisphere, 455–456
illuminated textures, 724–725
indoor versus outdoor environments, 455
lens effects and atmosphere, 724
luminance, 720
overview of, 451
Phong shading, 452
raytracing, 451
setting mood with, 721
shiny surfaces, 456
specular, 461–464
and surfaces, 720

lighting environment, representing, 452–455
lightmaps, using, 456
lights

ambient, 455
intensity, position, and color of, 453
maximum distance of, 454
representing, 455–457
using spherical harmonics with, 456

line segments
changing lengths of, 340
decomposing, 334

linear impulse-momentum equation, 394
linear interpolation (lerp)

versus high order interpolation, 489
masked, 500
normalizing, 497
overview of, 495
using with keyframes, 486–489
See also interpolation

linear momentum, conserved, 395
linear motion extraction (LME), using, 501–502
linear plot, structure of, 146–147
linear progression, explained, 124
lines

characteristics of, 361
distances from points to, 363–364
in graphic design, 646
intersection with planes, 364–365

linked lists, overview of, 210–211
lip-sync technology, overview of, 600
listening, cultivating, 134
LME (linear motion extraction), using, 501–502
“Lo Wang” character, 51–52
loading versus saving, 118–119
Local Broadcast IPv4 address, explained, 612
local emergent gameplay, result of, 90–91
local pose, defined, 506–507
localization, considering in UI design, 650
LOD (level-of-detail) AI technique, using, 540
LOD meshes, using in car-racing games, 674
LOGIN.com, 891
logs, keeping for characters, 324
Loop Back IPv4 address, explained, 612
loop statements, bracketing, 325
looping, overview of, 492–493
looping motion, start and end frames of, 743

Index 959



“Lord British” character, 20
The Lost Vikings game, 36
low-polygon modeling, 675, 734
LucasArts studio, 34–35
luminance, overview of, 720

M
M rating, explained, 47
machine learning, modeling for game agents, 527
magazine covers, obtaining, 886–887
magazine demo, creating, 822–823
Magic Carpet game, 33
“magic circle,” defined, 75
magic numbers, avoiding, 326
Magnavox, settlement with Atari, 8
Magnavox Odyssey, 6
magnitude, associating direction with, 339
Male Order Monsters game, 32
manager task assignment AI technique, using,

540–541
Maniac Mansion game, 34–35
manual, creating, 826–827
manufacturers’ representatives, overview of,

850–851
Mario character

creation of, 10
popularity of, 29

Mario Kart game, 91
marketing at trade shows, 887
Markkula, Mike, 15
mascots, rise and fall of, 29–31
masked lerp, using, 500
Mass Effect, dialogue trees in, 162
massively multiplayer online role-playing games

(MMORPGs)
described, 38–39
level system for, 112–113
nature of, 44
Star Wars Galaxies, 35
success of, 21
World of Warcraft, 36

Master of Orion game, 19
mastering engineer, role on music team, 769
mastery, offering in games, 83–84
materials, overview of, 429

matrices
entries of, 343
identity, 346
inverting, 509
multiplying, 344–345
orthogonal, 356
singular, 346
symmetric, 344
transposes of, 343–344
writing vectors as, 344

matrix arithmetic, overview of, 343–347
Max Payne game, internal monologues in, 157
Maxis company, beginning of, 17
Maxwell, Kevin and Robert, 25
Maya plug-ins Web site, 415
MDA model, explained, 67
Mealy machine, explained, 530
mechanics of games, defined, 70. See also play

mechanics
mechinima method, using in cinematics, 757
Medal of Honor: Rising Sun game, controversy

about, 53
media

considering in Physical layer, 609–610
face-to-face visits, 882
fan sites, 882–883
getting heard in, 881–883
phone and e-mail, 882

media contact
editor database, 884
magazine covers, 886–887
news releases, 884–885
pitch feature stories, 886
pitch letters, 885
reviews, 886
tours, 885–886

media tours, conducting, 885–886
Mediagenic studio, 31
Mega Man game, 26
Meier, Sid, 19, 96
melee combat, defined, 91
memory

control, 273
dynamic allocation, 276–277
filling with bit pattern, 283

960 Index



fragmentation, 273–274
knowledge, 272–273
safety, 272
short-term, 78
static allocation, 274–276
on Wii console, 485
on Xbox 360 console, 485
See also RAM (random access memory)

memory allocation
avoiding problems with, 274–276
dynamic, 276–277
specifying preferences for, 277–278
static, 274–276
tracking, 324
See also allocated memory

memory allocation header, adding unique signa-
ture to, 282

memory blocks, using separately, 274
memory leaks

detecting, 284–285
watching for, 272

memory manager
error checking, 282–284
memory leak detection, 284–285
memory pools, 285–289
new and delete class-specific operators, 279–281
new and delete global operators, 277–279
writing, 325

memory pools
allocating memory block for, 287–288
benefits of, 285–286
class declaration, 286
creating static member variable for, 288–289
disadvantage of, 286
integrating with memory manager, 289

menu system
mind map for, 105
using in UI design, 650

Mercenaries, Spies, and Private Eyes game, 33
merchandising teams, working with, 845–846
mesh deformation, process of, 506–509
meshes

binding to skeletons, 739–740
dividing into triangle strips, 442
overview of, 432

message digest, using in encryption, 632
messaging systems, using with game entities,

266–268
methodologies. See development methodologies
Metroid game, 10, 30
microfacets, use with Blinn specular lighting,

462–463
microphone games, 28–29
Micropolis game, 17
MicroProse company, beginning of, 18–19
Microsoft

Federal case against, 49
release of Xbox by, 14

Microsoft Flight Simulator, 14
middleware, using, 179–180
MIDI-based music player, features of, 594
Midnight Club: Los Angeles game, 92
midproduction, managing, 819–820
milestone payments, overview of, 868–869
Miller, Alan, 31
Miller, Robyn and Rand, 27
Mind and Media book, 44
mind maps, creating in GUI, 105
mini-games genre, described, 40
Minkowski sum, applying to collision detection,

373–374
Minn, Jay, 93
mipmap chains, using with textures, 446
mipmapping, artifact of, 448
Mirror modes, using with textures, 447
Missouri, regulation of video games in, 50
mix engineer, role on music team, 768–769
Miyamoto, Shigeru, 10
MMORPGs (massively multiplayer online role-

playing games)
described, 38–39
level system for, 112–113
nature of, 44
Star Wars Galaxies, 35
success of, 21
World of Warcraft, 36

mobiles and handhelds, developing on, 183
mocap (motion capture)

overview of, 747–750
service providers, 840–841

Index 961



“Modeling and Solving Constraints,” 405
modeling and texture mapping, 734–735
modeling cars, 673–675
models

constructing for animation, 735
Game half of, 68–69
games as, 113
and instances, 483–484
types of, 66–67
See also game models

modular architecture, overview of, 241
modular storytelling, structure of, 148
modules, arrangement in layered architecture,

242–243
Molyneux, Peter, 33
mono spatialized audio, overview of, 781
mood, setting with lighting, 721
Moore machine, explained, 530
Morhaime, Mike, 36
morphing, using with facial animation, 746
Mortal Kombat game

controversy about, 48–51
success of, 923

motion, Newtonian equation of, 394
motion capture (mocap)

overview of, 747–750
service providers, 840–841

motion extraction
composite, 502–504
LME (linear motion extraction), 501–502
overview of, 501
variable delta, 504

Motion Picture Association of America (MPAA),
925

Motion Picture Production Code, 925
motion sequence, building, 733
mounted combat, defined, 91
movement, considering in cinematics, 759–760
MP3 audio format, use of, 587–588
MPAA (Motion Picture Association of America),

925
MSAA (multisampling antialiasing), process of,

468
M.U.L.E. game, 32
multibone IK, using, 511–513
multicast IPv4 address, explained, 611

multicore architectures, use of, 255–256
multiplatform development, implementing,

184–185
multiplayer modes

connectivity, 606
event timing, 604
full screen, 604–605
shared I/O, 604
split screen, 605

multiple inheritance, using in object-oriented
design, 222–224

multisampling antialiasing (MSAA), process of,
468

multiway blending, using, 498–499
music

adaptive audio system, 778–779
creating, 777–778
creating in production phase, 815
interactive, 776–777
licensing in production phase, 815
streaming, 777

music director, role on music team, 767–768
music notes, frequencies in Hertz, 580
music producers, role on music team, 768
music system, interactive, 595–596
music team, members of, 767–769
music-system programming

3D audio environmental effects, 596–598
audio scripting and engine integration, 598–600
conceptual interactive system, 595–596
digital audio stream player, 595
DLS (DownLoadable Sound), 594
iXMF (Interactive eXtensible Music Format),

595
lip-sync technology, 600
MIDI-based music player, 594
voice playback, 600–601
voice recognition, 600–601

Myst game, 27
Mystery House game, 20
Mythic Entertainment lawsuit, 917–918

N
narrative, using out of order, 158
narrative intelligence, defined, 153

962 Index



NAT (network address translation), use in 
firewalls, 635

national retailers, overview of, 852–853
Naughty Dog company, 204
navigation meshes, using in search space,

563–564
Nazi iconography, use in games, 52
NDAs (nondisclosure agreements), using, 796,

915, 918
neck, extruding in box model, 660
negative feelings, experiencing in entertainment,

65–66
negative versus positive reinforcement, 81
NES (Nintendo Entertainment System), 

positioning of, 10
“net receipts,” negotiation of, 839
network, receiving input from, 250
network address translation (NAT), use in 

firewalls, 635
network communication, bit packing, 215–216
Network layer

domain name, 612–613
IP addresses, 611
overview of, 610
special addresses, 611–612
unicast, 611

networks, neural and perception, 548–549
neural networks, potential of, 548
new class-specific operator, creating, 279–281
new global operator

creating, 277–279
overriding for memory pools, 288–289

news releases, generating, 884–885
Newtonian Equation of Motion, 394, 399–401
Newton’s Laws of Motion, 390–391, 395
n-gram prediction, potential of, 547–548
Night Trap game, controversy about, 48, 923
NIH (Not Invented Here) syndrome, 180
Nintendo

beginning of, 10–11
involvement with Tetris, 24–25
success of, 11

Nintendo Entertainment System (NES), position-
ing of, 10

Nishikado, Toshihiro, 23
nlerp (normalizing linear interpolation), 497

no op hacks, explained, 633
nodes

displaying in portals, 434–435
open and closed, 566
in PVS (potentially visible set), 438
representing with PlannerNode class, 566
See also leaf nodes

nondisclosure agreements (NDAs), using, 796,
915, 918

nonplayer characters (NPCs)
interacting with, 162
qualities of, 156–157
using to motivate players, 153
writing, 160–161

normal maps
creating, 671
use of, 447
using in tangent space, 460
using with diffuse lighting, 458–459

normalizing linear interpolation (nlerp), 497
Norman, Donald, 99
Not Invented Here (NIH) syndrome, 180
NPCs (nonplayer characters)

interacting with, 162
qualities of, 156–157
using to motivate players, 153
writing, 160–161

NULL pointers, checking for, 176
numbers sequence, reading from file, 293
numerical integrator

implicit methods, 407
writing, 400

numerical physics simulation
alternatives to Euler integration, 406–408
collection of particles, 401–402
collision response in simulation loop, 403–405
frame-rate independence, 408–409
integration of equation of motion, 399–401
stability issues, 406–408
See also physics

NURBS (Non Uniform Rational Basis Spline),
669–670

Nutting Associates, 7
NVIDIA’s PhysX physics engine Web site, 410
Nyquist limit, explained, 583

Index 963



O
OBB (oriented bounding boxes), using, 375
object designs, improving, 99
object factory design pattern

example of, 260–261
using, 232–233

object space, explained, 428
object types

automatic registration of, 262–263
creating Register object for, 262
creating template for, 262
registering and unregistering, 260–261
using UIDs (unique IDs) with, 261
using unique strings for, 261

object updates, including in game loop, 251
objectives of games, design of, 73
object-oriented design

classes, 217
concepts, 217–218
inheritance, 218–219
instances, 217
multiple inheritance, 222–224
objects, 218
polymorphism, 220–222

objects
carrying by characters, 517
creating for game entities, 307
grouping, 235–236
notifying of different types, 234–235
using in object-oriented design, 218

observer design pattern, using, 234–235
obstacle avoidance AI technique, using, 541
occlusion versus diffusion, 592
octrees

and quadtrees, 436–438
using with TINs, 380

OEM (original equipment manufacturer), 
explained, 833

O(n2) time complexity, achieving, 376–377
One on One: Dr. J vs. Larry Byrd game, 32
online advertising, 890
online behavior

good versus bad, 53–54
ugly, 54

opacity maps, using in texture mapping, 689

Open CL (Computing Language) Web site, 416
Open System Interconnect (OSI) specification, 608
OpenAL API, features of, 578
operations, rules as, 75
operations department, function of, 832–833
orientations, renormalizing, 487
oriented bounding boxes (OBBs), using, 375–376
original equipment manufacturer (OEM), 

explained, 833
orthogonal choice, defined, 96–97
orthogonal matrix, defined, 356
orthogonal vector, defined, 349
orthogonal views, including in game designs, 104
orthonormal transformation, defined, 509
OSI (Open System Interconnect) specification, 608
outcomes of games, designing, 73–74, 96–97
outflows and inflows, considering in system 

dynamics, 109–110
outline game design documentation, providing, 861
overlap testing

versus intersection testing, 370
limitations of, 369–370
resolving, 382–384
results, 368–369

overlapping action technique, using, 731

P
P&L (profit and loss) analysis, conducting,

803–804
pacing

considering in cinematics, 755
considering in stories, 145

pack files, using, 295–296. See also file system
packaging, creating, 826–827
packet filters, use in firewalls, 634–635
packets, overview of, 607–608
Pac-Man game, 9, 23
Pajitnov, Alexey, 24–25
Paku, impact on Pac-Man, 23
Pan European Game Information (PEGI) rating

system, 935
panning in audio systems, 585
parallel computations, disrupting, 318
parallelogram, calculating area of, 353
particle counts, considering for special effects, 713

964 Index



particle kinematics, overview of, 389–390
particle motion, effect of constant force on, 391–392
particle systems

creating, 705–708
defined, 703

particles
defined, 703
simulating collection of, 401–402
types of, 704

passwords, interception of, 634
patents

duration, 904
exclusive rights, 904
international patent law, 904
notice, 904
ownership, 903–904
procedure, 902–903
standards, 902
works protected, 899–901

pathfinding
A* algorithm, 565–568, 572–574
Best-First algorithm, 569–570
Breadth-First algorithm, 568–569
Dijkstra algorithm, 569–572
overview of, 564
Random-Trace, 564–565

patterns. See design patterns
Pavlovian conditioning, 81
payment negotiation

advance payment against royalties, 868
avoiding contract breach, 867–868
completion bonus, 870
deal structure, 867
guarantees, 868
milestone payments, 869
milestones, 868–869
overview of, 866–867
royalty negotiation, 870–871
royalty payment, 871

PC game, generic fields for, 828
PC publishers, overview of, 843–844
PC-based games

consumer media coverage for, 887–889
publicity opportunities, 883–884

PCjr computer, release of, 20

PCs (personal computers)
developing on, 181–182
as platforms, 846–847
terminology, 17

PDCA (Plan Do Check Act) diagram, using,
127–128

Pearce, Frank, 36
Peggle game, 123
PEGI (Pan European Game Information) rating

system, 935
penalty force methods, use of, 404–405
perception networks, potential of, 548–549
period of deformation, defined, 395
period of restitution, defined, 396
personal computers (PCs), developing on

developing on, 181–182
as platforms, 846–847
terminology, 17

personas, creating, 82
perspectives, first- versus third-person, 104–105
PET (Commodore), release of, 15
Phantasmagoria game, 20
Phong shading, defined, 452
Physical layer

bandwidth and latency, 609
media, 609–610

physical memory, division of, 273
physics

applying to special effects, 711–712
consistency of units, 388, 392
constant force on particle motion, 391–392
cycle of motion, 391
frictionless collision response, 394–397
Newton’s laws, 390–391
particle kinematics, 389–390
projectile motion, 392–393
See also numerical physics simulation

physics content, authoring, 415
physics engines

authoring physics content, 415
constraints, 413
DMM (Digital Molecular Matter), 416
emerging trends, 415–416
fluid dynamics, 414–415
ragdoll and character physics, 413–414

Index 965



physics engines (continued)

resolution of constraints, 405
rigid body dynamics, 411
soft body dynamics, 411–413
static and kinematic objects, 410
Web sites for, 410

physics simulation, updating at fixed time steps,
408–409

PhysX physics engine Web site, 410
Pinball Construction Set game, 32
pitch control, performing in audio systems, 585
pitch feature stories, using, 886
pitch letters, using, 885
pitching process

budget, 862
game prototype, 860
outline game design, 861
overview of, 859–860
presentation, 861
project scheduling, 862
technical design, 861–862

Pitfall! game, 31
pixel format, changing for back buffer, 424
pixel shading, process of, 468–469
Pixelux Entertainment Web site, 416
Plan Do Check Act (PDCA) diagram, using,

127–128
planar projection mapping, explained, 692
plane sweep algorithm, using, 377
planes

characteristics of, 362–363
intersection with lines, 364–365
near and far, 428

planning, applying to AI (artificial intelligence),
549

platform holders
consoles as platforms, 848
delivery media manufacturers, 849
distributors, 850
manufacturers’ representatives, 850–851
national retailers, 852
overview of, 846–847
regional retailers, 851
rental retailers, 851–852
retail, 849

platformer game genre, described, 37
platforms

browser and downloadable games, 183–184
game consoles, 182–183
handhelds and mobiles, 183
multiplatform development, 184–185
PCs (personal computers), 181–182

plausibility versus possibility, 122
play

facilitation in games, 64–66
features of, 65

play mechanics
choices and outcomes, 96–97
core mechanics, 90
fighting, 91
information, 94–96
inventories and collections, 91–92
local emergent gameplay, 90–91
player arrangements, 89–90
puzzles, 93–94
rewards and punishment, 92–93
simplification of, 97
uncertainty enhancement, 96
See also mechanics of games

Player, concept of, 68
player agency, role in interactive stories, 151–152
player arrangements, using, 89–90
player funneling, explained, 604
Player half of model, considering, 69–70
player input, gathering, 250
player modeling, potential of, 549–550
Player-Game relationship, model of, 72
players

attention, 78–79
average age of, 46
choices made by, 94
emotions and feelings of, 76–78
goals and intentions set by, 94
keeping on golden path, 152–153
motivating with NPCs (nonplayer characters),

153
psychological quirks, 79–82
thinking is feeling, 78
working memory, 78
See also audiences

966 Index



playing animations
overview of, 493–494
scrubbing, 494
See also animations; character animation

PlayStation, release of, 13
playtesting, 133
plot types

branching, 147
linear, 146–147
modified branching, 148
modular storytelling, 148
nonlinear, 148
quasilinear, 149

plots
advancing, 755–756
revealing in segments, 146

point lights, using, 453, 722
point sampling, using with textures, 448
point sprites, use of, 443
pointers

considering for packets, 607
to game resources, 306
including for heaps, 278
loading for game entities, 308–310
saving, 307

points
computing barycentric coordinates for, 380
defining planes by, 362
distances from lines, 363–364
earning, 110
rotating, 358–359

Pokémon game, 27–28
polar coordinates, using with special effects, 711
Police Quest game, 20
polygons. See box modeling with polygons
polymorphism, using in object-oriented design,

220–222
Pong game, 7–8
Populous game, 22, 32–33
port forwarding, use in firewalls, 636
port triggering, use in firewalls, 636
Portal game, GLaDOS character in, 160
portals

overview of, 434–436
speed and efficiency of, 439

ports, role in Transport layer, 613
poses

for IK by interpolation, 514–515
types of, 506–507

pose-to-pose animation
explained, 741
using, 744

positioning discussion, overview of, 891
positive versus negative reinforcement, 81
Posner, Richard, 931
possibility space, defined, 96
possibility versus plausibility, 122
post mortem, writing, 833–834
postproduction phase

box & docs, 826–827
bundled versions, 833
ESRB rating, 825
localizations, 824–825
OEM (original equipment manufacturer), 833
operations, 832–833
overview of, 823–824
personnel transfers, 824
post mortem, 833–834
QA (quality assurance), 827–828
QA database, 828–830
QA view from inside, 830–831
QA-producer relationship, 831–832
strategy guide, 827
test plan, 828
See also preproduction phase; production phase

potentially visible set (PVS)
overview of, 438
speed and efficiency of, 439

PR (public relations), doing, 888–889
precomputed radiance transfer (PRT), using with

diffuse lighting, 461
prefracture technique, use of, 416
premise, significance of, 121–122
preproduction phase

bid package, 796–797
budgets, 803
confidentiality agreement, 796
development agreement, 797–798
GDD (game design document), 794
golden spike and game scheduling, 800–801

Index 967



preproduction phase (continued)

internal staffing plan, 795
kickoff green light, 804
looking for bottlenecks, 802
milestone approvals, 799
milestones, 798–799
nondiscolsure agreement, 796
prioritizing feature set, 802
profit and loss analysis, 803–804
reducing development time, 801–802
scheduling, 800
selecting external developer, 795–796
TDD (technical design document), 799–800
team selection, 795
See also postproduction phase; production phase

Presentation Layer
buffering, 622–623
compression, 621
encryption, 621
serialization, 622

press, generating for casual games, 889–890
primary colors, identifying, 647
primitives

assembling, culling, and clipping, 466–467
common use of, 440
types of, 426
See also rendering primitives

The Princess and The Warrior, 20
priority queue, explained, 212
privacy, overview of, 633–634
probability

calculating, 115
sample problems, 116–117

problems
debugging, 316
reproducing for debugging, 314
See also bugs

problem-solving method, example of, 127–128
Probst, Larry, 32–33
procedural textures, using with special effects, 711
producers

project managers as, 791
relationship to QA (quality assurance), 831–832

production illustration, considering in 
cinematics, 761–762

production phase
alternate method, 817
art lists, 805–806
asset approval cycles, 807
asset delivery formats, 807–808
asset file-naming conventions, 806
asset tracking, 806–807
audio kickoff, 814
change requests, 812–813
consensus, 820–821
creation of sound effects, 815
creation or licensing of music, 815
design by committee, 820–821
design problems, 811
E3 (Electronic Entertainment Expo) demo, 822
executives, 817
expecting the unexpected, 820
final title, 821
first playable—proof of concept, 816–817
keeping everyone on board, 817
keeping momentum going, 817
kicking off tasks, 813
late production, 821
licensor(s), 817
magazine demo, 822–823
managing midproduction, 819–820
money troubles, 811–812
multitasking producer, 819
music specification, 814
personnel issues, 810–811
phases within phases, 817–819
platform holder promotional demo, 823
platform holder(s), 817
recording voice-overs, 815–816
red flags, 808
red flags in late production, 823
red flags in midproduction, 820
red flags in post production, 823
schedule delays, 813
screen shots, 822
sound list, 814
story text, 814–815
team, 817
team dynamics, 808–810
technical glitches, 812

968 Index



voice-over script, 814
See also postproduction; preproduction phase

production practices, considering in cinematics,
762

production summary, 875
production systems, potential of, 550
production workflow for character animation

creating skeletal rig, 736–739
hand keyframe, 740–745
modeling and texture mapping, 734–735
overview of, 732–733
planning work, 733–734
vertex weighting, 739–740

Professor Layton and the Curious Village game, 93
profit and loss (P&L) analysis, conducting,

803–804
programming areas

game code, 168
game engine, 168–169
tools programming, 169

programming practices
coding standards, 174
daily automated builds, 174–175
version control, 173–174
See also code

programming teams
organization of, 169–170
skills and personalities on, 170

progression and content, considering, 122–125
Project X game, 18
projectile motion, example of, 392–393
proof of concept, showing, 860
proprioception, defined, 104–105
protocol stack, overview of, 608
protocols

packets, 607–608
RFC (Request for Comments), 608

prototypes, using, 132–133
proxies, use in firewalls, 635
PRT (precomputed radiance transfer), using with

diffuse lighting, 461
PS3, exploiting power of, 255–256
pseudodeterminant expression, defined, 352
psycho-acoustic audio format, using, 587

psychological quirks
aiming at audiences, 81–82
conditioning, 80–81
framing challenges, 80

The Psychology of Everyday Things book, 99
public key encryption, using, 631
public relations (PR), doing, 888–889
publicity, opportunities for, 883–884
public-relations firms, working with, 845–846
publishers

advertising agencies, 845–846
console and PC, 843–844
versus developers, 858–859
marketing promise, 880
merchandising teams, 845–846
overview of, 842
public relations firms, 845–846
QA (quality assurance) service providers, 844–845

Pulp Fiction film, 148
Punch-Out game, 102
punishment

defined, 81
and rewards, 92–93

puzzle game genre, described, 40
puzzles

considering in games, 93–94
example of, 80

PVS (potentially visible set)
overview of, 438
speed and efficiency of, 439

Pythagorean theorem, using, 363–364

Q
QA (quality assurance), considering as 

development milestone, 873–874
QA database, contents of, 828–830
QA test plan, creating, 827–828
QA-producer relationship, overview of, 831–832
quadrilaterals, use of, 440
quads, use of, 440
quadtrees and octrees, overview of, 436–438
Quake games, 36–37, 90–91
quality tasks

acceptance tests, 178
asserts and crashes, 176–177

Index 969



quality tasks (continued)

bug database, 178–179
code reviews, 175–176
unit tests, 177

quantization error, occurrence of, 583–584
quaternions

blending methods, 496–497
representing rotations with, 482–483

queues, overview of, 212

R
racing games

described, 39
modeling cars in, 673–675

Radarscope game, 10
radians and degrees, converting between, 333
ragdoll simulations, use of, 413–414
Raid on Bungeling Bay game, 17
RAII (Resource Acquisition Is Initialization),

246–247
Railroad Tycoon game, 19
RAM (random access memory), reading from, 297.

See also memory
randomness, minimizing, 318
Random-Trace pathfinding, using in pathfinding,

564–565
ranged combat, defined, 91
rapid prototyping, considering in UI design, 653
Rare game company, 46
rasterization, process of, 467–468
ratings

determination of, 927–928
receiving for video games, 47

raytracing, applying to lighting, 451
RCA Studio II console, 8
reaction times, modeling for game agents, 526
real-time characters, creating animation for, 735
real-time communication

asynchronous environments, 630
connection models, 627–630
See also communication

“real-time gameplay,” expansion of, 44–45
real-time playback, animating for, 729–732
real-time strategy (RTS) game genre, described, 38
real-world time, use of, 493

recording engineer, role on music team, 768
Red Hat creativity approach, 131
reference counting, using with resource lifetime,

301–302
reflection maps, using with shiny surfaces, 456
regional retailers, overview of, 851
registering system, using with resource manager,

300
regulation, advent of, 926–928
reinforcement, positive versus negative, 81
reinforcement learning (RL), potential of, 550
Release() function, using in reference counting,

301–302
remembering, modeling for game agents, 528–529
render and game, interactions between, 431
render destinations, using, 605
Render Monkey tool, features of, 711
render objects

instances, 431–432
overview of, 431

render targets
changing, 450
using, 470

render volume partitioning, overview of, 433–434
rendering

including in game loop, 252
reducing time involved in, 255
to textures, 450

rendering engine, structuring, 431
rendering primitives

point sprites, 443
quadrilaterals, 440
triangle fans, 440–441
triangle strips, 441–442
See also primitives

rental retailers, overview of, 851–852
ReportMemoryLeaks function, creating, 284–285
reputation system, potential of, 550–551
Request for Comments (RFC), explained, 608
Rescue on Fractalus game, 34
research, conducting for cinematics, 761
Resident Evil game, 26, 50
Resistance 2 game, 256
resolution, including in stories, 146

970 Index



Resource Acquisition Is Initialization (RAII),
246–247

resource lifetime
all at once, 300–301
explicit management, 301
reference counting, 301–302

resource manager, creating, 299–300
resources

versus economies, 119–120
versus instances, 302
pointers to, 306
precaching, 303

rest pose, finding delta from, 507
retail, overview of, 849
retailers

national, 852–853
regional, 851
rental, 851–852

Return to Castle Wolfenstein game, 52
reverberation

direct path, 591
EAX model, 593

reverse engineering, overview of, 671–672
reviews, receiving, 886
rewards, offering in cinematics, 755
rewards and punishment, considering in games,

92–93
RFC (Request for Comments), explained, 608
RG and R texel formats, explained, 445
RGB components, explained, 444
RGB texel formats, explained, 445
RGBA channels, explained, 429, 444
rhythm

considering in games, 88
defined, 645
and tempo, 93

rhythm game genre
described, 40
rise of, 45

ribbon particle, described, 704
rigging, using envelopes in, 740
right arm, constructing in box model, 661
right leg, constructing in box model, 662
right triangle, trigonometric functions associated

with, 332

right-hand rule, applying to cross product, 354
rigid body dynamics

breakable joints, 416
overview of, 411
ragdoll simulations, 413–414

rigs
creating, 736–739
defined, 478

rising action, including in stories, 144. See also
actions

River Raid game, 31
RL (reinforcement learning), potential of, 550
R.O.B. (Robotic Operating Buddy), 10
Roberts, Chris, 21–22
Robotic Operating Buddy (R.O.B.), 10
Robotron: 2084 game, 121
Rock & Roll Racing game, 36
Rock Band game, 28–29, 45
rocket detonation, example of, 706–708
rocket jumping, defined, 91
Rockstar Games, Federal case against, 49
Rogers, Henk, 24–25
Romero, John, 36
root bone, position and orientation of, 504–505.

See also bones
root-bone transform, producing delta for, 504
rotating points, 358–359
rotations

describing with Euler angles, 480–481
representing with quaternions, 482–483

royalties
negotiating, 870–871
payments, 871

RPGs (role-playing games)
described, 38
narrative elements of, 141–142

RTS (real-time strategy) game genre, described, 38
rules

considering in game design, 74–75
including in Game half of model, 68–69

RunSimulation() function, running, 254
Rusch, Bill, 6
Russell, Steve, 5–6

Index 971



S
Sakaguchi, Hironobu, 26
samples

audio files as, 585
playback and manipulation, 585

sampling error, example of, 583
sampling sounds, 583
Sampson, Pete, 5
sandbox games

defined, 148
examples of, 149

sans serif versus serif fonts, 651
saturation, defined, 646
Saturn system, release by Sega, 12
save systems, types of, 118–119
scalar product. See dot product
scalars

defined, 339
distinguishing from vectors, 341
multiplying vectors by, 342
representing, 341

scene graph, defined, 434
scheduling projects, 862
Schell, Jesse, 67, 94
scientific modeling, defined, 66–67
screen real estate, dividing, 605
Script Creation Utility for Maniac Mansion

(SCUMM), 35
scripted events

cut scenes as, 156
including in stories, 155–156

scripting AI technique, using, 541–542
scripting languages

automatic garbage collection, 201
versus C++ development, 200–201
catching errors, 202
choosing, 205–206
code as asset in, 200
custom, 203–204
drawbacks of, 201–203
ease of development, 199–200
features, 200–201
interfacing with games, 202
iteration time, 200
Lua, 203

NWNScript, 204
performance, 201–202
Python, 203
QuakeC, 204
tool support, 202
UnrealScript, 204
writing, 204

scrubbing, overview of, 494
SCUMM (Script Creation Utility for Maniac

Mansion), 35
search space

grids, 560
navigation meshes, 562–564
overview of, 559–560
waypoint graphs, 560–562

search technique, modeling for game agents, 527
secant function, symbol and definition, 332
secondary action, explained, 731–732
secondary motion of special effects, critiquing, 709
second-order mechanics, result of, 90–91
secret key encryption, using, 631
security

copy protection, 632
encryption, 631–632
execution cryptography, 632–633
firewalls, 634–636
password interception, 634
user privacy, 633–634
username interception, 634

Sega
beginning of, 11–13
suit against Fox Interactive, 900

sensing, modeling for game agents, 524–525
serialization

creating objects, 307
implementing Write, 304–305
ISerializable interface, 304
loading, 307–310
loading pointers, 308–310
of packets, 607
in Presentation layer, 622
resources, 306
saving, 304–307
saving pointers, 307
unique identifiers, 305–306

972 Index



serif versus sans serif fonts, 651
serious game genre, described, 41
service providers

art and animation, 841–842
motion-capture, 840–841
QA (quality assurance), 844–845

Session layer
high-performance socket models, 619–620
origins, 615–616
socket modes, 616
sockets, 615
standard socket models, 616–619
WinSock, 616

session length, considering in games, 88–89
The Seven Cities of Gold game, 32
seven stages of actions, 99
sexually explicit content, association with video

games, 930
shader programming languages, 472
shaders

characteristics of, 471–472
overview of, 429
restrictions on, 471–472
using with special effects, 710–711

shading, Gouraud and Phong, 452
Shadow Warrior game, 51–52
shadows, overview of, 724
shapes, considering in graphic design, 646
shared I/O, overview of, 604
Shaw, Carol, 31
shiny surfaces, lighting, 456
shooter games, purpose of, 141
shutdown phase

optimizing, 247–248
purpose of, 245–246

Sid Meier’s games
Civilization, 19
Pirates!, 19

Sierra Entertainment company, beginning of,
19–20

Sierra On-Line company, 20
signal-to-noise ratio (SNR), calculating, 583
SimCity game, 17, 32
Simpson’s Road Rage game, 900
The Simpsons TV show, 52

The Sims series, 18, 148
simulation animation, overview of, 750
simulation game genre, described, 39
simulation loop, collision response in, 403
simulation step, including in game loop, 251
simulation versus emulation, 113–114
sine function

changing sign of, 335
law of, 337–339
symbol and definition, 332
using, 334

sine wave
characteristics of, 579
representation of, 583

single design pattern, using, 230–231
single-bone IK, using, 510–511
SingStar game, 28
Six Thinking Hats creativity model, 130–131
size, considering in graphic design, 646
sizeof() calls, using with files, 292
Skate or Die! game, 32
skeletal hierarchy, overview of, 478–479
skeletal rig, creating, 736–739
skeletons

binding meshes to, 739–740
overview of, 433

slerp (spherical interpolation), using, 496
sliding joints, support for, 413
smart terrain, potential of, 550–551
smoke, creating, 707
smoothed particle hydrodynamics (SPH), using,

414–415
sneaker game genre, described, 39
SNR (signal-to-noise ratio), calculating, 583
social experience, considering in games, 87–88
socket models

Datagram Transmissions, 619
high-performance, 619–620
Socket Creation, 617
Stream Transmissions, 618–619
TCP Connecting, 617–618

socket modes, blocking versus nonblocking, 616
sockets

origins of, 614–616
role in Session layer, 614

Index 973



soft body dynamics, overview of, 411–413
software prototypes, using, 133
Solo Flight game, 18
Sonic the Hedgehog game, 29
Sonic Unleashed game, purpose behind, 141
Sony, Federal case against, 49
Sony’s PlayStation, release of, 13–14
sound channel, defined, 583
sound design

ambience, 776
overview of, 774–776
team members, 769–770

sound effects
creating in production phase, 815
libraries, 786

sound engineer, role on sound design team, 769
sound event list, example of, 107
sound looping, complexity of, 599
sound studios. See audio tools
sound volume, measuring, 581
sound wave, plotting, 580
sounds

amplitude of, 581
defined, 579
determining positions of, 589
digital representation of, 582–583
repetition in games, 599
representing, 579
sampling, 583
varying in games, 599
See also audio

soundscape, forming, 599
space, types of, 428–429
space and timing, considering, 729
Space Harrier game, 12
Space Invaders game, 23
space partitioning, hierarchical, 436
Space Quest game, 20
spaces, considering in graphic design, 646
Spacewar game, 5–7, 858
sparks, adding to rocket detonation, 708
spatial partitioning schemes, uses of, 438–439
spatialized audio

3D, 782
environmental audio, 782–783

mono, 781
overview of, 780
stereo, 781
surround sound, 781

speaking opportunities, creating, 891
special effects

breakdown, 713
CPU versus GPU particles, 715
critique, 708–710
draw time of, 714–715
drawing with shaders, 710–711
elements of, 705
four milliseconds to draw, 714–715
optimizations, 712–715
particle types, 704
performance, 712–715
physics, 711–712
professional tips, 716
requesting new features, 715–716
shaders, 710–711
terminology, 702–703
time constraints, 712
types of, 704–705

Spector, Warren, 142
Spectrum Holobyte company, 24–25
specular lighting

environment maps, 463–464
overview of, 461–463

speech
regulation of, 931
ruling against games as, 50–51

speech recognition, potential of, 551–552
SPH (smoothed particle hydrodynamics), using,

414–415
spheres, representing, 375
sphere-sphere collision, example of, 383
spherical harmonics, using with lights, 456
spherical interpolation (slerp), using, 496
spine of games, elements of, 152
Splinter series, internal monologues in, 157
split screen multiplayer mode, overview of, 605
Spore game, 18
sports game genre

described, 40
enhancement by Wii, 45

974 Index



spotlights, using, 722
sprite particle, described, 704
SPU cores, features of, 255–256
Square Co., Ltd., 26
squash and stretch technique, example of, 730
SRB (synthetic root bone), significance of, 505.

See also bones
stack overrun execution, explained, 633
stack-based state machine AI technique, using,

542–543
stacks, overview of, 212
Standard Template Library (STL), features of,

191, 193
Star Wars games, 33, 35
state machines

stack-based, 542–543
using in AI (artificial intelligence), 542
See also FSMs (finite-state machines)

state reflection model, using in Application layer,
625–626

State Street lawsuit, 900–901
static memory allocation, implementing, 274–276
static objects, support for, 410
statistics

from ESA (Entertainment Software Association),
46–47

from ESRB (Entertainment Software Rating
Board), 47

Stealey, J.W. (”Wild Bill”), 18
stealth game genre, described, 39
Stein, Robert, 24–25
stencil buffers, using, 425–426
stencil operations, process of, 469–470
stereo spatialized audio, overview of, 781
stereotypes, considering in games, 51–52
Stewart, Potter, 925
STL (Standard Template Library), features of,

191, 193
stocks and flows

considering in system dynamics, 109
diagrams, 110

stories
beginning, 143
experiencing, 140
forwarding with internal monologues, 157

gating, 158
structure of, 143
See also interactive stories

storing animations. See animation storage
story mechanisms

artifacts, 156
cut scenes, 154–155
internal monologues, 157
NPCs (nonplayer characters), 156–157
scripted events, 155–156
triggered events, 157–158

storyboards, considering in cinematics, 761–762
storylines, conveying via artifacts, 156
storytelling techniques, 143

climax, 145
inciting incident, 144
pacing, 145
resolution, 145
rising action, 144–145
See also backstory

strategy guide, creation of, 827
streaming audio, 586–587
streaming music, using, 777
street basketball sound design example, 775–776
Street Fighter game, 26
structure, considering in game design, 74–75
studios

Activision and Infocom, 31–32
Blizzard, 36
Electronic Arts, 32–33
ID Software, 36–37
Interplay, 33–34
LucasArts, 34–35

subdivision surfaces, overview of, 670
subsumption architecture AI technique, using, 543
Super Mario Bros. games, 29, 141
Supreme Court, position on censorship, 924–925
surface-local space, defined, 429
surround sound spatialized audio, overview of, 781
survival horror game genre, described, 39
Suzuki, Yu, 12–13
switch statement, using with FSM, 532
sword entity

creating in C++, 227
data in XML file, 228

Index 975



symmetric encryption, using, 631
symplectic Euler integration, using, 407
synchronization in Application layer, 626
synthetic root bone (SRB), significance of, 505.

See also bones
systemic gameplay, defined, 91
systemic rules, defined, 75
systems

defined, 64
understanding for debugging, 322–323
See also game systems

systems thinking, defined, 109

T
T rating, explained, 47
Tabula Rasa game, 21
Tajiri, Satoshi, 27
Take-Two Interactive, Federal case against, 49
tangent function

changing sign of, 335
defined, 429
symbol and definition, 332

tangent space
relating to diffuse lighting, 459–460
using normal maps in, 460

tangent vector, calculating, 360
Tarantino, Quentin, 148
Target, Federal case against, 49
target audience, defined, 82
tasks, psychology of performance of, 99
Taylor series expansion, using, 399
TCP (Transmission Control Protocol), overview

of, 613–614
TDD (technical design document), using,

799–800
technical specification, providing, 861–862
templates, using with game entities, 264–265
tempo and rhythm, considering in games, 93
TenNapel, Doug, 34
Tennis for Two game, 4–5
terrain analysis AI technique, using, 543
terrain collision detection

overview of, 377–379
TINs (triangulated irregular networks), 379–381
See also collision detection

test image, creating in texture mapping, 696
test plan, creating, 828
testers, responsibilities of, 830–831
tests

acceptance, 178
unit, 177

Tetris game, 24–25
texels

formats, 444–446
layout of, 445
smoothing sharp edges of, 448
values of, 444

text-to-speech, potential of, 551–552
texture arrays, use of, 445–446
texture borders, creating, 696
texture mapping

2D file-based images used for, 688–690
characters, 693–699
coordinate system, 691–692
and modeling, 734–735
preparing for, 690–691
steps involved in, 688

textures
considering in graphic design, 646
defined, 444
filtering, 448–449
formats, 444–446
illuminated, 724–725
mapping, 446–448
overview of, 429
point sampling, 448
procedural, 711
rendering to, 450
for rocket detonation, 706
using in car-racing games, 674
using mipmap chains with, 446
wrap/clamp mode of, 447

The Legend Zelda games, 149
theme, considering, 121
thinking

modeling for game agents, 526–527
sharing, 134

thinking is feeling, 78
third-person perspective, considering, 104–105

976 Index



time
altering in games, 88
global, 493
picking for animations, 493
real-world, 493

time steps
collisions occurring in, 403
including in game loop, 249–250

timer hacks, explained, 633
timing and space, considering, 729
timing of special effects, critiquing, 708
TINs (triangulated irregular networks), overview

of, 379–381
Tomb Raider games, 30
tools, in-house, 243–244
tools programming, 169
torso shape, approximating in box model,

659–660, 666–667
total energy, calculation of, 396
trade secrets

duration, 915
exclusive rights, 915
notice, 915
ownership, 915
standards, 914–915
works protected, 914

trade shows, marketing at, 887
trademark registrations, searching, 917
trademarks

duration, 912
exclusive rights, 911–912
international trademark law, 913
notice, 913
ownership, 911
procedure, 910–911
protection offered by, 897
standards, 909–910
works protected, 909

traditional games genre, described, 40–41
Trak 10 racing game, 8
Tramiel, Jack, 15
transformations

association with bones, 478
common, 357–360
coordinate system, 355–356
homogeneous coordinates, 356–357

inverse transpose of, 508–509
matrix representations for, 357–360
normal vectors, 360–361
overview of, 479–480
representing as single matrix, 356–357

Transmission Control Protocol (TCP), overview
of, 613–614

transparency maps, using in texture mapping, 689
Transport layer

broadcasting, 615
ports, 613
TCP (Transmission Control Protocol), 613–614
UDP (User Datagram Protocol), 614–615

traversal example with quadtree, 437
trees, quadtrees and octrees, 436–438
triangle fans, using, 440–441
triangle strips

converting to indexed strips, 443
using, 441

triangles
clipping, 429
common use of, 426
projecting, rasterizing, and antialiasing, 467–468
sides of, 466
topologies of, 441
use of, 426

triangulated irregular networks (TINs), overview
of, 379–381

trigger system AI technique, using, 544
triggered events, using, 157–158
trigonometry

functions, 332–334
identities, 335–336
inverse functions, 336–337
sines and cosines, 337–339

trilinear filtering and sampling, 448
TrueType versus bitmap fonts, 653
truncation error

defined, 400
presence in numerical integration, 406

try-catch statement, using with RAII, 247
tuning, relationship to sound, 580
turn-based strategy game genre, described, 38
tweening, process of, 487
two-bone IK, using, 513–514
typography, considering in UI design, 651–653

Index 977



U
UCITA (Uniform Computer Information 

Transactions Act), 907
UDP (User Datagram Protocol)

overview of, 614–615
sendto() method, 619

UI (user interface) design
considerations, 648–649
elements, 649–653
overview of, 647–648

UIDs (unique IDs)
using, 265
using in serialization, 305–306

Ultima series, 33
Ultimatt Combatt franchise, 792–793
Ultimatum and Ultima games, 20–21
UML (Unified Modeling Language), FSM in, 531
uncertainty

considering in game design, 74
enhancing, 96

unicast address, considering in Network layer, 611
Unified Modeling Language (FSM), FSM in, 531
unified process, explained, 172
Uniform Computer Information Transactions Act

(UCITA), 907
uniform scale, defined, 358
unit tests, performing, 177
United States, ESA statistics for, 46
units, consistency of, 388
unity, defined, 645
usability, concept of, 99
user privacy, overview of, 633–634
usernames, interception of, 634
USPTO (United States Patent and Trademark

Office) Web site, 917
UTSA (Uniform Trade Secrets Act), 914
UV coordinates

mapping, 692–693
specifying in texture mapping, 691–692

V
variable data extraction, using, 504
variable versus fixed frame duration, 249–250

variables
initializing when declared, 325
naming, 325

vector arithmetic
cross product, 351–355
dot product, 347–351
overview of, 339–343

vector product
as anticommutative operation, 355
application to three-dimensional vectors, 352
explained, 351–352
expressing as matrix product, 352
magnitude between vectors, 353
right-hand rule of, 354

vectors
adding and subtracting, 341–342
distinguishing from scalars, 341
half, 462
lengths of, 342
multiplying by scalars, 342
normalized, 342
orthogonal, 349
referring to components of, 342
representing XYZ components of, 444
tangent and binormal, 429
three-dimensional, 342–343
transforming, 360–361
unit lengths of, 342
writing as matrices, 344
x, y, and z components of, 341

Verlet integration, variations of, 406–407
version control, benefits of, 173–174
vertex buffers, using, 442
vertex caches, entries in, 443
vertex normals, deforming, 508–509
vertex positions, deforming, 508
vertex shading, process of, 466
vertex weighting, overview of, 739–740
vertices

clipping, 429
features of, 426–427
indexing, 442–443

Vic-20 (Commodore), release of, 16

978 Index



video games
appeal of, 44–45
assigning Content Descriptors to, 47
audience for, 45–47
Congress’ review of, 925–926
content regulation in courts, 930–934
crash of 1983, 9
demographics of, 45–47
as entertainment, 44
first invention of, 4
IP content of, 898–899
ratings for, 47
regulation of, 48–49
running on “coprocessor systems,” 71
statistics related to, 46–47
See also games

viewpoints
first and third-person, 104–105
including in interface designs, 104–105
orthogonal views, 104

viewports, using, 605
violence, association with video games, 50–51,

930–931
Virtua series, 12–13
virtual addressing system, using, 273–274
virtual inheritance, using in C++, 223
virtual instruments and effects, using, 785–786
visceral special effects, critiquing, 710
visibility, enhancing with depth buffer, 425
vision, modeling for game agents, 524–525
visitor design pattern, described, 237
voice actors, role on dialogue team, 770
voice playback, advanced, 600–601
voice recognition, overview of, 601
voice-over director, role on dialogue team, 770
voice-over production, overview of, 779–780
voice-overs, recording in production phase,

815–816
volume control, performing in audio systems, 585

W
wait time, reducing in real-time communication,

627
Wallas, Graham, 129

Wal-Mart
Federal case against, 49
video games sold by, 45

WAN IP, use in firewalls, 636
Warcraft games, 36
warm reboot, doing, 248
Wasteland game, 33–34
waterfall methodology, using, 172
watermarking, using, 632
waypoint graphs, using in search space, 560–562
weakness modification learning, potential of, 552
Web sites

3ds Max plug-ins, 415
Austin Game Conference, 891
Box2D physics engine, 410
Bullet physics engine, 410
CAL (Compute Abstraction Layer), 416
Casual Connect, 891
COLLADA format, 415
CUDA (Compute-Unified Device Architecture),

416
Game Path, 891
GANG (Game Audio Network Guild), 774,

786–787
GDC (Game Developers Conference), 891
Havok Physics physics engine, 410
IGDA, 891
Independent Game Conferences, 891
Larrabee processor, 416
Maya plug-ins, 415
NVIDIA’s PhysX physics engine, 410
Open CL (Computing Language), 416
physics engines, 410
PhysX physics engine, 410
Pixelux Entertainment, 416
Spacewar game, 5
USPTO, 917

weight of special effects, critiquing, 709
weights

applying for blending, 498–499
considering for choices, 96

White Hat creativity approach, 131
Whitehead, Bob, 31
Wii

release of, 11
success of, 45

Index 979



Wii console, memory on, 485
William Gibson’s Neuromancer game, 33
Williams, Roberta, 37
win sequence, including in cinematics, 755
Wing Commander game, 21–22
WinSock, overview of, 616
Wolfenstein 3D game, 36, 49
working memory, defined, 78
World of Warcraft game, 36, 55
world space, explained, 428
World War II air combat games, beginning of, 35
Worms game, 32
Wozniak, Steve, 15
Wrap mode, using with textures, 447
Write function, calling in serialization, 304–305

X
XAudio API, features of, 578
Xbox 360 console, memory on, 485
Xbox Live, release of, 14
XML file, sword-entity data in, 228
X-Plane flight simulator, 114
XYZ components of vectors, representing, 444

Y
Yellow Hat creativity approach, 131
Yokoi, Gunpei, 10
youth violence, effects of games on, 50–51

Z
Z operations, process of, 469–470
Z-buffer

enhancing visibility with, 424–425
precision in, 428

Z-feather particle rendering, described, 704
Zork franchise, 31

980 Index



This page intentionally left blank 



License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the terms
and conditions set forth, return the unused book with unopened disc to the place where you purchased it
for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You are
licensed to copy the software onto a single computer for use by a single user and to a backup disc. You may
not reproduce, make copies, or distribute copies or rent or lease the software in whole or in part, except
with written permission of the copyright holder(s). You may transfer the enclosed disc only together with
this license, and only if you destroy all other copies of the software and the transferee agrees to the terms of
the license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in materials and work-
manship for a period of sixty (60) days from end user’s purchase of the book/disc combination. During the
sixty-day term of the limited warranty, Course Technology will provide a replacement disc upon the return
of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL COURSE
TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS
OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH
OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY AND/OR THE AUTHOR
HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM
FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES
OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITA-
TIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of law principles.
The United Convention of Contracts for the International Sale of Goods is specifically disclaimed. This
Agreement constitutes the entire agreement between you and Course Technology regarding use of the software.



Color Plate 1 An example of subtractive color.

Color Plate 2 An example of additive color.



Color Plate 3 Phoenix Assault before principles of depth and volume.

Color Plate 4 Phoenix Assault after depth principles have been applied.



Color Plate 5 Polar Bowler ice walls rely heavily on vertex coloring to add interest to a single tiled texture.

Color Plate 6 Examples of texturing with a bump map, a transparency map, and a color texture map.



Color Plate 7 Mapping a texture to a surface.

Color Plate 8 Example of using test maps to gauge the quality of the texture mapping, with the final result on the right.


	Table of Contents
	Acknowledgments
	Preface
	How to Use this Book
	Contributor Bios
	PART 1 CRITICAL GAME STUDIES
	1.1 A Brief History of Video Games
	1.2 Games and Society

	PART 2 GAME DESIGN
	2.1 Game Design
	2.2 Game Writing and Interactive Storytelling

	PART 3 GAME PROGRAMMING: LANGUAGES AND ARCHITECTURE
	3.1 Teams and Processes
	3.2 C++, Java, and Scripting Languages
	3.3 Programming Fundamentals
	3.4 Game Architecture
	3.5 Memory and I/O Systems
	3.6 Debugging Games

	PART 4 GAME PROGRAMMING: MATH, COLLISION DETECTION, AND PHYSICS
	4.1 Mathematical Concepts
	4.2 Collision Detection and Resolution
	4.3 Real-Time Game Physics

	PART 5 GAME PROGRAMMING: GRAPHICS, ANIMATION, AI, AUDIO, AND NETWORKING
	5.1 Graphics
	5.2 Character Animation
	5.3 Artificial Intelligence: Agents, Architecture, and Techniques
	5.4 Artificial Intelligence: Pathfinding Overview
	5.5 Audio Programming
	5.6 Networking and Multiplayer

	PART 6 AUDIO VISUAL DESIGN AND PRODUCTION
	6.1 Visual Design
	6.2 3D Modeling
	6.3 3D Environments
	6.4 2D Textures and Texture Mapping
	6.5 Special Effects
	6.6 Lighting
	6.7 Animation
	6.8 Cinematography
	6.9 Audio Design and Production

	PART 7 GAME PRODUCTION AND THE BUSINESS OF GAMES
	7.1 Game Production and Project Management
	7.2 Game Industry Roles and Economics
	7.3 The Publisher-Developer Relationship
	7.4 Marketing
	7.5 Intellectual Property Content, Law, and Practice
	7.6 Content Regulation

	ABOUT THE CD-ROM
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




