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Preface 

This book is intended for use in a traditional college-level data structures course 
(commonly known as CS2) . The authors have found that Python is an excellent 
language for an introductory course. Its relatively simple syntax allows students to 
focus on problem solving more so than the more complicated syntax of languages 
such as Java, C++, and Ada. Python's built-in data structures and large standard 
library also allow students to write more interesting programs than can easily be 
written with other languages. This book assumes that students have learned the 
basic syntax of Python and been exposed to the use of existing classes. Most 
traditional CSI courses that use Python will have covered all the necessary topics, 
and some may have covered a few of the topics covered in this book. 

Python's object-oriented features make it an elegant language for starting a data 
structures course. We have found that most students successfully completing a CSI 
course know how to use classes, but many of them need more experience to learn 
how to design and write their own classes. This is not surprising given the limited 
amount of time that is typically spent designing classes in a CSI course. We address 
this issue by including a number of examples of class design in the first few chapters 
of this book. 

Starting with Python in a CS2 course allows students to continue expanding 
their skills and gain experience designing and writing classes in a simple, familiar 
language. Python also makes it relatively easy to learn about linked structures. 
Every name in Python is a reference, so there is no additional syntax that needs to 
be learned in order to write linked structures. These advantages allow topics to be 
covered more quickly than is possible using more complex languages. 

One potential drawback of Python for a data structures course is that it hides 
the complexity of memory management. This is a benefit in a first course, but we 
think that in a second course it is important that students begin to understand 
some of these low-level details that the Python interpreter hides from them. Since 

xi 



xii Preface 

we can cover the basic data structures in less time using Python, there is time to 
learn a second language, even in a single-semester CS2 course. After the students 
have continued to improve their Python programming skills while covering the first 
few chapters of the book, it is relatively easy for them to learn a second object­
oriented language. By using C++ as the second language, the students are exposed 
to a lower-level, compiled language. The syntax of C++ is more complicated 
than Python, but that is a relatively small hurdle once students have mastered 
fundamental programming concepts using Python. For example, now that they 
understand the basic concepts of programming and the semantics of statements 
such as conditional statements and looping statements, they can focus on learning 
the C++ syntax for these statements.  

Once the students have learned fundamental C++ syntax, we cover the con­
cepts of dynamic memory management by rewriting linked structures in C++. 
This reinforces the basic data structure concepts while focusing on the memory 
management issues. This book is not intended to provide complete coverage of 
the C++ language; instead, it is designed to introduce a large subset of the C++ 
language so students can understand the low-level details of memory management 
and write object-oriented code in C++. After covering the basics of the C++ 
language, we also introduce some of the more advanced data structures by providing 
Python implementations and leaving the student to write them in C++. In effect , 
Python becomes an executable pseudocode for presenting key algorithms and data 
structures. 

Coverage Options 

Since Python allows coverage of  topics more quickly than other languages, a five 
semester-hour CS2 course can cover most , if not all , of this book. One of the 
authors covers the entire book over two courses that are three semester-hours each. 
In the three semester-hour CS2 course, the first seven chapters are covered in eight 
weeks and then the first three C++ chapters are covered in seven weeks, allowing 
plenty of time for the students to write a significant amount of C++ code. The final 
five chapters are covered in detail in the second three semester-hour course. This 
allows a week of review at the beginning of the course and more time to discuss the 
advanced algorithms and data structures in the last three chapters. 

Depending on the amount of experience students have with object-oriented 
programming, the first three chapters of the book may be covered fairly quickly or 
may require more detailed coverage. We introduce the asymptotic run-time analysis 
of algorithms in the first chapter so that we can analyze the running time of all 
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the data structure implementations. We also introduce one of Python's unit-testing 
frameworks early on so the students can formally test their code. After completing 
the discussion of linked structures in Chapter 4, the basic concepts of stacks and 
queues can be covered quickly, or the example applications can be used to continue 
developing algorithm and design skills. Some CSI courses cover recursion, although 
in the our experiences, most students do not fully understand recursion the first 
time they study it . Since the study of tree data structures requires recursion, a 
chapter on recursion (Chapter 6) is included before trees (Chapter 7) . 

After the chapter on trees, the book switches to C++. Chapter 8 provides an 
introduction to C++ assuming the reader knows Python. Chapter 9 covers the 
details of writing and using classes in C++ .  Chapters 10 and 1 1  cover the issues of 
dynamic memory and writing linked structures in C++. We strongly recommend 
that you cover chapters 8 through 1 1  in order. Chapter 12 covers the basics of 
using and writing template code, but is not intended to provide complete coverage 
of templates. Chapter 12 may be skipped as none of the remaining chapters require 
an understanding of templates. The last three chapters cover some of the advanced 
data structures and algorithms. These three chapters can be covered in any order 
although there are a few references to topics in the other chapters. 
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Chapter 1 

Object ives 

Abstraction and 

Analysis 

• To understand how programming "in the large" differs from programming "in 
the small." 

• To understand the motivation and use for pre- and postconditions. 

• To develop design and decomposition skills. 

• To understand the importance of algorithm efficiency and learn how to analyze 
the running time of simple algorithms. 

[II] I ntrod uct ion 

Believe i t  or not , a first course in  computer programming covers all the tools strictly 
necessary to solve any problem that can be solved with a computer. A very famous 
computer scientist named Alan Turing conjectured, and it is now widely accepted, 
that any problem solvable with computers requires only the basic statements that all 
computer programming languages include: decision statements (e.g. , if) ,  looping 
statements (e .g. , for and while) and the ability to store and retrieve data. Since 
you already know about these, you may wonder what else there is to learn. That's 
a good question. 

1 



2 Chapter 1 Abstraction and Ana lysis 

1 1 . 1 . 1 1 Programm ing i n  the Large 

If you think of computer programming as a process similar to constructing a building, 
right now you have the knowledge equivalent to how to use a few tools such as a 
hammer, screwdriver, saw, and drill. Those might be all the tools necessary to build 
a house, but that does not mean you can build yourself a habitable home, let alone 
one that meets modern building codes. That 's not to say that you can't do some 
useful things. You are probably capable of building benches or birdhouses, you're 
just not yet ready for the challenges that come with a larger project . 

In programming, just as in house construction, tackling bigger projects requires 
additional knowledge, techniques, and skills. This book is intended to give you a 
solid foundation of this additional knowledge that you can build on in future courses 
and throughout your career. As you work your way through this material , you will 
be making a transition from programming "in the small" to programming "in the 
large." 

Software projects can vary in difficulty in many ways. Obviously, they may 
range from the very small (e.g . ,  a program to convert temperatures from Celsius to 
Fahrenheit) to the very large (e.g. , a computer operating system) to anything in­
between. Projects also differ widely in how mission-critical the developed systems 
are. A web-based diary need not be designed to the same exacting specifications as, 
say, an online banking system, and neither is as critical as the software controlling 
a medical life-support device. 

There is no single property that makes any particular project "large" or "dif­
ficult." In general, though, there are a number of characteristics that distinguish 
real-world programming from the simpler academic exercises that you have probably 
seen so far. Here are some of them: 

program size So far you may have written programs that comprise up to hundreds 
(perhaps thousands) of lines of code. It is not uncommon for real applications 
to have hundreds of thousands or millions of lines . For example, the Linux 
operating system kernel contains around six million lines of code. 

single programmer vs. programming team Most of the programs you have worked 
on so far have probably been your own projects. However, most software today 
is produced by teams of developers working together. No single programmer 
has complete knowledge of every facet of the system. 

working from scratch vs. existing code base You have probably written most of your 
programs pretty much starting from scratch. In real-world projects, program-
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ming happens in the context of existing applications. Existing systems may be 
extended, borrowed from, superseded, or used in concert with new software. 

system lifetime When you are first learning to program, you may write many pro­
grams just for practice. Once your program has been graded, it may not ever 
be looked at again. Most real software projects have extended lifetimes. While 
they are in use, they continue to be refined, improved, and updated. 

environment complexity A small project may be written in a single programming 
language using a small set of standard libraries. Larger projects tend to use 
many languages and a vast array of supporting development tools and software 
libraries. 

1 1 . 1 .2 1 The Road Ahead 

The fundamental problem of programming in the large is managing the associated 
complexity. Humans are good at keeping track of only a few things at a time. In 
order to deal with a complex software system, we need ways of limiting the number 
of details that have to be considered at any given moment . The process of ignoring 
some details while concentrating on those that are relevant to the problem at hand 
is called abstraction. Effective software development is an exercise in building 
appropriate abstractions. Therefore, we will visit the idea of abstraction frequently 
throughout this book. 

Another important technique in coping with complexity is to reuse solutions that 
have been developed before. As a programmer, you will need to learn how to use 
various application programming interfaces (APIs) for the tools/libraries you will 
use. An API is the collection of classes and functions that a library of code provides 
and an explanation of how to use them (i.e. , what the parameters and return types 
are and what they represent) . For example, you have already learned some simple 
APls such as the functions provided in the Python math module and methods for 
built-in data structures such as the list and dictionary. Another common example 
of an API is a graphical user interface (GUI) toolkit. 

Most languages provide APIs for accomplishing many common tasks. APIs will 
vary from language to language and from one operating system to another. This 
book cannot possibly begin to cover even a small fraction of the APIs that you 
will learn and use during your career. However, by learning a few APIs and, more 
importantly, by learning to develop your own APls, you will acquire the skills that 
will make it easy for you to master new APIs in the future. 

Just as important as being able to reuse existing code through APIs is the 
ability to leverage existing knowledge of good design principles. Over the years, 
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computer scientists have developed algorithms for solving common problems (e.g. , 
searching and sorting) and ways of structuring data collections that are used as 
the basic building blocks in most programs. In this course, you will be learning 
how these algorithms and data structures work so that you can write larger, more 
complicated programs that are well designed and maintainable using these well­
understood components. Studying these existing algorithms and data structures 
will also help you learn how to create your own novel algorithms and data structures 
for the unique problems you will face in the future. 

Computer scientists have also developed techniques for analyzing and classifying 
the efficiency of various algorithms and data structures so that you can predict 
whether or not a program using them will solve problems in a reasonable amount 
of time and within the memory constraints you have. Naturally, you will also need 
to learn algorithm analysis techniques so that you can analyze the efficiency of the 
algorithms you invent . 

This book covers abstraction and data structures using two different program­
ming languages. Getting experience in more than one language is important for a 
number of reasons. Seeing how languages differ, you can start to gain an appreciation 
of how different tools available to the developer are suitable for different tasks. 
Having a larger toolkit at your disposal makes it easier to solve a wider variety of 
problems. However, the most important advantage is that you will also see how the 
underlying ideas of abstraction, reuse, and analysis are applied in both languages. 
Only by seeing different approaches can you really appreciate what are underlying 
principles versus what are just details of a particular language. Rest assured, those 
underlying principles will be useful no matter what languages or environments you 
may have in your future. 

Speaking of programming languages, at about the time this book is going to 
press, a new version of Python is coming out (Python 3.0) . The new version includes 
significant redesign and will not be backward compatible with programs written for 
the 2.x versions of Python. The code in this book has been written in Python 2 .x 
style. As much as possible, we have tried to use conventions and features that are 
also compatible with Python 3.0, and the conversion to 3.0 is straightforward. To 
make the code run in Python 3.0, you need to keep the following changes in mind. 

• print becomes a function call . You must put parentheses around the sequence 
of expressions to print . 

• The input function acts like the old raw_input . If you want to evaluate 
user input, you must do it yourself explicitly (eval ( input ( "Enter a number : 

" ) ) ) . 
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• range no longer produces a list . You can still use it as before in for loops 
(e.g. , for i in range ( 10) :) , but you need to use something like nums = 
list (range ( 10) ) to produce an explicit list . 

• The single slash operator, / ,  always produces floating point division. Use the 
double slash, / / ,  for integer division (this also works in Python 2 .x) . 

We have provided both Python 2.x and Python 3.0 versions of all the code from 
the text in the online resources, so you should be able to use this book comfortably 
with any modern version of Python. 

[I1J Functiona l Abstract ion 

In  order to  tackle a large software project, i t  is essential to  be  able to  break i t  into 
smaller pieces. One way of dividing a problem into smaller pieces is to decompose 
it into a set of cooperating functions. This is called functional (or procedural) 
abstraction. 

1 1 . 2 . 1 1 Design by Contract 

To see how writing functions is an example of abstraction, let 's look at a simple 
example. Suppose you are writing a program that needs to calculate the square root 
of some value. Do you know how to do this? You may or may not actually know an 
algorithm for computing square roots, but that really doesn't matter, because you 
know how to use the square root function from the Python math library. 

I 
import math 

��wer = math . sqrt (x) 

You can use the sqrt function confidently, because you know what it does, even 
though you may not know exactly how it accomplishes that task. Thus, you are 
focusing on some aspects of the sqrt function (the what) while ignoring certain 
details (the how) . That's abstraction. 

This separation of concerns between what a component does and how it ac­
complishes its task is a particularly powerful form of abstraction. If we think of a 
function in terms of providing a service, then the programs that use the function 
are called clients of the service, and the code that actually performs the function is 
said to implement the service. A programmer working on the client needs to know 



6 Chapter 1 Abstraction and Ana lysis 

only what the function does. He or she does not need to know any of the details of 
how the function works. To the client , the function is like a magical black box that 
carries out a needed operation. Similarly, the implementer of the function does not 
need to worry about how the function might be used. He or she is free to concentrate 
only on the details of how the function accomplishes its task, ignoring the larger 
picture of where and why the function is actually called. 

In order to accomplish this clean separation, the client and implementer must 
have a firm agreement about what the function is to accomplish. That is , they 
must have a common understanding of the interface between the client code and 
the implementation. The interface forms a sort of abstraction barrier that separates 
the two views of the function. Figure 1 . 1  illustrates the situation for the Python 
string split method (or the equivalent split function in the string module) . The 
diagram shows that the function/method accepts one required parameter that is a 
string and one optional parameter that is a string and returns a list of strings. The 
client using the split function/method does not need to be concerned with how the 
code works (i .e . , what 's inside the box) , just how to use it . What we need is a 
careful description of what a function will do, without having to describe how the 
function will accomplish the task. Such a description is called a specification. 

split function/ 
method 

optional separator string 
(defaults to any whitespace) 

list of strings 

Figure 1 . 1 : Split function as black box with interface 

Obviously, one important part of a specification is describing how the function 
is called. That is, we need to know the name of the function, what parameters 
are required, and what if anything the function will return. This information is 
sometimes called the signature of a function. Beyond the signature, a specification 
also requires a precise description of what the function accomplishes. We need 
to know how the result of calling the function relates to the parameters that are 
provided. Sometimes, this is done rather informally. For example, suppose you are 
writing a math library function for square root. Consider this specification of the 
function: 



1.2 Functiona l  Abstraction 7 

def sqrt (x) : 
" " "Computes the square root of x" " "  

This doesn't really do the job. The problem with such informal descriptions 
is that they tend to be incomplete and ambiguous. Remember, both the client 
and the implementer (even if they're one and the same person) should be able to 
fulfill their roles confidently based only on the specification. That's what makes the 
abstraction process so useful . What if the implementation computes the square root 
of x, but does not return the result? Technically, the specification is met, but the 
function will not be useful to the client . Is it OK if sqrt ( 16)  returns -4? What if 
the implementation works only for floating-point numbers, but the client calls the 
function with an integer parameter? Whose fault is it then if the program crashes? 
What happens if the client calls this function with a negative number? Perhaps 
it returns a complex number as a result , or perhaps it crashes. What happens if 
the client calls this function with a string parameter? The bottom line is that the 
simple, informal description just does not tell us what to expect . 

Now this may sound like nitpicking, since everyone generally "understands" what 
the square root function should do. If we had any questions, we could just test 
our assumptions by either looking at the code that implements the function or 
by actually trying it out (e.g. , try computing sqrt ( - 1 )  and see what happens) .  
But having to do either of these things breaks the abstraction barrier between the 
client and the implementation. Forcing the client coder to understand the actual 
implementation means that he or she has to wrestle with all the details of that code, 
thus losing the benefit of abstraction. On the other hand, if the client programmer 
simply relies on what the code actually does (by trying it out ) ,  he or she risks 
making assumptions that may not be shared by the implementer. Suppose the 
implementer discovers a better way of computing square roots and changes the 
implementation. Now the client 's assumptions about certain "fringe" behavior may 
be incorrect . If we keep the abstraction barrier firmly in place, both the client code 
and the implementation can change radically; the abstraction barrier ensures that 
the program will continue to function properly. This desirable property is called 
implementation independence. 

Hopefully you can see how precise specification of components is important when 
programming in the large. In most situations, careful specification is an absolute 
necessity; real disaster can loom when specifications are not clearly spelled out and 
adhered to. In one notorious example, NASA's 1999 Mars Climate Orbiter mission 
crashed at a loss of $125 million due to a mismatch in assumptions: a module was 
being given information in imperial units, but was expecting them in metric units. 
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Clearly, we need something better than an informal comment to have a good 
specification. Function specifications are often written in terms of preconditions 
and postconditions. A precondition of a function is a statement of what is assumed 
to be true about the state of the computation at the time the function is called. 
A postcondition is a statement about what is true after the function has finished. 
Here is a sample specification of the sqrt function using pre- and postconditions: 

def sqrt (x) : 
" " "Computes the square root of x .  

pre : x i s  an int or a float and x >= 0 
post : returns the non-negative square root of x" " "  

The job of the precondition is to state any assumptions that the implementation 
makes, especially those about the function parameters. In doing so, it describes the 
parameters using their formal names (x in this case) . The postcondition describes 
whatever the code accomplishes as a function of its input parameters. Together, the 
pre- and post conditions describe the function as a sort of contract between the client 
and the implementation. If the client guarantees that the precondition is met when 
the function is called, then the implementation guarantees the postcondition will 
hold when the function terminates. For this reason, using pre- and postconditions 
to specify the modules of a system is sometimes called design by contract. 

Pre- and post conditions are specific examples of a particular kind of documen­
tation known as program assertions. An assertion is a statement about the state 
of the computation that is true at a specific point in the program. A precondition 
must be true just before a function executes, and the postcondition must be true 
immediately after. We will see later that there are other places in a program where 
assertions can also be extremely valuable for documentation. 

If you are reading very carefully, you might be a bit uneasy about the postcondi­
tion from the sqrt example above. That postcondition describes what the function is 
supposed to do. Technically speaking, an assertion should not state what a function 
does, but rather what is now true at a given point in a program. It would be 
more correct to state the postcondition as something like post : RETVAL == y'x, 
where RETVAL is a name used to indicate the value that was just returned by the 
function. Despite being less technically accurate, most programmers tend to use the 
less formal style of postcondition presented in our example. Given that the informal 
style is more popular and no less informative, we'll continue to use the "returns 
this , that , and the other thing" form of postcondition. Those who are sticklers for 
honest-to-goodness assertions can, no doubt , do the necessary translation. 
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This brings up an important point about pre- and post conditions in particular, 
and specifications in general. The whole point of a specification is that it provides a 
succinct and precise description of a function or other component . If the specification 
is ambiguous or longer or more complicated than the actual implementation code, 
then little has been gained. Mathematical notations tend to be succinct and exact, 
so they are often useful in specifications. In fact , some software engineering methods 
employ fully formal mathematical notations for specifying all system components. 
The use of these so-called formal methods adds precision to the development process 
by allowing properties of programs to be stated and proved mathematically. In the 
best case, one might actually be able to prove the correctness of a program, that 
is , that the code of a program faithfully implements its specification. Using such 
methods requires substantial mathematical prowess and has not been widely adopted 
in industry. For now, we'll stick with somewhat less formal specifications but use 
well-known mathematical and programming notations where they seem appropriate 
and helpful. 

Another important consideration is where to place specifications in code. In 
Python, a developer has two options for placing comments into code: regular 
comments (indicated with a leading #) and docstrings (string expressions at the 
top of a module or immediately following a function or class heading) . Docstrings 
are carried along with the objects to which they are attached and are inspectable at 
run-time. Docstrings are also used by the internal Python help system and by the 
PyDoc documentation utility. This makes docstrings a particularly good medium 
for specifications, since API documentation can then be created automatically using 
PyDoc. As a rule of thumb, docstrings should contain information that is of use to 
client programmers, while internal comments should be used for information that is 
intended only for the implementers. 

1 1 . 2 . 2 1 Testi ng Precond itions 

The basic idea of design by contract requires that if a function's precondition is met 
when it is called, then the postcondition must be true at the end of the function. If 
the precondition is not met , then all bets are off. This raises an interesting question. 
What should the function do when the precondition is not met? From the standpoint 
of the specification, it does not matter what the function does in this case, it is "off 
the hook," so to speak. If you are the implementer, you might be tempted to simply 
ignore any precondition violations. Sometimes, this means executing the function 
body will cause the program to immediately crash; other times the code might run, 
but produce nonsensical results. Neither of these outcomes seems particularly good. 
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A better approach is to adopt defensive programming practices. An unmet 
precondition indicates a mistake in the program. Rather than silently ignoring such 
a situation, you can detect the mistake and deal with it. But how exactly should 
the function do this? One idea might be to have it print an error message. The 
sqrt function might have some code like this: 

def sqrt (x) : 

if x < 0 :  
print ' Error : can ' t  take the square root of a negative ' 

else : 

The problem with printing an error message like this is that the calling program 
has no way of knowing that something has gone wrong. The output might appear, for 
example, in the middle of a generated report . Furthermore, the actual error message 
might go unnoticed. In fact , if this is a general-purpose library, it 's very possible 
that the sqrt function is called within a GUI program, and the error message will 
not even appear anywhere at all . 

Most of the time, it is simply not appropriate for a function that implements a 
service to print out messages (unless printing something is part of the specification 
of the method) . It would be much better if the function could somehow signal that 
an error has occurred and then let the client program decide what to do about the 
problem. For some programs, the appropriate response might be to terminate the 
program and print an error message; in other cases, the program might be able to 
recover from the error. The point is that such a decision can be made only by the 
client . 

The function could signal an error in a number of ways. Sometimes, returning 
an out-of-range result is used as a signal. Here's an example: 

I 
def �:�t (xl , 

if x < 0 :  
return -1  

Since the specification of sqrt clearly implies that the return value cannot be 
negative, the value -1  can be used to indicate an error. Client code can check the 
result to see if it is OK. Another technique that is sometimes used is to have a global (accessible to all parts of the program) variable that records errors. The client code 
checks the value of this variable after each operation to see if there was an error. 
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Of course, the problem with this ad hoc approach to error detection is  that a 
client program can become riddled with decision structures that constantly check to 
see whether an error has occurred. The logic of the code starts looking something 
like this: 

x = someOperation ( )  
i f  x i s  not OK : 

fix x 
y = anotherOperation (x) 
if y is not OK : 

abort 
z = yetAnotherOperation(y) 
if z is not OK : 

z = SOME_DEfAULT_VALUE 

The continual error checking with each operation obscures the intent of the original 
algorithm. 

Most modern programming languages now include exception handling mecha­
nisms that provide an elegant alternative for propagating error information in a 
program. The basic idea behind exception handling is that program errors don't 
directly lead to a "crash," but rather they cause the program to transfer control to 
a special section called an exception handler. What makes this particularly useful 
is that the client does not have to explicitly check whether an error has occurred. 
The client just needs to say, in effect , "here's the code I want to execute should any 
errors come up." The run-time system of the language then makes sure that , should 
an error occur, the appropriate exception handler is called. 

In Python, run-time errors generate exception objects. A program can include a 
try statement to catch and deal with these errors. For example, taking the square 
root of a negative number causes Python to generate a ValueError, which is a 
subclass of Python's general Exception class. If this exception is not handled by 
the client , it results in program termination. Here is what happens interactively: 

» >  sqrt (-1 )  
Traceback (most recent call last ) : 

file "<stdin> " , line 1 ,  in ? 
ValueError : math domain error 
» >  

Alternatively, the program could "catch" the exception with a try statement: 
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» >  try : 
sqrt (-l )  

except ValueError : 
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print "Doops , sorry . "  

Doops , sorry . 
» >  

The statement(s) indented under try are executed, and if an error occurs, Python 
sees whether the error matches the type listed in any except clauses. The first 
matching except block is executed. If no except matches, then the program halts 
with an error message. 

To take advantage of exception handling for testing preconditions, we just need 
to test the precondition in a decision and then generate an appropriate exception 
object . This is called raising an exception and is accomplished by the Python raise 
statement . The raise statement is very simple: raise <expr> where <expr> is an 
expression that produces an exception object containing information about what 
went wrong. When the raise statement executes, it causes the Python interpreter 
to interrupt the current operation and transfer control to an exception handler. If 
no suitable handler is found, the program will terminate. 

The sqrt function in the Python library checks to make sure that its parameter 
is non-negative and also that the parameter has the correct type (either int or 
float ) . The code for sqrt could implement these checks as follows: 

def sqrt (x) : 
if x < 0 :  

raise ValueError ( ' math domain error ' )  
if type (x) not in (type ( l ) , type ( 11) , type ( 1 . 0) ) : 

raise TypeError ( ' number expected ' )  

# compute square root here 

Notice that there are no elses required on these conditions. When a raise executes, 
it effectively terminates the function, so the "compute square root" portion will only 
execute if the preconditions are met. 

Oftentimes, it is not really important what specific exception is raised when a 
precondition violation is detected. The important thing is that the error is diagnosed 
as early as possible . Python provides a statement for erubedding assertions directly 
into code. The statement is called assert . It takes a Boolean expression and raises 
an AssertionError exception if the expression does not evaluate to True . Using 
assert makes it particularly easy to enforce preconditions. 
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def sqrt (x) : 
assert x >= 0 and type (x) in (type ( 1 ) , type ( 11 ) , type ( 1 . 0) )  

As you can see, the assert statement is a very handy way of inserting �ssertions 
directly into your code. This effectively turns the documentation of preconditions 
(and other assertions) into extra testing that helps to ensure that programs behave 
correctly, that is, according to specifications. 

One potential drawback of this sort of defensive programming is that it adds 
extra overhead to the execution of the program. A few CPU cycles will be consumed 
checking the preconditions each time a function is called. However, given the 
ever-increasing speed of modern processors and the potential hazards of incorrect 
programs, that is a price that is usually well worth paying. That said, one additional 
benefit of the assert statement is that it is possible to turn off the checking of 
assertions, if desired. Executing Python with a -0 switch on the command line 
causes the interpreter to skip testing of assertions. That means it is possible to have 
assertions on during program testing but turn them off once the system is judged 
to be working and placed into production. 

Of course, checking assertions during testing and then turning them off in the 
production system is akin to practising a tightrope act 10 feet above the ground with 
a safety net in place and then performing the actual stunt 100 feet off the ground on 
a windy day�without the net. As important as it is to catch errors during testing, 
it's even more important to catch them when the system is in use. Our advice is to 
use assertions liberally and leave the checking turned on. 

1 1 . 2 . 3 1  Top-Down Design 

One popular technique for designing programs that you probably already know 
about is top-down design. Top-down design is essentially the direct application of 
functional abstraction to decompose a large problem into smaller, more manageable 
components. As an example, suppose you are developing a program to help your 
instructor with grading. Your instructor wants a program that takes a set of 
exam scores as input and prints out a report that summarizes student performance. 
Specifically, the program should report the following statistics about the data: 

high score This is the largest number in the data set . 

low score This is the smallest number in the data set . 
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mean This is the "average" score in the data set . It is often denoted x and calculated 
using this formula: 

_ L Xi 
X= --

n 

That is , we sum up all of the scores (Xi denotes the ith score) and divide by 
the number of scores (n) . 

standard deviation This is a measure of how spread out the scores are. The standard 
deviation, s, is given by the following formula: 

s= 

In this formula x is the mean, Xi represents the ith data value, and n is the 
number of data values. The formula looks complicated, but it is not hard 
to compute. The expression (x - Xi )2 is the square of the "deviation" of an 
individual item from the mean. The numerator of the fraction is the sum of 
the deviations (squared) across all the data values. 

As a starting point for this program, you might develop a simple algorithm such 
as this . 

Get scores from the user 
Calculate the minimum score 
Calculate the maximum score 
Calculate the average (mean) score 
Calculate the standard deviation 

Suppose you are working with a friend to develop this program. You could divide 
this algorithm up into parts and each work on various pieces of the program. Before 
going off and working on the pieces, however, you will need a more complete design 
to ensure that the pieces that each of you develops will fit together to solve the 
problem. Using top-down design, each line of the algorithm can be written as a 
separate function. The design will just consist of the specification for each of these 
functions. 

One obvious approach is to store the exam scores in a list that can be passed as 
a parameter to various functions. Using this approach, here is a sample design: 
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# stats . py 
def get_scores ( ) : 

" " "Get scores interactively from the user 

post : returns a list of numbers obtained from user" " "  

def min_value (nums) : 
" " "  find the minimum 

pre : nums is a list of numbers and len(nums) > 0 
post : returns smallest number in nums " " "  

def max_value (nums) : 
" " "  find the maximum 

pre : nums is a list of numbers and len(nums) > 0 
post : returns largest number in nums " " "  

def average (nums) :  
" " "  calculate the mean 

pre : nums is a list of numbers and len (nums) > 0 
post : returns the mean (a float)  of the values in nums " " "  

def std_deviation (nums) :  
" " " calculate the standard deviation 

pre : nums is a list of numbers and len(nums) > 1 
post : returns the standard deviation (a float )  of the values 

in nums " " "  

15 

With the specification of these functions in hand, you and your friend should 
easily be able to divvy up the functions and complete the program in no time. 
Let 's implement one of the functions just to see how it might look. Here's an 
implementation of std_deviation. 

def std_deviation(nums) :  

xbar = average (nums) 
sum = 0 . 0  
for num in nums : 

sum += (xbar - num) **2 
return math . sqrt (sum / (len(nums) - 1 ) ) 

Notice how this code relies on the average function. Since we have that function 
specified, we can go ahead and use it here with confidence, thus avoiding duplication 
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of effort . We have also used the "shorthand" += operator, which you may not have 
seen before. This is a convenient way of accumulating a sum. Writing x += y 
produces the same result as writing x = x + y. 

The rest of the program is left for you to complete. As you can see, top-down 
design and functional specification go hand in hand. As necessary functionality is 
identified, a specification formalizes the design decisions so that each part can be 
worked on in isolation. You should have no trouble finishing up this program. 

1 1 .2 .4 1 Documenting S ide Effects 

In order for specifications to be effective, they must spell out the expectations of 
both the client and the implementation of a service. Any effect of a service that is 
visible to the client should be described in the postcondition. For example, suppose 
that the std_deviation function had been implemented like this : 

def std_deviation (nums) :  
# This is bad code . Don ' t  use it . 
xbar = average (nums) 
n = len(nums) 
sum = 0 . 0  
while nums ! =  [] : 

num = nums . pop ( )  
sum + =  (xbar - num) **2 

return math . sqrt (sum / (n - 1 ) ) 

This version uses the pop ( )  method of Python lists. The call to nums . pop ( )  
returns the last number in the list and also deletes that item from the list. The 
loop continues until all the items in the list have been processed. This version of 
std_deviation returns the correct value, so it would seem to meet the contract 
specified by the pre- and postconditions. However, the list object nums passed as 
a parameter is mutable, and the changes to the list will be visible to the client . 
The user of this code is likely to be quite surprised when they find out that calling 
std_deviation (examScores) causes all the values in examScores to be deleted! 

These sorts of interactions between function calls and other parts of a program 
are called side effects. In this case, the deletion of items in examScores is a side 
effect of calling the std_deviation function. Generally, it 's a good idea to avoid 
side effects in functions, but a strict prohibition is too strong. Some functions are 
designed to have side effects. The pop method of the list class is a good example. 
It's used in the case where one wants to get a value and also, as a side effect ,  remove 
the value from the list . What is crucial is that any side effects of a function should 
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be indicated in its postcondition. Since the postcondition for std_deviation did 
not say anything about nums being modified, an implementation that does this is 
implicitly breaking the contract . The only visible effects of a function should be 
those that are described in its postcondition. 

By the way, printing something or placing information in a file are also examples 
of side effects .  When we said above that functions should generally not print any­
thing unless that is part of their stated functionality, we were really just identifying 
one special case of (potentially) undocumented side effects. 

[1]J Algorith m Ana lysis 

When we start dealing with programs that contain collections of data, we often need 
to know more about a function than just its pre- and postconditions. Dealing with 
a list of 10 or even 100 exam scores is no problem, but a list of customers for an 
online business might contain tens or hundreds of thousands of items. A programmer 
working on problems in biology might have to deal with a DNA sequence containing 
Inillions or even billions of nucleotides. Applications that search and index web 
pages have to deal with collections of a similar magnitude. When collection sizes 
get large, the efficiency of an algorithm can be just as critical as its correctness. An 
algorithm that gives a correct answer but requires 10 years of computing time is not 
likely to be very useful. 

Algorithm analysis allows us to characterize algorithms according to how much 
time and memory they require to accomplish a task. In this section, we'll take a 
first look at techniques of algorithm analysis in the context of searching a collection. 

1 1 . 3 . 1 1 Li near  Search 

Searching is the process of looking for a particular value in a collection. For example, 
a program that maintains the membership list for a club might need to look up the 
information about a particular member. This involves some form of a search process. 
It is a good problem for us to examine because there are numerous algorithms that 
can be used, and they differ in their relative efficiency. 

Boiling the problem down to its simplest essence, we'll consider the problem of 
finding a particular number in a list . The same principles we use here will apply to 
more complex searching problems such as searching through a customer list to find 
those who live in Iowa. The specification for our simple search problem looks like 
this : 
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def search (items , target ) : 
II lI lI Locate target in items 

pre : items is a list of numbers 
post : returns non-negative x where items [x] == target , if target in 

items ; returns - 1 ,  otherwise ll ll il 

Here are a couple interactive examples that illustrate its behavior: 

» >  search ( [3 ,  1 ,  4 ,  2 ,  5] , 4) 
2 
» >  search( [3 ,  1 ,  4 ,  2 ,  5] , 7)  
-1  

In the first example, the function returns the index where 4 appears in the list . In 
the second example, the return value -1 indicates that 7 is not in the list . 

Using the built-in Python list methods, the search function is easily imple­
mented: 

# search1 . py 
def search(items , target) : 

try : 
return items . index (target) 

except ValueError : 
return -1 

The index method returns the first position in the list where a target value occurs. 
If target is not in the list , index raises a ValueError exception. In that case, we 
catch the exception and return - 1 .  Clearly, this function meets the specification; the 
interesting question for us is how efficient is this method? 

One way to determine the efficiency of an algorithm is to do empirical testing. 
We can simply code the algorithm and run it on different data sets to see how long it 
takes. A simple method for timing code in Python is to use the time module's time 
function,  which returns the number of seconds that have passed since January 1 ,  
1970. We can just call that method before and after our code executes and print the 
difference between the times. If we placed our search function in a module named 
search1 . py, we could test it directly like this : 



# time_search . py 
import time 
from search1 import search 
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items = range (1000000) # create a big list 

start = time . time ( )  
search(items , 999999) # look for the last item 
stop = time . t ime ( ) 
print stop - start 

start = time . time ( )  
search (items , 499999) # look for the middle item 
stop = time . t ime ( ) 
print stop - start 

start = time . time ( )  
search( items , 10) # look for an item near the front 
stop = time . t ime ( )  
print stop - start 
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Try this code on your computer and note the time to search for the three 
numbers. What does that tell you about how the index method works? By the way, 
the Python library contains a module called timei t that provides a more accurate 
and sophisticated way of timing code. If you are doing much empirical testing, it 's 
worth checking out this module. 

Let 's try our hand at developing our own search algorithm using a simple "be the 
computer" strategy. Suppose that I give you a page full of numbers in no particular 
order and ask whether the number 13 is in the list . How will you solve this problem? 
If you are like most people, you simply scan down the list comparing each value to 
13.  When you see 13 in the list , you quit and tell me that you found it . If you get 
to the very end of the list without seeing 13 ,  then you tell me it 's not there. 

This strategy is called a linear search. You are searching through the list of 
items one by one until the target value is found. This algorithm translates directly 
into simple code. 

# search2 . py 
def search(items , target) : 

for i in range (len(items) ) :  
if items [i] == target : 

return i 
return - 1 
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You can see here that we have a simple f or loop to go through the valid indexes 
for the list (range (len ( items) ) ) . We test the item at each position to see if it is 
the target . If the target is found, the loop terminates by immediately returning the 
index of its position. If this loop goes all the way through without finding the item, 
the function returns -1 .  

One problem with writing the function this way is that the range expression 
creates a list of indexes that is the same size as the list being searched. Since an 
int generally requires four bytes (32 bits) of storage space, the index list in our test 
code would require four megabytes of memory for a list of one million numbers. In 
addition to the memory usage, there would also be considerable time wasted creating 
this second large list . Python has an alternative form of the range function called 
xrange that could be used instead. An xrange is used only for iteration, it does 
not actually create a list . However, the use of xrange is discouraged in new Python 
code. 1 

If your version of Python is 2 .3 or newer, you can use the enumerate function. 
This elegant alternative allows you to iterate through a list and, on each iteration, 
you are handed the next index along with the next item. Here's how the search 
looks using enumerate .  

# search3 . py 
def search( items , target) :  

for i , item in enumerate (items) : 
if item == target : 

return i 
return - 1 

Another approach would be to avoid the whole range/xrange/enumerate issue 
by using a while loop instead. 

# search4 . py 
def search( items , target) :  

i = 0 
yhile i < len (items) : 

if items [i] == target : 
return i 

i += 1 
return -1  

1 In Python 3 .0 ,  the standard range expression behaves like xrange and does not actually create 
a list. 
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Notice that all of these search functions implement the same algorithm, namely 
linear search. How efficient is this algorithm? To get an idea, you might try 
experimenting with it. Try timing the search for the three values as you did using 
the list index method. The only code you need to change is the import of the actual 
search function, since the parameters and return values are the same. Because we 
wrote to a specification, the client code does not need to change, even when different 
implementations are mixed and matched. This is implementation independence at 
work. Pretty cool, huh? 

1 1 . 3 .2 1 Binary Search 

The linear search algorithm was not hard to develop, and it will work very nicely 
for modest-sized lists. For an unordered list , this algorithm is as good as any. The 
Python in and index operations both implement linear searching algorithms. 

If we have a very large collection of data, we might want to organize it in some 
way so that we don't have to look at every single item to determine where, or if, a 
particular value appears in the list . Suppose that the list is stored in sorted order 
(lowest to highest) .  As soon as we encounter a value that is greater than the target 
value, we can quit the linear search without looking at the rest of the list . On 
average, that saves us about half of the work. But if the list is sorted, we can do 
even better than this. 

When a list is ordered, there is a much better searching strategy, one that you 
probably already know. Have you ever played the number guessing game? I pick a 
number between 1 and 100, and you try to guess what it is. Each time you guess, I 
will tell you if your guess is correct , too high, or too low. What is your strategy? 

If you play this game with a very young child, they might well adopt a strategy 
of simply guessing numbers at random. An older child might employ a systematic 
approach corresponding to linear search, guessing 1 , 2 , 3 , 4, and so on until the 
lnystery value is found. 

Of course, virtually any adult will first guess 50. If told that the number is 
higher, then the range of possible values is 50-100. The next logical guess is 75. 
Each time we guess the middle of the remaining numbers to try to narrow down the 
possible range. This strategy is called a binary search Binary means two, and at 
each step, we are dividing the remaining numbers into two parts. 

We can employ a binary search strategy to look through a sorted list . The basic 
idea is that we use two variables to keep track of the endpoints of the range in the 
list where the item could be. Initially, the target could be anywhere in the list , so 
we start with variables low and high set to the first and last positions of the list , 
respectively. 



22 Chapter 1 Abstraction a nd Ana lysis 

The heart of the algorithm is a loop that looks at the item in the middle of the 
remaining range to compare it to x. If x is smaller than the middle item, then we 
move high, so that the search is narrowed to the lower half. If x is larger, then we 
move low, and the search is narrowed to the upper half. The loop terminates when 
x is found or there are no longer any more places to look (i .e . , low > high) . The 
code below implements a binary search using our same search API. 

# bsearch . py 
def search ( items , target ) :  

low = 0 
high = len(items) - 1 
while low <= high : 

mid = (low + high) 
item = items [mid] 
if target == item : 

return mid 
elif target < item : 

high = mid - 1 
else : 

low = mid + 1 
return - 1  

# There is still a range to search 
II 2 # position of middle item 

# Found it ! Return the index 

# x is in lower half of range 
# move top marker down 
# x is in upper half 
# move bottom marker up 
# no range left to search , 
# x is not there 

This algorithm is quite a bit more sophisticated than the simple linear search. 
You might want to trace through a couple of sample searches to convince yourself 
that it actually works. 

1 1 . 3 . 3 1 I nforma l  Algorithm Com parison 

So far, we have developed two very different algorithms for our simple searching 
problem. Which one is better? Well, that depends on what exactly we mean by 
better. The linear search algorithm is much easier to understand and implement. 
On the other hand, we expect that the binary search is more efficient, because it 
doesn't have to look at every value in the list . Intuitively, then, we might expect the 
linear search to be a better choice for small lists and binary search a better choice 
for larger lists. How could we actually confirm such intuitions? 

One approach would be to do an empirical test . We could simply code both 
algorithms and try them out on various-sized lists to see how long the search takes. 
These algorithnls are both quite short, so it would not be difficult to run a few 
experiments. When this test was done on one of our computers (a somewhat dated 
laptop) , linear search was faster for lists of length 10 or less , and there was not much 
noticeable difference in the range of length 10-1 ,000. After that , binary search was 
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a clear winner. For a list of a million elements, linear search averaged 2 .5  seconds 
to find a random value, whereas binary search averaged only 0.0003 seconds. 

The empirical analysis has confirmed our intuition, but these are results from 
one particular machine under specific circumstances (amount of memory, processor 
speed, current load, etc. ) . How can we be sure that the results will always be the 
same? 

Another approach is to analyze our algorithms abstractly to see how efficient they 
are. Other factors being equal, we expect the algorithm with the fewest number of 
"steps" to be the more efficient. But how do we count the number of steps? For 
example, the number of times that either algorithm goes through its main loop will 
depend on the particular inputs.  We have already guessed that the advantage of 
binary search increases as the size of the list increases. 

Computer scientists attack these problems by analyzing the number of steps 
that an algorithm will take relative to the size or difficulty of the specific problem 
instance being solved. For searching, the difficulty is determined by the size of the 
collection. Obviously, it takes more steps to find a number in a collection of a million 
than it does in a collection of ten. The pertinent question is how many steps are 
needed to find a value in a list of size n. We are particularly interested in what 
happens as n gets very large. 

Let 's consider the linear search first . If we have a list of 10 items, the most work 
our algorithm might have to do is to look at each item in turn. The loop will iterate 
at most 10 times. Suppose the list is twice as big. Then we might have to look at 
twice as many items. If the list is three times as large, it will take three times as 
long, etc .  In general, the amount of time required is linearly related to the size of 
the list n. This is what computer scientists call a linear time algorithm. Now you 
really know why it's called a linear search. 

What about the binary search? Let 's start by considering a concrete example. 
Suppose the list contains 16 items. Each time through the loop, the remaining range 
is cut in half. After one pass, there are eight items left to consider. The next time 
through there will be four, then two, and finally one. How many times will the loop 
execute? It depends on how many times we can halve the range before running out 
of data. This table might help you to sort things out: 

List Size Halvings 
1 0 
2 1 
4 2 
8 3 
16 4 



24 Chapter 1 Abstraction and Ana lysis 

Can you see the pattern here? Each extra iteration of the loop allows us to 
search a list that is twice as large. If the binary search loops i times, it can find a 
single value in a list of size 2i . Each time through the loop, it looks at one value (the 
middle) in the list . To see how many items are examined in a list of size n, we need 
to solve this relationship: n = 2i for i .  In this formula, i is just an exponent with a 
base of 2. Using the appropriate logarithm gives us this relationship: i = log2 n. If 
you are not entirely comfortable with logarithms, just remember that this value is 
the number of times that a collection of size n can be cut in half. 

OK, so what does this bit of math tell us? Binary search is an example of a 
log time algorithm. The amount of time it takes to solve a given problem grows as 
the log of the problem size. In the case of binary search, each additional iteration 
doubles the size of the problem that we can solve. 

You might not appreciate just how efficient binary search really is. Let 's try to 
put it in perspective. Suppose you have a New York City phone book with, say, 12 
million names listed in alphabetical order. You walk up to a typical New Yorker 
on the street and make the following proposition (assuming their number is listed) : 
"I'm going to try guessing your name. Each time I guess a name, you tell me if your 
name comes alphabetically before or after the name I guess." How many guesses 
will you need? 

Our analysis above shows the answer to this question is l092 12,000,000. If you 
don't have a calculator handy, here is a quick way to estimate the result. 210 = 1 ,024 
or roughly 1 ,000, and 1 ,000 x 1 ,000 = 1 ,000,000. That means that 210 x 210 = 
220 � 1 ,000,000. 220 is approximately one million. So, searching a million items 
requires only 20 guesses. Continuing on, we need 21 guesses for two million, 22 for 
four million, 23 for eight million, and 24 guesses to search among sixteen million 
names. We can figure out the name of a total stranger in New York City using only 
24 guesses! By comparison, a linear search would require (on average) 6 million 
guesses. Binary search is a phenomenally good algorithm! 

We said earlier that Python uses a linear search algorithm to implement its built­
in searching methods. If a binary search is so much better, why doesn't Python use 
it? The reason is that the binary search is less general; in order to work, the list must 
be in order. If you want to use binary search on an unordered list , the first thing 
you have to do is put it in order or sort it . This is another well-studied problem in 
computer science, and one that we will return to later on. 

1 1 . 3 .4 1 Forma l  Ana lysis 

In the comparison between linear and binary searches we characterized both algo­
rithms in terms of the number of abstract steps required to solve a problem of a 
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certain size . We determined that linear search requires a number of steps directly 
proportional to the size of the list , whereas binary search requires a number of 
steps proportional to the (base 2) log of the list size . The nice thing about this 
characterization is that it tells us something about these algorithms independent 
of any particular implementation. We expect binary search to do better on large 
problems because it is an inherently more efficient algorithm. 

When doing this kind of analysis, we are not generally concerned with the exact 
number of instructions an algorithm requires to solve a specific problem. This is 
extremely difficult to determine, since it will vary depending on the actual machine 
language of the computer, the language we are using to implement the algorithm, 
and in some cases, as we saw with the searching algorithms, the specifics of the 
particular input . Instead, we abstract away many issues that affect the exact running 
time of an implementation of an algorithm; in fact , we can ignore all the details 
that do not affect the relative performance of an algorithm on inputs of various 
sizes . Always keep in mind that our goal is to determine how the algorithm will 
perform on large inputs. After all , computers are fast ; for small problems, efficiency 
is unlikely to be an issue. 

To summarize, in performing algorithm analysis, we can generally make the 
following simplifications . 

• We ignore the differences caused by using different languages and different 
machines to implement the algorithm . 

• We ignore the differences in execution speed of various operations (i .e . ,  we do 
not care that a floating-point division calculation may take longer than an 
integer division) ; we assume all "basic operations" (assignment , comparison, 
most mathematical operations, etc . ) take the same amount of time. 

• We assume all constant time operations that are independent of the input size 
are equivalent (Le. , we do not care if it takes 10 operations, 100 operations, 
or even 1 ,000 operations as long as those operations will solve the problem no 
matter what the input size is) . 

Obviously, each of these simplifications could make a significant difference in 
comparing the actual running time of two algorithms, or even two implementations 
of the same algorithm, but the result still shows us what to expect as a function of 
the input size. Hence, the results do tell us what kind of relative performance to 
expect for larger problems. Computer scientists use a notation known both as big 
o or asymptotic notation to specify the efficiency of an algorithm based on these 
simplifications. 
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Before looking at the details of big 0 notation, let 's look at a couple simple 
mathematical functions to gain some intuition. Consider the function f (n) = 3n2 + 
lOOn + 50. Suppose you are trying to estimate the value of this function as n grows 
very large. You would be justified in only considering the first term. Although for 
smaller values of n the lOOn term dominates, when n gets large, the contributions 
of the second and third term are insignificant . For example at n = 1 ,000,000 using 
only the first term gives a result that is within 0.01 percent of the true value of the 
function. 

To see why the first term dominates as n increases, you just have to look at the 
"shape" of the graphs for the first and second terms (see Figure 1 . 2 ) .  Even though 
x is larger than x2 over the interval from 0 to 1 ,  x2 overtakes it for n > 1 .  Even 
when we multiply x by some constant, say 100, that would change the slope of the 
line, since the function x2 curves upward, it will still overtake the line for 100 * x 
(at x = 100) . No matter what constants we multiply these functions by, the shape 
of the two graphs dictates that for sufficiently large values, the curve for x2 will 
eventually dominate. 

x'x 

o�-=�--�------�------�------�------�----� 
o 0.5 1 .5 2.5 

Figure 1 .2 :  x2 is less than x between 0 and 1 ,  but for larger values, x2 is greater 

The idea of a dominating function is formalized in big 0 notation. For example, 
when an algorithm is said to be O(n2 ) ,  it means the number of steps for the algorithm 
with input size n is < cn2 for all n > no for some constants c and no . To prove 
an algorithm is O(n2 ) we would have to find those two constants. In most cases, 
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it is pretty obvious (as in the examples above) . What constants could we pick for 
the function 3n2 + lOOn + 50? We do not need to care about having a tight bound. 
We could pick 1 ,000,000 for both constants since 3n2 + lOOn + 50 < 1 ,000,000n2 for 
every n > 1 ,000,000. If an algorithm is 2n3 , can we find two constants to prove it is 
O(n3 )? In practice we generally do not worry about finding the constants .  In most 
cases, it is fairly easy to convince ourselves of the relative growth rate. It should be 
clear that for any polynomial, it is the largest degree that matters so any polynomial 
of degree x is O(nX ) . 

Now that you've seen the mathematical details, let 's look at some short examples 
and determine the running time. 

n = input ( ' enter n :  ' )  
for i in range (n) : 

print i 

This code fragment is O( n) . The input size, n, determines how many operations 
occur. The print statement will be executed n times. The input statement will be 
executed once. If we think about how the f or statement works, we realize that the 
range statement generates a list of n items that itself takes at least n steps. Each 
time through the for statement , i is assigned to the next item in the list , so we can 
easily convince ourselves that there are around 2n + 1 basic steps to execute this 
code. This should be enough to convince you that the algorithm is O (n) . We still 
have ignored the fact that the Python code needs to determine when the end of the 
list is reached, but in practice we normally do not need to go into all the details we 
did to convince ourselves of the running time of short code fragments.  

Consider this short fragment . Can you determine its running time? 

n = input ( ' enter n :  ' )  
for i in range ( 100) : 

print i 

With a quick look, you might be tempted to say this code is also O (n) since you see 
a for loop. In this case, however, the for loops executes 100 times no matter what 
the input is. This is essentially no different than 100 print statements, and that is 
100 constant-time operations. This code fragment runs in the same constant time 
regardless of the input, and we refer to all constant operations as simply 0 (1 ) . 

Here's an example with two loops in it: 
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n = input ( ' enter n :  ' )  
for i in range (n) : 

print i 
for j in range (n) : 

print j 
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These two loops execute sequentially, one right after the other. So the total running 
time is O(n + n) , which is still O(n) . If you find that surprising, just think of it 
as O(2n) and remember that constant multipliers do not affect the big 0 notation. 
In general when adding sequential sections of an algorithm together, the big 0 for 
the overall algorithm is the maximum of the big Os of the individual parts. That 
means you just need to find the part of the algorithm that executes the most steps 
and analyze it . 

Let 's try another example with two loops. 

n = input ( ' enter n :  ' )  
for i in range (n) : 

for j in range (n) : 
print i ,  j 

In this fragment , the loops are nested. Notice that the second loop executes n times 
for each iteration of the first loop. This means the print statement executes a 
total of n2 times, and so the code has O(n2) running time. Frequently, when you 
have nested loops, the running time is the product of the number of times each loop 
executes. 

N ow consider this example: 

n = input ( ' enter n :  ' )  
total = 0 
for i in range (n) : 

for j in range ( 10) : 
print i ,  j 
total = total + 1 

Since this example also has two nested loops, you might think it is O(n2 ) ,  but note 
that the one loop always executes 10 times no matter what the value of n is. We can 
still apply the rule of multiplying the number of times each loop executes; the result 
is 10 * n and that tells us this fragment is O(n) (remember, constant multipliers are 
ignored in asymptotic analysis) .  

Let 's try a slightly trickier case of nested loops. 



n = input ( ' enter n :  , )  
for i in range (n) : 

for j in range ( i , n) : 
print i ,  j 
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Here again we have two loops nested, but the inner loop executes a different number 
of times during each iteration of the outer loop. Our simple multiplication rule won't 
work, but fortunately, the analysis is not too difficult . Remember we want to know 
for an input of size n, how many times does the print statement execute? Let's 
think it through. The first time through the outer loop, the inner loop executes n 
times. The second time it executes n - 1 times, and so forth, until finally, on the 
last iteration of the outer loop, the inner loop executes 1 time. To get the total 
number of iterations of the inner loop, we just add these all up: 1 + 2 + . . .  + n. 

You may have seen a formula for this sum in one of your math courses. If not, 
here is one way to figure it out . Suppose we add this value to itself lined up in this 
way: 

( 1  
+ (n 

+ 2 + 3 + 
+ (n-1 )  + (n-2) + 

+ n) 
+ 1 )  

Each column sums t o  n + 1 and there are n columns. The total of all the columns 
is n( n + 1 ) .  That sum is just double the original, so dividing by 2 gives use this 
formula: n( n + 1 )  /2. Expanding this produces a quadratic polynomial, so we can 
conclude this code fragment has running time 0(n2) .  

Finally, here's a little example using a while loop. 

n = input ( ' enter n :  ' )  
while n > 1 :  

n = n II 2 # II  is integer division 

This code is a little different from all the other code fragments. We have a loop, but 
it does not execute n times. Each time through the loop, n is divided by 2 so we 
need to determine how many times it will take to reach 1 .  This is the same problem 
we examined with the "guess a number game" and binary search. The number of 
iterations increases by 1 each time the size of the input doubles. So the number of 
steps for an input of size n is represented as x in the equation 2x = n. The answer 
is x = l092n. In many algorithms, the input is divided in half and we end up with 
0(l092) in asymptotic notation. 

Now returning to the search functions, you have all the tools you need to formally 
analyze the code we wrote. Our linear search uses a for loop that executes n times, 
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so it is O(n) . This is the reason it is referred to as a linear search; the running time 
of the function is a linear function (i .e . ,  a polynomial of degree 1 ) .  And, as discussed 
earlier, the binary search algorithm for sorted lists is O(log2n) . The loop executes 
(at most) log2n times and the number of operations executed each time through the 
loop is a constant . 

Asymptotic notation tells us how efficient we can expect our algorithm to be for 
large data sets. For small cases or code that is only going to be executed once or 
twice, efficiency is often not a significant concern. Of course, if your program will 
take two years to solve the problem, then it is. The big 0 notation allows us to 
extrapolate and determine how long our program will take to run on a larger data 
set . If we want to know how long our program will take to run with an input twice 
as large, we can plug 2n in for n in our function. For example, if the analysis of an 
algorithm is O(n2) and we double the input , we can expect it to take four times as 
long, since (2n)2 is 4n2 . If it takes one minute for our algorithm to execute on an 
input of size one million we can expect it to take four minutes on an input of size 
two million. 

/ 1 . 3 . 5 1 Big 0 Notation vs . Theta Notation 

Technically, big 0 notation gives us only an upper bound on the efficiency of an 
algorithm. Look back at the definition of big O .  If an algorithm is O(n) , then it is 
also O(n2) ,  O (n3) ,  etc. In fact , we can say that most algorithms are O(2n ) ,  but that 
is not very useful when we want to compare two specific algorithms. Usually when 
we do a big 0 analysis of an algorithm we are trying to find a "tight" upper bound. 
For example, we know that a linear search will take twice as long to discover that a 
number is not in a list when the size of the list doubles. It would be more informative 
to say that the asymptotic growth rate of linear search is not just bounded by n, 
but it is n .  

8 is  used to describe situations where we have a tight upper (and lower) bound. 
To formally prove an algorithm is 8(f(n))  we must find constants Cl , C2 , and no 
such that the number of steps for the algorithm is greater than clf (n) and the 
number of steps is less than c2f (n) for all n > no . By bounding it between two 
multiples of f (n) we show that the number of steps grows at the same rate as f (n) 
so the number of steps in the algorithm is essentially equal to some multiple of f (n) 
(for large values of n) . In practice, we will not actually find the constants unless 
analyzing the algorithm is particularly difficult . See Figure 1 . 3  for an example of 
bounding a function. 

The growth rates of some functions that commonly appear in the analysis of 
algorithms are shown in Figure 1 .4 .  Note how important the order of the algorithm 
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Figure 1 .4 :  Approximate growth rate of common functions 

31 

2n 

1030 

10301 

103010 

1030103 

10301029 

is for making the problem solvable in a reasonable amount of time. Algorithms that 
have exponential growth (e.g. , 2n) cannot be used to solve problems of even modest 
sizes . How long would it take an exponential algorithm to complete with an input of 
size 100 if we can perform one billion operations per second? Using the information 
in Figure 1 .4 ,  we see that 2100 is about 1030 (i .e. , one followed by 30 zeros) ; this 
is a very large number. Dividing it by one billion operations per second tells us it 
will take 1021 seconds or over 1013 years to run our algorithm on an input of size 
100. The universe is thought to be between 10 and 20 billion years old so this is 
thousands of times longer than the universe has existed! 

If we know how long it takes to solve a problem of a certain size, we can use the 
theta classification to approximate how long it will take to solve problems of larger 
sizes. For example, if we have a 8( n2) sorting algorithm that takes 25 seconds to 
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sort one million items on our computer, we can estimate how long it will take to 
sort two million items on our computer with the same code. This information gives 
us the equation c(1 ,000,000)2 = 25 seconds. Remember that theta notation (like 
big 0) hides the constant multiplier in front of the largest term. When setting up 
a specific equation, we need to include that multiplier term. We can solve for c and 
get c = 2 .5(10- 1 1 ) . We can now calculate 2 . 5 (10- 1 1  ) (2, 000, OOO? and we get 100 
seconds. 

As you might have determined already, we do not even need to solve for c in 
this case. We know our algorithm is 8(n2) and now we want to know what happens 
when our input size is twice as large. We can just plug in 2n for n and expand: 
(2n)2 = 4n2 . This tells us it should take four times as long to solve a problem that 
is twice as large when using a 8(n2) algorithm. This matches our earlier answer 
(i.e . ,  25(4) = 100) . 

Obviously, we will try to use 8 notation whenever possible to state the perfor­
mance of an algorithm. For some complicated algorithms it can be difficult to prove 
a tight bound and then we might just prove an upper bound (big 0 notation) .  We 
will also usually only analyze the worst-case running time of an algorithm. You 
might argue that the average case is more useful, but that is sometimes difficult to 
determine. For our linear search, we found the best case was 8(1 )  and the worst 
case was 8(n) , and it is not too difficult to convince ourselves that the average case 
is also 8(n) . If we search once for each item in a list of unique items, the value will 
be found once in the first position, once in the second position, once in the third 
position, and so on through the last position. We know that sum is n( n + 1 )  /2 and 
for the average case we need to divide that by the n searches we did, resulting in 
8(n) . For the binary search, determining the average case is more complicated. 

[[i] Chapter S u m mary 

This chapter introduced basic concepts that are vital for writing larger software 
systems: 

• Programming in the large varies from programming in the small along nu­
merous dimensions. The fundamental problem in designing and implementing 
larger programs is how to control complexity . 

• Abstraction is used to simplify and reduce the amount of information a pro­
grammer needs to understand at any given moment when writing software. 
One particularly useful type of abstraction (functional abstraction) allows the 
separation of "what" from "how" and facilitates design by contract . 
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• Program assertions document a program by stating what must be true at 
a given point of execution. Pre- and post conditions are special kinds of 
assertions that provide a convenient way to specify the behavior of a function 
or method. 

• Larger problems can be broken down into smaller problems through top-down 
design. Specification of functional decompositions allows multiple program­
mers to work on a project together. 

• For larger data sets, the efficiency of algorithms is important. Asymptotic 
analysis is used to classify the efficiency of algorithms. Big 0 notation is used 
to indicate upper bounds, while theta notation is used to characterize a more 
exact growth rate. 

[[[] Exercises 

True/Fa lse Questions 

1. To use functions/classes/methods defined in a library correctly, you must 
understand the API (i .e . , what the parameters and return values are) . 

2. Assuming the pre- and postconditions and code are correct, the post condition 
is guaranteed to be true after the code is executed if the precondition is met 
before the code is executed. 

3. A function that detects a violation of its precondition should print out an error 
message. 

4. A function's signature provides a complete specification of its behavior. 

5. A well-designed function/method often has undocumented side effects. 

6. Using the same computer, programming language, and input data, executing 
an algorithm that is 8(n) must be faster than executing an algorithm that is 
8(n2) .  

7 .  A function with more lines of code can be faster than a function with fewer 
lines. 

8. Theta notation is an effective measure of algorithm efficiency when the ex­
pected input size for the algorithm is small. 
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9.  All O(n2) algorithms are 8(n2) .  

10 . All 8(n2) algorithms are O(n2) .  

M u lt ip le  Choice Questions 

1. Which of the following is not part of the signature of a function? 

a) the name of the function 
b) how the function works 
c) the parameters 
d) the return value 

2. Which of these actions inside a function would produce a side effect? 

a) setting an immutable parameter to a new object 
b) setting a mutable parameter to a new object 
c) modifying a mutable parameter 
d) returning a value 

3. Which of the following indicates that a function's precondition was met? 

a) the function does not crash 
b) the function returns a value 
c) the function raises an exception 
d) none of the above 

4. In general what will have the biggest effect on how long your algorithm takes 
to execute on a large data set? 

a) the efficiency of your algorithm 
b) the computer language used to implement the algorithm 
c) the number of lines of code in your algorithm 
d) the speed of the hard disk on the computer 

5. A function with two loops has an asymptotic running time of 

a) 8(log2n) 
b) 8(n) 
c) 8(n2 ) 
d) not enough information to determine 

6. If a 8(n2) algorithm requires 3 seconds to execute on an input of one million 
elements, approximately how long should it take on an input of two million 
elements? 
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a) 6 seconds b) 9 seconds c) 12  seconds d) 18 seconds 

7. If a 8(n3 ) algorithm requires 4 seconds to execute on an input of one million 
elements, approximately how long should it take on an input of two million 
elements? 

a) 8 seconds b) 16 seconds c) 32 seconds d) 64 seconds 

8. If a 8 (lo92n ) algorithm requires 20 seconds to execute on an input of one 
million elements, approximately how long should it take on an input of two 
million elements? 

a) 21 seconds b) 25 seconds c) 30 seconds d) 40 seconds 

9. If a 8(2n) algorithm requires 10 seconds to execute on an input of 10 elements, 
approximately how long should it take on an input of 20 elements? 

a) 20 seconds b) 100 seconds c) 1 ,000 seconds d) 10,000 seconds 

10. If a computer is capable of performing one billion operations per second, 
approximately how long would it take to execute an algorithm that requires 
n2 operations on an input of two million elements. 

a) 400 seconds 
b) 2 ,000 seconds 
c) 4,000 seconds 
d) 20,000 seconds 

Short-Answer Questions 

1. What is a side effect of a function/method? 

2. Describe the basic approach of top-down design and how it relates to design 
by contract. 

3 .  If you need to repeatedly search a random list of 20 items for different values 
that are input by the user, what search method should you use? Should you 
create another list that contains the same items but is sorted and search it? 
Why or why not? 

4. If you need to repeatedly search a random list of 2 ,000,000 items for different 
values that are input by the user, what search method should you use? Should 
you create another list that contains the same items but is sorted and search 
it? Why or why not? 
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5. For the preceding problems is a Python list the most appropriate data type 
to store the numbers? If not, what Python data type would you use? 

6. If a computer is capable of performing one billion operations per second, how 
long would it take to execute an algorithm that requires 2n operations for an 
input of n = 100 elements? 

7. If a computer is capable of performing one billion operations per second, how 
long would it take to execute an algorithIll that requires n2 operations on an 
input of n = 1 ,000,000. How long would it take if the algorithm requires n3 
operations? 

8. Give a theta analysis of the time efficiency of the following code fragments.  

a) n = input ( ' enter n :  ' )  
for i in range (n) : 

x = 2 * n 
vhile x > 1 :  

x = x / 2 

b) n = input ( ' enter n :  ' )  
total = 0 
for i in range (n) : 

for j in range ( 10000) : 
total += j 

print total 

c) total = 0 
n = input ( ' enter n :  ' )  
for i in range (2 * n) : 

for j in range ( i ,  n) : 
total += j 

for j in range (n) : 
total += j 

print j 

9. Our first version of the linear search algorithm used the Python index method 
and did not have any loops. Yet we said that the linear search algorithm 
is 8(n) . Generally, an algorithm without any loops is 8(1 ) .  Explain the 
(apparent) discrepancy. 
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Programm ing Exercises 

1 .  Create a list of one million integers numbered 0 to 999,999. Time (using the 
time . time function as we did in the examples in this chapter) the worst and 
best cases for the list index method version of the linear search, the linear 
search code written using a for statement, and the binary search code. In 
comments list the specifications of your computer (CPU chip and clock speed , 
operating system, and Python version) along with the worst and best times 
for each of the three searches. 

2. Create a random list of 10,000, 100,000, and 1 ,000,000 integers with each 
number between 1 and 10 million. Measure how long it takes to sort each 
list using the built-in list 's sort method. In comments, list the specifications 
of your computer (CPU chip and clock speed, operating system, and Python 
version) along with how long it took to sort each list . Also include comments 
that indicate what you think the e classification is for the sort method based 
on the running times. 

3. The selection sort algorithm sorts a list by finding the smallest element and 
swapping it with the element in position zero of the list . It then finds the next 
smallest element and swaps it with the element in position one of the list . 
This process repeats until we have found the n - 1 th smallest element and put 
it in position n - 2. At this point , the largest element is in position n - 1 .  
Implement this algorithm in Python and indicate what its e classification is 
in comments . Also time your code for the three lists described in the previous 
question. 

4. Design your own experiment to compare the behavior of linear search and 
binary search on lists of various sizes. Plot your results on a graph and see 
if you can find a "crossover" point where linear search actually beats binary 
search on your computer. Since the searches will be very quick for smaller 
lists, you will need to be somewhat clever in how you time the searches in 
order to get valid data. (Hint : get larger timing intervals by timing how long 
it takes to do a given search many times.) Write up a complete lab report 
explaining your experimental set-up, methods, data, and analysis. 

5. Complete the implementation of the simple statistics program in subsection 1 . 2 . 3 .  
Be sure to thoroughly test your program on some data sets with known results. 

6. Add a function to the example in subsection 1 . 2 .3 that returns five integers: 
the number of scores in the 90s, in the 80s, in the 70s, in the 60s, and below 
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60. Be sure to provide a complete specification of your new function including 
appropriate pre- and post conditions along with the implementation code. 

7. Whenever the average value of a set of data is needed, it is usually also 
appropriate to calculate the standard deviation. The current API for the 
simple statistics program of section subsection 1 . 2 . 3  is somewhat inefficient in 
this regard, as asking for both the average and the standard deviation results 
in the former being computed twice (why?) .  Redesign the API for this simple 
library to overcome this issue. Your new design should allow the user to 
efficiently calculate just the average, just the standard deviation, or both. 

8 .  Design and implement a quiz program. The program should read question 
and answer information from a file. For example, a state capital quiz would 
contain the state and its capital on each line (e.g. , Ohio : Columbus) . Your 
program should ask a fixed number of questions and output the number of 
correct answers. Create at least three separate functions in your design. 

9. Write a specification and implementation for a function that "squeezes" the 
duplicates out of a sorted list . For example: 

» >  x = [ 1 , 1 ,  3 ,  3 ,  3 ,  4 ,  5 ,  5 ,  8 ,  9 ,  9 ,  9 ,  9 ,  10] 
» >  squeeze (x) 
» >  x 
[ 1 , 3 ,  4 ,  5 ,  8 ,  9 ,  10] 

Test your function thoroughly and analyze its theta efficiency. 
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Object ives 

• To learn how abstract data types are used in software design. 

• To review the basic principles and techniques of object-oriented design. 

• To learn about unit testing and how to write unit tests in Python. 

• To learn about operator overloading and how to overload operators in Python. 

[1JJ Overview 

Algorithms are one fundamental building block of programs. In Chapter 1 ,  we 
saw the benefits that come from separating the idea of what a function does from 
the details of how it is implemented. In this chapter, we'll take a look at the 
data that our programs process. Separating behavior from implementation is even 
more powerful when we consider data objects. This process of data abstraction is 
a foundational concept that must be mastered in order to build practical software 
systems. Computer scientists formalize the idea of data abstraction in terms of 
abstract data types (ADTs) . Abstract data types, in turn, are the foundation for 
object-oriented programming, which is the dominant development method for large 
systems. 

We'll start out by examining ADTs and how they relate to object-oriented 
programming. Along the way we'll show how object-oriented programming can 
be used to extend a programming language with new data types that can make it 
more suitable for solving problems in new domains. In languages that support a 
special technique known as operator overloading, new data types can be made to 
look and act just like the language's own built-in types. 

39 
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Using ADTs and objects ,  program design becomes a process of breaking a 
problem into smaller pieces: a set of cooperating objects that provide most of the 
program's functionality. As these smaller pieces are implemented, they can be tested 
in isolation so that developers have confidence in their correctness before the parts 
are combined into a larger system. Learning how to do effective testing is another 
important piece of the software development puzzle. 

1 2 . 2 1 Abstract Data Types 

One important property of any value stored in a computer is its data type. The type 
of an object determines both what values it can have and what we can do with it (i.e . ,  
what operations it  supports) . For example, on a 32-bit computer the built-in type 
int can represent integers in the range from -231 to 231 - 1 and can be used with 
operations such as addition (+) , subtraction (-) , multiplication (*) and division(/) . 
Knowing this information,  you can write programs that use ints without having to 
know how such numbers are actually stored on the computer. Using our terminology 
from last chapter, we would say that a program that manipulates int values is a 
client of the int data type. 

Of course, in order for a data type to actually be useful, there must be some un­
derlying implementation of that type. The implementation consists of both a way to 
represent all the possible values of the type and a set of functions that manipulate the 
underlying representation. Consider again the int data type. It is typically stored 
on today's computers as a 32-bit binary number. Algorithms for operations such 
as addition and subtraction are defined in the underlying machine hardware, and 
functions for input and output of ints are built into most programming languages. 

1 2 . 2 . 1 1 From Data Type to ADT 

Applying the idea of abstraction,  we can separate the concerns of how data is 
represented from how it is used. That is , we can provide a specification for a 
data type that is independent of any actual implementation. Such a specification 
describes abstract data type . A precise and complete description allows client 
programs to be written without worrying about how an ADT is realized in the 
computer. In this way, data abstraction extends the advantages of implementation 
independence. We can delay decisions about how data should be represented in our 
programs until we have sufficient information about how that data is going to be 
used. We can also go in and change a representation, and the abstraction barrier 
ensures that the rest of the program will not be adversely affected. 
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Data abstraction is particularly important for those parts of a program that are 
likely to change. Major design decisions can be encapsulated in ADTs, and the 
implementation of the ADTs can be adjusted as necessary without affecting the rest 
of the program. As you will see, it is often the case that changing how data is 
represented can have a major impact on the efficiency of the associated operations; 
so, having the freedom to modify representations is a big win when trying to tune 
a program's efficiency. 

Another advantage of ADTs is that they promote reuse. Once a relevant abstrac­
tion has been implemented, it can be used by many different client programs. Those 
clients are freed from the hassle of having to reinvent the data type. This allows 
programmers to extend programming languages with new data objects that are 
useful in their particular area of programming. After the ADT has been thoroughly 
tested, it can be used with confidence and the implementation details never have to 
be revisited. 

1 2 . 2 .2 1 Defi n i ng an  ADT 

You can think of an ADT as a collection of functions or methods that manipulate 
an underlying representation. The representation is really just some collection of 
data. To specify an ADT we just describe what the operations supported by the 
ADT do. We can apply the same techniques we used for specifying functions. The 
only difference is that a single ADT is described by a collection of functions. 

Let's look at a simple example. Suppose we are writing some programs dealing 
with card games, say bridge or Texas hold 'em. A playing card could be modeled 
as a simple ADT. Here's a description of the ADT: 

ADT Card : 
A simple playing card . A Card is characterized by two components : 
rank : an integer value in the range 1-13 , inclusive (Ace-King) 
suit : a character in ' cdhs ' for clubs , diamonds , hearts ,  and 

spades .  

Operations : 

create (rank , suit ) : 
Create a new Card 
pre : rank in range ( 1 , 14) and suit in ' cdhs ' 
post : returns a Card of the given rank and suit 

suit 0 : 
Card suit 
post : Returns Card ' s  suit as a single character 
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rank O : 
Card rank 
post : Returns Card ' s  rank as an int 

suitName O :  
Card suit name 
post : Returns one of ( ' clubs ' ,  ' diamonds ' ,  ' heart s ' , 

' spades ' )  corrresponding to Card ' s  suit . 

rankName O :  
Card rank name 
post : Returns one of ( '  ace ' , , two ' , , three ' ,  . . .  , , king ' ) 

corresponding to Card ' s  rank . 

toString O : 
String representation of Card 
post : Returns string naming the Card , e . g . ' Ace of Spades ' 

Notice how this specification describes a Card in terms of some abstract at­
tributes (rank and suit ) and the things that we can do with a card. It does not 
describe how a Card is actually represented or how the operations are achieved. In 
fact , the specification doesn't even explicitly refer to any card object or parameter; 
it is implicit that these are the operations that can somehow be applied to any card. 

In the process of designing an ADT, our goal is to include a complete set of 
operations necessary to make the ADT useful. Of course, there are many different 
design choices that could be made for the Card ADT. For example, we could have 
different names for the operations; some designers prefer to use names starting 
with "get" for accessing components of an ADT. Thus, they might use getSuit and 
getRank in place of suit and rank. Other designers might choose different types for 
the parameters of the various operations. Perhaps suits might be represented with 
ints instead of strings. Another approach is to "hide" the exact representation 
of suits and ranks by simply providing a set of variables representing the suits and 
ranks. For example, an identifier named CLUBS might be assigned to some value 
representing that suit , similar to the way the identifier None refers to Python's 
special None object . The ranks could be represented using names like ACE, TWO , 
THREE, etc. 

As you gain experience working with ADTs, you will develop your own design 
sense. The most important thing to keep in mind is implementation independence. 
An ADT describes only a set of operations, not how those operations are imple­
mented. One good way of "testing" the design for an ADT is to try writing some 
client algorithms that use it. For example, here is an algorithm that prints out the 
rank, suit , and "name" of all the cards in a standard deck: 
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for s in ' cdhs ' : 
for r in range ( 1 , 14) : 

card = create (r ,  s)  
print ' Suit : ' ,  suit (card) 
print ' Rank : ' ,  rank (card) 
print toString(card) 
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Notice how this algorithm is expressed using a Python-like syntax, but makes 
use of the abstract functions of the ADT presented above. The algorithm shows us 
that our set of operations would be sufficient to create and print out all 52 possible 
cards. 

1 2 . 2 . 3 1 I mplementi ng an  ADT 

It is possible to design and reason about ADTs in a language-independent fashion, 
but once we get down to the point of implementing and using an ADT in a program, 
we need to fill in some details that are specific to the particular programming envi­
ronment . There are numerous ways that a programmer could go about translating 
an ADT into a particular programming language. Virtually all languages provide 
the ability to define new functions, so one way of implementing an ADT is simply 
to write an appropriate set of functions. For example, in Python we could write a 
function for each Card operation and place them together in a module file. 

Of course, in writing the functions we will need to decide how a Card will be 
represented on the computer. The abstract type has components for rank and suit . 
In Python, a simple representation would be to package the rank and suit together 
as a pair of values in a tuple. A Python tuple is an immutable (unchangeable) 
sequence of values . A tuple literal is indicated by enclosing a comma-separated 
sequence in parentheses. Using tuples, the ace of clubs would be represented by the 
tuple ( 1 ,  ' c ' )  and the king of spades would be ( 13 ,  ' s ' ) . 

The underlying representation of an ADT is called the concrete representation. 
We would say that the tuple (5 , ' d ' ) is the concrete representation of the abstract 
Card known as the five of diamonds. 

Now that we have a representation for our Card ADT, writing the implementa­
tion code is straightforward. Here is one version: 

# cardADT . py 
# Module f ile implementing the card ADT with functions 

SUITS = ' cdhs ' 
_SUIT_NAMES = [ ' clubs ' ,  ' diamonds ' ,  ' hearts ' , ' spades ' ]  
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_RANKS = range ( 1 , 14) 
_RANK_NAMES [ ' Ace ' , ' Two ' , ' Three ' ,  ' Four ' , ' Five ' , ' Six ' , 

' Seven ' , ' Eight ' , ' Nine ' , ' Ten ' , 
' Jack ' , ' Queen ' , ' King ' ]  

def create (rank , suit) : 
assert rank in _RANKS and suit in _SUITS 
return (rank , suit ) 

def rank (card) : 
return card [O] 

def suit (card) : 
return card [1] 

def suitName (card) : 
index = _SUITS . index (suit (card) ) 
return _SUIT_NAMES [index] 

def rankName (card) : 
index = _RANKS . index (rank (card) ) 
return _RANK_NAMES [index] 

def toString (card) : 
return rankName ( card) + ' of ' + suitName ( card) 

Take a look at the create function. It uses an assert to check that the 
preconditions for creating a card are met, and then it simply returns a rank-suit 
tuple. In this way, the function returns a single value that represents all the 
information about a particular card. 

The rank and suit operations simply unpackage the appropriate part of the card 
tuple. Tuple components are accessed through indexing, so card [0] gives the first 
component, which is the rank, and card [1]  gives the suit . These two operations 
are so simple, you might even wonder if they are necessary. Couldn't a client using 
the Card ADT simply access the suit directly by doing something like myCard [1] ? 
The answer is that the client could do this , but it shouldn't. The whole point of an 
ADT is to uncouple the client from the implementation. If the client accesses the 
representation directly, then changing the representation later will break the client 
code. Remember this rule: clients may use an ADT only through the provided 
operations. 

One other point worth noting about this code is the use of some special values: 
_RANKS, _SUITS, _RANK_NAMES, and _SUIT _NAMES . The sui tName and rankName 
methods could have been written as large multi-way if statements. Instead, we have 
employed a table-driven approach. We use the index method to find the position 
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of a rank or suit , and then use it to look up the corresponding name. This shortens 
the code and makes it much easier to modify. For example, we could easily add a 
fifth suit by simply adding another item to the end of _SUITS and _SUIT _NAMES . 

Just in case you were wondering, there's a reason for the funny-looking variable 
names used for the lookup tables. The use of uppercase is a programming convention 
often employed for constants, that is, things that are assigned once and never 
changed. The leading underscore is a Python convention indicating that these names 
are "private" to the module. If the client imports the module via 

I from cardADT import * 

the identifiers beginning with an underscore are not imported into the local program. 
This keeps implementation details, such as the use of lookup tables, from cluttering 
up the client's namespace (the set of defined identifiers) . 

N ow that we have the Card ADT implementation, we can actually code up our 
program that prints out cards using this card module. 

# test_cardADT . py 
import cardADT 

def printAll O : 
for suit in ' cdhs ' : 

for rank in range ( 1 , 14) : 
myCard = cardADT . create (rank , suit ) 
print cardADT . toString(myCard) 

if __ name 
printAll O 

To summarize, one way of implementing an ADT is to choose a concrete rep­
resentation and then write a set of functions that manipulate that representation. 
If our implementation language includes modules (a la Python) , we can place the 
implementation in a separate module so that it has its own independent namespace. 

If the implementation language does not support the idea of separate modules, 
then we could run into trouble with the names of operations between ADTs "clash­
ing." For example, if we were writing a program to play a card game, we might also 
have a deckADT representing a deck of cards. Of course, the deckADT would have its 
own create method. Without modules, we'd have to rely on naming conventions 
to keep the operations straight . For example, all of the operations on cards might 
begin with card_ while those for decks would start with deck_ . Thus, we would 
have separate functions, card_create and deck_create.  
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1 2 . 3 1 ADTs a nd Objects 

As we have seen, an ADT comprises a set of operations that manipulate some 
underlying data representation.  This should sound familiar to you. If you are 
working in an object-oriented language (such as Python) , then it is natural to 
think of implementing an ADT as an object, since objects also combine data and 
operations. Simply put , an object "knows stuff (data) and does stuff (operations) ." 
The data in an object is stored in instance variables, and the operations are its 
methods. We can use the instance variables to store the concrete representation of 
an ADT and write methods to implement the operations. 

As you know, new object types are defined using the class mechanism. As the 
Python language has evolved, it has come to support two different kinds of classes 
sometimes called the classic and new-style classes. For our examples, classic and 
new-style classes behave exactly the same. We will use Python's new-style classes 
throughout this book as they are strongly recommended for new code. A new-style 
class is indicated simply by having the class inherit from the built-in class obj ect.  
You do not need to know any details about inheritance in order to use new-style 
classes; you just need to change the class heading slightly. For example, to create a 
Card class with new-style classes, we write class Card (obj ect) : instead of class 
Card : . ! 

\ 2 .3 . 1 \ Specification 

In object-oriented languages, new object data types can be created by defining a 
new class. We can turn an ADT description directly into an appropriate class 
specification. Here is a class specification for our Card example: 

class Card(obj ect ) : 
" " "A simple playing card . A Card is characterized by two components . 
rank : an integer value in the range 1-13 , inclusive (Ace-King) 
suit : a character in ' cdhs ' for clubs , diamonds , hearts , and 

spades . 11 1 1 " 

def __ init __ (self , rank , suit) : 
I I  II II Constructor 
pre : rank in range ( 1 , 14) and suit in ' cdhs ' 
post : self has the given rank and suit " " "  

1 In Python 3.0,  support for classic classes has been dropped and either class heading form will 
produce a new-style class. 



def suit (self ) : 
II II II Card suit 

2 .3  ADTs and Objects 

post : Returns the suit of self as a single character II II II 

def rank(self ) :  
II II II Card rank 
post : Returns the rank of self as an int ll ll ll 

def suitName (self ) : 
II II II Card suit name 
post : Returns one of ( ' Clubs ' , ' Diamonds ' ,  ' Hearts ' ,  

' Spades ' )  corrresponding to self ' s  suit . 1I 1I 1I 

def rankName (self ) : 
II II II Card rank name 
post : Returns one of ( ' Ace ' , ' Two ' , ' Three ' ,  . . .  , ' King ' ) 

corresponding to self ' s  rank . 11 11 11 

def __ str __ (self ) : 
II II I I  String representation 
post : Returns string representing self , e . g .  ' Ace of Spades '  11 11 11 
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Basically, this specification is just the outline of a Card class as it would look in 
Python. The docstring for the class gives an overview, and the docstrings for the 
methods specify what each one does. Following Python conventions, the method 
names that begin and end with double underscores ( __ init __ and __ str __ ) are 
special. Python recognizes __ init __ as the constructor, and the _ _  str _ _  method 
will be called whenever Python is asked to convert a Card object into a string. For 
example: 

» >  c = Card(4 , ' c ' )  
» >  print c 
Four of Clubs 

We have now translated our ADT into an object-oriented form. Clients of this 
class will use dot notation to perform operations on the ADT. Here's the code that 
prints out all 52 cards translated into its object-based form: 
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# printcards . py 
# Simple test of the Card ADT 

from Card import Card 

def printAII ( ) : 
for suit in ' cdhs ' :  

for rank in range ( 1 , 14) : 
card = Card (rank , suit ) 
print ' Rank : ' ,  card . rank ( )  
print ' Suit : ' ,  card . suit ( )  
print card 

if __ name 
printAII ( )  

Notice that the constructor is invoked by using the name of  the class, Card, and the 
__ str __ method is implicitly called by Python when it is asked to print the card. 

1 2 . 3 . 2 1 I m plementation 

We can translate our previous implementation of the card ADT into our new class­
based implementation. Now the rank and suit components of a card can just be 
stored in appropriate instance variables : 

# Card . py 
class Card (obj ect ) : 

II I I II A simple playing card . A Card is characterized by two components :  
rank : an integer value in the range 1- 13 , inclusive (Ace-King) 
suit : a character in ' cdhs ' for clubs , diamonds , hearts ,  and 
spades .  11 11 11 

SUITS = ' cdhs ' 
SUIT_NAMES = [ ' Clubs ' ,  ' Diamonds ' ,  ' Hearts ' , ' Spades ' ]  

RANKS = range ( 1 , 14) 
RANK NAMES [ ' Ace ' , ' Two ' , ' Three ' ,  ' Four ' , ' Five ' , ' Six ' , 

' Seven ' , ' Eight ' , ' Nine ' , ' Ten ' , 
' Jack ' , ' Queen ' ,  ' King ' ]  

def _ _  init _ _  (self , rank , suit ) : 
II II II Constructor 
pre : rank in range ( 1 , 14) and suit in ' cdhs ' 
post : self has the given rank and suit II II I I  

self . rank_num = rank 
self . suit_char = suit 



def suit (self ) : 
" " "Card suit 
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post : Returns the suit of self as a single character" " "  

return self . suit_char 

def rank (self ) :  
" " " Card rank 
post : Returns the rank of self as an int " " "  

return self . rank_num 

def suitName (self ) : 
" " "Card suit name 
post : Returns one of ( ' clubs ' , ' diamonds ' ,  ' hearts ' , 

' spades ' )  corresponding to self ' s  suit . " " "  

index = self . SUITS . index (self . suit_char) 
return self . SUIT_NAMES [index] 

def rankName (self ) : 
" "  " Card rank name 
post : Returns one of ( ' ace ' , ' two ' , ' three ' ,  . . .  , ' king ' )  

corresponding t o  self ' s  rank . " " "  

index = self . RANKS . index (self . rank_num) 
return self . RANK_NAMES [index] 

def __ str __ ( self ) : 
" " " String representation 
post : Returns string representing self , e . g . ' Ace of Spades '  " " "  

return self . rankName ( )  + ' of ' + self . suitName ( )  

49 

Notice that the lookup tables from the previous version have now been imple­
mented as variables that are assigned inside of the Card class but outside of any 
of the methods of the class. These are class variables. They "live" inside the class 
definition, so there is one copy shared by all instances of the class. These variables 
are accessed just like instance variables using the self . <name> convention. When 
Python is asked to retrieve the value of an object 's attribute, it first checks to see 
if the attribute has been assigned directly for the object . If not, it will look in 
the object 's class to find it . For example, when the sui tName method accesses 
self . SUITS , Python sees that self does not have a SUIT attribute, so the value 
from the Card class is used (because self is a Card) . 
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You now have three different kinds of variables for storing information in pro­
grams: regular (local) variables, instance variables, and class variables. Choosing 
the right kind of variable for a given piece of information is an important decision 
when implementing ADTs. The first question you must answer is whether the data 
needs to be remembered from one method invocation to another. If not, you should 
use a local variable. The index variable used in rankName 0 is a good example of 
a local variable; its value is no longer needed once the method terminates. Notice 
that there is also a local variable called index in the sui tName method. These are 
two completely independent variables, even though they happen to have the same 
name. Each exists only while the method where they are used is executing. We could 
have written this code using an instance variable self . index in these two methods. 
Doing so would be a misleading design choice, because we have no reason to hang 
onto the value of index from the last execution of rankName or sui tName . Reusing 
an instance variable in this case would imply a connection where none exists .  

Data that does need to be remembered from one method invocation to another 
should be stored in either instance variables or class variables. The decision about 
which to use in this case depends on whether the data may be different from one 
object to the next or whether it is the same for all objects of the class. In our card 
example, self . rank_num and self . suit_char are values that will vary among 
cards. They are part of the intrinsic state of a particular card, so they have to be 
instance variables. The suit names, on the other hand will be the same for all cards 
of the class, so it makes sense to use a class variable for that .  Constants are often 
good candidates for class variables, since, by definition, they are the same from one 
object to the next . However, there are also times when non-constant class variables 
make sense. Keeping these simple rules in mind should help you turn your ADTs 
into working classes. 

As you can see there is a natural correspondence between the notion of an ADT 
and an object-oriented class. When using an object-oriented language, you will 
usually want to implement an ADT as a class. The nice thing about using classes 
is that they naturally combine the two facets of an ADT (data and operations) into 
a single programming structure. 

1 2 . 3 . 3 1 Changi ng the Representation 

We have emphasized that the primary strength of using ADTs to design software 
is implementation independence. However, the playing card example that we've 
discussed so far has not really illustrated this point . After all, we said that a card 
has a rank that is an int and a suit that is a character, then we simply stored these 
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values as instance variables. Isn't the client directly using the representation when 
it manipulates suits and ranks? 

The reason it seems that the client has access to the representation in this case 
is simply because the concrete representation that we've chosen directly mirrors the 
data types that are used to pass information to and from the ADT. However, since 
access to the data takes place through methods (like suit and rank) we can actually 
change the concrete representation without affecting the client code. This is where 
the independence comes in. 

Suppose we are developing card games for a handheld device such as a PDA 
or cell phone. On such a device, we might have strict memory limitations. Our 
current representation of cards requires two instance variables for each card; the 
rank, which is a 32-bit int i and the suit , which is a character. An alternative way 
to think about cards is simply to number them. Since there are 52 cards, each can 
be represented as a number from 0 to 51 .  Think of putting the cards in order so 
that all the clubs come first , diamonds second, etc . Within each suit , put the cards 
in rank order. Now we have a complete ordering where the first card in the deck is 
the ace of clubs, and the last card is the king of spades. 

Given a card's number, we can calculate its rank and suit. Since there are 
13 cards in each suit , dividing the card number by 13 (using integer division) 
produces a value between 0 and 3 (inclusive) . Clubs will yield a 0, diamonds a 
1 ,  etc. Furthermore, the remainder from the division will give the relative position 
of the card within the suit (i .e. , its rank) . For example, if the card number is 37, 
37//13 = 2 so the suit is hearts, and 37%13 = 11 which corresponds to a rank of 
queen since the first card in a suit (the ace) will have a remainder of O. So card 37 
is the queen of hearts. Using this approach, the concrete representation of our Card 
ADT can be a single number. We leave it as an exercise for the reader to complete 
an implementation of the Card class using this more-memory-efficient alternative 
representation. 

1 2 . 3 .4 1 Object-Oriented Design and Programm ing 

As you have seen, there is a close correspondence between the ideas of ADTs 
and object-oriented programming. But there is more to object-orientation (00) 
than just implementing ADTs. Most 00 gurus talk about three features that 
together make development truly object-oriented: encapsulation, polymorphism, 
and inheritance. 
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Enca psu lation 

As you know, objects know stuff and do stuff. They combine data and operations. 
This process of packaging some data along with the set of operations that can be 
performed on the data is called encapsulation. 

Encapsulation is one of the major attractions of using objects .  It provides a 
convenient way to compose solutions to complex problems that corresponds to our 
intuitive view of how the world works. We naturally think of the world around us 
as consisting of interacting objects .  Each object has its own identity, and knowing 
what kind of object it is allows us to understand its nature and capabilities. When 
you look out your window, you see houses, cars, and trees, not a swarming mass of 
countless molecules or atoms. 

From a design standpoint , encapsulation also provides the critical service of 
separating the concerns of "what" vs. "how." The actual implementation of an 
object is independent of its use. Encapsulation is what gives us implementation 
independence. Encapsulation is probably the chief benefit of using objects, but alone 
it only makes a system object-based. To be truly objected-oriented, the approach 
must also have the characteristics of polymorphism and inheritance. 

Polymorphism 

Literally, the word polymorphism means "many forms." When used in object­
oriented literature, this refers to the fact that what an object does in response 
to a message (a method call) depends on the type or class of the object . Consider a 
simple example. Suppose you are working with a graphics library for drawing two­
dimensional shapes. The library provides a number of primitive geometric shapes 
that can be drawn into a window on the screen. Each shape has an operation that 
actually draws the shape. We have a collection of classes something like this: 

class Circle (obj ect ) : 
def draw ( self , window) : 

# code to draw the circle 

class Rectangle (obj ect ) : 
def draw ( self , window) : 

# code to draw the rectangle 

class Polygon(obj ect) : 
def draw ( self , window) : 

# code to draw the polygon 
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Of course, each of these classes would have other methods in addition to its draw 
method. Here we're just giving a basic outline for illustration. 

Suppose you write a program that creates a list containing a mixture of geometric 
objects: circles, rectangles, polygons, etc. To draw all of the objects in the list , you 
would write code something like this : 

I for obj in obj ect s :  
obj . draw(win) 

N ow consider the single line of code in the loop body. What function is called when 
obj . draw (win) executes? Actually, this single line of code calls several distinct 
functions. When obj is a circle, it executes the draw method from the circle class. 
When obj is a rectangle, it is the draw method from the rectangle class, and so on. 
The draw operation takes many forms; the particular one used depends on the type 
of obj . That 's the polymorphism. 

Polymorphism gives object-oriented systems the flexibility for each object to 
perform an action just the way that it should be performed for that object . If we 
didn't have objects that supported polymorphism we'd have to do something like 
this : 

for obj in obj ects : 
if type (obj ) is Circle : 

draw _ circle ( . . . ) 
elif type (obj ) is Rectangle : 

draw_rectangle ( . . .  ) 
elif type (obj ) is Polygon : 

draw_polygon ( . . . ) 

Not only is this code more cumbersome, it is also much less flexible. If we 
want to add another type of object to our library, we have to find all of the places 
where we made a decision based on the object type and add another branch. In 
the polymorphic version, we can just create another class of geometric object that 
has its own draw method, and all the rest of the code remains exactly the same. 
Polymorphism allows us to extend the program without having to go in and modify 
the existing code. 

I n heritance 

The third important property for object-oriented development is inheritance. As 
its name implies, the idea behind inheritance is that a new class can be defined to 
borrow behavior from another class. The new class (the one doing the borrowing) 
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is called a subclass, and the existing class (the one being borrowed from) is its 
superclass . 

For example, if we are building a system to keep track of employees, we might 
have a class Employee that contains the general information and methods that 
are common to all employees. One sample attribute would be a homeAddress 
method that returns the home address of  an employee. Within the class of  all 
employees, we might distinguish between SalariedEmployee and HourlyEmployee.  
We could make these subclasses of Employee,  so they would share methods like 
homeAddress ;  however, each subclass would have its own monthlyPay function, 
since pay is computed differently for these different classes of employees. Figure 2 . 1  
shows a simple class diagram depicting this situation. The arrows with open heads 
indicate inheritance; the subclasses inherit the homeAddress method defined in the 
Employee class, but each defines its own implementation of the monthlyPay method. 

Employee 

HourlyEmployee Salaried Employee 

Figure 2 . 1 :  Simple example of inheritance with subclasses inheriting one shared 
method and each separately implementing one method 

Inheritance provides two benefits. One is that we can structure the classes of 
a system to avoid duplication of operations. We don't have to write a separate 
homeAddress method for the HourlyEmployee and SalariedEmployee classes. A 
closely related benefit is that new classes can often be based on existing classes, thus 
promoting code reuse. 
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1 2 . 4 1 An Exa m p le ADT:  Dataset 

Now that we've covered ADTs and object-oriented principles, let 's go back and look 
at the simple statistics problem introduced in Chapter 1 .  This time, we're going to 
tackle the problem using an object-oriented approach. 

1 2 .4 . 1 1 The P rocess of 000 

The essence of design is  describing a system in terms of "black boxes" and their 
interfaces. Each component provides a service or set of services through its interface. 
In top-down design, functions serve the role of our black boxes. A client program 
can use a function as long as it understands what the function does. The details 
of how the task is accomplished are encapsulated in the function definition. In 
object-oriented design (OOD) , the black boxes are objects . 

If we can break a large problem into a set of cooperating classes, we drastically 
reduce the complexity that must be considered to understand any given part of the 
program. Each class stands on its own. Object-oriented design is the process of 
finding and defining a useful set of classes for a given problem. Like all design, it is 
part art and part science. 

There are many different approaches to OOD, each with its own special tech­
niques , notations, gurus , and textbooks . Probably the best way to learn about 
design is to do it. The more you design, the better you will get . Just to get you 
started, here are some intuitive guidelines for object-oriented design: 

1 .  Look for object candidates. Your goal is to define a set of objects that will 
be helpful in solving the problem. Start with a careful consideration of the 
problem statement . Objects are usually described by nouns. You might 
underline all of the nouns in the problem statement and consider them one by 
one. Which of them will actually be represented in the program? Which of 
them have "interesting" behavior? Things that can be represented as primitive 
data types (numbers or strings) are probably not important candidates for 
objects .  Things that seem to involve a grouping of related data items (e.g. , 
coordinates of a point or personal data about an employee) probably are. 

2. Identify instance variables. Once you have uncovered some possible objects, 
think about the information that each object will need to do its job. What 
kinds of values will the instance variables have? Some object attributes will 
have primitive values; others might themselves be complex types that suggest 
other useful objects/classes. Strive to find good "home" classes for all the data 
in your program. 
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3. Think about interfaces. When you have identified a potential object/class 
and some associated data, think about what operations would be required for 
objects of that class to be useful . You might start by considering the verbs 
in the problem statement . Verbs are used to describe actions�what must 
be done. List the methods that the class will require. Remember that all 
manipulation of the object's data should be done through the methods you 
provide. 

4. Refine the nontrivial methods. Some methods will look like they can be 
accomplished with a couple of lines of code. Other methods will require 
considerable work to develop an algorithm. Use top-down design and stepwise 
refinement to flesh out the details of the more difficult methods. As you 
go along, you may very well discover that some new interactions with other 
classes are needed, and this might force you to add new methods to other 
classes. Sometimes you may discover a need for a brand new kind of object 
that calls for the definition of another class. 

5. Design iteratively. As you work through the design, you will bounce back and 
forth between designing new classes and adding methods to existing classes. 
Work on whatever seems to be demanding your attention. No one designs a 
program top to bottom in a linear, systematic fashion. Make progress wherever 
it seems progress needs to be made. 

6. Try out alternatives. Don't be afraid to scrap an approach that doesn't seem 
to be working or to follow an idea and see where it leads. Good design involves 
a lot of trial and error. When you look at the programs of others, you are 
seeing finished work, not the process they went through to get there. If a 
program is well designed, it probably is not the result of a first try. Fred 
Brooks, a legendary software engineer, coined the maxim: "Plan to throw one 
away." Often you won't really know how a system should be built until you've 
already built it the wrong way. 

7. Keep it simple. At each step in the design, try to find the simplest approach 
that will solve the problem at hand. Don't design in extra complexity until it 
is clear that a more complex approach is needed. 

1 2 .4 .2 1 Identifyi ng an  ADT 

Recall that in the statistics problem our goal was to report some simple statistics 
for a set of exam scores. What are the likely candidates for objects in this program? 
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Looking at the problem description, we are going to have to manipulate scores (a 
noun) . Should a score be an object? Since a score is just a number, it looks like 
one of the built-in numeric types can be used for this , probably float . What else 
is there? In order to compute the required statistics, we need to keep track of an 
entire set of scores. In statistics, we would call these scores a dataset. Collections are 
often good candidates for ADTs; let 's try specifying a Dataset class. It's obvious 
that we want methods that return the minimum value, maximum value, mean, and 
standard deviation of the values in the dataset, since those are the statistics called 
for in the original problem. 

The only remaining question is how we get the numbers into the Dataset in the 
first place. Once simple approach is to have an add method that places another 
number in the dataset . We can construct an initially empty set and then add the 
numbers one at a time. Here's a sample specification: 

# Dataset . py 
class Dataset (obj ect) : 

" " "Dataset is a collection of numbers from which simple 
descriptive statistics can be computed . " " "  

def __ init __ (self ) : 
" " "post : self is an empty Dataset " " "  

def add(self , x) : 
" " "add x to the data set 
post : x is added to the data set " " "  

def min (self ) : 
" " "find the minimum 
pre : size of self >= 1 
post : returns smallest number in self " " "  

def max (self ) : 
" " "find the maximum 
pre : size of self >= 1 
post : returns largest number in self " " "  

def average (self ) : 
" " " calculate the mean 
pre : size of self >= 1 
post : returns the mean of the values in self " " "  

def std_deviation (nums) :  
" " " calculate the standard deviation 
pre : size of self >= 2 
post : returns the standard deviation of the values in self " " "  
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Examining this specification immediately suggests one more operation that we 
should add to the ADT.  Since various operations have preconditions based on how 
many values are in the dataset, we really should have an operation that returns 
this. It 's always a good idea to ensure that the preconditions of ADT operations are 
testable. This allows the client to make sure it is using an ADT properly and also 
allows the implementation to easily check the preconditions. Let 's add one more 
method: 

def size (self ) : 
11 11 11 

post : returns the size of self (number of values added) 

As before, we can "test " our design by writing some code that makes use of it . 
In this case, we can actually write the main program for our application, relying on 
the Dataset ADT to do the hard work. All we need is a sentinel loop to input the 
data: 

# test_Dataset . py 
def main e ) : 

print ' This is a program to compute the min , max , mean and ' 
print ' standard deviation for a set of numbers . \n '  
data = Dataset 0 
while True : 

xStr = raw_input ( ' Enter a number « Enter> to quit ) :  ' )  
if xStr == " . 

break 
try : 

x = float (xStr) 
except ValueError : 

print ' Invalid Entry Ignored : Input was not a number ' 
continue 

data .  add (x) 
print ' Summary of ' ,  data . size ( ) , ' scores . '  
print ' Min : ' ,  data . min( )  
print ' Max : ' ,  data . max ( )  
print ' Mean : ' ,  data . average ( )  
print ' Standard Deviation : ' ,  data . std_deviation ( )  

i f  __ name 
maine )  

1 2 .4 .3 1 I m plementing the ADT 

To implement our Dataset ADT, we need to come up with a concrete representation 
for the set of numbers. One obvious approach would be to use a list of numbers, 
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just as we did in the original version developed using top-down design. In this 
approach, the add method would simply append another number to the list . Each 
of the statistics methods could then loop through the list of numbers to perform 
their calculations. 

Of course, as with virtually any ADT, there are other possible concrete repre­
sentations. Do we really need to store a list of all the numbers in the Dataset? 
Actually, none of the methods really needs to know the specific numbers in the 
collection, they just need some summary information about the numbers. Clearly, 
for the min and max methods, we just need to know the smallest and largest values, 
respectively, that have been added to the set so far. For average we just need to 
know the sum of the values and the size of the dataset. We could store summary 
information such as the size, minimum, maximum, and sum of the data as instance 
variables. These instance variables would be updated in the add method when a 
new number is added to the Dataset . The actual number would not need to be 
stored separately. 

There is still a problem in figuring out the standard deviation. Our original 
formulation of standard deviation required us to compute the difference of each 
value with the mean. Of course, we can't know the mean until we have all the data 
values, so calculating the individual differences appears to require iterating back 
through the collection of numbers after the mean is known. It turns out , however, 
that there is an equivalent formulation of standard deviation, sometimes called the 
"shortcut formula, " that is computed as follows: 

s =  
n - l 

This formula does not require us to know each Xi , instead we just need the sum of 
the values and the sum of the squares of the values. To use this formula, we just 
need one additional instance variable for the sum of the squares. 

So, we have two possible concrete representations for the Dataset class. The 
first version, based on the original design, maintains a single instance variable (say 
self . data) containing a list of all the numbers. The second version maintains in­
stance variables (self . _size , self . _min, self . _max , self . _sum, self . _sum_squares) 
representing summary information of the data.2 

You should have little difficulty implementing the Dataset class using either of 
these concrete representations. Writing the actual code is left as an exercise. Even 

2The use of leading underscores in the instance variable names is a common convention both to 
"mark" them as instance variables and to keep them from conflicting with similarly named methods 
(max, the method, vs. _max, the instance variable) . 
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without the code, however, it 's possible to analyze the relative efficiency of these two 
representations. The second representation has several advantages over the version 
originally developed with top-down design. Obviously, it is more efficient in terms 
of storage space, since it does not have to remember the list of values that have 
been added to the set . In fact , the memory footprint of this more-efficient Dataset 
object does not even change when more data is added. 

Interestingly, the second representation is also more efficient in terms of execution 
time. In the first version, each of the statistical operations has to loop over the list 
of numbers and thus has 8(n) efficiency where n is the size of the dataset . The 
second version needs no loops, and all the operations are constant time, 8(1 ) .  

1 2 . 5 1 An Exam p le  ADT: Ration a l  

Hopefully, you're getting the hang of designing and implementing ADTs using 
objects .  New classes allow us to extend our available vocabulary for solving new 
kinds of problems. In this section, we're going to take a look at some practical 
techniques to extend Python with a new numeric data type.  

As you know, numbers with fractional values are generally represented using 
the float data type. One disadvantage of using floats is that the underlying 
representations are only approximations. The number is first converted into binary 
(base 2) so any fractions having denominators that are not powers of 2 will translate 
into a quotient with an infinitely repeating pattern. When the quotient is truncated 
to fit into a finite memory location, some precision is lost . For some applications, it 
would be nice to have a data type that manipulated the fractions directly so that 
values such as 1

1
0 can be stored and used accurately. Let's extend the language with 

a new Rational class to represent rational numbers (fractions) . 

1 2 . 5 . 1 1 Operator Overload ing 

Abstractly, our rational class should behave just like rational numbers in mathemat­
ics . A rational number has a numerator and a denominator that are integers and 
supports the usual numeric operations. Concretely, we'll implement the rational 
number ADT in a Rational class. 

In building the Rational class, we'd like to make it behave as much as possible 
like the existing numeric types. We generally use mathematical operators such as + ,  
- ,  * , and / to  perform functions on  integers and floating-point numbers. Technically, 
these operators are said to be overloaded in Python (and many other languages) in 
that each can be used to indicate a number of different operations. For example, the 



2.5 An Example ADT: Rationa l 61 

+ sign is used for both integer and floating-point addition. The type of operation 
carried out depends on the data types of the operands. We don't notice this much 
with addition, but it makes a big difference when using the division operator. 3 

Sometimes when we design our own classes, it makes sense to use existing 
operators in the context of our new data type. Some object-oriented languages 
such as Python and C++ support a mechanism that allows programmers to invoke 
new functions with existing operators, thus extending operator overloading to new 
programmer-defined types. Other languages, Java for example, do not . 

If we were implementing Rationals in a language without operator overloading, 
we might write code for a method add and call it using the syntax r3 = ri . add (r2) 
to add two rational numbers and store the result in r3. There is nothing wrong 
with this, but it is more familiar and readable if addition can be written as r3 = 
ri + r2. As you can see, operator overloading is not necessary but it can lead to 
enhanced readability when used properly. Of course, it can also lead to decreased 
readability if used sloppily. Think about what would happen if someone wrote code 
that caused the plus operator to subtract the two objects or do some completely 
unrelated function. 

In Python, certain built-in operators can be overloaded in a new class by defining 
methods having special names that begin and end with two underscores. The 
Python Reference Manual specifies the complete list of operators that may be 
extended. Table 2 . 1  is a partial list of the methods you can write to provide 
operator functionality for your own classes . .  This table shows us that if we want to 
be able to write c = a + b for instances of a class, we need to write the method 
__ add __ (self , other) for the class. Once we do this, the code c = a + b is 
equivalent to writing c = a .  __ add __ (b) . In Python it is not necessary that a and 
b are the same data type, but in most cases, it makes sense for that to be the case. 

1 2 . 5 .2 1 The Rationa l  C lass 

Using Python's operator overloading, it 's quite easy to write a class for rational 
numbers. The following code shows the start of a Rational class; it implements the 
__ IDul __ and __ str __ methods along with a constructor that supports zero, one, or 
two parameters in addition to the self parameter. As usual, the preconditions and 
post conditions for each method are specified as part of the documentation strings. 
This example has two instance variables, num and den. Note that the __ IDul _ _  

method creates a new Rational object and does not modify the instance variables 

3In Python 3.0 the slash U) always produces floating-point division, and the double slash U /) 
is used for integer division. 
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Method Returns 
__ add __ Cself , other) self + other 
__ sub __ Cself , other) self - other 
__ mul __ Cself , other) self * other 
__ div __ Cself , other) self / other 
__ neg __ Cself ) -self 
__ and __ Cself , other) self & other 
__ or __ Cself , other) self I other 
__ iadd __ C self , other) self += other 
__ isub __ Cself , other) self -= other 
__ imul __ Cself , other) self *= other 
__ idiv __ Cself , other) self /= other 
__ It __ Cself , other) self < other 
__ le __ Cself , other) self <= other 
__ gt __ Cself , other) self > other 
__ ge __ Cself , other) self >= other 
__ eq __ Cself , other) self -- other 
__ ne __ C self , other) self ! =  other 

Table 2 . 1 :  Some operator methods that can be overloaded in Python classes. 

for self or other. When overloading operators, it 's important to preserve the 
"standard" semantics of operators, which is that they produce new values without 
modifying the originals. When we see c = a + b, we do not expect the values of a 
and b to be changed! 

# Rational . py 
# demonstrates operator overloading 

class Rational Cobj ect ) : 

def __ init __ Cself , num = 0 ,  den = 1 ) : 

" " " creates a new Rational obj ect 
pre : num and den are integers 
post : creates the Rational obj ect num / den" " "  

self . num num 
self . den den 
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def __ mul __ (self , other) : 

11 11 11 * operator 
pre : self and other are Rational obj ects 
post : returns Rational product : self * other ll ll ll 

num = self . num * other . num 
den = self . den * other . den 
return Rational (num , den) 

I I  I I  I I  return string for printing 
pre : self is Rational obj ect 
post : returns a string representation of self ll ll ll 

return str (self . num) + ' I ' + str (self . den) 
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Of course, a complete Rational class would have to implement methods for all 
of the basic numeric operations. You're probably itching to dig in and finish out 
this class. That's a great idea, but we suggest looking at the material in the next 
section before you tackle the completion of this class. 

1 2 . 6 1 I ncrementa l Deve lopment a nd U n it Test i ng 

Once we break the development of  a program into separate classes, it 's nice to be 
able to test each class once it's developed. In fact , it 's very convenient if we can test 
the class as it 's being developed. In Python, one good way of testing an evolving 
class is to use the Python shell to try it out interactively. For example, we could 
test out the multiplication method for our Rational class: 

» >  from Rational import Rational 
» >  r1 = Rational ( 1 , 2) 
» >  r2 = Rational ( 1 , 3) 
» >  print r1 * r2 
1/6 

Testing a component in isolation like this is known as unit testing. By testing 
a single component , we can easily isolate where errors are occurring. Once we have 
confidence in the individual components, then we can start combining them into a 
system. 

One disadvantage of interactive unit testing is that each time we change a 
component , we have to go back and re-create the tests. Suppose our multiplication 
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test had given us an incorrect result ; we would go back, locate the error, and fix the 
code. After making the fix, we would have to retype the four lines of testing code 
again. This is OK for small tests, but it becomes very tedious when the tests are 
more sophisticated. 

An alternative to interactive unit testing is to write unit tests as actual programs 
that can be run whenever needed. This is such a common task that numerous 
frameworks have been developed to make writing unit tests easier. The Python 
library includes two different frameworks for unit testing: uni ttest and doctest.  
The Python uni ttest module is based on a popular framework (generically called 
xUni t ) that has been ported to many object-oriented languages. We'll use this 
framework in our unit testing examples. Here is some code, using the unittest 
module, that tests our simple Rational class. 

# test_Rational . py 
# unittest example 

import sys 
import unittest 

sys . path . insert (O , ' . .  ' )  
from Rational import * 

class RationalTest (unittest . TestCase) : 

def testConstructorOnelnt (self ) : 

r = Rational (-3) 
self . assertEqual (str (r) , ' -3/1 ' )  

def testConstructorTwolnt (self ) : 

r = Rational (3 , 4) 
self . assertEqual (str (r) , ' 3/4 ' )  

def testMul (self ) : 

r1 = Rational ( 2 ,  3)  
r2 = Rational (3 , 4) 
r3 = r1 * r2 
self . assertEqual (str (r3) , ' 6/12 ' )  
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def main (argv) : 
uni ttest . main 0 

if __ name == ' __ main __ " 

main(sys . argv) 
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Although there's not much code in this example, there are several things that you 
may not have seen before, starting right near the top with the sys . path . insert . 
Many programmers follow the convention of creating a subdirectory named test 
containing the code for tests. This keeps the production code for the program 
separated from the code that is written just for testing. Following this convention, 
we're assuming that test_rational . py is placed in a subdirectory a level below 
the directory where the code for the Rational class (Rational . py) is placed. 

One issue with putting the testing code in its own directory is that Python 
will not know where to look when the testing code asks to import the Rational 
module. The sequence of directories that Python searches to find a module is called 
the path. Normally, the path contains Python's system directories where all the 
standard library modules are located and also the local directory wherever Python 
is executing. So there is no problem as long as we are importing either system-wide 
modules or modules that are in the same folder as the running program. In order 
for the testing code to import the Rational module, however, we need to modify 
the standard path. Python makes the path available to programmers as a list in 
the system module, sys . path. This is just a list of strings specifying the various 
directories where Python modules live. Executing sys . path . insert (0 , ' . .  ' )  puts 
" . .  " at the front of the path list . The " . .  " is a convention to indicate the parent 
of the current directory (which is represented with " . " , by the way) . This allows 
the test code to search the parent directory for the Rational . py file when the line 
from Rational import * is executed . 

The heart of the testing code is a class named RationalTest defined using the 
line class Rational Test (uni ttest . TestCase) : . This declaration indicates that 
the Rational Test class inherits from the TestCase class in the uni ttest mod­
ule. Another way to state this is the Rational Test class subclasses the TestCase 
class defined in the uni ttest module. By virtue of inheritance, any instance of 
RationalTest will also be an instance of the superclass TestCase. You can think 
of a TestCase instance as a set of tests that we want to run. 

The TestCase superclass defines a number of very useful methods for unit tests. 
The two most commonly used are assertEqual (also known as failUnlessEqual) 
and assertNotEqual (also known as faillfEqual) . Each method takes two addi­
tional parameters that are tested for equality and an optional third parameter that 
is a message to be displayed if the test fails. The assertEqual test fails if the two 
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parameters are not equal, and the assertNotEqual fails if the two parameters are 
equal. The TestCase class supports many additional methods that you can learn 
about by consulting the uni ttest documentation. 

Within our RationalTest class, each of the methods that start with the four 
letters test will be called automatically by the uni ttest framework when the 
testing code runs. The idea of unit testing is to write methods that test all the 
code you have written. You will notice in this case there are more test methods 
than methods in the Rational class. This is common since one test is often not 
enough to ensure that a function/method works correctly. To run the tests, we just 
need to issue a call to the main function in the uni ttest module. This function 
will automatically create instances of all the test classes in the file (those that are 
subclasses of uni ttest . TestCase) and then execute each of the testing methods. 
Note that each test method is run with a "fresh" test case, so that each test is 
independent and the order in which the tests run does not matter. 

Here is the output of the test_Rational . py test code when all the tests pass: 

I
���------------------------------------------------------------------­
Ran 3 tests in 0 . 001s  

OK 

The three dots show the results of our three test methods. A dot indicates successful 
completion of the test . If the testing code raises an unhandled exception, the result 
is an "E" and a failed check results in an "F." 

Of course, the results are more interesting when a test fails . If the __ mul __ 
method is changed so the one line contains den = self . den * other . num and the 
test program is executed again, we get the the following output . 

. . F 

FAIL : testMul ( __ main __ . RationaITest ) 

Traceback (most recent call last ) : 
File " . /test_Rational . py " , line 39 , in testMul 

self . assertEqual ( str (r3) , ' 6/ 12 ' )  
File l /usr/lib/python2 . 2/unittest . py " , line 286 , in failUnlessEqual 

raise self . failureException , \ 
AssertionError : ' 6/9 ' ! =  ' 6/12 ' 

Ran 3 tests in 0 . 004s 

FAILED (failures=1)  
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Notice that the status line at the top of the output shows that the third test failed , 
and a traceback is printed stating exactly which line caused the failure. 

Coding unit tests in this way provides numerous benefits. Obviously, it allows 
the tests to be run easily when we go back and modify the code. In fact , we can save 
all of our tests, and any time we make changes to the code we can easily rerun all of 
the tests, even the ones that passed previously. Running a modified program against 
the previously successful tests is called regression testing. It helps to ensure that 
the program continues to improve as it is developed (i .e . ,  that new modifications 
haven't broken the previous functionality) .  

Another benefit of writing unit tests while writing the class is that they help us 
work out the design of a class. The testing code shows how a class is to be used , and 
writing the tests helps us determine if our class is well-designed and useful. In fact , 
some modern approaches to software development advocate test-driven development. 
With test-driven development , tests are always written before any actual production 
code is added to the system. That way, as each function/method is added, it is 
immediately testable. You can determine if it works correctly (i.e . ,  passes your tests 
for that code) before writing the next function/method. 

We think test-driven development is a very good technique. We recommend that 
you write the original class with each method containing just a pass statement . 
Next, write the test code for a method and then implement enough of the class to 
get the test to pass. Keep repeating this process of writing a test and modifying the 
class until the class is complete and passes all of the tests. Being able to run all the 
tests each time you make a change to the class will give you the confidence you need 
to try out new design ideas as they arise. A testing framework such as this helps 
make the promise of implementation independence a practical reality. And you'll be 
amazed at how quickly coding goes when coding and testing are done in tandem. 

1 2 . 7 1  Chapter S ummary 

This chapter has covered the fundamental ideas of data abstraction and object­
oriented programming. Here is a quick summary of some of the key ideas. 

• An abstract data type (ADT) defines an API for manipulating data indepen­
dent of the implementation; in object-oriented languages, ADTs are commonly 
implemented using classes. 

• Encapsulation, polymorphism, and inheritance are the defining techniques 
used in objected-oriented code. 
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• Designing classes and programs is both art and science. A general rule is 
to study the problem statement and identify nouns as classes and verbs as 
methods. 

• Operator overloading allows programmers to define methods to be called when 
the built-in operators such as +, -, < ,  > ,  etc. are used with instances of the 
programmer-defined class. 

• Unit tests allow parts of a program to be tested in isolation. A unit-testing 
framework makes it convenient to write automated unit tests and facilitates 
the testing of code as it is written. Regression testing helps ensure that code 
changes do not "break" previously working components of a program. 

• Test-driven development is a common technique that involves writing test code 
for each new feature before writing the production code that implements the 
feature. 

1 2 . 8 1 Exercises 

True/ Fa lse Questions 

1. To implement an ADT in Python, you must use classes. 

2. If the programming language supports classes, you should usually use them 
when implementing an ADT.  

3. Class variables can be shared by all instances of  a class. 

4. When designing a program, one way of locating potential objects is by looking 
for verbs in the system description. 

5. Encapsulation refers to combining the data and methods into one syntactic 
unit . 

6. With polymorphism, a programmer writes multi-way if statements to check 
the type of an object and determine which method to call. 

7. Subclasses inherit methods defined in their superclasses. 

8. Operator overloading allows programs to compute results that could not be 
computed without operator overloading. 

9. To do operator overloading in Python, you must use classes. 
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10. Unit tests should be executed whenever you make a change to a class. 

M u lti ple Choice Questions 

1. When developing large software systems, you should: 

a) immediately sit down at the computer and start writing code 

b) design some of the system, write some code, possibly redesign it , and test 
the components as you write them 

c) design the entire system before you write any code 

d) implement the entire system before you test any of the code 

2. Which parts of the program description will be most helpful in identifying 
possible objects for a system design? 

a) adjectives 
b) nouns 
c) verbs 
d) all of the above 

3. Which parts of the program description will be most helpful in identifying 
possible methods in a system design? 

a) adjectives 
b) nouns 
c) verbs 
d) all of the above 

4. How do you distinguish between instance variables and local variables for a 
method? 

a) instance variables are part of the data for a particular object and are 
needed in multiple methods while local variables are needed only within 
that method 

b) a class should never use local variables; all variables used in methods should 
be instance variables 

c) a class should never use instance variables; all variables used in methods 
should be local variables 

d) instance variables should be used for constants only 
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5. If you are examining a Python class that someone else wrote, how do you 
determine if a variable is a local variable or an instance variable? 

a) the same variable name is used in more than one method 
b) the variable is accessed by placing self . before the variable name 
c) the variable is used in the __ ini t __ method 
d) instance variables are always preceded by an underscore 

6. When should you use class variables? 

a) when each instance of the class needs its own copy of the data 
b) when each instance of the class can share the same copy of the data 
c) when the data is constant 
d) b and c 

7. If you are designing a class to represent a polynomial, which of the following 
should be instance variables? 

a) the coefficients 
b) a value to evaluate with the polynomial 
c) the result of evaluating the polynomial with a specific value 
d) all of the above 

8. If you are designing a class to represent a polynomial, which of the following 
should be class variables? 

a) the coefficients 
b) a value to evaluate with the polynomial 
c) the result of evaluating the polynomial with a specific value 
d) none of the above 

9. When writing unit tests using the Python uni ttest framework the test code 
is written as 

a) a number of functions 
b) a separate class that subclasses your class 
c) a separate class that subclasses uni ttest . TestCase 
d) part of the class you are testing 

10 .  What is the purpose of unit testing? 

a) to help you to think about your design 
b) to help you find errors in your code 
c) to allow you to easily test your code each time you change it 
d) all of the above 
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Short-Answer Questions 

1. What is the difference between the interface of a class and the implementation 
of a class? 

2. What are some reasons for writing the unit testing code before writing the 
class code? 

3. What are some reasons for intermixing the writing of the unit testing code 
and the class code? 

4. What are some reasons for writing unit testing code after you write the class 
code? 

5. What happens in Python if you use the same name for an instance variable 
and a method? Write a short example to try it . 

6. Give two different specifications (i.e. , list the instance variables and method 
names, but not the implementation of the methods) for a Deck class that 
simulates an entire deck of cards including methods you would want if you 
were going to simulate card games with this class. 

7. What class or classes might be useful in a program that plays tic-tac-toe? 
What instance variables and what methods would your class(es) use? 

8. What are the benefits of writing unit tests? 

9. What is the purpose of operator overloading? 

Programm ing Exercises 

1 .  Write unit testing code for the Card class of section 2 . 3 .  

2 .  Implement the Card class using the alternative representation discussed in 
subsection 2 . 3 . 3 .  Test it using your unit tests from the previous exercise. 

3. Write a simple implementation of a card deck to deal cards out randomly. Your 
Deck class will contain a list of card objects. Initially, the deck will contain 
one instance of each of the 52 possible cards. Your deck should implement 
a deal ( )  method that chooses a random location from the list and "pops" 
that card. You should also implement a cardsLeft method that tells how 
many cards are left in the deck. Note: a more sophisticated Deck class is 
implemented in Chapter 3; using that design does not count. 
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4. Using the Deck class from the previous exercise, write a program that plays 
blackjack with two players. 

5. Using the Deck class from exercise 3, write a program that plays a simple 
solitaire game. The game starts by dealing several cards from the deck face­
up. If two of the cards have the same rank, two more cards are dealt from 
the deck face-up on top of them. The process continues until all of the cards 
have been dealt or there are no cards with matching ranks showing. A player 
"wins" if all the cards have been dealt . Your program should allow the user to 
choose the number of piles to use for the game and then simulate the dealing 
until the game is over. 

6. Modify the previous exercise so that it calculates the probability of winning 
for any given number of piles. 

7. Implement the DataSet class using each of the two concrete representations 
suggested in the chapter. Include code to test all of the methods. 

8. Write a program to allow two players to play the game Othello (also known 
as Reversi) on the computer. If you are not familiar with the game, search 
the Internet for the rules of the game. Design your program by creating a 
class that keeps track of the pieces on the board and provides methods for 
determining if a move is legal, updating the board based on a legal move, and 
displaying the board (either as text or graphically) . Also provide methods for 
determining what piece is at each position on the board. 

9. Write a unit test for your Othello/Reversi class to test the methods that check 
for a legal move and update the board based on the move. 

10 .  Complete the Rational class with the operators for the plus, minus, divide, 
and six comparison operators and write a unit testing class to test all the 
methods. The comparison operators should return True or False.  For bonus 
points, have your class always store the fraction in reduced form. (Hint : use 
Euclid's GCD algorithm in the class constructor. ) 

1 1 .  Use your Rational class to write a program that investigates Egyptian frac­
tions. An Egyptian fraction is formed as a sum of unit fractions (the numerator 
is 1 )  having unique denominators. For example � can be represented as the 
sum: � + l + 2� '  Your program should allow a user to enter an arbitrary 
fraction and then print out an equivalent Egyptian fraction. If necessary, do 
a bit of research to come up with an algorithm for the conversion. 
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12 .  Write a class to represent a polynomial. The class should store a list of the 
coefficients and the degree of the polynomial. Write the methods for the 
addition, subtraction,  and multiplication methods . Write the __ str __ method 
that returns a string representation of the polynomial. Also provide a method 
for evaluating the polynomial at a specific value. Write a unit test for your 
polynomial class. 
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Object ives 

• To understand the list ADT as a general container class for manipulating 
sequential collections. 

• To understand how lists are implemented in Python and the implications this 
has for the efficiency of various list operations. 

• To develop intuition about collection algorithms such as selection sort and use 
Python operator overloading to make new sortable classes. 

• To learn about Python dictionaries as an implementation of a general mapping 
and understand the efficiency of various dictionary operations. 

[[IJ Overview 

Program design gets more interesting when we start considering programs that 
manipulate large data sets . Typically, we need more efficient algorithms to operate 
on large collections. Oftentimes the key to an efficient algorithm lies in how the 
data is organized, that is, the so-called data structures on which the algorithms 
operate. Object-oriented programs often use container classes to manage collections 
of objects. An instance of a container class manages a single collection . Objects 
can be inserted into and retrieved from the container object at run-time. Python 
includes a number of container classes as built-in types. You are probably familiar 
with lists and dictionaries,  which are the two main container classes in Python. 

In this chapter, we review the basics of Python lists and dictionaries and also 
take a look at how these containers are implemented in Python. Knowing how 
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a collection is implemented is often crucial to understanding the efficiency of the 
supported operations. 

1 3 . 2 1  Python L ists 

Lists are one of the main workhorse data structures in the Python language. Just 
about every program makes use of lists in some form. A thorough understanding 
of lists is essential for anyone writing in Python. Given their usefulness, it is not 
surprising that containers similar to Python lists are provided by virtually every 
high-level programming language. 

Informally, a list is a collection of objects that is stored in sequential order. For 
example, a list might be used to represent the students in a class or a deck of cards. 
Because a list has an ordering, it is meaningful to talk about things such as the first 
object in a list or the next object in a list . 

U sing our new terminology from last chapter, we can think of a Python list as 
implementing an ADT for a sequential collection. Python provides quite a number 
of operations on lists. Some operations are supported by built-in functions and 
operators, whereas others are list methods. Here is a specification for some of the 
operations provided: 

Concatenation ( l is t 1  + l is t2) Returns a new list that contains the elements of 
listl followed by the elements of list2. 

Repetition ( l ist1  * int1  or int1 * l is t1 ) Returns a new list corresponding 
to the list of elements obtained by concatenating listl with itself int1 times. 

Length (len ( l is t1 ) )  Returns the number of items in listl . 

Index ( l ist1  [ int1 ] )  Returns the item at position int1 in list1 . The first item in 
the list is at index 0 and the last item is at index len ( l ist 1  ) - 1 .  

Slice ( l ist1  [ int1  : int2] ) Returns a new list containing the items in list1 starting 
at position int1 up to, but not including, int2. If int2 ::; int1 the resulting 
list is empty (assuming int1 and int2 are non-negative) . 

Check membership ( i  t em in l is t1 ) Returns True if item occurs in listl and 
False otherwise. 

Add at end ( l is t 1 . append ( obj1 ) )  Modifies list1 by adding obj1 to the end. 
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Add anywhere ( L ist1 . insert ( int1 ,  obj1 ) )  Modifies listl by adding objl at po­
sition inti . The original items from position intl on are "shifted" to make 
room. 

Delete index ( L is t 1 . pop ( int1 ) )  Returns the item at L is t 1  [ int1 ] and modifies 
listl by deleting this item from the list . Items in position intl + 1 on are shifted 
down one index to "fill the gap." If inti is not supplied, the last item in the 
sequence is the one deleted. 

Remove object ( L is t 1 . remove ( obj1 ) )  Deletes the first occurrence of objl in listi. 

You probably used descriptions similar to this when you first learned how to use 
Python lists . Notice that the description says nothing about how a Python list is 
actually implemented in the computer; that 's the hallmark of an ADT.  A little later 
on, we'll take a look under the hood to see how lists can be implemented. Right 
now, we're taking a client 's point of view and looking only at how lists are used. 

1 3 . 3 1  A Seq uent ia l Col lect ion :  A Deck of Cards  

Since Python provides an implementation o f  lists, it is common to  make use of this 
built-in type to implement various collection abstractions. Continuing our card­
game example from last chapter, let 's try implementing a collection to represent a 
deck of cards. As a starting point , we need to determine the set of operations that 
will be useful for a deck of cards. Obviously, we will need a way to create a new 
(full) deck of cards . Usually, the deck is shuffled and used to deal cards into hands. 
If we are modeling the ADT using a Python class, we might try something along 
these lines: 

class Deck (obj ect ) : 

def __ init __ (self ) : 
" " "post : Create a 52-card deck in standard order" " "  

def shuffle (self ) : 
" " " Shuffle the deck 
post : randomizes the order of cards in self " " "  

def deal (self ) :  
" " "Deal a single card 
pre : self is not empty 
post : Returns the next card in self , and removes it from self . " " "  
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A quick inspection of this specification shows a shortcoming of our design so far. 
Notice that the deal method contains a precondition, since we can't deal any card 
from an empty deck. For completeness, we should add a way for client code to check 
this precondition. We could add something like an isEmpty method that tells when 
the deck is exhausted. More generally, we might have a size method that gives the 
number of cards left in the deck. In many card games, it's important to know how 
many cards are left , so the latter approach seems a bit more useful. Let's add it to 
the specification. 

def size (self ) : 
" " "Cards left 
post : Returns the number of cards in self " " "  

Adding this operation to the ADT also allows us to state the precondition for 
the deal method more precisely. Here's the improved specification: 

def deal (self ) : 
" " "Deal a single card 
pre : self . size ( )  > 0 
post : Returns the next card in self , and removes it from self . " " "  

Having thought out the interface for our ADT, we're now ready to start imple­
menting. Obviously, a deck is a sequence of cards, so a natural choice of represen­
tation is to use a Python list to hold the cards in the deck. Here's a constructor for 
our Deck. 

# Deck . py 
from random import randrange 
from Card import Card 

class Deck(obj ect) : 

def __ init __ (self) : 
cards = [] 
for suit in Card . SUITS : 

for rank in Card . RANKS : 
cards . append(Card(rank , suit ) ) 

self . cards = cards 

Notice how this code uses nested loops to produce every possible combination 
of rank and suit. Each subsequent card is appended to the list of cards, and the 
resulting list is stored away as an instance variable of the Deck object . 

Once we have created a Deck object, checking its size and dealing cards from 
the deck can be accomplished with simple list operations. 
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def size (self ) : 
return len (self . cards) 

def deal (self ) : 
return self . cards . pop ( )  

The deal method returns cards in  order from the end of the list . Using this approach 
the ordering imposed by the Python list data structure determines the order in which 
the cards are dealt . 

Now all we need is a method to shuffle a deck (Le. ,  put it into a random order) . 
This gives us a chance to exercise our algorithm development skills. You probably 
know some ways of shuffling a deck of cards, but the usual methods don't transfer 
very well into code. One way to think about the problem is to consider the task of 
putting the cards into a specific arrangement. The shuffle operation should ensure 
that any of the 52! possible arrangements of the deck is equally likely. That means 
that every card in the deck has to have an equal chance of being the first card, and 
each of the remaining cards has an equal chance of being the second card, etc. 

We can implement a shuffle algorithm by building a new list out of the cards in 
the original list . We start with an empty list and repeatedly transfer a card chosen 
at random from the old list to the new list . Here's how the algorithm looks in code: 

def shuffle (self ) : 
cardsO = self . cards 
cards1 = [] 
while cardsO ! =  [] : 

# delete a card at random from those in original list 
pos = randrange (len(cardsO) )  
card = cardsO . pop (pos) 

# transfer the card to the new list 
cards1 . append (card) 

# replace old list with the new 
self . cards = cards 1 

We can improve this algorithm slightly by doing the shuffle in place. Rather than 
going to the trouble of building a second list , we could choose a card at random and 
move it to the front of the existing list . Then we ccould pick a card from locations 
1 through n and move it to position 1 ,  etc. There is one subtlety in this approach; 
when we place a random card into a given position, we have to be careful not to 
clobber the card that is currently in that position. That is , we need to save the card 
that is being replaced somewhere so that it is still part of the pool for subsequent 
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placement . The easiest way to do this is to simply swap the positions of the two 
cards. Here's the in-place version of our shuffle algorithm: 

def shuffle (self ) :  
n = self . size O 
cards = self . cards 
for i , card in enumerate (cards) : 

pos = randrange ( i , n) 
cards [i] = cards [pos] 
cards [pos] = card 

Notice that in this code it is not necessary to do self . cards = cards at the end 
of the method. The assignment statement immediately before the loop sets cards to 
be a reference to the same list as self . cards . Therefore, the changes made to this 
list (swapping cards) are changing self . cards. The local variable cards is used for 
convenience (so we don't have to keep typing self . cards) and efficiency (retrieval 
of local variable values is more efficient than retrieval of instance variables) . 

We now have a complete Deck class. Let 's take it for an interactive test drive. 

» >  d = DeckO 
» >  print d . deal ( )  
King o f  Spades 
» >  print d . deal ( )  
Queen of Spades 
» >  print d . deal ( ) 
Jack of Spades 
» >  d .  shuffle 0 
» >  d . size O 
49 
» >  print d . deal ( )  
Seven o f  Hearts 
» >  print d . deal ( )  
Nine of  Diamonds 

Notice how the initial deck deals cards out from the standard ordering. After 
shuffling, the cards come out randomly, just as we expect . 

1 3 .4 1  A Sorted Col l ect ion : H a nd 

In the previous section, we used a Python list as a container class to implement a 
deck of cards. A deck has an implicit ordering of cards, namely the order in which 
the cards are dealt , and so it made sense to use a list to store the cards. Of course, 
the particular order that the deck is in is supposed to be random; that 's why we 
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shufHe a deck. Sometimes we want the objects in a container to be in a specific 
order according to the value of each item. The process of putting a collection in 
order by value is called sorting. In this section, we'll look at an example of a sorted 
collection. 

1 3 .4 . 1 1 Creating a Bridge Hand 

Let 's put our Deck class to work in an actual application. Suppose we are writ­
ing a program to play the popular card game bridge. Building such a program 
incrementally, our first task might be to deal four 13-card hands from a shufHed 
deck. We'd also like to display the hands nicely so that we can analyze them. For 
example, newspapers that carry bridge columns often show hands arranged by suit 
(in the order spades, hearts, diamonds, clubs) with cards in each suit arranged by 
decreasing rank (ace, king, queen, . . .  , 2) . Note that aces are considered higher than 
kings in bridge. 

Our task is to deal cards into hands and then to arrange those hands into the 
specified order. This suggests the invention of a new kind of collection, a Hand 
class. A Hand is initially empty, and cards are added to it one by one as they are 
dealt . Considering our Hand as an ADT, we need operations to create a hand, add 
a card, put the hand in order (sort it) ,  and display the cards in the hand. An initial 
specification of the class looks like this: 

# Hand . py 
class Hand(obj ect ) : 

" " "A labeled collection of cards that can be sorted" " "  

def �_init __ (self , label=" " ) : 
" " "Create an empty collection with the given label . " " "  

def add(self , card) : 
" " "  Add card to the hand 

def sort (self ) : 
" " "  Arrange the cards in descending bridge order . " " "  

def dump ( self ) : 
" " "  Print out contents of the Hand . " " "  

We have added to our initial description the ability to give each hand a name 
or label to identify it. Traditionally, bridge hands are identified with the compass 
points north, east, south and west . Notice that we have also added a dump method to 
display the contents of the hand. This is useful for testing and debugging purposes. 
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Since hands are ordered, a Python list is again the container of choice for 
implementing the new collection. Most of the operations are trivial to implement . 
The constructor must store away the label and create an empty collection. Let's 
store it in an instance variable called cards : 

# Hand . py 
class Hand(obj ect ) : 

def __ init __ ( self , label=" " ) : 
self . label label 
self . cards = [] 

The add operation takes a card as a parameter and puts it into the collection. 
A simple append suffices: 

def add(self , card) : 
self . cards . append(card) 

To dump the contents of the hand, we just need to print out a heading and then 
loop through the list to print each card. 

def dump ( self ) : 
print self . label + " ' s Cards : "  
for c in self . cards : 

print " " ,  c 

Let 's try out what we've got so far. 

» >  from Hand import Hand 
» >  from Card import Card 
» >  h = Hand( "North" ) 
» >  h . add(Card(5 , " c " »  
» >  h . add(Card ( iO , "d" » 
» >  h . add (Card ( 13 , " s " »  
» >  h . dump O 
North ' s  Cards : 

» >  

Five of Clubs 
Ten of Diamonds 
King of Spades 

That looks good. Notice how the listing of the cards is indented under the hand 
heading. 
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1 3 .4 .2 1 Compari ng Cards 

That leaves us with the problem of putting the hand in order. The sorting problem 
is an important and well-studied one in computer science. We'll take a quick look 
at it here and revisit it again in later chapters. If we want to put some things in 
a particular order, the first problem we have to solve is what exactly the ordering 
should be. 

In the case of our bridge program, we want to order our Card objects, grouping 
them first by suit and then ordering by rank within suit . Usually orderings are 
determined by a relation such as "less than." For example, if we say that a list of 
numbers is in increasing order, that means that for any two numbers x and y in the 
list , if x < y then x must precede y in the list . Similarly, we need a way of comparing 
cards so that we can order them in our Hand. In Chapter 2, we saw how Python 
operator overloading allows us to build new classes that "act like" existing classes. 
Here, we would like our cards to behave like numbers so that we can compare them 
using the standard Python operators such as < ,  = = , > ,  and so on. 

We can do this by defining methods for these operations in the Card class . Here 
are the definitions of the "hook" functions for these operators. 

def __ eq __ Cself , other) : 

return Cself . suit_char == other . suit_char and 
self . rank_num == other . rank_num) 

def __ It __ Cself , other) : 

if self . suit_char == other . suit char : 
return self . rank_num < other . rank_num 

else : 
return self . suit_char < other . suit_char 

def __ ne __ Cself , other) : 

return not Cself == other) 

def __ le __ Cself , other) : 

return self < other or self == other 

Notice that we've given "primitive" definitions for __ eq __ and __ It __ ; the rest of 
the necessary operators can easily be defined in terms of these two. We have not 
bothered to write definitions for __ gt __ and __ ge __ because Python gives us these 
for free. In an expression such as x > y, when the > operator is not implemented 
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for x, Python will try the symmetric operation y < x. Similarly, x >= y invokes y 
<= x .  

Now that our Card objects are comparable, there's one last detail to  clean up. 
When we originally created the Card class, we used a rank of 1 to represent an ace, 
but in bridge aces are the highest card, coming right after the king. Right now, our 
comparison method will put aces at the low end, since the rank is 1 .  

We can handle this issue in a couple of ways. One approach would b e  to code 
a special case for aces into the comparison methods. Another solution is to simply 
modify the Card class to use ranks that run from 2 to 14 with 14 representing the 
ace. Taking the latter approach, the start of our modified Card class would now 
look like this: 

class Card(obj ect ) : 
II " "A simple playing card . A Card is characterized by two 
components :  
rank : an integer value in the range 2-14 , inclusive (Two-Ace) 
suit : a character in II cdhs " for clubs , diamonds , hearts ,  and 
spades . II " "  

SUITS = " cdhs " 
SUIT_NAMES = [ "Clubs " ,  "Diamonds ll , "Heart s " , " Spade s " ]  

RANKS = range ( 2 ,  15) 
RANK_NAMES [ "Two ll , II Three II , " Four" , "Five ll , " Six" , 

II Seven" , "Eight " , II Nine " , "Ten" , 
" Jack" , " Queen" , "King" , "Acell ]  

Recall that our Deck class actually has to generate every possible card to create 
the initial deck. As such, the Deck class depends on the Card class, and changing the 
interface to the Card class might break the Deck class, since it might not know that 
14 is now a legal rank but 1 isn't .  Fortunately, when we originally coded up Deck we 
used Card . RANKS to generate all the possible ranks rather than using a hard-coded 
range such as range ( 1 ,  14) . By changing this constant in the Card class, we still 
are playing with a full deck. This illustrates the design advantage of using named 
constants rather than filling your code with "magic values." In this case, use of the 
constant helps us maintain the abstraction barrier between Card and Deck. 

Given these modifications to our Card class, we can now compare cards just as 
if they were numbers using the relational operators: 
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» >  Card( 14 ,  " c " )  < Card (2 ,  "d" ) 
True 
» >  Card(8 , " s " )  > Card ( 10 , " s " )  
False 
» >  Card(6 , " c " )  == Card (6 , " c " )  
True 
» >  

85 

Notice how the ace of clubs is " less than" the two of diamonds, since we have said 
that all clubs proceed any diamond. 

1 3 .4 .3 1 Sort ing Cards 

N ow that we can compare cards, we just need to come up with an algorithm to put 
them in order. Perhaps surprisingly, we can use an algorithm very similar to the 
one we used to shuffle the deck. Instead of choosing a card at random to become 
the first card in the hand, we choose the biggest card. Then we choose the biggest 
of the remaining cards to be the next one, and so on. This algorithm is known as a 
selection sort. As we'll see later, it 's not the most efficient way of sorting a list , but 
it's an easy algorithm to develop and analyze. 

In Python, a particularly simple way to implement the selection sort algorithm 
is to use two lists. The "old" list is the original hand, and the "new" list will be 
the ordered hand, which starts out empty. As long as there are cards in the old 
list , we simply find the largest one, remove it from the old list , and place it at the 
back of the new list . When the old list is empty, the new list contains the cards in 
descending order. Here's an implementation: 

def sort (self ) : 
cardsO = self . cards 
cards1 = [] 
while cardsO ! =  [] : 

next_card = max (cardsO) 
cardsO . remove (next_card) 
cards1 . append (next_card) 

self . cards = cards1 

Notice how the step of finding the largest card in the old list (cardsO) is 
accomplished using the Python built-in function max. This is a nice side effect of 
implementing the comparison operators . Now that Card objects can be compared, 
any existing Python sequence operations that rely on comparing elements can be 
used on collections of Card objects. That certainly simplifies things, doesn't it? 

Notice that we have developed a general sorting algorithm. It should work for 
sorting lists of any type of object . Right now, it sorts by creating a brand new list 
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that is in sorted order. However, just like the shuffling algorithm we did earlier, 
the selection sort can easily be converted to sort a list in place. Performing this 
conversion is left as an exercise . 

Actually, we have done more work than necessary to sort our hands. Since our 
Card objects are now comparable, we can let Python do the sorting of the cards for 
us by using the sort method that is built into the Python list type. Of course, the 
built-in sort will put the cards into ascending order. To get the cards into descending 
order, we'll need to reverse them after sorting. Here's a version of the sort method 
using this approach. 

def sort (self ) : 
self . cards . sort ( )  
self . cards . reverse ( )  

That's certainly easiest , but i f  we had jumped to this solution right away, we would 
have missed out on the excitement of developing our own sorting algorithm. 

How efficient is the selection sort algorithm that we developed? Obviously the 
main work of the function is being done inside the while loop. Notice that the loop 
continues until the cardsO list is empty. Each time through the loop, exactly one 
item is removed from cardsO, so it's clear that this loop will execute n times, where 
n is the number of items in the original list . Each time through the loop, we need 
to find the largest card in cardsO.  In order to find the largest card, the Python max 
function must look at each card in the list in turn and keep track of which is the 
largest. That's a 8 (c) operation, where c is the number of items in the list being 
analyzed. The first time through the while loop, max examines n cards. The next 
time through, it only has n - 1  cards to consider, then n - 2 ,  etc. So the total work 
done in all the iterations of the while loop is n + (n - 1 )  + (n - 2) + . . .  + 1 .  As we 
discussed in subsection 1 . 3 . 4, this sum is given by the formula n(n2+1) . That makes 
our selection sort at least an n2 algorithm. While it can be no better than 8(n2) ,  
it could even be worse, depending on the efficiencies of the remove and insert 
methods, which are also executed in the body of the while loop. We'll consider 
those operations in section 3 . 5 .  

By contrast, the built-in sort method in  Python is a 8 (n log n) algorithm, 
which is much more efficient . For our simple hands of 13 cards, that doesn't make 
much difference, but for a large list, it can mean the difference between sorting the 
collection in seconds vs. hours or days. We'll see how to design more efficient sorting 
algorithms in section 6 . 5 .  
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1 3 . 5 1 Python L ist I m p lementat ion 

When we analyzed the selection sort above, we concentrated on  the max operation, 
which turned out to be 8(n) , but we ignored the insert and remove methods for 
lists. It turns out that both of these methods have the same time complexity as max. 
How do we know that? Just as the choice of using a Python list to implement our 
collection classes Deck and Hand determines the relative efficiency of the methods 
in these classes, the choice of data structures in the implementation of Python 
lists determines the efficiency of various list operations. Therefore, understanding 
the true efficiency of various operations requires some understanding of Python's 
underlying data structures. 

1 3 . 5 . 1 1 Array-based Lists 

So how can we efficiently store and access a collection of objects in computer 
memory? Recall that computer memory is simply a sequence of storage locations. 
Each storage location has a number associated with it (much like an index) called its 
address. A single data item may be stored across a number of contiguous memory 
locations. To retrieve an item from memory, we need a way to either look up or 
compute the starting address of the object . If we want to store a collection of objects, 
we need to have some systematic method for figuring out where each object in the 
collection is located. 

Consider the case when all of the objects in a collection are the same size, that 
is they all require the same number of bytes to be stored. This would be the case 
with a homogeneous (all the same type) collection. A simple method for storing 
the collection would be to allocate a single contiguous area of memory sufficient to 
hold the entire collection. The objects could then be stored one after the next. For 
example, suppose an integer value requires 4 bytes (32 bits) of memory to store. 
A collection of 100 integers could be stored sequentially into 400 bytes of memory. 
Let 's say the collection of integers starts at the memory location with the address 
1024. This means the number at index 0 in the list starts at address 1024, index 1 
is at 1028, index 2 is at 1032, etc. The location of the ith item can be computed 
simply using the formula address�of �ith  = 1024 + 4 * i .  

What we have just described is  a data structure known as an array. Arrays 
are a common data structure used for storing collections, and many programming 
languages use arrays as a basic container type. Arrays are very memory efficient 
and support quick random access (meaning we can "jump" directly to the item 
we want) via the address calculation we just discussed. By themselves, however, 
they are somewhat restrictive. One issue is the fact that arrays must generally be 
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homogeneous. For example, it 's usually not possible to have an array that contains 
both integers and strings. In order for the address calculations to work, all elements 
must be the same size. 

Another shortcoming of arrays is that the size of the array is determined when 
memory is allocated for it . In programming language terminology, arrays are said to 
be static. When we allocate an array for 100 items, the underlying operating system 
grants us an area of memory sufficient to hold that collection. The memory around 
the array will be allocated to other objects (or even other running programs) .  There 
is no way for the array to grow, should more elements be added later. Programmers 
can work around this limitation to some extent by creating an array large enough to 
hold some theoretical maximum collection size. By keeping track of how many slots 
of the array are actually in use, the programmer can allow the collection to grow and 
shrink up to that maximum size. However, this negates the memory efficiency of 
arrays, since it forces the programmer to request more memory than might actually 
be needed. And, of course, we're still out of luck if the size of the collection needs 
to grow beyond the anticipated maximum. 

In contrast to arrays, Python lists are heterogeneous (they can mix objects of 
different types) and dynamic (they grow and shrink) . Underneath, Python lists 
are actually implemented using arrays. Remember that Python variables store 
references to the actual data objects . Don't worry too much if you are not familiar 
with or do not fully understand the concept of references; we will discuss them in 
detail in the next chapter. The point here is that what is stored in the consecutive 
memory locations of the Python list array are the addresses of actual data objects .  
Each address is the same length (typically 32 or 64 bits on modern CPU s) . To 
retrieve a value from a list , the Python interpreter first uses the indexing formula to 
find the location of the reference (address) to the object and then uses the reference 
to retrieve the object . So an array with fixed-sized elements can be used to store 
the addresses that are then used to retrieve arbitrarily sized objects. 

Of course, Python lists can also grow by calling methods such as insert and 
append. Internally, Python allocates a fixed-sized array for a list and keeps track 
of this maximum fixed size and the current size of the list . When an attempt is 
made to add elements beyond the current maximum size, a new contiguous section 
of memory large enough to store all the elements must be allocated. The references 
stored in the old array are then copied to the new larger array, and finally the 
memory for storing the old list is deallocated (given back to the operating system) . 
U sing this trick of dynamic array allocation, Python lists can continue to grow as 
long as enough system memory is available to hold the new list . 
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\ 3 . 5 . 2 \ Efficiency Ana lysis 

Knowing that Python lists are implemented as dynamically resizing arrays, we are 
now in a position to analyze the run-time efficiency of various list operations. 

Allocating a new larger array is a relatively expensive operation, so the new 
array that is allocated is typically significantly larger. Allocating a much larger 
array prevents the resize operation from being necessary until quite a number of 
additional items have been added to the array. This means appending onto the end 
of a Python list will occasionally require 8(n) computation (to allocate a new array 
and copy the existing items over) ,  but most of the time it is a 8(1 )  operation. If 
the size of the array is doubled each time it needs to be made larger, then the 8(n) 
resize operation only needs to be executed every n appends. Amortizing the cost 
of creating the new larger array over the n appends that can be performed without 
the resize operation results in the average cost of an append being 8(1 ) .  

The situation for arbitrary insertion operations anywhere in  the list is a little 
different . Because the elements of an array are in contiguous memory locations, to 
insert into the middle of an array we have to first create a "hole" by shifting all of 
the following items one place to the right. When the insertion is at the very front 
of the list , the Python interpreter has to move all n elements currently in the array. 
So the insertion operation is still 8(n) even if the size doubling trick is used when 
the array is full. 

Python lists also support a method to delete elements from an existing list . The 
analysis for deletion is the same as for insertion. If we delete the element in position 
four, all the elements in positions five and above must be shifted down one location. 
So deletion, like insertion, is a 8(n) operation. When deleting elements, we do not 
need to change the maximum size of the list ; however, if a list grows very large for 
a short time period and then shrinks and stays much smaller for the rest of the 
program, the memory allocated to store the largest size will always be in use. 

/ 3 . 6 /  Python D ict iona ries (Opt iona l )  

Python lists are an example of a sequential data structure. There is an inherent 
ordering of the data. Even in our implementation of the randomly shuffled deck, 
the items in the underlying list are still indexed by the natural numbers (0, 1 , 2, . . .  ) , 
which gives the collection a natural ordering. In fact , one can view lists abstractly 
as just a kind of mapping from indexes to items in the list . That is, each valid index 
is associated with (maps to) a particular list item. 
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The idea of mapping is very general and need not be restricted to using numbers 
as the indexes. If you think about it a bit , you can probably come up with all sorts 
of useful collections that involve other sorts of mappings. For example, a phone 
book is a mapping from names to phone numbers. Mappings pop up everywhere in 
programming, and that is why Python provides an efficient built-in data structure 
for managing them, namely a dictionary. 

1 3 . 6 . 1 1 A Dictionary ADT 

You have probably run across Python dictionaries before, but perhaps not given 
them much thought . A dictionary is a data structure that allows us to associate 
keys with values,  that is , it implements a mapping. Abstractly, we can think of a 
dictionary as just a set of ordered (key , value) pairs. Viewed as an ADT, we just 
need a few operations in order to have a useful container type. 

Create 
post : Returns an empty dictionary. 

put (key , value) 
post : The value value is associated with key in the dictionary. (key , value) 

is now the one and only pair in the dictionary having the given key. 

get (key) 
pre: There is an X such that (key , X) is in the dictionary. 
post : Returns X. 

delete (key) 
pre: There is an X such that (key , X) is in the dictionary. 
post : (key , X) is removed from the dictionary. 

There are many programming situations that call for dictionary-like structures. 
Some programming languages such as Python and Perl provide built-in implementa­
tions of this important ADT. Other languages such as C++ and Java provide them 
as part of a standard collection library. 

1 3 . 6 .2 1 Python D ictionaries 

A Python dictionary provides a particular implementation of the dictionary ADT. 
Let 's start with a simple example .  Remember in our Card example we needed to be 
able to turn characters representing suits into full suit names. That's a perfect job 
for a dictionary. We could define a suitable Python dictionary like this: 
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suits = { " c" : " Clubs " ,  "d" : "Diamonds " ,  "h" : "Hearts " , " s " : " Spades"  } 

As you can see, the syntax for a dictionary literal resembles our abstract description 
of a dictionary being a set of pairs. In Python, the key-value pairs are joined with 
a colon. In this case, we are saying that the string " e " maps to the string "Clubs " ,  

" d "  maps to "Diamonds " ,  etc. 
Values can be retrieved from a Python dictionary via a get method, but Python 

also allows dictionaries to be indexed in a manner similar to lists. Here are some 
interactive examples: 

» >  suits 
{ "h" : "Hearts" , " c " : "Clubs " ,  " s " : " Spades" , "d" : "Diamonds "} 
» >  suits . get ( " c " )  
' Clubs ' 
» >  suits [ " c " ]  
' Clubs ' 
» >  suits [ " s " ]  
' Spades ' 
» >  suits [ " j " ]  
Traceback (most recent call last ) : 

File " <stdin> " , line 1 ,  in ? 
KeyError : " j " 
» >  suits . get ( " j " )  
» >  suits . get ( "x" , "Not There " )  
' Not There ' 

Notice that when suits was evaluated, the key-value pairs did not print out in the 
same order as when the dictionary was created. Dictionaries do not preserve the 
ordering of items, only the mapping. The last interactions show a subtle difference 
between indexing and the get operation. 'frying to index into a dictionary using 
a nonexistent key raises a KeyError exception. However, the get method simply 
returns None as a default value in this case. As illustrated in the last interaction, 

get also allows an optional second parameter to provide an alternative default value, 
should the key lookup fail. 

The abstract put operation for changing entries in a dictionary or extending it 
with new entries is implemented via assignment in Python. Again, this makes the 
syntax for working with dictionaries very similar to that of lists. Here are a few 
examples: 
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» >  suits [ " j " ]  = " Joker" 
» >  suits 
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{ ' h ' : ' Hearts ' ,  ' e ' : ' Clubs ' ,  ' j ' :  ' Joker ' , ' s ' : ' Spades ' ,  ' d ' : ' Diamonds ' } 
» >  suits [ " j " ]  
' Joker ' 
» >  suits [ " e " ]  
» >  suits [ " s " ]  
» >  suits 

"Clovers " 
"Shovels " 

{ ' h ' : ' Hearts ' ,  ' e ' : ' Clovers ' ,  , j ' :  ' Joker ' , ' s ' : ' Shovels ' ,  ' d ' : ' Diamonds ' } 

To remove items, Python dictionaries understand the del function, just as 
Python lists do. You can also remove all the entries from a dictionary using the 
clear method. 

» >  suits 
{ ' h ' : ' Hearts ' ,  ' e ' : ' Clovers ' ,  ' j ' :  ' Joker ' , ' s ' : ' Shovels ' ,  ' d ' : 
' Diamonds ' } 
» >  del suits [ ' j ' ]  
» >  suits 
{ ' h ' : ' Hearts ' ,  ' e ' : ' Clovers ' ,  ' s ' : ' Shovels ' ,  ' d ' : ' Diamonds ' } 
» >  suits . elear ()  
» >  suits 
{} 

In addition to these basic operations, Python provides a number of conveniences 
for working with dictionaries. For example, we often want to do something to 
every item in a dictionary. For that ,  it's useful to deal with the dictionary in 
a sequential fashion. Python dictionaries support three methods for producing list 
representations of dictionary components: keys returns a list of keys, values returns 
a list of values, and items returns a list of (key , value) pairs. 1  You can also directly 
iterate through the keys of a dictionary using a for loop and check whether a given 
key is in the dictionary using the in operator. 

1 In Python 3.0, these methods return iterator objects (see Chapter 4) . They can easily be 
converted to lists, for example list (rnyDiet ionary . i terns 0 ) . 



» >  suits . keys O 
[ ' h ' , ' c ' , ' s ' , ' d ' ]  
» >  suits . values ( )  
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[ ' Hearts ' ,  ' Clovers ' ,  ' Shovels ' ,  ' Diamonds ' ]  
» >  suits . items ( )  
[ ( ' h ' , ' Hearts ' ) ,  ( ' c ' , ' Clovers ' ) ,  ( ' s ' , ' Shovels ' ) , ( ' d ' , ' Diamonds ' ) ] 
» >  for key in suits : 

print key , suits [key] 

h Hearts 
c Clovers 
s Shovels 
d Diamonds 
» >  ' c '  in suits 
True 
» >  ' x ' in suits 
False 

1 3 . 6 . 3 1 Dictionary I m plementation 

93 

As with virtually any ADT, there are numerous ways one could go about imple­
menting dictionaries. The choice of implementation will determine how efficient 
the various operations will be. One simple representation would be to store the 
dictionary entries as a list of key-value pairs. A get operation would involve 
some form of lookup on the list to find the pair with the specified key. Other 
operations could also be performed using simple list manipulation. Unfortunately, 
this approach will not be very efficient , as some of the operations will require 8(n) 
effort . (An exact analysis of the situation is left as an exercise . )  

Python uses a more efficient data structure called a hash table. Hash tables are 
covered in-depth in section 13 . 5 .  Here we just want to give you some intuition so 
that you can understand the efficiency of various dictionary operations . That will 
enable you to judge the efficiency of algorithms that use Python dictionaries. 

The heart of a hash table is a hashing function. A hashing function takes a key 
as a parameter and performs some simple calculations on it to produce a number. 
Since all data on the computer is ultimately stored as bits (binary numbers) ,  it's 
pretty easy to come up with hashing functions. Python actually has a built-in 
function hash that does this . You can try it out interactively. 
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» >  hash(2) 
2 
» >  hash (3 . 4) 
-751553844 
» >  hash ( " c " )  
-212863774 
» >  hash ( "hello " )  
-1267296259 
» >  hash (None) 
135367456 
» >  hash ( ( 1 , " spam" , 4 ,  "U" ) )  
40436063 
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» >  hash ( [ 1 , " spam" , 4 ,  "U"] ) 
Traceback (most recent call last) : 

File " <stdin> " , line 1 ,  in ? 
TypeError : list obj ects are unhashable 

Feeding anything that is "hashable" to hash produces an int result . Take a 
close look at the last two interactions. A tuple is hashable, but a list is not. One 
requirement of a hash function is that whenever it is called on a particular object , 
it must always produce the exact same result. Since the hash function relies on 
the underlying representation of the object to produce a hash value, the value is 
guaranteed to be valid only for objects whose underlying representations are not 
subject to change. In other words, we can only hash immutable objects. Numbers, 
strings, and tuples are all immutable and, hence, hashable. Lists can be changed, 
so Python does not allow them to be hashed. 

With a suitable hash function in hand, it's easy to create a hash table to imple­
ment a dictionary. A hash table is really just a large list that stores (key , value) 
pairs. However, the pairs are not just stored sequentially one right after another. 
Instead they are stored in the list at an index determined by hashing the key. For 
example, suppose we allocate a list of size 1000 (this is our "table") . To store the 
pair ( lI e " , II Clubs " )  we compute hash ( " e " )  % 1000 = 226. Thus, the item will 
be stored in location 226. Notice that the remainder operation guarantees we get 
a result in range ( 1000) , which will be a valid index for our table. With a good 
hashing function, items will be distributed across the table in a relatively uniform 
way. 

As long as no two keys in the dictionary hash to the exact same location, this 
implementation will be very efficient . Inserting a new item takes constant time, 
since we just apply the hash function and assign the item to a location in the list . 
Lookup has similar complexity; we just compute the hash and then we know where 
to go grab the item. To delete an item we can just put a special marker (e.g. , None) 
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into the appropriate slot . So all basic dictionary operations can be accomplished in 
constant (8(1) )  time. 

But what happens when two keys hash to the same spot? This is called a 
collision. Dealing with collisions is an important issue that is covered in section 1 3 . 5 .  
For now it suffices t o  note that there are good techniques for dealing with this 
problem. Using these techniques and ensuring a table of adequate size yields data 
structures that, in practice, allow for constant time operations. Python dictionaries 
are very efficient and can easily handle thousands, even millions of entries, provided 
you have enough memory available. The Python interpreter itself relies heavily on 
the use of dictionaries to maintain namespaces, so the dictionary implementation 
has been highly optimized. 

1 3 .6 .4 1 An Extended Exam ple :  A Markov Cha i n  

Let's put our new knowledge of  dictionaries to  use in  a program that combines 
several Python container classes to build Markov models . A Markov model is a 
statistical technique for modelling systems that change over time. One application 
of Markov models is in the area of systems for natural language understanding. For 
example, a speech recognition system can use predictions about what word is likely 
to come next in a sentence in order to decide among homonyms such as "their, " 
"they're," and "there." 

Our task is to develop a Markov class that could be used in such applications. 
We will demonstrate our class by using it to construct a program that can generate 
"random" language of a particular style. For example, if we train the program by 
feeding it mystery novels, it will generate gibberish that sounds like it came from a 
(really) bad mystery novel. 

The basic idea behind a Markov model of language is that one can make pre­
dictions about the next word of an utterance by looking at some small sequence of 
preceding words. For example, a trigram model looks at the preceding two words 
to predict the next (third) word in a sequence. More or fewer words could be used 
as a "window" depending on the application. For example, a bigram model would 
predict the probabilities for the next word based only on the immediately preceding 
word. Our initial design will be for a trigram model ; extending the program to 
arbitrary length prefixes is left as an exercise. 

Here is a quick specification of our Markov class. 
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class Markov(obj ect) : 

" " "A simple trigram Markov model . The current state is a sequence 
of the two words seen most recently . Initially , the state is 
(None , None) , since no words have been seen . Scanning the 
sentence "The man ate the pasta" would cause the 
model to go through the sequence of states : [ (None , None) , 
(None , ' The ' ) , ( ' The ' , ' man ' ) ,  ( ' man ' , ' ate ' ) ,  ( ' ate ' , ' the ' ) , 
( ' the ' , ' pasta ' ) ] " " "  

11 11 11 post : creates an empty Markov model with initial state 
(None , None) . " " "  

def add(self , word) : 

" " "post : Adds word as a possible following word for current 
state of the Markov model and sets state to 
incorporate word as most recently seen . 

ex : If state was ( " the " , "man" ) and word is " ate"  then 
" ate"  is added as a word that can follow " the man" and 
the state is now ( "man" , " ate " ) " " "  

def randomNext (self ) : 

" " "post : Returns a random choice from among the possible choices 
of next words , given the current state , and updates the 
state to reflect the word produced . 

ex : If the current state is ( "the " , "man " ) , and the known 
next words are [ " ate " ,  "ran" , "hit " , "ran" ] ,  one of 
these is selected at random . Suppose "ran" is selected , 
then the new state will be : ( "man" , "ran" ) .  Note the 
list of next words can contain duplicates so the 
relative frequency of a word in the list represents its 
probability of being the next word . " " "  

def reset (self) : 

" " "post : The model state is reset to its initial 
(None , None) state . 

note : This does not change the transition information that 
has been learned so far (via add ( ) ) , it 
just resets the state so we can start adding 
transitions or making predictions for a " fresh" 
sequence . " " "  
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Reading this specification closely reveals a number of container structures that 
we must weave together to produce a working class. An instance of the Markov 
class must always know its current state, which is a sequence of the last two words 
encountered. We could represent this sequence as either a list or a tuple. Given the 
current state, we need some sort of model that allows us to retrieve a collection of 
possible next words. That 's just a mapping, so we can use a dictionary to implement 
the model. The keys for the dictionary will be pairs of words, and the values will be 
lists of possible next words. Note we must use a tuple to represent the word pair, 
since Python lists are not hashable. 

We are now in a position to write the code for this class. 

import random 

class Markov(object ) : 

def __ init __ (self ) : 
self . model {} # maps states to lists of words 
self . state = (None , None) # last two words processed 

def add (self , word) : 
if self . state in self . model : 

# we have an existing list of words for this state 
# just add this new one (word) . 
self . model [self . state] . append (word) 

else : 
# first occurrence of this state , create a new list 
self . model [self . state] = [word] 

# transition to the next state given next word 
self . _transition (word) 

def reset (self) : 
self . state = (None , None) 

def randomNext (self ) : 
# get list of next words for this state 
1st = self . model [self . state] 
# choose one at random 
choice = random . choice (lst) 
# transition to next state , given the word choice 
self . _transition (choice) 
return choice 

def _transition (self , next) : 
# help function to construct next state 
self . state = (self . state [1] , next ) 
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You should read this code carefully to make sure that you understand how the class 
makes use of Python dictionaries, lists, and tuples. 

All that remains to complete our gibberish-generating program is to write some 
code to "train" a model on a large sample of input text and then use the resulting 
model to generate a stream of output. Here are a couple of functions that fit the 
bill. 

# test_Markov . py 
def makeWordModel (filename) : 

# creates a Markov model from words in filename 
infile = open (filename) 
model = Markov O  
for line in infile : 

words = line . split ( )  
for w in words : 

model . add(w) 
infile . close 0 
# Add a sentinel at the end of the text 
model . add (None) 
model . reset ( )  
return model 

def generateWordChain(markov , n) : 
# generates up to n words of output from a model 
words = [] 
for i in range (n) : 

next = markov . randomNext ( )  
i f  next i s  None : break # got to a final state 
words . append(next) 

return II " . j oin (words) 

Here is an example of the output obtained by training a model on Lewis Carroll's 
Alice 's Adventures in Wonderland: 

Alice was silent . The King looked anxiously at the mushroom for a 
rabbit ! 'I suppose I ought to have it explained, '  said the Caterpillar 
angrily, rearing itself upright as it was written to nobody, which isn't 
usual, 'Oh, don't talk about cats or dogs either, '  if you want to go nearer 
till she got up and down in an encouraging opening for a minute or two. 
'They couldn't have wanted it much, '  said Alice, swallowing down her 
anger as well as she did not get dry again: they had a little before she 
made it out to sea. So they began solemnly dancing round and round 
Alice, every now and then treading on her face brightened up at the 
Caterpillar's making such a curious appearance in the middle of one! 
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As you can see, parts of this output are tantalizingly close to coherent sentences. In 
contrast , here is sample output from a program that just chooses words at random 
from the text : 

of cup, '  sort ! '  forehead you However, house the went to me unhappy 
up impossible settled We had help the always in see, forgot tree of you 
'for night? because hadn't her ear. all confused sit took the care went 
quite do up, 'How three An Turtle, the was soldiers, solemnly, so went of 
the sharply. to Rabbit 'Tis there last , a with that o'clock and belo�, he 
Writhing, don't to wig, she into three, But said there, ' offended. turning 
This some (she together." 

, 
such be because and what the had to hatters 

better This Mouse new said the pool whiting. with could from bank-the 
mile said I she all! turning when 'Begin By how as head them, little, 
and Latitude he 

Clearly, the trigram model is capturing some important regularities in language. 
That's what makes it useful in many language processing tasks such as generating 
annoying email solicitations to defeat spam filters. Knowledge is power; please don't 
abuse your new skills! 

1 3 . 7 1 Chapter S ummary 

This chapter has introduced the idea of container classes as a mechanism for dealing 
with collections of objects. Here is a summary of some of the key concepts. 

• Container objects are used to manage collections. Items can be added to and 
removed from containers at run-time. 

• The built-in Python list is an example of a container class. 

• Lists define a sequential collection where there is a first item and each item 
(except the last) has a natural successor. 

• Lists can be used to store both sorted and unsorted sequences. Selection sort 
is a 8(n2) algorithm for sorting a sequence. 

• Python lists are implemented using arrays of references. When a list grows 
too large for the current array, Python automatically allocates a new larger 
one. This technique allows append operations to be done in 8(1 )  (amortized) 
tilne , but operations that insert or delete items in the midst of the list require 
Sen) time . 



100 Chapter 3 Conta i ner Classes 

• A Python dictionary is a container object that implements a general mapping. 

• Dictionaries are implemented with hash tables. Hash tables allow for very 
efficient lookup, insertion, and deletion of new mappings, but do not preserve 
ordering (sequence) of the items. 

• A Markov chain is a mathematical model that predicts the next item in a 
sequence based on a fixed window of immediately preceding items. It is 
sometimes used as a simple model of natural language for language processing 
applications. 

1 3 . 8 1 Exercises 

True/ Fa lse Questions 

1. Python is the only high-level language that has a built-in container type for 
sequential collections. 

2. The indexing operation on lists returns a sublist of the original. 

3. The constructor for the Deek class presented in the chapter creates a deck of 
cards that is randomly ordered. 

4. Instances of Python classes that implement the necessary hook methods can 
be compared using the standard relational operators (such as < ,  = = , and » . 

5. Python lists are implemented using contiguous arrays. 

6 .  A Python list is a homogeneous container. 

7. Arrays do not allow efficient random access. 

8. On average, appending to the end of a Python list is a 8(n) operation. 

9. Inserting into the middle of Python list is a 8 (n) operation. 

10 .  Card (6 , " e " )  < Card (3 , " s " )  

1 1 .  Python is unique in that it has a built-in container type that implements a 
general mapping (dictionaries) .  

12 .  Python dictionary keys must be immutable objects. 

13 .  Looking up an item in a Python dictionary is a 8(n) operation. 
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Mu lt ip le Choice Questions 

1 .  Which of the following is not true of Python lists? 
a) They are implemented underneath as contiguous arrays. 
b) All of the items in a list must be of the same type. 
c) They can grow and shrink dynamically. 
d) They allow for efficient random access. 

2. Which of the following is a 8(n) operation? 
a) Appending to the end of a Python list . 
b) Sorting a list with selection sort . 
c) Deleting an item from the middle of a Python list . 
d) Finding the ith item in a Python list . 

3. Which of the following is not a method of the Deck class presented in the 
chapter? 
a) size 
b) shuffle 
c) deal 
d) All of the above are methods of the class. 

4. Which of the following is not a method of the Hand class presented in the 
chapter? 
a) add 
b) sort 
c) deal 
d) All of the above are methods of the class. 

5. What is the time efficiency of the selection sort algorithm? 
a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2) 

6. What is the time efficiency of the Python built-in list method sort? 
a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2) 

7. What is the time efficiency of the operation max (myList) ? 

a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2) 

8. What operation is not supported for Python dictionaries? 
a ) Item insertion 
b) Item deletion 
c) Item lookup 
d) Item ordering (sorting) 
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9 .  Which of the following is not true of Python dictionaries? 
a) They are implemented as hash tables. 
b) Values must be immutable. 
c) Lookup is very efficient . 
d) All of the above are true. 

10. A trigram model of natural language 
a) uses a prefix of three words to predict the next word. 
b) uses a prefix of two words to predict the next word. 
c) is more useful than a Markov model. 
d) is used to send money overseas. 

Short-Answer Questions 

1. Using the Deck and Hand classes from this chapter, write snippets of code to 
do each of the following: 

a) Print out the names of all 52 cards. 

b) Print out the names of 13 random cards. 

c) Choose 13 cards at random from a 52-card deck and show the cards in 
value order (Bridge hand order) . 

d) Deal and display four 13-card hands dealt from a shuffled deck. 

2. What is the run-time efficiency (8) of the two shuffling algorithms discussed 
in the chapter (using two lists vs . in place) .  The discussion suggested that 
the latter is more efficient . Is this consistent with your e analysis? Explain. 

3. Suppose you are involved in designing a system that must maintain informa­
tion about a large number of individuals (for example, customer records or 
health records) .  Each person will be represented with an object that contains 
all of their critical information. Your job is to design a container class to hold 
all of these records. The following operations must be supported: 

add (person) - adds person object to the collection 

remove (name) - removes the person named name from the collection. 

lookup (name) - returns the record for the person named name. 

list_all - returns a list of all the records in the collection in order by name. 
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For each of the following ways of organizing the data, give an analysis of the 
efficiency of the above operations. You should justify each of your analyses 
with a sentence or two explaining the algorithm that would achieve that 
efficiency. Try to come up with the best approach for each organizational 
strategy. 

( a) The objects are stored in a Python list in the order that they are added. 

(b) The objects are stored in a Python list in order by name. 

( c) The objects are stored in a Python dictionary indexed by name. 

4. Python has a set type that efficiently implements mathematical sets . You 
can get information on this container class by consulting reference documents 
or typing help (set)  at a Python prompt. Suppose you are implement­
ing your own Set class that includes add, remove, clear, __ contains __ , 
intersection, union, and difference operations.  Utilizing each of the 
following concrete data structures , explain how you would implement the 
required operations and provide an analysis of the run-time efficiency of each 
operation. 

( a) an unordered Python list . 

(b) a sorted Python list . 

(c) a Python dictionary. (Note: the elements of the set will be the keys, you 
can just use None or True as the value. )  

5 .  Suppose you were using a language that had dictionaries , but not lists/arrays. 
How would you implement a sequential collection? Analyze the efficiency of 
operations in the basic list ADT using your approach. 

Progra m m ing Exercises 

1 .  Modify the Deck class to keep track of the current size of the deck using 
an instance variable. Does this change the run-time efficiency of the size 
operation? Do a bit of research to answer this question. 

2 .  Look into the functions provided by the Python random module to simplify 
the shuffling code in the Deck class. 

3. Suppose we want to be able to place cards back into a deck. Modify the Deck 
class to include the operations addTop, addBottom, and addRandom (the last 
one inserts the card at a random location in the deck) . 
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4. Instead of shuffling a deck of cards, another way to get a random distribution 
is to deal cards from random locations of an ordered deck. Implement a Deck 
class that uses this approach. Analyze the efficiency of the operations you 
provide. 

5. It can be inconvenient to test programs involving decks of cards if cards are 
always dealt in random order. One solution is to allow the deck to be "stacked" 
in a particular order. Design a Deck class that allows the contents of the deck 
to be read from a file. 

6. Modify the sort method in the Hand class so that it sorts the hand "in place." 
Hint: look at the in-place shuffling algorithm. 

7. Another way to put a hand in order is to place each card into its proper 
location as it is added to the hand. This algorithm is called an insertion sort. 
Implement a version of Hand that uses this method to keep the hand in order. 

8. Implement an extended Deck class with operations suitable for playing the 
card game war. You will need to be able to create an empty deck and place 
cards into it . 

9. Write a program to play the following simple solitaire game. N cards are dealt 
face up onto the table. If two cards have a matching rank, new cards are dealt 
face up on top of them. Dealing continues until the deck is empty or no two 
stacks have matching ranks. The player wins if all the cards are dealt . Run 
simulations to find the probability of winning with various values of N. 

10.  Write a program that deals and evaluates poker hands. 

1 1 .  Write a program to simulate the game of blackjack. 

12 .  Write a program to deal and evaluate bridge hands to determine if they have 
an opening bid. 

13 .  Modify the Markov gibberish generator so that it works at the level of char­
acters rather than words. Note: you should not need to modify the class to 
do this, only how it is used. 

14. Extend the Markov gibberish generator to allow the size of the prefix to be 
determined when the model is created. The constructor will take a pararneter 
specifying the length of the prefix. Experiment with different prefix lengths on 
texts of various size to see what happens. Combining this with the previous 
project , you can produce a very versatile and entertaining gibberish generator. 
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15 .  Write your own dictionary class that implements the various operations of 
the mapping ADT. Use a list of pairs as your concrete representation. Write 
suitable tests for your class and also provide a theta analysis of each operation. 





Chapter 4 

Object ives 

Linked Structures and 

I terators 

• To understand Python's memory model and the concepts of names and refer­
ences. 

• To examine different designs for lists , evaluate when each one is appropriate ,  
and analyze the efficiency of the methods for each implementation. 

• To learn how to write linked structures in Python. 

• To understand the iterator design pattern and learn how to write iterators for 
container classes in Python. 

@]] Overview 

When you first began learning Python, you may not have concerned yourself with the 
details of exactly how variables and their values are stored internally by the Python 
interpreter. For many simple programs, all you need to know is that variables are 
used to store values; however, as you write larger programs and begin to use more 
advanced features, it's important to understand exactly what the Python interpreter 
is doing when you assign a variable name to a value (an object) . Understanding these 
details will help you avoid certain kinds of mistakes, allow you to better understand 
the efficiency of your code, and open the door to new ways of implementing data 
structures. It will also make it easier for you to learn other programming languages 
that support a similar memory model and understand the trade-offs when you learn 
languages with differing models. 

107 
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After we cover the details of Python's memory model , we will use that informa­
tion to implement lists in a new way, using a so-called linked structure. The linked 
implementation makes some operations more efficient and other operations less 
efficient than they are for the built-in Python list . Understanding these trade-offs 
will allow you to choose the appropriate implementation techniques depending on 
what operations are needed by your application. Along the way, we will also discuss 
the iterator pattern, a technique that allows client programs to access items in a 
collection without making any assumptions about how the collection is implemented. 

If you already understand Python references and Python's memory model , you 
may be tempted to skip the next section; however, we suggest you read through 
it , as these concepts are crucial for understanding many of the topics covered later. 
Unless you are a Python expert, you will likely learn something new in this material. 

1 4 . 2 1 The Python Memory Mode l  

In  traditional programming languages, variables are often thought of  as being named 
memory locations. Applying that idea to Python, you might think of a variable in 
Python as a place, a sort of cubbyhole, corresponding to a location in the computer's 
memory where you can store an object . This way of thinking will work pretty well 
for simple programs, but it 's not a very accurate picture for how Python actually 
manages things. In order to avoid confusion with other languages, some people prefer 
to talk about names in Python rather than using the traditional term variables. 

In Python, a name always refers to some object that is stored in memory. When 
you assign a Python name to an object , internally the Python interpreter uses a 
dictionary to map that name to the actual memory location where the object is 
stored. This dictionary that maintains the mapping from names into objects is 
called a namespace. If you later assign the same name to a different object , the 
namespace dictionary is modified so that it maps the name to the new memory 
location. We are going to walk through an interactive example that demonstrates 
what is happening "under the hood." The details of this are a bit tedious, but if 
you fully understand them, you will have a much easier time understanding many 
of the topics discussed later. 

Let's start with a couple simple assignment statements. 

I »> d = ' Dave ' » >  j = d 

When the statement d = ' Dave ' is executed, Python allocates a string object 
containing Dave. The assignment statement j = d causes the name j to refer to the 
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d 

Figure 4. 1 :  Two variables assigned to an object 

same object as the name d; it does not create a new string object . A good analogy is 
to think of assignment as placing a sticky note with the name written on it onto the 
object. At this point , the data object Dave has two sticky notes on it : one with the 
name d and one with the name j .  Figure 4. 1 should help clarify what is happening. 
In diagrams such as this , we use an arrow as an intuitive way to to show the "value" 
of a reference; the computer actually stores a number that is the address of what 
our arrow is pointing to. 

Of course, the Python interpreter can't use sticky notes, it keeps track of these 
associations internally using the namespace dictionary. We can actually access that 
dictionary with the built-in function called locals O .  

» >  print locals ( )  
{ '  __  builtins __  ' : <module ' __  builtin __  ' (built-in» , ' __ name __ " ' __ main __ ' ,  
' j ' :  ' Dave ' , ' __ doc __ ' :  None , ' d ' : ' Dave ' } 

In this example, you can see that the local dictionary includes some Python 
special names ( _ _  builtins _ _  , __ name __ , and __ doc __ ) some of which you may 
recognize. We're not really concerned about those here. The point is that our 
assignment statements added the two names d and j to the dictionary. Notice, when 
the dictionary is printed, Python shows us the names as keys and a representation 
of the actual data objects to which they map as values. Keep in mind that the 
namespace dictionary actually stores the address of the object (also called a reference 
to the object) .  Since we usually care about the data, not locations, the Python 
interpreter automatically shows us a representation of what is stored at the address, 
not the address itself. 

If, out of curiosity, we should want to find the actual address of an object, we 
can do that . The Python id function returns a unique identifier for each object ; 
in most versions of Python, the id function returns the memory address where the 
object is stored. 

[» > print id (d) , id (j ) 
432128 432128 
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As you can see by the output of the id function, after the assignment statement 
j = d, both the names j and d refer to the same data object . Internally, the Python 
interpreter keeps track of the fact that there are two references to the string object 
containing "Dave " ;  this is referred to as the reference count for the object . 

Continuing with the example, let 's do a couple more assignments. 

» >  j = ' John ' 
» >  print id (d) , id (j ) 
432128 432256 
» >  d = ' Smith ' 
» >  print id (d) , id (j ) 
432224 432256 

When we assign j = ' John ' ,  a new string object containing " John" is created. 
Using our sticky note analogy, we have moved the sticky note j to the newly created 
data object containing the string " John" . The output of the id function following 
the statement j = ' John ' shows that the name d still refers to the same object as 
before, but the name j now refers to an object at a different memory location. The 
reference count for each of the two string objects is now one. 

The statement d = ' Smith ' makes the name d refer to a new string object 
containing " Smith" . Note that the address for the string object "Smith" is different 
from the string object "Dave " .  Again, the address that the name maps to changes 
when the name is assigned to a different object . This is an important point to note: 
Assignment changes what object a variable refers to, it does not have any effect on 
the object itself. In this case, the string "Dave " does not change into the string 
" Smi th" , but rather a new string object is created that contains " Smith" . 

At this point , nothing refers to the string "Dave " so its reference count is now 
zero. The Python interpreter automatically deallocates the memory for the string 
object containing "Dave " ,  since there is no longer a way to access it . By deallocating 
objects that can no longer be accessed (when their reference count changes to zero) , 
the Python interpreter is able to reuse the same memory locations for new objects 
later on. This process is known as garbage collection. Garbage collection adds 
some overhead to the Python interpreter that slows down execution. The gain is 
that it relieves the programmer from the burden of having to worry about memory 
allocation and deallocation, a process that is notoriously knotty and error prone in 
languages that do not have automatic memory management. 

It is also possible for the programmer to explicitly remove the mapping for a 
given name. 
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» >  del d _  
» >  print locals ( )  
{ '  __  builtins __  ' :  <module ' __  builtin __  ' (built-in» , ' __  name , . ' __ main __ ' , 
' j ' :  ' John ' , ' __ doc __ ' :  None} 
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The statement del d removes the name d from the namespace dictionary so it  can 
no longer be accessed. Attempting to execute the statement print d now would 
cause a NameError exception to be raised just as if we had never assigned an object 
to d. Removing that name reduces the reference count for the string " Smith" from 
one to zero so it will now also be garbage collected. 

There are a number of benefits to Python's memory model. Since a variable 
just contains a reference to an object , all variables are the same size (the standard 
address size of the computer, usually four or eight bytes) .  The data type information 
is stored with the object . The technical term for this is dynamic typing. That means 
the same name can refer to different types as a program executes and the name gets 
reassigned. This also makes it very easy for containers such as lists , tuples, and 
dictionaries to be heterogeneous (contain multiple types) ,  since they also simply 
maintain references to (addresses of) the contained objects. 

The Python memory model also makes assignment a very efficient operation. 
An expression in Python always evaluates to a reference to some object . Assigning 
the result to a name simply requires that the name be added to the namespace 
dictionary (if it's not already present) along with the four- or eight-byte reference. 
In a simple assignment like j = d the effect is to just copy d's reference over to j 's 
namespace entry. 

It should be clear by now that Python's memory model makes it trivial (usual, 
in fact) for multiple names to refer to the exact same object . This is known as 
aliasing, and it can lead to some interesting situations. When multiple names refer 
to the same object, changes to the object through one of the names will change the 
data that all the names refer to. Thus, changes to the data using one name will be 
visible via accesses through other names. Here's a simple illustration using lists. 

» >  Ist1 = [1 , 2, 3] 
» >  Ist2 = Ist 1 
» >  Ist2 . append (4) 
» >  Ist 1 
[1 , 2 ,  3 ,  4] 

Since Istl and Ist2 refer to the same object , appending 4 to Ist2 also affects 
Ist 1 .  Unless you understand the underlying semantics it seems like Ist l  has 
changed "magically, " since there are no intervening uses of 1st 1 between the first 
and last lines of the interaction. Of course these potentially surprising results of 



112 Chapter 4 L i nked Structu res and Iterators 

aliasing crop up only when the shared object happens to be mutable. Things like 
strings, ints, and floats simply can't change, so aliasing is not an issue for these 
types. 

When we want to avoid the side effects of aliasing, we need to make separate 
copies of an object so that changes to one copy won't affect the others. Of course 
a complex object such as a list might itself contain references to other objects, and 
we have to decide how to handle those references in the copying process. There are 
two different types of copies known as shallow copies and deep copies. A shallow 
copy has its own top-level references, but those references refer to the same objects 
as the original. A deep copy is a completely separate copy that creates both new 
references and, where necessary, new data objects at all levels. The Python copy 
module contains useful functions for copying arbitrary Python objects. Here's an 
interactive example using lists to demonstrate. 

» >  import copy 
» >  b = [ 1 , 2 ,  [3 , 4] , 6] 
» >  c = b 
» >  d = copy . copy (b) # creates a shallow copy 
» >  e = copy . deepcopy (b) # creates a deep copy 
» >  print b is c ,  b -- c 
True True 
» >  print b is d,  b -- d 
False True 
» >  print b is e ,  b == e 
False True 

In this code, c is the same list as b, d is a shallow copy, and e is a deep copy. By the 
way, there are numerous ways to get a shallow copy of a Python list . We could also 
have used slicing (d = b [ : ] )  or list construction (d = list (b) ) to create a shallow 
copy. 

So what's up with the output? The Python is operator tests whether two 
expressions refer to the exact same object, whereas the Python == operator tests to 
see if two expressions yield equivalent data. That means a is b implies a == b but 
not vice versa. In this example, you can see that assignment does not create a new 
object since b is  c holds after the initial assignment. However both the shallow 
copy d created by slicing and the deep copy e are distinct new objects that contain 
equivalent data to b. While these copies contain equivalent data, their internal 
structures are not identical. As depicted in Figure 4 . 2 ,  the shallow copy simply 
contains a copy of the references at the top level of the list , while the deep copy 
contains a copy of the mutable parts of the structure at all levels. Notice that the 
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b --------�--���---

c 

d 

e --------jill 

Figure 4 .2 :  Pictorial representation of shallow and deep copies 
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deep copy does not need to duplicate the immutable data items since, as mentioned 
above, aliasing of immutable objects does not raise any special issues. 

Because of the residual sharing in the shallow copy, we can still get aliasing side 
effects .  Consider what happens when we start modifying some of these lists. 

» >  b [0] = 0 
» >  b . append(7)  
» >  c [2] . append (5) 
» >  print b 
[0 , 2 ,  [3 , 4 ,  5] , 6 ,  7] 
» >  print c 
[0 , 2 ,  [3 , 4 ,  5] , 6 ,  7] 
» >  print d 
[ 1 , 2 ,  [3 , 4 ,  5] , 6] 
» >  print e 
[1 , 2 ,  [3 , 4] , 6] 

Based on Figure 4 . 2 ,  this output should make sense to you. Changing the top level 
of the list referred to by b causes c to change, since it refers to the same object . The 
top-level changes have no effect on d or e, since they refer to separate objects that 
are copies of b.  

Things get interesting when we change the sub list [3 , 4] through c .  Of course 
b sees these changes (since b and c are the same object ) . But now d also sees 
those changes, since this sublist is still a shared substructure in the shallow copy. 
Meanwhile, the deep copy e does not see any of these changes; since all of the mutable 
structures have been copied at every level, no changes to the object referred to by 
b will affect it . Figure 4 .3  shows the memory picture at the end of this example. 

As a final note, the sort of complete, reference-based diagrams that we have 
been using in this section can take up a lot of space and can sometimes be difficult 
to interpret . Since the distinction between reference and value is not crucial in 
the case of immutable objects, in an effort to keep our diagrams as straightforward 
as possible, we will not generally draw immutable objects as separate data objects 
when they are contained with another object . Figure 4 .4  shows the same situation 
as Figure 4 .3  drawn in a more compact style. 

1 4 . 2 . 1 1 Pass ing Parameters 

Although there seems to be confusion at times among programmers about Python's 
parameter-passing mechanism, once you understand Python's memory model, pa­
rameter passing in Python is very simple. Computer scientists use the terminology 
actual parameters to refer to the names of the parameters provided when a function 
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b --------�--------�----

c 

d -�-+---

e ------1-. 

Figure 4 .3 :  Memory representation at end of shallow and deep copy example 
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c 

d ----.IiifI 

e ------111!11 

Figure 4 .4 :  Simplified memory representation at end of shallow and deep copy 
example 

is called and formal parameters to refer to the names given to the parameters in the 
function definition. One way to remember this is the actual parameters are where 
the function is actually called. In the following example, b, c ,  and d are the actual 
parameters and e ,  f ,  and g are formal parameters. 

# parameters . py 
def func (e , f ,  g) : 

e += 2 
f . append (4) 
g = [8 , 9] 
print e ,  f ,  g 

def main e ) : 
b = 0 
c = [ 1 , 2 ,  3] 
d = [5 , 6 ,  7] 
func (b , c ,  d) 
print b ,  c ,  d 

main e )  

The output of this example is 
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. [1 , 2 ,  3 ,  4] [5 , 6 ,  7] 
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The easy way to think of how parameters are passed in Python is that the formal 
parameters are assigned to the actual parameters when the function is called. We 
cannot do this ourselves because the names e ,  f ,  and g are accessible only within 
func, while the names b, c ,  and d are accessible only inside main. But the Python 
interpreter handles the assignment behind the scenes for us when main calls func. 
The result is that e refers to the same object as b, f refers to the same object as 
c ,  and g refers to the same object as d when the function starts executing. The 
statement e += 2 causes the name e to refer to a new object while b still refers to 
the object containing zero. Since f and c refer to the same object , when we append 
4 onto that object , we see the result when c prints. We assigned the name g to a 
new object so g and d now refer to different objects, and thus the printed value of 
d remains unchanged. 

It is important to note that a function can change the state of an object that 
an actual parameter refers to; however, a function cannot change which object the 
actual parameter refers to. So information can be communicated to the caller by 
passing a mutable object and having the function mutate it via the corresponding 
formal parameter. Keep in mind, however, that assigning a new object to a formal 
parameter inside the function or method will never change the actual parameter in 
any way, regardless of whether the actual parameter is mutable or not . 

1 4 . 3 1 A L i n ked I m p lementat ion of L ists 

With this understanding of Python names and references, we are ready to take a 
look at a new way of implementing sequential collections. As you learned in the 
last chapter, Python lists are implemented using arrays. The drawback of an array 
implementation is the expense of inserting and deleting items. Since the array is 
maintained as a contiguous block of memory, inserting into the midst of the array 
requires shifting the original contents down to make room for the new item. Deleting 
results in a similar effort to close the gap. The fundamental problem here is that the 
ordering of the sequence is maintained by using an ordered sequence of addresses in 
memory. 

But this is not the only possible way to maintain sequence information. Instead 
of maintaining the sequence information of an item implicitly by its position in 
memory, we can instead represent the sequencing explicitly. That is, we can scatter 
the elements of the sequence anywhere in memory and have each item "remember" 
where the next one in the sequence resides. This approach produces a linked 
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sequence. To take a concrete example, suppose we have a sequence of numbers 
called myNums . Figure 4 . 5  shows both a contiguous and a linked implementation of 
the sequence. 

myNums 

myNums 

Figure 4 .5 :  Contiguous array on the left and linked version on the right 

Notice that the linked version of the sequence does not use a single section of 
memory; instead, we create a number of objects (often referred to as nodes) each 
of which contains a reference to a data value and a pointer/reference to the next 
element in the list . With the explicit references, a node can be stored at any location 
in memory at all. 

Given our linked implementation of myNums , we can perform all of the same 
operations that we can do on the array-based version.  For example, to print out all 
the items in the sequence, we could use an algorithm like this : 

current_node = myNums 
while <current_node is not at the end of the sequence> : 

print current_node ' s  data 
current_node = current_node ' s  link to the next node 

Implementing this algorithm requires a concrete representation for nodes that 
includes a way to get ahold of the two pieces of information in the node (the data 
and the link to the next item) and some way to know when we have reached the 
end of the sequence. We could do this in a number of ways; probably the most 
straightforward is to create a simple ListNode class that does the job. 
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# ListNode . py 
class ListNode (obj ect ) : 

def __ init __ (self , item = None , link = None) : 

" " " creates a ListNode with the specified data value and link 
post : creates a ListNode with the specified data value and link'' '' '' 

self . item = item 
self . link = link 
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A ListNode object has an instance variable item to store the data associated 
with the node and an instance variable link that stores the next item in the 
sequence. Since Python supports dynamic types, the item instance variable can 
be a reference to any data type. Thus, just as you can store any data type or a 
mixture of data types in the built-in Python list , our linked implementation will also 
be able to do that . That just leaves us with the issue of what to do with the link 
field to indicate that we have come to the end of a sequence. The special Python 
object None is generally used for this purpose. 

Let 's play around a bit with the ListNode class . The following code creates a 
linked sequence of three items. 

n3 = ListNode (3) 
n2 = ListNode ( 2 ,  n3) 
n1 = ListNode ( 1 , n2) 

1 2 

I 
n1 

3 None 

I 
n2 n3 

Figure 4 .6 :  Three ListNodes linked together 

Tracing the execution of this code produces the situation depicted in Figure 4 .6 .  
Here each double box corresponds to  a ListNode object with a data element and a 
link to the next ListNode object . Notice, we have simplified the diagram by showing 
the numbers (which are immutable) inside the ListNode boxes instead of drawing 
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a reference from the item part of the ListNode to the number object . Both n2 and 
nl . link are references to the same ListNode object containing the data value 2 and 
both n3 and n2 . link are references to the same object containing the data value 3.  
We can also access the ListNode object containing the data value 3 as nl . link . link 
and its data value as nl . link . link . item. Normally, we do not want to write code 
such as that , but it demonstrates how each object and data value can be reached 
from the start of the linked structure. Typically we only store a reference to the 
first ListNode object and then follow the links from the first item to access other 
items in the list. 

Suppose we want to insert the value 2 .5  into this sequence so that the values 
remain in order. The following code accomplishes this: 

I n25 = ListNode (2 . 5 .  n2 . 1inkl 
n2 . 1ink = n25 

Figure 4 . 7  show this pictorially. The statement n25 = ListNode (2 . 5 ,  n2 . link) 
allocates a new ListNode and calls its ini t method. The first line of ini t 
self . item = item sets a reference to 2 . 5  in the ListNode . The next line self . link 
= link stores a reference to the link parameter that is the ListNode n3 . After the 
_ _  ini t _ _  method finishes, the statement n2 . link = n25 sets the link instance 
variable of ListNode n2 so it refers to the newly created ListNode n25 . None of 
the references to ListNode nl were changed as part of this. Inserting a node in a 
linked structure only requires updating the link of the node before the one we are 
inserting. Since insertion into a linked structure does not require moving any of the 
existing data, it can be done very efficiently. 

Note that the order in which we update the links is extremely important . If we 
change our statements to insert 2 . 5  to the following, it will not work. 

# Incorrect version . It yon ' t  york ! 
n25 = ListNode (2 . 5) 
n2 . 1ink = n25 
n25 . 1ink = n2 . 1ink 

In this case, the statement n2 . link = n25 results in the reference to the ListNode 
containing the 3 being overwritten. The reference count for that ListNode will 
be reduced by one and if there are no other references to it , the ListNode will be 
deallocated. The statement n25 . link = n2 . link sets the link instance variable 
in ListNode n25 to the ListNode n25. This breaks the connections in our linked 
structure; it no longer contains the ListNode for 3. It also generates a cycle in our 
linked structure. If we write a loop that starts at ListNode nl and continues to 
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n1 

n2S = ListNode(2.S, n2.link) 

self. item = item 

n2 n3 

n25 

After self.item = item executed in _init_ method 

n 1  

n2S = ListNode(2.S, n2.link) 

self.item = item 

self. link = l ink 

n25 

After self. l ink = l ink executed in _init_ method 

n1 

n25 = ListNode(2.5, n2.link) 

self.item = item 

self.link = l ink 

n2.link = n2S 

After n2.link = n2S executed 

n25 

Figure 4 . 7: Inserting a node in the linked structure 
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follow the link instance variables until a link with the value None is reached, we will 
have an infinite loop, as the link for ListNode 2 . 5  refers to ListNode 2 . 5  itself. 
We will just keep going around and around. Programming with linked structures 
can get tricky, and the best way to make sure you have things correct is to trace 
your code and draw the pictures. 

Let 's consider what has to happen in order to delete an item from our sequence. 
To delete the number 2, we need to update the link field for the ListNode object 
containing 1 so that it "hops over" the node for 2. The code n1 . link = n25 
accomplishes this. That's it ; deleting from the sequence is even easier than inserting. 
If there are no other references to the deleted node, as usual its memory will be 
automatically deallocated. 

/ 4 .4 / L i n ked I m p lementat ion of a L ist ADT 

Hopefully, you now have a pretty good feeling for how linked structures can be used 
to represent sequences.  Conceptually, the technique is relatively simple, but we have 
to be careful to get the link manipulation just right so that items don't get lost or 
the structure corrupted. This is a perfect place to employ the idea of an ADT. 
We can encapsulate all of the details of the linked structure and manipulate that 
structure through some high-level operations that insert and delete items. In this 
section, we will borrow a subset of the Python list API and show how lists with 
similar functionality can be built using our ListNode class. 

Before starting on our list ADT, we need to finalize the details of our ListNode 
class. You have certainly noticed in the examples so far that we have been showing 
code that directly accesses the instance variables in ListNodes. As discussed in 
subsection 2 . 2 . 3 ,  we generally do not want to have the clients of a class access the 
instance variables. However, in the case of our ListNode class the entire purpose of 
the class is to package the two values. The ListNode class is not really an ADT, but 
rather an implementation technique. If we wanted to build a true ADT, we could 
certainly do that by adding additional methods to the ListNode class for getting 
and setting the values of the instance variables. 

def get_item (self ) :  

" " "returns the data element stored at the node 
pre : none 
post : returns the data element stored at the node " " "  

return self . item 
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def set_item(self , item) : 

II II II sets the data element stored at the node 
pre : none 
post : sets the data element stored at the node to itemll ll ll 

self . item = item 

def get_link ( self) : 

II II II returns the next link stored at the node 
pre : none 
post : returns the next link stored at the node ll ll ll 

return self . link 

def set_link(self , link) : 

II II "returns the next link stored at the node 
pre : none 
post : sets the next link stored at the node to link ll ll ll 

self . link = link 
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Creating these set and get methods for the data items makes the class signif­
icantly longer, and we will only be using the ListNode to help us with a linked 
implementation of a list ADT. That is, we are going to create an LList class that 
exploits the ListNode class. The LList class will be the only class using ListNodes 
so it seems more straightforward to just have the code in LList directly access the 
two ListNode instance variables. 

In general, Python does not enforce data protection, but instead allows program­
mers to use their judgment regarding when code should directly access instance 
variables. The main reason for data hiding is to prevent clients of a class from 
corrupting the data structure by directly setting an instance variable to an incorrect 
value. For most classes, the client should be calling the class methods to ensure 
correct manipulation of the instance variables. In our case, the client will only 
call LList methods and these LList methods will update the appropriate ListNode 
instance variables . In this way LList and ListNode are working together to provide 
an implementation of the list ADT. Even when using languages such as C++ or 
Java that provide data protection mechanisms, it 's probably not worth the clutter 
of having extra set/get methods for ListNodes. It 's cleaner to just allow the LList 
class to directly access the instance variables. 
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With the ListNode in hand, we are ready to turn our attention to implementing 
the LList class. This class will contain the methods that manipulate a list . Our 
LList class will maintain its data as a linked sequence of ListNodes. An LList 
object will need to have an instance variable that points to the first node in its 
sequence. Traditionally, this variable is called head. It 's also convenient to maintain 
an instance variable that keeps track of the number of items in the list . That way, 
we always know the length of the list without having to traverse it and count the 
nodes. 

It 's useful to summarize the relationships among the various parts of an LList in 
the form of a class invariant. A class invariant is a property or set of properties that 
defines a consistent state for an instance of a class. The invariant must be maintained 
by class methods; essentially it is an implicit set of pre- and postconditions for each 
of the methods. While we are updating the instance variables in the middle of a 
method, the invariant may temporarily not hold, but it must be true at the end of 
the method. For our list class, we define the following invariant : 

1 .  self . size is the number of nodes currently in the list 

2 .  If self . size == 0 then self . head is None ; otherwise self . head is a refer­
ence to the first ListNode in the list . 

3. The last ListNode (at position self . size - 1 )  in the list has its link set to 
None , and all other ListNode links refer to the next ListNode in the list . 

The constructor (the __ ini t __ method) must initialize all the instance variables 
so that the invariant property is met. To match the Python list API, we will write 
our __ ini t __ method so that it can accept a Python sequence that will be used to 
initialize the items in the list . Since we also plan to implement an append method 
for the class, the constructor can simply use repeated appends to get the job done. 
In order to call the append method we need to provide an instance of LList to 
append onto. Since it is the same instance of LList we are constructing, we need 
to use self as the instance. Here's the code: 
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# LList . py 
from ListNode import ListNode 

class LList (obj ect ) : 

def __ init __ (self , seq= ( » : 

II lI lI creates an LList 
post : Creates an LList containing items in seqll ll ll 

self . head = None 
self . size = 0 

# if passed a sequence , place items in the list 
for x in seq : 

self . append(x) 
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It should be clear that this code establishes our class invariant. The code begins 
by setting up the correct situation for an empty list (self . head is None and 
self . size == 0) . Then each item in the initializing sequence (if any) is appended 
to this list . Provided append obeys the invariant, everything should work. 

When writing container classes in Python, it is standard practice to write a 
__ len __ method. This method is called by Python when the len built-in function 
is applied to a programmer-defined object , as in this example: 

I a = LList O 
print len (a) # outputs 0 

The __ len _ _  method is a hook so that our own containers can work just like the 
built-in Python containers in responding to the len function call. Of course, we 
could also call this method directly by writing something like a .  __ len __ ( ) , but 
that 's not the Pythonic way. 

The _ _  len _ _  method is trivial to implement since the instance variable size, as 
per the class invariant, always indicates the number of items in the list . 

" " "post : returns number of items in the list ll ll ll 

return self . size 

Many of the list API methods require us to access a node at a specific location 
in the list . Rather than write this code in each method, we will write one method 
to access a specified node and call that method from the other methods as needed. 
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To indicate that this method should be called only by other LList methods and is 
not actually part of the API for use by clients, we will use the Python convention 
of prefixing the method name with an underscore. The _find ( self , position) 
method returns the ListNode at the specified position. It works by starting at the 
head and following the links forward the number of times necessary to reach the 
specified node. As with Python lists, we will use zero-based indexing. 

def _find(self , position) : 

" " "private method that returns node that is at location position 
in the list (0 is first item , size- 1  is last item) 
pre : 0 <= position < self . size 
post : returns the ListNode at the specif ied position in the 

list " " "  

assert 0 <= position < self . size 

node = self . head 
# move forward until we reach the specified node 
for i in range (position) : 

node = node . link 
return node 

As you can see, the _find method is straightforward. After checking the precon­
dition with an assert , a local variable, node , is used to keep track of a current node 
in the list . We start at the front (node = self . head) and then loop position times; 
each pass through the loop advances node one place in the list (node = node . link) . 
When the loop is done, node contains the target ListNode . 

The append method is short, given the _find method. There are two cases to 
consider depending on whether the list currently contains any items. In the case of 
an empty list , self . head needs to be set to the newly created ListNode . For a non­
empty list , we need to find the last ListNode , which is at position self . size - 1 ,  
and set its link to  the newly created ListNode . In either case the size instance 
variable needs to be increased by one to maintain the invariant . A key concept to 
understand is that we only call the ListNode constructor when a new node is being 
added to the list (using the append and insert methods) . 
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def append(self , x) : 

" " "appends x onto end of the list 
post : x is appended onto the end of the list " " "  

# create a new node containing x 
newNode = ListNode (x) 

# link it into the end of the list 
if self . head is not None : 

# non-empty list 
node = self . _find(self . size - 1 )  
node . link = newNode 

else : 
# empty list 
# set self . head to new node 
self . head = newNode 

self . size += 1 
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Notice how this code tests for the special case when the list is empty: if self . head 
is not None . Checking to see if a variable refers to None (or not) is a common idiom 
in Python; it crops up often when writing code that employs linked structures. 

There are a number of ways to code a test for None . They will all produce the 
same result in our case, but they will cause differing methods to be invoked. One 
choice is to use the is operator, as we did in our example. Recall that is performs 
a check for object identity, so the expression node is None checks whether both 
node and None are the same object . The Python interpreter can check this quickly 
by seeing if the reference (address) of the two objects is the same. Sometimes you 
will see code that uses the == operator, such as if node == None . This form will 
invoke the node's __ eq __ method (if defined) . It is therefore somewhat less efficient , 
since it involves a method invocation. It can also cause problems with classes whose 
__ eq _ _  methods are not expecting None as a possible parameter. A third option is 
to simply write if node : .  This causes the __ nonzero __ method to be called if the 
class defines that method. If the __ nonzero __ method is not defined, it will call 
the __ len __ method if defined. If neither method is defined, instances of a class 
are interpreted as a True Boolean. In contrast , the None object as a Boolean means 
False.  While succinct and elegant , this approach is also less efficient due to the 
method call lookup, and it can be prone to subtle errors, since objects other than 
None may also evaluate to False.  The bottom line is we recommend you always use 
is None or is not None to check if a Python variable is None . 

At this point we have an LList class that allows us to build a list and check 
its length. Let's add the ability to index into the list . We can do this in our 



128 Chapter 4 L i nked Structu res and Iterators 

class by defining suitable __ geti tem __ ( self , position) and __ seti tem __ ( self , 
position , value) methods. These are more Python hooks. The former is called 
when the square brackets are used to access an item in the list , and the latter is 
called when the brackets are used on the left-hand side of an assignment statement. 
Again, implementing these methods allows our LList objects to act just like built-in 
Python list objects ,  so that we can write code such as this: 

a = LList ( ( 1 ,  2 ,  3»  # call constructor with the tuple ( 1 , 2 ,  3) 
print a [O] # calls a. __ getitem __ (O) 
a [O] = 4 # calls a. __ setitem __ (O , 4) 

Here's the implementation of the necessary methods. Notice how simple they 
are since we already have the _f ind method for locating the appropriate node. 

def __ getitem __ (self , position) : 

II lI lI return data item at location position 
pre : 0 <= position < size 
post : returns data item at the specified position ll ll ll 

node = self . _find (position) 
return node . item 

def __ setitem __ (self , position , value) : 

II lI lI set data item at location position to value 
pre : 0 <= position < self . size 
post : sets the data item at the specified position to value ll ll ll 

node = self . _f ind(position) 
node . item = value 

We're just about finished with our basic container operations. We still lack any 
method for deleting items from the list . For the built-in Python list there two main 
ways of deleting an item. One way is to use Python's del statement, as in del a [ 1] . 
As you should expect by now, Python provides a hook for duplicating this behavior 
in our own collections. The necessary method is __ deli tem __ ( self , position) . 

The other frequently used technique for deleting from a Python list is to call the 
list 's pop method, which deletes the item and also returns the item that was deleted. 
Since both pop and __ deli tem __ remove an item from the list , we can factor out 
this common functionality into a helper method, _delete, and use it for both. The 
__ deli  tem __ method is simple, given the _delete method. 
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def __ delitem __ (self , position) : 

" " "delete item at location position from the list 
pre : 0 <= position < self . size 
post : the item at the specified position is removed from 
the list " " "  

assert 0 <= position < self . size 

self . _delete (position) 
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Actually implementing the _delete ( self , position) method is more compli­
cated; performing the deletion usually requires changing the link in a ListNode . 

As with append, however, we need to handle the case for removing the item at 
position zero separately since that requires changing self . head. If the list is not 
empty, we actually have to find and modify the node that precedes the one to be 
deleted. The predecessor's link field will be set to the deleted node's link to maintain 
the sequence. A final consideration is that we want to use _delete to implement 
the pop method, so delete will need to return the item of the ListNode we are 
deleting. 

def _delete (self , position) : 

# private method to delete item at location position from the list 
# pre : 0 <= position < self . size 
# post : the item at the specified position is removed from the list 
# and the item is returned (for use with pop) 

if position == 0 :  
# save item from the initial node 
item = self . head . item 

# change self . head to point " over" the deleted node 
self . head = self . head . link 

else : 
# find the node immediately before the one to delete 
prev_node = self . _find(position - 1 )  

# save the item from node to delete 
item = prev_node . link . item 

# change predecessor to pOint " over" the deleted node 
prev_node . link = prev_node . link . link 

self . size -= 1 
return item 
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You should trace through this code with some simple examples to convince 
yourself that it works. One important subtlety is what happens to the memory that 
is being used by the ListNode for the deleted item. Once the deleted node is spliced 
out of the linked list , its reference count drops to zero (since nothing points to it 
any more) and that memory is automatically deallocated by the Python garbage 
collection process. In languages without garbage collection, more care would have 
to be taken to explicitly deallocate the deleted node. 

Another thing to think about is what happens when we delete an item from 
the end of the list . The ListNode at the end of the list has None as its link. So 
the line pre v _node . link = prey _node . link . link effectively sets the predecessor's 
link to None as well. Since None is the terminator for the list , the predecessor 
now becomes the final element of the list , which is just what we want . In the 
special case of deleting the very last remaining item of the list , setting self . head = 
self . head . link causes self . head to become None , which is the proper designation 
for an empty list (as per the class invariant) .  In summary, no special code is needed 
to handle deleting from the back of the list ; the None reference simply gets copied 
over appropriately. 

With the _delete method complete, the pop method is simple. We use a 
default position parameter of None to indicate that a parameter was not passed, 
and therefore, the last item in the list is the one to be popped. Otherwise we 
remove and return the item at the specified position. Since the _delete method 
returns the item at the ListNode we are deleting, we just need to have the pop 
method return that value back to the caller . 

def pop ( self , i=None) : 
" " "returns and removes at position i from list ; the default is to 
return and remove the last item 

pre : self . size > 0 and ( i  is None or (0 <= i < self . size) ) 

post : if i is None , the last item in the list is removed 
and returned ; otherwise the item at position i is removed 
and returned" " "  

assert self . size > 0 and ( i  is None or (0 <= i < self . size) ) 

# default is to delete last item 
# i could be zero so need to compare to None 
if i is None : 

i = self . size - 1 

return self . _delete(i )  
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Inserting items into a linked list is pretty easy. We do have to remember to 
handle the special case of inserting before the first item, as we will need to update 
self . head. For any other position in the list , we just find the ListNode we are 
inserting after (position - 1 )  and create a new ListNode after it and update the 
links accordingly. 

def insert (self , i ,  x) : 

" " " inserts x at position i in the list 
pre : 0 <= i <= self . size 
post : x is inserted into the list at position i and 

old elements from position i . .  oldsize-1 are at positions 
i +1 . .  newsize-1 " " " 

assert 0 <= i <= self . size 

if i == 0 :  
# insert before position 0 requires updating self . head 
self . head = ListNode (x , self . head) 

else : 
# find item that node is to be inserted after 
prev = self . _find(i  - 1 )  
prev . link = ListNode (x , prev . link) 

self . size += 1 

Notice that we have not done anything special in this code to handle insertion at 
the very end of the list or insertion into an empty list . You might want to trace the 
execution on those two boundary cases to see what happens. 

Another method that could be useful is one for creating a copy of a list . As we 
discussed in section 4 . 2  with the built-in Python list there is a distinction between 
a shallow copy and a deep copy . Remember that the difference is that a shallow 
copy only gets copies of the references at the top level, whereas a deep copy creates 
a separate copy of every reference and mutable object in the object .  Python allows 
us to define our own methods that are called when the copy or deepcopy function 
in the copy module is called with a user-defined class. The methods to do this are 
_ _  copy _ _  (self ) (for shallow copies) and _ _  deepcopy _ _  (self , visit ) . We're not 
going to worry about the deepcopy O method here, but let 's take a look at how we 
might implement shallow copying. Providing a _ _  copy _ _  method will allow a user 
of our class to make shallow copies like this : 
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import copy 
a = LList ( [O ,  1 ,  2 ,  3] ) 
b = copy . copy (a) 
del a [2] 
print b [2] # outputs 2 

The shallow copy created by __ copy __ will create a sequence of brand new 
ListNodes for the items in the list . This shallow copy allows us to insert or remove 
items from a list without affecting the copy, as illustrated in the example. One way 
to implement the copy method is 

def __ copy __ (self ) : 

" " "post : returns a new LList obj ect that is a shallow copy of self " " "  

a = LList O 
node = self . head 
while node is not None : 

a . append (node . item) 
node = node . link 

return a 

This method begins by creating a new (empty) list object and then proceeds to 
traverse the nodes of the original list and append each item to the new list . Each 
call to append creates a new ListNode to contain the item. As an alternative, we 
could dispense with the references to nodes and simply use the indexing operation 
that we defined earlier: 

def __ copy __ (self ) : 

a = LList O 
for i in range (len (self ) ) : 

a . append(self [i] ) 
return a 

Neither of these implementations is particularly efficient , since our append method 
always starts at the beginning of the list and traverses it to get to the end where 
the new node is added. The astute reader will no doubt have noticed that our 
__ ini t __ 0 method is similarly inefficient when passed an initializing sequence. 
Now that we have implemented enough of the Python list API to make our LList 
usable, this might be a good point to step back and analyze the time complexity of 
our algorithms. 

At the beginning of the section, we suggested that the main advantage of a linked 
implementation as opposed to an array implementation of lists is that insertion and 
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deletion are more efficient because we never have to shift items around to make room 
or close up a gap. Of course, the disadvantage of the linked implementation is that 
we lose the ability to do efficient random accessing. In order to find a particular 
item in the list , we have to start at the head and traverse the links until we come 
to the desired item. In our implementation, this is done by the _find ( i) helper 
method. 

Let 's take a closer look at our algorithms to analyze the run-time efficiency of 
common list operations. Starting with list creation, suppose we execute some code 
such as this : 

I myLList = LList (someSequence) 

What is the theta analysis for this snippet? Obviously, the time to create the 
LList will depend on the length of someSequence that we're using to build the 
initial LList .  It seems like this operation should be 8(n) where n is the length 
of someSequence .  But a closer inspection of the code suggests that this is too 
optimistic. 

The LList constructor contains a for statement that loops over the items in 
someSequence ,  but the body of the loop uses the append operation. Remember 
that append has to traverse the entire list that is being appended to in order to get 
from the head to the very end where the new ListNode is inserted. That makes 
append a 8(n) operation itself. If you actually count the total number of links that 
have to be traversed through all executions of the main loop, you'll get a sequence 
like 0 + 1 + 2 + 3 . . .  + n - 1 .  As we've seen several times now, a sum of this form 
makes the overall operation 8(n2) .  A simple way to think about it is that the 8(n) 
append operation is performed n times, so we actually have a 8(n2) algorithm. 

Fortunately, it 's relatively easy to modify our constructor to make it more 
efficient. As we discovered, the problem is the use of append to build the list . We 
know that we can add something to a linked list just by wrangling a few references, 
provided we already have a handle on where the item has to be inserted. If we just 
keep track of where the end of the list is, we can insert the next node in 8(1 )  time. 
Here's a version of the constructor using this approach. 
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def __ init __ ( self , seq= ( » : 

" " " create an LList 
post : creates a list containing items in seq" " "  

if seq == 0 :  
# No items to put in , create an empty list 
self . head = None 

else : 
# Create a node for the first item 
self . head = ListNode (seq [O] , None) 

# Add remaining items keeping track of last node added 
last = self . head 
for item in seq [ l : ] : 

last . link = ListNode (item , None) 
last = last . link 

self . size = len(seq) 

If you study this code, you should be able to convince yourself that our new list 
creation algorithm is 8(n) . This bit of extra code seems well worth the effort . In 
fact, this approach could be generalized. By making last an instance variable, an 
LList would always "know" which node was at the end of the list , and append could 
be written as a 8(1 )  operation. Of course that would introduce a new condition 
into our class invariant , namely that last is None for an empty list and last is the 
final ListNode in a non-empty list . All of the methods in the class would have to 
respect this new invariant . Performing this optimization is left as an exercise. By 
the way, when append becomes a constant time operation, you can revert _ _  init _ _  

back to its simpler form. 
We've seen that with a bit of tweaking, LList creation can be done in 8 (n) time 

and append can be done in 8(1 )  time. Those are quite efficient operations. Let's 
take a look at traversing the list to process the items. Suppose we want to print out 
all the items in our list . Since we have implemented list indexing, we can do this. 

for i in range (len(myLList » : 
print myLList [i] 

Again, this code seems like it should be 8(n) ; that 's what we'd have using a Python 
built-in list. Unfortunately, indexing suffers the same problem that we had before 
with append. Getting to the ith element in a linked list is a 8 (  i) operation. Think 
again about the number of ListNodes that must be traversed for each iteration 
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of the loop. The analysis looks just like what we had for our original ini t 
method. Doing list traversal this way is a 8(n2) proposition! 

Unfortunately, unlike the case for append, there is nothing we can do in general 
so that indexing a linked list is a constant time operation. We know that append 
always operates on the last node, but the whole point of indexing is that the client 
could ask for the contents of any arbitrary node. That requires counting from 
the beginning (or perhaps some other fixed location) to get to the requested node. 
That 's always going to be a 8(n) operation; that 's the price we pay for using a 
linked list . 

This lack of random access also robs us of the advantages that linked structures 
have for insertion and deletion. Since we've implemented the Python list API, 
insertion and deletion are specified in terms of index positions. Unfortunately, 
finding the proper ListNode for performing the operation is a 8(n) operation, so 
even though the actual insertion or deletion of a node can be done by twiddling a 
couple references, the overall operation is 8(n) , due to the calls to _find in insert 
and _delete. 

So far, it looks like our linked implementation has been a complete waste of effort . 
Our theta analysis tells us that none of our operations is any more efficient that those 
for the Python list , and traversing the list is actually much worse. However, that 's 
not too surprising, because the Python list API is designed around the operations 
that are efficient for a list implemented using arrays. We wouldn't necessarily expect 
the exact same API to bring out the strengths of a linked implementation. 

1 4 . 5 1 I terators 

In the last section we saw that traversing a linked list via indexing successive 
locations is inefficient (8(n2) ) .  But we know it is possible to traverse down a linked 
list in an efficient fashion, we just need to start at the head and follow the links. 
If we had access to the internal structure of the LList,  we could just write code 
something like this: 

node = myLList . head 
while node is not None : 

print node . item 
node = node . link 

Here the variable node simply marches down the list to print out the items. 
That leaves us with an interesting dilemma for implementing containers. Travers­

ing the items is a useful operation for virtually any container, but doing so efficiently 
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seems to require exploiting the internal structure of a container. It would be nice if 
we could write generic client code for traversal that would work efficiently on any 
container. In effect we would like each container to implement the traversal in the 
way that is most efficient for that container. 

One way of solving the generic traversal problem to use a common design pattern 
known as an iterator. In a nutshell, an iterator is an object that knows how to 
produce a sequence of items from a container. When we want to traverse the items 
in a container, we just ask the container to give us an iterator, and we then use the 
iterator to produce the items. If we make sure that all iterators obey the same API, 
then we can write generic iterator code to traverse collections of any type. That 
might sound complicated, but in practice it's pretty simple. 

1 4 .5 . 1 1 I terators i n  Python 

Different designers choose slightly different APIs for iterators. Iterators have been 
designed into the Python language, and the Python iterator API is one of the 
simplest . Here's an example of traversing the items in a Python list using an iterator. 

» >  myList = [2 , 3 ,  4] 
» >  it = iter (myList ) 
» >  type (it )  
<type ' listiterator ' >  
» >  it . next O 
2 
» >  it . next 0 
3 
» >  it . next O 
4 
» >  it . next 0 
Traceback (most recent call last) : 

File II <stdin> II , line 1 ,  in <module> 
Stoplteration 

The iter function is used to "ask" a collection for an iterator object . Notice that 
the resulting object , it,  is of type listi terator.  In Python. an iterator object has 
just one method called next 0 1 that produces the next item in the sequence. As the 
interaction shows, when the iterator runs out of items, it raises the Stoplteration 
exception. 

With this simple interface, we can write generic code to loop through the objects 
in any container that supports iterators. We just need to get an iterator and 

Ipython 3.0 uses a hook method, __ next __ , and a new built-in function next (iterator) calls 
this hook. 
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repeatedly call its next method until it raises Stoplteration. Here's a while 
loop that does the trick. 

items = iter(myContainer) 
while True : 

try : 
item = items . next ( )  

except Stoplteration : 
break 

# process item here 

As you can see, this code is a little awkward because of the way we need to catch the 
Stoplteration exception to detect the end of the collection and break out of the 
loop. Fortunately, it is not necessary to deal with the iterators directly. A regular 
f or loop uses iterators implicitly. 

The Pythonic way of writing the code is simply 

for item in myContainer : 
# process item here 

Behind the scenes, this f or loop uses the iter function to ask the container for an 
iterator and then calls next to get the item for each pass through the loop. When 
the iterator raises Stoplteration, the loop ends. Thus, we can make any container 
usable in a for loop by having the container implement a suitable iterator. 

1 4 .5 .2 1 Adding an  Iterator to LL ist 

Adding an iterator to our LList class is straightforward. Our iterator will be an 
object that keeps track of the current position in the list . Each time next is called, 
we return the item at the current position and update the iterator to the following 
item. For a linked list , that means our iterator just needs to keep track of which 
ListNode is the current node. Initially, that node will be the head of the list . Of 
course, this LListlterator is a brand new kind of object . We'll need a class to 
define it . 

# LList . py 
class LListlterator (obj ect) : 

def __ init __ (self , head) : 
self . currnode = head 
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def next (self ) : 
if self . currnode is None : 

raise Stoplteration 
else : 

item = self . currnode . item 
self . currnode = self . currnode . link 
return item 

Since this is another helper class for LLists, it makes sense to place this class right 
into the LList . py module file. 

All that remains is updating our LList class slightly so that it returns an 
appropriate instance of LListlterator when called upon. This is accomplished, as 
you might guess, with another Python hook method, _ _  iter __ . When the Python 
iter function is called on an object , it returns the result of the object 's __ iter __ 

method. Our update to the LList class looks like this: 

class LList (obj ect ) : 

def __ iter __ (self ) : 
return LListlterator (self . head) 

With these additions, our LList class is now efficiently traversable using a plain­
old Python for loop. Let's take it for a test spin. 

» >  from LList import * 
» >  nums = LList ( [1 , 2 , 3 , 4] ) 
» >  for item in nums : 

1 
2 
3 
4 

print item 

As you can see, the iterator design pattern is a powerful tool for allowing access 
to the items of a collection without exposing the details of how the collection is 
actually implemented. 

1 4 .5 . 3 1 I terati ng with a Python Generator 

The key idea in implementing an iterator is that the iterator object needs to remem­
ber the current state of the traversal of a sequence of items. In our LList example 
it was easy to capture this state by simple saving a reference to the current node. 
In general, this idea of saving the state of a traversal or other computation is very 



4 .5 Iterators 139 

useful. It 's often nice to be able to "restart" a computation right where we left off. 
Python supports a special structure known as generator that allows us to do just 
that . 

A generator definition looks very much like a regular function, but it allows us 
to return a value from the computation, and when the next value is required, it 
continues executing, picking up right where it left off. As a simple example, here's 
a generator to produce the sequence of natural squares: 1 , 4, 9 ,  and so on. 

def squares () : 
num = 1 
while True : 

yield num * num 
num += 1 

As you can see, this looks just like a function definition, but where a function might 
have return statements, a generator uses the special keyword yield. The idea here 
is that we have an infinite loop (while True) and each time through the loop, we 
yield the next square in the sequence. 

When a generator is called, it doesn't actually execute. Instead, it hands back 
a generator object that obeys the iterator API. For example, we can generate a 
sequence of squares like this. 

» >  seq = squares 0 
» >  seq . next ()  
1 
» >  seq . next ()  
4 
» >  seq . next ()  
9 

Each time we call next , the generator code picks up where it left off (immediately 
after the last yield) and continues running until it encounters a yield statement . 
The yielded value is handed back as the result . If the generator should quit via a 
return or simply "falling off the bottom, " the generator will raise a Stoplteration 
exception, just as any good Python iterator should. 

Since calling a generator produces an iterator object , generators are particularly 
useful for making container classes iterable. Instead of writing a separate iterator 
class ac;; we did before, we can just make the _ _ iter _ _  method of our class into a 
generator. Here's what it looks like for the LList class. 
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class LList (obj ect) : 

def __ iter __ (self) : 
node = self . head 
while node is not None : 

yield node . item 
node = node . link 

Essentially, this is our standard code for walking down a linked list . Simply by 
yielding each item as we come to it , we turn the while loop into a generator that 
produces the values one at a time as required. Here's the new generator-enhanced 
class in action. 

» >  from LList import * 
» >  nums = LList ( [1 , 2 , 3 , 4] )  
» >  for item in nums : 

1 
2 
3 
4 

print item 

The generator gives us an iterable container without the muss and fuss of having 
to create a separate iterator class. Generators are a very cool feature of Python and 
can do much more than what we've shown here. You might what to consult the 
Python documentation to find out more. 

\ 4 . 6 \ A Cu rsor-based L ist AP I  (Opt iona l )  

We now have a usable linked list implementation of the Python list API, but we don't 
have a way to leverage the real strength of the linked implementation. Remember, 
the principal advantage of the linked approach is that we don't have to shift items 
around when inserting or deleting, we can just adjust the appropriate references. 
But our list API so far requires us to locate the point of insertion or deletion using 
an index, and indexing takes 8(n) time for a linked list . Perhaps we should consider 
an alternative API .  

From one perspective, indexing is just a way of  "pointing" to  a specific location 
in a list . It's natural to use numbers (indexes) if our list is array-based, because the 
underlying address calculation can be done very efficiently. But with a linked list , 
it 's more natural to specify a location using a reference to a list node. In fact , the 
LListIterator class we built in the last section was really just a wrapper around 
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a node reference. What if we extend the API of an iterator to allow more than just 
item retrieval? By adding operations that allow us to modify the list at the current 
position of the iterator, we will have created a new list API that is position-based 
instead of index-based. We'll call this extended kind of iterator a cursor. 

1 4 .6 . 1 1 A Cursor AP I  

To see how a cursor might be  useful, consider the problem of  filtering items out of a 
list . That is, we want to delete items from our list that meet a certain criterion. As 
a concrete example, consider a (somewhat silly) function to censor a list of words. 
Say we want to remove all the words from a list that appear in a different list of 
forbidden words. Here's a specification of a simple function. 

def censor (wordList , forbiddenWords) : 
" " "  deletes forbidden words from wordList 

post : all words in forbiddenWords have been deleted 
from wordList . " " "  

Before reading further, you might consider how you would solve this problem 
using our current list API. One obvious algorithm is to go through the wordList 
looking at each item in turn and simply delete any item that happens to appear in 
forbiddenWords . Unfortunately, our current API offers no straightforward way to 
implement this algorithm (at least , not efficiently) . 

N ow suppose we have a way to ask a list for a cursor that starts at the beginning 
of the list and allows us to advance through the list and delete items along the way. 
Inventing a little cursor API allows us to express the proposed censor algorithm. 

def censor (wordList , forbiddenWords) : 
cursor = wordList . getCursor ( )  
while not cursor . done e ) : 

if cursor . getltem ( )  in forbiddenWords : 
cursor . deleteltem O  

else : 
cursor . advance ( )  

You should be  able to  look at this algorithm and have a pretty good idea what our 
proposed cursor operations will do. The getCursor call hands us a cursor object 
that is "pointing" at the first item in the list . We can manipulate the current item by 
calling various cursor methods: getltem returns the current item, and deleteltem 
deletes the current item from the list . Calling advance causes the cursor to move to 
the next item in the list . A call to advance when the cursor is currently at the very 
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last item in the list will cause cursor . done 0 to become true. Notice that we do not 
need to advance the cursor when we delete an item. The deletion will automatically 
set the cursor to the next item, since we can't have the cursor pointing to something 
that isn't in the list anymore. 

Our complete cursor API looks like this. 

class Cursor (obj ect) : 

def done (self ) : 
" " "post : True if cursor has advanced past the last item 

of the sequence , false otherwise " " "  

def getItem (self ) :  
" " "  pre : not self . done ( )  

post : Returns the item at the current cursor position" " "  

def replaceItem (self , value) : 
" " "  pre : not self . done 0 

post : The current item in the sequence is value " " "  

def deleteItem (self ) :  
" " "  pre : not self . done ( )  

post : The item that cursor was pointing to is removed 
and the cursor now points to the following item 

note : removing last item causes self . done ( )  to be True " " "  

def insertItem (self , value) : 
post : value is added to the sequence at the position of 

cursor . 
note : If self . done ( )  holds before the call , value will be 

added to the end of the sequence . In other cases , 
the item that was at current position becomes the 
next item . " " "  

def advance (self ) : 
" " "  post : cursor has advanced to the next position in the 

sequence . Advancing from the last item causes 
self . done ( )  to be True " " "  

/ 4 . 6 . 2 / A Python CursorLi st 

Ultimately, we would like our little censor algorithm to work for both Python-list 
based and LList based wordLists. Of course, the implementation of the cursor for 
a Python list will be different from the implementation of the cursor for a linked list . 
The former must track the current position using an index, while the latter should 
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probably use a ListNode reference. That 's where the getCursor operation comes 
in; exploiting polymorphism, we can have each kind of list hand back a cursor that is 
appropriate for that type of list . The means we not only have to create two different 
kinds of cursors, we also need to invent two new kinds of lists. A PyCursorList 
will be just like a regular Python list that sports a getCursor method, and a 
LinkedCursorList is an LList with getCursor. It sounds like things are getting 
pretty complicated! 

Actually, the situation is not really as bad as it sounds. We just want to extend 
our existing list classes with our new cursor API. This is a perfect place to use 
inheritance. As we discussed in section 2 .3 . 4 ,  inheritance allows us to extend the 
behavior of an existing class. In this case, a PyCursorList should look and act just 
like a Python list with the additional twist of providing a cursor when asked. If we 
make PyCursorList a subclass of list,  then any instance of PyCursorList will 
itself be a list , and we will get all of the built-in list functionality automatically. 
Here's a start for our new class. 

# PyCursorList . py 
from PyListCursor import PyListCursor 

class PyCursorList (list ) : 

def getCursor (self ) : 
return PyListCursor (self ) 

Notice the class heading; PyCursorList is a subclass of (and therefore inherits 
from) the built-in list . We have not defined any constructor for the subclass, so even 
that is inherited from the built-in Python list type. Our new type will act just 
like a Python list , as illustrated by this interaction. 

» >  1st = PyCursorList ( [1 , 2 , 3 , 4] ) 
» >  1st 
[ 1 , 2, 3, 4] 
» >  lst . append(5)  
» >  1st 
[1 , 2 ,  3 ,  4 ,  5] 
» >  1st [1]  
2 
» >  type (lst) 
<class ' __ main __ . PyCursorList ' >  

Now we just need a suitable definition of PyListCursor. Remember, a cursor 
just encapsulates the idea of a position. For a Python list , we can just keep track of 
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the index of the current position and then use regular list methods to perform the 
various cursor actions on that position. Here's the code that makes it happen. 

# PyListCursor . py 
class PyListCursor (obj ect ) : 

def __ init __ (self , pylist ) : 
self . index = 0 
self . lst = pylist 

def done (self ) : 
return self . index 

def getltem (self ) :  

len(self . lst ) 

return self . lst [self . index] 

def replaceltem (self , value) : 
self . lst [self . index] = value 

def deleteltem (self ) :  
del self . lst [self . index] 

def insertltem (self , value) : 
self . lst . insert (self . index , value) 

def advance (self ) : 
self . index += 1 

The PyListCursor constructor just stores away the list and starts the index 
at the front (position 0) . The other methods are all one-liners, as the Python list 
operations do the work. Make sure you fully understand this code before moving 
on to the implementation for linked lists. 

Just for completeness, let 's test a portion of our new class by trying it on the 
censor problem. 

» >  from PyCursorList import PyCursorList 
» >  words = PyCursorList ( " Curse you and the horse you rode in on" . split O )  
» >  censor (words , [ "Curse " ,  "horse " ,  "you" ] )  
» >  words 
[ , and ' , , the ' , , rode ' , ' in ' , , on ' ] 

1 4 . 6 . 3 1 A L inked CursorLi st 

We can implement a LinkedCursorList in a manner analogous to our PyCursorList . 
This time, however, we inherit from the underlying linked implementation. 
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from LList import LList 
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from LListCursor import LListCursor 

class LinkedCursorList (LList ) : 

def getCursor (self ) : 
return LListCursor (self ) 
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That leaves us with implementing the LListCursor class. In some ways it will 
be similar to the cursor for Python lists, but in other respects it is quite different. 
There are a few subtleties that we need to pay attention to. First , in order to make 
the cursor efficient , we will exploit the internal structure of LLists, just as we did for 
the list iterator. In that sense, the LListCursor is not really a separate ADT from 
LLists, but rather a mechanism for providing another API for the underlying data 
structure. These two classes are closely linked, and changing one may necessitate 
changing the other. 

Another difference between the Python list cursor and the linked cursor is that 
the latter will keep track of a current ListNode rather than keeping an index. At 
first , a cursor seems just like the linked iterator; we just keep a reference to the 
current node and then follow its link whenever we need to advance. But a little 
further reflection suggests a problem with that approach. As you know from our 
previous discussion of linked lists, in order to add or delete a node, we need to 
modify the link in the previous node. So that leads to a design where we always 
keep a reference to the node before the current node; let 's keep that in an instance 
variable called self . prev. Of course, then we run into another issue, when the 
cursor is initially created, the first node should be the current node, but the first 
node has no prior node. What should be the initial value of self . prev? 

One way to handle the problem of the lack of predecessor for the first node is 
just to set self . prev to None as a special marker and then test for this special case 
throughout our code. This is the way we handled the special cases in the original 
LList code, and that approach can certainly be made to work again here. However, 
it can be tedious and error prone to get the right special-case checks into all the 
appropriate methods. An alternative approach is to make sure that every node of 
the list has a valid predecessor. We can do that by simply making an extra node, 
often called a dummy node. A dummy node placed at the front of the list is often 
called a header node. We're going to implement our LListCursor using a header 
node. 

Here's the code for the basic operations required to implement our censor algo­
rithm. 
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# LListCursor . py 
from ListNode import ListNode 

class LListCursor (obj ect) : 

def __ init __ (self , llist ) : 
self . lst = llist 

# create a dummy node at the front of the list 
self . header = ListNode ( II **DUMMY HEADER NODE** II , llist . head) 

# point prev to j ust before the first actual ListNode 
self . prev = self . header 

def done (self ) : 
return self . prev . link is None 

def getltem (self ) :  
return self . prev . link . item 

def advance (self ) : 
self . prev = self . prev . link 

def deleteltem (self ) : 
self . prev . link = self . prev . link . link 

# first listnode may have changed , update list head 
self . lst . head = self . header . link 

As you can see, the constructor stores away the initial list , creates a header node, 
and sets pre v to this artificial predecessor of the first real node. We need to save the 
initial list and the header node because we will need to update the head instance 
variable in llist if the cursor inserts or deletes at the front of the list . We save the 
header node away, because its link always points to what the head of the list should 
be. We'll return to this in just a bit . 

The first three regular methods are straightforward. Remember the actual 
current node is always the node after the one in self . prevo When self . prev 
is the last node in the list (the one whose link is None) we know the cursor has 
dropped off the end of the list . The getltem method just needs to grab the item 
field from the node after self . prev, and advance just moves self . pre v to the next 
node in the list . 

The deleteltem method is slightly more complicated. In order to delete the 
current node, we have to change the previous node's link to hop over the current 
one. The line self . pre v . link = self . prev . link . link does the trick. Remember 
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self . prey . link is just the current node, so this sets prey . link to be the node after 
the current node. The only possible complication here is that when self . prey is 
the header node, we have just deleted the first node in the list . That means we also 
need to change the head instance variable in self . lst . The last line makes sure 
that the LList itself is properly updated. Of course, we only really need to do this 
when self . prey is the header node, but it's just as efficient to do this assignment 
every time and it doesn't hurt , even when the front of the list hasn't changed. It 's 
cleaner to just leave the condition out; the header node takes care of the special 
case for us. 

Our LinkedCursorList is now good to go for our censor algorithm, but there 
are a couple operations missing. Study this code, and you should have no trouble 
filling in the missing operations. 

We are now in a position to see some advantages of the linked list implemen­
tation. The insert and delete operations on the PyListCursor rely on the 
underlying list operations and are therefore 8(n) operations. The corresponding 
operations on the LinkedListCursor only modify a couple references, so they 
are obviously 8(1 )  operations. We leave it to you to determine what effect these 
considerations might have on our censor function. 

/ 4 .7 / L i n ks vs . Arrays 

We have looked in detail now at two different ways of maintaining sequence informa­
tion: arrays and links. As we have seen, linked structures provide efficient insertion 
and deletion, but for that we give up random access to the items, which means we 
also have to give up the possibility of performing a binary search. Another drawback 
of linked implementation is memory usage. Because of the link pointer, additional 
memory (four bytes on 32-bit systems) is required for every item in the list . If the 
data type of the stored objects is small, this can essentially double the amount of 
memory required. 

The decision to use an array-based list or a linked list should be made based on 
what types of operations are likely to be performed. If many items will be inserted 
or deleted at known locations, then a linked implementation is appropriate. In most 
situations, the built-in Python list is a better choice for simple sequences. However, 
in later chapters we'll see how linked implementations used in more sophisticated 
data structures can give us even better performance. While linked lists may not 
be all that exciting or useful on their own, they are the simplest example of a very 
powerful idea. 
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1 4 . 8 1 Chapter S ummary 

This chapter introduces the concept of linked structures by introducing a linked 
implementation of a list . Here's a quick synopsis of the key ideas. 

• In Python, all variables contain references to (addresses of) objects .  By 
exploiting reference, we can make linked implementations of data structures 
in Python. 

• A linked structure stores a data element and a reference or multiple references 
to other linked structures. 

• Linked implementations of a list can provide more efficient insertion and 
deletion of items than an array implementation, but they lack random access 
and require more memory. 

• Linked implementations are typically more difficult to write correctly than 
array implementations since the programmer has to keep careful track of the 
necessary references. 

• The iterator design pattern allows clients to efficiently traverse a collection 
without knowing the collection's underlying structure. Python generators pro­
vide an efficient and elegant way of implementing iterators for new container 
classes. 

• A class invariant is a set of implicit preconditions and postconditions for each 
method a class implements. Stating and following a class invariant can make 
it easier to be certain your class implementation maintains a consistent state 
and is correctly implemented. 

1 4 .9 I Exercises 

True/Fa lse Questions 

1. In a linked structure, nodes contain references to other nodes. 

2 .  A list implemented using linked structures requires more memory than a list 
implemented as an array. 

3. Since the Python list methods are written in compiled C code, using the 
Python list to write a program will always be faster than a linked list imple­
mented in Python. 
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4. A class invariant is a set of properties that must be true before and after each 
method of a class is executed. 

5. Determining the length of an LList requires 8( n) time. 

6. The worst case for the amount of time to insert at the beginning of an array­
based list is the same as the amount of time to insert at the end of an array­
based list. 

7. The amount of time to insert at the beginning of a linked-based list is the 
same as the amount of time to insert at the end of a linked-based list if you 
have a link to the last node in the list . 

8. You must write a next method to write an iterator in Python. 

9. If an LList or built-in Python list contains only immutable objects, there is 
never a need to create a deep copy of the list instead of a shallow copy. 

10 .  In Python, you must use the del statement when removing a node from a 
linked structure in order to deallocate the memory used by the node. 

M u lt iple Choice Questions 

1. What is the worst-case running time of a method that inserts an item at the 
beginning of an array-based list? 

a) 8(1 )  c )  8(n) 

2 .  What is the worst-case running time of a method that inserts an item at the 
beginning of a link-based list? 

a) 8(1 )  c )  8(n) 

3. What is the worst-case running time of a method that inserts an item at the 
end of an array-based list? 

a) 8(1 )  c )  8(n) 

4. What is the worst-case running time of a method that inserts an item at the 
end of a link-based list if you only have an instance variable that refers to the 
first node in the list? 

a) 8(1)  c) 8(n) 
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5. How much more memory does a simple linked implementation of a list require 
compared to an array-based list? 

a) they require the same amount 

b) only extra memory for each instance variable such as head 

c) extra memory for each instance variable plus 4 bytes on 32-bit systems for 
each item in the list to hold the reference to the next node 

d) twice as much memory 

6. If you write a __ len __ method for a container class, how is that method called 
for an instance b of the class? 

a) b . lenO 
b) len (b) 
c) b .  _ _  len _ _  0 
d) either len (b) or b .  len 0 

7. What is the worst-case running time of the insertltem method for the LListCursor? 

a) 8(1 )  c) 8(n) 

8.  If you want to write an iterator that uses the yield statement, what methods 
must you write? 

a) the __ iter _ _  and the next methods 
b) only the __ iter _ _  method 
c) only the next method 
d) you cannot write an iter at or using the yield statement 

9. If you do not use the yield statement to write an iterator, what methods 
must you write? 

a) the _ _  iter _ _  and the next methods 
b) only the _ _  iter _ _  method 
c) only the next method 
d) you cannot write an iterator without the yield statement 

10 .  Which of the following is not a method of the cursor API? 

a) next 
b) getltem 
c) replaceltem 
d) done 



4.9 Exercises 151 

Short-Answer Questions 

1. What are the trade-offs and differences between shallow copies and deep 
copies? 

2. Draw a pictorial representation of the memory after the following code exe­
cutes. 

import copy 
b = [ [1 ,  2] , [3 , 4 ,  5] , 6] 
c = b 
c [0] = 0 
d = c [ : ]  
e = copy . deepcopy (d) 
c . append(7) 

3. What would be the reference count of each of the four ListNode objects if the 
statement n25 = ListNode (2 . 5 ,  n3) were executed in Figure 4 .7? 

4. What would be the reference count of each of the four ListNode objects if the 
statement n . link = n25 were executed in Figure 4 .7? 

5. What is the worst-case run-time analysis of resizing a built-in Python list when 
necessary? 

6. Assuming the most efficient implementation possible, what is the worst case 
running time of insert , append, _ _  geti tem _ _  , pop, remove , count , and 
index for the built-in Python list? 

7. What is the worst-case, run-time analysis for each of the methods listed in 
question 6 for a linked-list implementation? 

8. If we add a tail instance variable that refers to the last ListNode in the list , 
what is the running time of each of the list methods in question 6? 

9.  What is the worst-case, run-time analysis of each of the _ _  copy _ _  method 
versions of our LList with the append method as it is written in this chapter? 
How would you write a more efficient __ copy __ method (without modifying 
append)? 

10.  Will the iterator pattern work in the case of nested for loops that operate on 
the same LinkedCursorList object? Explain why or why not . 
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Program m ing Exercises 

1 .  Extend the LLi st class by implementing some of the other methods that the 
built-in Python list supports: _ _  min _ _  , __ max _ _  , index, count , and remove . 

2 .  Perform an experimental comparison of the efficiency of inserting at the front 
of a built-in Python list and of inserting at the front of an LList.  Before 
you start , form a hypothesis about what you expect to see. Conduct some 
experiments to test your hypothesis . Write a complete lab report explaining 
your findings. Be sure to include a thorough description of your hypothesis and 
the experiments you ran. Make sure your discussion tells if your hypothesis 
was supported. 

3. Add a last instance variable to the LList class along the lines suggested in 
the chapter, so that the append method can be implemented in 8(1 )  time. 
This will require you to update a number of the methods to ensure self . last 
is always a reference to the last ListNode in the linked structure. 

4. Finish the implementation of the LListCursor class and provide a complete 
set of unit tests for the LinkedCursorList class using the list cursor API. 

5. Suppose we want our list cursors to be able to move both directions. That is, 
in addition to the advance operation, we'd also like a backup operation. Add 
this ability to the PyListCursor. Make sure to write complete unit tests for 
your updated cursor. 

6. Add the capability of the previous exercise to the LListCursor class. To do 
this your cursor will have to keep track of a "trail" of previous nodes. You can 
use a Python list for this purpose. The predecessor of each node is appended 
to the list as the cursor advances and then is popped back off the end of the 
list when the cursor backs up. 

7. Modify the linked implementation of the Python list API so that it is a doubly­
linked list, that is , each ListNode has a reference to the ListNode before it 
and the ListNode after it . Also add a method named reverse_iter that 
iterates over the list in reverse order using the yield keyword. Modify your 
unit testing code so it also checks the reverse links. Using your doubly-linked 
list , modify the cursor for this new list to that it solves the previous problem 
without having to mantain an internal list of predecessor nodes. 
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8. The Sieve of Eratosthenes is a famous algorithm for finding all the prime 
numbers up to a certain value. Here is an outline of the algorithm to find all 
primes S n using cursors: 

place the numbers 2 through n in a list 
start primecursor at the front of the list 
while primecursor is not done 

prime = value at primecursor 
create checkcursor as a copy of primecursor 
advance checkcursor 
while checkcursor is not done : 

if item at checkcursor is  divisible by prime : 
delete the item from the list 

else : 
advance checkcursor 

advance prime cursor 
output values left in the list , they are prime 

Write a program that implements this algorithm. Notice that you will need a 
way to make a copy of a cursor. You will have to figure out how to accomplish 
this task. 
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Object ives 

• To understand the stack ADT and be familiar with various strategies for 
building an efficient stack implementation. 

• To gain familiarity with the behavior of a stack and understand and anlayze 
basic stack-based algorithms. 

• To understand the queue ADT and be familiar with various strategies for 
building an efficient queue implementation. 

• To gain familiarity with the behavior of a queue and understand and analyze 
basic queue-based algorithms. 

[[IJ Overview 

In the past two chapters, we have looked in detail at the list data structure. As you 
know, a list is a sequential structure. We have also looked at sorted lists , where the 
ordering of the items in the list is dictated by the "value" of the item. Sometimes 
it is useful for a sequential collection to be ordered according to the time at which 
items are added, rather than what the particular item is . In this chapter, we'll take 
a look at two simple examples of such structures, called stacks and queues. 

1 5 . 2 1 Stacks 

A stack is one of the one of the simplest container classes. As you'll see however, 
despite its simplicy, a stack can be amazingly useful . 
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\ 5 . 2 . 1 \ The Stack ADT 

Imagine a list (a sequential data structure) where you have access to the data only 
at one end. That is , you can insert and remove items from one end of the list . Also, 
you can look at the contents of only the single item at the end of the list (called 
the top) . The rather restrictive data structure just described is called a stack. You 
can think of it as modeling a real-world stack of items: you can only (safely) add 
or remove an item at the top of a stack. And if things are stacked neatly, only the 
top item is visible. 

If you are into sweet confections, you might also think of a stack as the computer 
science equivalent of a Pez candy dispenser. By convention our stacks are "spring 
loaded, "  and so adding an item to a stack is called pushing the item onto the stack. 
Removing the top item from a stack is called popping it . Notice that the last item 
pushed on a stack must always be the first item to be popped back off again. Because 
of this , a stack is also referred to as a last in, first out (LIFO) data structure. You 
could also call it a FILO structure, and of course a stack of filo dough makes a 
delicious pastry. The specification for a typical stack ADT looks like this. 

class Stack (obj ect) : 

" " "post : creates an empty LIFO stack" " "  

def push(self , x) : 

" " "post : places x on top of the stack" " "  

def pop (self ) : 

" "  "pre : self . size O > 0 
post : removes and returns the top element of 

the stack" " "  

def top (self) : 

" "  "pre : self . size O > 0 
post : returns the top element of the stack without 

removing it " " "  

def size (self ) : 

" " "post : returns the number of elements in the stack" " "  
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1 5 .2 .2 1 S imple Stack Appl ications 

Even though they are very simple, stacks can be very handy. You have, no doubt , 
already come across many uses of stacks in computing, but you may not have 
recognized them. For example, you have probably used some applications that 
include an "undo" feature. For example, you might be editing a document in a word 
processing program and accidently delete a bunch of text; no problem, you quickly 
go to the Edit menu and select the undo command and your text is "magically" 
restored. Need to go back even further? Many applications allow you to keep 
undoing commands to rollback to virtually any previous state. Internally, this is 
accomplished using a stack. Each time an action is performed, the information 
about that action is saved on a stack. When "undo" is selected, the last action is 
popped off the stack and reversed. The size of the stack determines how many levels 
you can undo. 

Another example of the use of stacks is inside the computer itself. You know that 
functions are an important aspect of programming languages, and modern systems 
provide hardware features to support programs that make extensive use of functions. 
When a function is called, the information about the function such as the values 
of local variables and the return address (where the program left off before calling 
the function) is pushed on a so-called run-time stack. The last function called is 
always the first to return, so when a function ends, its information is popped off 
the run-time stack and the return address is used to tell the CPU the location of 
the next instruction to execute. As functions are called, the stack grows; each time 
a function returns, the stack shrinks back. You may notice when you get an errror 
message in Python, the interpreter prints out a traceback that shows how the error 
message arose. This traceback shows the contents of the run-time stack at the time 
the exception was raised. 

A stack is also important for the syntactic analysis of computer programs. 
Programming language structures must always be properly nested. For example, 
you can have an if completely inside of a loop or you can have it outside (before or 
after) the loop, but it is not correct for an if to "straddle" a loop boundary. A stack 
is the proper data structure for handling nested structures. We can illustrate this 
using a simpler nesting example, namely parentheses. In mathematics, expressions 
are often grouped using parentheses. Here's a simple example: ( (x + y) * x)/(3 * z) . 

In a correct expression, the parentheses are always properly nested, or balanced. 
Looking just at the parentheses, the structure of the previous expression is (0 )  o . 
Every opening parenthesis has a matching closing one, and none of the opening­
closing pairs "interleave" with other pairs. 
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Suppose you were writing an algorithm to check that a sequence of parentheses is 
properly balanced. How could that be done? Basically, we must guarantee that every 
time we see a closing parenthesis, there has already been an opening parenthesis that 
matches it . We can do this by checking that there is an equal number of opening 
and closing parentheses and that we never have a sequence where more closings have 
been seen than openings. One simple approach is to keep a "balance" of opening 
parentheses and make sure that it is always non-zero as we scan the string from left 
to right . Here's a simple Python function that scans a string to determine whether 
the parentheses are balanced. 

# parensBalance1 . py 
def parensBalance1 (s ) : 

open = 0 
for ch in s :  

if ch == ' ( ' : 
open += 1 

elif ch == ' ) ' : 
open -= 1 
if open < 0 :  

# there is no matching opener , so check fails 
return False 

return open == 0 # everything balances if no unmatched opens 

So far, this doesn't look very stack-like. However, things get much more inter­
esting if we introduce different types of parenthesis. For example, mathematicians 
(and programming language designers) often use multiple types of grouping markers, 
such as parenthesis, ( ) ; square brackets, [] ; and curly braces, {} .  Suppose these 
are mixed in a string such as [(x + y) * x] / (3 * z)/ [sin(x) + cos(y)] . Now our simple 
counting approach doesn't work, as we have to ensure that each closing marker is 
matched to the proper type of opening marker. Even though they have the same 
number of opening and closing markers, an expression with the structure [0 ]  0 is 
OK, but [ (D O is not . Here is where a stack comes to the rescue. 

In order to assure proper balancing and nesting with multiple grouping symbols, 
we have to check that when a closing marker is found, it matches the most recent 
unmatched opening marker. This is a LIFO problem that is easily solved with a 
stack. We just need to scan the string from left to right. When an opening marker 
is found, it is pushed onto a stack. Each time a closing marker is found, the top item 
of the stack must be the matching opening marker, which is then popped. When 
we get all done, the stack should be empty. Here's some code to do it : 



# parensBalance2 . py 

from Stack import Stack 

def parensBalance2 (s) : 
stack = Stack 0 
for ch in s :  

if ch in II ( [{ II : 
stack . push (ch) 

elif ch in II ) ] } II : 
if stack . size 0 

return False 
else : 

5 .2  Stacks 

# push an opening marker 

# match closing vith top of stack 
< 1 :  # no pending open to match it 

opener = stack . pop ( )  
if  opener+ch not in [ II () II , II [] II , II {} II ] : 

# not a matching pair 
return False 

return stack . size ( )  == 0 # empty stack means everything matched up 
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Figure 5 . 1  shows the intermediate steps of tracing the execution of the algorithm 
using the expression { [2 * (7 - 4) + 2] + 3} * 4. It shows five "snapshots" 
with the characters processed so far and the current stack contents below them. 
You should trace through the algorithm by hand to convince yourself that it works. 

{ [  2 * 

[ 
{ 

{ [  2 * ( 

( 
[ 
{ 

{ [ 2 * ( 7 - 4 )  

[ 
{ 

{ [ 2 * ( 7 - 4 ) + 2 ]  { [ 2 * ( 7 - 4 ) + 2 ] + 3 } * 4  

{ 

Figure 5 . 1 :  Example of tracing through parentheses matching 

1 5 . 2 . 3 1 I mplementi ng Stacks 

In a language like Python, the simplest way to implement a stack is to use the 
built-in list . Given the flexibility of the Python list , each stack operation translates 
to a single line of code. 
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# Stack . py 
class Stack (obj ect ) : 

def __ init __ (self ) : 
self . items = [] 

def push(self , item) : 
self . items . append( item) 

def pop (self) : 
return self . items . pop ( )  

def top (self) : 
return self . items [-l] 

def size (self ) : 
return len(self . items) 

Recalling our discussion of Python lists, each of these operations is performed in 
constant time, so a stack is very efficient. Of course, insertion at the end of a list can 
occasionally require extra work to create a new array and copy all the values into the 
new array, but Python does this automatically. As discussed in subsection 3 . 5 . 1 ,  
the average amount of time to append onto the end of a list remains constant since 
the array size is increased proportionally as necessary. 

If a list type were not readily available, it would also be easy to implement a stack 
using an array. A stack with a fixed maximum size can be handled by allocating an 
array of the required maximum size and using an instance variable to keep track of 
how many "slots" in the array are actually being used. If the maximum stack size 
is unknown, then the push operation will have to handle allocating a larger array 
and copying items over when the stack exceeds the current array size . 

Another reasonable implementation strategy for a stack is to use a singly linked 
list of nodes containing the stack data. A stack object would just need an instance 
variable with a reference to the first node of the linked list , which would be the top 
of the stack. Again, both pushing and popping are easily accomplished in constant 
time using a linked structure. As with the pure array implementation, keeping track 
of the size of the stack in an instance variable is advisable so that the size operation 
does not have to traverse the list to count items. 

1 5 . 2 .4 1 An Appl ication :  Expression M a n ipu lation 

In this section, we will examine some algorithms to manipulate numerical expressions 
using stacks. The most common way of representing a numerical expression uses a 
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notation known as infix notation. The expression (2  + 3) * 4 is an example of an 
infix expression. The operators are between the numbers. Other possible represen­
tations of the expression are * + 2 3 4 and 2 3 + 4 * .  The first representation is 
known as prefix notation or Polish prefix notation since it was developed by a Polish 
mathematician. The second representation is commonly known as reverse Polish 
notation or postfix notation. 

The advantage of the prefix and postfix notation is that parentheses are not 
necessary to modify the order of operations. The infix expression 3 * (4 + 5) 
- 2 + (3 * 6)  is equivalent to the postfix expression 3 4 5 + * 2 - 3 6 * + .  
The expression itself indicates the order in which operations are applied. Postfix 
expressions can also be evaluated very easily using a stack. Each time a number 
is encountered, it is pushed onto the stack. When an operator is encountered, two 
numbers are popped off the stack, the operator is applied to those two numbers, 
and the result is pushed on the stack. 

3 4 5 + * 2 - 3 6 * +  

5 
4 
3 

3 4 5 + * 2 - 3 6 * +  

6 
3 

25 

3 4 5 + * 2 - 3 6 * +  

9 
3 

3 4 5 + * 2 - 3 6 * +  

1 8  
25 

3 4 5 + * 2 - 3 6 * +  

2 
27 

3 4 5 + * 2 - 3 6 * +  

43 

Figure 5 .2 :  Processing a postfix expression 
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In our example, after processing the three numbers, the stack contains <3 , 4 ,  
5> (the top is on the right) . When the first plus operator is encountered, we pop 
off the 5 and 4, add them, and push the answer onto the stack, giving us <3 , 9> 
on the stack. To process the multiplication operator, we pop the 9 and 3, multiply 
them, and push 27 onto the stack. After processing the 2, the stack is <27 , 2>.  We 
process the subtraction operator by popping the 2 and 27 and pushing the resulting 
25 onto the stack. After processing the next two numbers, the stack is <25 , 3 ,  
6>.  We process the multiplication operator and the stack now contains <25 , 18>.  
Finally, after processing the last plus operator, the stack contains the final result 
which is 43. Figure 5 . 2  shows these steps pictorially. The underlined portion of 
the expression is the input that has been processed, and the stack at that point is 
shown below it . 

The algorithm to evaluate a postfix expression is quite simple, but what do we 
do with the more typical infix expression? One way to handle it is to first convert it 
to postfix. This is also accomplished with a simple stack algorithm. To explain the 
algorithm, we will assume that we have already split the expression into a sequence 
of "tokens" where each token is either a number, an operator, or a parenthesis. For 
simplicity, our algorithm also assumes that the expression is syntactically correct . 
Here's the pseudocode for an infix-to-postfix converter: 

create an empty stack 
create an empty list to represent the postfix expression 

for each token in the expression : 
if token is a number : 

append it onto the postfix expression 

elif token is a left parenthesis : 
push it onto the stack 

elif token is an operator : 
while (stack is not empty and the top stack item is an operator 

with precedence greater than or equal to token) : 
pop and append the operator onto the postfix expression 

push the token onto the stack 

else token must be a right parenthesis 
while the top item on the stack is not a left parenthesis : 

pop item from the stack and append it onto the postfix expression 
pop the left parenthesis 

while the stack is not empty 
pop an item from the stack and append it onto the postf ix expression 
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Figure 5 . 3  demonstrates the algorithm on the expression 3 * (4 + 5) - 2 + 
(3 * 6) . Each step shows the state of the process as one more token is read from 
the infix expression. It is probably not obvious to the reader that the algorithm 
works in all cases. A couple general observations help clarify things. First , notice 
that the operands (numbers) in the prefix and postfix expression always occur in the 
same order. Second, the left-to-right order of the operators in the postfix expression 
corresponds to the evaluation order of the operations in the infix expression. Armed 
with these observations, it 's pretty easy to decipher the algorithm. 

As the numbers are processed, they are immediately appended to the postfix 
expression, so we know the numbers will remain in the same order. As for the order 
of operations, notice that the handling of an operator token is delayed by pushing 
the operator onto the stack so that the following number can first be appended 
to the output expression. So the expression 3 * 4 becomes 3 4 * .  When there 
are multiple operators, the ordering in the output is determined by their relative 
precedence. Higher precedence operations are performed first , so they must be 
appended to the output before lower precedence operators. Consider processing 
3 * 4 + 5. When we get to the + token, the output contains 3 4 and the stack 
contains <*>.  Because * has a higher precedence, it is now popped and appended 
before processing continues, so that the final result is 3 4 * 5 +. A sequence of 
operators of equal precedence will get appended in a left-to-right order. 

That just leaves handling parentheses. When a left parenthesis is processed, it 
is pushed onto the stack. When the matching right parenthesis is reached, all of 
the operands inside the parenthesized portion that have not yet been appended to 
the output are popped and appended. This ensures that these operations appear 
in the postfix expression before any operations that are evaluated later in the infix 
expression. 

That should give you a basic idea of how and why the algorithm works, but even 
if you do not completely understand it , you can still implement the pseudocode 
listed earlier. In general, designing the algorithms and data structures for software 
systems is more difficult than implementing them. 

1 5 . 2 .5 1 An Appl ication : Gra mmar Processing (Optiona l )  

As the expression manipulation examples show, stacks are very useful in  manipu­
lating formal languages such as computer programming languages. One of the most 
common tools for expressing syntactic rules of both computer and natural languages 
is a context-free grammar ( CPG) . A grammar is just what you'd expect, a set of 
rules that describe the legal sentences of a language. A CFG defines a language in 
terms of a set of rewriting rules. 



164 Chapter 5 Stacks and Queues 

U lJ U lJ � � 
expression 3 3 3 3 4  3 4  3 4 5  

processed 3 3* 3*( 3*(4 3*(4+ 3*(4+5 

lJ U U 
expression 3 4 5 +  3 4 5 + *  3 4 5 + * 2  

processed 3*(4+5) 3*(4+5)- 3*(4+5)-2 

U U U 
expression 3 4 5 + * 2 - 3 4 5 + * 2 - 3 4 5 + * 2 - 3  

processed 3*(4+5)-2+ 3*(4+5)-2+( 3*(4+5)-2+(3 

lJ lJ U 
expression 3 4 5 + * 2 - 3  3 4 5 + * 2 - 3 6  3 4 5 + * 2 - 3 6 * +  

processed 3*(4+5)-2+(3* 3*(4+5)-2+(3*6 3*(4+5)-2+(3*6) 

Figure 5 .3 :  Converting the infix expression 3 * (4 + 5)  - 2 + (3  * 6 )  t o  postfix 
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Let's consider a simple example. Here's a set of rules that describe a (very) small 
set of English sentences. 

1 : S -> NP VP 
2 :  NP -> ART N 
3 :  NP -> PN 
4 :  VP -> V NP 
5 :  V -> chased 
6 :  ART -> the 
7 :  N -> dog 
8 :  N -> cat 
9 :  PN -> Emily 

Notice that each rule has a left-hand side and a right-hand side separated by 
an arrow. The left-hand side is always a single symbol and the right-hand side is 
a sequence of symbols. The first rule can be taken as stating that a sentence (8) 
consists of a noun phrase (NP) followed by a verb phrase (Vp) . Noun phrases and 
verb phrases are defined by subsequent rules. Rule 2 states that one way of forming 
a noun phrase is as an article (ART) followed by a noun (N) . Rule 3 provides an 
alternative way to form a noun phrase; it can consist of a single proper noun (PN) . 

We can use these rules to form simple sentences. We start with the symbol 8 and 
rewrite it using rule 1 to produce the sequence NP VP. We keep applying rules to the 
sequence of symbols until there are no more rules that apply. The final sequence is 
our generated sentence. Here is a sample derivation of the sentence "the dog chased 
the cat." The numbers indicate which rule is being applied at each step. 

S 
=1=> NP VP 
=2=> ART N VP 
=6=> the N VP 
=7=> the dog VP 
=4=> the dog V NP 
=5=> the dog chased NP 
=2=> the dog chased ART N 
=6=> the dog chased the 
=8=> the dog chased the cat 

Since none of the words in the final sequence appears as the left-hand side of 
a rule in our sample grammar, there is no more rewriting to do, and the final 
sequence "the dog chased the cat" is a sentence that is produced (or accepted) by 
this grammar. 

In more technical terms, the symbols that appear on the left-hand sides of 
grammar rules are called non-terminal symbols, and those that appear only on 
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the right-hand side are terminal symbols. The rewriting continues until we get a 
sequence composed entirely of terminal symbols. Thus the set of terminal symbols 
(words in this case) are the tokens that can appear in sentences of the language 
described by the grammar. The non-terminal symbols are not part of the language 
being described, but are internal components of the grammar itself. You can think 
of the non-terminals as describing phrase categories for the language. While a 
natural language has categories such as noun phrase and verb phrase, a programming 
language would have categories such as expression and statement. 

CFGs are very closely related to the stack data structure. In fact , an interesting 
result in theoretical computer science demonstrates that the set of languages that 
can be described by such grammars is exactly the same set of languages that can be 
recognized by a certain very simple kind of stack-based computer called a pushdown 
automaton. In practice, this means that many language processing tasks such 
as analyzing the syntax of computer programs or understanding natural language 
utterances often employ stack-based algorithms. 

To illustrate the point, we'll walk through the design for a simple grammar ADT 
that will allow us to generate sentences using simple CFGs. Our grammar class will 
manage a set of grammar rules using a very simple API. To create a grammar, we'll 
add rules to an initially empty Grammar object . For example, here's an interactive 
session that begins creating the sample grammar we looked at above: 

» >  gram = Grammar ( )  
» >  gram . addRule ( II S -> NP  VP II ) 
» >  gram . addRule ( IINP -> ART N il ) 
» >  gram . addRule ( IINP -> PN II ) 

Once we've created a grammar, we want to be able to generate random phrases 
and sentences from the grammar. 

» >  gram . generate ( IIARTII ) 
' the ' 
» >  gram . generate ( IIN " )  
' dog ' 
» > gram . generate ( IIVp ll ) 
' chased the cat ' 
» > gram . generate ( II S II )  
' the cat chased the dog '  

Notice that the generate method takes a non-terminal symbol from the gram­
mar as a parameter and then produces a phrase starting from that non-terminal. 
To generate a complete sentence, we start with s .  
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Let's try our hand at designing this class. As a first cut, we can use a Python list 
to store our grammar rules. While the rules are presented as strings, structurally, 
they really consist of a single non-terminal on the left and a sequence of non-terminal 
and terminal symbols on the right . We can represent each rule as an ordered pair 
(non-terminal , expansion) where the expansion is just a list of the symbols on 
the right-hand side . We can save these pairs in a list to represent all the rules of 
the grammar. Here's the contructor for our class: 

# Grammar . py 
from Stack import Stack 

class Grammar (obj ect) : 

def __ init __ (self ) : 
self . rules = [] 
self . nonterms = [] 

The nonterms list will keep track of the non-terminals in the grammar (symbols 
that appear on the left-hand side of any rule) so that we can distinguish terminals 
from non-terminals later on. 

To add a rule to the grammar, we just need to split it into its constituent parts, 
add them to rules, and if necessary, update the nonterms list . 

def addRule (self , rule) : 
# split the rule at the arrow 
lhs , rhs = rule . split ( " -> " )  

# extract the non-terminal , ignoring spaces 
nt = lhs . strip ( )  

# split the rhs into a list of  symbols and reverse it 
symbols = rhs . split ( )  
symbols . reverse ( )  

# pair the non-terminal with the symbol sequence and store it 
self . rules . append « nt , symbols) ) 

# update the non-terminal list 
if nt not in self . nonterms : 

self . nonterms . append (nt) 

The only quirk in this code is that the right-hand side of the rule is reversed 
before being stored in the rules list . This is done to facilitate the stack-based 
processing that will occur later. The sequence on the right-hand side will be pushed 



168 Chapter 5 Stacks and Queues 

onto a stack, and we want the left-most symbol to be the top of the stack, so the 
order to push is right to left from the original rule. Doing the reversal here saves us 
from having to do the reversal every time the rule is used. 

Now we are ready to generate sentences. If you go back to the sample derivation 
of the sentence "the dog chased the cat , "  you'll notice that we always chose to 
expand the left-most non-terminal in the developing sequence. That means we were 
always dealing with a (possibly empty) sequence of words that starts the sentence 
followed by a sequence of non-terminals that still needed to be expanded to complete 
the sentence. We can use a stack to model the remaining non-terminals, where the 
left-most one is at the top of the stack. From there, we just perform a loop that 
pops the top thing off the stack; if it 's a terminal (a word) then we append it to the 
output . In the case of a non-terminal, we choose a rule to expand it and push the 
expansion (the symbols on the right-hand side of the rule) onto the stack. When the 
stack is empty, we've run out of things to expand and the derivation is complete. 

Here's Python code to implement this algorithm: 

def generate (self , start ) : 
s = Stack O 
s . push (start) 
output = [] 
while s . size ( )  > 0 :  

top = s . pop O 
if self . isTerminal (top) : 

# doesn ' t  expand , it ' s  part of the output 
output . append(top) 

else : 
# choose one expansion from all that might be used 
cands = self . getExpansions (top) 
expansion = random . choice (cands) 
# push the chosen expansion onto the stack 
for symbol in expansion : 

s . push (symbol) 
return II " . j oin (output) 

def isTerminal ( self , term) : 
return term not in self . nonterms 

def getExpansions (self , nt ) :  
expansions = [] 
for (nt1 , expansion) in self . rules : 

if nt 1 == nt : # this rule matches 
copy = list (expansion) 
expansions . append (copy) 

return expansions 
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Notice that the output is built up using a list . The words in this list are then 
j oined into a string to be returned as the function's result . Notice also that a couple 
helper methods have been used to simplify the coding. The getExpansions method 
simply looks through the set of rules to find all whose left-hand side match the 
current non-terminal. It returns a list containing all the corresponding right-hand 
sides. There we have it : a complete class for generating random sentences based on 
a context-free grammar. You might try your hand at writing some simple grammars 
and seeing what kind of sentences you come up with. 

1 5 . 3 1 Queues 

Another common data structure that orders items according to when they arrive is 
called a queue. Whereas a stack is a last in, first out structure, the ordering of a 
queue is first in, first out (FIFO) . You are undoubtedly familiar with the concept 
since you often spend time in a queue yourself. When you are standing in line at a 
restaurant or store, you are in a queue. In fact , British English speakers don't stand 
in line, they "wait on queue." 

1 5 . 3 . 1 1 A Queue ADT 

Conceptually, a queue is a sequential structure that allows restricted access at both 
ends. Items are added at one end and removed from the other. As usual , computer 
scientists have their own terminology for these operations. Adding an item to the 
back of a queue is called an enqueue, and the operation to remove an item from the 
front is called dequeue. As with stacks, it is also handy to be able to peek at the 
item on the front of the queue without having to remove it . This is usually called 
front, but other terms are sometimes used like head or first. 

Here is a specification of the Queue ADT: 

class Queue (obj ect) : 

" " "post : creates an empty FIFO queue " " "  

def enqueue (self , x) : 

" " "post : adds x at back of queue " " "  
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def dequeue (self ) : 

" "  "pre : self . size O > 0 
post : removes and returns the front item" " "  

def front (self ) : 

" "  "pre : self . size 0 > 0 
postcondition : returns first item in queue" " "  

def size (self ) : 

" " "postcondition : return number of items in queue " " "  

1 5 . 3 . 2 1 S imple Queue Appl ications 

Queues are commonly used in computer programming as a sort of buffer between dif­
ferent phases of a computing process. For example, when you print out a document , 
your "job request" is placed on a queue in the computer operating system, and these 
jobs are generally printed in a first come, first served order. In this case, the queue 
is used to coordinate action across separate processes (the application that requests 
the printing and the computer operating system that actually sends information to 
the printer) . Queues are also frequently used as intermediate, data way stations 
within a single computer program. For example, a compiler or interpreter might 
need to make a series of "passes" over a program to translate it into machine code. 
Often the first pass is a so-called lexical analysis that splits the program into its 
meaningful pieces, the tokens. A queue is the perfect data structure to store the 
sequence of tokens for subsequent processing by the next phase, which is typically 
some sort of grammar-based syntactic analysis. 

As an example of using a queue for an intermediate data structure, consider the 
problem of determining whether or not a phrase is a palindrome. A palindrome is a 
sentence or phrase that has the same sequence of letters when read either forward or 
backward. Some famous examples are "Madam, I'm Adam" or "I prefer Pl." Some 
words like "racecar" are palindromes all by themselves. Let 's write a program to 
analyze user input and validate it as a palindrome. The heart of the program will 
be an isPalindrome function: 
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def isPalindrome (phrase) : 

II lI lIpre : phrase is a string 
post : returns True if the alphabetic characters in phrase 

form the same sequence reading either left-to-right 
or right-to-left . 

171 

The tricky part of the isPalindrome function is that the palindromeness of 
a phrase is determined only by the letters; spaces, punctuation, and capitalization 
don't matter. We need to see if the sequence of letters is the same in both directions. 
One way to approach this issue is to break the problem down into phases. In the 
first phase we strip away the extraneous portions and boil the expression down to 
its constituent letters. Then a second pass can compare the letter sequence in both 
the forward and backward directions to see whether they match up. Conveniently, 
a queue data structure can be used to store the characters so they can be accessed 
again in the original order, and a stack can be used to store them for access in a 
reversed order (remember, a stack reverses its data) . 

Recasting this two-phase algorithm as a Python program, we get the following: 

# palindrome . py 
from MyQueue import Queue 
from Stack import Stack 

def isPalindrome (phrase) :  
forward = Queue ( )  
reverse = Stack ( )  
extractLetters (phrase , forward , reverse) 
return sameSequence (forward , reverse) 

Now we just need to define the functions that implement the two phases: 
extractLetters and sameSequence. The former must go through the phrase and 
add each letter to both the intermediate stack and queue. Here's one way to do 
that . 

import string 
def extractLetters (phrase , q, s) : 

for ch in phrase : 
if ch . isalphaO : 

ch = ch . lower O 
q . enqueue (ch) 
s . push (ch) 
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The sameSequence function needs to compare the letters on the stack and queue. 
If all the letters match up, we have a palindrome. As soon as two letters fail to match, 
we know that our phrase has failed the test . 

def sameSequence (q ,  s ) : 
while q . size ( )  > 0 :  

chi = q . dequeue ( )  
ch2 = s . pop O  
if chi ! = ch2 : 

return False 
return True 

With the isPalindrome function in hand you should be able to easily complete 
our palindrome checking program. Try it out on these two examples: "Able was I ,  
ere I saw Elba" and "Evil was I, ere I saw Elvis" Obviously, only one of these is 
really a palindrome. A quick search on the Internet will yield lots of interesting test 
data. Of course, you'll need an implementation of queues to get your program up 
and running; read ahead for some hints. 

1 5 .4 1  Queue I m p lementat ions 

Implementing a queue with Python's built-in list i s  straightforward. We just need 
to insert at one end of the list and remove from the other end. Since the Python 
list is implemented as an array, inserting at the beginning is an inefficient operation 
if the list is very long. Removing an element from the beginning of the list is also 
inefficient; so neither option is ideal. 

An alternative would be to use a linked implementation. The sequence of items 
can be maintained as a singly linked list . The queue object itself then maintains 
instance variables that point to the first and last nodes of the queue. As long as 
we do insertions at the end of the linked list and removals from the front , both 
of these operations can easily be done in constant (8( 1 ) )  time. Of course, the 
linked implementation would be a lot trickier to code. Before pursuing this or 
other options, it might be wise to consider the words of Tony Hoare, a very famous 
computer scientist : "Premature optimization is the root of all evil." There are a 
number of justifications for this statement . It does not make sense to worry about 
optimizing code until you are certain what the bottlenecks are (i .e . , where most of 
the time is being spent) . If you double the speed of code that is 5% of the execution 
time of your program, your program will execute only about 3% faster. But if 
you double the speed of code that is 50% of the execution time, your program will 
execute about 33% faster. As we have already seen with the binary search algorithm, 
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more efficient code is often more complex and more difficult to get correct. Before 
you worry about making a specific section of code more efficient, you should make 
certain that it will have a significant effect on the speed of your overall program. 

In the case of implementing a queue in Python, there is the additional con­
sideration that the underlying Python list operations are coded in very efficient 
C code and can take advantage of system-level calls that move blocks of memory 
around very quickly. In theory, we may be able to write linked code with better 
asymptotic (theta) behavior, but the queue sizes will have to be very large indeed 
before our linked code overtakes the optimized Python list code. Coding a linked 
implementation of a queue is a great exercise in using linked structures, but we have 
yet to encounter a situation in practice when such a queue actually out-performed 
one based on the built-in list . 

In languages such as C/C++ and Java that support fixed-size arrays, an array 
is often the appropriate structure to use to implement a queue, particularly if the 
maximum queue size is known ahead of time . Instead of performing the enqueue 
and dequeue operations by shifting elements in the array, we can keep track of the 
indices that represent both the front/head and back/tail of the queue. As long as 
the maximum number of elements in the queue at any point in time does not exceed 
the size of the array, this is an excellent method for implementing queues. Each 
time an item is added to the queue, the tail index is increased by one. If we add 
one and use the modulus operator we can easily make the index wrap around to the 
beginning of the array, simulating a circular array representation. For an array of 
size 10, we'd increment the tail like this: 

I tail = (tail + 1 )  % 10 

Since the index positions start at 0, the last position is index 9. When we add 
1 to 9 we get 10 and 10 modulus (remainder) 10 is O. This is a common technique 
used in many computer algorithms to wrap around back to 0 after some maximum 
value is reached. The same technique is used for incrementing head when an item 
is dequeued. The effect is that the head index chases the tail index around and 
around the array. As long as items remain in the queue, head never quite catches 
tail .  

In Python, the circular array technique could also be used by simply starting 
with a list of the appropriate size. List repetition provides an easy way to do this. 

I ���f . items = [None] * 10 

There is one subtlety in the circular array/list approach to queues. We need to 
think carefully about the values for head and tail that indicate when the queue 
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is full or empty. Writing an invariant for the class that relates these values is an 
excellent technique to make certain we get it right . We would like the head index 
to indicate where the front item in the queue is located in the array. It makes sense 
for the tail index to indicate either the position of the last item in the queue or 
the following location where the next item inserted into the queue would be placed. 
When the queue is empty, it is not clear what the values should be for head and 
tail .  Since we are using a circular array it is possible that the value for tail is less 
than head. And after inserting a few items and then removing those items, head 
and tail are in the middle of the array jlist so we cannot use any fixed values of 
head and tail to indicate an empty queue. Instead, we must rely on their relative 
values. 

Suppose we start with a empty queue having both head and tail set to index 
O. Then clearly when head == tail the queue is empty. Suppose the size of the 
circular array is n. Now consider what happens if we enqueue n items without 
any dequeues. As the tail pointer is incremented n times, it will wrap around and 
land back at O. Thus, for a full queue, we once again have the condition head == 
tail .  That's a problem. Since both a full queue and an empty queue "look" exactly 
the same, we can't tell which we have by looking at the values of head and tail.  
We could rescue the situation by simply agreeing that a "full" queue contains only 
n - 1 items, in effect wasting one cell. However, a simpler approach is just to use 
a separate instance variable that keeps track of the number of items in the queue. 
This approach leads us to the following invariant: 

1 .  The instance variable size indicates the number of items in the queue and ° 
<= size <= capacity where capacity is the fixed size of the array jlist . 

2. If size > 0, the queue items are found at locations items [ (head+i) %capacity] , 
for i in range (size) , where items [head] is the front of the queue and tail 
== (head+size-1 ) %capacity. 

3 .  If size == 0 ,  head == (tail+1 ) %capacity . 

Using this invariant , you should be able to complete a circular list implementation 
of a queue without too much effort . 

� An Exa m p le App l i cat ion : Queue i ng S i m u l at ions (Opt iona l )  

One common use of queues is modeling the behavior of real-world queues. You can 
find queues all over in the world from banks and theaters to car washes, assembly 
lines, and restaurants. For our example, let 's look at a mom-and-pop retail store 
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that has only a single check-out register. The store has been getting busier lately, 
and customers are starting to complain about the amount of time they spend waiting 
in line. The owner is in a quandry over whether to upgrade the register so that a 
single checker can work faster or whether she should remodel the store so that it 
can have more check-out lines. Obviously, the latter approach would be much more 
costly, and she doesn't know if it 's worth the money. 

We can write a simulation that models the check-out line at the store in order 
to try out various options and answer questions such as how long customers wait 
in line on average, what is the maximum wait , and how long does the line get? 
We can also parameterize our simulation so that we can experiment with different 
check-out rates to see the effect that a faster register might bring. Our simulation 
will illustrate a small part of an important field of applied mathematics known as 
operations research. 

Our simulation will be a simple model of the check-out process. Customers arrive 
in the check-out line with a certain number of items and are served in the order that 
they arrive. Of course, customers don't arrive at a constant rate. There is a certain 
amount of randomness to their comings and goings. Similarly, the time it takes to 
check customers out varies randomly according to the number and type of items 
that they are purchasing. As with any simulation, we'll have to abstract away most 
of the specific details so that we can model the heart of the problem. 

To start with, we need some way to keep track of the passage of time. Abstractly, 
it does not matter what units of times we use, we just need to choose a scale suitable 
for the simulation at hand. Measuring times to process customers in terms of seconds 
seems convenient , but we can keep our model more general by just talking in terms 
of "clock ticks." For our simulation a tick might be one second; for a simulation of a 
computer system, a tick might be one millisecond. For a climate simulation, a tick 
might be a year. Our simulation will start at time 0, and we'll increment a counter 
to represent the passage of time tick by tick. 

Now we need to think about how to represent the customers. Ultimately, we 
are interested in how much time they spend in line. If we have a time variable 
that keeps track of the current time, we can look at this "clock" to see what time 
it is when we process the customer's items. If we know what time they arrived in 
line, then a simple subtraction will tell us how long they waited. We also need to 
know how long it takes to check them out, because that much time has to pass 
before we process the next customer. We can model this simply by associating a 
number of items with each customer and then multiplying that by the average time 
to process a single item. Ultimately then, we've decided that we need to know two 
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pieces of information about each customer: the time at which they arrive in line 
(arri val Time) and the number of items they have (i temCount ) . 

The raw data for our simulation will be a sequence of customers that have 
randomly generated arrival times and item counts. To make simulations as realistic 
as possible, operations researchers rely on statisical models to produce events in a 
way that models the real world. For example, if we were to look at a simple variable 
like i temCount, we could analyze a sample of actual customers to find the "average" 
number of items purchased on a given trip to the store. But this average does not 
tell the whole story; obviously, not every customer gets exactly the average. The 
actual number or items in various people's carts would be distributed around this 
average. The problem is further complicated in that the distribution is probably not 
symmetric, since the fewest items a customer can get is one, but there is (virtually) 
no upper limit on the number of items they can have. Similar considerations apply 
to the arrival times of customers. There is a certain average rate at which they 
arrive, but they will not come at a constant fixed rate. Sometimes they will arrive 
in bunches and other times there will be lulls. 

Since this is not intended to be a book on operations research, we'll stick to some 
fairly simple approaches to generate our sequence of customers. We will assume that 
the number of items that customers buy is uniformly distributed between 1 and 
some settable parameter MAX_ITEMS. We can just use Python's randrange function 
to generate a random i temCount for each customer. We'll set the arrival time 
for customers by setting an average arrival rate and then using a uniform random 
generator to determine the times when customers actually arrive to satisfy that rate. 
Armed with this much analysis, we're ready to write some code that can generate the 
sequence of events (customer arrivals) that will serve as the input to our simulation. 

We could just generate arrival events "on the fly" as we run our simulation, 
just like it happens in the real world. However, there our advantages to generating 
the sequence of events first and saving the information to a file. For one thing, 
it allows us to try out different simulations on the exact same sequence of events. 
For example, with a pregenerated sequence of events,  we can run a simulation at 
two different checker speeds to get a he ad-to-head comparison of the difference. 
Another advantage is that it separates the simulation itself into two phases so that 
we could later modify the way the input is generated, perhaps substituting different 
probability distributions without having to make any changes to the simulation code. 

Let 's make this more concrete by writing some code to generate our customers. 
Remember, we just need to generate arrival Time and i temCount for each customer. 
We'll save this information in a file where each line of the file corresponds to one 
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event . Each line contains an arrival Time followed by an i temCount . Here are the 
first few lines of a sample file : 1 49 39 

143 20 
205 26 
237 44 

In this data, the first customer arrived at time 49 with 39 items, then the second 
customer arrived in line at time 143 with 20 items, and so on. Notice that the 
arri val Times are listed in increasing order. 

Here's a function to generate our simulation data. 

# simulation . py 
from random import random , randrange 

def genTestData(filename , totalTicks , maxltems , arrivallnterval) :  
outfile = open(filename , "w" ) 
# step through the ticks 
for t in range ( 1 , totalTicks) : 

if random ( )  < 1 . /arrivallnterval : 
# a customer arrives this tick 
# with a random number of items 
items = randrange ( 1 , maxltems+1)  
outfile . write ( "%d %d\n" % (t , items) ) 

outfile . close ( )  

In  the parameter list , filename gives the name of  the output file, totalTicks 
is the length of time over which the simulation will be run , maxItems is an upper 
limit on the number of items a customer will have, and arri val Interval indicates, 
on average, the number of ticks between arrivals. Suppose the store normally 
averages about 30 customers an hour. That 's a customer every two minutes. If 
a tick represents one second, then we expect about 120 ticks between customers. 
Notice how arrival times are handled in the code. If we expect one customer every 
120 ticks, then for each tick, there's a 1 in 120 chance that a customer is arriving. 
The expression random 0 < 1 .  /arrivalInterval succeeds (evaluates to True) with 
1/arrivalInterval probability. This gives us random arrivals that ,  over the long 
haul , occur at the desired rate. To generate a three-hour simulation with customers 
purchasing up to 50 items at an average of two-minute intervals, we would call the 
function like this : 

genTestData ( "checkerData . txt " , 3*60*60 , 50 , 120) 



178 Chapter 5 Stacks and Queues 

Our simulation program will deal with customers as they arrive in line. From 
the program's point of view, it doesn't matter if the customers are being read from 
a file or being provided in real time by another program or some other process. In 
fact , this is a perfect place to use a queue as an intermediary between whatever 
process is creating the data and our simulation. First , let 's create a Customer class 
to encapsulate the details about each customer. 

class Customer (obj ect) : 

def __ init __ (self , arrivalTime , itemCount) :  
self . arrivalTime = int (arrivalTime) 
self . itemCount = int (itemCount) 

def __ repr __ (self ) : 
return ( II Customer (arrivalTime=%d , itemCount=%d) " % 

(self . arrivalTime , self . itemCount» 

Since our customer information is just a "record" containing the arrival Time 
and i temCount data, we'll just access this information directly later on when neces­
sary (e.g. , customer . i temCount ) . The _ _ repr __ method provides a nice, printable 
representation for customers. This is handy so that we can inspect our data structure 
during testing and debugging. Now it 's a simple matter to write a function that will 
input a data file and create a queue of customer events.  

def createArrivalQueue (fname) : 
q = Queue O 
infile = open(fname) 
for line in infile : 

time , items = line . split ( )  
q .  enqueue (Customer (time , items» 

infile . close ( )  
return q 

The actual simulation will be carried out in a CheckerSim object . The construc­
tor accepts a queue of events and an average item-processing time as parameters . 
Here's one way of coding the CheckerSim class. 

# CheckerSim . py 
from My Queue import Queue 

class CheckerSim(obj ect) : 
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def _ _  init _ _  (self , arrivalQueue , avgTime) : 
self . time = 0 # ticks so far in simulation 
self . arrivals = arrivalQueue # queue of arrival events to process 
self . line = Queue ( )  # customers waiting in line 
self . serviceTime 0 # time left for current customer 
self . totalWait = 0 # sum of wait time for all customers 
self . maxWait = 0 # longest wait of any customer 
self . customerCount = 0 # number of customers processed 
self . maxLength = 0 # maximum line length 
self . ticksPerltem = avgTime # time to process an item 

def run(self ) :  
while (self . arrivals . size ( )  > 0 or 

self . line . size ( )  > 0 or 
self . serviceTime > 0) : 

self . clockTick O 

def averageWait (self ) : 
return float (self . totaIWait ) / self . customerCount 

def maximumWait (self ) : 
return self . maxWait 

def maximumLineLength(self ) : 
return self . maxLength 

def clockTick (self ) : 
# one tick of time elapses 
self . time += 1 
# customer (s)  arriving at current time enter the line 
while (self . arrivals . size ( )  > 0 and 

self . arrivals . front ( ) . arrivaITime == self . time) : 
self . line . enqueue (self . arrivals . dequeue ( ) )  
self . customerCount += 1 

# if line has reached a new maximum , remember that 
self . maxLength = max (self . maxLength ,  self . line . size ( ) )  
# process items 
if self . serviceTime > 0 :  

# a customer is currently being helped 
self . serviceTime -= 1 

elif self . line . size ( )  > 0 :  
# help the next customer in line 
customer = self . line . dequeue ( )  
#print self . t ime , customer # nice tracing pOint 
# compute and update statistics on this customer 
self . serviceTime = customer . itemCount * self . ticksPerltem 
waitTime = self . time - customer . arrivalTime 
self . totalWait += waitTime 
self . maxWait = max (self . maxWait , waitTime) 
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A simulation is executed by calling its run method. This method executes a loop 
that calls clockTick until the simulation is complete. This particular approach is 
an example of a time-driven simulation. We simply increment the clock one tick at a 
time and do whatever has to be done in that tick. Any events in the arri val Queue 
that occur at the given tick are moved into the line . If the checker is currently 
helping a customer, the amount of time still needed to process the customer's items 
is stored in serviceTime . We simply need to decrement this variable. If service 
time is 0, then the checker can begin helping the next customer in line. If the line 
is empty, the checker doesn't do anything. You should study this code carefully to 
make sure you understand how it works . 

For this particular problem, a time-driven solution is not necessarily the best 
approach. Many of our cycles around the tick-loop will essentially be idle time. 
An alternative approach is to use an event-driven simulation. The idea behind an 
event-driven approach is that we don't model each tick of the clock, but simply 
"jump ahead" to the next event that will have to be processed. For example , if 
the next customer in line will take 50 ticks to process, we don't really need to tick 
the clock 50 times , we can advance it 50 ticks in one step. Of course, that also 
means we will have to add to the line all of the arrival events that occur during 
that 50 tick window. A time-driven version is easy to understand, but the event­
driven approach has the advantage that we need to go around the loop only once per 
customer, rather than once per clock tick. A three- hour simluation involves 10,800 
ticks , but probably fewer than 100 customers, so that could be quite a savings. 
Completing an event-driven version of our simulation is left as an exercise. 

[[§J Chapter S ummary 

This chapter has discussed two simple, but very common data structures: stack and 
queue. Key ideas of these structures are 

• A stack is a sequential container that only allows access to one item, called 
the "top" of the stack. Items are added and removed in a last-in, first-out 
(LIFO) manner. Stacks naturally reverse a sequence and support the standard 
operations: push, pop, top, and size . 

• Among the applications of stacks are maintaining "undo" lists, tracking func­
tion calls in a running program, and checking proper nesting of grouping 
symbols. 
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• A stack is easily implemented using list-based, array-based, or linked-list 
techniques. 

• Expressions can be represented using prefix, infix, or postfix syntax. Stack­
based algorithms are useful for converting between different expression types 
and evaluating expressions. 

• Context-free grammars (CFGs) are a simple formalism for expressing the 
syntax of a wide class of languages. CFGs are closely related to stack-based 
computations. 

• A queue is a sequential container object that allows restricted access to the 
front and back of the sequence. Items can only be added to the back and 
removed from the front . A queue is a first in, first out (FIFO) structure. 
Queues support the standard operations: enqueue , dequeue , front , and size. 

• Queues are widely used as a "buffer" between different computational processes 
or phases of a single process. 

• A queue implemented with a Python list will have 8(n) behavior for either 
enqueue or dequeue, but is probably efficient enough for most applications. 
A circular array implementation or a linked implementation can be used to 
provide 8 ( 1) behavior for all operations. 

• One use of queueing is in operations research simulations. Such simulations 
can be either time driven or event driven. A time-driven simulation increments 
a simulated clock one tick at a time and checks what events happen at each 
tick. An event-driven simulation processes one event at a time and adjusts the 
clock by the amount of time passed before the next event . 

1 5 .7 1 Exercises 

True/ Fa lse Questions 

1. Items come out of a stack in the same order they go in. 

2 .  The operation for adding an item to a stack is called push. 

3. The top operation does not modify the contents of a stack. 

4. An expression has balanced parentheses if it contains an equal number of 
opening and closing parentheses. 
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5. A Python list is not a very good choice for implementing a stack. 

6. Items come out of a queue in the same order that they go in. 

7. A queue allows for the inspection of items at either end. 

8. The operation to remove an item from the front of a queue is called front . 

9. "Racecar" is a palindrome. 

10. A queue implemented using the insert and pop operations on a Python list 
will have 8(1 )  efficiency for all operations. 

M u lt ip le Choice Questions 

1. By definition, a stack must be a(n) 

a) FIFO structure 
b) LIFO structure 
c) linked structure 
d) array-based structure 

2. Which of the following is not a stack operation? 

a) push b) unstack c) pop d) top 

3 .  Which of the following is not an application of a stack? 

a) Keeping track of command history for an "undo" feature. 
b) Keeping track of function calls in a running program. 
c) Checking for proper nesting of parentheses. 
d) All of the above are stack applications. 

4. What is the result of evaluating the postfix expression 5 4 3 + 2 * -? 

a) -2 b) 3 c) 15 d) None of these 

5. What is the correct postfix form for 3 + 4 * 5? 

a) 3 4 + 5 * b) 3 4 * 5 + c) 3 4 5 + * 

6. By definition, a queue must be a(n) 

a) FIFO structure 
b) LIFO structure 
c) linked structure 
d) array-based structure 

d) 3 4 5 * + 
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7. Which of the following is not an operation of the queue ADT? 

a) enqueue b) dequeue c) requeue d) front 

8. Which implementation of a queue cannot guarantee 8(1 )  behavior for all 
operations: 

a) a circular list/array implementation 
b) a linked implementation with front and back references 
c) a Python list implementation using insert and pop 

d) All of the above yield 8 ( 1 )  operations. 

9. The process of splitting a string up into its meaningful pieces is called 

a) splitation. 
b) semantic chopping. 
c) syntactic chopping. 
d) lexical analysis. 

10. When using a linked implementation of a queue, where should insertions be 
done? 

a) at the front (head) of the linked list 
b) at the end (tail) of the linked list 
c) in the middle of the list 
d) either a) or b) will work 

Short-Answer Questions 

1. What is the running-time analysis of each stack method using 

a) a linked list implementation? 
b) a Python list implementation? 

2. What is the running-time analysis of the infix-to-postfix converter in terms of 
the number of tokens in the expression? 

3. What is the running-time analysis of each queue method using 

a) a Python list (non-circular) implementation? 
b) a circular list/array implementation? 
c) a linked implementation with only a head reference? 
d) a linked implementation with head and tail references? 
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4. Suppose you had a programming language with the only built-in container type 
being a stack. Explain how each of the following ADTs could be implemented, 
and give the running time for the basic operations. Try to come up with the 
most efficient implementation you can. Hint : you might use more than one 
stack to implement a given ADT.  

a) queue 
b) cursor-based List 
c) index-based list (random access) 

5. Experiment with different scenarios using the checker simulation. What do 
you think the maximum line length will be as the average rate of arrivals 
approaches the average rate of check-out? Run some simulations to test your 
hypothesis. 

Program mi ng Exercises 

1 .  Write a Stack and a Queue class with unit test code for each class. Test out 
the palindrome program from the chapter using your stack and queue. 

2. Implement the infix-to-postfix algorithm described in this chapter. 

3. Write a function that accepts a valid postfix expression and evaluates it . 

4. Suppose a queue is being used to store numbers, and we want to see if 
the numbers currently in the queue are in order. Write and test a func­
tion queue InOrder (someQueue) that returns a Boolean indicating whether 
someQueue is in sorted order. After calling the function, the queue should 
look exactly like it did before the function call. Your function should only 
make use of the available queue ADT operations; accessing the underlying 
representation is not allowed. 

5. Hypertext markup language (HTML) is a notation used to describe the con­
tents of web pages. The latest HTML standard is XHTML. Web browsers read 
HTML/XHTML to determine how web pages should be displayed. HTML 
tags are enclosed in angle brackets « and » .  In XHTML, tags generally 
appear in start tag, end tag combinations. A start tag has the form <name 
attributes>.  The matching end tag contains just the name preceeded by a 
/ .  For example, a paragraph of text might be formatted like this: 

<p align=" center" >  This  is a centered paragraph </p> 
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XHTML also allows self-closing tags of the form <name attributes /> . In a 
proper XHTML file, the tags will occur in properly nested pairs. Each start tag 
is matched by a corresponding end tag, and one structure may be embedded in­
side another, but they cannot overlap. For example <p> . . .  <01> . . .  </ 01> . . .  </p> 
is OK, but <p> . . .  <ol> . . .  </p> . . .  </ol> is not . A self-closing tag acts as a self­
contained start-end pair. 

Write a program that checks XHTML files (web pages) to see if the embedded 
XHTML tags balance properly. The program will read XHTML input from a 
file and print out an analysis of the file . The sequence of tags in the file should 
be echoed to the output ; any other text in the XHTML file is ignored. If there 
is a tag balancing error or the program reaches the end of the file while in the 
middle of a tag, the program should quit and print an error message. If the 
end of the file is reached without any errors, a message to that effect should 
be printed. 

6. A marble clock is a novelty timepiece that shows the current time via the 
configuration of marbles in its trays. Typically, such a clock has a reservoir 
of marbles at the bottom that acts like a queue. That is, marbles enter the 
reservoir and one end and are removed from the other. The clock keeps time 
via an arm that circulates once a minute lifting a marble from the front of the 
reservoir and dropping it into the top of the clock. The clock has a series of 
three trays for showing the time. Marbles enter and leave the trays from one 
end only (i.e . ,  they function as stacks) . 

The top tray is the minute tray and is labeled with the numbers 1-4. The 
first marble rolls into position 1 ,  the next into 2, and so on. The fifth marble 
entering the tray overbalances it , causing it to dump out. The last marble in 
then falls to the next tray, and the remaining four return to the reservoir . The 
second tray in the clock has 1 1  positions, labeled 5, 10,  15,  20, . . .  55. When 
a twelfth marble enters this tray, it dumps its contents, with the last marble 
again dropping to the next tray, and the other 1 1  returning to the reservoir . 
The third and final tray shows hours. It has one marble permanently affixed 
at position 1 ,  and then has 1 1  spaces for hours labeled 2 ,  3, 4, . . .  , 12 .  When 
a twelfth marble drops in this tray, it tips and all 12 marbles return to the 
reservoir. At that point , the clock has completed a 12-hour cycle, and there 
are no (free) marbles left in any of the trays. 

You are to write a program that simulates the behavior of the marble clock 
to answer some questions about its behavior. As the clock runs, the marbles 
in the reservoir get shuffled up. We want to know how many 12-hour cycles it 



186 Chapter 5 Stacks and Queues 

takes to put the marbles back in order. Your program should allow the user 
to enter a number, N (>= 27) that represents the number of marbles in the 
reservoir at the start . Your program should simulate the behavior of the clock 
and count how many 12-hour cycles pass before the marbles are all back in 
the reservoir in the original order. It should print this result. 

Hints: you can use ints o . . .  (N-1 )  to represent the marbles. You will need to 
write a function (see exercise 4) that determines when the resevior is back in 
order. For N = 27, the answer is 25. 

7. The previous exercise, involves simulating the marble clock until the reservoir 
is back in order. Another approach to this problem is to consider a single 
cycle of the clock as defining a permutation. That is , we can extract the order 
of the marbles from the reservoir, and it tells us exactly how the marbles are 
shuffled. For example, if the first number in the queue is 8, that means that 
the number that was in position 8 moved to position O. 
Design a permutation class to represent a rearrangement . You need a construc­
tor and a method that applies the permutation to a list . Then redo the clock 
problem by running the clock for just one cycle, extracting the permutation, 
and then repeatedly applying the permutation until you get a list that is back 
in order. 

8. The number of times a permutation must be applied before it restores a 
sequence to its original order is called the "order of the permutation." The 
order of a permutation can be determined by partitioning the permutation into 
its cycles and then finding the least common multiple of the cycle lengths. For 
example, the permutation that turns [0, 1 ,  2 ,  3 ,  4] into [4, 3, 0 ,  1 ,  2] contains 
two cyles: (0, 2, 4) and ( 1 ,  3) . The first cycle shows that the item in position 
o moves to position 2, the item in position 2 moves to position 4 and the item 
in position 4 moves to position O. The second cycle shows that positions 1 and 
3 just swap places. This permutation has the order 3(2)  = 6. So applying the 
rearrangement six times puts a sequence back in order. 

Extend your permutation class from the previous exercise with a method that 
calculates the order of the permutation. Use your new method to solve the 
marble clock problem again. Experimentally compare the efficiency of this 
approach to the previous versions. 

9. Write an event-driven version of the checker simulation. Make sure it produces 
the same results as the time-driven simulation in the chapter. 
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10. Suppose our retail store is going to upgrade from one to two checkers.  Either 
we can have a single line with the person at the front of the line going to 
whichever checker is free (similar to airline check-in and some banks) or we 
can have two separate lines where we assume that arriving customers will 
queue up in the shortest line. Write a simulation to determine if there is any 
significant advantage to one approach over the other in terms of the average 
waiting time for the customers. 





Chapter 6 Recursion 

Object ives 

• To understand the basic principles of recursion as a problem solving technqiue. 

• To be able to write well-formed recursive functions. 

• To be able to analyze the behavior of simple recursive functions and predict 
their run-time efficiency. 

• To be able to analyze the benefits and drawbacks of recursion vis-a.-vis iteration 
and employ each where appropriate. 

[§]J I ntrod uct ion 

As you surely know by now, one of  the best techniques to  use when designing 
programs is to break a problem down into smaller subproblems. In some situations, 
you may end up with smaller versions of the same problem. For example, think 
back to the basic binary search algorithm for finding an item in a sorted list ; we 
covered it way back in subsection 1 . 3 . 2 .  To jog your memory, here's the code that 
we developed: 

189 
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def search (items , target ) : 
low = 0 
high = len (items) - 1 

Chapter 6 Recursion 

while low <= high : # There is still a range to search 
mid = (low + high) II 2 # position of middle item 
item = items [mid] 
if target == item : 

return mid 
elif target < item : 

high = mid - 1 
else : 

low = mid + 1 
return -1  

# Found it ! Return the index 

# x is in lower half of range 
# move top marker down 
# x is in upper half 
# move bottom marker up 
# no range left to search , 
# x is not there 

We determined that the time complexity of this algorithm is 8 (log n) where n is 
the size of the list , because each iteration through the main loop cuts the number of 
items to consider in half. If you've forgotten this important algorithm, this would 
be a perfect time to go back and review it . 

The binary search uses a so-called "divide and conquer" approach, which often 
leads to very efficient algorithms. This class of algorithms also has the interesting 
feature that the original problem divides into subproblems that are actually smaller 
versions of the original. In the case of binary search, the first step is to look at the 
middle element of the list ; if it is not the target, we continue by performing binary 
search on either the top half or the bottom half of the list. Using this insight , we 
might express the binary search algorithm in a slightly different form: 

Algorithm : binarySearch -- search for x in nums [low] . . .  nums [high] 

mid = (low + high) I 2 
if low > high 

x is not in nums 
elif x < nums [mid] 

perform binary search for x in nums [low] . . .  nums [mid-1] 
else 

perform binary search for x in nums [mid+1] . . .  nums [high] 

Rather than using a loop as in the original algorithm, this definition of the binary 
search seems to refer to itself. What is going on here? Can we actually make sense 
of such a thing? 
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1 6 . 2 1  Recu rsive Defi n it ions 

A description of  something that refers to  itself i s  called a recursive definition. In 
our last formulation, the binary search algorithm makes use of its own description. 
That is , a "call" to binary search "recurs" inside of the definition-hence, the label 
"recursive definition." 

At first glance, you might think recursive definitions are just nonsense. Surely 
you have had a teacher who insisted that you can't use a word inside its own 
definition? That's called a circular definition and is usually not worth much credit 
on an exam. 

In mathematics, however, certain recursive definitions are used all the time. As 
long as we exercise some care in the formulation and use of recursive definitions, 
they can be quite handy and surprisingly powerful . The classic recursive example 
in mathematics is the definition of factorial. 

The factorial function is often denoted with an exclamation point ( ! ) ,  and n 
factorial is computed as 

n! = n(n - l ) (n - 2) . . .  ( 1 )  

For example, we can compute 

5 !  = 5(4) (3) (2) ( 1 )  

Using this definition, it is fairly easy to  write a function fact en) that returns the 
factorial of its parameter. You just need a for loop that accumulates the product 
of all the factors from 2 up to n. We leave coding that up to you, as that 's not the 
solution of interest to us here. 

Looking at the calculation of 5 ! ,  you will notice something interesting. If we 
remove the 5 from the front, what remains is a calculation of 4 1 .  In general, n! = 
n(n - I ) ! . In fact , this relation gives us another way of expressing what is meant by 
factorial in general. Here is a recursive definition: 

, _ { 1 if n = 0 
n. -

n(n - I ) !  otherwise 

This definition says that the factorial of 0 is , by definition, 1 ,  while the factorial of 
any other number is defined to be that number times the factorial of one less than 
that number. 

Even though this definition is recursive, it is not circular. In fact , it provides 
a very simple method of calculating the factorial of any natural number. Consider 
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the value of 4! . By definition we have 

4! = 4(4 - I ) !  = 4(3 ! )  

But what is  3 !?  To find out, we apply the definition again. 

4! = 4(3! ) = 4 [(3) (3 - I ) !] = 4(3) (2 ! )  

Now, of course, we have to expand 2 ! ,  which requires I ! ,  which requires O ! .  Since O! 
is simply 1 , that 's the end of it .  

4! = 4(3! ) = 4(3) (2 ! )  = 4(3) (2) ( 1 ! )  = 4(3) (2) ( 1 ) (0 ! )  = 4(3) (2) ( 1 ) ( 1 )  = 24 

You can see that the recursive definition is not circular because each application 
causes us to request the factorial of a smaller number. Eventually we get down 
to 0, which doesn't require another application of the definition. This is called 
a base case for the recursion. When the recursion bottoms out, we get a closed 
expression that can be directly computed. All good recursive definitions have these 
key characteristics: 

1 .  There are one or more base cases for which no recursion is required. 

2. All chains of recursion eventually end up at one of the base cases. 

The simplest way to guarantee that these two conditions are met is to make sure 
that each recursion always occurs on a smaller version of the original problem. A 
very small version of the problem that can be solved without recursion then becomes 
the base case. This is exactly how the factorial definition works. 

As we mentioned above, the factorial can be computed using a loop with an 
accumulator. That implementation has a natural correspondence to the original 
definition of factorial that we presented. Can we also implement a version of factorial 
that follows the recursive definition? 

If we write factorial as a function, the recursive definition translates directly into 
code. 

# fact . py 
def fact (n) : 

if n == 0 :  
return 1 

else : 
return n * fact (n- 1 )  
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Do you see how the definition that refers to itself turns into a function that calls 
itself? This is called a recursive function. The function first checks to see if we are 
at the base case n == 0 and, if so, returns 1 .  If we are not yet at the base case, the 
function returns the result of multiplying n by the factorial of n-1 .  The latter is 
calculated by a recursive call to fact (n-l ) . 

This is a reasonable translation of the recursive definition. The really cool part 
is that it actually works! We can use this recursive function to compute factorial 
values. 

» >  from fact import fact 
» >  fact (4) 
24 
» >  fact (0) 
3628800 

Some programmers new to recursion are surprised by this result , but it follows 
naturally from the standard semantics of function calls. Remember that each call to 
a function starts that function anew. Thanks to the run-time stack, each invocation 
of the function gets its very own references to any local values, including the values 
of the parameters. Figure 6 . 1 shows the sequence of recursive calls that computes 
5 ! .  Note especially how each return value is multiplied by the value of n that is 
remembered for each function invocation. The values of n are automatically stored 
on the stack on the way down the chain and then popped off and used on the way 
back up as the function calls return. 

1 6 . 3 1  S im p le Recu rsive Exa m ples 

There are many problems for which recursion can yield an elegant and efficient 
solution. In this section we'll try our hand at some simple recursive problem solving. 

1 6 .3 . 1 1 Example :  Stri ng Reversa l 

Python lists have a built-in method that can be used to reverse the list . Suppose 
that you want to compute the reverse of a string. One way to handle this problem 
effectively would be to convert the string into a list of characters, reverse the list , 
and turn the list back into a string. Using recursion, however, we can easily write 
a function that computes the reverse directly, without having to detour through a 
list representation. 

The basic idea is to think of a string as a recursive object ; a large string is 
composed of smaller objects, which are also strings. In fact, one very handy way 
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') def fact(n): def fact(n): def fact(n): 

fact(5) return 1 \\� return 1 �� return 1 � if n == O: /, if n == O: Y, if n == O: 

�20 else: 24 else: 6 else: 
� return n * fact(n- l )'" return n * fact(n- l )'" return n * f ct(n- l )  
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def fact(n): def fact(n): def fact(n): 

n = 2 

if ::'� :
l ,, '" / if :7:r�:

1 "", ()�/ if �e�:::\ 
2 else: / .  1 else: ././ else: 

L..-___ ---==-�r�e�tu�rn�n_*�f�ac�t�(n�-�l ).... return n * fact(n- l return n * fact(n- l )  

n D:=J n CIJ n c=JLJ 
Figure 6 . 1 :  Recursive computation of 5 !  

to divide up virtually any sequence is  to think of it  as a single first item that just 
happens to be followed by another sequence. In the case of a string, we can divide it 
up into its first character and "all the rest ." If we reverse the rest of the string and 
then put the first character on the end of that , we'll have the reverse of the whole 
string. 

Let 's code that algorithm and see what happens. 

def reverse (s) : 
return reverse (s [1 : ] )  + s [O] 

Notice how this function works. The slice 8 [ 1 : ]  gives all but the first character of 
the string. We reverse the slice (recursively) and then concatenate the first character 
(s [0] ) onto the end of the result . It might be helpful to think in terms of a specific 
example. If 8 is the string " abc " ,  then 8 [1 : ]  is the string "bc " .  Reversing this 
yields " cb "  and tacking on 8 [0] yields " cba" . That's just what we want . 

Unfortunately, this function doesn't quite work. Here's what happens when we 
try it out: 
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» >  reverse ( IHello " )  
Traceback (most recent call last ) : 

File II <stdin> II , line 1 ,  in ? 
File " <stdin> " , line 2 ,  in reverse 
File II <stdin> II , line 2 ,  in reverse 

File " <stdin> " , line 2 ,  in reverse 
RuntimeError : maximum recursion depth exceeded 
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We've shown only a portion of the output; it actually consisted of 1 ,000 lines! What 's 
happened here? 

Remember, to build a correct recursive function we need a base case for which 
no recursion is required, otherwise the recursion is circular. In our haste to code 
the function, we forgot to include a base case. What we have written is actually an 
infinite recursion. Every call to reverse contains another call to reverse,  so none 
of them ever returns. Of course, each time a function is called it takes up some 
memory (to store the parameters and local variables on the run-time stack) , so this 
process can't go on forever. Python puts a stop to it after 1 ,000 calls, the default 
"maximum recursion depth." 

Let's go back and put in a suitable base case. When performing recursion on 
sequences, the base case is often an empty sequence or a sequence containing just 
one item. For our reversing problem we can use an empty string as the base case, 
since an empty string is its own reverse. The recursive calls to reverse are always 
on a string that is one character shorter than the original, so we'll eventually end 
up at an empty string. Here's a correct version of reverse:  

# reverse . py 
def reverse (s) : 

if s == 1 1 11 : 

return s 
else : 

return reverse (s [1 : ] )  + s [O] 

This version works as advertised. 

I » >  reverse l "Hello " )  
' olleH ' 

1 6 . 3 . 2 1 Exam ple: Anagra ms 

An anagram is formed by rearranging the letters of a word. Anagrams are often used 
in word games, and forming anagrams is a special case of generating the possible 
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permutations (rearrangements) of a sequence, a problem that pops up frequently in 
many areas of computing and mathematics . 

Let 's try our hand at writing a function that generates a list of all the possible 
anagrams of a string. We'll apply the same approach that we used in the previous 
example by slicing the first character off of the string. Suppose the original string is 
" abc " , then the tail of the string is "be " .  Generating the list of all the anagrams of 
the tail gives us [ "be " , " eb " ] , as there are only two possible arrangements of two 
characters. To add back the first letter, we need to place it in all possible positions 
in each of these two smaller anagrams: [ "abc " , "bae " , "bea" , "aeb " , " cab " , 
" eba" ] . The first three anagrams come from placing " a" in every possible place in 
"be " ,  and the second three come from inserting "a"  into "e b" . 

Just as in our previous example, we can use an empty string as the base case 
for the recursion. The only possible arrangement of characters in an empty string 
is the empty string itself. Here is the completed recursive function: 

# anagrams . py 
def anagrams (s) : 

if s == 11 11 : 

return [s] 
else : 

ans = [] 
for w in anagrams (s [1 : ] ) :  

for pos in range (len(w) +1 ) : 
ans . append (w [ : pos] +s [O] +w [pos : ] )  

return ans 

Notice in the else we have used a list to accumulate the final results. In the 
nested for loops, the outer loop iterates through each anagram of the tail of s ,  
and the inner loop goes through each position in  the anagram and creates a new 
string with the original first character inserted into that position. The expression 
tv [ :  pos] +s [0] +w [pos : ]  looks a bit tricky, but it 's not too hard to decipher. Taking 
tv [ :  pos] gives the portion of tv up to (but not including) pos, and tv [pos : ]  yields 
everything from pos through the end. Sticking s [0] between these two effectively 
inserts it into w at pos .  The inner loop goes up to len (tv) +1  so that the new 
character is also added to the very end of the anagram. 

Here is our function in action: 

» >  anagrams ( "abc " )  
[ ' abc ' , ' bac ' , ' bca' , ' acb ' , ' cab ' , ' cba ' ]  

We didn't use "Hello " for this example because that generates more anagrams than 
we wanted to print. The number of anagrams of a word is the factorial of the length 
of the word. 
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1 6 .3 .3 1 Example :  Fast Exponentiation 

Another good example of recursion is a clever algorithm for raising values to an 
integer power. The naive way to compute an for an integer n is simply to multiply 
a by itself n times, an = a * a * a * . . .  * a. We can easily implement this using a 
simple accumulator loop. 

# power . py 
def loopPower (a ,  n) : 

ans = 1 
for i in range (n) : 

ans = ans * a 
return ans 

The strategy of divide and conquer suggests another way to perform this calcu­
lation. Suppose we want to calculate 28 . By the laws of exponents, we know that 
28 = 24 (24 ) .  So if we first calculate 24 , we can just do one more multiplication 
to get 28 . To compute 24 , we can use the fact that 24 = 22 (22 ) . And, of course, 
22 = 2(2) . Putting the calculation together we start with 2(2) = 4 and 4(4) = 16 and 
16(16) = 256. We have calculated the value of 28 using just three multiplications. 
The basic insight is to use the relationship an = ani /2 (an/ /2 ) . 

In the example we gave, the exponents were all even. In order to turn this idea 
into a general algorithm, we also have to handle odd values of n. This can be done 
with one more multiplication. For example, 29 = 24(24) (2) . Here is the general 
relationshi p:  

an = 
{ ani /2 (an/ /2 ) if n is even 

an//2 (an//2 ) (a) if n is odd 

In this formula we are exploiting integer division; if n is 9 then n/ /2 is 4. 
We can use this relationship as the basis of a recursive function, we just need to 

find a suitable base case. Notice that computing the nth power requires computing 

two smaller powers (n/ /2) . If we keep using smaller and smaller values of n, it will 
eventually get to 0 ( 1//2 = 0) . As you know from math class, aD = 1 for any value 
of a (except 0) . There's our base case. 

If you've followed all the math, the implementation of the function is straight­
forward. 
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# power . py 
def recPower (a ,  n) : 

# raises a to the int power n 
if n == 0 :  

return 1 
else : 

factor = recPower (a ,  n II 2) 
if n % 2 == 0 :  

return factor * factor 
else : 

return factor * factor * a 

# n is even 

# n is odd 

One thing to notice is the use of an intermediate variable factor so that ani 12 
needs to be calculated only once . This makes the function more efficient . 

1 6 . 3 .4 1 Exam ple: B inary Search 

Now that you know how to implement recursive functions, we are ready to go back 
and look again at binary search recursively. Remember, the basic idea was to look 
at the middle value and then recursively search either the lower half or the upper 
half of the list . 

The base cases for the recursion are the conditions when we can stop, namely, 
when the target value is found or we run out of places to look. The recursive calls 
will cut the size of the problem in half each time. In order to do this, we need to 
specify the range of locations in the list that are still "in play" for each recursive 
call . We can do this by passing the values of low and high as parameters along 
with the list . Each invocation will search the list between the low and high indexes. 

Here is a direct implementation of the recursive algorithm using these ideas: 

# bsearch . py 
def recBinSearch(x , nums , low , high) : 

if low > high : # No place left to look , return -1  
return -1  

mid = (low + high) II  2 
item = nums [mid] 
if item == x :  

return mid 
# Found it ! Return the index 

elif x < item : # Look in lower half 
return recBinSearch (x , nums , low , mid-i )  

else : # Look in upper half 
return recBinSearch(x , nums , mid+1 , high) 

We can then implement our original search function using a suitable call to the 
recursive binary search, telling it to start the search between 0 and len (nums ) - 1 .  
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def search(items , target) :  
return recBinSearch(target , items , 0 ,  len(items) -l )  

Of course, our original looping version is probably a bit faster than this recursive 
version because calling functions is generally slower than iterating a loop. The 
recursive version, however, makes the divide-and-conquer structure of binary search 
much more obvious. Below we will see examples where recursive, divide-and-conquer 
approaches provide a natural solution to some problems where loops are awkward. 

1 6 . 4 \ Ana lyzi ng Recu rsion  

By now you've certainly noticed that there are some similarities between iteration 
(looping) and recursion. Recursive functions are a generalization of loops. Anything 
that can be done with a loop can also be done by a simple kind of recursive function. 
In fact, there are programming languages that use recursion exclusively. On the 
other hand, some things that can be done very simply using recursion are quite 
difficult to do with loops. 

For a number of the problems we've looked at so far, we have had both iterative 
and recursive solutions. In the case of factorial and binary search, the loop version 
and the recursive version do basically the same calculations, and they will have 
roughly the same efficiency. The looping versions are probably a bit faster because 
of the function call overhead of recursion, but in a modern language the recursive 
algorithms are probably fast enough. 

In the case of the exponentiation algorithm, the recursive version and the looping 
version actually implement very different algorithms. The loopPower function has 
a simple counted loop that spins n times. Clearly this is a linear time (8 ( n) )  
algorithm. In recPower, the number of  "iterations" is  determined by the number of 
recursions. We have to figure out how deep the stack of nested function calls will 
get . Since each successive call is made on a number that is half as large, it will only 
take log2 n recursive calls to get to O. Each call does at most two multiplications, so 
we have a log time (8 (10g n) )  algorithm. The difference between these two is similar 
to the difference between linear search and binary search, so the recursive algorithm 
is clearly superior. In the next section, you'll be introduced to a recursive sorting 
algorithm that is also very efficient . 

As you have seen, recursion can be a very useful problem-solving technique that 
can lead to efficient and effective algorithms. But you have to be careful; it 's also 
possible to write some very inefficient recursive algorithms. One classic example is 
calculating the nth Fibonacci number. 
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The Fibonacci sequence is the sequence of numbers 1, 1, 2, 3 , 5 ,  8 , . . . .  It starts 
with two Is, and successive numbers are the sum of the previous two. One way to 
compute the nth Fibonacci value is to use a loop that produces successive terms of 
the sequence. 

In order to compute the next Fibonacci number, we always need to keep track of 
the previous two. We can use two variables, curr and prev, to keep track of these 
values. Then we just need a loop that adds these together to get the next value. At 
that point, the old value of curr becomes the new value of prevo Here is one way 
to do it in Python: 

# fib . py 
def loopFib (n) : 

# pre : n > 0 
# returns the nth Fibonacci number 

curr = 1 
prev = 1 
for i in range (n-2) : 

curr , prev = curr+prev , curr 
return curr 

Here simultaneous assignment is used to compute the next values of curr and 
prev in a single step. Notice that the loop goes around only n - 2 times, because the 
first two values have already been assigned and do not require an addition. Clearly 
this is a 8(n) algorithm, where n is the input parameter. 

The Fibonacci sequence also has an elegant recursive definition. 

Jib(n) = { �ib(n - 1) + Jib(n - 2) 
if n < 3 
otherwise 

We can turn this recursive definition directly into a recursive function. 

# fib . py 
def recFib (n) : 

if n < 3 :  
return 1 

else : 
return recFib (n-l )  + recFib (n-2) 

This function obeys the rules that we've set out . The recursion is always on 
smaller values, and we have identified some non-recursive base cases. Therefore, this 
function will work, sort of. It turns out that this is a horribly inefficient algorithm. 
While our looping version can easily compute results for very large values of n 
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(loopFib (50000) is almost instantaneous on a relatively new microcomputer) , the 
recursive version is useful only up to around n = 30 or so. After that, the wait gets 
too long. 

The problem with this recursive formulation of the Fibonacci function is that it 
performs lots of duplicate computations. Figure 6 .2  shows a diagram of the com­
putations that are performed to compute fib (6) . Notice that fib (4) is calculated 
twice, fib (3) is calculated three times, fib (2)  four times, etc . If you start with 
a larger number, you can see how this redundancy really piles up. Notice, at the 
bottom of the diagram, that each recursive chain bottoms out at a 1 .  If you work 
your way up the chain from a 1 ,  you get to the calling function that adds that 1 
into the total result . As this diagram shows, computing fib (6)  with this algorithm 
requires Jib(6) - 1 additions! In general, this algorithm requires Jib(n) - 1 steps to 
compute fib (n) . That means it 's a 8(Jib(n) ) algorithm. 'fry out some numbers, 
and you'll see that this function grows very rapidly. If you're curious where this fits 
into our hierarchy of common run-time analyses, you should do a little research on 
the Fibonacci sequence. Suffice it to say, the run-time of this function is exponential 
in the value of n. 

Figure 6 .2 :  Computations performed for fib (6)  

So what does this tell us? Recursion is  just one more tool in  your problem­
solving arsenal . Sometimes a recursive solution is a good one, either because it is 
more elegant or more efficient than a looping version; in that case use recursion. 
Often, the looping and recursive versions are quite similar; in that case, the edge 
probably goes to the loop, as it will be slightly faster. Sometimes the recursive 
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version is terribly inefficient. In that case, avoid it , unless of course, you can't come 
up with an iterative algorithm. As you'll see later in the chapter, sometimes there 
just isn't an efficient solution. 

[§}] Sort i  ng 
Back in  Chapter 3 we discussed the selection sort algorithm for putting a list in 
order. Recall that the basic selection sort algorithm puts a list in order by searching 
through the list to find the smallest (or largest) element and swapping it to the 
front . Then we search through the remaining items to find the next smallest and 
swap it into the next spot . The process continues until every item has been placed 
in the proper spot . As a refresher, here's a version of the selection sort in Python. 

# se1ectionSort . py 
def se1ectionSort (lst ) : 

n = 1en(lst) 
for i in range (n- 1 ) : 

min_pos = i 
for j in range (i+1 , n) : 

if lst [j ] < 1st [min_pos] : 
min_pos = j 

lst [i] , lst [min_pos] = 1st [min_pos] , lst [i] 

As we discussed when this algorithm was first presented, selection sort executes 
in 8(n2) time, where n is the size of the list . This is fine for small lists , but not 
very efficient for large collections . 

1 6 . 5 . 1 1 Recursive Design : Mergesort 

As discussed earlier, one technique that often works for developing efficient algo­
rithms is the divide-and-conquer approach. Suppose you and a friend are working 
together trying to put a deck of cards in order. You could divide the problem up by 
splitting the deck of cards in half with one of you sorting each of the halves . Then 
you just need to figure out a way of combining the two sorted stacks. 

The process of combining two sorted lists into a single sorted result is called 
merging. The basic outline of our divide-and-conquer algorithm, called mergesort 
looks like this: 
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split nums into two halves 
sort the first half 
sort the second half 

6 .5 Sorting 

merge the two sorted halves back into nums 
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The first step in the algorithm is simple, we can just use list slicing to handle 
that . The last step is to merge the lists together. If you think about it , merging is 
not hard. Let 's go back to our card stack example to flesh out the details. Since 
our two stacks are sorted, each has its smallest value on top. Whichever of the top 
values is the smaller will be the first item in the merged list . Once the smaller value 
is removed, we can look at the tops of the card stacks again, and whichever top card 
is smaller will be the next item in the list . We just continue this process of placing 
the smaller of the two top values into the big list until one of the stacks runs out . 
At that point , we finish out the list with the cards from the remaining stack. 

Here is a Python implementation of the merging process. In this code, 1st 1 and 
lst2 are the smaller lists and lst3 is the larger list where the results are placed. In 
order for the merging process to work, the length of lst3 must be equal to the sum 
of the lengths of lst l  and lst2. You should be able to follow this code by studying 
the accompanying comments: 

# mergeSort . py 
def merge (lst 1 ,  Ist2 , Ist3) : # merge sorted lists Ist1 and Ist2 into Ist3 

i1 , i2 , i3 = 0 ,  0, 0 # track current position in each list 
n1 , n2 = len(lst 1 ) , len(lst2) 
while i1 < n1 and i2 < n2 : # while both Ist 1 and Ist2 have more items 

if Ist1 [i1] < Ist2 [i2] : # top of Ist 1 is smaller 
Ist3 [i3] = Ist 1 [i1] # copy it into current spot in Ist3 
i1 = it  + 1 

else : 
Ist3 [i3] = Ist2 [i2] 
i2 = i2 + 1 

i3 i3 + 1 

# top of Ist2 is smaller 
# copy it into current spot in Ist3 

# item added to Ist3 , update position 

while i1 < n1 : # Copy remaining items (if any) from Ist1 
Ist3 [i3] = Ist 1 [i1] 
i1 = it  + 1 
i3 = i3 + 1 

while i2 < n2 : # Copy remaining items ( if any) from Ist2 
Ist3 [i3] = Ist2 [i2] 
i2 i2 + 1 
i3 = i3 + 1 
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OK, now we can slice a list into two, and if those lists are sorted, we know how 
to merge them back into a single list . But how are we going to sort the smaller lists? 
Well, let 's think about it. We are trying to sort a list , and our algorithm requires us 
to sort two smaller lists. This sounds like a perfect place to use recursion. Maybe 
we can use mergeSort itself to sort the two lists. Let's go back to our recursion 
guidelines to develop a proper recursive algorithm. 

In order for recursion to work, we need to find at least one base case that does not 
require a recursive call, and we also have to make sure that recursive calls are always 
made on smaller versions of the original problem. The recursion in our mergeSort 
will always occur on a list that is about half as large as the original, so the latter 
property is automatically met . Eventually, our lists will be very small, containing 
only a single item. Fortunately, a list with just one item is already sorted! Voila, we 
have a base case. When the length of the list is less than 2, we do nothing, leaving 
the list unchanged. 

Given our analysis , we can update the merge Sort algorithm to make it properly 
recursive. 

if len(nums) > 1 :  
split nums into two halves 
merge Sort the first half 
mergeSort the second half 
merge the two sorted halves back into nums 

We can translate this algorithm directly into Python code. 

# mergeSort . py 
def mergeSort (nums) : 

# Put items of nums in ascending order 
n = len(nums) 
# Do nothing if nums contains 0 or 1 items 
if n > 1 :  

# split into two sublists 
m = n II 2 
nums1 ,  nums2 = nums [ : m] , nums [m : ]  
# recursively sort each piece 
mergeSort (nums1 )  
merge Sort (nums2) 
# merge the sorted pieces back into original list 
merge (nums1 , nums2 , nums) 

You might try tracing this algorithm with a small list (say eight elements) , just to 
convince yourself that it really works. In general, though, tracing through recursive 
algorithms can be tedious and often not very enlightening. 
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Recursion is closely related to mathematical induction, and it requires practice 
before it becomes comfortable. As long as you follow the rules and make sure that 
every recursive chain of calls eventually reaches a base case, your algorithms will 
work. You just have to trust and let go of the grungy details. Let Python worry 
about that for you! 

1 6 . 5 .2 1 Ana lyzing Mergesort 

A good way get a handle on the merge sort algorithm is to run the code on a small 
list and print out some of the intermediate results so you can see the code in action. 
Figure 6 .3  shows a pictorial representation of calling mergeSort with a list of seven 
items. The lists are split in half by the recursive calls until each sub list contains one 
item. As noted before, a list of one item is sorted. As the recursive calls return, the 
merge function is called and two sublists are merged together. After returns from 
all the recursive calls, we have a list of seven items that is sorted. 

The running time of the merge function is 8(n) , where n is the length of lst3. 
The three loops eventually move each item from the two sublists of size n/ /2 to the 
correct position in the list of size n. At most two items (one from each sublist) are 
examined each time to determine which item to place in the new list . To calculate 
the work done by the merge Sort function, we need to determine the number of steps 
required to reach the base case. We have seen this pattern before with the binary 
search algorithm. Since we are dividing the list in half each time, there are log2 n 
steps to get to the base case. At each level, the sum of all the work done is 8(n) , 
where n is the length of the original list . After the first split , we are merging two 
lists of length n/2 .  After the second split , we need two merges of sublists that are 
length n / 4. You can verify this by looking at the diagram; for each level, up to n 
items must be copied back. Thus we have log2 n levels, each of which requires 8(n) 
work, resulting in the run-time of the overall algorithm being 8(n log n) . This is 
a much more efficient algorithm than selection sort , and mergesort is a very good 
algorithm. In fact , it 's possible to prove that no algorithm that relies on comparing 
elements to each other can sort a list in time less than 8 (n log n) . But that doesn't 
mean mergesort is the best sorting algorithm. 

One drawback of mergesort is the amount of memory that it requires. If you 
examine our Python implementation carefully, you may be concerned that we are 
creating separate sublists rather than just keeping track of the indices of the two 
sublists, since creating these sublists requires 8(n) work and memory. The merge sort 
algorithm does require separate lists/arrays for the sublists and the list/array used 
during the merging step. The merging code cannot swap items, so it must have 
a separate list/array to put the items in rather than use the same memory as the 
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Figure 6 .3 :  Graphical representation of mergesort 
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sublists. It does not matter whether we split the list by tracking the starting and 
ending indices for the list and use a separate list for the merging step or if we create 
separate sublists and then use the original list during the merging step; in either case, 
mergesort requires twice as much memory as the original list/array requiring 8 (n) 
work at some point during the algorithm. This does not change our analysis since 
that step is performed 8 (log n) times. However, there are other recursive algorithms 
that can sort in 8(  n log n) time and also perform the sort in place. Since they do 
not require a copying step, the constant that the theta notation hides is smaller and 
the algorithms are generally faster and less memory-intensive than mergesort . One 
such algorithm is known as quicksort and is discussed in subsection 1 5 . 2 . 2 .  

1 6 . 6 1  A " Hard" Prob lem : The Tower of H a noi 

U sing our divide-and-conquer approach we were able to design efficient algorithms 
for the searching, sorting, and exponentiation problems. Divide and conquer and 
recursion are very powerful techniques for algorithm design. However, not all 
problems have efficient solutions. One very elegant application of recursive problem 
solving is the solution to a mathematical puzzle usually called the Tower of Hanoi or 
Tower of Brahma. This puzzle is generally attributed to the French mathematician 
Edouard Lucas, who published an article about it in 1883. The legend surrounding 
the puzzle goes something like this : 

Somewhere in a remote region of the world is a monastery of a very devout 
religious order. The monks have been charged with a sacred task that keeps time 
for the universe. At the beginning of all things, the monks were given a table that 
supports three vertical posts. On one of the posts was a stack of 64 concentric, 
golden disks. The disks are of varying radii and stacked in the shape of a beautiful 
pyramid. The monks were charged with the task of moving the disks from the first 
post to the third post . When the monks complete their task, all things will crumble 
to dust and the universe will end. 

Of course, if that's all there were to the problem, the universe would have ended 
long ago. To maintain divine order, the monks must abide by certain rules. 

1 .  Only one disk may be moved at a time. 

2. A disk may not be "set aside." It may only be stacked on one of the three 
posts. 

3. A larger disk may never be placed on top of a smaller one. 
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Versions of this puzzle were quite popular at one time, and you can still find 
variations on this theme in toy and puzzle stores. Figure 6 .4  depicts a small version 
containing only eight disks. The task is to move the tower from the first post to 
the third post using the center post as sort of a temporary resting place during the 
process. Of course, you have to follow the three sacred rules given above. 

Tower of HanOi 

Figure 6 .4 :  Tower of Hanoi puzzle with eight disks 

We want to develop an algorithm for this puzzle . You can think of our algorithm 
either as a set of steps that the monks need to carry out or as a program that 
generates a set of instructions. For example, if we label the three posts A, B, and 
C ,  the instructions might start out like this : 

Move disk from A to C .  
Move disk from A to B .  
Move disk from C to B .  

This is a difficult puzzle for most people to solve. Of course, that is not surprising, 
since most people are not trained in algorithm design. The solution process is 
actually quite simple-if you know about recursion. 

Let 's start by considering some really easy cases. Suppose we have a version of 
the puzzle with only one disk. Moving a tower consisting of a single disk is simple 
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enough; we just remove it from A and put it on C. Problem solved. OK, what if 
there are two disks? Then we need to get the larger of the two disks over to post C, 
but the smaller one is sitting on top of it. The solution is to move the smaller disk 
out of the way, and we can do this by moving it to post B. Now the large disk on 
A is clear; we can move it to C and then move the smaller disk from post B onto 
post C .  

Now let 's think about a tower of  size three. In order to move the largest disk to 
post C, we first have to move the two smaller disks out of the way. The two smaller 
disks form a tower of size two. Using the process outlined above, we could move 
this tower of two onto post B,  and that would free up the largest disk so that it can 
move to post C. Then we just have to move the tower of two disks from post B onto 
post C. Solving the three disk case boils down to three steps: 

1 .  Move a tower of two from A to B .  

2 .  Move one disk from A to  C .  

3. Move a tower of  two from B to  C .  

The first and third steps involve moving a tower of size two. Fortunately, we have 
already figured out how to do this. It 's just like solving the puzzle with two disks, 
except that we move the tower from A to B using C as the temporary resting place, 
and then from B to C using A as the temporary place. 

We have just developed the outline of a simple recursive algorithm for the general 
process of moving a tower of any size from one post to another. 

Algorithm : move n-disk tower from source to dest ination via resting place 

move n-1 disk tower from source to resting place 
move 1 disk tower from source to destination 
move n-1  disk tower from resting place to destination 

What is the base case for this recursive process? Notice how a move of n disks 
results in two recursive moves of n - 1 disks. Since we are reducing n by one each 
time, the size of the tower will eventually be 1 .  A tower of size 1 can be moved 
directly by just moving a single disk; we don't need any recursive calls to remove 
disks above it . 

Fixing up our general algorithm to include the base case gives us a working 
moveTower algorithm. Let's code it in Python. Our moveTower function will need 
parameters to represent the size of the tower, n; the source post , source ; the 
destination post , dest ; and the temporary resting post, temp. We can use an int 
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for n and the strings " A " ,  li B II , and " e "  to represent the posts. Here is the code for 
moveTower: 

# hanoi . py 
def moveTower (n , source , dest , temp) : 

if n == 1 :  
print "Move disk from" , source , "to" , dest+ " . "  

else : 
moveTower (n-1 , source , temp , dest) 
moveTower ( 1 ,  source , dest , temp)  
moveTower (n-1 , temp , dest , source) 

See how easy that was? Sometimes using recursion can make otherwise difficult 
problems almost trivial. 

To get things started, we just need to supply values for our four parameters. 
Let's write a little function that prints out instructions for moving a tower of size n 
from post A to post C .  

# hanoi . py 
def hanoi (n) : 

moveTower (n,  "A" , "C " , " B " )  

Now we're ready to  try i t  out. Here are solutions to  the three- and four-disk 
puzzles . You might want to trace through these solutions to convince yourself that 
they work. 

» >  hanoi (3) 
Move disk from A to C .  
Move disk from A to B .  
Move disk from C to B .  
Move disk from A to C .  
Move disk from B to A .  
Move disk from B to C .  
Move disk from A to C .  

» >  hanoi (4) 
Move disk from A to B .  
Move disk from A to C .  
Move disk from B to C .  
Move disk from A to B .  
Move disk from C to A .  
Move disk from C to B .  
Move disk from A to B .  
Move disk from A to C .  
Move disk from B to C .  
Move disk from B to A .  



Move disk from C to A .  
Move disk from B t o  C .  
Move disk from A t o  B .  
Move disk from A to C .  
Move disk from B to C .  
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So, our solution to the Tower of Hanoi is a "trivial" algorithm requiring only nine 
lines of code. What is this problem doing in a section labeled "A Hard Problem"? 
To answer that question, we have to look at the efficiency of our solution. In this 
case, the difficulty of the problem is determined by the nurnber of disks in the tower. 
The question we want to answer is how many steps does it take to move a tower of 
size n? 

Just looking at the structure of our algorithm, you can see that moving a tower 
of size n requires us to move a tower of size n - 1 twice, once to move it off the 
largest disk, and again to put it back on top. If we add another disk to the tower, 
we essentially double the number of steps required to solve it . The relationship 
becomes clear if you simply try out the program on increasing puzzle sizes. 

N umber of Disks 
1 
2 
3 
4 
5 

Steps in Solution 
1 
3 
7 
15  
31 

In general, solving a puzzle of  size n will require 2n - 1 steps. 
This is clearly a 8(2n) algorithm, meaning that it requires exponential time, 

since the measure of the size of the problem, n, appears in the exponent of this 
formula. Exponential algorithms blow up very quickly and can be practically solved 
only for relatively small sizes, even on the fastest computers. Just to illustrate the 
point , if our monks really started with a tower of just 64 disks and moved one 
disk every second, 24 hours a day, every day, without making a mistake, it would 
still take them over 580 billion years to complete their task. Considering that the 
universe is roughly 15  billion years old now, we don't need to worry about turning 
to dust just yet. 

Even though the algorithm for Towers of Hanoi is easy to express, it belongs to 
a class known as intractable problems. These are problems that require too much 
computing power (either time or memory) to be solved in practice, except for the 
simplest cases. And in this sense, our toy-store puzzle does indeed represent a hard 
problem. 
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1 6 . 7 1 Cha pter S u m mary 

This chapter has introduced you to some important concepts in algorithm design. 
Here are the key ideas: 

• Binary search is an example of a divide-and-conquer approach to algorithm 
development . Divide and conquer often yields efficient solutions. 

• A definition or function is recursive if it refers to itself. To be well founded, a 
recursive definition must meet two properties: 

1 .  There must be one or more base cases that require no recursion. 

2. All chains of recursion must eventually reach a base case. 

A simple way to guarantee these conditions is for recursive calls to always 
be made on smaller versions of the problem. The base cases are then simple 
versions that can be solved directly. 

• Sequences can be considered recursive structures containing a first item fol­
lowed by a sequence. Recursive functions can be written following this ap­
proach. 

• Mergesort is a recursive divide-and-conquer algorithm that can sort a collection 
in n log n time. 

• Recursion is more general than iteration. Choosing between recursion and 
looping involves the considerations of efficiency and elegance. 

• Problems that are solvable in theory but not in practice are called "intractable." 
The solution to the famous Tower of Hanoi can be expressed as a simple 
recursive algorithm, but the algorithm is intractable. 

1 6 . 8 1 Exerc ises 

True/Fa lse Questions 

1 . Any definition that refers to itself is circular, and therefore not useful . 

2 .  Recursion is a more general form of iteration than looping. 

3. All proper recursive functions must have exactly one base case. 
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4. An infinite recursion in Python will "hang" the computer. 

5. A sequence can be viewed as a recursive data collection. 

6. A string of length n has n! anagrams. 

7. Mergesort is an example of a 8(n2) algorithm. 

8. A looping implementation of an algorithm is generally a bit faster than a 
recursive version. 

9. Recursive algorithms tend to be slow in practice. 

10 .  The Tower of Hanoi is an example of an intractable problem. 

M u lt i ple Choice Questions 

1. The non-recursive part of a recursive function is called a(n) 
a) bottom case. 
b) terminating case. 
c) end case. 
d) base case. 

2. An algorithm design technique involving breaking a problem into smaller 
versions of the original is called 

a) top-down design. 
b) test-driven development. 
c) divide and conquor. 
d) search and destroy. 

3 .  Which of the following is a correct coding of the recursive expression for 
reversing a string? 

a) reverse (s [ 1 : J ) + s [OJ 
b) s [0] + reverse (s [1 : ]  ) 
c) s [- 1J  + reverse ( s  [ :  -1J ) 
d) both a and c 

4. How many anagrams are there for a four-letter word? 

a) 4 b) 8 c) 16 d) 24 
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5. The 100pPower function shown in the chapter has what time analysis? 

a) 8 (log n) b) 8 (n log n) c) 8 (n) 
6. The recPower function shown in the chapter has what time analysis? 

a) 8 (log n) b) 8 (n log n) c) 8 (n) 
7. The mergesort algorithm has what time analysis? 

a) 8 (log n) b) 8 (n log n) c) 8 (n) 
8. The Tower of Hanoi algorithm has what time analysis? 

a) 8 (log n) b) 8 (n log n) c) 8 (n) 
9. An infinite recursion will result in 

a) a program that "hangs." 
b) a broken computer. 
c) a reboot .  
d) a run-time exception. 

10. The recursive Fibonacci function is inefficient because 

a) recursion is inherently inefficient compared to iteration. 
b) calculating Fibonacci numbers is an intractable problem. 
c) it performs many repeated calculations. 
d) all of the above 

Short-Answer Quest ions 

1 .  Must a proper recursive function always have some sort of decision structure 
in it? Explain your answer. 

2. In your own words, explain the two rules that a proper recursive definition 
must obey. 

3. What list is returned by anagramC "foo " ) ?  

4 .  '!face recPower C 3 , 6) and figure out exactly how many multiplications it does. 

5. Write pre and post conditions for 100pPower and recPower. 
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Programm ing Exercises 

1 .  Modify the recursive Fibonacci program given in the chapter so that it prints 
tracing information. Specifically, have the function print a message when it is 
called and when it returns. For example, the output should contain lines like 
these: 

Computing fib (4) 

Leaving fib (4) returning 3 

Use your modified version of fib to compute fib ( 10)  and count how many 
times fib (3) is computed in the process. 

2. This exercise is another variation on "instrumenting" the recursive Fibonacci 
program to better understand its behavior. Write a program that counts how 
many times the fib function is called to compute fib (n) where n is a user 
input . 

Hint: to solve this problem, you need an accumulator variable whose value 
"persists" between calls to fib. You can do this by making the count an 
instance variable of an object . Create a FibCounter class with the following 
methods: 

_ _  ini t _ _  ( self ) Creates a new FibCounter setting its count instance vari­
able to O. 

getCount ( self ) Returns the value of the count. 

fib (self , n) Recursive function to compute the nth Fibonacci number. It 
increments the count each time it is called. 

resetCount (self ) Set the count back to O. 

3. Write a recursive function that implements the same algorithm as the looping 
version of the nth Fibnonacci function. Hint : in changing the for loop into a 
recursion, you will need to pass all of the variables whose values change during 
the loop as parameters to the recursive function. 

4. The previous problem shows that a recursive function can compute the nth 
Fibonacci number as efficiently as a looping version. But with a little ingenuity, 
we can do better. Another way to find the nth Fibonacci number is through 
matrix operations. In order to compute the Fibonacci sequence, we have to 
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keep track of the last two values computed (curr and prey) . The next "state" 
of these two values can be computed through a simple matrix multiplication: 

[ 1 1 ] [ curr ] 
= 
[ curr + prey ] 

1 0 prey curr 

We can compose an entire sequence of iterations by taking advantage of matrix 
exponentiation. It is then possible to replace the loop in the Fibonacci program 
with this computation: [ ] n-2 [ ] [ ] 1 1 1 f ib (n) 

1 0 1 - fib(n - 1)  

Create an appropriate matrix data type using operator overloading so that 
matrices can be multiplied just like numbers. Then use the fast exponentiation 
algorithm presented in this chapter in a program that computes the nth 
Fibonacci number. Once you have it working, do a time analysis of your 
program. 

5. Write a recursive function that detects whether a string is a palindrome. The 
basic idea is to check that the first and last letters of the string are the same 
letter ; if they are, then the entire string is a palindrome if everything between 
those letters is a palindrome. There are a couple of special cases to check for. 
If either the first or last character of the string is not a letter, you can check 
to see if the rest of the string is a palindrome with that character removed. 
Also, when you compare letters, make sure that you do it in a case-insensitive 
way. 

Use your function in a program that prompts a user for a phrase and then 
tells whether or not it is a palindrome. Here's a classic for palindrome testing: 
"A man, a plan, a canal, Panama! "  

6. Write and test a recursive function max to  find the largest number in  a list . 
The maximum is the larger of the first item and the maximum of all the other 
items. 

7. Computer scientists and mathematicians often use numbering systems other 
than base 10.  Write a program that allows a user to enter a number and a 
base and then prints out the digits of the number in the new base. Use a 
recursive function printDigi t s  (num , base)  to print the digits. 
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Hint : consider base 10. To get the right-most digit of a base 10 number, simply 
look at the remainder after dividing by 10. For example, 153%10 is 3. To get 
the remaining digits, you repeat the process on 15 ,  which is just 153/10. This 
same process works for any base. The only problem is that we get the digits 
in reverse order (from right to left) . 

Write a recursive function that first prints the digits of num/base  and then 
prints the last digit , namely num%base .  You should put a space between 
successive digits, since bases greater than 10 will print out with multi-character 
digits. For example, printDigi ts (245 , 16)  should print 15 5 .  

8 .  Write a recursive function to  print out the digits of  a number in  English. For 
example, if the number is 153, the output should be "One Five Three." See 
the hint from the previous problem for help on how this might be done. 

9. In mathematics, Ok denotes the number of different ways that k things can be 
selected from among n different choices. For example, if you are choosing 
among six desserts and are allowed to take two, the number of different 
combinations you could choose is O� . Here's one formula to compute this 
value: 

on n! k = 

k ! (n - k) ! 

This value also gives rise to an interesting recursion: 

on - on-l  + on-l  k - k-l  k 

Write both an iterative and a recursive function to compute combinations and 
compare the efficiency of your two solutions. Hint : when k = 1 ,  Ok = n, and 
when n < k ,  Ok = o. 

10. Some interesting geometric curves can be described recursively. One famous 
example is the Koch curve. It is a curve that can be infinitely long in a finite 
amount of space. It can also be used to generate pretty pictures. 

The Koch curve is described in terms of " levels" or "degrees." The Koch curve 
of degree 0 is just a straight line segment. A first degree curve is formed by 
placing a "bump" in the middle of the line segment (see Figure 6 . 5) . The 
original segment has been divided into four, each of which is one third of the 
length of the original. The bump rises at 60 degrees, so it forms two sides of an 
equilateral triangle. To get a second degree curve, you put a bump in each of 
the line segments of the first degree curve. Successive curves are constructed 
by placing bumps on each segment of the previous curve. 



218 Chapter 6 Recursion 

Degree 0 

Degree 1 

Degree 2 

Figure 6 . 5 :  Koch curves of degrees 0 to 2 

You can draw interesting pictures by "Kochizing" the sides of a polygon. 
Figure 6 .6  shows the result of applying a fourth degree curve to the sides 
of an equilateral triangle. This is often called a "Koch snowflake." You are to 
write a program to draw a snowflake. 

Hint: Think of drawing a Koch curve as if you were giving instructions to a 
turtle. The turtle always knows where it currently sits and what direction it 
is facing. To draw a Koch curve of a given length and degree, you might use 
an algorithm like this: 

Algorithm Koch (Turtle , length , degree) :  
if degree == 0 :  

Tell the turtle to draw length steps in the current direction 
else : 

length1 = length/3 
degree 1  = degree-1 
Koch (Turtle , length1 , degree1 )  
Tell the turtle t o  turn left 6 0  degrees 
Koch (Turtle , length1 , degree 1 )  
Tell the turtle t o  turn right 120 degrees 
Koch (Turtle , length1 , degree 1 )  
Tell the turtle t o  turn left 6 0  degrees 
Koch (Turtle , length1 , degree1 )  
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Figure 6 .6 :  Koch snowflake 

Implement this algorithm using a suitable graphics package. You can use 
the Turtle module from the Python standard library or implement your own 
turtle in another graphics package. Write a program that allows a user to 
enter the degree of snowflake desired and then proceeds to draw it. 

1 1 .  Another interesting recursive curve (see the previous problem) is the C-curve. 
It is formed similarly to the Koch curve except whereas the Koch curve breaks 
a segment into four pieces of length/3, the C-curve replaces each segment with 
just two segments of length/ y'2 that form a gO-degree elbow. Figure 6 . 7  shows 
a degree- 12 C-curve. 

Using an approach similar to the previous exercise, write a program that draws 
a C-curve. Hint: your turtle will do the following: 

turn left 45 degrees 
draw a c-curve of size length/sqrt (2)  
turn right 90 degrees 
draw a c-curve of size length/sqrt (2)  
turn left 45 degrees 

12. Write a program that solves word jumble problems. You will need a large 
file of English words. If you have a Unix or Linux system available, you can 
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Figure 6 . 7 : C-curve of degree 12 

probably find a spelling dictionary in a system directory (e.g. , /usr/diet or 
/usr/share/diet) . Otherwise, a quick search on the Internet should turn 
up something useful. The program proceeds by having the user type in a 
scrambled word. It then generates all anagrams of the word and then checks 
which (if any) are in the dictionary. The anagrams appearing in the dictionary 
are printed as solutions to the puzzle . 

13 .  Write a maze solving program. The problem of finding a path through a 
maze can be cast as a recursive searching process. Suppose locations in a two­
dimensional maze are specified using (x, y) coordinates. Here is an algorithm 
to find and mark a path from an arbitrary starting point to an exit . It returns 
True if it is able to mark a path to an exit and False if not . 

algorithm pathToExit « x , y) ) : 

if (x , y) is  an exit : 
return True 



6 .8  Exercises 

if (x , y) is not an open unvisited cell : 
return False 

Mark (x , y) as visited 

# Try 4 possible directions from (x , y) 
if pathToExit ( (x+1 , y) ) : 

return True 
if pathToExit ( (x , y+1 ) ) :  

return True 
if pathToExit ( (x-1 , y) ) : 

return True 

if pathToExit ( (x , y- 1 ) ) :  
return True 

# Cannot reach an exit from this cell 
unMark (x , y) # it ' s  not on a path to the exit 
return False 

221 

You will have to design a suitable representation for mazes. One simple 
approach is just to use ASCII text to represent a rectangular maze. For 
example, you might use * to indicate a wall and . to indicate an open cell. 
The letters S and E could be used for the start and exit. Here's a simple 
example: 

S ** . . . . .  . 
· . *  . . .  *** . 
* . *** . * . *  . 
. . . . . . .  . * . 
. ******** . 
. ***  . . . .  * .  
· **  . .  ** . .  . 
· ** . . .  ****  
· . ** . ** . .  . 
* . .  * . . . .  *E 

Even if you want to build a nice graphical maze program, a simple text-based 
representation like this is very handy for specifying mazes, since they can be 
created with a basic text editor. 
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Object ives 

• To learn the terminology of tree data structures. 

• To learn about different applications where a tree data structure is appropriate. 

• To be able to implement tree structures using link-based and array-based 
techniques and be familiar with basic, tree-based algorithms. 

• To understand the binary search tree structure and the efficiency of its various 
operations. 

• To get more practice and develop greater comfort with recursive algorithms. 

[II] Overview 

So far we have dealt mostly with linear data structures, such as lists, stacks, and 
queues, that represent items in a sequence. In this chapter, we are going to "branch 
out" a bit and consider a non-linear data structure known as a tree. Trees represent 
data in a hierarchical fashion, which makes them very handy for modeling real-world 
hierarchies. You are certainly familiar with the idea of a family tree for representing 
kinship information; other examples include things like taxonomies and corporate 
reporting structures. 

For example, we can use a tree to represent animals in the taxonomic groups 
that biologists use. Animals can be subdivided into vertebrates and invertebrates; 
vertebrates can be subdivided into reptiles, fish, mammals, and so on. The tree for 
this would look something like Figure 7. 1 .  Hierarchical relationships turn up every­
where, and trees arise as a natural representation for the data in many applications. 

223 
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Figure 7 . 1 :  Portion of biologists' taxonomic groups 

Perhaps surprisingly, it also turns out that trees are very useful in implementing 
plain old sequential data. In this chapter, we'll see that certain kinds of trees called 
binary search trees can be used to provide collections that allow for efficient insertion 
and deletion (similar to linked lists) but also allow for efficient search (similar to an 
ordered array) . Tree-based data structures and algorithms are essential for handling 
large collections of data such as databases and file systems efficiently. 

1 7 . 2 1 Tree Term i no logy 

Computer scientists represent trees as a collection of nodes (similar to the nodes 
in a linked list) that are connected with edges. Figure 7 .2  shows a tree with seven 
nodes, each containing an integer. The node at the very top of the diagram is called 
the root. In this tree the root contains the data value 2. A tree has exactly one 
root ; notice that you can follow edges (the arrows) from the root to get to any other 
node in the tree. 

Each node in a tree can have children connected to it via an edge. In a general 
tree, a node can have any number of children, but we'll only concern ourselves here 
with binary trees. In a binary tree, each node has at most two children. As you can 
see, the tree depicted in Figure 7 .2  is a binary tree. Relationships inside the tree 
are described using a mixture of family and tree-like terminology. The root node 
has two children: the node containing 7 is its left child, and the one containing 6 is 
its right child. These two nodes are also said to be siblings. The nodes containing 8 
and 4 are also siblings. The parent of node 5 is node 7. Node 3 is a descendant of 
node 7 and node 7 is an ancestor of node 3 .  A node that does not have any children 
is a leaf node. The depth of a node indicates how many edges are between it and 
the root node. The root node has a depth of zero. Nodes 7 and 6 have a depth of 



7 .2  Tree Term i nology 225 

one and node 3 has a depth of three. The height or depth of a tree is the maximum 
depth of any node. 

Figure 7 .2 :  Sample binary tree 

In a full binary tree each depth level has a node at every possible position. At 
the bottom level , all the nodes are leaves (i .e . ,  all the leaves are at the same depth 
and every non-leaf node has two children) . A complete binary tree has a node at 
every possible position except at the deepest level, and at that level, positions are 
filled from left to right. A complete binary tree can be created by starting with a 
full binary tree and adding nodes at the next level from left to right or by removing 
nodes at the previous level from right to left . See Figure 7 .3  for examples of both. 

Each node of a tree along with its descendants can be considered a subtree. For 
example, in Figure 7 . 2  the nodes 7, 5 ,  and 3 can be considered a subtree of the entire 
tree, where node 7 is the root of the subtree. Seen in this way, a tree is naturally 
viewed as a recursive structure. A binary tree is either an empty tree or it consists 
of a root node and (possibly empty) left and right subtrees. 

Just as with lists, one very useful operation on trees is traversal. Given a tree, we 
need a way to "walk" through the tree visiting every node in a systematic fashion. 
Unlike the situation with lists, there is no single, obvious way of traversing the tree. 
Notice that each node in the tree consists of three parts: data, left subtree, and 
right subtree. We have three different choices of traversal order depending on when 
we decide to deal with the data. If we process the data at the root and then do the 
left and right subtrees, we are performing a so-called preorder traversal because the 
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complete binary tree fu l l  binary tree 

Figure 7 .3 :  A complete binary tree on the left and a full binary tree on the right 

data at the root is considered first . A pre-order traversal is easily expressed as a 
recursive algorithm: 

def traverse (tree) : 
if tree is not empty : 

process data at tree ' s  root # pre order traversal 
traverse (tree ' s  left subtree) 
traverse (tree ' s  right subtree) 

Applying this algorithm to our tree from Figure 7 . 2  processes the nodes in the order 
2, 7, 5, 3, 6 ,  8, 4. 

Of course we can easily modify the traversal algorithm by moving where we 
actually process the data. An inorder traversal considers the root data between 
processing the subtrees. An in-order traversal of our sample tree yields the sequence 
of nodes 7, 3, 5, 2, 8, 6, 4. As you have probably guessed by now, a postorder 
traversal processes the root after the two subtrees, which gives us the ordering: 3, 
5,  7, 8 ,  4, 6, 2. 

1 7 . 3 1 An Exa m p le  App l i cat ion : Express ion Trees 

One important application of trees in computer science is representing the internal 
structure of programs. When an interpreter or compiler analyzes a program, it 
constructs a parse tree that captures the structure of the program. For example, 
consider a simple expression: (2 + 3) * 4 + 5 * 6. The form of this expression can be 
represented by the tree in Figure 7 .4 .  Notice how the hierarchical structure of the 
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tree eliminates the need for the parentheses. The basic operands of the expression 
end up as leaves of the tree, and the operators become internal nodes of the tree. 
Lower level operations in the tree have to be performed before their results are 
available for higher level expressions. It is clear that the addition of 2 + 3 must be 
the first operation because it appears at the lowest level of the tree. 

Figure 7 .4 :  'free representation of a mathematical expression 

Given the tree structure for an expression, we can do a number of interesting 
things. A compiler would traverse this structure to produce a sequence of machine 
instructions that carry out the computation. An interpreter might use this structure 
to evaluate the expression. Each node is evaluated by taking the values of the two 
children and applying the operation. If one or both of the children is itself an 
operator, it will have to be evaluated first . A simple postorder traversal of the tree 
suffices to evaluate the expression.  

def evaluateTree (tree) : 
if tree ' s  root is an operand : 

return root data 
else : # root contains an operator 

leftValue = evaluateTree (tree ' s  left subtree) 
rightValue = evaluateTree (tree ' s  right subtree) 
result = apply operator at root to leftValue and rightValue 
return result 

If you think about it carefully, you'll see that this is basically a recursive al­
gorithm for evaluating the postfix version of an expression. Simply walking the 
expression tree in a postorder fashion yields the expression 2 3 + 4 * 5 6 * +, 
which is just the postfix form of our original expression.  In Chapter 5, we used a 
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stack algorithm to evaluate postfix expressions. Here, we are implicitly using the 
computer's run-time stack via recursion to accomplish the same task. By the way, 
you can get the prefix and infix versions of the expression by doing the appropriate 
traversal. Isn't it fascinating how this all weaves together? 

1 7 .4 1 Tree Representat ions 

Now that you've gotten a taste of  what trees can do, it's tirne to consider some 
possible concrete representations for our trees. One straightforward and obvious 
way to build trees is to use a linked representation. Just as we did for linked lists, 
we can create a class to represent the nodes of our trees. Each node will have an 
instance variable to hold a reference to the data of the node and also variables for 
references to the left and right children. We'll use the None object for representing 
empty subtrees. Here's a Python class: 

# TreeNode . py 
class TreeNode (obj ect) : 

def __ init __ (self , data = None , left=None , right=None) : 

" ll Il creates a tree node with specified data and references to left 
and right children" " "  

self . item = data 
self . left = left 
self . right = right 

U sing our TreeN ode we can easily create linked structures that directly mirror 
the binary tree diagrams that you've seen so far. For example, here's some code 
that builds a simple tree with three nodes: 

left = TreeNode ( 1 )  
right = TreeNode (3) 
root = TreeNode (2 , left , right) 

We could do the same thing with a single line of code by simply composing the calls 
to the TreeNode constructor. 

I root = TreeNode (2 , TreeNode ( 1 ) , TreeNode (3» 

We can follow this approach even farther to create arbitrarily complex tree structures 
from our nodes. Here's some code that creates a structure similar to that of 
Figure 7 . 2 .  
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root = TreeNode (2 , 
TreeNode (7 , 

None , 
TreeNode (5 , 

TreeNode (3) , 
None 

TreeNode (6 , 
TreeNode (8) , 
TreeNode (4) 
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We have used indentation to help make the layout of the expression match the 
structure of the tree. Notice, for example, that the root (2) has two subtrees indented 
under it (7 and 6) . If you don't see it as a tree, try turning your head sideways. 

Of course, we will not generally want to directly manipulate TreeNodes to build 
complicated structures like this . Instead, we will create a higher level container 
class that encapsulates the details of tree building and provides a convenient API 
for manipulating the tree. The exact design of the container class will depend on 
what we are trying to accomplish with the tree. We'll see an example of this in the 
next section. 

We should mention that the linked representation, while obvious, is not the only 
possible implementation of a binary tree. In some cases, it is convenient to use 
an array jlist-based approach. Instead of storing explicit links to children, we can 
maintain the relationships implicitly through positions in the array. 

In the array approach, we assume that we always have a complete tree and 
pack the nodes into the array level by level. So, the first cell in the array stores 
the root, the next two positions store the root 's children, the next four store the 
grandchildren, and so on. Following this approach, the node at position i always 
has its left child located at position 2*i +1  and its right child at position 2*i +2. The 
parent of node i is in position ( i-i )  112.  Notice that it 's crucial for these formulas 
that every node always has two children. You will need some special marker value 
(e.g. , None) to indicate empty nodes. The array representation for the sample binary 
tree in Figure 7 .2  is: [2 , 7 ,  6 ,  None , 5 ,  8 ,  4 ,  None , None , 3] . If you want 
to simplify the calculations a bit , you can leave the first position in the array (index 
0) empty and put the root at index 1 .  With this implementation, the left child is in 
position 2*i and the right child is in position 2*i +1 ,  while the parent is found in 
position i112. 
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The array-based tree implementation has the advantage that it does not use 
memory to store explicit child links. However, it does require us to waste cells for 
empty nodes. If the tree is sparsely filled, there will be a large number of None 
entries and the array llist implementation does not make efficient use of memory. In 
these cases, the linked implementation is more appropriate. 

1 7 . 5 1 An App l i cat ion : A B i n a ry Search Tree 

In this section, we're going to exercise our tree implementation techniques by build­
ing another container class for ordered sequences. Back in section 4 . 7  we discussed 
the trade-offs between linked and array-based implementations of sequences. While 
linked lists offer efficient insertions and deletions (since items don't have to be shifted 
around) , they don't allow for efficient searching. A sorted array allows for efficient 
searching (via the binary search algorithm) but requires 8(n) time for insertions 
and deletions. Using a special kind of tree , a binary search tree, we can combine 
the best of both worlds. 

/ 7 . 5 . 1 / The B inary Search Property 

A binary search tree is just a binary tree with an extra property that holds for every 
node in the tree: the values in the left subtree are less than the value at the node 
and the values in the right subtree are greater than the value at the node . Figure 7 .5  
shows a sample binary search tree. 

It is usually very efficient to search for an item in a binary search tree. We 
start at the root of the tree and examine the data value of that node. If the root 
value is the one we are searching for, then we're done. If the value we are searching 
for is less than the value at the root , we know that if the value is in the tree, it 
must be in the left subtree . Similarly, if the value we are searching for is larger 
than the value at the root, it is in the right subtree. We can continue the search 
process to the appropriate subtree and apply the same rules until we find the item 
or reach a node that has an empty subtree where the value would be located. If the 
tree is reasonably well "balanced, "  then at each node we are essentially cutting the 
number of items that we have to compare against in half. That is , we are performing 
a binary search, which is why this is called a binary search tree. 

1 7 . 5 . 2 1 I mp lementing A B inary Search Tree 

Following good design principles, we will write a BST class that encapsulates all the 
details of the binary search tree and provides an easy-to-use interface. Our tree 
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Figure 7 .5 :  Sample binary search tree 

will maintain a set of items and allow us to add, remove, and search for specific 
values. We're going to use a linked representation for practice with references, but 
you could easily convert this to the array-based implementation discussed above. A 
BST object will contain a reference to a TreeNode that is the root node of a binary 
search tree. Initially, the tree will be empty, so the reference will be to None . Here's 
our class constructor. 

# BST . py 
from TreeNode import TreeNode 

class BST (obj ect) : 

def __ init __ ( self ) : 

" " " create empty binary search tree 
post : empty tree created" " "  

self . root = None 

Now let 's tackle adding items to our binary search tree. It 's pretty easy to grow 
a tree one leaf at a time. A key point to realize is that given an existing binary 
search tree, there is only one location where a newly inserted item can go. Let 's 
consider an example. Suppose we want to insert 5 into the binary search tree shown 
in Figure 7 .6 .  Starting at the root node 6, we see that 5 must go in the left subtree. 
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The root of that tree has the value 2 so we proceed to its right subtree. The root of 
that subtree has the value 4 so we would proceed to its right subtree, but the right 
subtree is empty. The 5 is then inserted as a new leaf at that point . 

Figure 7 .6 :  Example for inserting into a binary search tree 

We can implement this basic insertion algorithm using either an iterative or a 
recursive approach. Either way, we start at the top of the tree and work our way 
down going left or right as needed until we find the spot where the new item will go. 
As is typical with algorithms on linked structures, we need to take some care with 
the special case when the structure is empty, since that requires us to change the 
root instance variable. Here's a version of the algorithm that uses a loop to march 
down the tree. 

def insert Cself , item) : 

" " " insert item into binary search tree 
pre : item is not in self 
post : item has been added to self " " "  

if self . root is None : # handle empty tree case 
self . root = TreeNode Citem) 
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else : 
# start at root 
node = self . root 
# loop to find the correct spot (break to exit) 
while True : 

if item == node . item : 
raise ValueError ( " Inserting duplicate item" ) 

if item < node . item : # item goes in left subtree 
if node . left is not None : # follow existing subtree 

node = node . left 
else : 

node . left 
break 

# empty subtree , insert here 
TreeNode (item) 

else : # item goes in right subtree 
if node . right is not None : # follow existing subtree 

node = node . right 
else : # empty subtree , insert here 

node . right = TreeNode (item) 
break 
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This code looks rather complicated with its nested decision structures, but you 
should not have too much trouble following it . Notice the precondition that the 
item is not already in the tree. A plain binary search tree does not allow multiple 
copies of a value, so we check for this condition and raise an exception if an equivalent 
item is already in the tree. This design could easily be extended to allow multiple 
values by keeping a count in each node of the number of times that value has been 
added. 

With the algorithm fresh in your mind, let 's also consider how we might tackle 
this problem recursively. We said above that trees are a naturally recursive data 
structure, but our BST class is not really recursively structured. It is the interlinked 
structure of tree nodes themselves that is recursive. We can think of any node in 
the tree as being the root of a subtree that itself contains two smaller subtrees. A 
value of None , of course, indicates a subtree that is empty. With this insight, it's 
very easy to cast our insertion algorithm as a recursive method that operates on 
subtrees. We'll write this as a recursive helper method that is called to perform the 
insertion. Using this design, the insert method itself is trivial. 

def insert_rec (self , item) : 

II II II insert item into binary search tree 
pre : item is not in self 
post : item has been added to self II I I  I I  

self . root = self . _subtreelnsert (self . root , item) 
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It 's important to clearly understand what _subtreelnsert is up to. Notice that 
it takes a node as the root of a subtree into which item must be inserted. Initially, 
this is the entire tree structure (self . root) . The _subtreelnsert both performs 
the insertion and returns the node that is the root of the resulting (sub )tree. This 
approach makes sure that our insert will work even for an initially empty tree. 
For that case, self . root will start out as None (indicating an empty tree) and 
_subtreelnsert will return a proper TreeNode containing item that becomes the 
new root of the tree. 

Now let 's write the recursive helper function _subtreelnsert . The parameter 
to the function gives us the root of a tree structure that the item is being inserted 
into, and it must return the root of the resulting tree. The algorithm is very simple. 
If this (sub )tree is empty, we just hand back a TreeNode for the item, and we're 
done. If the tree is not empty, we modify it by recursively adding the item to either 
the left or right subtree, as appropriate, and return the original root of the tree as 
the root of the new tree (since that didn't change) . Here's the code that gets the 
job done. 

def _subtreelnsert (self , root , item) : 

if root is None : # inserting into empty tree 
return TreeNode (item) # the item becomes the new tree root 

if item == root . item : 
raise ValueError ( " Inserting duplicate item " )  

i f  item < root . item : # modify left subtree 
root . left = self . _subtreelnsert (root . left , item) 

else : # modify right subtree 
root . right = self . _subtreelnsert (root . right , item) 

return root # original root is root of modif ied tree 

So far we can create and add items to our BST objects, now let 's work on a method 
to find items in the tree. We've already discussed the basic searching algorithm. It 
is easily implemented with a loop that walks down the tree from the root until either 
the item is found or we reach the bottom of the tree. 
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def find(self , item) : 

11 11 11 Search for item in BST 
post : Returns item from BST if found , None otherwise I I  II II 

node = self . root 
while node is not None and not (node . item == item) : 

if item < node . item : 
node = node . left 

else : 
node = node . right 

if node is None : 
return None 

else : 
return node . item 
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You might wonder why this method returns the item froIn the tree instead of just 
returning a Boolean value to indicate the item was found. For simplicity, our 
illustrations so far have used numbers, but we could store arbitrary objects in a 
binary search tree. The only requirement is that the objects be comparable. In 
general two objects might be == but not necessarily identical. Later on we'll see 
how we can exploit this property to turn our BST into a dictionary-like object . 

For completeness, we should also add a method to our BST class for removing 
items. Removing a specific item from a binary search tree is a bit tricky. There are a 
number of cases that we need to consider. Let's start with the easy one. If the node 
to be deleted is a leaf, we can simply drop it off the tree by setting the reference 
in its parent node to None . But what if the node to delete has children? If the 
victim node has only a single child, our job is still straightforward. We can simply 
set the parent reference that used to point to the victim to point to its child instead. 
Figure 7 .7  illustrates the situation where the left child of the victim is promoted to 
be the left child of the victim's parent. You might want to look at other single-child 
cases (there are three more) to convince yourself that this always works. 

That leaves us with the problem of what to do when the victim node has two 
children. We can't just promote either child to take the victim's place, because that 
would leave the other one hanging unconnected. The solution to this dilemma is to 
simply leave the node in place, as we need it to maintain the structure of the tree. 
Instead of removing the node, we can replace its contents. We just need to find 
an easily deletable node whose value can be transferred into the target node while 
maintaining the tree's binary search property. 

Consider the tree on the left side of Figure 7 .8 .  Suppose we want to delete 
the 6 from this tree. What value in the tree could take its place? We could place 
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Figure 7 . 7: Deleting 4 from the binary search tree 

either 5 or 7 in this node and the search property would be maintained. In general, 
it 's correct to replace the victim's item with either its immediate predecessor or its 
immediate successor, since those values are guaranteed to stand in the same relation 
to the rest of the nodes in the tree. Let's say we decide to use the predecessor. We 
just place this value into the victim node and delete the predecessor node from the 
tree. Doing this gives us the tree pictured on the right side of Figure 7 .8 .  

You might be  a little concerned at this point about how we are going to  delete 
the predecessor node. Couldn't this be just as hard as deleting the original victim? 
Thankfully, this is not the case. The predecessor value will always be the largest 
value in the victim's left subtree. Of course, to find the largest node in a binary 
search tree, we just march down the tree always choosing to follow links on the right . 
We stop when we run out of right links to follow. That means the predecessor node 
must have an empty right subtree, and we can always delete it by simply promoting 
its left subtree. 

We'll again implement this algorithm using recursion on subtrees. Our top-level 
method just consists of a call to the recursive helper. 

def delete Cself , item) : 

" " "remove item from binary search tree 
post : item is removed from the tree " " "  

self . root = self . _subtreeDelete Cself . root , item) 

The _subtreeDelete method implements the heart of the deletion algorithm. 
It must return the root node of the subtree from which the item is removed. 
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Figure 7 .8 :  Deleting 6 from the binary search tree 

def _subtreeDelete (self , root , item) : 
if root is None : # Empty tree , nothing to do 

return None 
if item < root . item : # modify left 

root . left = self . _subtreeDelete (root . left , item) 
elif item > root . item : # modify right 

root . right = self . _subtreeDelete (root . right , item) 
else : 

if root . left is None : 
root = root . right 

elif root . right is None : 
root = root . left 

else : 
# overwrite root with max of left subtree 

# delete root 
# promote right subtree 

# promote left subtree 

root . item ,  root . left = self . _subtreeDelMax (root . left ) 
return root 
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As you get the hang of trees as recursive structures, this code should not be too hard 
to follow. If the item to delete is in the left or right subtrees, we call _subtreeDelete 
recursively to produce the modified subtree. When the root is the node to be deleted, 
we handle the three possible cases: promoting the right subtree, promoting the left 
subtree, or replacing the item with its predecessor. That last case is actually handled 
by another recursive method _subtreeDelMax. This method finds the maximum 
value of a tree and also deletes the node containing that value. It looks like this. 
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def _subtreeDelMax (self , root) : 

if root . right is None : 
return root . item ,  root . left 

else : 

# root is the max 
# return max and promote left subtree 

# max is in right subtree ,  recursively find and delete it 
maxVal , root . right = self . _subtreeDelMax (root . right) 
return maxVal , root 

1 7 . 5 . 3 1  Traversing a BST 

At this point we have a useful abstraction of a set of items. We can add items to the 
set , find them, and delete them. All that 's really missing at this point is some easy 
way to iterate over the collection. Given the organization of the binary search tree, 
an in-order traversal is particularly nice, as it produces the items in sorted order. 
But users of our BST class should not have to know the internal details of the data 
structure in order to write their own traversal algorithms. There are a number of 
possible ways to accomplish this. 

One approach would be to simply write a traversal algorithm that assembles the 
items from the tree into some sequential form, say a list or a queue. We can easily 
write a recursive in-order traversal algorithm to produce a Python list . Here's the 
code to add an asList method to our BST class. 

def asList (self ) : 

" " "gets item in in-order traversal order 
post : returns list of items in tree in orders " " "  

items = [] 
self . _subtreeAddltems (self . root , items ) 
return items 

def _subtreeAddltems (self , root , itemList) :  

if root is not None : 
self . _subtreeAddltems (root . left , itemList) 
itemList . append(root . item) 
self . _subtreeAddltems (root . right , itemList )  

Here the helper function _subtreeAddltems does a basic in-order traversal of 
the tree where the processing of an item just requires appending it to i temList.  You 
should compare this code with the generic traversal algorithm from section 7 . 2 .  Our 
asList method just creates an initial list and calls _subtreeAddltems to populate 
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the list . With the addition of this method, we can easily convert a BST into a sorted 
list . Of course that also means we could loop over all the items in the collection. 
For example, we could print out the contents of our BST in order like this: 

i for item in myBST . asList ( ) , 
print item 

The only real problem with this approach is that it produces a list that is just 
as large as the original collection. If the collection is huge and we are just looking 
for a way to loop over all of the items, producing another collection of the same size 
is not necessarily a good idea. 

Another idea is to use a design pattern sometimes called the visitor pattern. The 
idea of this pattern is that the container provides a method that traverses the data 
structure and performs some client-requested function on each node. In Python, 
we can implement this pattern via a method that takes an arbitrary function as 
a parameter and applies that function to every node in the tree. We again use a 
recursive helper method to actually perform the traversal. 

def visit (self , f ) : 

II II II perform an in-order traversal of the tree 
post : calls f with each TreeNode item in an in-order traversal 
order II II I I  

self . _inorderVisit (self . root , f )  

def _inorderVisit (self , root , f ) : 
if root is not None : 

self . _inorderVisit (root . left , f )  
f (root . item) 
self . _inorderVisit (root . right , f )  

Notice that throughout this code, f represents some arbitrary function that the 
client wants applied to each item in the BST. The function is applied via the line 
f (root . item) . Again, this is just a variation on our generic recursive-traversal 
algorithm. 

In order to use the visit method, we just need to construct a suitable function 
to apply to each item. For example, if we want to print out the contents of the BST 
in order again, we can now do it by visiting. 
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def prnt (item) : 
print item 

myBST . visit (prnt) 

The main thing to note here is that in the call to visit there are no parentheses on 
prnt . We put the parentheses on when we call a function.  Here we are not actually 
calling the function, but rather passing the function object itself along to the visit 
method that will actually do the calling. 

The visitor pattern provides a nice way for clients to perform a traversal of 
a container without looking through the abstraction barrier. But it is sometimes 
cumbersome to code an appropriate function to do the processing, and the resulting 
code is not very Pythonic. As with our other containers, the ideal solution in Python 
is to define an iterator for our BST using the Python generator mechanism. The basic 
idea is that we will just code a generic in-order traversal that yields the items in 
the tree one at a time. By now, you should have a pretty good idea what the code 
will look like. 

def __ iter __ ( self ) : 

" " " in-order iterator for binary search tree " " "  

return self . _inorderGen (self . root) 

def _inorderGen(self , root ) : 

if root is not None : 
# yield all the items in the left subtree 
for item in self . _inorderGen(root . left ) : 

yield item 
yield root . item 
# yield all the items from the right subtree 
for item in self . _inorderGen(root . right ) : 

yield item 

The only new wrinkle in this code is the form of the recursive generator function. 
Remember, when you call a generator you do not get an item, rather you get an 
iterator object that provides items on demand. In order to actually produce the 
items from the left subtree, for example, we have to loop through the iterator 
provided by self . _inorderGen Croot . left ) and yield each item. 

Now we have a very convenient way of iterating through our BST container. Our 
code for printing the items in sorted order couldn't be simpler: 
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I for item in myBST : 

. 
print item 

By the way, now that we have an iterator for the BST class, we really don't need 
a separate asList method. Python can produce a list of the items from a BST using 
the iterator via list (myBST) .  Being able to create a list of the items in a BST is 
particularly handy in writing unit tests for the BST class, as it provides an easy way 
to check the contents of a tree in assertions. Of course, getting a sorted list out of 
the BST does not guarantee that the tree has the correct form. For that , it might 
be helpful to have another traversal method (either pre- or postorder) as well. It 's 
possible to deduce the true structure of a binary tree by examining two different 
traversals , so if both traversals come out right, you know the tree is structured the 
way you expect it to be. 

1 7 . 5 .4 1 A Run-time Ana lysis of BST Algorithms 

In the introduction to this section, we suggested that a binary search tree can 
maintain an ordered collection quite efficiently. We've shown how a binary search 
tree gives us an ordered collection, but we haven't yet examined the run-time 
efficiency of the operations in any detail. Since many of the tree algorithms are 
written recursively, the analysis might seem daunting, but it 's actually pretty easy 
if we just consider what 's going on in the underlying structure. 

Let 's start by considering the operations that traverse the tree. Since the work 
we have to do at each node is constant, the time to do a traversal is just proportional 
to the number of nodes in the tree, which is just the number of items in the collection. 
That makes those operations 8(n) where n is the size of the collection.  

For the algorithms that examine only part of the tree (e.g. , searching, inserting, 
and deleting) our analysis depends on the shape of the tree. The worst case for 
all of these methods requires walking a path from the root of the tree down to its 
"bottom." Clearly the number of steps required to do this will be proportional to 
the height of the tree. So the interesting question becomes how high is the tree? Of 
course that depends on the exact shape of the tree. Consider the tree that results 
from inserting a set of numbers in sorted order. The tree will end up being a linked 
list as each node is added as a right child of the previous number. For this tree with 
n elements, an insertion takes n steps to get to the bottom of the tree. 

However, if the data in a tree is well distributed, then we expect that about half 
the items in any given subtree lie to the left and about half lie to the right. We 
call this a "balanced" tree. A relatively well-balanced tree will have an approximate 
height of log2 n. In this case, operations that have to find a particular spot in the 
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tree will have 8 (log n) behavior. Fortunately, if data is inserted into the tree in a 
random fashion, then at each node an item is equally likely to go into the left or 
right subtree as we work our way down from the root . On average, the result will 
be a nicely balanced tree. 

In practice then, a binary search tree will offer very good performance, provided 
some care is taken in how the data is inserted and deleted. For the paranoid, there 
are well-known techniques (covered in section 1 3 . 3) for implementing insertion and 
deletion operations that guarantee the preservation of (approximately) balanced 
trees. 

/ 7 . 6 /  I m p lementi ng a M a pp i ng with BST (Opt iona l )  

The BST object outlined in the previous section implements something akin to an 
ordered set . We can insert items, delete items, check membership, and get the items 
out in sorted order. Often trees are used in more database-like applications where 
we don't want to just ask if a particular item is in a set , but where we want to look 
up an item that has some particular characteristic. As a simple example, we might 
be maintaining a club membership list . Of course we need to be able to add and 
delete members from the club, but we also need something more. We need a way 
to bring up the record for a particular member of the club , for example to get their 
telephone number. 

In this section we're going to take a look at how we might extend the usefulness 
of our binary search tree by using it to implement a general mapping similar to that 
provided by Python dictionaries. In our membership list example, we might use a 
special "key" value constructed from a member's name as a way to look up his data 
record. Assuming we have an appropriate membershipList object , we might get a 
phone number by doing something along these lines: 

info = membershipList [ IIVanRossum , Guido ll ] 
print info . horne_phone 

Here our membershipList is an object that maps from a member's name to the 
corresponding record of his information. We could just use a Python dictionary for 
this task, but a dictionary is an unordered mapping, and we'd also like to be able 
to efficiently output our (huge ! )  membership list in sorted order. 

One way to approach this problem would be rework the BST class so that all the 
methods take an extra parameter for the key and maintain a tree of key-value pairs. 
However, that 's a lot more work than we really need to do. We can get a similar effect 
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simply by using the existing BST implementation and building a wrapper around it 
to implement a general mapping interface. That way, we can get the advantages of 
a tree-based mapping object without having to modify or duplicate the BST class . 
Whenever possible, it 's better to extend existing code than to duplicate or modify. 

So how do we turn our BST from a set into a mapping? The key is to exploit 
the existing ordering and lookup functions of the BST class. Our existing class can 
be used to store any objects that are comparable. We will store items as key-value 
combinations, but the trick is that these items will be ordered according to just their 
keys. The first step is to create a new class to represent these key-value items. Let's 
call this combination item a KeyPair .  In order to make our KeyPairs comparable, 
we just implement some comparison operations. 

# KeyPair . py 
class KeyPair (obj ect) : 

def __ init __ (self , key , value=None) :  
self . key = key 
self . value = value 

def __ eq __ (self , other) : 
return self . key == other . key 

def __ It __ (self , other) : 
return self . key < other . key 

def __ gt __ (self , other) : 
return self . key > other . key 

We have implemented only three of the six comparison operators, because all of 
the routines in BST use only these. For safety sake, we probably should implement 
the other three comparisons, just in case the BST code changes in the future. We 
leave this as an exercise. 

Armed with this KeyPair class, we can now define a dictionary-like mapping 
based on BST. Here's the constructor for our class. 

# TreeMap . py 
from BST import BST 
from KeyPair import KeyPair 

class TreeMap (obj ect ) : 

def __ init __ (self , items= ( ) ) : 
self . items = BST ( )  
for key , value in items : 

self . items . insert (KeyPair (key , value) ) 
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We use the instance variable items to keep track of a BST that will store our KeyPair 
items. Just as a Python dictionary can be initialized with a sequence of pairs, we 
allow our TreeMap constructor to accept a sequence of pairs. We just need to loop 
through the pairs and call the BST insert operation to populate our tree. Of 
course, insert will keep the underlying binary search tree ordered according to the 
key values, since that 's how KeyPairs compare to each other. 

Once a KeyPair is in our BST we need to be able to retrieve it again by its key 
value. We can do this using the find operation from BST. The parameter we supply 
to the find operation will be a new KeyPair that is equivalent to (has the same key 
as) the one we are looking up. A line of code like this does the trick. 

result = self . items . find(KeyPair (key) ) 

Remember that the find operation searches the binary search tree for an item that 
is == to the target . In this case KeyPair (key) "matches" the pair in the BST that 
has the same key, and it returns this matching KeyPair. Our partial record with 
just the key filled in is sufficient to retrieve the actual record for that key. 

To make our TreeMap class work like a Python dictionary, we implement the 
usual Python hooks for indexing: _ _  geti  tem _ _  and _ _  seti tem _ _  . 

def __ getitem __ (self , key) : 
result = self . items . find(KeyPair (key) ) 
if result is None : 

raise KeyError O 
else : 

return result . value 

def __ setitem __ (self , key , item) : 
partial = KeyPair (key) 
actual = self . items . find(partial) 
if actual is None : 

# no pair yet for this key , add one 
actual = partial 
self . items . insert (actual) 

actual . value = item 

Each of these methods does just a little bit of extra work to handle cases when 
the given key is not yet in the dictionary. The _ _  geti tem _ _  method just raises a 
KeyError exception in this case. When __ seti  tem __ is passed a new key, it needs 
to insert a KeyPair for it into the BST. Since we already created the new KeyPair 
partial to do the initial search, it 's a simple matter to use it for the new entry. 
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That's enough to get our TreeMap class up and running. It 's still missing an 
iterator that allows us to access the items in order (to print out a membership list , 
for example) . We leave it as an exercise to add the additional functionality. 

1 7 . 7 1 Cha pter S ummary 

We have covered some basic algorithms and data structures for implementing trees. 
Here is a quick rundown of important highlights: 

• A tree is a non-linear container class for storing hierarchical data or for 
organizing linear data so it can be accessed efficiently. 

• Trees are commonly stored using a linked structure but can also be stored as 
an array. 

• Many tree applications use binary trees, which means that each node has zero, 
one, or two children, but it is also possible to implement trees with an arbitrary 
number of children. 

• The binary search tree property is that for every node, the value of each node 
in its left subtree is less than or equal to the node's value and the value of 
each node in its right subtree is greater than the node's value. 

• A binary search tree can support a 8 (10g n) implementation of the search, 
insertion, and deletion operations while maintaining the binary search tree 
property. 

• Tree algorithms are often written using recursion since the tree itself is a 
recursive data structure. 

• The three common binary tree traversal orders are: preorder, in-order, and 
postorder. An in-order traversal of a binary search tree produces the items in 
sorted order. 

1 7 . 8 1 Exercises 

True/Fa lse Questions 

1 .  Every node in a tree has at most two children. 
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2 .  The depth of a tree node is the number of nodes between it and the root of 
the tree. 

3. A tree has exactly one root node. 

4. A complete binary tree is necessarily a full binary tree. 

5. A full binary tree is necessarily a complete binary tree. 

6. An in-order traversal of any binary tree produces the items in sorted order. 

7. A postorder traversal of an expression tree yields the postfix (reverse Polish) 
form of an expression. 

8. The worst-case search time for a binary search tree is 8 (n) . 

9 .  Every subtree of a binary search tree is also a binary search tree. 

10 .  Since binary trees are non-linear, they cannot be easily implemented using an 
array. 

Mu lti p le Choice Questions 

1. A tree is a natural representation of 

a) arbitrarily interconnected data. 
b) linear data. 
c) hierarchical data. 
d) sappy data. 

2. Which of the following is not necessarily true of a non-empty tree? 

a) it has height of at least 1 
b) it has at least one leaf 
c) it has at least one root 
d) all of the above are true of a non-empty tree 

3. In an expression tree, non-leaf nodes represent : 

a) operands. 
b) operators. 
c) parentheses. 
d) tokens. 
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4. In what order should an expression tree be traversed to evaluate the expres­
sion? 

a) preorder 
b) in-order 
c) postorder 
d) precedence order 

5. Which of these design patterns allows clients to traverse a data structure 
without knowing its internal structure? 

a) visitor pattern 
b) iterator pattern 
c) both a and b 
d) none of the above 

6. Which of the following orders will produce a binary search tree with the best 
search tiInes? 

a) inserting the items in a random order 
b) inserting the items in order 
c) inserting the items in reverse order 
d) all will result in the same search times 

7. What is the running time of the recursive tree traversals? 

a) 8 (1) b) 8 (log n) c) 8 (n) d) 8 (n log n) 
8. What is the maximum number of items in a binary tree with a height of 5? 

a) 5 b) 15 c) 31 d) 32 

9. What is the minimum height of a tree with 64 nodes? 

a) 6 b) 7 c) 8 d) 64 

10.  What is the maximum height of a tree with 64 nodes? 

a) 6 b) 7 c) 8 d) 64 

Short-Answer Questions 

1. What is the drawback of the array I list representation of a general binary tree? 
What types of binary trees would be particularly well suited to the array llist 
representation? 
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2 .  Consider the binary search tree from the left side of Figure 7 . 8  (before the 6 
is deleted) . List the order that the nodes would be visited for each traversal 
order (preorder, in-order, and postorder) . 

3. Write an invariant for the BST class. 

4. Write pre- and postconditions for the delete operation of the BST class. 

5. A tree sort algorithm proceeds by inserting items into a binary search tree and 
then reading them back out with an in-order traversal. What is the asymptotic 
running time of sorting n items using a tree sort . Discuss both worst case and 
expected case results. 

6. Consider the mathematical expression 3 + 4 * 5. Draw two different expression 
trees whose in-order traversals produce this expression. Evaluate both of 
your trees using the evaluation algorithm given in section 7 .3 .  Which tree 
corresponds to the "usual" interpretation of this expression? 

7. Using the TreeNode class, write an expression that would produce the tree 
structure shown in Figure 7 .5 .  

8 .  In the chapter, we saw that a value in  a binary search tree can be deleted by 
replacing the item in its node with its in-order predecessor. As was noted, it 
would also work to use the in-order successor. Suppose that instead of always 
doing one or the other we implement a strategy that chooses between these 
two "on the fly." Suggest a suitable criterion for selecting which one to use 
and write pseudocode for an algorithm that performs the criterion test . 

Progra mm ing Exercises 

1 .  Write unit tests for the BST class. 

2. Write and test a recursive version of the find function in the BST class. 

3. Write pre order and postorder traversal generators for the BST class. For 
example, to generate a list for a pre-order traversal, we could write code like 
this list (myBST . preorder 0 )  . 

4. Write a __ copy __ method for the BST class. 

5. Add a _ _  len _ _  operation to the BST class. Calling len (myBST) should return 
the number of items in myBST. 
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6. Implement an improved delete operation for BST along the lines suggested in 
the last short-answer question above. 

7. Implement and test an ordered multi-set class based on a BST. A multi-set is a 
set that allows multiple occurrences of any given value. The basic idea is that 
each item in the tree will consist of both a value and a count of the number of 
occurrences of that value. Your MultiSet class should include operations for 
insertion, deletion, counting, length, and traversal . The count (x) operation 
returns the number of times x occurs in the set . Here's a short interactive 
session showing its use: 

» >  s = MultiSet ( )  
» >  for x in [3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 3 , 5] : 

s . insert (x) 

» >  len(s)  
1 1  
» >  s . delete (5) 
» >  len(s) 
10 
» >  s . count (5) 
2 
» >  s . count (8) 
0 
» >  list (s)  
[ 1 , 1 , 2 , 3 , 3 , 4 , 5 , 5 , 6 , 9] 

Note: you can either write a new class similar to the BST class or use the 
technique of section 7 . 6  to leverage the existing BST class. 

8. Write a simplified version of a decompression program. The following is a 
sample input file and the tree representation for its code. The first set of lines 
contains the letter and its code (separated by a space) . There is a blank line 
before the actual coded message. Note that the first line contains the code for 
a space and that the last line is actually one long line, but it is wrapped for 
display purposes on this page. This file decodes into: 
the magic word is abracadabra 
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0 1 1  
a 00 
b 1001 
c 1000 
d 1010 
e 1 1000 
g 1 1001 
h 1 1010 
i 1011  
m 1 10 1 1  
o 1 1 100 
r 010 
s 1 1 101 
t 1 1 1 10 
w 1 1 1 1 1  

1 1 1 10110101 10000 1 1 1 101 100 1 10011011 10000 1 1 1 1 1 1 1 1 1 10001010100 1 1 1011 1 1 10101  
100100101000100000101000100101000 

o 

1 
� 1  

Copy the TreeNode . py file from the book. Create a class named Pref ixCodeTree 
in a file named Pref ixCodeTree . py. The class must have a constructor and 
the following two methods: 
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def add_code (self , letter , code) : 

" " " add the letter and its code to the tree 

pre : letter is a string , code is a string of Os and is 
corresponding to the code for the letter ; code does not 
contain a pref ix that has already been added 
post : the tree is updated to store the code and its 
corresponding letter" " "  

def decipher_code (self , coded_msg) : 

" " "using the tree created by the add_code calls , decipher the 
coded_msg 

pre : add_code has been called to create the tree 
coded_msg contains valid codesfor the calls to add_code 
post : returns the decode string" " "  

251 

Prefix codes are codes such that no code is a prefix for another code. In our 
tree representation, this corresponds to the letters at leaf nodes. To decode a 
message, start at the root of the tree and move down the tree based on the Os 
(go left) or 1s (go right) until you reach a leaf and add that letter. Once you 
reach a letter, start at the root of the tree with the next code. Normally the 
codes would be stored in binary format , allowing us to represent eight Os or 
1s in a single byte, making the compressed file smaller if the common letters 
take less than eight Os or 1s. To make the exercise simpler, the codes in the 
file are all plain text. 

9. Think about a different way to solve exercise 8 using one of Python's built-in 
data types instead of a binary tree. Solve the problem using that data type. 

10 .  Write a program to play the animal guessing game. Here's a sample output 
showing how the game works. User input is shown in bold. 

Welcome to the Animal Game ! 
You pick an animal , and I will try to guess what it is . You can help 
me get better at the game by giving me more information when I make 
a mistake . 

The more you play , the better I get . 

Think of an animal , and I ' ll try to guess what it is . 
Is  it green? no 
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Does it purr? n 
Does it have black and white stripes? y 
Does it have hooves? yes 
Is  your animal a (n) zebra? yes 
I ' m soooo smart ! 

Do you want to play again? y 

Think of an animal , and I ' ll try to guess what it is . 
Is  it green? yes 
Does it hop? yes 
Is your animal a (n) frog? no 
Rats ! I didn ' t get it . Please help me improve . 

What is your animal? grasshopper 
Please enter a yes/no question that would select between 
a (n) grasshopper and a (n) frog : 
» Does it eat leaves 
What would the answer be for a (n) grasshopper? yes 

Do you want to play again? yes 

Think of an animal , and I ' ll try to guess what it is . 
Is  it green? y 
Does it hop? y 
Does it eat leaves? y 
I s  your animal a(n) grasshopper? yes 
I ' m soooo smart ! 

Do you want to play again? n 

Thanks for playing ! 

As you can see, this program demonstrates a simple form of machine learning. 
When it fails to guess the user's animal, it asks for more information so that 
it can get the animal right the next time. 

You can implement this program using a kind of binary tree known as a 
decision tree. The leaf nodes of the tree represent categories (animals, in this 
case) , and the non-leaf nodes contain yes/no questions. A round of the game 
consists of starting at the root of the tree and navigating down by asking the 
question and then going left or right depending on whether the answer is yes or 
no. When arriving at a leaf, the program guesses the animal at the leaf. When 
the guess is incorrect , the leaf becomes an interior node with the category that 
was there demoted to one child and the correct answer to the other child. 
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Your initial tree can just consist of a single node that contains your favorite 
animal; the tree can grow from there by playing the game. Of course, you will 
need a way to store the tree to a file between playings so that the program 
can accurIlulate experience rather than starting from scratch each time. The 
easiest way to write the tree to a file is to use Python's serialization capabilities . 
Take a look at the documentation for the pickle module to see how to do 
this. 





Chapter 8 

Objectives 

A C++ I ntrod u ction 

for Python 

Progra m mers 

• To understand the C++ compilations process. 

• To learn the syntax and semantics of a major subset of C++ including built-in 
data types, input/output , decision statements, and looping statements. 

• To learn the syntax and usage of C++ arrays. 

• To learn the details of C++ functions and parameter passing mechanisms. 

• To understand the scope and lifetime of C++ variables. 

[[!] I ntroduct ion 

The earlier chapters in  this book focused on developing algorithms and data struc­
tures using the Python language. Python is a great language for beginners because 
of its relatively simple syntax and powerful, built-in data structures and library 
of functions. Python's usage in industry is fairly small but is continuing to grow. 
However, even if Python were to become the most commonly used language, all 
computer scientists should know more than one computer language. Different 
languages provide different capabilities, making no single language the best choice 
for every problem. Learning new languages will help expand your problem solving 

255 
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skills as their different capabilities will encourage you to think about more ways to 
solve a problem. 

The Python language's data structures and many of its built-in functions hide 
many of the underlying implementation details from programmers. As we discussed 
earlier, when using Python you do not need to worry about deallocating memory as 
you do in some languages. Obviously the people developing higher level languages 
and writing interpreters and run-time environments for them need to understand all 
the low-level details necessary to implement them. It should be clear that Python is 
generally not the best language for applications that process very large amounts of 
data or require extensive computation since it uses extra memory to store a reference 
count and data type for every object and its interpreter must convert the byte codes 
for each Python statement to machine code each time it executes the statement . 

This chapter and the next four chapters will introduce a large subset of the C++ 
programming language. C++ is an excellent complementary language for Python 
programmers as it is a lower level language that requires you to understand many 
low-level implementation details, including memory management . C++ can make 
much more efficient use of the computer's memory and CPU. Having programming 
abilities in both Python and C++ will allow you to choose the appropriate language 
for a given problem. In fact , it is very common for a Python program to make use 
of compiled C or C++ code when speed and memory usage are important . 

1 8 . 2 1  C++ H istory a nd Backgrou nd 

The C programming language was developed in the early 1970s as a cross-platform 
systems language. In the 1960s when new computers were built , new operating 
systems were written in the assembly language for each machine. Brian Kernigan 
and Dennis Ritchie at AT&T Bell Labs decided to develop a high-level, cross­
platform language for systems code. They, along with Ken Thompson, developed the 
Unix operating system in C, and this allowed them to easily port it to new computer 
hardware. The C programming language is still widely used for applications in 
which speed is crucial such as operating systems and scientific computing. In fact , 
the Python interpreter is written in C .  

In  the late 1970s and early 1980s, computer scientists began to  realize that 
object-oriented design and programming allowed them to write more maintainable 
and reusable code. There were a couple existing object-oriented languages at the 
time, but the C programming language was extremely popular. In the early 1980s, 
Bjarne Stroustrup at AT&T decided to develop an object-oriented language that 
would be relatively easy for C programmers to learn. He added explicit object-
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oriented programming support to the C programming language and called the new 
language C++. The C++ language is mostly backward compatible with the C 
programming language other than the new keywords that C++ uses, making it fairly 
easy for C programmers to get started with C++. The complete C++ language 
is much larger and rnore complex than the C language and many programmers use 
only a subset of C++ when writing C++ code. 

C and C++ are lower level languages than Python. C does not provide built-in 
list or dictionary types. C++ does support some higher level data structures using 
a collection of classes and methods known as the Standard Template Library. C and 
C++ are terser and use more special characters (e.g. , && is used for and and I I is 
used for or) . Newer versions of C++ do allow and and or to be used in addition to 
the special symbols. 

This book covers the C++ language although most of what is included in this 
chapter also applies to the C language. Some of the topics in later chapters also 
apply to the C language, but we will generally not point out what does and what 
does not . In general, any discussion that involves classes does not apply to the C 
language. 

As you read the previous paragraphs, you may be asking yourself why would 
you want to learn C++ since it seems it is more difficult to write code using it . 
While you will likely find it more difficult to write C++ code and your C++ source 
code will almost always be longer than the corresponding Python source code that 
does the same thing, Python is not the best language for all applications. Writing 
code in a compiled language such as C or C++ allows you to write code that 
typically executes an order of magnitude faster and uses less memory than the 
corresponding interpreted Python code. There are still a number of application 
areas where you want to maximize execution speed and use memory efficiently so 
your code can handle large amounts of data. For example, you would not want to 
write an operating system or a server such as a web server or database server in 
Python. Learning C++ will also help you gain a better understanding of what is 
going on inside the Python interpreter. 

C and C++ source code is compiled into machine language code while Python 
uses a hybrid process of compiling into byte code and then interpreting the byte 
code. There are advantages and disadvantages to both methods. Compiled code 
executes much faster than interpreted code, but is less flexible than interpreted code. 
We will discuss some of these differences in later sections. A pictorial representation 
of the process of compiling C++ code is shown in Figure 8. 1 .  We will use the 
following simple C++ program to describe how that compilation process works. 



258 Chapter 8 A C++ I ntroduction for Python Programmers 

II hello . cpp 
#include <iostream> 
using namespace std ; 

int main e )  
{ 

} 

cout « "hello world\n" ;  
return 0 ;  

header file 

machine code 
libraries 

header file 

Figure 8 . 1 :  Compile-and-link process for C++ code 

If we tell you that cout is used to produce output , you can probably guess that 
the program does the same as the Python program print "hello world" .  The 
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preprocessor (commonly known as the C preprocessor) , takes the source code and 
processes all the lines that start with a pound sign (#) . The #include preprocessor 
directive in the sample program tells the preprocessor to copy all the code from the 
iostream file into our source file . This has the same effect as if we had copied and 
pasted that file into our program where the #include statement is. The iostream 
file is known as a header file. Each C++ source file can include any number of 
header files. We will discuss header files in more detail later in this chapter and 
again in later chapters; for now what you need to know is that header files contain 
information about source code that is written in other files. 

The output of the preprocessor is still C++ source code that is then sent to a 
C++ compiler. The compiler's job is to convert the C++ source code into machine 
language code (the Os and Is that the computer's CPU can execute) for a specific 
chip and a specific operating system. The first step the compiler does is check the 
code for any syntax errors. Since a syntax error means the program is not correct, 
the compiler cannot determine what you mean and complete its process. If your 
code has syntax errors, the compiler stops and gives you an error message indicating 
what it could not understand. This means you cannot try to run your program until 
you fix all your syntax errors. Once your source code is syntactically correct , the 
compiler will produce machine language code corresponding to your code in the 
C++ source file . This machine language code is also commonly known as object 
code. 

Just as we split Python programs into multiple files, all but the simplest C++ 
programs are typically split into multiple source files. As Figure 8 . 1  shows, each 
source file is compiled independently. One source file may call a function defined in 
another source file. This is the main reason for header files: by including information 
about the function defined in another file, the compiler can make certain that you 
correctly called the function. The job of the linker is to combine the various machine 
code object files into one executable program, making certain that each function 
that is called exists in exactly one of the object files. Most operating systems also 
support machine code libraries. In this context , a library is the object/machine code 
for commonly used classes or functions. In C++, the input and output statements 
are part of a library declared in the iostream header file . As Figure 8 . 1  shows, 
the linker also copies the code from the libraries your program uses into the final 
executable code. 

Since the resulting executable program is in machine language, it can be exe­
cuted only on computers that support that machine language and that operating 
system. For example, a program compiled for an Intel chip running a version of the 
Windows operating system will generally run on any Intel-compatible computer (of 
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the same generation or a newer version of the Intel chip) and that version or newer 
compatible versions of the Windows operating system. A program compiled on an 
Intel computer for the Linux operating system will not run on a Windows system and 
vice versa. Simple C / C++ programs can be recompiled for another operating sytem 
or computer chip. Porting a program refers to the process of getting it to execute on 
a different chip or operating system. The real difficulty in porting code to another 
operating system is that different operating systems support different libraries of 
functions for input/output and graphical user interfaces (GUls) . Many operating 
systems also provide additional libraries of code. Any program that uses these 
operating system-specific libraries of code is more difficult to port to other operating 
systems. These libraries would also need to be ported to the other operating system 
or the code rewritten to avoid using the libraries. 

Python code is machine independent and can be executed on any machine 
containing the Python interpreter. This means that the Python interpreter itself 
must be ported and compiled for that machine and operating system. If your 
program uses extra Python modules that are specific to that operating system such 
as a GUI toolkit that exists only on that operating system, then your Python code 
will not be portable. Python programs that use only the standard Python modules 
can be executed on any machine or operating system containing the interpreter 
without any changes to the code. Just as the Python interpreter can be compiled 
on many different systems, many of the extra modules can also be ported to other 
operating systems; this of course requires more work. 

The process of executing Python code is significantly different from the process of 
compiling and linking C++ code. Figure 8 . 2  shows a pictorial representation of the 
process. You directly execute only one Python file, but by importing other Python 
files, you are effectively combining the code from multiple source files. Python 
source code is first compiled into a machine-independent set of instructions known 
as byte code; this process happens automatically when you run a Python program 
or import a Python module. You may have noticed files with a . pyc extension on 
your computer. These are the byte code files created when you import a Python 
module. A single byte code instruction corresponds to code such as a function call 
or adding two operands. 

The Python interpreter then starts processing the byte code corresponding to 
the first statement in your program. Each time a byte code statement is processed, 
it is converted to machine language and executed. It is this process of interpreting 
each byte code statement and converting it to machine language every time the byte 
code is executed that results in Python code executing slower than compiled C++ 
code. The byte code can be converted to machine language faster than pure Python 
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Figure 8 .2 :  Python hybrid compilation and interpretation process 

source code; that is the reason the Python source code is converted once to the byte 
code instead of converting each Python statement to machine language every time 
that Python statement is executed. 

As the figure shows, your Python code can call compiled C or C++ code in 
machine code libraries. This allows you to mix Python, C, and C++ code in your 
program. Writing C or C++ code that can be called from the Python interpreter 
requires following certain conventions; we will not cover the details of this in this 
book. Any C or C++ code that you want to call from Python must be compiled 
on the specific version of the operating system and for the chip that you will be 
executing your Python program on. 

The execution speed difference between Python and C / C++ becomes more 
noticeable when loops are explicitly written in Python. Instead of writing a loop that 
executes a large number of iterations, it is better to call a built-in Python method 
or function that does the same thing (if one exists) since the Python method or 
function is implemented in compiled C code. You should have noticed this in the 
use of the index method compared to our hand-coded linear search function in 
subsection 1 . 3 . 1 .  In summary, the main trade-off between Python and C/C++ is 
the speed of execution vs. the arnount of code and development time required. 

The basic staternents of Python and C++ are similar; because of this, it is 
relatively easy for Python programmers to learn to read C++ code. Learning to 
write C++ code is more difficult because you need to learn the exact syntax details 
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of C++. It is easier for Python programmers to learn C++ than for someone 
with no programming experience. This is because programmers who know one 
language already understand the common concepts such as decision statements, 
loops, functions, etc. Many programming languages, including C, C++, Python, 
Java, C#, and Perl, use similar statements and syntax making it fairly easy to 
learn additional languages. We think that Python is an ideal language for beginners 
because of its simple syntax and that C++ is a good second language because it is 
similar to Python, but allows students to gain experience with the low-level details 
of programming that the Python interpreter hides. 

Many of the C++ concepts presented in this chapter and the next few chapters 
also apply to the C language, but not all of them. Specifically, the inputjouput 
mechanisms are different in C and C++, and C does not completely support classes. 
This book does not cover the C language mechanisms for input j ouput or C structs, 
which are a simplified version of classes. These chapters on C++ are not intended 
to provide all the details of the C++ language, but rather to quickly get Python 
programmers started with C++ and to help them learn about explicit memory 
management . To become a C++ expert , we suggest you read a C++ reference 
book such as the one authored by Bjarne Stroustrup. Since C++ is a fairly complex 
language, there are a number of topics that must be covered before we can write 
a complete C++ program. We will begin covering these concepts assuming a 
knowledge of Python. 

1 8 . 3 1 Com ments, B locks of Code ,  I dent if iers ,  a n d  Keywords 

C++ supports two types of comments. The equivalent to Python's # comment 
marker is two forward slashes (/ I) . Anything on a line, from the two forward 
slashes to the end of the line, is considered a comment and ignored by the compiler. 
The C++ compiler also supports multi-line comments. This type of comment begins 
with /* and ends with */ .  

II this is a one-line C++ comment 

1* this is a 
multi-line 
C++ comment *1 

Python denotes blocks of code using indentation. C++ uses braces ({}) to 
mark the beginning and ending of blocks. Indentation in C++ has no effect , but for 
readability, programmers generally follow the same indentation rules that Python 
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requires. Whitespace (spaces, tabs, and new lines) have no effect on C++ code 
except within strings. Since spaces, tabs, and new lines have no effect in C++, each 
C++ statement must be terminated with a semicolon. Forgetting the semicolon at 
the end of a statement is a common mistake, especially for programmers familiar 
with Python. Unfortunately, when you forget a semicolon, many C++ compilers 
indicate there is a problem with the next line of code. When tracking down 
compilation errors, it is often necessary to look at the line or lines of code just 
above the line on which the compiler indicates there is an error. 

The rules for legal C++ identifiers are the same as Python's rules. Identifiers 
must start with a letter or an underscore. After the initial letter or underscore, the 
additional characters may be letters, numbers, or underscores. Also, identifiers may 
not be a C++ keyword. Figure 8 .3  lists all the C++ keywords' ! This book does 
not cover the details of all the C++ keywords. 

and 
bool 
compl 
do 
export 
goto 
namespace 
or_eq 
return 
struct 
try 
using 

and __ eq 
break 
const 
double 
extern 
if 
new 
private 
short 
switch 
typedef 
virtual 

asm 
case 
const_cast 
dynamic_cast 
false 
inline 
not 
protected 
signed 
template 
typeid 
void 

auto 
catch 
continue 
else 
float 
int 
not_eq 
public 
sizeof 
this 
typename 
volatile 

bit and 
char 
default 
enum 
for 
long 
operator 
register 
static 
throw 
union 
wchar_t 

Figure 8 .3 :  C++ Keywords 

1 8 .4 1 Data Types a nd Var ia b l e  Dec la rat ions 

bitor 
class 
delete 
explicit 
friend 
mutable 
or 
reinterpret_cast 
static_cast 
true 
unsigned 
while 

C++ requires that all variables be explicitly declared before they are used and 
supports the following built-in data types: int , char, float , double , and bool.  
Variables are declared with a specified data type and a variable can hold data values 
of only that type. The int type corresponds to integers in Python and supports the 

IThe list of keywords is from Bjarne Stroustrup, The C++ Programming Language, (Reading, 
Massachusetts: Addison-Wesley, 1997) , 3rd ed. 794. 
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same operations including the modulus operator (%) . Unlike Python, where integers 
are automatically converted to long integers as necessary, C++ int types silently 
overflow if a value is too large to store. A C++ int type must use at least 16 bits , 
which allows values i� the approximate range of +/- 32 ,000; however, most systems 
use at least 32 bits, allowing numbers in the + / - 2 billion range. The char type 
holds a single character. Internally it is stored as the ASCII value for the character, 
so a char variable can store a value between - 128 and 127. 

C++ also supports the modifiers short and long for int types. On most 32-bit 
systems, a short int is 16 bits ,  an int is 32 bits ,  and a long int is also 32 bits. 
The long int type is guaranteed to be at least 32 bits whereas the int is only 
guaranteed to be at least 16 bits .  The int and char types support the unsigned 
modifier indicating that only non-negative numbers are supported and allow larger 
values. A 32-bit Unsigned int supports values from 0 to approximately 4 billion 
instead of +/- 2 billion. An unsigned char can store a value between 0 and 255 . 

The float and double data types correspond to what mathematicians call real 
numbers but on the computer they are not represented exactly. Because of how 
they are represented internally using bits of Os and Is ,  they are more appropriately 
referred to as floating point numbers. The float type uses 32 bits to represent 
the number and provides 6 or 7 significant decimal digits .  The double type uses 
64 bits and provides 15 or 16 significant digits .  Python uses the C double type 
to implement floating point numbers. Because modern computers have plenty of 
memory and most implement floating point arithmetic in hardware, you should use 
the double type instead of the float type in almost every situation. Figure 8 .4  
summarizes the details of the C++ data types. 

In C++, variables can be defined anywhere and are accessible from that point 
to the end of the block of code in which they are declared. For style and readability 
purposes, many C++ programmers declare all variables they will need in a block of 
code at the top of that block. A variable is declared by specifying the type followed 
by the variable name. Multiple variables of the same type may be declared on one 
line by separating the variable names by commas. The following shows a simple 
program with a few variable declarations. Based on our earlier discussion that cout 
is used to produce output and your knowledge of Python, you can probably guess 
what this C++ program outputs. 



Data type 

int 

unsigned int 

short int 

unsigned 
short int 

char 

unsigned 
char 

float 

double 

bool 

II output . cpp 
#include <iostream> 
using namespace std ; 
int mainO 
{ 

int i ,  j ;  
double x ,  y ;  

i = 2 ;  
j = i + i ;  
x = 3 . 5 ;  
Y = x + x ;  

8 .4 Data Types and Variable Declarations 

Typical range of Typical # 
values of bytes Comments 

-2 , 147,483,648 to 
2 , 147,483,647 4 integer values only 
o to 4,294,967,295 4 integer values only 
-32 ,768 to 32,767 2 integer values only 

o to 65,535 2 integer values only 
- 128 to 127 1 integer values only 

o to 255 1 integer values only 
approximately real numbers with 6 or 
+/ - 1038 4 7 significant digits 
approximately real numbers with 15 
+/ _ 10308 8 or 16 significant digits 

true and false are 
true or false 1 constants 

Figure 8 .4 :  C++ built-in data types 

cout « j « " \n" « y « " \n" ; 
return 0 ;  

} 
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You may be wondering why C++ requires you to declare variables while Python 
does not . Remember that C++ code is compiled directly to machine language. 
Machine language instructions are performed on specific data types. All CPUs have 
instructions for adding two integers, and most modern CPU s have instructions for 
adding two floating point numbers. Some older CPU s did not have direct floating 
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point instructions, but implemented floating point calculations in software using 
a number of integer instructions, making them much slower. In our preceding 
example , the compiler needs to know to generate the machine instruction to add 
two integers for the statement j = i + i ;  and to generate the machine instruction 
to add two floating point numbers for the statement y = x + x ; . The variable 
declarations indicating the data types allow the compiler to determine the correct 
machine instruction. 

The Python interpreter converts the corresponding two Python addition state­
ments to the same byte code such as add i ,  i and add x ,  x. The same byte code 
is used in both cases for the add statement. When the Python interpreter is then 
executing the byte code, it determines the data type for the two operands and in the 
first case generates an integer add instruction and in the second case it generates a 
floating point add instruction. If the two operands were strings, it would generate 
the machine instructions to concatenate two strings. Since Python does not create 
the machine instructions until it is ready to execute the statement , it does not need 
to know the data type when the code is written as the C++ compiler does. This 
allows the code to work properly even if the data type for variables changes between 
multiple executions of the statement . The following silly Python program shows an 
example of this. The first time through the loop, the statement x + x is adding two 
integers and the second time it is concatenating two strings. This type of code is 
not possible in C++ without using separate variables for each different type. 

for i in range (2) : 
if i == 0 :  

x = 1 
else : 

x = ' hi '  
print x + x 

The terminology for these issues is dynamic typing and static typing. Python 
uses dynamic typing which means the data types for a variable or name can change, 
whereas C++ uses static typing which means the data type of a specific variable 
is fixed at compile time and cannot change. Another significant difference in how 
Python and C++ handle variables is that C++ variables have their memory al­
located when a function is called and the same memory location is used for that 
variable through the execution of the function. Technically, it is incorrect to use the 
term variables in Python. The term name is correct ; a Python name refers to an 
object in memory. During the execution of a Python function, the memory location 
that a name refers to can change. We discussed this in section 4 . 2 .  In the following 
simple program, the name x refers to two different objects at two different addresses. 
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I x 
= 

3 x 
= 

4 

A Python name is not assigned to an address until it is used in your code and 
changes each time you assign a new object to it. Again, C++ variables are allocated 
a specific memory location that does not change during the execution; the same 
memory location is used to store the 3 and then the 4. We will examine these issues 
in more detail in section 8 . 7  and again in Chapter 1 0. 

C++ also supports constants and a compile time check to make certain a 
program does not attempt to change a value. A sample constant definition is const 
double PI = 3 . 141592654 ; .  If a program defines a constant and contains another 
statement that assigns a value to the defined constant (e.g. , PI = 5) , that is a syntax 
error and the program will not compile. Many programmers use the convention of 
all capital letters for constants. 

C++ does not provide built-in, high-level data structures such as lists, tuples, 
and dictionaries as Python does. C++ supports arrays (covered in section 8 . 1 1 ) 
that can be used to build similar data structures. As you would expect since C++ 
is an object-oriented language, it provides classes that allow you to encapsulate data 
members and functions so you can build your own list , tuple, and dictionary classes 
that provide methods for manipulating the data. We will learn about C++ classes 
in section 9 . 1 .  

I s . s l I nc l ude Statements, N amespaces , a nd I n put/Output 

Python uses the import statement to access code written in another file . C++ 
uses a #include statement to copy the class and function declarations defined in 
a different file into your current file so the compiler can check if you are using 
the function or class correctly. The files containing these declarations are known as 
header files. Header files can contain items other than class and function declarations 
but we will not worry about those items now. The details of function prototypes are 
discussed in section 8 . 1 2 ,  but the basic idea is that a function prototype specifies 
the number of parameters, the data type for each parameter, and the return type 
for the function. The prototype allows the compiler to create a list of functions and 
classes that exist. Thus, when you attempt to call a function not defined in your file, 
the compiler can determine if a function with that name has been declared elsewhere 
and if you are calling the function with appropriate parameters . The same concept 
applies to including the definitions of classes so that the compiler can determine if 
you use a class correctly (i .e . ,  a class exists with that name and contains the methods 
you use) . A header file typically does not contain the code for the function or class 
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methods, just the declaration. Usually, a separate implementation file includes the 
definition of the function (i .e . ,  the body of the function) . There are exceptions to 
this that we will discuss later. The actual machine code for the functions and classes 
are combined together by the linker to create the executable code (as we showed in 
Figure 8 . 1 ) .  We will cover additional details of compiling and linking later in this 
chapter. 

C++ supports namespaces that are similar to the namespaces created by Python 
modules. Each Python file is its own module and effectively has its own namespace. 
C++ does not require the use of namespaces, but some of the built-in C++ classes 
and functions are defined within namespaces. We will cover the details of writing 
your own namespace in the optional subsection 8 . 1  7 . 2 ;  we just cover the basics of 
using an existing namespace in this section. The most commonly used namespace 
is the standard namespace that is abbreviated std and is part of the definition of 
the C++ programming language. Since a number of C++ built-in functions and 
classes are declared in the std namespace, we need to know how to use a namespace 
in order to write almost every C++ program. 

C++ uses a library of functions for input and output and requires a file to be 
included to access this library. The simplest way to access this library is to place 
the following statements at the top of your file: 

#include <iostream> 
using namespace std ; 

As we discussed earlier, the #include statement causes the C++ compiler to 
effectively copy the contents of the iostream header file into your file and then to 
compile the complete file. This header file defines the various input/output functions 
and classes. The input/output functions and classes are in the namespace std. The 
C++ output statement uses the cout instance of the ostream class defined in the 
iostream file. The using namespace std statement tells the compiler to allow 
direct access to all the elements defined in the std namespace. This is similar 
to the Python version of the import statement, from math import * ,  that allows 
access to all the items defined in the math module. Without a using statement , it 
must be referred to using the full name std : : cout o  Another option is to write the 
statement using std : : cout after the include statement. This allows us to specify 
the cout instance without the std : : prefix, but does not allow us to access any other 
members of the std namespace directly. This is similar to the Python statement 
from math import sqrt which allows us to access the sqrt function defined in the 
math module, but not any of the other items defined in the math module. The main 
difference between C++ and Python namespaces (each Python file is a separate 
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namespace) is that items defined in a C++ namespace can always be accessed with 
the full name (namespace : : item) without a using statement while you must use 
an import statement to access items in a Python namespace. 

The C++ cout instance works similarly to the Python print statement to 
output variables, expressions, and constants. Python uses commas to separate 
multiple items being output in one statement. C++ uses the symbols « to separate 
multiple items to be output with one statement. C++ does not automatically 
insert a space as Python does with each comma-separated item, and C++ does not 
automatically output an end-of-line character as the Python print statement does. 
As with Python, any items not inside of quotation marks are evaluated. C++ strings 
must be denoted using the double quotation mark. In C++, a single quotation mark 
is used only to denote a single character (i .e . , the built-in char data type) . 

All C++ programs must have one function named main that is called when 
the program is executed. The main function must return an int value. Putting 
together all the concepts we have learned so far, you should now understand most 
of the syntax of our "hello world" example. 

II hello . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

cout « "hello world\n" ; 
return 0 ;  

The backslash escape characters in C++ are the same as they are in Python. The 
above program uses \n to output a new line character after printing hello world. 
C++ also allows the use of endl , which is declared in the std namespace (if the 
using namespace std line is not specified, it must be referred to as std : : endl) . 
The above cout statement could also be written as cout « "hello world" « endl . 
A common style is to use \n when the output statement ends in quotation marks 
and to use endl when the last item in the cout statement is not a string constant . 
One difference between using " \n"  and endl is that endl forces the output buffer 
to be flushed. With buffered output , the operating system may wait and send the 
outputted data to the screen (or a file, if you are writing to a file) at a later time for 
efficiency purposes. The output buffer is flushed when your program exits normally, 
but if your program crashes, you may not see some of the output that your program 
actually generated. This can lead you to think that your program crashed earlier 
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than it actually did. Because of this , you may want to use endl if you use cout 
statements to help you track down where a program is crashing. 

Similar to the cout instance, C++ has a cin instance of the istream class that 
is part of the standard namespace and is used for input. The symbols » are used 
to separate multiple input values.  The cin statement uses whitespace to separate 
multiple values and will skip past any whitespace (space, tab, or new line) to find the 
next number, character, string, etc. The following program and sample execution 
of it show a program similar to what you studied in your first programming course. 
We have used the symbol u to indicate where spaces are in the source code and 
in the output since cout does not automatically output spaces or new lines as the 
Python print statement does. 

Iluctof . cpp 
#includeu<iostream> 
usingunamespaceustd ; 

intumain( ) 
{ 
uudoubleucelsius , ufahrenheit ; 

uucoutu« uIEnteruCelsiusutemperature : u" ; 
uucinu» ucelsius ; 
uufahrenheitu=u9 . 0u/u5 . 0u*ucelsiusu+u32 . 0 ;  
uucoutu« ucelsiusu« uludegreesuCelsiusuisu" ; 
uucoutu« ufahrenheitu« u"udegreesuFahrenheit\n" ; 
uureturnuO ; 
} 

EnteruCelsiusutemperature : u22 . 5  
22 . 5udegreesuCelsiusuisu72 . 5udegreesuFahrenheit 

If we had declared the celsius variable as an int , then the user could type in 
only integer values. This would make the program less general so when declaring 
variables you should ask yourself what are the possible values for this variable. If it 
could possibly be a floating point value, use the double type, but if it will always 
be an integer, use the int type. 

When using cin to input multiple values, the user can type in any amount of 
whitespace to separate the values . The input may be entered by typing two values 
separated by one or more spaces or a tab, or by pressing the Return key after each 
number is entered. As with Python, the input is not processed until the Return 
key is pressed. The following is a complete example showing two values being input 
with the same cin statement . We leave it as an exercise to show the output for this 
program for a specific input . 



I I input 1 .  cpp 
#include <iostream> 
using namespace std ; 
int mainO 
{ 

double x ,  y ;  
cout « " enter x and y :  " ; 
cin » x » y ;  

8.6 Compi l ing 

cout « " x = " « x « " and y = " « y « endl ; 
cout « " x + y = " « x + y « endl ; 
return 0 ;  

} 
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The fact that inputing values using cin in C++ skips whitespace can lead to 
some confusion when using it to input characters. It is certainly useful that it skips 
spaces when reading numbers, but since it also does this with the char data type, 
there is no way for a user to enter a space that will be stored in a char when 
reading the char data type using cin. For example, if the user enters XuYuZ when 
the following program is executed, the program outputs xyz, not XuY as you might 
expect. 

II input2 . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

char a ,  b ,  c ;  

cin » a » b » c ;  
cout « a « b « c ;  
return 0 ;  

1 8 . 6 1 Comp i l i ng 

We have covered enough background material that you are now ready to start 
writing your own simple C++ programs. We will now briefly discuss how to compile 
programs on your computer. The three major operating systems in use today are 
Microsoft 's Windows, U nix/Linux, and Mac OS X. Each of these operating systems 
provides its own applications for editing and compiling programs. Microsoft sells 
a full-featured version of their development environment currently known as Visual 
Studio. It also provides a free, but limited, version known as Visual Studio Express. 
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If you are using Microsoft Windows, you can download it from Microsoft's web site. 
Even though it does not have all the capabilities of the full system, it should work 
fine for all the C++ examples and exercises in this book. Apple provides its full 
featured development environment , named Xcode, for free to anyone. It may have 
come preinstalled on your Mac computer or you can download it from Apple's web 
site (registration is required at the time of this writing, but it is free) . Unix refers 
to a number of different operating systems. We will not go into the history of Unix 
in this book, but realize that different companies sell slightly different versions of 
Unix. In fact , Apple's Mac OS X is built on top of a Unix operating system. The 
Linux operating system is a free clone of Unix. We will use the term Unix in this 
book to refer to all Unix systems including Linux. 

The graphical development environments for Visual Studio and Xcode change 
over time so we will not go into the details of using these applications for writing 
and compiling C++ code in this book. You may be able to figure out how to use 
them on your own fairly easily or with a little help from your instructor. On most 
Unix systems, the GNU g++ compiler is used for compiling C++ programs. There 
are also commercial C++ compilers available for various Unix systems. The Mac 
Xcode application is just a graphical front for the g++ compiler so you can use g++ 
from the Terminal application on a Mac. Since the command line usage of g++ has 
not changed in years for simple programs, we will cover the basic usage of g++ for 
compiling C++ programs on Unix systems. 

The file extensions .cpp, .C ,  and .cc are commonly used for C++ programs. We 
will use the .cpp extension in our examples in this book since it can be used easily 
on all three major operating systems. For a single file named program.cpp that 
does not use any additional libraries, the command g++ program . cpp -0 program 
creates the executable file named program from the C++ source file program.cpp 
assuming your program is syntactically correct . You may recall from our discussion 
of compilation at the beginning of the chapter that there are multiple steps: prepro­
cessing, compiling, and linking. The g++ command we specified performs all three 
of these steps. 

Depending on the version of make on your Unix system, the command make 
program might produce the same result . Remember that the program.cpp file must 
contain a main function, and that is where the execution of the program file will 
start . To execute your code, type . /program and press the Return key. The . / 
preceding the name of the executable program is the safest way to ensure that the 
operating systems executes the program in your current directory. Depending on 
how your Unix account is set up, you may be able to type in just program to execute 
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it , but we recommend you get in the habit of typing in . /program since this will 
always work. 

Just as with Python, it is good practice to split larger programs into a number 
of smaller source files that are appropriately organized. As we discussed at the 
beginning of this chapter, each file is compiled separately producing the machine 
language code for the C++ code in that file . Using g++, each source file ending 
with a .cpp extension can be compiled into an object file with a .0 extension by 
using the - c flag for the g++ command; this corresponds to the preprocessing and 
compilation step. If you leave off the - c flag, the g++ command attempts to perform 
the preprocessing, compilation, and linking phases which is not what you want if 
you have multiple source files. 

Figure 8 .5  shows an example of compiling two source files with the main function 
in the test�sort .cpp file. The last line is the linking step which checks that the 
test�sort.o file contains one function named main and that each function called by 
all the files appears exactly once in one of the .0 files. In this example, we have also 
added the -g flag to the g++ command so it includes the symbol names; this allows 
debuggers to provide information about the actual names of variables and functions 
instead of just the address where they are stored. 

g++ -g -c test_sort . cpp 
g++ -g -c sort . cpp 
g++ -g test_sort . o  sort . o  -0 test sort 

Figure 8 . 5 :  Compiling multiple source files 

As with most repetitive tasks this process can be automated. The Unix operating 
system provides the make command for recompiling the source files that have been 
modified since the corresponding object file was last created and linking all the 
object files. The make command checks for a file named Makefile or makefile that 
describes how to create the executable from the source files. Figure 8 . 6  shows the 
contents of a Makefile for use with the sort example in Figure 8 . 5 .  

This book does not cover all the details of  makefiles, but the basic idea is that 
the lines with colons have the name of a file before the colon and the file names 
after the colon indicate the files on which that file depends (Le . ,  if one of the files 
after the colon changes, the file before the colon needs to be regenerated) . The line 
following the line with the colon specifies how to generate the file before the colon 
on the above line and must start with a tab character (Le. , you cannot just use 
spaces to indent the line) . When you enter just make and press the Return key, 
it builds the first item listed in the makefile (in this case, it builds the executable 
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test_sort : test_sort . o  sort . o  
g++ -g test_sort . o  sort . o  -0 test_sort 

test_sort . o :  test_sort . cpp 
g++ -g -c test_sort . cpp 

sort . o :  sort . cpp 
g++ -g -c sort . cpp 

clean : 
Ibin/rm -rf test_sort * . 0  

Figure 8 .6 :  Makefile for test�sort 

test�sort) .  You can also tell it to build other items by using the name of the 
item with the make command (i .e. , you can enter make linear _sort . 0 and it will 
execute the command to create the file named linear_sort .o) . A clean target that 
deletes all the object and executable files is commonly added so you can type the 
make clean command to delete all of them and then rebuild the entire executable 
using all the source files. You can find additional details on makefiles in most 
introductory Unix books or on the Internet . If you are using a non-Unix system, 
your integrated development environment (IDE) most likely has a build system to 
automate compiling your programs. 

1 8 . 7 1 Express ions a n d  Operator Precedence 

Expressions in C++ are similar to those in Python, but C++ does not support 
assignment of all data types and uses different Boolean operators. The C++ 
assignment statement 's syntax is the same as the Python assignment statement 
except that the tuple assignment syntax is not supported (and the data type for 
the expression on the right-hand side must be compatible with the data type of the 
variable it is assigned to on the left-hand side) . The C++ language requires that only 
one variable appear on the left-hand side of the assignment operator. To accomplish 
the C++ equivalent of the Python statement x ,  y = y ,  x, it is necessary to use a 
temporary variable. The following C++ program demonstrates this. 

II swap . cpp 
#include <iostream> 
using namespace std ; 
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int mainO 
{ 

} 

int x = 3 ,  Y 5 ,  temp ; 
cout « x « " " « y « endl ; 
temp = x ;  
x = y ;  
y = temp ; 
cout « x « " " « y « endl ; 
return 0 ;  

The output of this program is 
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In the preceding example, note that all variables must be declared and that 
variables may be assigned an initial value in the declaration statement. C++ does 
support assignments such as x = y = z. As with Python, it is right associative; y 

is assigned the value of z and then x is assigned the value of y.  

Forgetting to assign a variable before it is used in an expression usually produces 
strange results. The following program compiles and executes without error but 
produces undefined results. One time it might output 134514708 and another time 
it might output -3456782. 

II uninit . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

int x ,  y ;  

y = x ;  
cout « y « endl ; 
return 0 ;  

Standard locally declared variables inside a function are known as automatic 
variables. Automatic variables are assigned a memory location when the function 
starts but are not initialized with a value. Until you assign a value to them, they 
hold the value corresponding to whatever bits are in the memory location when the 
function starts. This is why you can, but may not , get different results each time 
you run the prograIll in the preceding example. This programming error does not 
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go undetected in Python, but does in C++. In Python, a NameError exception will 
be generated if the first line of code is y = x since the name x does not exist . 

The supported operators in C++ are essentially the same as Python's operators 
with some minor syntax differences as mentioned previously (e.g. , && for and, I I for 
or, and ! for not ) . The operator precedence rules are also the same although C++ 
has additional operators that Python does not have. Two of the additional operators 
that C++ provides are the increment and decrement operators. There are both 
prefix and postfix versions of these operators. The operators can be used to add one 
to or subtract one from an integer variable. The increment operator that adds one 
is the ++ operator and the decrement operator is the -- operator . These operators 
can be used with or without an assignment statement . The following example 
demonstrates the increment operator. The decrement operator works exactly the 
same except that it subtracts one. Notice that the difference betwen the prefix 
version and the postfix version matters when it is used as a part of an assignment 
statement . Many C++ programmers avoid using the increment and decrement 
operators as part of an assignment statement to make the code clearer. 

II increment . cpp 
#include <iostream> 
using namespace std ; 
int main( )  
{ 

} 

int a ,  b ,  c ,  d ;  
a = 2 ;  
b = 5 ;  
a++ ; I I  increments a t o  3 
++a ; II increments a to 4 
c = ++b ; II increments b to 6 and then assigns 6 to c 
d = c++ ; II assigns 6 to d and then increments c to 7 
cout « a « " " « b « " " « c « " " « d « endl ; 
return 0 ;  

All names in Python are actually references to memory locations. Every C++ 
variable is associated with a memory location that holds the actual value. Unlike 
Python where the assignment of one variable to another ends up with both referring 
to the same location, the assignment operator in C++ copies the data from the 
memory location( s) for the variable on the right side of the assignment statement 
to the memory location(s) for the variable on the left side. This difference between 
C++ and Python is not noticeable when only Python immutable types are used. The 
corresponding C++ functionality to Python references are C++ pointer variables; 
references are essentially pointers without the pointer notation. The details of the 
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memory usage and allocation for automatic variables, references, and pointers are 
covered in Chapter 10 .  

1 8 . 8 1  Decis ion Statements 

C++ supports the same basic decision statement , namely the if statement , as 
Python. There are some syntax differences but the semantics are the same. C++ 
uses the two words else if instead of the Python version elif . C++ also requires 
that parentheses be placed around the Boolean expression whereas Python does not. 
Remember that the braces {} are used to mark blocks of code and are thus used 
to indicate which code should be executed when the Boolean expression of the if 
statement is true. One exception in C++ is that if only one statement is to be 
executed when the if statement is true, then the braces are unnecessary. This can 
lead to confusing errors if a second statement is later added; many programmers 
always use braces to avoid this problem. The following example demonstrates this 
problem. 

I I ifi . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

int x = 5 ,  Y = 3 ;  

I I  incorrect example : misleading indentation 
if ex < y) 

cout « "x  is less " ;  
cout « "than y\n" ; 

cout « "the end\n" ;  
return 0 ;  

The output of this program is 

I than y 
the end 

In this case, the indentation is misleading and the line cout « " than y\n" ; 
is executed even if the Boolean expression is false. Remember that in C++, the 
indentation does not matter. To write the above program correctly requires the use 
of braces and is as follows: 
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II if2 . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

int x = 5 ,  Y 3 ;  

if ( x  < y )  { 
cout « "x is less " ;  
cout « "than y\n" ; 

} 

} 
cout « "the end\n" ; 
return 0 ;  

The output of this program is 

I the end 

The location. of the beginning brace is not standardized. Some programmers 
prefer to put it on the same line as the if statement and others prefer to put it on 
the line below. Just about everyone agrees that the ending brace should be on its 
own line and should line up with the if statement or the { if the brace is on its own 
line. Even when the beginning brace for an if statement and other C++ statements 
is placed on the same line as the statement , many programmers place the beginning 
brace for a function on its own line as we did with the beginning brace for the main 
function. Most employers pick one technique and require that their programmers 
follow the style for consistency and ease of readability. Below is the same example 
with the brace on its own line. 

/ / if3 . cpp 
#include <iostream> 
using namespace std ; 

int maine )  
{ 

} 

int x = 5 ,  Y = 3 ;  

if (x < y) 
{ 

cout « " x  is less 
cout « "than y\n" ; 

} 
cout « "the end" ; 
return 0 ;  

II . , 
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Even though indentation does not matter, C++ programmers generally follow 
the same indentation rules as Python programmers for readability. Python allows 
any amount of indentation to indicate a new block of code, but most Python 
programmers use exactly four spaces per indentation level. C++ seems to be less 
standardized and programmers use two, three, four, or eight spaces, although eight 
spaces is often entered as a tab. The examples in this text use two spaces since the 
braces provide additional visual cues to denote the blocks of code. Fewer spaces also 
means that nested blocks can have longer lines without going past the 80th column 
(most programmers limit the length of their lines to the 80th column) . 

If the same indentation rules as Python are not followed in C++, the indentation 
may be misleading with regard to the semantics of nested if/else statements. In 
Python, the indentation clearly indicates which if statement an elif or else 
statement matches up with. The rule for matching if and else statements in C++ 
is essentially the sarne; you just need to remember that the braces mark blocks of 
code and th0-t a single statement after an if or else statement can be its own block 
of code even if there are not braces. One way to state the rule is that the else 
statement goes with the closest if statement above it that is at the same level of 
braces. The following example is a code fragment; it is not a complete program 
and will not compile since it does not contain a main function and all the necessary 
statements for a complete program, but it demonstrates a programming concept 
without all the extra code. Which if statement does each else statement match 
up with? 

if (x < y) 
if (y < z) 

Gout « " a" ; 
else 

Gout « "b" ; 

if (x < y) { 
if (y < z) 
Gout « "a" ; 

} 
else 

Gout « "b" ; 

The first else statement goes with the if (y < z) statement two lines above; 
note that it is the closest if statement above it at the same level of braces. The 
second else statement goes with the if (x < y) statement four lines above it for 
the same reason. The if (y < z)  statement two lines above is at a different level of 
braces. This example demonstrates another reason to always use braces: it makes 
it easier to match the else and if statements. 
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The following example shows nested if statements along with else if state­
ments. Based on your knowledge of Python and the material presented here, the 
semantics of the code should be clear (and the program does what the output 
indicates it does) . Note that in C++, it must be written as else if , not elif 
as it is in Python. 

II grades . cpp 
#include <iostream> 
using namespace std ; 

int main e )  
{ 

double grade ; 

cout « "Enter your grade average (i . e . , 93 . 2) : I I ; 

} 

cin » grade ; 

if (grade >= 90 . 0) { 
if (grade > 92 . 0) { 

cout « "Your grade 
} 
else { 

cout « "Your grade 
} 

} 

is 

is 

else if (grade >= 80 . 0) { 
if (grade > 87 . 0) { 

an A\n" ; 

an A-\n" ; 

cout « " Your grade is a B+\n" ; 
} 
else if (grade > 82 . 0) { 

cout « "Your grade is a B\n" ; 
} 
else { 

cout « "Your grade is a B- " ;  
} 

} 
return 0 ;  

The previous example used nested if statements although an equivalent version 
could be written with an if statement followed by four else if statements that are 
not nested. We chose the nested version to demonstrate both the else if statement 
and nested statements. 

Python uses the keywords and, or, and not as Boolean operators. C++ uses the 
symbols &&, I I , and ! for and, or, and not , respectively. The C++ equivalent of the 
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Python statement if (x < 3) and not (y > 4) is if « x  < 3) && ! (y > 4) ) .  
More recent C++ compilers also support the use of and, or, and not in addition to 
using &&, I I ,  and ! .  

Unlike Python, C++ allows assignment statements in the test expression for 
the if statement and for looping statements. This means the C++ compiler will 
not mark if (x = 0) as an error even though it is probably not what you meant . 
This if statement creates the side effect of assigning zero to x and then that result 
is used as the Boolean expression. The result of an assignment statement is the 
value that is assigned so it is equivalent to x = 0 ;  if (0) . That is why assignment 
statements can be chained (for example, x = y = 0) . Because of this, the test if 
(x = 0) will always result in x being assigned the value of zero and the Boolean 
expression evaluating to false. As Python does, C++ considers any non-zero value 
to be true and zero to be false. The statement if (x = 10) will assign 10 to x 
and the test will always evaluate to true. This type of mistake can be extremely 
difficult to debug. When using a constant , some programmers write if (0  == x) . 
When writing it this way, forgetting one of the equal signs will result in an error. 
This does not help when you want to write a statement such as if (x == y) and 
mistakenly write if (x = y) . 

C++ also supports the switch decision statement but we do not cover it in 
this section since anything that can be written with a switch statement can also 
be written as if/else if statements. The switch statement is discussed in the 
optional subsection 8 . 1 7 . 1 .  

1 8 . 9 1 Type Convers ions 

In Python, many type conversions are implicit . In the following Python code, 
during the evaluation of b + c ,  the 3 obtained from b is implicitly converted to 
the floating point value 3.0 since the operand c is a floating point value. The 
value of b remains the integer 3. In the statement d = float (b) , the 3 stored in 
b is explicitly converted to 3.0 and stored in d as a floating point value. Again, b 
remains the integer 3. In the statement e = int (c ) , the value of c (5.5) is explicitly 
converted to 5 and stored in e as an integer. When a value is converted to an integer, 
its decimal portion is chopped off instead of being rounded. 

I 
b 

: 3 

c = 2 . 5  
c = b + c 
d = float (b) 
e = int (c)  
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c++ also supports implicit type conversion within expressions and explicit 
conversions. The following C++ example corresponds to the preceding Python 
example. If you remove the explicit conversion for the assignment to d and write 
it as d = b ; ,  most compilers will not produce an error, but will produce a warning 
indicating the line contains a type conversion. C++ uses the same rules as Python 
in that the decimal portion is chopped off when a value is converted from a floating 
point type to an integer type. 

int b,  e ;  
double c ,  d ;  
b = 3 ;  
c = 2 . 5 ;  
c = b + c ;  II c holds 5 . 5  
d = double (b) ; II d holds 3 . 0  
e = int (c) ; II e holds 5 ;  this could also be written as e = ( int) c ;  

Although the syntax of specifying the data type name and putting the vari­
able/expression in parentheses works for type conversions in Python and C++, 
newer compilers support a different syntax that is preferred for new C++ code. 
The following example demonstrates this syntax with the keyword static_cast : 

int b ,  e ;  
double c ,  d ;  
b = 3 ;  
c = 2 . 5 ; 
c = b + c ;  II c holds 5 . 5  
d = static cast <double> (b) ; II d holds 3 . 0  
e = static_cast <int> (c) ; II e holds 5 

1 8 . 10 I Loop i ng Statements 

C++ supports three looping statements: for,  while,  and do while. The while 
loop is basically the same as the Python while statement . The while loop is 
classified as a pretest loop since the Boolean expression is tested before the loop 
body. The syntax differences match the differences between the Python and C++ 
if statements. In a C++ while statement , parentheses must be placed around the 
Boolean expression, the C++ Boolean operators && , I I , and ! are used (again, new 
compilers also support and, or, and not ) , and the braces, {},  are used to denote 
the block of code that is to be repeated instead of indentation. As is the case with 
the C++ if statement , if the loop body is only one line of code, the braces are 
not necessary, but many programmers still use the braces. The following is a code 
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fragment containing a sampe C++ while statement . All the loop examples in this 
section output 0 through 9.  

int i = 0 ;  
while ( i  < 10) { 

cout « i « endl ; 
i += 1 ;  

} 

C++ supports a do while statement that does not have a Python equivalent . 
Unlike the while loop, the body of a do while statement is always executed at 
least once. As the syntax indicates, the loop test is not done until the loop body 
executes and thus the do while loop is classified as a posttest loop. The syntax for 
it is 

do { 
II loop body 

} while « Boolean-expression» ; 

The do while statement does not require the braces to mark the beginning and 
ending of the loop body if there is only one statement in the loop body, but does 
if there is more than one statement . The semantics of the statement are that the 
loop body is executed and then the Boolean expression is tested. If it is true, the 
loop body is executed again, the Boolean expression tested again, and so on. The 
equivalent do while statement to the above while example is 

int i = 0 ;  
do { 

cout « i « endl ; 
i += 1 ;  

} while (i  < 10) ; 

The C++ for looping statement is significantly different from the Python for 
statement . The Python for statement performs iteration over a sequence of items, 
but the C++ for statement is a more generic loop statement that is effectively 
equivalent to a while loop. The C++ for statement is best explained by looking 
at an example that also outputs 0 through 9. Figure 8 . 7  shows a flowchart diagram 
for it . 

int i ;  
for (i=O ; i<10 ; ++i)  { 

cout « i « endl ; 
} 
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�-- False loop ends 

True 

Figure 8 .7 :  Flowchart of C++ for statement example 

Inside the parentheses of the f or statement are three statements separated by 
two semicolons. The first statement , i=Q ; in this case, is typically used as an 
initialization statement and is only executed once by the for statement. After the 
initialization statement is executed, the second statement , which is treated as a 
Boolean expression,  is executed. If it is true, the loop body is executed and then the 
third statement , typically known as the increment or update action, is executed. In 
our example, the increment statement can be either the postfix version i ++ or the 
prefix version ++i ;  we will use the prefix version as some uses of the C++ Standard 
Template Library use the prefix version. After the increment statement is executed, 
the second statement is executed again. If it is true, the loop body is executed 
again, followed by the increment statement , Boolean expression, and so on. 

As you should be able to tell, any for loop can be rewritten as a while loop. 
Look at the flowchart diagram again and compare the while loop and for loop code 
fragments in this section if you have trouble seeing the correspondence between the 
location of the statements in the for loop and the while loop. C++ for statements 
can be more complicated with multiple initialization statements separated by com­
mas and multiple increment statements although we will not demonstrate these in 
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this book; some programmers think that while statements should be used for these 
more complicated versions. 

The C++ for loop also supports declaring the loop iteration variable inside 
the statement . If you do this, the variable can be accessed only inside the loop 
body. After the loop body, the variable no longer exists .  The following example 
demonstrates this. 

for ( int i=O ; i<10 ; ++i)  { 
cout « i « endl ; 

} 
II you cannot access the variable i here 

If you already have a variable declared with the same name as the variable 
you define as the loop iteration variable inside a for loop, the previously declared 
variable is not accessible inside the loop body, but is accessible after the loop body 
and retains the value it had before the loop started execution. Because this can 
lead to confusion, we do not recommend you use the syntax of declaring a variable 
inside the f or statement . This issue is part of topics known as scope and lifetime; 
the details of the scope and lifetime of variables in C++ are covered in section 8 . 1 5 . 

As with the C++ if , while,  and do while statements, the braces are not 
necessary if the loop body consists of only one statement, but many programmers 
always use the braces. As Python does, C++ also supports the break statement that 
causes a loop to terminate. Just as is suggested with Python, the break statement 
should only be used when it increases readability over a loop written without a 
break statement . 

\ 8 . 1 1 \ Arrays 

Python has lists and tuples that allow indexed access to groups of data. Python 
lists also support methods for sorting, finding elements, and many other useful 
algorithms. C++ arrays support indexed operation but are much lower level and 
do not have all the flexibility of Python lists. C++ arrays must hold items that are 
all the same type and do not support slices or using negative indices to access items 
from the end of the array. 

\ 8 . 1 1 . 1 \ S ingle-D imension Arrays 

C++ arrays are declared with brackets and accessed using brackets . As with Python, 
the first index is 0 and the last index is one less than the size. The code fragment 
below declares an array and sets a value for each element in the array. The array 
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is declared with a fixed size of 10, is indexed using 0 through 9, and can store only 
integers. 

int i ,  a [10] ; 

for ( i=O ; i<10 ; ++i) { 
a [i] = i ;  

} 

Most recent C and C++ compilers support the use of a variable to specify the 
size when defining arrays known as variable length automatic arrays (this is part of 
the update to the C language made in the late 1990s known as C99) . The other 
technique to delay specifying the size of an array until the program is run uses 
pointers and dynamic memory; it is covered in section 10 . 3 .  The following code 
fragment demonstrates variable length automatic arrays. 

int i ,  n ;  

cout « "Enter size : 
cin » n ;  

int a [n] ; 
for (i=O ; i<n ; ++i) { 

a [i] = i ;  
} 

Unlike Python, no index range checking is done for any C++ array. If a program 
attempts to access beyond the boundaries of an array, you can get undefined results , 
the program may crash, or it may appear to work correctly. We will discuss these 
memory errors in more detail in Chapter 10 .  On many operating systems when 
a C++ program crashes, it does not show you the stack trace (the line at which 
the program crashed and the sequence of function calls the program executed to 
reach that point) as Python does. Most Unix systems create a core file containing 
information about the execution and crash location. On Unix systems, the gdb 
debugger program can display the stack trace information stored in the core file . 
The command is gdb <executable-filename> core and then enter bt (short for 
"backtrace" ) and press the Return key. Most integrated development environments 
(IDEs) provide a compiler and debugging environment that provides a stack trace 
when a program crashes. 

C++ does support initialization of arrays in the declaration statement using 
the following syntax: int a [5] = 0 ,  0 ,  0 ,  0 ,  0 ; .  C++ does not support direct 
assignment of array variables. To accomplish this , each individual element of the 
array must be assigned as the code fragment below shows: 
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int i ,  a [5] , b [5] ; 

a [O] = 0 ;  a [1]  = 1 ;  a [2] = 2 ;  a [3] = 3 ;  a [4] = 4 ;  
I I  b = a ;  cannot be used 
for (i=O ; i<5 ; ++i) { 

b [i] = a [i] ; 
} 

1 8 . 1 1 . 2 1 Multi-D imensiona l Arrays 
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c++ supports multi-dimensional arrays with no limit on the number of dimensions 
other than the amount of memory the system supports. The syntax for declaring 
multi-dimensional arrays is similar to single-dimensional arrays except that addi­
tional brackets are used for each dimension. The code fragment that follows declares 
a three-dimensional array that contains a total of 120 elements and initializes each 
element to zero. 

double a [4] [10] [3] ; 
int i ,  j ,  k ;  

for (i=O ; i<4 ; ++i)  { 

} 

for ( j=O ;  j < 10 ; ++j ) { 
for (k=O ; k<3 ; ++k) { 

a [i] [j ] [k] = 0 . 0 ;  
} 

} 

1 8 . 1 1 . 3 1 Arrays of Characters 

Arrays of characters (the char type) can be used in C++ as they are used in the C 
language to represent strings, but when programming in C++ you usually want to 
use the built-in C++ string class covered in section 9 . 2 .  When using raw arrays 
of characters to represent a string, a trailing byte of zero is used to indicate the end 
of the string, so the array size needs to be one larger than the maximum number of 
characters you are storing. The byte zero is indicated by the single character ' \0 ' . 
Note that the single quotation mark is used to denote a single character (which is of 
the char type) while the double quotation mark is used to denote a string. Since a 
few of the C++ library functions use C-style strings (arrays of characters) instead of 
the C++ string class, we will cover the very basics of C-style strings. The following 
shows the use of a C-style string, but it is an extremely bad example because it 
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allows a buffer overflow exploit . It allows you to type in your name and then says 
"hello" to you. 

II buffer . cpp 
#include <iostream> 
using namespace std ; 

int main( )  
{ 

} 

char c [20] ; 

cout « " enter your first name : " ; 
II this code is a security risk 
II a buffer overflow occurs if the user enters 
II more than 19 characters 
cin » c ;  
cout « "Hello II « c « endl ; 

If you enter Dave, the program stores the characters D, a, v, e ,  and \0 in positions 
zero through four of the array. When the code outputs the variable c, it starts at the 
beginning of the array and outputs characters until it reaches the \0 that indicates 
the end of the string. If the user types in more than 19 characters, the data will 
go past the end of the array, allowing the user to write data to memory that your 
program has not allocated for data. Clever computer crackers can in some cases 
use this situation to enter executable code, allowing them to steal private data that 
you may have entered in the program such as passwords or financial information. 
This is another reason to use the C++ string class instead of C-style strings. The 
remaining details and the C functions for manipulating strings are not covered in 
this text since the C++ string class is recommended. 

1 8 . 12 1  Funct ion Deta i ls 

Functions are used in Python to split code into smaller subproblems and to avoid 
rewriting the same code multiple times. Functions are used for the same reasons in 
C++, but there are more issues to be concerned with regarding functions in C++ 
than there are in Python. As we have already seen, all C++ executable statements 
must occur inside a function and each C++ executable program must contain exactly 
one function named main. We will start our discussion of functions in C++ with 
the terminology that you do not have to concern yourself with in Python. 
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1 8 . 12 . 1 1 Declarations, Defi n it ions, a nd Prototypes 

Unlike Python, all C++ code, with the exception of definitions of non-local variables 
and classes and declarations of variables or functions, must occur inside a function. 
To understand what this means, we need to understand the difference between 
a declaration and a definition. A simple way to distinguish between the two is to 
remember that a definition causes memory storage to be allocated while a declaration 
tells the compiler that a name exists and what it is (a variable of a specific type, 
a class, or a function with parameters) .  Variables, classes, and functions can be 
declared multiple times, but they must be defined exactly once. What is commonly 
referred to as a variable declaration is technically a variable definition. Listing the 
variables and their types at the beginning of a function is correctly called a variable 
definition even though programmers commonly refer to this as variable declarations. 
Definitions also serve as declarations since they tell the compiler about a name, but 
declarations are not definitions. 

Now that we have stated the difference between a declaration and a definition, 
let 's look at a simple example of a function declaration and a function definition. 

#include <iostream> 
using namespace std ; 

II this is a function declaration 
int main 0 ; 

II this is a function definition 
int main O 
{ 

} 

II this is a variable definition which is also a declaration 
int x ;  

x = 42 ; 
cout « "x = " « x « endl ; 
return 0 ;  

All C++ functions must have a return type (it is an int for the main function) . A 
function declaration indicates the return type, the name, and any parameters inside 
the parentheses after the name. A function declaration ends with a semicolon and 
does not contain the body of the function. Function declarations are also referred to 
as function prototypes. A function declaration/prototype tells the compiler enough 
information about the function so the compiler knows it exists and can determine if 
you use it correctly if you call it . A function definition contains the same information 
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as the declaration, but instead of the terminating semicolon, the braces are used to 
state the body of the function. In our earlier examples, we did not use a separate 
declaration of the main function as we did in the most recent example. In those 
cases, the definition of the main function also served as a declaration of it . Unless 
other code calls a function, we generally do not write a separate declaration. 

In addition to the data types listed in section 8 . 4  and the user-defined data 
types covered in section 9 . 1 ,  C++ supports a void return type. This is used when 
a function does not return a value. Functions with a void return type do not require 
a return statement , but may include a return statement. Most C++ compilers 
will produce a warning if a non-void function does not return a value , unlike Python 
which returns None if your function does not explicitly return a value. As with 
Python, C++ functions can have more than one return statement, and as soon as 
a return statement is executed, no other code in the function is executed and control 
transfers back to the statement after the point of call. Unlike with Python, only 
one value can be returned by a C++ function. This is not a significant limitation 
of C++ and can be solved by encapsulating the multiple values in a single class 
and returning an instance of that class or by using pass by reference (covered in 
subsection 8 . 1 2 . 3) .  

It is often necessary to write a function prototype so that your code will compile. 
Most compilers require a prototype if you want to call a function before it is declared. 
The reason a prototype is required when a function that has not been declared yet is 
called is that the compiler must be able to determine that the function is called with 
the correct number of parameters and that the types of those parameters are correct . 
Recall from your Python studies that the parameters in the function declaration or 
definition are known as formal parameters and the expressions or variables used 
when you call the function are known as actual parameters. The following example 
shows the problem of calling a function before it has been declared or defined. 

II this example will not compile 
int main O 
{ 

} 

double a=2 . 5 ,  b=3 . 0 ,  c ;  
I I  the compiler has not yet seen the f function 
II so it cannot determine if f is called correctly 
c = f (a ,  b) ; 

double f (double x ,  double y) 
{ 

return x * x + 2 * x * y ;  
} 
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Most compilers will give an error for the line c = f (a , b) stating that f was 
not declared. There are two ways to solve this problem. In this case, the simplest 
method is to write the f function above the main function. In this case, the definition 
of f also serves as its declaration. Another option is to write a prototype for the f 
function above the main function as the following example shows. 

double f (double x ,  double y) ; 

II you do not need to list the formal parameter names in the prototype 
II this example also shows you that you can declare a function multiple 
II times even though you generally do not do this 
double f (double , double) ;  

int mainO 
{ 

} 

double a=2 . 5 ,  b=3 . 0 ,  c ;  

I I  the prototype allows the compiler t o  determine 
II that f is called correctly 
c = f (a ,  b) ; 

double f (double x ,  double y) 
{ 

return x * x + 2 * x * y ;  
} 

The prototype for the function f specifies that its return type is a double value 
and that it takes two parameters each of which is a double value. As the commented 
lines in the example show, you do not have to specify the name of the formal 
parameters but you may if you wish. Most programmers do specify the names of 
the formal parameters since the names of the parameters often indicate what the 
parameters represent . It is important to note that a semicolon is required after a 
prototype, but when defining the function you do not put a semicolon after the 
right parenthesis. Also note that the data type name must be placed in front of 
each formal parameter; it is not correct to write double f (double x ,  y) in either 
the prototype or the actual implementation of the function. 

A common rnistake beginning C++ programmers make is to also declare the 
formal parameters as local variables as the following code fragment does. This 
is incorrect since the local variables prevent the formal parameters from being 
accessible. Your C++ compiler will likely generate a warning indicating the variables 
shadow a parameter. Some compilers may compile the program while others will 
indicate this is an error and refuse to compile the program. 
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II buffer . cpp 
#include <iostream> 
using namespace std ; 

int main( )  
{ 

char c [20] ; 

cout « " enter your first name : " ; 
II this code is a security risk 
II a buffer overflow occurs if the user enters 
II more than 19 characters 
cin » c ;  
cout « "Hello " « c « endl ; 

} 

You have probably realized by now that the header files you include contain the 
declarations of items your code is using. The iostream header file contains the 
declarations of cout and cin. The definitions of these items are not included in 
header files . In these cases, their definitions are in a library of machine code that 
the linker automatically links with as it creates your executable code. We discuss 
how to write your own header files in section 8 . 13 .  

1 8 . 12 .2 1 Pass by Va l ue 

The default mechanism for parameter passing in C++ is pass by value. Pass-by­
value causes a separate copy of the data value for each parameter to be made. Since 
a completely separate copy is used, any changes to the formal parameters in the 
function are not reflected in the actual parameters. This allows you to effectively 
treat the formal parameters as additional local variables since changes made to them 
do not directly affect other parts of the program. As with Python, it does not matter 
whether the names of the formal and actual parameters match. The next example 
demonstrates this . 

II value . cpp 
#include <iostream> 
using namespace std ; 

void f (int a ,  int b) II a and b are the formal parameters 
{ 

cout « a « " " « b « endl ; 
a += 3 ;  
b += 5 ;  
cout « a « " " « b « endl ; 

} 



int main O 
{ 

int x = 1 ,  Y = 2 ;  
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f (x ,  y) ; II x and y are the actual parameters 
cout « x « " " « y « endl ; 

} 

The output of this program is 

1 8 . 12 . 3 1 Pass by Reference 

293 

c++ also supports a second parameter passing mechanism known as pass by ref­
erence. Instead of Inaking a copy of the data value, a reference (the address in 
memory) to the data is passed. Because of this , any changes made to the formal 
parameters are reflected in the actual parameters. In Python if you pass a mutable 
data type (a list , dictionary, or class instance) to a function and modify it inside the 
function, the change is reflected in the actual parameter, but if you assign a new 
instance to the formal parameter, the change is not reflected in the actual parameter. 
With pass by reference in C++, any change , including assigning a new value , to the 
formal parameter is reflected in the actual parameter. Pass by reference is indicated 
by putting an ampersand (&) in front of the formal parameter (but not the actual 
parameter) . Placing an ampersand in front of the actual parameter has a different 
effect (see section 10 . 2 ) .  The example below is similar to the previous example but 
one parameter is passed by reference and results in different output . 

II reference . cpp 
#include <iostream> 
using namespace std ; 

void f eint a ,  int &b) II a and b are the formal parameters 
{ 

} 

cout « a « " " « b « endl ; 
a += 3 ;  
b += 5 ;  
cout « a « " " « b « endl ; 
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int main O 
{ 
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int x = 1 ,  Y = 2 ;  

} 

f (x ,  y) ; II x and y are the actual parameters 
cout « x « II II « y « endl ; 

The output of this program is 

The corresponding actual parameter for any formal parameter that uses pass 
by reference must be a variable, not an expression. In the example, we could not 
write f (2 , 4) ; .  Making a copy of the 2 and storing it in the location for the formal 
parameter a is fine, but the problem is that if we change the formal parameter b, 
we do not have a corresponding actual parameter to make the change to (since it is 
a constant) . 

1 8 . 12 .4 1 Passi ng Arrays as Para meters 

c++ automatically passes arrays by reference for efficiency reasons; you do not use 
the & to designate that the array contents are passed by reference. Instead of making 
a copy of the array, a copy of the starting memory address of the array is passed. 
Because of this, any changes made to the contents of the array by the function will 
be reflected in the array passed to the function. This is effectively the same as 
passing a Python mutable type (e.g. , a Python list ) to a function. You can change 
only the contents of the array, not the memory location that the array uses. When 
we cover pointers and dynamic memory in Chapter 1 0  the details and ramifications 
of this will be clearer. 

You do not need to specify the exact size of the array in the formal parameter for 
the array, but the function does need to be careful not to access beyond the array 
size. A common technique is to pass an additional parameter that specifies the size 
of the array. The following code example demonstrates this with an implementation 
of selection sort . The square brackets after the formal parameter (int a [] ) indicate 
a single-dimensional array without a specified size is being passed to it . You can also 
specify the size if you wish but it will be ignored. The second parameter specifies 
the size of that array. Since arrays are not passed by value, the modification to the 
array inside the selection_sort function affects the actual parameter passed. The 
output of the program (not shown) is the array in sorted order. 



II selection . cpp 
#include <iostream> 
using namespace std ; 
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void selection_sort (int a [] , int size) 
{ 

} 

int i ,  j ,  min_pos , temp ; 

for (i=O ; i<size-l ;  ++i) { 
min_pos = i ;  

} 

for (j =i+l ; j <size ; ++j ) { 
if (a [j ]  < a [min_pos] ) { 

min_pos = j ;  
} 

} 
temp = a [i] ; 
a [i] = a [min_pos] ; 
a [min_pos] = temp ; 

int main O 
{ 

} 

int i ;  
int a [5] = {7 , 6 ,  4 ,  2 ,  3} ; 
int b [10] = {3 , 0 ,  5 ,  7 ,  4 ,  6 ,  8 ,  1 ,  9 ,  2} ; 

selection_sort (a ,  5) ; 
selection_sort (b , 10) ; 
for (i=O ; i<5 ; ++i) { 

cout « a [i] « " " ;  
} 
cout « endl ; 
for ( i =O ;  i<10 ; ++i )  { 

cout « b [i] « " " ;  
} 
cout « endl ; 
return 0 ;  
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Multi-dimensional arrays can also be passed to functions. The size of all the 
dimensions except the first must be specified. In C++ ,  multi-dimensionsal arrays 
are stored in row major order. For an array declared as int b [2] [3] , the order 
the values are stored in memory is b [0] [0] , b [0] [1] , b [0] [2] , b [1] [0] , b [ 1 ]  [ 1 ] , 
b [1]  [2] . In order to calculate the address of a specified position in the array, we 
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must know all the dimensions except the first . In the previous example, b [i] [j ] is 
at offset i*3*4+j *4 from the start of the array. Remember that we are assuming 
that integers take four bytes. To move to row i we must move past i *3*4 bytes, 
and then to the corresponding spot j in that row we must move past j *4 bytes. 
The following function prototype accepts a three-dimensional array in which the size 
of the last two dimensions are 10 and 20, respectively: void f ( int b [] [ 10] [20] , 

int size) ; .  Since the first dimension is not needed to calculate the address of a 
position in the array, it does not need to be specified in the formal parameter array 
declaration; the size parameter is used to indicate the size of the first dimension so 
the code in the function knows how large the array passed as the actual parameter 
I S .  

1 8 . 12 .5 1 const Para meters 

c++ supports marking parameters const which means that the function cannot 
change the parameter. This is useful for having the compiler check if you accidently 
try to change a parameter when there is no reason your code should try to change it . 
If your code does change a parameter marked const , the code will not compile and 
will generate an error indicating the reason. The following example demonstrates 
the syntax: 

void f (const int a, int b) 
{ 

} 

a = 2 ;  II this will generate a compiler error 
b = 2 ;  II this is fine 

The const designation can also be used with parameters passed by reference. 
At first this might seem to be a contradiction since pass by reference is used when 
we want to modify a parameter. Recall that pass by value makes a copy of the data 
being passed. Making a copy of values that do not require much memory such as 
an int or a double is not a problem, but copying a variable that is hundreds or 
thousands of bytes takes time and requires a significant amount of extra memory. 
Pass by reference passes the starting address of the variable as a reference to the 
existing data without making a copy of the data; this requires only four bytes on 
32-bit systems no matter what the actual size of the data value is. When you want 
to pass a large data structure, but do not want a function to change it, you can pass 
it by reference with the const designation. The following example assumes we have 
a class named LargeType defined: 



void f (const LargeType &big) 
{ 
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II any changes to parameter big will generate a compiler error 

} 
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This is one reason Python treats everything as a reference. Assigning, passing, 
or returning any object only requires the reference (and possibly the reference count) 
to be changed instead of copying the potentially large amounts of data in an object 
such as a list or dictionary. 

1 8 . 12 .6 1 Defau lt Parameters 

c++ supports default parameters to functions similarly to the way Python does. 
Default parameters allow a function or method to be called with fewer actual 
parameters than formal parameters; default values defined in the function/method 
declaration are substituted for the missing actual parameters. The following example 
shows the use of default parameters. 

void f eint a, int b ,  int c=2 , int d=3) 
{ 

II do something with the parameters 
} 

int main O 
{ 

} 

f (O ,  1 ) ; II equivalent to f (O ,  1 ,  2 ,  3) ; 
f (4 ,  5 ,  6) ; II equivalent to f (4 ,  5 ,  6 ,  3) ; 
f (4 ,  5 ,  6 ,  7) ; II no default values used 

The example has two parameters that must always be specified and two default 
parameters. This allows the function to be called with two, three, or four parame­
ters . As the comments state, the default values for the parameters are used when 
necessary. As with Python, the default parameters must be the last parameters so 
the compiler can match up the actual and formal parameters based on the order. 
Default values are specified only in the declaration of the function, not the definition 
of the function. The exception is that if the definition is also the declaration, then 
you need to list them as the previous example shows. The following example shows 
the use of default parameters when there is both a declaration and a definition. We 
will show another example of default parameters with header files in section 8 . 13 .  



298 Chapter 8 A C++ I ntroduction for Python Programmers 

double f (double x=O , double y=O) ; 

double f (double x ,  double y) 
{ 

return x * x + 2 * x * y ;  
} 

int mainO 
{ 

double x=2 . 5 ,  y=3 . 0 ,  z ;  

z = f (x ,  y) ; 
} 

Passing an arbitrary number of parameters as you can do in Python with *args 
is possible, but is more complicated in C++ and beyond the scope of this book. 

1 8 . 13 1 Header F i l es a nd I n l i ne Fu nct ions 

The purpose of  header files i s  to  declare functions, classes (classes are covered in 
section 9 . 1 ) ,  and non-local variables so that they can be used in other C++ source 
files . We have included the iostream header file in our examples and now we will see 
how to write our own header files. We will use our sorting example to demonstrate 
them. We will start with a header file declaring two different sorting functions. 

II sort . h  
#ifndef _ _  SORT H 
#define SORT __ H 

void selection_sort (int a [] , int size) ; 
void merge_sort (int a [] , int size) ; 

#endif 

The first thing to notice is that we have added some new preprocessor commands; 
recall that preprocessor commands start with a pound sign (#) . The ifndef line 
checks if the symbol __ SORT __ H has been defined. If it has not , the next line defines 
the symbol __ SORT __ H and then we have the function declarations. If the symbol was 
already defined, none of the code between the #ifndef and #endif line is copied 
when we include this file . Using these preprocessor commands is the standard 
way to prevent your header file from being included twice. Including a header file 
that contains only declarations does not produce errors, but will slow down the 
compilation since the compiler has more lines of code to process. Including a header 
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file that contains definitions (as header files for classes do) will cause a problem since 
we can have only one definition of a name. 

While it is unlikely one file would directly include the file twice, a header file 
often includes other header files. So if your header file included the file <cmath> 
and an implementation file included both your header file and <cmath> then the 
<cmath> file would effectively be included twice. The use of the name __ SORTS __ H 

as the defined symbol does not have to follow that pattern exactly. Typically, some 
combination of underscores along with the name of the file are used so that each 
header file has a unique symbol associated with it . 

The sort . cpp file would usually include the sort . h file although in this case it 
does not need to since neither function calls the other. It would look like 

II sort . cpp 

#include " sort . h" 

void selection_sort (int a [] , int size) 
{ 

II code for selection_sort function 
} 

void merge (int a [] , int low , int mid , int high) 
{ 

II code for merge function 
} 

void merge_sort (int a [] , int size) 
{ 

II code for merge_sort function 
} 

A file that wants to call one or both of our sort functions needs to include the 
header file sort . h and link with the sort . 0 file that the compiler generates. Note 
that we did not put the merge function in the header file since it is only called by the 
merge_sort function. A simple example using our sorting code is the following; these 
three files could be compiled and linked on Unix systems using our g++ commands 
listed in section 8 . 6 .  

II test_sort . cpp 
#include <iostream> 
using namespace std ; 
#include " sort . h" 
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int mainO 
{ 

int i ;  
int a [10] {9 , 8 ,  7 ,  
int b [10] {9 , 8 ,  7 ,  

selection_sort (a ,  10) ; 
merge_sort (b , 10) ; 
for ( i=O ; i<10 ; ++i)  { 

6 ,  5 ,  4 ,  3 ,  2 ,  1 ,  
6 ,  5 ,  4 ,  3 ,  2 ,  1 ,  

cout « a [i] « " " « b [i] « endl ; 
} 
return 0 ;  

} 

O} ; 
O} ; 

We will look at another example of header files so that we can point out a 
common mistake made when using default parameter values .  We will write a couple 
functions to perform temperature conversions and put them in a separate file so 
many different programs can easily use them. Our header file and implementation 
file are the following: 

II conversions . h  
#ifndef CONVERSIONS_H 
#define __ CONVERSIONS_H 

double f_to_c (double f=O . O) ; 
double c_to_f (double c=O . O) ; 

#endif 

II conversions . cpp 
#include " conversions . h" 

II the next line is commented out since it is incorrect 
II double f_to_c (double f=O . O) 
double f_to_c (double f )  
{ 

return (f - 32 . 0) * (5 . 0  I 9 . 0) ; 
} 
double c_to_f (double c )  
{ 

return (9 . 0  I 5 . 0) * c + 32 . 0 ;  
} 

The common mistake is to cut and paste the function declarations from the 
header file into the implementation file . This results in the default parameter values 
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being specified in the implementation file also. We have shown this in our example, 
but commented out the incorrect lines and added the correct lines without the 
default values. The C++ compiler will give an error message if you forget to remove 
the default values from the implementation file when you cut and paste the function 
prototypes from the header file. 

Since the code for these functions is short, the overhead of making the function 
call can take more execution time than the execution of the actual function code. 
C++ provides a mechanism known as inline functions to allow for more efficient 
execution. An inline function is generally written in a header file and is written 
exactly the same as the function would be in the implementation file except the 
keyword inline is placed before the function definition. In this case, the definition 
is also a declaration. For our conversion example, the header file with inline functions 
is 

II conversions2 . h  

#ifndef _ _  CONVERSIONS_H 
#define __ CONVERSIONS_H 

inline double f_to_c (double f=O . O) 
{ 

return (f - 32 . 0) * (5 . 0  I 9 . 0) ; 
} 

inline double c_to_f (double c=O . O) 
{ 

return (9 . 0  I 5 . 0) * c + 32 . 0 ;  
} 

#endif 

When writing all the functions inline in a header file, you do not need an 
implementation (conversion . cpp) file since all the information is contained in the 
header file . The inline keyword prevents multiple definitions of the file from being 
created when you link a number of different files that all include the conversion . h 
header file. 

If your inline function is relatively short , the compiler will generate the machine 
code for the function body and place it right in the code instead of creating the 
code to call a function. If your function is relatively long, the compiler will ignore 
your inline directive; instead it will create a normal function call since copying the 
machine code corresponding to a long function will make the program much larger if 
that function is called from a number of different places. A general rule is to declare 
functions that are less than five lines long as inline functions. 
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The original C programming language did not include inline functions and 
instead used preprocessor macros to accomplish the same result of not creating 
a function call for short functions. C++ also supports macros since they are part 
of the C language, but it is recommended that you use inline functions since they 
enforce type checking and are safer. A sample source file that defines and uses a 
macro for c_ to_f is the following. 

II macro . cpp 
#include <iostream> 
using namespace std ; 

#define c_to_f (c)  (9 . 0  I 5 . 0) * c + 32 . 0  

int maine )  
{ 

int x = 10 ; 
cout « c_to_f (x) « II " ; 
cout « c_to_f (x + 10) « endl ; 

} 

The #define preprocessor command is used to define macros. The preprocessor 
performs a search and replace for the item(s) inside the parentheses. Based on that, 
what do you think the output of this program is? 

The two lines that use the macro are expanded by the preprocessor to 

cout « (9 . 0  I 5 . 0) * x + 32 . 0  « II " ; 
cout « (9 . 0  I 5 . 0) * x + 10 + 32 . 0  « endl ; 

Given those expansions, you should now realize why the output of the program 
is 50 60.  The correct value for 20 degrees Celsius is 68 degrees Fahrenheit. You 
could fix this by using more parentheses in the macro, but there are still other 
potential problems with macros. So when writing C++ code, you should use the 
inline keyword instead of a macro to avoid the overhead of a function call. 

There is an important issue regarding namespaces and header files. You should 
not use the version using namespace . . .  for any namespace in header files. The 
reason for this is that any file that includes your header file effectively would have 
that using namespace statement in it . This could cause problems if the source file 
defines a name that is also defined in the specified namespace. If you need to refer 
to a name defined within a namespace in a header file, always refer to it using the 
namespace : : name syntax rather than including a using statement in your header 
file . We will see an example of this in section 9 .4 .  
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As Python contains a number of modules with useful functions, C++ has a 
standard library of functions. We have already seen the iostream header that 
the C++ language uses for input and output libraries. Many of the functions 
available in C++ are part of the original C standard library, but the header files 
have been updated for C++. The name of some of the C library header files are 
stdio.h, stdlib.h, and math.h. To use these header files in a C++ program, the .h 
extension is removed and the letter "c" is prepended, resulting in the names: cstdio, 
cstdlib, and cmath. For example, to use the sqrt function that is defined in the 
C math header file, you need the following statement at the top of your C++ file: 
#include <cmath> . There are other standard C++ header files, some of which will 
be covered later, but these along with iostream are the common ones beginning 
C++ programrners need. 

The standard convention is to use less-than and greater-than signs around the 
names of header files that are part of the C++ library or libraries that are common 
and located in standard directories . Your C++ compiler also provides a method 
for specifying additional directories to search. On most systems the compiler first 
searches the additional directories you specify and then a set of standard directories 
containing header files. The first header file that matches the name is used. Double 
quotation marks must be used around header files that are in the same directory as 
the C++ source files you are compiling. For header files specified with double quota­
tion marks, the compiler first searches the current directory. If the compiler cannot 
find the header file in the current directory, the compiler searches the additional 
user-specified include directories and the standard directories. You cannot use the 
less-than and greater-than signs around header files that are in the current directory 
since it is not searched by default , but you can use double quotation marks around 
standard header files since both the current directory and standard directories are 
searched. Even though it is possible to always use double quotation marks, C++ 
programmers follow the convention of using the less-than and greater-than signs for 
standard header files. 

1 8 . 14 1  Assert Statements a nd Test i ng 

Unlike Python which includes a unit testing framework, the C++ standard does 
not include a unit testing framework. There are a number of third-party, C++ unit 
testing frameworks that you can download and install. Most , if not all ,  of these 
frameworks are similar to Python's unit testing framework as both the C++ and 
Python unit testing frameworks are based on Java's unit testing framework. Instead 
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of covering one of the C++ unit testing frameworks, we will discuss the C++ assert 
statement since it allows you to easily write unit tests. 

The Python unit testing framework provides a number of methods that verify 
if something is true and include "assert " as part of their name (e.g. , assertEquals 
and assertRaises) . These methods are based on the C++ assert statement 
(technically, it is a macro that the preprocessor expands) which takes a Boolean 
expression. If the Boolean expression is true, the program continues, but if it is false, 
the program exits immediately and indicates the line of code at which the assert 
statement fails. Unlike the Python unit testing framework which runs additional 
tests even after one of the tests fails, using the C++ assert statement causes your 
program to exit immediately if the assertion is not true. This means the tests 
following an assert statement that fails are not executed. 

We will modify our test_sort . cpp file from section 8 . 13 to use the assert 
macro. The assert macro takes an expression and evaluates it . If the expression 
evaluates to true, execution continues.  If the expression evaluates to false, the 
program immediately exits and prints an error message indicating the line of source 
code containing the assertion that failed. 

II test_sort2 . cpp 
#include <iostream> 
using namespace std ; 
#include <cassert> 
#include " sort . h" 
int main( )  
{ 

} 

int i ;  
int a [iO] 
int b [10] 

{9 , 8, 7 ,  6 ,  5 ,  4 ,  3 ,  2 ,  1 ,  O} ; 
{9 , 8 ,  7 ,  6 ,  5 , 4 , 3 , 2 ,  1 ,  O} ; 

cout « "test select ion sort " « endl ; 
selection_sort (a ,  10) ; 
for ( i=O ; i<9 ; ++i)  { 

assert (a [i] <= a [i+1] ) ;  
} 
cout « " selection sort passed" « endl ; 
cout « " test merge sort " « endl ; 
merge_sort (b , 10) ; 
for ( i=O ; i<9 ; ++i)  { 

assert (b [i] <= b [i+1] ) ;  
} 
cout « "merge sort passed" « endl ; 
return 0 ;  
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In order to use the C++ assert macro, you must include the cassert header 
file . Unlike Python's unit testing framework which indicates that tests pass, using 
this simple strategy will not produce any output if all the tests pass. If you want 
output , you can place output statements after each assert statement or after a 
group of assert statements to indicate that tests pass as we did in our example. 
Remember that output is buffered by the operating system and may not appear if 
the program crashes before the operating system sends the buffered output to the 
screen. Outputting a new line using endl forces the buffer to be flushed, so always 
use an endl at the end of output statements when testing code. 

For files that test a number of functions or class methods, you may want to create 
a separate test function that tests each method and then have the main function 
call each of the test functions. This would be similar to the Python unit testing 
framework calling all the methods that start with the four characters test . 

1 8 . 15 1 The Scope a nd L ifet ime of Varia b les 

The scope of a variable is the section of source code where it can be accessed and 
the lifetime of a variable is the execution time period starting when the memory for 
the variable is allocated and ending when it is deallocated. The scope and lifetime 
of variables in C++ is similar to Python. The scope of a variable in C++ is the 
block of code in which it is declared. If an inner block declares a variable with the 
same name as one declared in the outer block, the variable declared in the outer 
block is not accessible inside that inner block. The following example (that outputs 
2 1) demonstrates this, but for readability reasons, it is not recommended that you 
declare two different variables with the same name in different blocks of the same 
function. 

II scope . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

int x = 1 ;  

{ 

} 

int x = 2 ;  
cout « x « II I f . 

, 

cout « x « endl ; 
return 0 ;  
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Many programmers prefer to only declare variables at the top of a function and 
the scope of these variables is the function body. As mentioned in section 8 . 10 ,  
you can also declare the loop variable inside the f or  statement and that variable is 
accessible only inside the body of the loop. 

The lifetime of automatic C++ variables starts when the function declaring 
the variable begins execution and ends when the function completes. Each time a 
function is called, memory for its automatic variables is allocated on a stack and 
when the function ends, the memory is deallocated from the stack. This means that 
the local automatic variables of a function are usually bound to a different memory 
location each time the function is called and thus, do not remember the value they 
had the previous time the function was called. If you need a function's local variable 
to have a "history" and remember its value from the previous call, declare it with the 
static  prefix. The following example uses the local static variable count to keep 
track of how many times the function is called. The lifetime of static variables is 
the lifetime of the program. When the program is started , memory for the variable 
count is allocated and initialized to zero based on the statement inside the function. 
That same memory location is used for the variable count until the program ends; 
the initialization to zero is executed only once when the memory is first allocated for 
the variable, not each time the function is called. The scope of the variable count 
is inside the function f ,  but its lifetime is from the start of program execution until 
the program ends. 

void f O  
{ 

static int count = 0 ;  

count++ ; 
} 

1 8 . 16 1  Common C++ M ista kes by Python Progra m mers 

Some common mistakes that Python programmers make when learning C++ are 

• forgetting the semicolon after each statement 

• putting a semicolon at the end of a for statement or after the Boolean 
expression for an if or while statement 

• putting a colon at the end of a for statement or after the Boolean expression 
for an if or while statement 
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• forgetting the braces to mark blocks or putting a semicolon after a brace that 
marks a block of code 

• forgetting the parentheses around Boolean expressions in if ,  while, and do 

while statements 

• forgetting to put the data type in front of each formal parameter in a func­
tion/method; for example, writing void f (int a ,  b) instead of the correct 
void f eint a ,  int b) 

• putting the semicolon after the right parenthesis marking the end of a func­
tion's parameters when you are writing the code or forgetting that a semicolon 
is required after the right parenthesis when defining the function prototype but 
not writing the code 

• attempting to directly assign one array variable to another; you must assign 
each element individually, typically with a loop or nested loops in the case of 
multi-dimensional arrays 

1 8 . 17 1 Add it ion a l  C++ Top ics (Opt iona l )  

The topics covered in this section are included to provide a more detailed, but still 
not complete, introduction to C++ for the interested reader. An understanding of 
the topics covered in this section is not required to understand the other chapters 
in this book. 

1 8 . 17 . 1 1 The C++ Switch Statement 

C++ supports another decision statement that Python does not have. The C++ 
swi tch statement is less general than the if statement . Any statement written 
with a switch statement can be written using if and else if statements, but not 
all if statements can be written as switch statements. The following C++ code 
shows an example of a switch statement. 

II switch . cpp 
#include <iostream> 
using namespace std ; 

int main O 
{ 

int choice ; 
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} 

cout « " enter your choice of 1 ,  2 ,  3 ,  4 :  " ;  
cin » choice ; 

switch (choice) { 
case 1 : 

cout « "you chose 1\n" ; 
break ; 

case 2 :  
cout « "you chose 2\n" ; 
break ; 

case 3 :  
cout « "you chose 3\n" ; 
break ; 

case 4 :  
cout « "you chose 4\n" ; 
break ; 

default : 
cout « "you made an invalid choice " ;  

} 
return 0 ;  

As the example demonstrates,  the keyword switch is used followed by an ex­
pression inside parentheses. The expression must be an ordinal value which for our 
purposes means its type must be int , char, or bool.  The expression cannot be a 
floating point value or a string. The keyword case is used to list one of the possible 
values for the expression. If the value of the expression (choice in our example) 
matches the case value then the code under that case statement is executed. The 
execution continues until a break statement is encountered or the end of the switch 
statement is reached. When a break statement is reached, execution continues with 
the statement after the ending brace for the switch statement (return 0 in our 
example) . The keyword def aul t is used to indicate the code that is to be executed 
if the expression does not match any of the case statements. 

Since the break statement is required to indicate the end of the code to be 
executed when a case statement matches, you can use this fact to write code such 
as the following: 

II switch2 . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

int choice ; 
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cout « "enter your choice of  1 ,  2 ,  3 ,  4 :  " ;  
cin » choice ; 

switch (choice) { 
case 1 :  
case 2 :  

cout « "you chose 1 or 2\n" ; 
break ; 

case 3 :  
case 4 :  

cout « "you chose 3 or 4\n" ; 
break ; 

default : 

} 
cout « "you made an invalid choice " ;  

return 0 ;  
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Since the break statement is required to change the flow of execution, forgetting 
the break statement does not create a syntax error but can be a semantic error as 
the following example shows: 

II switch3 . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

int choice ; 
cout « "enter your choice of 1 ,  2 ,  3 ,  4 :  " ;  
cin » choice ; 

} 

switch (choice) { 
case 1 :  

cout « "you chose 1\n" ; 
break ; 

case 2 :  
cout « "you chose 2\n" ; 

case 3 :  
cout « "you chose 3\n" ; 
break ; 

case 4 :  
cout « "you chose 4\n" ; 
break ; 

default : 
cout « "you made an invalid choice " ;  

} 
return 0 ;  
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If you enter 2 when running this program it outputs both you chose 2 and you 

chose 3. You should be able to convert each of these switch statements to an if 
statement with the same semantics . As we mentioned earlier, one specific value must 
follow a case statement . You cannot write: case ( choice > 0 && choice < 3) : .  
The switch statement is not commonly used because of these restrictions, although 
it can be used for menu choices as our examples showed. Another important point to 
notice is that braces are not used to mark the blocks of code under a case statement . 
This is an inconsistency with how C++ marks blocks of code. 

1 8 . 17 .2 1 Creati ng C++ Namespaces 

You can create your own namespace using the namespace keyword. The following 
example demonstrates a namespace. 

namespace searches 
{ 

} 

// function/class definitions 
void binary_search( )  
{ 

// code here 
} 

To access the function binary_search outside of the namespace block, you have 
three choices. You can refer to it using the full name searches : : binary _search 
each time you want to access it . Another option is to place the statement using 
namespace searches at the top of your file. This allows you to refer to all the func­
tions, classes, etc. defined in the searches namespace without prefixing them with 
searches : : . This corresponds to the Python statement from searches import * .  
The third option i s  to  put the statement using searches : : binary _search at the 
top of your file. This is similar to the Python statement from searches import 
binary_search. This C++ version of the using statement allows you to access the 
binary _search function without the need for the searches prefix in your code, but 
any other names defined in the searches namespace that you want to access would 
need to be specified with the searches : : prefix. 

1 8 . 17 . 3 1 G loba l  Variab les 

C++ also supports global variables although the use of global variables is generally 
bad design. One exception to this is that constants are commonly defined as global 
variables. The lifetime of any global variable is the entire execution time of the 
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program. To create a global variable, define it  at the top of the file outside of any 
function blocks. A global variable is accessible in any functions in that file and can 
be accessed in other files if those files declare the variable with an extern prefix. If 
you wish to make a variable accessible only inside the current file, define it with the 
static prefix. In formal terms, the scope of global variables defined with the static 
prefix is  the file i t  i s  declared within. The memory for global and static variables is 
allocated when the program is loaded into memory just before its execution starts, 
and the same memory location is used for global and static variables throughout 
the entire execution of the program. As you may have noticed, the keyword static 
has multiple meanings depending on the context in which it  i s  used. 

Only one file that is part of a program may define a global variable with a 
specific name (just as there can be only one function with a specific name defined per 
program) , but any number of files may declare that variable extern and access the 
global variable. This is the issue that there can be many declarations, but only one 
definition. The following example with three files demonstrates a global and a static 
variable. It also denlOnstrates another use of extern to indicate that the functions 
f and g with the specified prototypes exist in another file; this is not recommended 
and instead you should use header files as discussed in subsection 8 . 1 2 . 1 .  In either 
case, you will get an error during the linking phase of building the executable code 
if the functions cannot be found in one of the compiled object files or the global 
variables are defined non-extern in more than one file . 

I I file! . cpp 
int x ;  II this global variable is potentially accessible 

II in any file linked with filel . o  
const double PI=3 . 141592654 ; II global constant 
static int y ;  II this variable is only accessible in filel . cpp 

extern void f 0 ; 
extern void gO ; 

int mainO 
{ 

} 

x = 2 ;  

Y = 3 ;  
f ( ) ; I I  calls f defined in another file 
g ( ) ; II  calls g defined in another file 
return 0 ;  
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II f ile2 . cpp 
extern int x ;  II this allows access to the global variable x defined 

II in another file 
void f O  
{ 

x = 3 ;  II sets x declared in another file (file1 . cpp in this case) 
} 

II  f ile3 . cpp 
extern int x ;  

void g O  
{ 

x = 4 ;  II sets x declared in another file 
} 

1 8 . 18 1  Cha pter S ummary 

This chapter covers the basic syntax and semantics of much of the C++ language 
assuming you understand Python. Here is a summary of some of the important 
concepts. 

• C++ code is compiled while Python uses a hybrid technique of compiling to 
byte code and interpreting the byte code. 

• C++ requires you to declare all variable names with a specified type; the 
built-in types are int , char, float , double, and bool .  

• C++ uses braces, {},  to mark blocks of code. 

• C++ requires parentheses to be placed around the Boolean expression for the 
if , while,  and do while statements. 

• C++ uses the two words else if instead of the elif keyword that Python 
uses. 

• C++ supports a basic array type for storing groups of data of the same type. 
C++ arrays are similar to Python lists, but C++ arrays are not a class and 
thus only support the use of brackets to access individual elements; you cannot 
slice , concatenate, or assign entire arrays with one statement . 

• A declaration indicates the type for an identifier name, while a definition 
allocates memory (for a variable or the code for a function or method) . 
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• C++ supports two parameter passing methods: pass by value which copies 
the parameters and pass by reference which causes the formal parameters to 
refer to the same memory locations as the actual parameters. 

• C++ arrays are automatically passed by reference. 

• Header files are used to declare functions and global variables; we will learn 
how header files are used with classes in the next chapter. 

• The scope of a variable refers to the section of code in which a variable can 
be accessed; the lifetime of a variable is the time during the execution of the 
program in which a specific memory location is associated (bound) to the 
variable. 

1 8 . 19 1 Exerc ises 

True/Fa lse Questions 

1. All C++ programs must have a function named main. 

2. Any variable used in a C++ program must be declared with a type before it 
can be used. 

3. A C++ function must return a value. 

4. A C++ program that compiles will output the results that you intend it to. 

5 .  A C++ program that does not compile can be executed. 

6. If the C++ compiler outputs a warning, it will never compile the program. 

7. C++ compiler warnings should be ignored . 

8. If you compile a C++ program using the Linux operating system on an Intel 
chip, you can execute the generated program on a computer running the 
Windows operating system on the same Intel chip. 

9. For simple text-based programs you can usually recompile a C++ program on 
different architectures and operating systems without changing your code. 

10. In general, a compiled C++ program will execute faster than a similar Python 
program on the same computer. 
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1 1 .  A C++ program that solves a specific problem such as sorting numbers will 
always execute faster on the same computer than a Python program that solves 
the same problem. 

12 .  Passing an int type by reference is faster and more efficient than passing an 
int type by value. 

M u lti p le Choice Questions 

1. Which of the following programs would you expect to be significantly faster 
when written in C++ than when written in Python? 

a) a program to convert miles to kilometers 
b) a program with a loop that runs a million times 
c) a program with a loop that runs 10 times 
d) all of the above 

2 .  If a C++ function uses a variable that has not been declared, what happens? 

a) The code will not compile. 
b) When executing that function, an error message will be generated similar 
to Python's NameError message. 
c) The program crashes. 
d) none of the above 

3. Compiling a C++ file that does not contain a main function produces 

a) an executable program. 
b) an object file containing the machine code for that C++ file. 
c) another C++ file. 
d) none of the above 

4. The linker 

a) copies header files into a C++ file. 
b) compiles a C++ file into machine code. 
c) combines machine code from multiple files to produce an executable pro­
gram. 
d) loads a program into memory and executes it . 

5. C++ functions can return 

a) at most one variable or expression. 
b) multiple variables or expressions. 
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c) arrays. 
d) C++ functions do not return a value. 

6. Which of the following statements is the most similar in Python and C++? 

a) the f or statement 
b) a function definition 
c) the if/else statement 
d) the while statement 

7. Which of the following is not true about the C++ pass by reference mecha­
nism? 

a) All changes to the formal parameter that are made in the function affect 
the actual parameter. 
b) A copy of the actual parameter is made. 
c) It allows you to effectively return multiple values calculated by the function. 
d) It is slower than pass by value. 

8 .  Which of following is true about C++ arrays? 

a) Arrays can be passed by value. 
b) Arrays include a method to sort the values in the array. 
c) The values in the array must be the same type. 
d) Arrays can be returned by a function. 

9. What is the main purpose of a header file? 

a) to comnlent the code in a source file 
b) to declare items so they can be used in C++ source files 
c) to define iterns so they can be used in C++ source files 
d) none of the above 

10. The scope of a variable refers to 

a) the different values it can hold. 
b) where the variable can be accessed. 
c) the time during which memory is allocated for the variable. 
d) the name of the variable. 

Short-Answer Questions 

1. What is the exact output (indicate where there are spaces) of the program 
input 1 . cpp if the user enters 3 . 5  4? 
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2. What is the output of the following C++ program? 

#include <iostream> 
using namespace std ; 
void f eint a ,  int &b) 
{ 

} 

cout « a « II II « b « endl ; 
a = a + 2 ;  
b = b + 3 ;  
cout « a « II II « b « endl ; 

int mainO 
{ 

} 

int x = 4 ,  Y = 5 ;  
cout « x « II II « y « endl ; 
f (x ,  y) ; 
cout « x « II II « y « endl ; 
return 0 ;  

3.  What are the five basic built-in C++ data types? 

4. What are the differences between the Python conditional statement and the 
corresponding C++ conditional statement? 

5. What are the differences between the Python and C++ while loop state­
ments? 

6. What are the differences between the Python list type and C++ arrays? 

7. What is the purpose of a C++ header file? 

8. What do the terms scope and lifetime mean with respect to variables? 

Progra mm ing Exercises 

1 .  Write a C++ program that prints the multiplication table for all possible 
products of the numbers 0 through 9.  

2 .  Write a C++ program that inputs the number of cents (an integer between 0 
and 99) and outputs the number of quarters, dimes, nickels, and pennies that 
add up to that amount and minimizes the number of coins needed. 
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3. Write a C++ program that allows the user to enter non-negative numbers 
(pressing the Return key after each number is entered) . A negative number 
entered by the user indicates the end of the list of numbers. Output the total 
and average of the numbers the user entered excluding the negative number. 

4. Write a C++ program that asks a user to enter the coefficients a, b, and c of 
a quadratic equation a * x2 + b * x + c = 0 and outputs the solution (s) . The 
program should indicate if there are no real solutions. 

5. Write a C++ function that determines if the int parameter it is passed is 
a prime number. Use this function to write a program that outputs all the 
prime numbers less than or equal to a number the user inputs. 

6. Write a C++ program that inputs an annual investment amount , the interest 
rate earned every year, and the number of years. The program outputs the 
final value of the investment assuming the same amount is invested at the 
beginning of each year and the interest is compounded annually. 

7. Modify the selection_sort code in this chapter to use an inline swap function 
that accepts two parameters passed by reference. 

8. Write a C++ function named linear _search that accepts an integer value to 
search for, an array of integers, and the number of integers in the array. Using 
the linear search algorithm, the function must return the position of the first 
parameter in the array. If the first parameter is not in the array, the function 
returns - 1 .  

9 .  Write a C++ binary _search function with the same parameters as the 
linear _search function described in the previous exercise. Search the list 
using the binary search algorithm and return the location of the first parameter 
in the array (returning -1 if the value is not found) . The array that is passed 
to the binary search algorithm must be sorted. 

10. Place the linear_search and binary_search functions in a file named 
searches . cpp with a corresponding header file named searches . h. Create a 
file named test_searches . cpp that initializes an array of one million integers 
in order and tests the searches with inputs that result in both the best and 
worst running time of each algorithm. 
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Object ives 

• To write non-dynamic memory C++ classes. 

• To learn how to use the built-in C++ string class. 

• To learn how to read and write ASCII files in C++. 

• To learn how to overload operators in C++ as methods and as functions. 

• To learn how to write class variables and methods in C++. 

[[I] Basic Syntax a nd Sema nt i cs 

The reasons for and benefits of using classes in C++ are the same as they are in 
Python. Classes allows us to encapsulate the data and methods for interacting 
with the data into one syntactic unit . Data hiding allows programmers to use the 
class without worrying about or understanding the internal implementation details . 
If the programmer using the class only calls the methods for interacting with the 
data and does not directly change the instance variables, we are assured that the 
data integrity of our class is maintained (i .e . , assuming the class implementation is 
correct , manipulating the class through the methods will not result in inconsistent 
data in the class instance) . Classes also make it easier to reuse the code in more 
than one application. This section covers the basic syntax and semantics of C++ 
classes. We will exarnine some of the more advanced class topics in later sections 
and later chapters. 

Before we start examining the syntax for C++ classes, we will discuss some of the 
terminology differences between Python and C++. Python officially calls members 
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of a class attributes; attributes can be either variables or functions. Python has 
a built-in function named getattr that stands for "get attribute" and is used to 
access the attributes of a class. If we have an instance r of the Rational class 
defined in section 2 . 5 , the following two statements are equivalent : 

[ print r . num 
print getattr (r , ' num ' ) 

Note that the getattr function takes an object and a string and returns the 
attribute specified by the string for the object . The returned attribute can be either 
data or a function or method. Python has a built-in function named hasattr that 
also takes the same two parameter types and returns True or False indicating 
whether or not the object has an attribute with that name. Python also has a 
built-in function named setattr that takes three parameters: an object, a string, 
and an object to assign for the attribute. An example of this is setattr (r , ' num ' , 
4) ; this is equivalent to r . num = 4. 

We have also used the terms instance variables and instance methods or just 
methods to discuss attributes of a Python class since they are the more commonly 
used object-oriented terminology. C++ uses the terms instance variables or data 
members for data and the terms instance methods or simply methods for function 
members. The term members is typically used to refer to both data members and 
data methods, corresponding to the Python term attributes. 

C++ allows the interface of the class and the implementation of the class to 
be separated to a greater degree than Python, but does not require that they be 
separated. Typically the declaration of the methods and the instance variables is 
placed in the header file with a . h extension and the implementation is placed in a 
file with the same name except it uses a .C ,  .cpp, or .cc extension. We are using the 
.cpp extension in our examples throughout this book. 

The header file defines the class name, the methods it provides, the instance 
variables, and sometimes the implementation of some of the short methods. The 
implementation file uses the #include preprocessor command to include the header 
file and provides the implementation for each of the methods (except the methods 
whose implementations are written in the header file) . We will now examine a 
simplified C++ Rational class and cover the additional details of C++ classes 
starting with the header file followed by the corresponding implementation file. 

#ifndef _RATIONAL_H 
#define _RATIONAL_H 

class Rational { 
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public : 
II constructor 
Rational (int n = 0 ,  int d = 1 ) ; 

II sets to n I d 
bool set (int n ,  int d) ; 

II access functions 
int num( )  const ; 
int den O const ; 

II returns decimal equivalent 
double decimal O const ; 

private : 
int num_ , den_ ; II numerator and denominator 

} ; 

#endif 
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After the #ifndef and #define preprocesser directives, the class definition 
starts. Note that even though this header file contains only prototypes for the 
methods, this is a class definition, not a class declaration. A declaration of the 
Rational class is just the code class Rational ; .  A class declaration only tells the 
compiler a class nam.e exists, while a class definition specifies the name along with the 
instance variables and methods. Because a header file contains a class definition, the 
use of the #ifndef and #def ine processors is even more important than in a header 
file that just contains a number of function declarations or prototypes. Without 
the preprocessor directives, if the header file is included twice, you will have two 
definitions of the class and that is not allowed. 

As in Python, the class keyword followed by the name of the class is used to 
start the class definition. C++ uses the beginning and ending braces ({ and }) to 
mark the beginning and ending of the class definition. A semicolon is used after 
the ending brace for a class definition. The only places a semicolon is used after an 
ending brace in C++ are after class definitions, struct definitions (structs are not 
covered in this book) , and statically initializing arrays. Forgetting the semicolon 
after the ending brace often leads to confusing compiler errors. Most compilers will 
indicate there is an error at the first line after the include statement in the file that 
included this header file. Many programmers immediately type the ending brace and 
semicolon after typing the beginning brace so they do not forget it and then enter 
the code between the two braces to help avoid this error. In Python, you typically 
specify the instance variables by initializing them in the constructor (e.g. , self . num 
= 0) although other methods can create additional instance variables using the 
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same syntax. In C++, all the instance variables must be defined with their name 
and type inside the class definition; you cannot add new instance variables in the 
implementation file as you can in any Python method. 

C++ supports enforced data and method protection. The keywords public ,  
pri vate,  and protected are used to  specify the level of  protection. As  you can 
see in the sample Rational class definition, the protection keyword is followed by 
a colon and specifies the level of protection until another protection keyword is 
specified. In our Rational example, all the methods are public and all the instance 
variables are private. You may specify each protection level multiple times inside a 
class definition if you wish, although in most cases you will only want to list each 
protection level once. 

Any data members or methods that are public can be accessed by any other 
code; this corresponds to Python's lack of enforced protection. We discussed that the 
convention when writing Python code is that only the methods should be accessed 
by other code and that with a few exceptions such as our ListNode and TreeNode 
classes that are used to help implement another class, the instance variables should 
be accessed only by the methods of the class. Instance variables and methods that 
are declared private may be accessed only by methods of the class; the compiler 
will generate an error if code outside the class attempts to access a private member. 
Thus, in most cases instance variables should be declared private.  There are also 
cases where we want some methods to be called only by other methods of the class; 
we saw an example of this with our _f ind method in our linked implementation of 
a list . The convention in Python is to name these private methods starting with 
one or two underscores.  C++ allows you to explicitly declare methods private by 
listing them in a pri vate or protected section of the class definition. This is where 
you declare instance variables and methods that you want to be accessed only by 
the methods of this class. The compiler will generate an error if code outside of the 
class attempts to access a private method. 

The protected designation is similar to the private designation except that 
subclasses may also access the protected members of a class. The compiler will 
generate an error if any code other than the code in the class itself or a subclass 
attempts to access a protected method. For now, we will use only the public  and 
pr·i vate designations. 

The purpose of the constructor in C++ is to initialize the instance variables 
just as it is in Python. A C++ constructor has the same name as the class and 
does not have a return type. As with Python, you may define a constructor that 
takes additional parameters, but it is a good idea to define a constructor that does 
not require any parameters. A constructor that does not take any parameters is 
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known as a default constructor whether you write it or the compiler automatically 
generates it . We used default parameters to allow the Rational constructor to be 
called with zero, one, or two parameters; because this constructor can be called 
without any parameters, it is a default constructor. A C++ constructor is called 
automatically when a variable of that type is defined (i .e . , Rational r1 , r2 ; would 
cause the constructor to be called for r1  and for r2) . You do not need to and cannot 
call a constructor directly (i .e . , after declaring r1 as a Rational type, you cannot 
write r1 . Rational 0 or r1 . Rational (2 , 3) ) ;  instead you specify the parameters 
when you define the variable (e.g. , Rational r1 (2 , 3) ; ) . Unlike in Python, you 
do not write code such as r1  = Rational O to call the constructor (you do write 
something similar when using dynamic memory, covered in Chapter 1 0) ;  instead, 
you declare variables with the specified type as you do for the built-in types (e.g. , 
int i ;  and Rational r ; ) . 

If you do not write any constructors, the C++ compiler implicitly creates a 
default constructor (it does not appear in your implementation file) with an empty 
body; this means the compiler does not initialize any of the instance variables. Since 
the compiler defined default constructor has no code, you typically want to write 
one to ensure that your instance variables are initialized. The default constructor 
is also called when you declare arrays of objects .  The following variable definition 
causes the Rational constructor to be called 10 times, once for each item in the 
array: Rational r [ 10] . 

Some of the Rational methods (e.g. , num O , den O , and decimal O ) have the 
keyword const after the method declaration. This use of const indicates the 
method does not change any of the instance variables of the class. I t should be 
clear that a method marked const can call only other const methods (since if 
it called a non-const method, that method could modify the instance variables) . 
You may recall that we can also mark formal parameters with a const designation. 
For example we can write a standalone function void f (const Rational r) . This 
means the function f is not allowed to modify the parameter so it can only call 
Rational methods that are designated as const methods. 

Next , we will examine the syntax details of class implementation files using 
the Rational class as an example. To reduce space, we have left out comments, 
preconditions, and postconditions. 

#include "Rational . h" 

Rational : : Rational (int n .  int d) 
{ 

set (n. d) ; 
} 
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bool Rational : : set (int n ,  int d) 
{ 

} 

if (d ! = 0) { 

} 

num_ = n ;  
den_ = d ;  
return true ; 

else 
return false ; 

int Rational : : num()  const 
{ 

return num_ ; 
} 

int Rational : : den ( )  const 
{ 

return den_ ; 
} 

double Rational : : decimal ( )  const 
{ 

return num_ / double (den_) ;  
} 

The Rational implementation file includes the header file Rational.h so it has 
access to the prototypes for each method and the compiler can check that the proper 
type and number of parameters are used in the implementation. The syntax for 
writing methods is the return type for the method, a space, the class name, two 
colons, and then the method with its parameters . If the method was declared const 
in the class definition, that also must be indicated in the implementation file. Again, 
note that the constructor does not have a return type. The method prototypes 
must exactly match the return type, parameter types, and constant designations in 
the header file . If they do not ,  you will get a compiler error. Recall that we do 
not put the default parameter values (for the constructor in this example) in the 
implementation file ; they appear only in the method prototype in the header file . 

The two colons separating the class name and method name are known as the 
scope resolution operator. With Python, the methods are defined inside the class 
and the indentation indicates that the methods are part of the class. In C++ the 
implementation of the methods is written separately froIn the class definition so the 
class name and two colons are used to indicate that a method is part of the specified 
class. You may also write standalone functions that are not part of a class in a C++ 
class implementation file by not using the class name and the two colons. Writing 
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a standalone function in a C++ class implementation file is typically only done if 
the function is used by the class methods and not by any other code. 

C++ does not use an explicit self parameter as Python does. Since the class 
definition specifies the names of all the instance variables, the compiler knows the 
names of the instance variables and does not need something similar to self to 
indicate items that are members of the class. The same is true when calling a 
method of the class. The methods can be called without a prefix as we called 
the set method from the constructor. C++ does contain a pointer named this 
that corresponds to Python's self ; we will discuss it in Chapter 10  after we have 
discussed what a C++ pointer is. 

Since an explicit indication that you are referring to instance members is not 
required in C++, many programmers prefix or suffix an underscore onto the names 
of instance variables. Use of the underscore makes it clear that you are referring 
to an instance variable and also allows you to use a similar name for parameters 
and instance variables. If a method has a formal parameter with the same name as 
an instance variable, the parameter makes the instance variable inaccessible unless 
you use the this pointer. If you accidently use the same name, all uses of the 
identifier are the parameter instead of the instance variable inside that method so 
your instance variables are not set or changed. The compiler does not generate an 
error when you narne a formal parameter the same as an instance variable. This 
can be a difficult error to track down and is one reason many programmers add 
the underscore to instance variables . The explicit use of self in Python avoids 
this error. Python programmers often rely on the explicit use of self and name 
parameters and instance variables the same. Because of this , Python programmers 
learning C++ often make this mistake. In C++, make certain you use names for the 
formal parameters that are different than the class instance variables. The following 
example shows the problem. This example also demonstrates that you can place 
both the class definition and implementation code in one file; however, you do not 
want to do this unless your entire program is in one file . If you want to allow your 
program to be split among multiple files or your class to be reused in other programs, 
you must create a separate header and implementation file for the class. 

#include <iostream> 
using namespace std ; 

class Rational { 

public : 
Rational (int num_=O , int den_=1) ; 
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int num ( )  const { return num_ ; } 
int den ( )  const { return den_ ; } 

private : 
int num_ , den_ ; 

} ;  

I I  this i s  incorrect 
II do not use the same name for formal parameters and instance variables 
Rational : : Rational (int num_ , int den_) 
{ 

} 

num_ = num_ ; 
den_ = den_ ; 
cout « num_ « II I II « den_ « endl ; 

int Rational : : num ( )  const 
{ 

return num_ ; 
} 

int Rational : : den ( )  const 
{ 

return den_ ; 
} 

int mainO 
{ 

Rational r (2 ,  3) ; 

cout « r . numO « II I II « r . den O « endl ; 
} 

The output of this program on our computer is 

1 2 I 3 
:-1881115708 I 0 

The same problem occurs if you redeclare a local variable with the same name 
as an instance variable as the following example shows: 



#include <iostream> 
using namespace std ; 
class Rational { 

public : 
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Rational (int num=O , int den=!) ; 

int numO const ; 
int den 0 const ; 

private : 
int num_ , den_ ; 

} ; 

Rational : : Rational (int num , int den) 
{ 

} 

II this is incorrect 
II do not declare local variables with the same name as 
II instance variables 
int num_ , den_ ; 

num_ = num ; 
den_ = den ; 
cout « num_ « II I II « den_ « endl ; 

int Rational : : num ( )  const 
{ 

return num_ ; 
} 
int Rational : : den( )  const 
{ 

return den_ ; 
} 

int main O 
{ 

Rational r (2 ,  3) ; 

cout « r . num O « II I II « r . den O « endl ; 
} 
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The output for this example on our computer is the same as in the previous example. 
The instance variables are never initialized in either case so their value is whatever 
is in the memory location used for them before the program starts. In both cases, 
the actual instance variables are hidden from use in the constructor. In the first 
example, the formal parameters with the same name as the instance variables are the 
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variables accessed inside the constructor. In the second example the local variables 
are accessed in the constructor instead of the instance variables. Never use the same 
name for instance variables and local variables or formal parameters. The use of an 
underscore for instance variables (but never local variables or formal parameters) is 
a common technique to avoid this problem. 

Another common beginner's mistake is to write code such as r .  num O = 3 ;  
where r is an instance of the Rational class. This is not correct in Python or C++. 
The return value of r .  num () is a number, not a variable in which a value can be 
stored. This is the same issue as incorrect code such as 4 = 3 ;  or sqrt (5)  = x ; . 
What appears on the left-hand side of the assignment statement must be a variable. 
The term for this is appropriately named an l-value since it appears on the left-hand 
side of the assignment statement . C++ does support a reference return type that 
allows a return value of a class method to be assigned a value. The details of this 
are covered in Chapter 10 .  

For functions and methods that are very short (typically less than five lines 
of C++ code) , the overhead of making the function call takes more time than 
executing the actual code in the function. In these cases, it usually makes sense to 
avoid the overhead of a function call . C++ provides a mechanism known as in lining 
that allows you to write the code as if it is a function or method, but avoids the 
overhead of a function call. In effect , the compiler replaces the function call with the 
actual body of the function. When copying the function or method, it also properly 
handles the effect of passing the parameters and returning a value. For methods of 
a class there are two different ways to write them as inline methods. The following 
rewrite of our Rational class demonstrates both techniques. The num O and den O 
methods demonstrate the one technique and the decimal method demonstrates the 
other technique. 

class Rational { 

public : 
II constructor 
Rational (int n = 0 ,  int d = 1 ) ; 

II sets to n I d 
boo 1 set (int n ,  int d) ; 
II access functions 
int num( )  const { return num_ ; } 
int den( )  const { return den_ ; } 
II returns decimal equivalent 
double decimal ( )  const ; 
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private : 
int num_ , den_ ; II numerator and denominator 

} ; 

inline double Rational : : decimal ( )  const 
{ 

return num_ I double (den_) ; 
} 
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The num O and den O methods are written inline when they are declared. Im­
mediately after the method definition, a semicolon is not used and instead the code 
follows inside braces. This technique is commonly used when the code fits on the 
line with the method name. The decimal ( )  method is written inline after the 
class declaration. This is the same technique used for writing standalone functions 
inline that we discussed in section 8 . 13 .  The keyword inline is used followed by 
the code just as if you were writing the method in the implementation file. This 
technique is typically used when the code is a few lines long. The inline keyword 
is used to prevent multiple definitions of the method when multiple files include this 
header file. If you forget the inline keyword, you get a linking error indicating 
multiple definitions of the function if more than one file includes the header file 
with the method code. Inline methods should be written in the header file, not 
the implementation file . The exception is if the inline method is called only from 
one implementation file, then you could write the inline method at the top of that 
implementation file . 

Our Rational constructor calls the set method. Notice that the method call 
looks like a normal function call, unlike in Python where we need to use self to 
indicate a method is being called. The reason for adding the set method is to 
prevent having two copies of code that do the same thing. It does add the overhead 
of an additional function call in the constructor. To solve that problem, we could 
make the constructor or the set method an inline method. It is generally a good 
idea to avoid duplicate code since if you change it in one place, you need to remember 
to change it in the other place( s) also. 

With both techniques for writing a method inline in the header file, the compiler 
can just copy the code for the method into the function or method that called it , 
avoiding the overhead of a function call. Most compilers will create a normal function 
or method if the inline function or method is too long since copying the code for 
large functions will increase the size of your executable program. Whether or not the 
compiler actually creates an inline function is transparent to the programmer. In 
both cases, the return type and parameter types are checked and the parameters are 
effectively passed using the specified mechanism (either by value or by reference) . 
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The only reason for writing inline functions is to avoid the overhead of a function 
call. 

1 9 . 2 1 Stri ngs 

N ow that we have learned the basics of C++ classes, we will examine the string 
class that is part of the standard C++ library. C++ strings correspond to Python's 
string data type and are used to represent sequences of characters that are usually 
(but not always) treated as a unit. Since C++ is for the most part backward 
compatible with C,  it supports C-style strings and some C++ library functions 
require that a C string be passed as the actual parameter, so we will briefly discuss 
C-style strings. The C language uses an array of char to store string data and uses 
a special character \0 to indicate the end of the string; this requires that the array 
size be at least one unit larger than the string of characters you want to store. Since 
C does not directly support classes, a C library provides separate functions that are 
used to manipulate the arrays of characters . 

C++ strings are implemented as a class that has an array of char as an instance 
variable. As you should expect, the C++ string methods allow you to access and 
manipulate a string without concerning yourself with the internal implementation. 
The C++ string class provides a number of methods for manipulating the string 
data, but does not include all the capabilities that Python strings have. In addition 
to the methods the C++ string class supports, it also overloads many of the 
operators so you are able to assign and compare strings. You can read and write 
C++ string variables using the instances cin and cout and file classes defined 
in the <iostream> header file. We will not cover all the string methods, but will 
introduce the basics of the C++ string class in this section. 

To use the C++ string class, you must #include <string> at the top of 
your file along with any other header files you are including. The string class is 
also defined within the standard namespace so you must have the statement using 
namespace std at the top of your file or refer to the class as std : : string. When 
a C++ executable program reads strings using the » operator, it stops processing 
characters at the first whitespace (space, tab, or new line) . For example, to read in 
a person's first and last name entered with a space between them, you would need 
to use two strings: 

string first , last ; 
cout « "Enter your first and last name (separated by a space) : " ;  
cin » first » last ; 
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You may create and output strings that contain whitespace, but when using 
the » operator, you need to remember that it stops reading each time a whitespace 
character is encountered. The code string name ; name = "Dave Reed" ; cout « 
name « endl ; works as you would expect , outputting Dave Reed followed by a new 
line. C++ provides a getline function that reads from the current input pointer 
to a delimiter; the default delimiter is the \n end-of-line character. The getline 

function requires two parameters: the input stream from which to read and a string 
that is passed by reference and will contain the string that is read. The input 
stream can be the cin instance or a file handle for reading data from a disk file . 
The optional third parameter for the getline function is the character to use as a 
delimiter. The getline function reads all the characters up to and including the 
delimiter and returns a string containing all the characters read except the delimiter. 
Using the getline function, we can input a first and last name as one string: 

string name ; 
cout « "Enter your first and last name : " ;  
getline (cin , name) ; 

You can mix the use of the getline function and the » operator with cin or a 
file handle, but it requires that you carefully process the input . When you use cin 
to read a variable, it skips leading whitespace, but leaves the trailing whitespace, 
including the new line character in the input stream. The getline function reads 
everything up to the delimiter, including the delimiter, so if a getline follows a 
cin that reads everything on the line, it gets an empty string. You must make two 
calls to getline in this case, and the second one will get the data on the next line. 

The C++ string class supports the standard comparison operators < , <= ,  > , >=,  

== ,  and ! =. The rules for comparison are the same as in Python; dictionary order is 
used and lowercase letters are greater than uppercase letters since the ASCII codes 
for lowercase letters are larger. Unlike Python strings, C++ strings are mutable. 
You can both access individual characters and set individual characters using the 
brackets operator ( [] ) . As you should expect, the indexing starts at zero and you 
cannot use negative values since internally the string is represented as a C++ array. 
There is no range checking, so you need to ensure that you do not access beyond the 
end of the string. C++ strings also support the assignment operator = for assigning 
a string variable or expression on the right-hand side of the assignment statement 
to the string variable on the left-hand side. 

The C++ string assignment operator creates a separate copy of the data, unlike 
Python which would have two references to the same data. If after assigning one 
C++ string variable to another, you change one of the strings, it does not change the 
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other. The + and += operators work the same as they do in Python. The following 
example demonstrates some of these concepts .  

II stringex . cpp 
#include <iostream> 
#include <string> 
using namespace std ; 

int main O 
{ 

} 

string first = IIDave ll ; 
string last = IIReedll ; 
string name ; 

name = first + II II + last ; 
cout « name « endl ; 

first [3] = ' i ' ; 
first += IId ll ; 

name = first + II II + last ; 
cout « name « endl ; 
cout « name . substr (6 , 4) « endl ; 
return 0 ;  

The preceding example outputs Dave Reed, David Reed, and Reed on three 
separate lines . Notice that the single quotation mark is used with the bracket 
operator since first [3] is a single character. You cannot use Python's slicing 
syntax for accessing a substring; C++ does provide a substr method. Its prototype 
is string substr (int position , int length) . It returns a string starting at the 
specified starting position with the specified length. This is different than Python 
slicing which takes the starting and ending positions. The string class also has a 
method named c_str O for returning a C array of characters . This is useful when 
you need to call a function that requires a C-style string instead of a C++ string. 
The f ind method takes a string to search for and optional starting position for the 
search. It returns the index of the first occurrence of the search string in the string. 
There are a number of additional string methods, but these are a few of the ones 
that are commonly used. 
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1 9 . 3 1 Fi le  I n put a nd  Output 

File input and output often involves the use of strings although you can input ASCII 
numeric data directly as numbers or read a file in a binary format corresponding 
directly to how the computer represents an internal data type. We will not cover 
the reading of binary files in this book. C++ uses instances of classes to perform 
file input and output as it does for keyboard and monitor input and output . The 
fstream header file contains the class declarations of if stream and of stream for 
file input and output , respectively. These are also in the namespace std. Similarly 
as in Python, you nlust associate the file variable with a filename using the open 
method. The following example demonstrates file input and output in C++ by 
prompting the user for a file name and writing the string David Reed to the file . 
It then opens the file for reading, reads the first line in the file using the getline 
function, and outputs it using the cout statement . 

II getline . cpp 
#include <iostream> 
#include <fstream> 
using namespace std ; 

int mainO 
{ 

} 

string filename , name , first , last ; 
of stream outfile ; 
if stream infile ; 

cout « "Enter filE� name : " ;  
cin » filename ; 
outfile . open (filename . c_str ( » ; 
outfile « "David" « II II « II Reed II « endl ; 
outfile . close 0 ; 
infile . open(filename . c_str ( » ; 
getline (infile , name) ; 
cout « name « endl ; 
infile . close 0 ; 
return 0 ;  

Notice that the open method requires the C version of a string which is an array 
of characters, so we need to use the c_str O method of the string class when 
opening the file. As with Python, you need to close the file to ensure that data 
written to the file is Hushed to the disk. In this example we demonstrated the use of 
the getline function although we could have followed the same pattern as we did 
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when writing the file and read two separate strings and combine them using the + 
operator. The code fragment for this method is 

infile . open (filename . c_str ( ) ) ; 
infile » f irst » last ; 
infile . close 0 
name = f irst + II II + last ; 
cout « name « endl ; 
infile . close 0 ; 

You can also read numeric data from an ASCII file using a similar technique. 
You open the file and then specify a numeric data variable (int ,  float , or double) . 
Just as when reading numeric values using the keyboard, whitespace (space, tab, 
or new line) is used to separate numeric values and the amount of whitespace does 
not matter. Each time you attempt to read a value, it skips past any whitespace 
to attempt to find a numeric value. If it encounters any non-numeric characters 
immediately after any preceding whitespace while attempting to read a number, a 
run-time error is generated. When reading a number with a non-numeric digit after 
it , it reads the number, but not the other non-numeric digit , leaving the file pointer 
at that location. The next input will start with that character. The following would 
read a file named in . txt containing 10 integer values as ASCII text with each one 
separated by any amount of whitespace and output each value on a line as it reads 
it . 

II readfile . cpp 
#include <iostream> 
#include <fstream> 
using namespace std ; 
int main O 
{ 

} 

if stream ifs ;  
int i ,  x ;  
ifs . open ( " in . txt " ) ; 
for ( i=O ; i<10 ; i++) { 

ifs » x ;  
cout « x « endl ; 

} 
return 0 ;  

The open method of both the i f  stream and of stream classes has a second 
parameter for specifying the mode for opening the file. It should be clear from the 
preceding examples that the second parameter has a default value. This book does 
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not cover the details of the second parameter or how to read or write binary files 
with C++. 

1 9 .4 1 Operator Over load i ng 

As you may have determined based on the discussion of strings, C++ supports user­
defined operator overloading. As with Python, the purpose of operator overloading 
is to allow for more concise, readable code. Because C++ does not use references by 
default , it is also necessary to use operator overloading to override the assignment 
operator for classes that use dynamic memory; we will discuss this in Chapter 10 .  

With C++, you may choose to make the operators methods of  the class or  stan­
dalone functions (a few must be standalone functions) . Some programmers prefer 
the standalone functions, since the binary operator functions take two parameters 
corresponding to the two instances of the class to which the operator is applied. If 
you implement the operator as a method of the class, only one parameter appears in 
the method prototype; the left parameter for the operator is the implicit parameter 
corresponding to the instance with which the method was called. In Python both 
parameters appear in the definition since the self parameter is explicit . The 
drawback of using standalone functions is they cannot access the private data of 
the class. Because of this, the class must provide methods to access and possibly 
modify the private data. C++ also provides a friend construct for allowing certain 
functions or methods from other classes to access the private data. We will examine 
this technique when we learn how to overload the input and output operators. 

C++ names the methods for operator overloading using the word operator 
followed by the actual symbol for the operator that is being overloaded. We will 
first examine the technique where the operator is not a member of the class, so we 
will be writing standalone functions. The following is the complete Rational header 
and implementation file for the addition operator written as a standalone function. 

I I Rationalv1 . h  
class Rational { 

public : 
II constructor 
Rational (int n = 0 ,  int d = 1) { set (n , d) ; } 
II sets to n I d 
bool set (int n ,  int d) ; 

II access functions 
int num( )  const { return num_ ; } 
int den( )  const { return den_ ; } 
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II returns decimal equivalent 
double decimal ( )  const { return num_ I double (den_) ;  } 

private : 
int num_ , den_ ; II numerator and denominator 

} ; 

II prototype for operator+ standalone function 
Rational operator+ (const Rational &r1 ,  const Rational &r2) ; 

II Rationalv1 . cpp 
#include "Rationalv1 . h" 

bool Rational : : set ( int n ,  int d) 
{ 

if (d ! = 0) { 
num - n ;  
den - d ;  
return true ; 

} 
else 

return false ; 
} 

Rational operator+ (const Rational &r1 , const Rational &r2) 
{ 

} 

int num , den ; 

num = r1 . num( )  * r2 . den ( )  + r2 . num( )  * r1 . den( ) ; 
den = r1 . den ( )  * r2 . den ( ) ; 
return Rational (num , den) ; 

Note that since the operator is a standalone function, the class name and two 
colons (Rational : : ) is not placed in front of the name of the function (operator+) . 
A sample program that calls the operator is 

II mainv1 . cpp 
#include "Rationalv1 . h" 
int maine )  
{ 

} 

Rational rl ( 2 ,  3) , r2 (3 , 4) , r3 ; 

r3 r1 + r2 ; II common method of calling the operator function 
r3 operator+ (r1 , r2) ; II direct method of calling the function 
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Since the function is not a member of the class, it cannot access the private data 
members directly and needs to use the public methods to access the numerator and 
denominator. The function prototypes for the standalone function version of many 
of the operators that can be written are summarized in the following table (this is 
not a complete list ) .  For other classes, you obviously need to replace Rational with 
the name of that class type. We pass the parameters as const reference parameters ; 
this means only COllst methods of the Rational class can be called inside these 
functions. This does not cause a problem since applying any of the operators should 
not change the parameter(s) . Remember that the reason for passing class instances 
using the const designation and by reference is that when using pass by reference, 
only the address of the object is passed. This results in less data being copied than 
if we used pass by value so it is faster and uses less memory. The first column in 
the table shows the prototype for the function. The second column shows how the 
function/operator is called for two instances of the Rational class and what result 
it computes and returns. 

Function Computes 
Rational operator+ (const Rational&; ri , const Rational&; r2) ri  + r2 
Rational operator- (const Rational&; ri , const Rational&; r2) ri - r2 
Rational operator* (const Rational&; ri , const Rational&; r2) ri * r2 
Rational operator/ (const Rational&; ri , const Rational&; r2) ri / r2 
Rational operator- (const Rational&; r1)  -ri  
bool operator« const Rational&; ri , const Rational&; r2) ri  < r2 
bool operator<= (const Rational&; ri , const Rational&; r2) ri <= r2 
bool operator> (const Rational&; ri , const Rational&; r2) ri > r2 
bool operator>= (const Rational&; ri , const Rational&; r2) ri  >= r2 
bool operator== (const Rational&; ri , const Rational&; r2) ri == r2 
bool operator ! = (const Rational&; ri , const Rational&; r2) ri ! =  r2 

The operator overloading code can also be written as a method (Le . ,  a member of 
the class) . Usually the operator would be written in the .cpp file and the prototype 
for it would be written in the .h file . Since we are writing a member method, the 
prototype needs to be declared in the public section of the class declaration. The 
object the method is called with is the implicit first parameter rl that is visible in 
the function version, so it is not used in the method version. The following shows 
the header file and implementation file for the addition operator written as a method 
of the class. 
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II Rationalv2 . h  
class Rational { 

public : 
II constructor 
Rational (int n = 0 ,  int d = 1) { set (n , d) ; } 

II sets to n I d 
bool set (int n ,  int d) ; 

II access functions 
int num( )  const { return num_ ; } 
int den ( )  const { return den_ ; } 

II returns decimal equivalent 
double decimal ( )  const { return num_ I double (den_) ; } 

Rational operator+ (const Rational &r2) const ; 

private : 
int num_ , den_ ; II numerator and denominator 

} ; 

II Rationalv2 . cpp 
#include "Rationalv2 . h" 

II code for set method is also required 
II see previous example for the code 

Rational Rational : : operator+ (const Rational &r2) const 
{ 

} 

Rational r ;  

r . num_ = num_ * r2 . den_ + den ( )  * r2 . num ( ) ; 
r . den_ = den_ * r2 . den_ ; 
return r ;  

Since the method is a member of the class, it can directly access the private 
data members of any instance of the class. Also note that the first parameter is 
implicit in the method prototype as it is in all C++ class methods. Because of 
this, that instance's data and methods are accessed by specifying the name of the 
data/method member without a variable name before it while the explicit second 
parameter's (r2) data is accessed by specifying the name of that parameter followed 
by a period and then the data/method member. The preceding example uses both 
num_ and den 0 to demonstrate that instance variables and methods, respectively, 
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can be accessed directly for the implicit parameter; normally you would pick one 
style and use it consistently. Some programmers prefer the non-member function so 
that the function prototype is symmetric and shows both parameters. Others prefer 
the class method so all the code is encapsulated within the class and the methods 
can access the private data. 

The common way of calling the method is using the operator notation as we did 
when using the function technique for writing operators. The direct way of calling 
it is the standard syntax for' calling a method (i .e . , a class instance, followed by a 
period, followed by the method name) . 

II mainv2 . cpp 
#include IRationalv2 . h" 
int main O 
{ 

Rational r1 (2 , 3) , r2 (3 , 4) , r3 ; 

r3 = r1 + r2 ; II common method of calling the operator method 
r3 = r1 . operator+ (r2) ; II direct method of calling the operator 

} 

The following table shows the prototypes for the operators when they are mem­
bers of the class. The second column again shows how to call the methods and what 
value the operator computes and returns. 

Method Computes 
Rational operator+ (const Rational& r2) r1  + r2 
Rational operator- (const Rational& r2) r1 - r2 
Rational operator* (const Rational& r2) r1 * r2 
Rational operator/ (const Rational& r2) r1 I r2 
Rat ional operator- C )  -r1 
bool operator« const Rational& r2) r1 < r2 
bool operator<= (const Rational& r2) rl <= r2 
bool operator> (const Rational& r2) r1 > r2 
bool operator>= (const Rational& r2) r1 >= r2 
bool operator== (const Rational& r2) r1 == r2 
bool operator ! = (const Rational& r2) r1 ! =  r2 

If you wish to override the input (») and output (<<) operators, they must be 
written as standalone functions. The reason for this is the first parameter of a 
method must be an instance of that class. Consider the code cin » r 1 .  You might 
be tempted to write it as a member method, but recall that this would imply the 
method would be called as cin . operator» Crl ) . Since cin is not an instance of 
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the Rational class, the input operator cannot be a member of the Rational class 
and must be written as a standalone function. This is also the case when using the 
output operator « with an instance of the ostream class such as cout o  A standalone 
function of the output operator for our Rational class is 

std : : ostream& operator« (std : : ostream los , const Rational &r) 
{ 

} 

os « r . num O  « " / " « r . denO ; 
return os ; 

The operator needs to return the instance of the output stream variable os that 
is of type ostream so that it can be chained together (e.g. , cout « r1  « r2) . In 
this example, the returned result of cout « r1 needs to be the ostream instance 
cout so it is now the first parameter to the call for outputting r2. The ostream 
parameter os also needs to be passed by reference and returned as a reference since 
outputting the variable to the stream changes the stream. We will cover returning 
by reference in more detail in Chapter 10 ,  but for now just learn the syntax for 
returning by reference which is appending an ampersand onto the return type (e.g. , 
ostream& for the output operator) . 

Since the operator is a non-member function, it cannot access the private data 
of the Rational class. There are times where we want to allow certain other 
classes or certain functions to be able to access the private data of a class. C++ 
provides a mechanism for permitting this using the friend keyword. One common 
example where allowing a non-member function to access the private members 
directly makes sense is the input/output operator functions. Another example 
would be our ListNode class. We may want to allow the LList class to access 
the ListNode data members directly since those two classes are tightly coupled 
together. A function or class is specified as a friend inside the class that wants to 
make it a friend. The following code example demonstrates this for our Rational 
class. If we wanted to make an entire class a friend, an example of the syntax is 
friend class LList.  If we placed that line inside our ListNode class then all the 
LList methods would have access to the private data of the ListNode . We will 
demonstrate a complete example of this when we examine linked structures using 
C++ in Chapter 1 1 .  

The following code is the header file for the complete, simplified Rational 
class demonstrating operator overloading and friends. For brevity, the pre- and 
postconditions and comments are not included for all the methods. 
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II Rationalv3 . h  
#ifndef _RATIONAL_H 
#define RATIONAL_H 

II needed for definition of ostream and istream classes 
#include <iostream> 

class Rational { 

II declare input and output operators functions as friends 
II to the class so they can directly access the private data 
friend std : : istream& operator» (std : : istream& is , Rational &r) ; 
friend std : : ostream& operator« (std : : ostream& os , const Rational &r) ; 

public : 
II constructor 
Rational (const int n 

II sets to n I d 

0 ,  const int d 

bool set (const int n ,  const int d) ; 

II access functions 
int num( )  const { return num_ ; } 
int den( )  const { return den_ ; } 

II returns decimal equivalent 
double decimal ( )  const ; 

private : 

1) { set (n , d) ; } 

int num_ , den_ ; II numerator and denominator 
} ; 

II prototypes for operator overloading 
Rational operator+ (const Rational &r1 , const Rational &r2) ; 

II declare the non-member input output operator functions 
std : : istream& operator» (std : : istream &is , Rational &r) ; 
std : : ostream& operator« (std : : ostream &os , const Rational &r) ; 

#endif 

The corresponding .cpp implementation file is 

II Rationalv3 . cpp 
using namespace std ; 
#include "Rationalv3 . h" 

341 
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bool Rational : : set (const int n ,  const int d) 
{ 

} 

if (d ! = 0) { 

} 

num_ = n ;  
den_ = d ;  
return true ; 

else 
return false ; 

Rational operator+ (const Rational &r1 , const Rational &r2)  
{ 

} 

int num , den ; 

num = r1 . num( )  * r2 . den( )  + r2 . num( )  * r1 . den( ) ; 
den = r1 . den( )  * r2 . den ( ) ; 
return Rational (num , den) ; 

std : : istream& operator» (std : : istream &is , Rational &r) 
{ 

} 

char c ;  

is » r . num_ » c » r . den_ ; 
return is ; 

std : : ostream& operator« (std : : ostream &os , const Rational &r) 
{ 

} 

os « r . numO « II / II « r . den O ; 
return os ; 

The Rational object passed to the input operator function must be passed by 
reference since we want the value we read to be stored in the actual parameter sent 
(Le. ,  when we execute cin » r we want the value the user enters to be stored in r) . 
This is also why it cannot be passed as a const parameter. To allow us to type in a 
value such as 2/3, we need to read the forward slash in the input operator function. 
We declare the variable c as a char to store the slash but ignore the value after 
reading it since our Rational class encapsulates the number by storing two integers. 

Also notice in our example that we did not put the using namespace std line in 
the header file . Instead we used the prefix syntax std : : when referring to the names 
of the ostream and istream classes that are defined within the std namespace. 
Remember that the reason for this is that if we had put the using namespace std 
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line in the header file, any file that included our Rational.h file would effectively 
have the using namespace std line in it . For this reason, you should never put 
a using statement in a header file . We did put the using namespace std line in 
our Rational.cpp file so that we did not need to write std : : in front of all the 
names defined in the namespace; this is not a problem since you never include an 
implementation ( .cpp) file. 

\ 9 . 5 \  Class Var ia b les a n d  Methods 

c++ also supports a mechanism for creating class variables. You may recall that 
we discussed how to create class variables in Python in subsection 2 . 3 . 2 .  With 
instance variables, each instance of a class gets its own separate copy of the instance 
variables. With class variables, all instances of the class share the same variable 
(Le. , there is only one copy of the class variable no matter how many instances of 
the class exist) . The Card class we discussed in subsection 2 . 3 . 2  is a good example 
in which using class variables makes sense. We will create a similar Card class in 
this section using C++ class variables. 

II Card . h  
#ifndef CARD_H __ 
#define CARD_H __ 
#include <string> 

class Card { 
public : 

Card (int num=O) { number_ = num ; } 
void set (int num) { number_ = num ; } 
std : : string suit 0 const ; 
std : : string face O const ; 

private : 

} ; 

int number_ ; 
static const std : : string suits_ [4] ; 
static const std : : string faces_ [13] ; 

inline std : : string Card : : suit ( )  const 
{ 

return suits_ [number_ I 13] ; 
} 
inline std : : string Card : : face ( )  const 
{ 

return faces_ [number_ % 13] ; 
} 
#endif II __ CARD_H __ 
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The mechanism for creating class variables is to declare them with the static  
prefix. In  C++,  there are a number of  different uses for the keyword static  and 
it is easy to confuse them. This use of static has a completely different meaning 
than the use of static we discussed in the previous chapter to create local variables 
that always use the same memory location. Declaring an instance variable static 
indicates i t  i s  a class variable and thus there is  only one copy of  that variable that 
all instances of the class share. U sing a class variable in our example makes sense 
since we do not need a separate copy of the face and suit names for each instance of 
the class. Making these instance variables would be a huge waste of memory. With 
class variables, each instance of our class requires only four bytes of memory. If 
the face and suit name variables were not class variables, each instance of our Card 
class would require around 100 bytes to store the number and all the strings. The 
following is the implementation file for the Card class. 

II Card . cpp 
#include " Card . h" 

const std : : string Card : : suits_ [4] = { 
"Hearts " , "Diamonds " ,  " Clubs " ,  " Spades "  } ;  

const std : : string Card : : faces_ [13] = { 
"Ace " , "Two " , "Three " ,  "Four" , "Five " , " Six " , " Seven" , "Eight " , "Nine" , 
"Ten" , " Jack" , II Queenll , " King" } ;  

Class variables are defined as if they were non-local variables (i .e . ,  outside of any 
function) and the variables are initialized using the assignment statement once when 
the program is first executed. Since there is only one copy of the class variables, 
we do not want to assign the values inside the constructor. We declared the class 
variables with the const prefix in the header file so once we initialize the variables 
with these statements, we cannot change their values. Even if the class variables 
were not declared with the const prefix, we would still need to define them once in 
the implementation file (with or without providing initial values) . A class definition 
does not actually cause any memory to be allocated; it is only when we create an 
instance of the class that memory is allocated. This is why we must define the class 
variables in an implementation file so that memory is allocated for them. 

The following is a sample program that uses our Card class containing the class 
variables. 

II test_Card . cpp 
#include <iostream> 
using namespace std ; 
#include IICard . h" 
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int mainO 
{ 

} 

Card c [52] ; 
int i ;  

for ( i=O ; i<52 ; ++i)  { 
c [i] . set (i) ; 

} 
for (i=O ; i<52 ; ++i) { 

} 
cout « c [i] . fac:e O « II of II « c [i] . suit O « endl ; 

return 0 ;  

345 

Even though there is no need to do this, what would happen if we tried to 
put the statement cout « Card : : faces_ [O] « endl ; in our main function? This 
does demonstrate the correct usage of accessing a class variable using the class name 
followed by two colons followed by the name of the class variable. However, the class 
variables were declared private so they are not accessible outside of the class even 
though the variable definitions are not inside the class. If we declared the class 
variables in the public section this would work. 

You may be wondering why we needed to create a separate implementation file 
since all the methods were defined inline in the header file. If we instead put the 
class variable definitions in the header file as the following code shows, we could end 
up with the sarne names being defined multiple times. Recall that each variable or 
function can have only one definition. 

II this code should not be used 

#ifndef __ CARD_H __ 
#define __ CARD_H __ 

#include <string> 

class Card { 
public : 

Card(int num=O) { number_ = num ; } 
void set (int num) { number_ = num ; } 
std : : string suit e )  canst ; 
std : : string face ( )  canst ; 

private : 

} ; 

int number_ ; 
static canst std : : string suits_ [4] ; 
static canst std : : string faces_ [13] ; 
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const std : : string Card : : suits_ [4] = { 
"Hearts " , "Diamonds" , " Clubs " ,  " Spades"  } ; 

const std : : string Card : : faces_ [ 13] = { 
"Ace " , "Two " , "Three " ,  "Four" , "Five " , " Six" , "Seven" , "Eight " ,  "Nine " , 
"Ten" , " Jack" , " Queen" , "King" } ; 

//--------------------------------------------------------------------

inline std : : string Card : : suit ( )  const 
{ 

return suits_ [number_ / 13] ; 
} 

inline std : : string Card : : face ( )  const 
{ 

return faces_ [number_ % 13] ; 
} 

//--------------------------------------------------------------------

This header file works correctly if only one file includes it since that creates 
one definition of the class variables suits and faces_. However, if multiple 
implementation files that are used to create one executable program include this 
header file, then we have multiple definitions of the class variables and we get a 
linker error indicating multiple definitions of the symbols. For this reason, class 
variables should always be defined in an implementation file as our original example 
did. 

In our example the class variables were declared const since it does not make 
sense to change them. But in some cases you may want class variables that are not 
const . One possible use of a non-const class variable is to keep track of the number 
of instances of the class that are created. To do this, we create a class that has the 
constructor increment the class variable. The value of this class variable tells us the 
total number of instances of the class that have been created. To do this , we add a 
class variable to the class using the following line inside the class definition in the 
header file: static int count_ ; .  We then add the line int Card : : count_ = 0 ;  
to the implementation file. If we declare the class variable in the public  section 
of the header file, then we can access it directly. This would allow us to put the 
following line in our main function: cout « Card : : count_ « endl ; .  Of course, 
normally you do not want to declare data members of a class in the public section. 
Someone could put the line Card : : count_ = 100 ; in their code and destroy the 
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integrity of the value count_ storing the number of instances of the Card class that 
have been created. 

Classes can also have class methods that are called without an instance of the 
class. Using a class 1nethod to access the class variable count_ is the proper way to 
ensure the integrity of the data. We need to add a class method that returns the 
value of the class variable. Class methods are also declared with the static prefix. 
The declaration and definition of the method is static int count 0 { return 
count_ ; } .  We call the method using the code cout « Card : : count 0 « endl . 
You should realize that class methods can access class variables, but they cannot 
access instance variables. The reason for this is that when calling a class method, 
you are not specifying an instance of the class as we do when we call an instance 
method (e.g. , Card : : count 0 vs . c . face O ) . A class method cannot know which 
instance data to use since an instance is not specified when the method is called. 

You may have noticed that our sample code to count the number of cards never 
decreases the class variable storing the number. This means the class variable will 
store the number of instances that have been created even though some of them 
may not exist . To make the class variable indicate the number of instances of 
the class that currently exist as the program is executing, we need to decrease 
the value of the class variable when the lifetime of a Card instance ends. We will 
learn in Chapter ref C++ dynamic memory about destructors; they could be used 
to accomplish this task. 

1 9 . 6 1 Chapter S umma ry 

This chapters covers the syntax and concepts for writing and using C++ classes. 
The following is a SUlnmary of some of the important concepts .  

• C++ classes are usually written in two parts that are in separate files : the class 
definition in a header file and the code for the methods in an implementation 
file. 

• A semicolon must be placed after the ending brace of a class definition. 

• C++ constructors have the same name as the class and are called automati­
cally when a variable of that type is defined. 

• Programmers commonly prefix or suffix an underscore onto instance variables 
so they do not accidently use the same identifier name for instance variables 
as they do for formal parameters and local variables. 
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• C++ provides a built-in string class that can be used with the standard 
input / output techniques. The C++ string class also implements the common 
operators ( [] ,  +, and +=) which work the same as the operators in Python. 

• The built-in types and string class can also be read from and written to files 
using the same syntax for standard input and output. 

• C++ allows programmers to overload operators for their own classes; most 
of the operators can be written as standalone functions or as members of the 
class. The names of these functions/methods is operator followed by the 
actual operator symbol(s) . 

• Class variables should be used when only one copy of the data is needed for 
all instances of the class. Class methods can only access class data. In C++, 
class variables and methods are designated using the static  keyword. 

1 9 . 7 1 Exercises 

True/ Fa lse Questions 

1. C++ classes have a constructor that has the same name as the class. 

2. C++ constructors are called automatically. 

3. You must write code for the C++ constructor of every class you write. 

4. Methods of a C++ class can create or add additional instance variables to the 
class. 

5. Methods may be declared in the private section of the class definition. 

6. Instance variables must be declared in the private section of the class defini­
tion. 

7. A compiler error is generated if a method has a variable with the same name 
as an instance variable. 

8 .  Methods may be written inline in the header file. 

9. The string class is defined within the std namespace. 

10.  The default input operator for a string reads one line of text just as the Python 
raw_input function does. 
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1 1 .  The string class has a method named getline . 

12 .  When using getline , the new line character is removed from the input stream. 

13. C++ uses class instances to read from and write to both files and the keyboard 
or screen. 

14. When overloading C++ operators, you can write most methods as either a 
function or a rnethod. 

15. A class method can access instance variables. 

16 .  A method can access both class variables and instance variables. 

M u lt i ple Choice Quest ions 

1. In C++, instance variables may be declared 

a) private only. 
b) public only. 
c) protected only. 
d) public, private, or protected. 

2. In C++, instance methods may be declared 

a) private only .. 
b) public only. 
c) protected only. 
d) public, private, or protected. 

3. Members of a class that are declared private may be accessed 

a) only by methods of the class. 
b) only by methods of the class or friends of the class. 
c) only by methods of the class, subclasses of the class, or friends of the class. 
d) by any code . 

4. Members of a class that are declared protected may be accessed 

a) only by methods of the class. 
b) only by methods of the class or friends of the class. 
c) only by methods of the class, subclasses of the class, or friends of the class. 
d) by any code. 
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5. Members of a class that are declared public may be accessed 

a) only by methods of the class. 
b) only by methods of the class or friends of the class. 
c) only by methods of the class, subclass, or friends of the class. 
d) by any code. 

6. Methods that are declared const 

a) declare constants within the method. 
b) cannot modify any of the instance variables .  
c) must have parameters that are all const. 
d) must return a constant. 

7. If you are examining a C++ class that someone else wrote, how do you 
determine if a variable is a local variable or an instance variable? 

a) The same variable name is used in more than one method. 
b) The variable is used in the constructor. 
c) Instance variables are always preceded by an underscore. 
d) Instance variables are declared within the class definition, not in one of the 
methods. 

8. How can C++ operators be written? 

a) They can only be written as members of a class. 
b) They can only be written as functions. 
c) They can be written as either members of a class or functions. 
d) Some can only be written as functions while many can be written as 
functions or methods. 

9. Where are C++ class variables accessible? 

a) Their access depends on whether they are declared private, protected, or 
public . 
b) They are accessible only by the methods in the class. 
c) They are accessible only by class methods. 
d) They are accessible anywhere. 

10 .  C++ class variables are declared by 

a) using the keyword class before the variable type. 
b) using the keyword static  before the variable type. 
c) putting them in the header file, but after the ending brace for the class. 
d) declaring them inside the constructor. 
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Short-Answer Questions 

1. What is a COIIlmon convention used to indicate instance variables so they are 
not confused with local variables in a method, since C++ does not require 
syntax similar to the use of self in Python? 

2. What does the const specification for a method mean? 

3. What can go wrong if you write a method in a header file but do not specify 
it as an inline method. 

4. What is the exact output of the following program: 

#include <iostream> 
#include <fstream> 
#include <string> 

using namespace std ; 

int main O 
{ 

ifstream ifs ; 
string first , last , name 1 , name2 ,  name3 ; 

} 

ifs . open ( "getline . txt " ) ; 
ifs » first » last ; 
getline (ifs , name1 ) ; 
getline (ifs , name2) ; 
getline (ifs , name3) ; 

cout « f irst « « 
cout « name1 « endl ; 
cout « name2 « endl ; 
cout « name3 « endl ; 

last « endl ; 

if the input file getline . txt contains the following: 

Dave Reed 
John Zelle 
Jane Doe 
John Doe 

5. What operators must be written as functions and cannot be written as mem­
bers of a class and why is this? 
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6. Why can class methods not access instance variables of the class? 

7. What is the difference between a class variable and an instance variable? 

Programm ing Exercises 

1 .  Write a class to represent a deck of playing cards and use the class to play a 
game of blackjack. You may also want to use another class to represent the 
blackjack gamc. 

2. Write the Markov gibberish generator from Chapter 3 using a C++ class. 
Extend it to allow the size of prefix to be determined when the model is 
created. The constructor will take a parameter specifying the length of the 
prefix. 

3. Add four basic mathematical operators +, - ,  *, and / ,  the six comparison 
operators <, <=, >, >=, ==, and ! =, and the input and output operators to 
the Rational class. Write the mathematical and comparison operators as 
methods. Store the numerator and denominator in reduced form. 

4. Add the operators listed in the previous exercise to the Rational class as 
functions. 

5. Write a Longlnt class that stores numbers as an array of single digits (i .e . , 
each entry in the array is a number between 0 and 9) . Your class should 
support numbers up to 100 digits. Using operator overloading have your class 
support addition, subtraction, and multiplication.  Write a set method that 
allows you to pass a string of digits and sets the number based on the string. 
Each char element in the string can be treated as a number between 0 and 
127; subtracting 48 , which is the ASCII value for 0, will allow you to convert 
the char to a number between 0 and 9 .  Also, provide a method for outputting 
the number. Write a program that tests your Longlnt class. 

6. Write a class to represent a polynomial. The class should store an array of the 
coefficients and the degree of the polynomial. You may assume a maximum 
degree of 100 for the polynomial. Write the methods for the addition, subtrac­
tion, and multiplication operators and write the input and output operators 
for the class. Also provide a method for evaluating the polynomial at a specific 
value. Write a program that tests your Polynomial class. 

7. Write a class to represent a Set . Include the methods addElement , 
removeElement , removeAll,  union, intersect , and isSubset . 



Chapter 10  

Object ives 

c++ Dynamic 

Memory 

• To understand the similarities and differences between C++ pointers and 
Python references. 

• To learn how to use the C++ operators that access memory addresses and 
dereference pointers. 

• To understand how to dynamically allocate and deallocate memory in C++. 

• To learn how to write classes in C++ that allocate and deallocate dynamic 
memory. 

1 10 . 1 1  I ntroduct ion 

As we briefly discussed in  earlier chapters, the internal mechanisms that Python 
and C++ use for storing data in variables and names are different. In this chapter 
we will discuss these differences in detail. C++'s default mechanism for storing 
variables is different than Python's, but C++ does support pointer variables that 
are similar to Python references. C++ programmers can choose which mechanism 
to use depending on the efficiency and capabilities they need. C++ pointers give 
us the flexibility to delay memory allocation decisions until run-time. This makes it 
possible to change the size of arrays at run-time and create linked structures in C++. 
Using C++ pointers does require much more care than using Python references; it 
is easy to make mistakes with pointers and create a program that gives unexpected 
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results or crashes. This chapter and the next chapter will cover the use of dynamic 
memory and pointers. We will begin by reviewing the basic memory models of 
Python and C++. 

Python names are a reference to a memory location where the actual data 
is stored along with type information and a reference count ; different names can 
refer to the same data object and assignment statements make the name refer to a 
different data object . C++ associates (binds) a memory location with each variable 
and the same memory location is used for that variable throughout the lifetime of 
the variable. Each assignment statement causes different data to be stored in the 
memory location bound to the variable. Here is a C++ example: 

II memory . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

int x ,  y ,  z ;  
x = 3 ;  
Y = 4 ;  
z = x ;  
x = y ;  
cout « x « II I I  « y « I I  I I  « z « endl ; 
return 0 ;  

} 

The following table shows a representation of memory while this program is 
executing. When the main function begins execution, four bytes are allocated for 
each of the three integers. We have started our table at the memory location 1000 , 
but the specific memory address used is not important and can vary each time the 
program is run. The key point to notice is that the memory location used for each 
variable does not change; the data stored at the memory location does change as 
different values are assigned to the variable. As you would expect , the program 
outputs 4 4 3 .  

Memory address Variable name Data value 
1000 x 3 then 4 
1004 Y 4 
1008 z 3 

The Python version of this program is the following: 



# memory . py 
x = 3 

Y = 4 
z = x 
x = y 
print x ,  y ,  z 
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z x y 

Figure 1 0. 1 :  Picture of Python memory references 

The end result of executing comparable code for C++ variables and Python 
references to immutable types is the same even though the internal representations 
are different. The Python program also outputs 4 4 3. Figure 10 . 1 shows a pictorial 
representation of the memory for this Python code. The key point to notice here is 
that there is one copy of the 3 object and one copy of the 4 object at fixed memory 
locations; the names refer to these objects and as the code executes , the memory 
location that x refers to changes from 1000 to 1012 .  At the end, we have multiple 
names referring to the same memory location. We have not shown the reference 
count and type infonnation for the object, but each Python integer object requires 
12 bytes on 32-bit systems. 

The important differences between Python and C++ are 

• Each C++ variable corresponds to a fixed memory location where data is 
stored; each time a value is assigned to that variable, the same memory location 
is used to store the data . 

• A Python name refers to an object in memory. Python objects must also store 
information about their type and a reference count, so storing data in Python 
requires more space than storing the same data in C++. 
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• Assigning a Python name to an object changes the reference so that it refers 
to a different object (i .e. , the memory address the name refers to changes) .  

• It is possible to have multiple names refer to the same object in Python. 
Modifying a mutable object via one name affects the other name. In C++, 
each variable gets its own fixed address so changing one variable does not affect 
other variables. 

• C++ does support references, but they are not commonly used. C++ also 
supports pointers, which are commonly used and allow us to perform similar 
types of operations that Python references support. 

The differences between using references in Python and storing the actual data 
in variables in C++ become apparent when you modify a mutable type instead of 
assigning a variable to a new or different object . We will use our Rational class 
presented in earlier chapters to demonstrate this . The corresponding Python and 
C++ code fragments we will examine are 

# Python code 
r1 = Rational 0 
r1 . set (2 , 3) 
r2 = r1 
r1 . set ( 1 ,  3)  
print r1 
print r2 
II C++ code 
Rational r1 , r2 ; 
r1 . set ( 2 , 3) ; 
r2 = r1 ; 
r1 . set ( 1 , 3 ) ; 
cout « r1 « endl ; 
cout « r2 « endl ; 

These assume we have defined the appropriate methods for our classes. The set 
method in Python and C++ is 

# Python code 
def set (self , num , den) : 

self . num = num 
self . den = den 

II C++ code 
void Rational : : set (int n, int d) 
{ 

} 

num_ = n ;  
den_ = d ;  
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In Python, both r1 and r2 refer to the same object that we will assume is 
stored at memory location 1000, as the following table shows. Additional memory 
is required in Python to store information about the data type for the object and 
the reference count for the object , but we will not include that here. Since we 
are creating a Rat ional object that has the instance variables num and den, we 
have named the variable name column based on the instance variable names of the 
Rational object . 

Memory address Variable name Data value 

1000 . num reference to 2 ,  then 1 
1004 . den reference to 3 

If you recall our discussions from section 4 . 2 ,  you will understand that the sample 
Python code will change the one Rational object to which both names refer. 

The corresponding C++ declaration of r1  and r2 results in two Rational objects 
being created, requiring a total of 16 bytes of memory being allocated as the following 
table shows. Each Rational object requires eight bytes since it has two int instance 
variables that each require four bytes. No additional memory is needed in C++ since 
the C++ run-time environment does not need to keep track of the data type or the 
reference count . 

Memory address Variable name Data value 

1000 r1 . num ? 
1004 r1 . den ? 
1008 r2 . num ? 
1012 r2 . den ? 

After the statement r1 . set (2 , 3) , the memory now holds 

Memory address Variable name Data value 
1000 r1 . num 2 
1004 r1 . den 3 
1008 r2 . num ? 
1012 r2 . den ? 

Unless we have defined our own operator= (we will discuss this in subsec­
tion 10 .4 . 3) for the C++ Rational class, the execution of r2 = r1  effectively causes 
the two statements r2 . num = r1 . num and r2 . den = r1 . den to be executed. We 
cannot explicitly write those two statements ourselves since the instance variables are 
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private, but the compiler generates the code that performs those two assignments. 
This causes the data stored at memory location 1000 to be copied to memory location 
1008 and the data stored at memory location 1004 to be copied to memory location 
1012.  The following table shows the memory representation after the assignment 
statement . 

Memory address Variable name Data value 

1000 r1 . num 2 
1004 r1 . den 3 

1008 r2 . num 2 
1012 r2 . den 3 

After the statement r1 . set ( 1 , 3) , the memory now holds 

Memory address Variable name Data value 

1000 r1 . num 1 
1004 r1 . den 3 

1008 r2 . num 2 
1012 r2 . den 3 

Unlike in the Python version, r1  and r2 now hold different values so the output 
for r1 is 1/3 and the output for r2 is 2/3. If we had instead executed the statement 
r2 . set ( 1 ,  3) , the output for r1  would be 2/3 and the output for r2 would be 1/3 .  
The difference between Python and C++ is  that each declared C++ variable gets 
its own memory location to store the instance variables and assigning one variable 
to another copies the data, but assigning one Python name to another results in 
both names referring to the same object . 

These different mechanisms for managing memory have trade-offs. Python's 
mechanism allows dynamic typing and supports linked structures. However, overall 
Python uses more memory since we have to store the identifier name in a dictionary, 
the references, and the actual data with type information and a reference count . It 
also requires two memory accesses to get the data for a given Python name. C++ 's 
mechanism uses less memory, and is almost always faster. One case where Python 
is faster is assignment of two names that are a class with a large amount of data. 
C++ effectively gives a deep copy while Python makes a reference to the same 
data. So assignment is faster in Python for class objects, but is not performing an 
equivalent operation. This is the reason variables that are instances of a class are 
typically passed by reference in C++ even when we do not want to change the data 
for the variable. As we discussed, the const designation is used when we do not 
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want to change the data so the compiler will make certain our code does not change 
it. Computer scientists use the term reference semantics to describe how Python's 
assignment statement works, since it creates another reference, and use the term 
value semantics to describe how C++'s assignment statement works, since it copies 
the value of the variable. 

Python's memory management mechanism is known as implicit heap dynamic. 
The Python interpreter automatically allocates and deallocates memory as needed. 
A section of memory known as a dynamic memory heap (sometimes referred to 
simply as a heap) is used for these allocations and deallocations. The default C++ 
memory management mechanism is known as stack dynamic. When a function is 
called, the amount of space needed for the variables is allocated on a stack. Since in 
most cases we can determine at compile time how much memory is needed for all the 
local variables, one Inachine language instruction can be used to allocate the space 
on the stack. When the function ends, the stack shrinks back to the space it was 
before the function call, effectively deallocating the memory for the local variables. 

One drawback of the stack dynamic technique is that it does not directly support 
linked structures. Another issue is that we cannot change the amount of memory 
allocated for a variable after its first allocation. In most cases, the exact amount 
of memory that is allocated for a variable is determined at compile time; the one 
exception we saw was the variable length arrays discussed in section 8 . 1 1 .  In this 
case, the amount of memory to be allocated is not determined at compile time, 
but once it is allocated, we cannot make the array larger using the same variable. 
This makes it impossible to make a stack-dynamic-based data structure similar to 
Python's built-in list that can grow in size as needed. 

As you might have figured out by now, C++ must support another mechanism 
for allocating memory for variables since the Python interpreter is written in C .  
C++'s other technique i s  known as explicit heap dynamic. Like Python, a section 
of memory known as the dynamic memory heap (or just heap) is used for these 
allocations and deallocations. However, as the term explicit heap dynamic implies, 
in C++ your program code must include instructions that directly allocate and 
deallocate the memory. C++ uses pointer variables to support this dynamic memory 
allocation and deallocation. With C++ pointers we can write code that allows us 
to determine and change the amount of memory allocated at run-time (rather than 
setting the amount at compile time) . We can write data structures that can grow 
in size as needed and write linked structures using C++ pointers. This chapter will 
discuss how to use C++ pointers, how they are similar to Python references, and 
how to write C++ classes that use dynamic memory. We will learn how to write 
linked structures in C++ in Chapter 1 1 .  
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\ 10 . 2 1 C++ Poi nters 

In C++, a pointer variable stores a memory address. C++ requires that a pointer be 
defined with a specific type. The type indicates how the data at the memory address 
should be interpreted. Remember that internally, the computer's memory stores Is 
and Os and the type of a C++ variable tells the compiler how the code it generates 
should interpret those bits. Since pointer variables store an address, all pointer 
variables require the same amount of space (four bytes on 32-bit systems) . This 
should remind you of Python references. A C++ pointer is a concept similar to a 
Python reference. The difference is that with a C++ pointer, you have access to both 
the address and the data that the pointer points to (Le. , the data at that address) , 
while a Python reference gives you access only to the data that the reference points 
to. 

C++ pointers are declared using the asterisk (*) as a prefix to the variable 
name. This indicates the variable will hold the address of a memory location where 
a data value of the specified type is stored. A common mistake is to forget the 
asterisk before each variable name when you want to declare multiple pointers in 
one definition statement . In the following example, b and c are declared as pointers 
to an int and d is declared as an int o The second line is also legal, although we 
recommend you do not use this style. Placing the asterisk immediately after the 
word int makes it appear that all variables in that statement are to be pointers to 
an int , but only e is a pointer and f is an int o This example allocates 20 bytes 
since both int types and pointer types require four bytes. 

int *b , *c , d ;  II b and c are pointers to an int , d is an int 
int* e ,  f ;  II only e is a pointer to an int , f is an int 

The next question you should be asking yourself is how do we store an address 
in a pointer variable. We have no idea which memory addresses our program is 
allowed to use so we have to request a valid address . One way is to use the address 
of an existing variable. The following example demonstrates this and also shows us 
how to access the data that a pointer variable points to. 

I I pi . cpp 
#include <iostream> 
using namespace std ; 
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int mainO 
{ 

} 

int *b , *c , x ,  y ;  
x = 3 ;  
Y = 5 ;  
b = &x ; 
c = &y ; 
*b = 4 ;  
* c  = *b + *c ; 
cout « x « " " « y « " " « *b « " " « *c « " " ;  
c = b ;  
*c = 2 ;  
cout « x « " " « y « " " « *b « " " « * c  « endl ; 
return 0 ;  
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The unary ampersand operator computes the address of its operand. Thus, 
the statement b = &x causes the program to store the memory address of x in the 
memory for the variable b. The following table indicates that the computer used 
memory addresses 1000 through 1015 to store our variables and shows the value 
of each variable after the statement c = &y is executed. The computer does not 
necessarily use the address starting at 1000, but we commonly use that address in 
our examples in this book. 

Memory address Variable name Data value 

1000 b 1008 
1004 c 1012 
1008 x 3 

1012 Y 5 

The unary asterisk operator is used to dereference a pointer. Dereferencing a 
pointer means to access the data at the address the pointer holds. The statement *b 
= 4 causes the program to store the data value 4 at memory address 1008 (since b 
currently holds 1008) . Based on this knowledge, see if you can determine the output 
of the sample program before reading the next paragraph. 

The statement *c = *b + *c determines the integer values at memory address 
1008 (the address b points to) and memory address 1012 (the address c points to) 
and adds the 4 and 5 together. The result, 9, is stored at memory address 1012 (the 
address that c points to) . The statement c = b copies the data value for b, which is 
the address 1008, to the memory for c (Le. , 1008 is now stored at memory location 
1004) . You should note that assigning pointer variables is essentially the same as 
assigning two names in Python; both b and c now refer to the same data. Based on 
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the information in the preceding paragraphs, you should be able to determine that 
the output of the program is 4 9 4 9 2 9 2 2. After the statement *c = 2, the 
memory representation is 

Memory address Variable name Data value 

1000 b 1008 
1004 c 1008 
1008 x 2 
1012 Y 9 

You may have already realized this, but another important concept to under­
stand is that a pointer to an int and an int are not the same type. Using the 
variable declarations in the previous example, the statements b = x and x = b are 
not legal. The variable b is a pointer so it must be assigned an address whereas x 
is an int so it must be assigned an integer. This is more obvious if we declare the 
pointer variables with another type such as double since on 32-bit systems they do 
not use the same amount of storage. No matter what the type, a pointer to that 
type and the actual type are not compatible data types. 

We will now write a more practical example demonstrating the address and 
dereferencing operators. The C programming language does not support pass by 
reference as C++ does, so the only way to effectively change the actual parameters 
using the C language is to use pointers. The necessary technique is to pass the 
address of the actual parameter and then have the function or method dereference 
the pointer so it changes the value at the address corresponding to the formal 
parameter. You can do this in C++ also, but programmers typically use pass 
by reference to accomplish this . The following example shows a swap function that 
swaps two integer variables. 

II swap . cpp 
#include <iostream> 
using namespace std ; 

void swap (int *b , int *c)  
{ 

} 

int temp = *b ; 
*b = * c ;  
* c  = temp ; 



int main O 
{ 

} 

int x = 3 ,  Y = 5 ;  
swap (&x , &y) ; 
cout « x « " " « y « endl ; 
return 0 ;  
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The formal parameters b and c are given the values of the addresses of x and 
y respectively. Thus, the assignment statement *b = *c is equivalent to writing 
x = y in the main function. You should note the similarity between this and pass 
by reference. What happens if we add the line b = &temp to the end of the swap 

function; does it change x? The statement would have no effect on x. The variable 
b changes to hold the address of temp, but this does not change x or the value at 
the memory address corresponding to x. 

In our examples so far, we used the unary ampersand operator to assign a valid 
address to a pointer variable. The other way to set a pointer to a valid address is 
the new statement . The C++ new statement is used to allocate dynamic memory 
from the heap and it returns the starting address of the memory that was allocated. 
When you use the ne"w statement , you must indicate the data type for the object that 
you want to allocate; the specified data type is used to determine how much memory 
to allocate. When you explicitly allocate memory in C++, you must also deallocate 
the memory when it is no longer needed. The delete statement is used to deallocate 
memory that was dynamically allocated. The following example shows the explicit 
heap dynamic version of our Python and C++ program written in section 10 . 1 .  

II p2 . cpp 
#include <iostream> 
using namespace std ; 

int mainO 
{ 

} 

int *x , *y , *z ; 
x = new int ; 
*x = 3 ;  
y = new int ; 
*y = 4 ;  
z = x ;  
x = y ;  
cout « *x « " " « * y  « " " « *z « endl ; 
delete z ;  
delete y ;  
return 0 ;  
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The pointer variables x, y, and z are stack dynamic variables and the 12 bytes 
required for them are automatically allocated when the function begins and deallo­
cated when the function ends. In the following table, we have used the memory 
locations 1000-10 1 1  for them. The new statement allocates memory from the 
dynamic memory heap that we have started at memory location 2000. Notice that 
we have two new statements so we must have two delete statements. We did not 
use the same variable names with the new and delete statements, but the memory 
allocated by the x = new int statement is deallocated by the delete z statement 
since z holds the address that was allocated by that new statement. The delete 
y statement deallocates the memory allocated by the y = new int statement . We 
could have used delete x instead of delete y since the statement x = y causes 
both x and y to hold the same address. The key point to remember is that each new 
statement that is executed must eventually have a corresponding delete statement 
that is executed to deallocate the memory that the new statement allocated. If you 
forget a delete statement, your program will have a memory leak. Even though a 
program with a memory leak may not crash, the code is not considered correct . 

Memory address Variable name Data value 

1000 x 2000 then 2004 
1 004 y 2004 

1 008 z 2000 

2000 3 
2004 4 

Normally you would write this program as we did in section 1 0 . 1 since that 
is more efficient. This pointer version requires more memory, and dereferencing a 
pointer requires the computer to access two memory locations (cout « *x requires 
accessing memory location 1 000 followed by memory location 2004) . The C++ 
version in this section is similar to the Python version as far as how the memory is 
allocated. Compare the table for this version to the memory picture in Figure 1 0 . 1 .  
This demonstrates how Python references and C++ pointers are essentially the 
same concept with different syntaxes. 

Since Python only uses references, it does not need the extra syntax that C++ 
pointers do for dereferencing a pointer. When you assign one C++ pointer variable 
to another, the result is they both point to the same object or value. Using pointers, 
we can implement the same Rational example we did earlier in the chapter so that 
the C++ version allocates memory similarly to the Python version. 
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One issue when using pointers to access members of a class instance is that the 
dot operator (the period) has a higher precedence than the asterisk (the unary *) 
for dereferencing a pointer. This means that if we have a Rational instance r, we 
cannot write *r1 . sE�t (2 , 3) ; we need to write (*r1 ) . set (2 , 3) . C++ provides 
an additional operator so we can deference a pointer and access a member without 
the parentheses; the notation for this is -> (the minus sign followed by a greater­
than sign) so (*r1 )  . set (2 , 3) can be written as r1->set (2 , 3 ) . The form using 
-> is more commonly used than the parentheses version. 

The C++ code using C++ pointers that corresponds to the same Python Rational 
example earlier in the chapter is the following 

Rational *r1 , *r2 ; II constructors not called 

r1 = new Rational ; II constructor is called 
r1->set (2 , 3) ; 
r2 = r1 ; 
r1->set ( 1 , 3) ; 

cout « *r1 « endl ; 
cout « *r2 « endl ; 
delete r1 ; 

This example outputs 1/3 for r1 and 1/3 for r2 since r1  and r2 are pointers to the 
same memory locations. The memory table for this code fragment is: 

Memory address Variable name Data value 

1000 r1  ? then 2000 
1004 r2 ? then 2000 
2000 2 then 1 
2004 3 

The declarations of r1 and r2 result in four bytes being allocated for each one 
since pointers require four bytes. The Rational constructor is not called when 
you declare a pointer since we are creating a pointer, not a Rational object . The 
statement r1 = new Rational results in eight bytes being allocated since the two 
integer instance variables num_ and den_ require a total of eight bytes. The r1 
= new Rational statement also causes 2000 to be stored in the memory location 
for variable r1 .  The constructor is called by r1 = new Rational since it creates 
a Rational object . The r1->set (2 , 3) statement results in 2 being stored at 
memory location 2000 and 3 being stored at memory location 2004. 
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The statement r2 = r1  results in 2000 being stored in memory location 1004 

since the value of r1 is 2000. We now effectively have the same memory struc­
ture as our Python example with both r1 and r2 referring to the same Rational 
object . When we execute r1->set ( 1 , 2) statement we are not changing r1 but 
are changing the object stored at the memory location that r1  points to. Since r2 
points to the same object as r1 we get the same results as we do in Python. When 
the function containing our C++ code fragment ends, the memory locations for the 
declared variables (1000-1007) is automatically deallocated as we discussed earlier, 
but we need the delete r 1  statement to deallocate the memory at locations 2000-
2007 which we explicitly allocated with the new Rational statement . We could 
have written delete r2 instead since both pointers refer to the same locations, but 
we cannot write delete r1 ; delete r2 since each new statement must have one 
and only one corresponding delete statement. Trying to delete the same memory 
locations a second time may corrupt the dynamic memory heap, resulting in a crash. 

U sing pointers with dynamic memory in C++ gives you the flexibility of Python 
references, but because you are in charge of explicitly handling the allocation and 
deallocation, it is much more difficult to get correct than Python versions of the 
same code. If you are not careful when using dynamic memory, your program can 
produce different results each time you run it or may crash. We will discuss these 
issues for explicit heap dynamic memory throughout this chapter. 

1 1 0 . 3 1 Dynam ic Arrays 

The built-in array data structure with a fixed size was discussed in section 8 . 1 l .  
In many cases, we do not know the size of the array at compile time or we want 
to change the size of the array as the program is running, so we need a mechanism 

for allocating an array of a specified size at run-time. As we saw in the previous 
section, C++ pointers can be used to dynamically allocate memory. This means 
that the memory is allocated as the program is running and the amount of memory 
allocated may be determined at run-time instead of being set at compile time. The 
following code fragment demonstrates dynamic memory allocation and deallocation 
for arrays: 

int i ,  n ;  
double *d ; 

cout « "Enter array size : " ;  
cin » n ;  



d = new double [n] ; 
for (i=O ; i<n ; ++i) { 

} 

cout « "Enter number " « i « 
cin » d [i] ; 

delete [] d ;  

10.3 Dynam ic Arrays 

II .  II 
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The example allows the user to specify the array size at run-time. The new 
command allocates the specified amount of memory and returns the starting address 
of the allocated mernory. When the brackets ( [] )  are used after the data type in 
the new statement , the amount of memory necessary to store the number of items 
specified inside the brackets is allocated and the starting address is returned. In this 
case, n*8 consecutive bytes would be allocated on machines that use eight bytes to 
store a double value. The expression inside the brackets indicates how many values 
of the type double to allocate; an array of size n was allocated so the valid index 
values are 0 through n-l .  After the dynamic memory has been allocated, it can 
be accessed using the array bracket notation. The same index array calculations 
discussed in section 8 . 1 1  can be used since the pointer variable holds the starting 
address of a contiguous section of memory. 

Whenever you allocate memory dynamically, you must also deallocate the mem­
ory with a statement that executes later in your program. Since we allocated an 
array, we must tell the delete statement to deallocate an array instead of the 
memory that holds a single value. The square brackets are used with both the 
new statement and the delete statement when allocating and deallocating arrays. 
You do not indicate the size of the array when deallocating a dynamic array; the 
C++ run-time environment knows how much memory to deallocate. Repeatedly 
allocating memory and forgetting to deallocate memory in a C++ program will 
eventually result in your program using up a large percentage of the computer's 
memory, causing the computer to slow as it uses the hard disk for extra memory. 
This is why it is important to deallocate memory when it is no longer needed. 

The main reason for using dynamic arrays is that you do not need to know 
the size of the array at compile time. In many cases, you still may not know the 
size needed when the array is first allocated. The Python built-in list allows you 
to append as many items as you want so there is no need to determine how much 
memory to allocate the first time you allocate memory; it would be impossible to 
anticipate how much memory to allocate ahead of time since different uses of the 
list will require different sizes. Once the array fills up, we may need to make the 
array larger. Because the memory immediately following the dynamic array may 
already be in use (remember that array elements must be in consecutive memory 
locations) , we cannot make the array larger. The solution is to allocate a new larger 
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array, copy the values from the original array to the new array, and then delete the 
original array. The following code fragment demonstrates this: 

int *data ,  *temp ; 
int i ;  

II create original array 
data = new int [5] ; 
for ( i=O ; i<5 ; ++i)  { 

data [i] = i ;  
} 
II create new larger array 
temp = new int [10] ; 
II copy from original array to larger array 
for (i=O ; i<5 ; ++i) { 

temp [i] = data [i] ; 
} 
II deallocate original array 
delete [] data;  
II make data point to new larger array 
data = temp ; 
II now we can access positions 0-9 
for (i=5 ; i<10 ; ++i) { 

data [i] = i ;  
} 
II deallocate last allocation 
delete [] data ;  

The memory table for this code after the first new statement and f or loop are 
executed is below. We will assume the memory addresses used for the local variables 
start at memory location 1000 and that the dynamically allocated memory is the 
block of memory from 2000 through 2019 (four bytes for each of the five integers) . 

Memory address Variable name Data value 
1000 data ? then 2000 
1004 temp ? 
1008 i . 5  

2000 0 
2004 1 
2008 2 
2012 3 
2016 4 
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After the memory is allocated for the temp pointer, the values are copied from 
the original array, and the values 5 through 9 are stored in the larger array, the 
memory table is the following assuming the memory starting at location 3000 is 
used for the temp pointer. 

Memory address Variable name Data value 

1000 data 2000 
1004 temp 3000 
1008 i 10 
2000 0 
2004 1 
2008 2 
2012 3 
2016 4 
3000 0 
3004 1 
3008 2 
3012 3 
3016 4 
3020 5 
3024 6 
3028 7 
3032 8 
3036 9 

After the first dE�lete [] data statement, the memory at locations 2000-2019 
is  deallocated and returned to the dynamic memory heap so i t  can be used again. 
The statement data. = temp stores 3000 at memory location 1000 (i .e . , data now 
points to the second larger allocated array) . At this point, both data and temp 
point to the same dynamically allocated array. This is the same concept as having 
two references to the same data in Python. After that assignment statement , the 
next loop fills in the values 5 through 9 in memory locations 3020 through 3039. The 
final delete [] data statement then deallocates the memory locations 3000-3039 
so they can be used again. 

Figure 10. 2  shows a pictorial representation of this. The top part of the figure 
shows the representation after we have created the new larger array and copied the 
values from the first array. The middle part of the figure shows the state after the 
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first delete data statement. The bottom part of the figure shows the state just 
before the final delete [] data statement. 

data 

temp 

data -+ 

temp 

data 

Figure 10 . 2 :  Pictorial representation of resizing a dynamic array 

If we then fill up this new array and need a larger array, we allocate a larger array, 
copy the values from the previously allocated array, and then delete the previous 
array. Each resizing operation results in the previous array being deleted so that 
we do not have a memory leak if we perform this resizing operation multiple times. 
In our example, data points to the last array that was allocated (once we execute 
the data = temp statement ) .  This pattern of allocating a new section of dynamic 
memory using a different pointer variable, copying the values from the old section to 
the new section, deallocating the old section, and setting the original pointer variable 
to the new section is a common pattern in C++ dynamic memory, so make certain 
you fully understand how it works and why the order of the steps is important . In 
the next section, we will examine this pattern using a class. 
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1 1 0 .4 1 Dynam ic Memory C lasses 

When you write a class that dynamically allocates memory for pointer instance vari­
ables, you need to make certain that the memory is properly deallocated. There are 
three additional C++ methods that dynamic memory classes must use to properly 
allocate and deallocate memory. These three methods are the destructor, copy 
constructor, and assignment operator (operator=) . If your class does not use 
dynamic memory, you do not need to write any of these methods. Classes that 
use dynamic memory must write a destructor that deallocates the memory. The 
other two methods rnay be implemented or declared in the private section but not 
implemented. Declaring them in the private section but not implementing them 
prevents them from being called. We will discuss the details of when these methods 
are called and what they must do in this section. Implementing them correctly will 
prevent your class from having memory leaks or other memory errors . 

1 10 .4 . 1 1 Destructor 

As discussed in the previous sections, in C++ you must explicitly deallocate any 
memory that you explicitly allocate with the new command. C++ classes have a 
special method known as a destructor that is used for deallocating memory. The 
destructor method has the same name as the class, with a tilde ( - ) in front of it . 
Just as constructors do not have a return type, the destructor also does not have a 
return type. The purpose of the destructor is to deallocate any dynamic memory 
the class has allocated that has not yet been deallocated. You never directly call 
the destructor using the name of the method; it is called automatically when an 
instance of the class goes out of scope or when you use the delete operator on a 
pointer to an instance of the class. If your class uses dynamic memory and does not 
have a destructor, your code will in most cases have a memory leak. 

We will start with a simple dynamic array class that we will extend throughout 
this chapter to demonstrate how to correctly write dynamic memory classes. In 
this first version of the class, we will write all the methods inline in the header file. 
We have added a few output statements so you can see that the constructor and 
destructor are called. This List class uses three instance variables. The instance 
variable data_ is used to hold the starting address of the dynamic array containing 
the list 's values. The size_ instance variable indicates how many items are currently 
in the list . The capacity_ instance variable indicates how large the dynamic array 
is (i .e . , how many items the list can hold before the dynamic array needs to be 
resized) . 
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II List 1 . h  
#ifndef LIST_H __ 
#define __ LIST_H __ 

#include <iostream> 

class List { 

public : 
List ( int capacity=10) ; 
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-List 0 { delete [] data_ ; std : : cout « "destructor\n" ; } 

private : 

} ; 

int size_ ; 
int capacity_ ; 
int *data_ ; 

inline List : : List (int capacity) 
{ 

std : : cout « " constructor\n" ; 
data_ = new int [capacity] ; 
size_ = 0 ;  
capacity_ = capacity ; 

} 

We did not put the using namespace std statement in the header file since 
any file that included the header file would have this statement . Also note that we 
put the default value for the parameter size only in the declaration of the List 
constructor and not in the implementation of the constructor. Here is a simple 
program that uses our class: 

II test_List1 . cpp 
#include <iostream> 
using namespace std ; 

#include "List 1 . h" 

int mainO 
{ 

} 

List b ;  
return 0 ;  

When this program is compiled and executed, it outputs 



constructor 
destructor 
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The declaration List b causes the constructor to be called and it allocates 
dynamic memory. At the end of the main function, the variable b goes out of scope 
so the destructor rrlethod is automatically called and it deallocates the dynamic 
memory. This is why the program outputs the two lines. The following program 
also causes the same output . 

II test_Listp . cpp 
#include <iostream> 
using namespace std ;; 

#include "Listl .h "  

int main O 
{ 

} 

List *b ; II const]�ctor is not called here 

b = new List (20) ; II constructor is called here 
delete b ;  II destructor is called here 

The comments indicate when the constructor and destructor are called. Re­
member the declaration List *b causes four bytes that can store an address to 
be allocated. The new statement causes a List object to be created by calling 
the constructor with the specified size. The delete statement causes the List's 
destructor to be caned and the dynamic memory the constructor allocated is deal­
located. When the variable b goes out of scope at the end of the main function, the 
four bytes for the pointer are automatically deallocated just as the memory for any 
variables are when they go out of scope. This is the reason you only need to write 
a destructor when your class allocates dynamic memory. 

1 10 .4 .2 1 Copy Constructor 

As the name implies, the purpose of a copy constructor is to create a new object 
by copying an existing object . In C++, the copy constructor for a class is called 
when you pass an instance of a class by value to a function or method. Remember 
that pass by value requires that a separate copy of the actual parameter be created. 
You can also call a copy constructor directly when declaring a variable as we will 
demonstrate later in this section. 

Unless you write a copy constructor for a class, the C++ compiler generates a 
default copy constructor for you. The default copy constructor it creates effectively 
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assigns each instance variable of the existing object to the corresponding instance 
variable in the newly created object . For a class that does not use dynamic memory 
and pointers, this is exactly what you want. Consider our Rational class we have 
been discussing. To create an exact copy of a Rational object , we want to assign its 
numerator and denominator instance variables and this is exactly what the default 
copy constructor does. 

For classes that use dynamic memory, the default copy constructor will create a 
shallow copy of the dynamically allocated data; the pointer variable in both instances 
will refer to the same section of dynamically allocated memory. This will cause 
problems. When the destructor for one of the objects is called, it will deallocate the 
dynamic memory that is shared by both objects . The other object can no longer 
legally access that data and when the destructor is called for it , it will attempt to 
deallocate the same memory a second time. The second deallocation is illegal and 
will lead to memory corruption errors that can cause your program to give incorrect 
results or crash. As we discussed earlier, each memory section that is dynamically 
allocated must be deallocated exactly once. 

We will continue extending our dynamic array example by adding the copy 
constructor to it . Since it is a constructor, it has the same name as the class and 
since it is to copy an instance of the class, we must pass that instance as a parameter. 
Remember that the copy constructor is called when we pass an instance of the class 
by value. If the copy constructor parameter was passed by value, it would need to 
call itself to make a copy, leading to an infinite number of calls. The copy constructor 
parameter must be passed by reference to avoid this . Remember that to pass an 
object by reference, all that needs to be done is pass the address of the object . We 
showed the equivalence of this with the swap function we wrote in section 1 0 . 2 .  
Here is the updated header file for the dynamic array class with a copy constructor 
added. 

II List2 . h  
#ifndef LIST_H __ 
#define __ LIST_H __ 

#include <iostream> 

class List { 

public : 
List ( int capacity=10) ; 
List (const List &source) ;  
-List O { delete [] data_ ; std : : cout « "destructor\n" ; } 
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private : 

} ; 

int size_ ; 
int capacity_ ; 
int *data_ ; 

inline List : : List (int capacity) 
{ 

} 

std : : cout « " constructor\n" ; 
data_ = ney int [capacity] ; 
size_ = 0 ;  
capacity_ = capacity ; 

inline List : : List (const List &source) 
{ 

} 

int i ;  

std : : cout « " copy constructor\n" ; 
size_ = source . size_ ; 
capacity_ = source " capacity_ ; 
data_ = ney int [capacity_] ; 
for (i=O ; i<size_ ; ++i) { 

data_ [i] = SOUrCE! . data_ [i] ; 
} 
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As the code shows, the copy constructor parameter is passed by reference and 
with the const designation so that the method does not need to call itself and 
does not change the existing data. You can use any name you want for the formal 
parameter, but one common convention is to name it source to indicate this is 
the source instance of the class that you are copying. When we refer to size_, 
that is the instance variable for the new object we are creating. When we refer to 
source . size_, that is referring to the instance variable of the object we are copying. 
You may be surprised that we can refer to the other object's instance variables using 
the code such as size_ = source . size_ since the instance variables are private; 
however ,  we are writing a method of the class so it is allowed to access the private 
data of any instance of the class, not just the instance with which it is called . 

For the instance variables that are not pointers, we want to assign each one of 
them so the newly created object has the same values for the size and capacity. We 
then need to allocate a new array with the same capacity and copy the elements 
from the source object's array into it . This will create a deep copy. Notice that 
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we only copied up to the value of size_ since the values past that are not relevant 
to the object . At this point we do not have any way of putting elements in our 
simplified class to cause size_ to be more than zero, but our final version will. The 
following example using this class allows us to see when the copy constructor is 
called. 

II test_List2 . cpp 
#include <iostream> 
using namespace std ; 
#include I List2 .h "  

void f (List c )  
{ 

} 

cout « " start f\n" ; 
cout « " end f\n" ; 

void g (List &d) 
{ 

} 

cout « " start g\n" ; 
cout « " end g\n" ; 

int mainO 
{ 

} 

List b ;  
f eb) ; 
g (b) ; 

List e (b) ; 
return 0 ;  

The output of the program is the following. The comments in parentheses are 
obviously not part of the output , but explain what caused each of the methods to 
be called. 

constructor ( create b in main function) 
copy constructor (create the copy c from b in f function) 
start f 
end f 
destructor (destructor for c when function f completes) 
start g 
end g 
copy constructor (create e in main function) 
destructor (destructor for e or b) 
destructor (destructor for e or b) 
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The first issue to note is the implicit call of the copy constructor when the 
function f is called. The copy constructor executes before the function begins 
execution to make a copy of the parameter. After the function completes, the 
destructor is automatically called to deallocate the memory dynamically allocated 
by the copy constructor. Since the function g passes the parameter by reference, 
the copy constructor is not called. Also, the destructor is not called for d when 
the function g completes; if it were, we would be deallocating the dynamic memory 
for the variable b in the main function. The statement List e (b) explicitly causes 
the copy constructor to be called to create e from the existing object b. When the 
main function completes, both e and b are destructed to deallocate their dynamic 
memory. You should not rely on the order that the destructor is called for e and 
b. All you need to care about is that both objects will be properly destructed when 
the main function completes. As this example demonstrates, if you correctly write 
each method, the rules for when the constructor, copy constructor, and destructor 
are called will correctly allocate and deallocate memory. 

As we mentioned earlier, you can declare the copy constructor private and 
not implement it. This prevents code that uses your class from causing the copy 
constructor to be called; the code would not be able to pass an instance of your class 
by value to a function or method or explicitly call the copy constructor. Code that 
attempts to perform. either of those actions will generate a compiler error. If your 
class uses a large arrlOunt of memory, you may want to do this to prevent a user of 
your class from making a copy of it . The following header file demonstrates this. 

II List3 . h  
#ifndef __ LIST_H __ 
#define __ LIST_H __ 

#include <iostream> 

class List { 
public : 

List (int capacity=10) ; 
-List O { delete [] data_ ; std : : cout « "destructor\n" ; } 

private : 

} ; 

List (const List &source) ;  
int size_ ; 
int capacity_ ; 
int *data_ ; 
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inline List : : List (int capacity) 
{ 

} 

std : : cout « II constructor\nll ; 
data_ = new int [capacity] ; 
size_ = 0 ;  
capacity_ = capacity ; 

1 10 .4 .3 1 Assignment Operator 

The other method you must write or declare private when using dynamic memory 
is the operator= method. This method is called when you assign an instance of 
your class to another instance of the class (e .g. , b = c ) . This is a very similar 
operation to the copy constructor except that the instance on the left-hand side (b 
in the example) already exists so it already has dynamic memory allocated for it . 
When the copy constructor is called, the object has not yet been allocated, but for 
the assignment operator, the constructor was previously called with the object so it 
likely has dynamic memory already allocated for it . 

Similarly to the copy constructor, the compiler will write a default assignment 
operator for your class if you do not write one. It will do what you expect and 
assign each instance variable individually. If your class does not use dynamic 
memory, this is exactly what you want. For the same reasons discussed for the copy 
constructor, you do not want this for classes that use dynamic memory; it will result 
in two instances of the object sharing the same dynamically allocated memory. The 
following header file demonstrates the three methods you need to write. We have 
written these examples with inline methods in the header file to keep the examples 
shorter, but we could have written them with a separate implementation file. We 
have removed the output statements now that we know when each method is called. 

II List4 . h  
#ifndef __ LIST_H __ 
#define LIST_H __ 

class List { 

public : 
List ( int capacity=10) ; 
List (const List &source) ;  
-List ( )  { delete [] data_ ; } 
void operator= (const List &source) ;  
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private : 

} ; 

int size_ ; 
int capacity_ ; 
int *data_ ; 

inline List : : List (int capacity) 
{ 

} 

data_ = new int [ca.pacity] ; 
size_ = 0 ;  
capacity_ = capacity ; 

inline List : : List (const List &source) 
{ 

} 

int i ;  

size_ = source . siz9_ ; 
capacity_ = source . capacity_ ; 
data_ = new int [capacity_] ; 
for (i=O ; i<size_ ; ++i)  { 

data_ [i] = SOurCE� . data_ [i] ; 
} 

inline void List : : OpE!rator= (const List &source) 
{ 

} 

int i ;  

if (this ! = &soUrC€i) { 

} 

delete [] data_ ; 
size_ = source . size_ ; 
capacity_ = source . capacity_ ; 
data_ = new int [capacity_] ; 
for (i=O ; i<size_ ; ++i) { 

data_ [i] = source . data_ [i] ; 
} 
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Since the object has already been created, the assignment operator is a little 
more complicated than the copy constructor. We must properly deallocate memory 
that has already been allocated and ensure that the class is not accidently assigning 
the object to itself or we will deallocate the only copy of the data. In C++ classes, 
the identifier this is an implicit pointer to the object with which the method is 
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explicitly called. For example, if we have two List objects b and c and write b = 
c, this is equivalent to writing b . operator= (c ) ; review section 9 .4  if you need a 
refresher on operator overloading. The assignment operator must be written as a 
member of the class; it cannot be written as a standalone function as many of the 
other operators can. For the assignment statement b = c, the this pointer will 
hold the address of b. The this pointer is equivalent to the explicit self reference 
that all Python methods have. We could use the this pointer to explicitly refer to 
all instance variables and methods such as this->size_ instead of just size_ if we 
wanted to, but most C++ programmers do not use this style. 

The if statement in the method checks if the method on the left-hand side of 
the assignment statement (b in our example) is the object at the same address as 
the object on the right-hand side of the assignment statement (c in our example) . 
If they are the same object , we do not want to do anything. Deleting the dynamic 
memory would delete the one copy of dynamic memory. You may have noticed that 
the copy constructor and assignment operator share most of the code; because of 
this, it is common to write the shared code in a private method that both the copy 
constructor and assignment operator call . We will demonstrate this in our final 
version of the dynamic array class later in this section. 

You might be wondering how a programmer could end up assigning an object to 
itself. Certainly, no programmer would write b = b ;  in their code and it would be 
possible to write a compiler to catch this mistake. You need to remember that since 
we can use pointers, we can end up with two pointers with different names referring 
to the same object . The following example is still contrived, but you can imagine a 
function that would return a pointer to a List object and the programmer would 
not have any idea what other List pointer variables also point to it . 

#include "List3 . h" 

int mainO 
{ 

} 

List *b , *c , d ;  
b = Bcd ; 
c = b ;  

*b = *c ; II causes operator= t o  be called 
return 0 ;  

In the example, both b and c refer t o  the List object that is the variable d so 
the statement *b = *c causes the List : : operator= method to be called. Notice 
that the statement b = c does not call the List : : operator= method to be called. 
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The variables b and c are pointers so this is the assignment of two pointers, causing 
them both to store the same address. 

1 10 .4 .4 1 A Complete Dynamic Array Class 

We will now write a realistic version of the List class, adding a few more new 
concepts to the ones we discussed earlier. Without the use of dynamic memory, 
we could not write a List class in C++ that could grow beyond the initial size of 
the array. The following example shows all the methods necessary to correctly 
implement a realistic use of dynamic memory (a copy constructor, assignment 
operator, and destructor) . In the following example we use the data type size _ t ,  
which is  a synonyrIl for an unsigned int (i .e. , a non-negative integer) , for the 
instance variables and parameters that specify a position in the array since an 
array cannot have a negative size. There are some potential pitfalls with using 
an unsigned int that we will discuss later in the section. 

II List . h  
#ifndef _LIST_H_ 
#define _LIST_H_ 

#include <cstdlib> 
class List { 
public : 

List (size_t capacity=10) ; II constructor - allocates dynamic array 
List (const List &a) ; II copy constructor 
-List ( ) ; II destructor 

int& operator [] (size_t pos) ; II bracket operator 
List& operator= (const List &a) ; II assignment operator 
List& operator+= (const List &a) ; II += operator 
void append (int item) ; 
size_t size ( )  const { return size_ ; } 

private : 

} ; 

void copy (const List &a) ; 
void resize (size_t new_size) ; II allocate new larger array 
int *data_ ; II dynamic array 
size_t size_ ; II size of dynamic array 
size_t capacity_ ; II capacity of dynamic array 

inline int& List : : operator [] (size_t pos) 
{ 

return data_ [pos] ; 
} 
#endif II _LIST_H_ 
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The bracket operator (operator [] ) provides the same functionality as the Python 
__ geti tem __ and __ seti  tem __ methods. It is declared inline after the class defini­
tion and demonstrates a reference return type. The ampersand after the type name 
indicates that a reference to an integer is returned, meaning it effectively returns 
the address of the position in the array. This allows the operator to be used on the 
left-hand side of an assignment statement as b [0] = 5 where b is an instance of our 
List class. It can also be used on the right-hand side of an assignment statement 
or as part of an expression just as a non-reference return type can. Without the 
reference return type, the operator could only be used on the right-hand side of 
an assignment statement (corresponding to only the Python __ getitem __ method) . 
Returning a reference only makes sense if it is a reference to an instance variable or 
dynamically allocated memory. We will discuss this later in the chapter. 

The List class provides an array of integers whose initial size is specified when 
the constructor is called. The constructor allocates a dynamic array with the 
specified capacity and initializes the size_ instance variable to indicate the list 
is empty. If we did not allocate the memory in the constructor, but instead deferred 
it to another method (such as the first time the append method is called) ,  we would 
initialize the pointer variables to NULL. The NULL constant is defined in the cstdlib 
header file . The value NULL is defined to be zero which is never a valid address for 
memory that has been dynamically allocated. The use of NULL in C++ to indicate 
an invalid pointer is similar to the use of None in Python to indicate a reference 
that is not initialized to an object of a specific type. 

The class makes use of a private method named copy to implement the code that 
is needed in both the copy constructor and assignment operator. The assignment 
operator needs extra code to deallocate the existing dynamic array before allocating 
a new dynamic array of the appropriate size and copying the data. Remember 
that a copy constructor is creating a new object , so no memory has been previously 
allocated for the object when the copy constructor is called. However, the variable on 
the left-hand side of an assignment statement has already had its constructor called 
and memory allocated, so that needs to be deallocated. The code for the destructor 
follows the copy constructor. The destructor simply deallocates the dynamic array 
and is called automatically when a non-pointer instance of List goes out of scope. 
Note that it does not deallocate the non-pointer instance variables since the memory 
for those is automatically deallocated. In this example, we are using a separate 
implementation file unlike the earlier simplified examples in which the entire class 
was written in the header file. 
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#include "List . h" 

List : : List (size_t capacity) 
{ 

} 

data_ = new int [capacity] ; 
capacity_ = capacity ; 
size_ = 0 ;  

List : : List (const List &list ) 
{ 

copy (list ) ; 
} 

List : : -List 0 
{ 

delete [] data_ ; 
} 
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We have written the operator= method slightly differently so that we can use 
it in a chained assignment statement. The method returns a reference to a List 
object . By returning *this ,  we are returning the List object that we just assigned. 
This allows us to write the chained form of the assignment statement (e.g. , b = c 
= d. Remember that the assignment operator is right to left so it is equivalent to c 
= d ;  b = c .  By returning a reference to the left-hand parameter, the result of c = 
d is the object c that we then use as the right-hand parameter when assigning b. 

The copy method that is used by both the operator= and the copy constructor 
allocates an array of the same size as the List object that is passed to it and copies 
all the data from the parameter object 's array into the newly allocated array. We 
have also added the operator+= method so we can demonstrate another potential 
pitfall. 

void List : : copy (const List &list ) 
{ 

} 

size_t i ;  
s ize_ = list . size_ ; 
capacity_ = list . capacity_ ; 
data_ = new int [list . capacity_] ; 
for (i=O ; i<list . capacity_ ; ++i) { 

data_ [i] = list . data_ [i] ; 
} 



384 Chapter 10 C++ Dynamic Memory 

List& List : : operator= (const List &list ) 
{ 

} 

if (&list ! =  this) { 

} 

II deallocate existing dynamic array 
delete [] data_ ; 
II copy the data 
copy (list ) ; 

return *this ; 

List& List : : operator+= (const List &list ) 
{ 

} 

size_t i ;  
size_t pos size_ ; 
if « size + list . size_) > capacity_) { 

resize (size_ + list . size_) ; 
} 

for (i=O ; i<list . size_ ; ++i) { 
data_ [pos++] = list . data_ [i] ; 

} 
size_ += list . size_ ; 
return *this ; 

The operator+= appears straightforward, but if you are not careful , subtle errors 
can be introduced. If we replace the last few lines with the following code so that it 
increments the size_ variable as it adds the items onto the array, it will work fine 
in most cases. 

II this version is incorrect 
for ( i=O ; i<list . size_ ; ++i)  { 

data_ [size_++] = list . data_ [i] ; 
} 

What happens if we have a List instance b and execute b += b? In this case, 
size_ and list . size_ are two names for the same memory location (i .e . ,  they 
are both bound to the same address) . Since we are incrementing size _ each time 
through the loop, the for loop will never end because i will always be less than 
list . size_ . These types of subtle errors can be extremely difficult to track down 
so always consider these special cases when writing your own code and test for them. 

The append method is straightforward except that we may need to allocate a 
larger array if we have already filled the existing array. We have written a separate 
resize method that the append method calls when necessary to perform the steps 
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of allocating a new larger array, copying the data to it, updating the pointer, and 
then deallocating the old smaller array, as we discussed in section 10 . 3 .  

void List : : append ( int item) 
{ 

} 

if (size_ == capacity_) { 
resize (2 * capac:ity_) ;  

} 
data_ [size_++] = item ; 

II should this method have a precondition? see end of chapter exercises 
void List : : resize (size_t new_size) 
{ 

} 

int *temp ; 
size_t i ;  

capacity_ = new_size ; 
temp = new int [capacity_] ; 
for (i=O ; i<size_ ; ++i) { 

temp [i] = data_ [i] ; 
} 
delete [] data_ ; 
data_ = temp ; 

We leave it as an exercise to add the other methods in the built-in Python list 's 
API to this C++ dynamic memory list . As we mentioned earlier, you do need 
to be careful when using unsigned int or the equivalent size_ t data type. As 
we listed in Figure 8 .4 ,  the range of the int type on 32-bit systems is usually from 
about negative two billion to about positive two billion while the unsigned int type 
ranges from zero to about four billion. With the unsigned int data type, there is 
no bit representation that corresponds to a negative number. So the question is , 
what happens when an operation would result in a negative number? 

II unsigned . cpp 
#include <iostream> 
using namespace std ; 
int main O 
{ 

unsigned int x = 0 ;  
x-- ' 

, 

cout « x « endl ; 
return 0 ;  

} 
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The output of this operation in a program compiled for 32-bit systems is 
4294967295 . This is the largest possible integer that can be represented with 32 
bits (the bit representation is 32 Is) . We have overflowed the bit representation. 
This is like going beyond the number of digits in a car odometer. Think about 
what would happen if you were able to run a car odometer backwards past zero; 
you would get the largest value the odometer can hold. This is essentially the same 
thing that happens when you overflow integer values on the computer. C++ does 
not automatically indicate when overflow occurs. There are ways to detect it , but 
we will not cover these details in this book. When writing your code, you must 
ensure that you do not accidently overflow the range of values the data type you 
are using can store or you will get unexpected or incorrect results. The next code 
fragment demonstrates an error caused by overflow. 

unsigned int i ;  
unsigned int pos=O ; 
for ( i=5 ; i>=pos ; --i) { 

cout « i « endl ; 
} 

If you create a program with this loop and run it , you probably expect the loop 
to execute six times (the expression i >= pos should be true when i is five, four, 
three, two, one, and zero) . The problem is that after setting i to zero, the next 
value for i will be 4294967295 and that is obviously also greater than or equal to 
zero so this produces an infinite loop. If pos were any positive value, this would not 
occur. It is always a good idea to test your code with these boundary conditions to 
ensure it works in all cases. 

1 10 .4 .5 1 Reference Return Types 

As we mentioned earlier, you should not return a reference to a local variable. The 
reason for this is that a reference effectively returns the memory location where the 
variable is stored, not a value. The problem with this is local variables in a function 
are automatically deallocated when the function ends. Using formal terminology, 
the lifetime of local variables is the time while the function is being executed. Once 
the function ends, the memory locations used for local variables are reclaimed and 
are no longer bound to those local variables. You can only return by reference 
a variable whose lifetirne does not end when the function or method ends. The 
following example shows an example that returns a reference to a local variable and 
is incorrect; most compilers will generate a warning. 



II this is incorrect 
int& f O  
{ 

} 

int x ;  
return x ;  

int main O 
{ 

f O  = 5 ;  
} 
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In our section on the List class, we discussed that since the operator [] returned 
a reference, we can write b [0] = 5 where b is an instance of our List class. On 
the left-hand side of the assignment statement, we are calling the operator and it 
returns a reference to the memory location. That memory location is then used to 
store the value 5. In the previous example, the statement f 0 = 5 is attempting to 
do the same thing; the memory location for the variable x returned by the function 
f is being used to store the value 5. The problem is that the memory location is no 
longer being used for the local variable x after the function ends. 

As our List code shows, it is correct to return a reference to an instance variable 
of a class instance. An object 's instance variables have the same lifetime as the 
instance of the class. The statement b [0] = 5 where b is an instance of our List 
class is equivalent to b .  data_ [0] = 5 ,  but this is not allowed since data_ is a 
private member of the class. The bracket operator is a public method and returns a 
reference to the private data, allowing us to legally access the private data directly. 
In many cases this is bad programming style, but for a class that encapsulates a 
dynamic array, one could argue it makes sense. 

A precondition for the operator [] method is that the specified index is between 
o and size_ - 1 .  To prevent a user of the class from crashing the program by passing 
an index outside of the list size, we could check that the specified index is between 
o and size_ - 1 before attempting to access that position in the dynamic array. 
This extra overhead is not necessary if the code that uses the class always meets the 
precondition. A com:mon technique is to include code that checks the precondition 
while testing and debugging your program, but once you are convinced your program 
is correct , you can remove the code that checks the precondition to get a small 
performance boost . 
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1 10 . 5 1 Dynam i c  Memory Errors 

Using pointers in C++ gives your programs more flexibility and capabilities , but is 
also more error prone. Pointers to data objects also require extra memory since you 
need to store both the pointer and the data while the C++ default stack dynamic 
variables only need memory to store the data. Dynamic memory errors are the 
source of a large percentage of errors in most large programs. Because of these 
reasons, you should use dynamic memory only when you need the extra capabilities 
it gives you. 

Dynamic memory errors are often difficult to track down and correct since 
sometimes your program may run fine, other times it may run but give incorrect 
results, and other times it may crash. We suggest you learn how to use the debugger 
that your programming environment supports to help you track down these memory 
errors . You can try to find the errors by putting output statements throughout 
your code, but learning how to use your debugger will save you a lot of time and 
frustration in the long run. Adding to the difficulty of tracking down these errors is 
that often the statement that causes the program to crash is not the statement that 
is incorrect so it is also important to proofread your dynamic memory code. In this 
section, we will discuss the different types of errors that can occur with dynamic 
memory. 

1 10 . 5 . 1 1 Memory Leaks 

We have already briefly mentioned one type of error known as a memory leak. A 
memory leak occurs when you allocate memory but never deallocate it . If your 
program repeatedly calls a function or method that leaks memory, your program 
will eventually require more memory than the computer has. This will lead the 
operating system to use the disk as extra memory. Since the disk is much slower than 
memory, your computer will slow down. Fortunately, when a program completes, 
the operating system reclaims any memory the program was using so a memory leak 
should not crash your program. If the operating system itself has a memory leak, it 
will eventually run out of memory. This is the reason some people recommend you 
reboot your computer occasionally. 

The code examples with errors in this section are short examples that you would 
not normally write, but show the errors that can occur as part of larger sections of 
code. This first example executes two new statements, but executes only one delete 
statement . 



II this code is incorrect 
void f O  
{ 

} 

int *x ; 
x = new int ; 
*x = 3 ;  
x = new int ; 
*x = 4 ;  
delete x ;  
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Figure 10 .3  shows a pictorial representation of the memory leak code. The 
left part shows the result after the line *x = 3 is executed; four bytes have been 
dynamically allocated with x holding the address and the value 3 is stored at that 
address. The middle part of the figure shows the result after the second x = new 
int statement is executed. We no longer have any way to access the dynamic 
memory that was originally allocated by the first x = new int statement . The 
right part of the figure shows the result after the delete x statement is executed; 
the variable x points to a memory location that can no longer be used and the 
memory location containing the 3 still exists and cannot be deallocated since we do 
not have a variable holding its address .  This is the memory leak. To fix it , we would 
need another delete! x statement before the second x = new int statement . 

x - x 

Figure 10 .3 :  Pictorial representation of a memory leak 

In many cases, the delete statement that deallocates the memory allocated by 
a new statement is not in the same function or method. This makes it more difficult 
to detect memory leaks. If you refer back to the resize method in our List class, 
you will notice that the delete statement in it is not deallocating the memory that 
was allocated by the new statement that executed earlier during the function call. 
The first time the resize method is called the delete statement is deallocating the 
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memory allocated by a constructor. Each subsequent time the resize method is 
called, it is deallocating the memory allocated by the previous call to the resize 
method. This may make you think that we have a memory leak, but remember that 
the destructor will deallocate the memory that was allocated by the last call to the 
resize method or the memory allocated by the constructor if the resize method 
was never called. 

In fact , in most cases the corresponding new and delete statements are not in 
the same function or method, making it difficult to be certain your code does not 
have any memory leaks. We will see another example of this with linked structures 
in Chapter 1 1 . Proofreading and checking your code carefully is important to help 
prevent these errors. Some development environments provide tools to track the 
memory usage as your program executes so that you can watch for unexpected 
growth in memory usage. You may think memory leaks are not an issue to be 
concerned with since the operating system will reclaim any memory your program 
used when the program exits, but many programs run for long periods of time. A 
web server for a commercial site might be expected to run for months at a time 
without being restarted. If you do not reboot your computer regularly (letting it go 
into sleep or hibernate mode is not equivalent to rebooting it) and leave programs 
such as your email or web browser programs running all the time, you do not want 
these programs to have memory leaks. If these programs you leave running (or 
the operating system itself) have memory leaks, your computer will slow down over 
time until you reboot it as it starts using the disk as extra memory. Thus, it is 
important to get in the habit of writing code without memory leaks. The key point 
to remember is that each new statement that is executed must have a corresponding 
delete statement that is executed after your program is done using the memory 
allocated by the new statement . 

1 10 .5 .2 1 Accessing I nva l id Memory 

Modern computer hardware provides checks to make certain that one program does 
not access memory that is used by another program. This prevents a number of 
problems such as one program causing another program to give incorrect data or 
crash. If one program could access the memory used by another program such as a 
web browser, it would be possible for the program to access the passwords and other 
sensitive information you type into a web browser. Computer hardware splits the 
memory into sections that are known as pages. On most modern computers a page 
is either 4KB or 8KB in size . As the amount of memory in computers continue to 
grow, it is likely that the page size will increase. The hardware provides protection 
at the page level. If a program attempts to access memory that is not in one of the 
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pages your program is using, a hardware exception is generated and the program 
crashes. 

Since the hardware detects errors only when a program attempts to access 
memory that is not one of the pages the operating system allocated for the pro­
gram, a program m.ay access memory that is one of its pages but is not a valid 
memory address that it should be using. In this case, your program will not crash 
immediately, but it can have different results each time it runs or it can crash at a 
later point in time. 

We will start with a simple example that does not use dynamic memory, but 
could give unexpected results. See if you can find the error in this program before 
reading the paragraph after the code. 

II this program is incorrect 
#include <iostream> 
using namespace std ;; 

int mainO 
{ 

} 

int x [10] ; 
int y = 0 ;  
int i ;  

for (i=O ; i<=10 ; ++i)  { 
x [i] = i ;  

} 
cout « "y= "  « y « endl ; 
return 0 ;  

Unlike Python, C++ does not do any index checking when you attempt t o  access 
an element in an array (Python does check when you attempt to access an element 
in a list) . The problem with this example is the array can be indexed using the 
values 0 through 9, but the for loop sets x [10] . Depending on how the memory is 
allocated for the local variables, this could result in the program outputting 10  for 
y even though we set y to zero. If the memory location used for the variable y is 
immediately after the memory location for the array, then x [10] and y correspond 
to the same memory address. If the memory for the variables is not allocated in 
this order then the program produces the expected output of o .  

Remember that pointers hold an address and dereferencing a pointer attempts 
to read or store data at that address. This is what can lead you to access memory 
you should not be using. The following simple program is almost guaranteed to 
crash on any computer. 
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II this program is incorrect 
int main O 
{ 

} 

int *p ; 
p = (int*)  8 ;  
*p = 1 ;  
return 0 ;  

This program sets the pointer variable to the memory address 8 ;  we had to use 
a cast for the compiler to accept it since you should not set pointers directly to 
integer values (you should use the unary ampersand operator or new statement to 
set a pointer variable to a valid address) . Executing the statement p = (int * ) 8 
does not crash the program, but that is the incorrect line. The statement *P = 1 
attempts to store the value 1 at memory address 8 which is not part of the memory 
used for dynamic memory. The hardware detects this error and the program crashes. 
Again, you would not do this as part of a normal program, but this should show 
you that if you accidently set a pointer variable to an address that your program 
is no longer using and then later try to dereference that pointer, your program will 
crash. A more realistic example of the same problem is the following program. 

II this program is incorrect 
int maine )  
{ 

} 

int *x ; 
*x = 5 ;  
return 0 ;  

In this example, x is never initialized t o  hold a valid address so whatever address 
is already in the memory used for the variable x is the address in which the program 
will attempt to store the value 5. If that address happens to be in one of the pages 
the operating system gave our program, the program will not crash. This is unlikely. 
It is more likely that the address stored in the variable for x is not a valid address 
so attempting to store a 5 there will cause the hardware to generate an exception 
and our program will crash. Here is another example that could cause the same 
problem. 

int maine )  II this program is incorrect 
{ 

} 

int *Y = new int ; 
delete y ;  
*y = 3 ;  
return 0 ;  
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In this example, we attempted to dereference the pointer y and store the value 
3 at that address after we have deallocated the memory location that y points to. 
This again could cause our program to crash or it could run to completion. You 
should be starting to see why these types of errors can be difficult to track down in 
larger programs. 

We will examine one more program with errors in this chapter, but there are 
lots of different ways you can have these problems. This program has two errors. 

II this program is incorrect 
int mainO 
{ 

int *x , *y ; 
x = new int ; 
y = new int ; 
*x = 3 ;  
Y = x ;  
* y  = 3 ;  
delete y ;  
delete x ;  

The first problern is that this program has a memory leak. The memory for two 
integers is allocated , but then the statement y = x causes both pointers to refer to 
the same memory location. This results in the memory allocated by the statement 
y = new int being leaked since there is no way to access it and delete it . The 
delete y statement deletes the memory allocated by the x = new int statement . 
Since x also pointed to that memory location, the statement delete x attempts to 
deallocate the same block of memory a second time. This will likely corrupt the 
dynamic memory heap. This can also cause your program to crash immediately, or 
at a later time, or never. 

1 10 . 5 . 3 1 Memory Error Summary 

Some C++ run-tinle environments do not show you the exact line where your 
program crashed or a stack trace showing the function or method calls that re­
sulted in the program crashing at that line. Most IDEs (integrated development 
environments) will show you the execution traceback similar to Python indicating 
at what line the program crashed and the functions or methods that were called to 
get to that point . This information is important for determining why your program 
crashed. Unfortunately, as we have discussed, the line your program crashed at is 
not necessarily the line that is incorrect . If the line it crashes at is dereferencing a 
pointer, the problenl is that either you forgot to give that pointer a valid address or 
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somehow it ended up pointing to memory that is no longer valid for your program 
to use (for example, you already called delete on that memory block or it got set 
to a value that does not correspond to a valid address) . The traceback tells you the 
order the functions or methods were called to the point of the crashing. This helps 
you determine the code that caused the problem. 

Also, as we mentioned earlier, sometimes you can corrupt the dynamic heap by 
accessing incorrect memory locations or calling delete twice for the same block of 
memory. This will typically not result in a crash until you try to allocate memory 
again. These types of errors can be extremely difficult and frustrating to track 
down. Fortunately, while you are developing your code, you can use an IDE that 
provides a debugger to help track down these errors. Debuggers provide a number of 
features to help you find errors in your programs. Most allow you to stop execution 
at specific source code lines within your program, examine the values of variables 
at that point , and execute one line or one function at a time while you watch the 
values of the variables. Debuggers typically provide additional capabilities beyond 
the ones we listed here. 

When running your program within a debugger and your program crashes, the 
debugger will typically show you similar information to the Python traceback. It is 
fairly easy to develop Python code without a debugger, but when writing dynamic 
memory code in C++, a debugger and good IDE will help you track down memory 
errors more quickly and with less frustration. Sometimes proofreading the code 
around the crash (or for the entire class if the crash is in a method) is the most 
effective way to solve the problem. 

It is always a good idea to find the smallest sample input that causes your 
program to crash or to work incorrectly. This is especially important when dealing 
with dynamic memory errors. If we determined that our List class did not work 
correctly and crashed in the append method, we should first check if it can happen 
when appending fewer items than cause the resize method to be called. If this is 
the case and we have only called the append method and the constructor, we know 
that the problem is with the constructor or append method. If it crashes in the 
append method only after the resize method has been called, then the problem 
could be in the constructor, append, or resize, but in this case we recommend 
checking the resize method first . Try to minimize the amount of code that is 
executed but still causes the problem. Limiting the amount of code you have to 
check will enable you to .find the problem faster and with less frustration. 
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1 1 0 . 6 1 Chapter S ummary 

This chapter covers the issues for using pointers and dynamic memory in C++. We 
summarize some of the important issues here. 

• Python references and C++ pointers work similarly and essentially are the 
same concepts with different syntaxes. 

• C++ pointers allow you to delay determining the amount of memory that is 
allocated until run-time when you use the new and delete statements. 

• C++ pointers allow you to write classes such as a List that can grow in size 
over time; they also allow you to write linked structures as we will discuss in 
Chapter 1 1 .  

• Each new statement must have a corresponding delete statement that deal­
locates the memory allocated by the new statement when the program is done 
using that memory. 

• Classes that use dynamic memory must implement a destructor that deallo­
cates any dynamic memory a class instance is still using when the instance 
goes out of scope. Dynamic memory classes also must either write a copy 
constructor and operator= that make a deep copy of the dynamic memory or 
declare these lTIethods private so they cannot be called. 

• Using dynamic memory gives you flexibility and power, but is also error prone. 
Only use dynamic memory when you need its capabilities. 

• Dynamic menlory errors are the source of errors in many programs and can 
be difficult to track down and fix. 

/ 1 0 . 7 1 Exercises 

True/Fa lse Questions 

1. All C++ arrays should be created using dynamic memory. 

2. Dynamic menlory errors are a common source of errors in programs and are 
often difficult to track down. 

3. Never deallocating dynamic memory will never cause problems since all the 
memory a program uses is reclaimed when the program ends. 



396 Chapter 10 C++ Dynamic Memory 

4. U sing dynamic memory requires more memory than using standard automatic 
variables. 

5. Having a function return the address of a local stack dynamic variable will 
work correctly. 

6. Functions can return the address of memory dynamically allocated within the 
function. 

7. A method of a class can return the address of an instance variable of that 
class. 

8. A C++ program that uses dynamic memory and runs once without crashing 
will never crash. 

9. A C++ method that allocates dynamic memory must deallocate it before the 
method completes. 

10. A C++ class that allocates dynamic memory does not need to have a copy 
constructor and operator=. 

1 1 .  A C++ class that allocates dynamic memory for an instance variable does not 
need to have a destructor. 

12 .  The following code has a memory leak. 

int* f O  
{ 

} 

int *x = new int ; 
*x = 3 ;  
return x ;  

int mainO 
{ 

} 

int *y = f O ; 
int z = *y ; 
delete y ;  
return 0 ;  
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Mu lt ip le Choice Quest ions 

1. Which of the following work the most similarly between Python and C++ 

a) Python nanles and C++ stack dynamic variables 
b) Python names and C++ pointers 
c) C++'s pass by value and Python's parameter passing mechanism 
d) C++'s pass by reference and Python's parameter passing mechanism 

2. What , if anything, is wrong with the following C++ code fragment? 

int x ,  *y ; 
y = &x ; 
delete y ;  

a) The code fragment is correct . 
b) The code fragment has a memory leak. 
c) The assignuaent y = &x is incorrect .  
d) The statement delete y i s  incorrect since the address i t  points to  was not 
allocated with the new operator. 

3. What, if anything, is wrong with the following C++ code fragment? 

int *b , *c ; 
b = new int ; 
*b = 3 ;  
c = b ;  
delete c ;  
delete b ;  

a) The code fragment is correct . 
b) The code fragment has a memory leak. 
c) The statement delete b deletes the same memory location that was already 
deallocated by the statement delete c .  
d) The first statement must be  delete b since the memory was allocated for 
the variable b. 

4. What, if anything, is wrong with the following C++ code fragment? 

int *b , *c ; 
b = new int ; 
*b = 3 ;  
c = b ;  
delete c ;  
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a) The code fragment is correct . 
b) The code fragment has a memory leak. 
c) The delete statement must be delete b since the memory was allocated 
for the variable b. 
d) The statement c = b must be *c  = *b. 

5 .  A C++ program that has pointer variables but never calls new or delete 

a) will never crash. 
b) will not have memory leaks. 
c) will have memory leaks. 
d) will never attempt to access a memory location it is not allowed to access. 

6. What is the output of the following C++ code fragment using the Rational 
class from the previous chapter? 

Rational r1 , *r2 ; 
r1 . set ( 1 , 2) ; 
r2 = &r1 ;  
r2->set (3 , 4) ;  
cout « r1 « II II « r2 ; 

a) 1/2 1/2 
b) 1/2 3/4 
c) 3/4 1/2 
d) 3/4 3/4 

7. If you are writing a class that uses dynamic memory, which of the methods 
must you declare within the class definition? 

a) destructor 
b) copy constructor 
c) assignment operator 
d) all of the above 

8. What will happen if you have a class that uses dynamic memory and assign 
one instance of it to another instance of the class? 

a) You will have a memory leak. 
b) You will create a deep copy. 
c) You will create a shallow copy leading to the dynamic memory being 
deallocated twice. 
d) Everything will work properly. 
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9. Which of the following are true of the this pointer in C++ classes? 

a) You must declare the this pointer as a parameter for methods that want 
to access it . 
b) You can use the this pointer in static/class methods. 
c) The this pointer stores the address of the instance of the class with which 
the method was called 
d) You must always use the this pointer to access private data. 

10. What will happen if your dynamic memory code is not quite correct? 

a) Your program may run correctly each time you run it . 
b) Your program may run correctly some times and give incorrect results other 
times. 
c) Your program may run correctly some times and crash other times. 
d) All of the above are possible. 

Short-Answer Questions 

1. Is there a potential problem with the resize method for the List class? If 
so, what precondition would solve the problem? Could a user of our List 
class have a problem because of this issue given that the method is declared 
private? 

2 .  What are the benefits of using dynamic memory? 

3. What are the drawbacks of using dynamic memory? 

4. When should you use dynamic memory? 

5. Write a C++ code fragment that has a memory leak. 

6. Write a C++ code fragment that accesses memory it should not . 

7. Do any of the potential, subtle issues we discussed regarding the operator+= 
method apply to writing an operator+ method? Why or why not? 

8. Why is it not legal for a function or method to return a reference to a local 
stack-dynamic variable? 

9. When is it legal to return a reference to a variable? 
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10.  How many memory accesses are required to access the data (do not count the 
memory access necessary to access the program instructions themselves) in 
the following code fragment? Explain how you arrived at your answer. 

int *b , *c , x ,  y ;  
x = 3 ;  
Y = 4 ;  
b = &x ; 
c = b ;  
* c  = 2 ;  
cout « *b « " " « *d « " II « x « II " « y « endl ; 

Programm ing Exercises 

1 .  Complete the C++ List class with the same semantics and API as Python's 
built-in list using a dynamically allocated array (add the extend, index, 
insert , pop, and remove methods) .  Also add a method named len that 
returns the number of items in the list and an operator+ method or function. 
Whenever you need to make the array larger, double its current capacity. 
Include append, the copy constructor, operator=, operator+=, operator [] , 
and the destructor. Also write a program to test your list that checks all the 
methods including boundary cases such as insertion at the beginning or end 
of the list . 

2 .  Write a C++ Longlnt class that allows integers to be arbitrarily large. Im­
plement it by storing an array with each element in the array being a single 
digit (0-9) that makes up the number (for example, the number 678 would 
have 8 in position 0 of the array, 7 in position 1 of the array, and 6 in position 
2 of the array) . Use a dynamic array of unsigned char to implement this 
since only a single byte is necessary to hold the numbers zero through nine. 
Overload the appropriate operators so you can add, subtract, multiply, assign, 
and input/output instances of your class. Also write a program to test your 
class . 

3. Implement a polynomial class where each element in a dynamic array of 
doubles stores the coefficients for the polynomial. Overload the appropri­
ate operators so you can add, subtract , multiply, assign, and input/output 
instances of your class . Also write a program to test your class. 

4. Write your own implementation of a string class by using a dynamic array 
of characters. Overload the appropriate operators so you can concatenate two 



10.7 Exercises 401 

strings, access the element at a specific position, and input/output instances 
of your string class. Also add some of the methods that the Python or 
C++ string class support such as slicing/substrings, searching for an element , 
reversing a string, and so on. Name your class MyString to avoid confusion 
with the name of the existing string class. 

5. Research how to dynamically allocate and deallocate multi-dimensional arrays 
(it is not covered in this book) . Write a program that dynamically allocates a 
two-dimensional array of a size input by the user, fills it with entries, outputs 
the contents,  and then deallocates it . 





Chapter 1 1  

Object ives 

• To learn how to write linked structures in C++. 

c++ Linked 

Stru ctures 

• To reinforce C++ dynamic memory concepts and how to write dynamic mem­
ory classes. 

[ill] I ntrod uct ion 

As with Python, linked structures can be  used to  implement a number of  data 
structures in C++ including lists and tree structures. We learned in section 10 . 2  
that Python references and C++ pointers are essentially the same concept so to 
implement a linked structure in C++ you need to use dynamic memory and pointers. 
The main differences between writing Python and C++ linked structure classes is 
the need to write a destructor, copy constructor, and assignment operator for the 
class (or as we discussed in section 10 .4 ,  you may declare the copy constructor and 
assignment operator private, but not implement them) . Your C++ class must also 
explicitly deallocate memory which is not required in Python. You will need to fully 
understand the low-level details of C++ memory allocation and deallocation that 
we discussed in the previous chapters; we will reinforce the dynamic memory topics 
in this chapter. 

As you may have discovered when working with linked structures in Python, 
Python does not prevent you from making semantic errors such as setting a reference 
to the wrong linked object (for example, when inserting a node you might mix up the 
link that points to the next node so that you skip a node or end up with a circular 
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linked structure such as a node's link pointing to itself or an earlier node) . The 
C++ environment also does not automatically catch these types of semantic errors. 
The best method for finding these types of errors is to test your code extensively. 
Python does catch an error that the C++ compiler and run-time environment may 
not always catch. Python does not let you use a name to access data at a reference 
that does not point to a valid object (for example, a name that has not been defined 
or is the value None) . If the name node refers to None and you attempt to execute 
node . link or node . i tern, the Python interpreter will always catch this problem 
and generate an exception and traceback if you do not catch the exception. In 
C++ if you try to dereference an uninitialized pointer or a pointer that refers to an 
object that has been deallocated, the run-time environment will attempt to access 
the memory location, resulting in garbage data or a memory fault that crashes your 
program as we discussed in the previous chapter. 

C++ does not allow you to directly assign a pointer of one type to a pointer of a 
different type (for example, if x is a pointer to an int and y is a pointer to a double ,  

you cannot write y = x) . I t  i s  possible to  cast a pointer of  one type to  another 
type using reinterpret_cast (the syntax is similar to static_cast discussed in 
section 8 . 9 ) ,  but it is not intended for this type of use nor is reinterpret_cast 
commonly used. The C++ compiler checks that the data types match, but the 
C++ run-time environment does not check that the pointer actually points to a 
valid memory location that holds a value of that type. When you dereference a 
pointer that does not point to a valid memory location, sometimes your program 
will crash and other times it will continue running even though your program is not 
correct , as we discussed in section 10 . 5 .  

As  you will see later in  this chapter, the code for a linked structure in  C++ 
is not much longer than the Python version and you can generally make a line by 
line translation of Python linked structure code to C++ code. However, writing 
C++ dynamic memory and linked structure code from scratch is more difficult than 
writing Python linked structures because Python prevents you from making some 
types of errors and makes it easier to find and fix other types of errors. After we 
discuss a few additional issues with linked structures in C++, we will translate one 
of our Python linked structure examples to C++. 

1 1 1 . 2 1 A C++ L i n ked Struct u re C lass 

In Python, we used a ListNode class that contained two data elements: the data 
value and a reference to the next ListNode in our linked list . We can use the same 
technique in C++ with a class to hold the data element and a pointer to the next 
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node in the list . A significant difference between the C++ version and the Python 
version is that our C++ ListNode can only hold an item of one type (an int in our 
examples) since all C++ variables must have a specific type. We will learn about 
templates in Chapter 1 2  and they will allow us to write one ListNode class that 
can hold any type. The following is a simple version of a C++ ListNode class that 
we will expand later in this section. 

class ListNode { 
public : 

} ; 

int item_ ; 
ListNode *link_ ; 

An easy typographical error for beginners to make is to forget the asterisk for the 
pointer in front of the link_ instance variable. Your C++ compiler will not allow 
this because you are including a ListNode in your definition of the ListNode . This 
is essentially infinite recursion that would require the ListNode to use an infinite 
amount of memory since each ListNode would contain a ListNode as one of its data 
members. A pointer to any data type requires four bytes on 32-bit systems since it 
is to hold the address where an object of that type is stored, not the actual object . 
Thus, the ListNode requires four bytes in addition to the memory for the data type 
you want to store. 

Usually we do not make instance variables public in C++ classes, but as we 
discussed when presenting the Python ListNode classes, allowing direct access to 
these instance variables makes sense since the ListNode class is only used directly 
by one other class that needs to access the data element and link (the LList class 
in our Python example) .  Another option is to make the LList class a friend of the 
ListNode class. We looked at declaring functions as friends when writing the input 
and output operators for our Rational class in section 9 . 4 .  As we mentioned in 
that section, you can also declare a class to be a friend. Our next version of the 
ListNode class demonstrates this and also contains a constructor so we can use it 
just as we used our Python ListNode class. 

#ifndef _LISTNODE_H 
#define _LISTNODE_H 

#include <cstdlib> 

class ListNode { 
friend class LList ; 



406 Chapter 11 C++ L inked Structu res 

public : 
ListNode (int item=O , ListNode* link=NULL) ;  

private : 

} ; 

int item_ ; 
ListNode *link_ ; 

inline ListNode : : ListNode (int item , ListNode *link) 
{ 

} 

item_ = item ; 
link_ = link ; 

#endif II _LISTNODE_H 

The ListNode constructor allows us to call the constructor with zero, one, or 
two parameters. We have used the default value zero for the int so that we have a 
default constructor that does not require any parameters. The default value for the 
link parameter is NULL. Just as the Python None value evaluates to false, the NULL 
value (which is zero) evaluates to false and is used to indicate an uninitialized or 
invalid pointer. We can write code such as if (node ! = NULL) or the shorthand 
version if (node) to check for a valid pointer since NULL is false and any valid 
pointer address evaluates to true. We discussed in the Python chapter covering 
linked structures that using the is operator in code such as if node is  not None 
is the best way to do this in Python. C++ does not have an is operator so we 
use either if (node) or if (node ! = NULL) . It does not make any difference as far 
as performance in C++. For readability, some programmers prefer if (node ! = 
NULL) , although many programmers use the shorthand if (node) . 

Since the constructor is only two lines long, we have defined it inline to avoid the 
overhead of a function call. Note that we are following the convention of using an 
underscore after the names of the instance variables . This allows us to use the same 
name for the instance variables and the formal parameters except for the addition 
of the underscore. 

Since C++ provides explicit protection for instance members, we use that in our 
ListNode class. We have declared i tem_ and link_ as private instance variables, 
but made the LList class a friend of our ListNode class. At this point , the compiler 
does not know that there is a LList class since it is not referenced in this file. We 
cannot include the LList .h file in this header file because the LList .h file needs to 
include this header file (otherwise we have a circular reference) . To indicate that 
there will be a class named LList,  we can put the line class LList ; before the 
class ListNode { line. This is known as a forward declaration, but most , if not all , 
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compilers do not require the forward declaration when declaring a friend. Our other 
option is to declare the instance variables in the public section as we did initially, 
but then any class could access them as is possible in Python. 

Recall from our Rational example in section 1 0 . 2  that we cannot dereference a 
pointer and use the dot operator without parentheses because of a precedence issue. 
Recall that the comlllon usage is to use the ->.  But as the following example shows, 
there are two correct ways to do it . 

ListNode *node ; 
node = new ListNode (2) ; II item parameter is required 
node->item_ = 3 ; II this is correct 
*node . item_ = 3 ; II this is not correct 
(*node) . item_ = 3 ; II this is correct 

1 1 1 . 3 1 A C++ L i n ked L ist 

Using our C++ ListNode class we can create a linked implementation of a list just 
as we did in Python in Chapter 4. Recall that we wrote a linked implementation of 
a list with the same API as the built-in Python list . In this section, we will write a 
C++ version of a linked implementation of a list that again matches the API of the 
built-in Python list . The syntax will be different , but the only semantic difference 
we need to make is that we need to explicitly deallocate ListNode instances when 
they are removed from the list ; Python handles this automatically via its reference 
counting mechanism. As we did with the dynamic memory classes in the previous 
chapter, we must write a destructor to do the final memory deallocation. You also 
need to write a copy constructor and assignment operator (operator=) or prevent 
them from being called as you need to do for any class that allocates dynamic 
memory using its instance variables. You can prevent the copy constructor and 
assignment operator from being used by declaring them in a private section; when 
you declare the methods private, you do not need to provide an implementation 
for them. If there is not an implementation of a private method, the compiler will 
generate an error if the method is called. The following LList .h header file shows 
the interface for the LList class we are implementing. 

#ifndef _LLIST_H 
#define _LLIST_H 

#include "ListNode . h" 

class LList { 
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public : 
LList O ;  
LList (const LList& source) ;  
-LList O ;  

LList& operator= (const LList& source) ;  
int size ( )  { return size_ ; } 
void append(const ItemType &x) ; 
void insert (int i ,  const ItemType &x) ; 
ItemType pop (int i=-1 ) ; 
ItemType& operator [] ( int position) ; 

private : 

} ;  

II methods 
void copy (const LList &source) ;  
void dealloc 0 ; 
ListNode* _find (int position) ; 
ItemType _delete (int position) ; 

II data elements 
ListNode *head_ ; 
int size_ ; 

As you may have noticed, we have more methods than our Python imple­
mentation of the LList class; this is because we need to properly allocate and 
deallocate memory. Since the copy constructor and assignment operator share some 
functionality, we have declared a private copy method that both methods will use. 
The destructor and assignment operator also share some functionality so we have 
declared a dealloc method that both methods will use. 

A drawback of our ListNode and List classes are that they can contain only 
one data type (integers in our examples) . For now, we will make an incremental 
improvement and use the C/C++ keyword typedef which allows us to define a new 
type name. In the following example, we have created the type name ItemType that 
is now a synonym for int o We can now update both our ListNode and List classes 
to use the type ItemType instead of int in the places that correspond to the value 
stored in the list . Note that we did not change all occurrences of int to ItemType ; 
the size of an LList of any data type is still an integer. Now if we want to make an 
LList of a different type such as double or Rational , all we need to do is change 
the one typedef line in the ListNode.h file (and include the appropriate header file 
if it is not a built-in type) . 
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The typedef statement does not allow us to store different types in the same 
program. Every ListNode in a single program will have to use whatever type we 
specify with the typedef command. A single program can only have a LList for 
one type since there can only be one class named LList and one named ListNode 
in a program. We could copy the code and create a ListNodelnt/LListlnt and 
ListNodeDouble/LListDouble and change the typedef line in each file so it is not 
too difficult to reuse the code for different types in one program. In Chapter 1 2 ,  
we will discuss templates which will allow us to  have lists of different types in 
one program without having to copy the class files for each type. The use of the 
typedef statement now will make it easier to convert our program to a template­
based version. The following is the typedef version of our ListNode and LList 
class header files. 

II ListNode .h  
#ifndef LISTNODE_H 
#define _LISTNODE_H 

#include <cstdlib> 
typedef int ItemType ; 

class ListNode { 
friend class LList ; 

public : 
ListNode (ItemType item , ListNode* link=NULL) ; 

private : 

} ; 

ItemType item_ ; 
ListNode *link_ ; 

inline ListNode : : ListNode (ItemType item , ListNode *link) 
{ 

} 

item_ = item ; 
link_ = link ; 

#endif II _LISTNODE_H 

II LList . h  
#ifndef _LLIST_H 
#define _LLIST_H 

#include "ListNode . h" 

class LList { 
public : 
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LList O ;  
LList (const LList& source) ;  
-LList O ;  

LList& operator= (const LList& source) ;  
int size ( )  { return size_ ; } 
void append(ItemType x) ; 
void insert (size_t i ,  ItemType x) ; 
ItemType pop (int i=-1) ; 
ItemType& operator [] (size_t position) ; 

private : 

} ; 

II methods 
void copy (const LList &source) ;  
void dealloc 0 ; 
ListNode* _find(size_t position) ; 
ItemType _delete (size_t position) ; 

II data elements 
ListNode *head_ ; 
int size_ ; 

We will now look at the C++ implementation file for our LList class. We will 
start with the methods that are similar to their Python versions. After examining 
these methods, we will look at the extra methods for properly handling memory. Our 
LList .cpp file needs to include the LList .h header file containing the class definition. 
The LList methods are the same as their corresponding Python methods except for 
the need to declare variables, the use of pointers, the need to deallocate nodes when 
they are removed from the list , and the other syntax differences between Python 
and C++. We include the Python version followed by the corresponding C++ 
version for the constructor, _f ind, _delete ,  insert , and pop so you can compare 
them. We have removed some of the assert statements, documentation strings, 
and comments from the Python version to keep the code shorter. 

The purpose of the constructor is to initialize the instance variables. We will 
use the NULL value for a pointer variable to indicate that it does not point to a valid 
node. The default constructor is simple since we have only two instance variables 
to initialize. 



def __ init __ (self ) : 
self . head None 
self . size = 0 

II LList . cpp 
#include ILList .h"  

LList : : LList 0 
{ 

} 

head NULL ; 
size 0 ;  
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The _find method is essentially the same other than the obvious syntax differ­
ences. 

def _find (self , position) : 

node = self .head 
for i in range (position) : 

node = node . link 
return node 

ListNode* LList : : _find(size_t position) 
{ 

} 

ListNode *node = head_ ; 
size_t i ;  

for (i=O ; i<position ;  i++) { 
node = node->link_ ; 

} 
return node ; 

The _delete method has some differences since we are removing an item from 
the list . In the C++ version, it is necessary to use the delete statement to deallocate 
the memory for the ListNode being removed. 

def _delete(self , position) : 
if position == 0 :  

item = self . head . item 
self . head = self . head . link 

else : 
node = self . _find(position - 1 )  
item = node . link . item 
node . link = node . link . link 

self . size -= 1 
return item 
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ItemType LList : : _delete (size_t position) 
{ 

} 

ListNode *node , *dnode ; 
ItemType item ; 

if (position == 0) { 
dnode = head_ ; 

} 

head_ = head_->link_ ; 
item = dnode->item_ ; 
delete dnode ; 

else { 

} 

node = _find(position - 1 ) ; 
if (node ! =  NULL) { 

} 

dnode = node->link_ ; 
node->link_ = dnode->link_ ; 
item = dnode->item_ ; 
delete dnode ; 

size -= 1 ;  
return item ; 

Python does have a del statement that removes the name from the current 
namespace by deleting the identifier from the dictionary of accessible names (see 
section 4 . 2  if you need a brief refresher on Python's dictionary of names) .  As you 
should expect , when you remove a name, the object that the name referred to has 
its reference count decremented by one. When the reference count of an object is 
decreased to zero, Python deallocates the memory for the object . The following 
Python version shows the use of the del statement . 

def _delete (self , position) : 
if position == 0 :  

dnode = self . head 
self . head = self . head . link 
x = dnode . item 
del dnode # not necessary in Python 

else : 
node = self . _f ind(position - 1 )  
i f  node i s  not None : 

dnode = node . link 
node . link = dnode . link 
x = dnode . item 
del dnode # not necessary in Python 

self . size -= 1 
return x 
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As the comments indicate, the del statement is unnecessary; however, it will 
not cause any problems. The name dnode is likely the only name that refers to the 
object unless another Python name in a different function that is in the call chain 
of functions/methods that called the _delete method refers to it . Unless another 
name does refer to the object , the del statement will reduce the ListNode object's 
reference count to zero and Python will deallocate it . If no other names refer to 
the object, the reference count will change to zero when the function ends and the 
dnode name is removed from the dictionary of local names. In our original Python 
version, the reference count for the ListNode object being removed is decreased 
by the statement self . head = self . head . link or the statement node . link = 
node . link . link so both the original version and this new version with the del 
statement have the same end result . 

Even though the Python del and C++ delete keywords look similar and work 
similarly in this example, they do not perform the same operation. The Python 
del statement removes a name from the current namespace and the C++ delete 
statement always deallocates memory. The C++ delete statement is required in 
this example or your code will have a memory leak. A key concept to make note of 
is that the delete statement deallocates the memory for the object whether or not 
other pointer variables point to the same object . If any other pointers do point to 
it , dereferencing those pointers after the delete statement executes is an error. We 
discussed this in subsection 1 0 . 5 . 3 .  

A common mistake Python programmers make when learning C++ is forget­
ting to use the neTJ keyword when they want to allocate a node (i.e. , they write 
node-> link_ = ListNode (x) ) .  The compiler will generate an error if you forget 
the neTJ statement . You only use the neTJ statement when you want to allocate a 
node and only use the delete statement when you want to deallocate a node. The 
allocation issue is the same in Python: you only call the constructor (e.g. , node = 
ListNode (x) ) when you want to allocate a node. The append and insert methods 
are essentially the same in both Python and C++. 

def append (self , x) : 

newNode = ListNode (x) ; 
if self . head is not None : 

node = self . _find(self . size - 1 )  
node . link = newNode 

else : 
self . head = newNode 

self . size += 1 
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void LList : : append( ItemType x) 
{ 

} 

ListNode *node , *newNode = new ListNode (x) ; 

if (head_ ! =  NULL) { 

} 

node = _find(size_ - 1 ) ; 
node->link_ = newNode ; 

else { 
head_ = newNode ; 

} 
size_ += 1 ;  

def insert (self , i ,  x) : 

if i == 0 :  
self . head = ListNode (x , self . head) 

else : 
node = self . _find(i  - 1 )  
node . link = ListNode (x ,  node . link) 

self . size += 1 

void LList : : insert (size_t i ,  ItemType x) 
{ 

ListNode *node ; 

if ( i  == 0) { 
head_ = new ListNode (x , head_) ; 

} 
else { 

node = _find ( i  - 1 ) ; 
node->link_ = new ListNode (x , node->link_) ; 

} 
size_ += 1 ;  

} 

The pop method is a little different because in Python we used the default 
parameter value None to indicate we wanted to remove the last item in the list . 
Since C++ does not have dynamic typing or a special value None , we must use 
a specific integer to indicate the default value. We have chosen the value -1  to 
indicate we want to remove the last item. Other than that ,  the pop method is the 
same except that again we did not test that the parameter i holds a valid value 
between 0 and size_ - 1 .  



def pop(self , i=None) : 

if i is None : 
i = self . size - 1 

return self . _delete (i)  

ItemType LList : : pop (int i)  
{ 

if (i == -1 )  { 
i = size_ - 1 ;  

} 
return _delete(i ) ; 

} 
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To allow access to the list elements using the square brackets as we can with 
Python sequences and C++ arrays, we use operator overloading. This example 
also shows the use of reference return types in C++. This allows us to write the 
equivalent of the Python __ geti  tem __ and __ seti tem __ in one method. We have 
only included the Python __ geti tem __ here for comparison. 

def __ getitem __ (self , position) : 

node = self . _find (position) 
return node . item 

ItemType& LList : : operator [] (size_t position) 
{ 

} 

ListNode *node ; 

node = _find (position) ; 
return node->item_ ; 

The next example shows usage of the method. The statement x = a [1]  would 
work if the return type was not a reference, but the statement a [2] = 40 would not 
work if the method did not return a reference. Just as with Python, the element 
on the left-hand side of an assignment statement must be a location where a value 
can be stored. The technical term used for this in computer science is an l-value. 
The element on the right-hand side of an assignment statement can be a variable, 
a constant , or an expression . By returning a reference we are essentially returning 
the memory location that is the i tem_ at the second ListNode . When a reference 
return type is used on the left side of the assignment operator, the result of the 
assignment statement (the value of the expression on the right-hand side of the 
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statement) is stored in the memory location for the variable returned by the function 
or method. When a reference return type is used on the right-hand side or as part 
of an expression, the actual data value is used instead of the address of the returned 
variable. We also covered the issues of returning a reference in subsection 10 .4 . 5 .  

#include "LList . h" 

int mainO 
{ 

} 

LList a ;  
int x ;  

a . append ( 10) ; 
a . append (20) ; 
a . append (30) ; 

II both of these methods cause the operator [] method to be called 
x = a [1] ; II returns 20 which is stored in x 
a [2] = 40 ; II changes the 30 at the last ListNode ' s  item to 40 

return 0 ;  

We will now look at the additional methods for properly handling the dynamic 
memory for the linked list . Since Python handles memory deallocation automati­
cally, there is no corresponding Python code to compare to these methods. The copy 
constructor makes a deep copy of an LList object ; it needs to create a new ListNode 
for each existing ListNode in the original source LList it is copying. Remember 
that the copy constructor is called when we pass an object of this type by value. 
Since we will need to copy a list in the assignment operator, we are writing a copy 
method that both methods will call . We create the deep copy by iterating over the 
ListNode objects in the source list , create the new ListNode objects for the new 
list inside this loop, and connect the link_ links appropriately. We could write the 
copy method more simply by iterating over the items and using the append method 
to add them to the new LList object , but that would be inefficient without a tail_ 
instance variable. 

Remember, we do not write an assignment operator in Python because assign­
ment in Python only binds another name to the same object (Le . ,  makes the name 
a reference to the same object) . The C++ assignrnent operator first needs to 
deallocate the existing ListNode objects storing its items or we will have a memory 
leak. We call the dealloc method, which we will look at next, to deallocate the 
existing ListNode objects. 
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LList : : LList (const LList& source) 
{ 

copy (source ) ;  
} 

void LList : : copy (const LList &source) 
{ 

} 

ListNode *snode , *node ; 

snode = source . head_ ; 
if (snode) { 

} 

node = head_ = new ListNode (snode->item_) ; 
snode = snode->link_ ; 

while (snode) { 

} 

node->link_ = new ListNode (snode->item_) ;  
node = node->link_ ; 
snode = snode->link_ ; 

size_ = source . size_ ; 

LList& LList : : operator= (const LList& source) 
{ 

} 

dealloc ( ) ; 
copy (source) ; 
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The class destructor needs to deallocate every ListNode currently in the list 
since these are the ListNode instances that have not been deallocated yet . This 
ensures that any dynamically allocated memory is deallocated whenever a LList 
object is deallocated. As a reminder, the destructor is called automatically when 
a non-pointer instance goes out of scope or when the delete statement is used 
with a pointer to an LList object . Since our assignment operator also needs to 
deallocate the ListNode instances, we write that code once in a dealloc method 
and have both the assignment operator and destructor call it . We could write the 
code for our dealloc method using the pop method or using the _delete method 
by repeatedly calling one of the methods to remove one item at a time from the list . 
But for efficiency reasons, we will implement it directly. The code traverses each 
ListNode and deallocates the memory for it using the delete statement . Notice 
that we have to advance to the next ListNode before we deallocate the current 
ListNode . Once we deallocate a ListNode we cannot access it so we would not 
have any way to get to the next node. Keeping track of two pointers, one for the 
current node and one for the previous node, is is a common technique used in single 
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linked structures since we often need access to both the current node and the node 
before it for the list operations. 

LList : : -LList 0 
{ 

dealloc ( ) ; 
} 

void LList : : dealloc ( )  
{ 

} 

ListNode *node , *dnode ; 

node = head_ ; 
while (node) { 

dnode = node ; 

} 

node = node->link_ ; 
delete dnode ; 

As you looked at the code for the methods, you may have wondered how we 
can be certain that each new statement has a corresponding delete statement 
that deallocates the ListNode object the new statement allocated. We will use 
the following simple program to discuss it . See if you can determine how many new 
and delete statements are executed by this code and when they are are executed 
before reading the paragraph after the code. 

#include ILList .h "  

int maine )  
{ 

} 

LList b ,  c ;  
int x ;  

b . append ( 1 ) ; 
b . append (2) ; 
b . append (3) ; 
c . append(4) ; 
c . append (5) ; 
c = b ;  
x = b . pop O ; 

The constructor is called once for each variable, but that does not cause any new 
or delete statements to be executed. The five calls to the append method cause five 
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new statements to be executed. The c = b statement causes two delete statements 
to be executed since operator= calls the dealloc method with the instance c that 
deletes the ListNode objects containing 4 and 5. It then calls the copy method 
causing three new statements to be executed so we now have a total of six ListNode 
objects. The variable b has three ListNode objects containing the numbers one, two, 
and three and the variable c has three ListNode objects containing 1 ,  2, and 3. The 
statement x = b .  pop 0 executes a delete statement to deallocate the ListNode 
containing the 3 in the b LList. When the function ends, the LList destructor 
is automatically called twice: once for the variable b and once for the variable c .  
When the destructor for b i s  called, i t  calls the dealloc method which deletes the 
ListNode objects containing 1 and 2. When the destructor for c is called, it deletes 
the three ListNode objects containing 1 ,  2, and 3.  

before b = a 

1 000 a.head 2000 
1 004 a.size 3 

1 008 b.head 21 00 
1 01 2  b.size 2 

after x = a.popO item link_ item - l ink_ 

1 000 a.head 2000 
1 004 a.size 2 
1 008 b.head 2200 
1 01 2  b.size 3 item l ink_ item - l ink_ item - l ink_ 

Figure 1 1 . 1 :  Pictorial representation of LList example 

Figure ] 1 . 1 shows a pictorial representation of the execution at two points in 
time. The top part shows a representation before the statement c = b and the 
bottom part shows a representation at the end of the statements. We chose to use 
the memory addresses starting at 1000 for the stack dynamic variables, and the 
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dynamic heap starts at 2000. The memory addresses we used could be anywhere in 
memory. In our example, we reused some of the addresses after they were deallocated 
by the call to dealloc in the operator= method. Again, the actual addresses used 
would vary and the addresses may or may not be reused immediately after they are 
deallocated. 

The methods that add elements to the list allocate ListNode objects, and the 
methods that remove elements from the list deallocate ListNode objects. As long 
as all the methods are implemented correctly, the ListNode objects will remain 
linked together. When the variable for the LList instance goes out of scope, any 
remaining ListNode objects in the LList are deallocated. The assignment operator, 
copy constructor, and destructor must all be implemented correctly to ensure that all 
ListNode objects are properly allocated and deallocated when we use these methods. 
The other option is to declare the assignment operator and copy constructor as 
private methods without implementing them. This will prevent the compiler from 
generating any code for them and if other code attempts to call them, the compiler 
will generate a syntax error. 

As a reminder about when destructors are called with pointers, we will show an 
example and discuss when the destructor is called. 

LList* f O  
{ 

} 

LList b ;  
LList * c ;  

b .  append ( 1 )  ; 
c = new LList ; 
c->append(2) ; 
return c ;  II the function returns a pointer to an LList instance 
II destructor is automatically called for b when the function ends 

int mainO 
{ 

} 

LList *p ; 

p = f O ; 
p->append(3) ; 
delete p ;  II delete statement causes destructor to be called 

The destructor is called for the variable b at the end of the function f since b is 
a local variable whose lifetime ends when the function completes execution. This 
causes the ListNode containing the value 1 to be deallocated. The variable c goes 
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out of scope at the end of function f, but since it is a pointer variable, only the four 
bytes storing the address of the LList object are deallocated. The LList object with 
its ListNode containing the value 2 continues to exist. The destructor is not called 
for the variable c when the function ends; if we wanted the destructor to be called in 
the function f ,  we would need to add the statement delete c to the function code. 
The function f returns the LList object created by the c = new LList statement. 
The main function then appends the integer 3 onto the list . When the delete p 
statement is executed, the LList destructor is called. This deallocates the LList 
object created by the c = new LList statement in the function f. The destructor 
deletes the two ListNode objects it contained. The four bytes for the pointer p are 
automatically deallocated when the function completes, as are the bytes for all local 
stack dynamic variables. 

1 1 1 .4 1 C++ L i n ked Dyna m ic Memory Errors 

The same dynamic memory issues we discussed in section 1 0 . 5  apply to linked 
structures using dynamic memory so reviewing that section is a good idea. If you 
have a ListNode variable *node , it is important to remember that node->i tem_ 
and node->link_ are both dereferencing the pointer. So if node does not hold a 
valid address of a ListNode , those statements are incorrect and will likely cause 
a crash or incorrect results. If we incorrectly update the link_ instance variables 
when connecting ListNode instances we could end up losing access to a portion of 
a list . One example of this is changing our insert method to 

II this code is incorrect 
void LList : : insert (size_t i ,  ItemType x) 
{ 

ListNode *node ; 

if (i == 0) { 
head_ = new ListNode (x , head_) ; 

} 
else { 

node = _find(i  - 1 ) ; 
node->link_ = new ListNode (x) ; II incorrect 

} 
size_ += 1 ;  

} 

In this case, the link_ instance variable of the newly created ListNode instance 
is set to NULL since that is the default value for the second parameter. This 
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disconnects our list since we no longer have any way to access the items after the 
newly inserted node. In C++ we both lose access to a portion of the list and cause 
a memory leak, so it is extremely important to fully test your C++ code to make 
certain you do not have memory errors. In Python, the comparable code would 
disconnect our list , but would not have a memory leak since Python does its own 
memory deallocation using reference counting. 

1 1 1 . 5 1 Cha pter Su m mary 

This chapter covers the issues for using pointers and dynamic memory to implement 
linked structures in C++. We summarize some of the important issues here. 

• Since Python references and C++ pointers are essentially the same, the code 
for linked structures is similar in Python and C++. In C++ you must 
explicitly deallocate the link nodes when they are no longer needed. 

• A linked structure class contains a pointer of its type (for example, our ListNode 

class contains an instance variable that is a ListNode pointer) . 

• The linked structure class typically declares the class that is going to use the 
linked structure as a friend so it can directly access the data and link in the 
structure. 

• Classes that use dynamic memory must implement a destructor that deallo­
cates any dynamic memory a class instance is still using when the instance 
goes out of scope. Dynamic memory classes also must either write a copy 
constructor and operator= that make a deep copy of the dynamic memory or 
declare these methods private so they cannot be called. 

[]}]] Exerc ises 

True/Fa lse Questions 

1. If you declare a pointer to a ListNode , you must use the new operator to give 
the pointer a valid address. 

2. If class A declares that class B is its friend, methods of class B can access class 
A's private methods and data. 

3. If class A declares that class B is its friend, methods of class A can access class 
B's private methods and data. 
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4. To create a copy of an LList , we must create separate copies of each ListNode 
it contains. 

5. The i tem_ instance variable of a ListNode can be a pointer. 

M u lt ip le Choice Questions 

1. A linked implementation of a list 

a) will always require more memory than an array version of the same list. 
b) will always require less memory than an array version of the same list . 
c) may require less memory than an array version of the list depending on the 
data type (both store the same data type) . 
d) may require more memory than an array version of the list depending on 
the data type (both store the same data type) . 

2. The running time of our copy method for the LList class is 

a) 8(1) . 
b) 8(log2n) . 
c) 8(n) . 
d) 8(n2) .  

3 .  The most efficient possible running time of a copy method for the LList class 
would be 

a) 8(1) . 
b) 8(log2n) . 
c) 8(n) . 
d) 8(n2) .  

4 .  The running time of the destructor for our LList class is 

a) 8(1 ) .  
b)  8(log2n) . 
c) 8(n) . 
d) 8(n2) .  

5 .  The most efficient possible running time of a destructor for the LList class 
would be 

a) 8(1 ) .  
b)  8(log2n) . 
c) 8(n) . 
d) 8(n2) .  
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Short-Answer Questions 

1. How much total memory does the dynamic array List class in the previous 
chapter require for a list of n integers? 

2. How much total memory does the LList class in this chapter require for a list 
of n integers? 

3. How should you decide whether your program should use the dynamic array 
List class or the linked implementation LList class if you need to store a list 
of integers? 

4. What potential issues are there if the i tem_ instance variable of the ListNode 
is a pointer to dynamically allocated memory? 

5. Why is it legal for a class to contain a pointer to an instance of the same 
class, but not an instance of the same class (for example, why can a ListNode 

contain a pointer to a ListNode , but not a ListNode)?  

Programm ing Exercises 

1 .  Complete the linked implementation by adding a tail_ instance variable and 
an external iterator class. Also write code to test all your list methods. There 
is no automatic iteration so you will need to write the external iterator so that 
it can be called using code such as 

LList 1 ;  
LListlterator Ii ; 
int x ;  

Ii . ini t (1) ; 
while (li . next (x) ) { 

cout « x « endl ; 
} 

2 .  Write a linked implementation of a list where each list node element contains 
pointers to both the previous and next element in the list . 

3. C++ also supports inheritance. The basic syntax for inheritance is 

I
::ass CursorLList , public LList { 
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There are a number of issues you will want to learn if you are going to use 
inheritance in C++, but for this exercise you only need to know that the 
constructor for the base class is called automatically before the derived class' 
constructor and the destructor for the base class is called automatically when 
the destructor for the derived class completes . Create a C++ derived cursor 
list and the cursor class as described in subsection 4 . 6 . 2 .  

4 .  Implement a node-based binary search tree in  C++. Include a copy construc­
tor, assignment operator, and destructor. 
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Object ives 

• To understand why compiled code generally needs to know the data type for 
the variables it manipulates. 

• To learn how to write functions using templates. 

• To briefly introduce the C++ Standard Template Library (STL) . 

• To learn how to write classes using templates. 

\ 12 . 1 \ I ntroduct ion 

We have learned that C++ variables must be  defined with a fixed type so that the 
compiler can generate the specific machine instructions needed to manipulate the 
variables. Dynamic typing is possible in Python because the interpreter waits until 
it is ready to execute a Python statement before converting it to machine language. 
This allows us to write generic functions and classes in Python that work for any 
type. As long as an object has the attribute you are trying to use, the code will 
work. Some programmers refer to this as duck typing (i .e. , if it walks like a duck 
and quacks like a duck, it is a duck) . In this chapter, we will learn a new C++ 
mechanism known as templates that allow us to write functions and classes in C++ 
that will give us sinlilar functionality to Python's duck typing. 

In Python, we can write our own maximum function (although there is no need 
to since Python has built-in max and min functions) that works for all data types 
that support the greater-than operator (Le. , the built-in types and any classes that 
implement _ _ gt __ ) . 

427 
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def maximum (a , b) : 
if a > b :  

return a 
else : 

return b 

Chapter 12 C++ Templates 

In C++, all parameters and variables have a fixed type that cannot change 
during the lifetime of the variable (except when using inheritance) . This means we 
would have to write a separate maximum function for each type that we want to use 
with our maximum function as the following example shows. 

int maximum_int (int a ,  int b) 
{ 

} 

if (a > b) { 
return a ;  

} 
else { 

return b ;  
} 

double maximum_double (double a ,  double b) 
{ 

} 

if (a > b) { 
return a ;  

} 
else { 

return b ;  
} 

The bodies of the two C++ functions are identical, as you should expect based 
on the Python code that works for any types supporting the greater-than operator. 
We saw the use of the typedef statement in Chapter 1 1  to make it easier to write 
code for multiple types; however, that doesn't allow the same code to be used for 
multiple types since the machine language code generated must be specific for the 
type. C++ templates allow us to write one version of the code, and the compiler 
automatically generates different versions of the code for each data type as needed. 
Templates allow us to write one maximum function that will work for all types that 
support the greater-than operator and allow us to write container classes such as 
lists, stacks, and queues that can hold any type. We will examine the syntax for 
templates and the issues involved with them in the remaining sections of this chapter. 
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1 12 . 2 1 Tem plate Fu nct ions 

The syntax for template functions is the keyword template followed by <typename 
Item> in front of the name of the function. You may use any legal identifier instead 
of Item, but C++ programmers commonly use Item or Type . The Item name 
is a placeholder for any valid type. You may use the keyword class instead of 
the keyword typename (template <class Item» . There is no semantic difference 
between the two although the use of class may make someone think it works only 
with class objects and not built-in primitive data types even though that is not the 
case. No matter which version you use, the actual data type that is used when the 
template function is called does not need to be a class; the type can be a built-in 
type, an array, or a class. The next example demonstrates a template version of our 
maximum function. 

/ / maximum . cpp 
#include <iostream> 
using namespace std ; 

template <typename Item> 
Item maximum( Item a ,  Item b) 
{ 

} 

if (a > b) { 
return a;  

} 
else { 

return b ;  
} 

int main O 
{ 

} 

int a=3 , b=4 ; 
double x=5 . 5 ,  y=2 . 0 ;  

cout « maximum ( a  , b) « endl ; 
cout « maximum(x , y) « endl ; 
return 0 ;  

In this case, the C++ compiler generates two versions of our maximum function. 
One is for the int type and is used when the call maximum (a , b) is made; the 
other is for the double type and is used when the call maximum (x , y) is made. The 
different versions are needed since the machine language instruction for comparing 
two integers and two double-precision floating point numbers are not the same. 
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We could also use this template function with our Rational class that overloaded 
the greater-than operator. Clearly the code that compares two integers and two 
Rational objects is not the same. Comparing two integers is one machine language 
instruction while comparing two Rational objects requires executing the machine 
code for the Rational class' operator> . 

The C++ compiler does not generate any code if you do not call a template 
function. Depending on your compiler, it may or may not catch syntax errors in 
template functions that are not called. Because of this , it is important that you 
test all your template functions. The term instantiate is used to indicate that 
the compiler generates the code for a specific type. In our previous example, the 
compiler instantiates an int version and a double version of our maximum function. 

Since the compiler does not generate the code for a template function with a 
specific type until it encounters code that calls the template function with that type, 
the compiler needs access to the source code of the template function when compiling 
the file that calls the function. The reason for this is that the compiler does not know 
the data type it will need to generate the machine language instructions for until 
it encounters the call to the function. Thus, once we have the type, we also need 
the source code for the template function to generate the corresponding machine 
instructions for that data type. This is not a problem if everything is in one file 
as in the preceding example. If you want a template function to be accessible in 
multiple C++ source files, you will need to write it in a header file that each source 
file includes. 

The Type template parameter can be any data type, but cannot be two different 
types in the same instantiation of the function code. Using our previous example, we 
could not call our function as maximum (x , b) because x is a double and b is an int o 
C++ does support multiple template types. It does not make sense to write our 
maximum function for multiple types, but the next example shows the syntax for a 
function with multiple template parameter types. It uses two template parameters, 
but there is not a specific limit on the number of template parameters you can use. 

template <typename Tl , typename T2> 
Tl maximum (Tl a, T2 b) 
{ 

} 

if (a > b) { 
return a ;  

} 
else { 

return b ;  
} 
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If we call the function as maximum (x , b) , our C++ compiler (g++ version 4) 
compiles the code without any warnings or errors. The parameter Ti is double and 
T2 is an int so the return type is a double. The compiler silently casts an int to 
a double if necessary. If we call the function as maximum (b , x) , most compilers 
will generate a warning, but still will produce the executable machine code . The 
following shows the warning generated by the g++ compiler. As usual , you should 
not ignore compiler warnings even though the compiler still produces an executable 
program. 

maximum . cpp : In function ' T1 maximum (T1 , T2) [with T1 = int , T2 = double] ' :  
maximum . cpp : 35 :  instantiated from here 
maximum . cpp : 23 :  warning : converting to ' int ' from ' double ' 

As we have discussed, the compiler creates separate copies of the template 
functions for each data type that is used when calling the function. So in effect, the 
compiler is doing the work of writing each of the multiple versions of the functions 
instead of the programmer having to write each version. As the previous example 
shows, you will still get warnings or errors as if you had written the same code that 
the compiler generates based on your template. 

1 12 . 3 1 Templ ate C l asses 

As we stated earlier, you can also write classes using templates so that you can write 
a container class that can hold any C++ built-in data type or user-defined class. 
C++ also provides a library known as the Standard Template Library (commonly 
abbreviated STL) that provides template classes for a number of common data 
structures and algorithms for manipulating those data structures. The Standard 
Template Library is fairly complex and entire books have been written on it so we 
will only cover one of the classes in the STL and some simple examples of its use. 
We will then show you how to write your own template classes. 

1 12 . 3 . 1 1 The Standard Tem plate L ibrary vector Class 

One of the simpler STL classes is the vector class. It provides functionality similar 
to the dynamic array classes we developed earlier in the book. Internally the vector 
class is implemented as a dynamic array, so its use and efficiency are similar to the 
C++ dynamic array class we developed and the built-in Python list . The vector 
class is defined in the <vector> header file and is within the std namespace so we 
will need to specify it as std : : vector or write either using std : : vector or using 
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namespace std in our files. If you are defining your own class that uses a vector 
or are writing a function that returns or has a vector as a parameter, do not put 
a using namespace std or using std : : vector statement in your header file (see 
section 8 . 13 if you need a refresher on why) . Instead, refer to it using its full name 
std : : vector in your header file. You may then put the using namespace std 
statement in your implementation file as we have done in our examples. 

When you declare an instance of the vector class, you must specify the data 
type that the vector will contain in its dynamic array. An example of this is 
std : : vector<int> iv ; .  You can declare vectors with two different types in the 
same file, as the following example shows: 

/ / veei . cpp 
#include <iostream> 
#include <vector> 
using namespace std ; 

int maine )  
{ 

} 

veetor<int> iv ; 
vector<double> dv ; 
int i ;  

for ( i=O ; i<10 ; ++i) { 
iv . push_back (i) ; 
dv . push_back(i  + 0 . 5) ;  

} 
for (i=O ; i< 10 ; ++i) { 

} 
eout « iv [i] « II I I  « dv [i] « endl ; 

return 0 ;  

This example also shows that the vector class supports a method named 
push_back (similar to the Python list append method) . The push_back method 
takes one parameter that matches the type with which the vector is instantiated. 
The vector class also overloads the bracket operator so that the individual items 
in the vector can be accessed using the square bracket array notation. 

The vector class supports a default constructor, as the previous example shows, 
and also has a constructor that takes one or two default parameters. The default 
constructor produces a vector with no items in it . When you specify one parameter, 
it is an integer specifying the size of the initial dynamic array to create. The second 
default parameter is the default value to use to initialize each of the elements in the 
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dynamic array, so its type is the type that you are storing in the vector. The next 
example demonstrates this. 

II vec2 . cpp 
#include <iostream> 
#include <vector> 
using namespace std ; 

int main e )  
{ 

} 

II creates a vector with 5 int elements ,  each set to 3 
vector<int> iv (5 , 3) ; 
II creates a vector with 5 double elements ,  each set to 0 . 0  
vector<double> dv (5) ; 
int i ;  

for (i=O ; i<5 ; ++i)  { 

} 
cout « i v [i] « II II « dv [i] « end 1 ; 

If we specify the size but do not specify a second parameter, the default con­
structor (for the class being stored in the vector) is called for each element in the 
vector; this is yet another reason you should always provide a default constructor 
for classes you write. For numeric types, the items in the vector will default to 
zero as the comment in the example indicates. 

The prototypes for some, but not all ,  of the methods the vector class provides 
are listed in the next code example. We use the name Item to specify the data type 
the vector instance contains. C++ defines the typedef size_type which is the 
same as an unsigned int (i.e . ,  a non-negative integer) . 

II allocates the dynamic array so the capacity of the array is n elements 
void reserve (size_type n) ; 

II appends x onto the end of the vector 
void push_back ( Item x) ; 

II removes and returns the last element in the vector 
Item pop_back O ;  

II returns True if the vector has no items in it , False otherwise 
bool empty ( )  const ; 
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II returns the number of items in the vector 
size_type size ( )  const ; 

II returns the largest possible size for the vector 
size_type max_size ( )  const ; 

II returns the size of the dynamic array (i . e . , the largest number of 
II elements that can be stored in the vector without resizing it) 
size_type capacity ( )  const 

The vector class also overloads the assignment operator. When you assign one 
vector variable to another, each of the individual elements in the vector instance 
on the right-hand side of the assignment operator is assigned to the corresponding 
position in the vector instance on the left-hand side of the assignment operator. 
The vector instance on the left-hand side will be resized if necessary so it can hold 
all the elements from the right-hand side instance. 

Many of the STL classes also provide support for iteration. We will show a 
simple example, but not cover all the details. STL classes that support iterators 
include the methods begin 0 and end 0 which return an i terator object . Some 
classes also support methods for iterating through the container in reverse order 
using the methods rbegin ( )  and rend ( ) . The following example shows the use of 
an iterator with the vector class. 

II vec3 . cpp 
#include <iostream> 
#include <vector> 
using namespace std ; 

int main O 
{ 

} 

vector<int> iv ; 
vector<int> : : iterator iter ; 
int i ;  

for (i=O ; i<10 ; ++i) { 
iv . push_back (i) ; 

} 

for (iter=iv . begin ( ) ; iter ! =  iv . end ( ) ; ++iter) { 
cout « *iter « endl ; 

} 
return 0 ;  
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The output of the example is the numbers 0 through 9. The example shows the 
declaration of an iterator variable named iter that can be used to iterate through 
a vector containing integers. The begin ( )  method of the vector class is used to 
initialize the iterator. The for loop uses the end O method to determine if the 
iterator has processed all the items, and the prefix increment operator (++i ter) is 
used to move the iterator to the next item; this is the reason we used the prefix 
version of the increment operator in all our for loop examples. Inside the loop, each 
item can be accessed using the pointer deference notation (*iter) . 

In addition to the vector template class, the Standard Template Library also 
provides template class implementations of a queue, list , set ,  and hash table along 
with algorithms and iterators for use with a number of the classes. If you are 
interested in learning more about the STL, you can find complete books dedicated 
to discussing the details of the STL. 

1 12 .3 .2 1 User-defi ned Template C lasses 

If the STL does not define the data structure you need to use or you are using an 
old compiler that does not fully support the STL, you can write your own template 
classes. As is common with non-template classes, template classes are typically 
split into two files: a header file and an implementation file. As we discussed earlier, 
a template function does not actually cause any code to be generated unless it is 
used. The same is true of template classes and the methods they define. As we 
also explained, the compiler needs to have access to the template function/method 
code when compiling the file that calls that template function/method. Some 
programmers place the entire code for all the functions and methods in the header 
file . You cannot do this for non-template functions and classes since it will produce 
multiple definitions of the functions and classes. Since template declarations do not 
actually produce any code, having them included in multiple files is not a problem. 

Some programmers place the function or method code in a file with the suffix 
.template and then have the header file include the .template file at the bottom of 
the header file. This has the same effect of placing all the code in the header file, 
but allows a programmer using our class to see only the interface for the template 
functions and classes in the header file without seeing the details of the implemen­
tation of the functions and methods. Of course, we cannot completely hide the 
implementation from users since their compiler needs access to the implementation 
file. We will use this technique of a separate . template file in our examples. 

When writing template classes, both the class definition and the implementation 
of each method must indicate that it is a template. The syntax for template methods 
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is the same as it is for template functions. We will demonstrate the syntax for 
template classes with a template implementation of a stack class. 

II Stack . h  
#ifndef STACK __ H __ 
#define __ STACK __ H __ 
#include <cstdlib> II for NULL 

template <typename Item> 
class Stack { 

public : 
Stack O ; 
-Stack O ; 

II const member functions 
int size ( )  const { return size_ ; } 
bool top (Item &item) const ; 

II modification member functions 
bool push (const Item &item) ; 
bool pop (Item &item) ; 

private : 

} ; 

II prevent these methods from being called 
Stack(const Stack &s) ; 
void operator= ( const Stack &s ) ; 

void resize 0 ; 
Item *s_ ; 
int size_ ; 
int capacity_ ; 

#include "Stack . template"  

The extra syntax is  to put template <typename Item> before the class decla­
ration. As with functions, you can use any identifier in place of Item. This Stack 
class uses a dynamic array to store the elements on the stack. The declaration Item 
*s_ declares the pointer to the dynamic array for the data. Since we used template 
<typename Item> before the class declaration, we need to use Item as the data type 
here so that it matches. As indicated earlier, we can either include a Stack.template 
file containing the implementation or put the template method implementations at 
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the bottom of the header file. In our example, we declared the copy constructor and 
assignment operator private but did not provide the code for them in the following 
. template file. This means that these methods cannot be called as we discussed in 
subsection 10 .4 . 2 .  

I I  Stack . template 
template <typename Item> 
Stack<Item> : : Stack ( )  
{ 

} 

s_ = NULL ; 
size_ = 0 ;  
capacity_ = 0 ;  

template <typename Item> 
Stack<Item> : : -Stack ( )  
{ 

} 

template <typename Item> 
bool Stack<Item> : : top (Item &item) const 
{ 

} 

if (size_ > 0) { 
item = s_ [size_-l] ; 
return true ; 

} 
else 

return false ; 

template <typename Item> 
bool Stack<Item> : : push (const Item &item) 
{ 

} 

if (size_ == capacity_) { 
resize O ;  

} 
if (size ! =  capacity_) { 

s_ [size_] = item ; 
size_++ ; 
return true ; 

} 
else 

return false ; 
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template <typename Item> 
boo I Stack<Item> : : pop (Item litem) 
{ 

} 

if (size_ > 0) { 
size_-- ; 

} 

item = s_ [size_] ; 
return true ; 

else 
return false ; 

template <typename Item> 
void Stack<Item> : : resize ( )  
{ 

} 

Item *temp ; 
int i ;  

if (capacity_ == 0 )  { 
capacity_ = 4 ;  

} 
else { 

capacity_ = 2 * capacity_ ; 
} 
temp = new Item [capacity_] ; 
for ( i=O ; i<size_ ; i++) { 

temp [i] = s_ [i] ; 
} 
delete [] s_ ; 
s_ = temp ; 

In this Stack implementation we have returned a Boolean value for many of the 
methods, indicating whether or not each method succeeds. Since we can return only 
one value in C++, we used pass by reference to send the data back from the top and 
pop methods. Note that we also passed the value to the push method as a const 
reference parameter since we do not know whether the value will be a small data 
type such as an int or a class containing many data members. We also used if 
statements in the methods that allocate dynamic memory to be certain they succeed 
(e.g. , the push method makes certain there is room in the array and returns false if 
allocating a larger array when necessary failed) . These extra checks will result in the 
implementation being slightly slower than it would be without the if statements. In 
most cases, you could write the code without these tests as the allocation will always 
succeed unless you are dealing with stacks that approach the size of the memory 
your computer can access (at least two gigabytes on most modern architectures) . 
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To declare an instance of the template class, we specify the data type the stack 
will hold with the declaration just as we did with the STL vector class. The 
following code fragnlent demonstrates the syntax. To stay short, the example does 
not test all the stack methods, but remember that you need to test all the methods 
of a template class since some compilers do not check the syntax of methods that 
are not instantiated. 

II test_Stack . cpp 
#include "Stack .h "  

int main O 
{ 

} 

Stack<int> int_stack ; 
Stack<double> double_stack ; 

int_stack . push(3) ; 
double_stack . push (4 . 5) ; 
return 0 ;  

In this short example, we ignored the return value from the push method. To be 
safe and check to be certain all the allocations succeed, we could write it as 

if ( l int_stack . push (3) ) { 
cerr « " stack . push failed\n" ; 

} 
if ( l double_stack . push (4 . 5) )  { 

cerr « "stack . push failed\n" ; 
} 

Writing all these tests is tedious and probably unnecessary for a small program 
that only pushes a few items onto the stack since that should never result in a 
memory allocation failing. For a larger, mission critical program, these values should 
be tested. In Python, we would likely handle these issues using exception handling. 
C++ also supports exception handling, but it is not as commonly used as it is in 
Python. When using exception handling in C++, you need to be very careful when 
using it with dynamic memory allocation. If an exception is generated during a 
sequence of instructions that may have allocated memory, you need to be certain 
that memory is properly deallocated. You also need to be aware if the memory 
allocation did not happen before the exception was generated so that you do not 
later try to deallocate memory that was never allocated . We do not cover the details 
of writing C++ exception handling code in this book. 



440 Chapter 12 C++ Templates 

1 1 2 .4 1 Chapter S u m mary 

This chapter covers the basics of using C++ template functions and classes and how 
to write your own template functions and classes. 

• Templates allow you to write functions and classes that can work with more 
than one type. The compiler generates separate versions of the machine code 
for each different type that is used. 

• The compiler does not generate code unless a function or method is actually 
used; this means the compiler may not check the template code for syntax 
errors unless a function or class is used. You should fully test all template 
functions and classes you write to make certain they do not contain errors. 

• C++ provides the Standard Template Library (STL) containing a number of 
classes and algorithms. 

1 12 . 5 1  Exercises 

True/Fa lse Questions 

1. Templates allow you to write code once and reuse it with multiple types. 

2. The compiler will always catch syntax mistakes in your C++ template func­
tions and methods. 

3. For each data type a template function is called with, the compiler generates 
a separate copy of the machine language instructions for the function. 

4. You can place template function or method implementations in an implemen­
tation file ( . cpp) and the linker will correctly link the code so it can be called 
from other implementation files . 

5. Templates give you the same flexibility that Python's dynamic typing does. 

M u lt ip le Choice Questions 

1. When you write a template function, 

a) the compiler generates one set of machine language instructions for all types. 
b) the compiler generates a separate set of machine language instructions for 
each type that you call the template function with. 
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c) the compiler generates a separate set of machine language instructions for 
every built-in type and every class your program uses whether or not the 
template function is called with each type. 
d) the C++ run-time environment generates the machine language instruc­
tions as needed when the function is called with different types. 

2. What is/are the advantages of using templates instead of a typedef statement 
and cutting and pasting the code? 

a) The resulting executable program requires less memory. 
b) The resulting executable program will run faster. 
c) You do not have to write as much code or risk making errors when copying 
the code. 
d) all of the above 

3. Which of the following are techniques for writing C++ template classes? 

a) You may write a class header file as you usually do and at the bottom of the 
file, include the file containing the implementation of the template methods. 
b) You may write a class header as you usually do and write the implementa­
tion of the methods with the inline keyword. 
c) You may write a class header as you usually do and write the implementation 
of the methods without the inline keyword. 
d) a and b 

4. Using a template class even when your program only creates an instance of 
the class with one data type 

a) requires less memory than not using templates if you call all the methods. 
b) requires more memory than not using templates if you call all the methods. 
c) requires the same amount of memory than not using templates if you call 
all the methods. 
d) will execute more slowly than not using templates. 

5. Based on the example using the vector class, what does the iter variable 
correspond to? 

a) the address of the i v variable 
b) the address of the current element in the array 
c) the value of the current element in the array 
d) none of the above 
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Short-Answer Questions 

1. Without operator overloading, would it be possible to create a template-based 
version of our maximum function? If not, explain why not or if so, explain 
how you would do it . 

2. Could a template-based version of our LList from the previous chapter contain 
multiple types in one list? Explain why or why not. 

3 .  How do you determine if a template class needs to write a destructor, copy 
constructor, and assignment operator? 

4. Do the functions and methods generated from templates execute more slowly, 
more quickly, or the same as the same code written without templates? Why? 

5 .  Is it possible to write template code without allowing the person using your 
template code to see the source code of your template code? (With non­
template code, the user only needs to see the header file and the implementa­
tion can be a compiled object file or library. ) Why or why not? 

Programm ing Exercises 

1 .  Write a template version of the mergesort algorithm and test it with multiple 
types. 

2. Implement a queue using templates along with code to test it . 

3. Implement our List dynamic array using templates along with code to test 
it . 

4. Implement our LList linked implementation using templates along with code 
to test it . 

5. Implement a binary search tree using templates along with code to test it . 



Chapter 13  

Objectives 

Heaps , Balanced 

Trees , and Hash  

Tables 

• To understand the binary heap data structure and how to implement it . 

• To understand the AVL balanced tree data structure and how to implement 
it . 

• To understand the hash table data structure and the basics of its implemen­
tation options. 

1 13 . 1 1  I ntroduct ion 

Now that we have covered a number of  basic data structures and introduced the 
C++ programming language, which required us to have a better understanding 
of the low-level details of memory allocation and deallocation, we will examine !i 
number of more advanced data structures and algorithms in the remainder of this 
book. We will discuss implementation issues for Python and C++. In most cases, 
we will present a Python implementation and have you implement it in C++ so you 
can continue to develop your C++ skills. 

The data structures we have covered so far are all container objects allowing us 
to store and retrieve information. List objects allow us to store data in an order 
defined by the user. The array-based list supports efficient access by position, but 
does not provide efficient searching for a specific item unless we keep the list in 
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sorted order. Inserting to and deleting from an array-based list are not efficient . 
We also examined a linked implementation of a list that supports efficient insertion 
and deletion, but requires more memory and does not support efficient access by 
position. Stacks and queues are also container objects , but they are not as generic 
as lists; they only support accessing the data in a certain order and are not intended 
to be used for random searching or access. Trees are useful for storing hierarchical 
data or for storing information so it can potentially be searched more efficiently as 
is the case with a binary search tree. 

In this chapter, we will examine additional container data structures. Priority 
queues and heaps are useful for storing data and then accessing it in a sorted order 
efficiently. Balanced trees are an extension of the basic binary search tree that 
maintains a balanced structure for the tree no matter what order the elements are 
inserted. This ensures that searching for an item is always a 8(lgn) operation. 
Hash tables are a data structure that provide very efficient inserting, deleting, and 
searching operations. You are already familiar with hash tables since that is what a 
Python dictionary is. We will examine the implementation details of heaps, priority 
queues, balanced trees, and hash tables in this chapter. 

1 13 . 2 1 Priority Queues a nd Hea ps 

In section 5 . 3 ,  we studied first in, first-out queues. In some cases, we may want 
to prioritize the order items are processed. For example, you prioritize the order 
that you perform tasks. A common priority is when they are due. You likely give a 
higher priority to a task that is due in two days than a task that is due in a week, 
even if the task that is due in two days was assigned later than the task that is 
due in a week. If you put the tasks in a queue when they were assigned, the one 
that is due later would be dequeued before the one that is due earlier. Another 
common example is that hospital emergency rooms prioritize the order they treat 
patients based on the severity of the injuries or illnesses. Your computer's operating 
system prioritizes its execution of programs so that crucial operating system tasks 
and interactive programs get more frequent access to the CPU. The data structure 
for handling these types of situations is known as a priority queue. Each item in 
a priority queue must be assigned a priority value and these values are used to 
determine the highest priority item that should be dequeued next . A specification 
for a priority queue using Python syntax is 
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class PQueue (obj ect) : 

def enqueue (self , item , priority) : 
" ' post : item is inserted with specified priority in the PQ ' " 

def first (self ) : 
" ' post : returns but does not remove highest priority item from the PQ ' "  

def dequeue (self ) : 
" ' post : removes and returns the highest priority item from the PQ ' " 

def size (self ) : 
" 'post : returns the number of items in the PQ ' "  

There are a number of possible implementations of a priority queue. One is 
to maintain a sorted list of the items by priority order and enqueue the items in 
the appropriate position. As we discuss the run-time analysis, we will always state 
the worst-case running time unless we explicitly state we are specifying the best or 
average case. The enqueue operation would require 8(n) time. If we are using an 
array, we can use a binary search and find the correct spot in 8(lgn) time, but then 
we have to shift the items in the array to insert the new item. The worst case would 
be shifting all the items to insert at the beginning of the array, which requires 8( n) 
time. If we use a linked list , it requires 8(n) time to find the correct location for 
insertion and then the insertion can be performed in 8 (1 )  time. Another option is 
to append items onto the end of a list for the enqueue and search for the highest 
priority item during the dequeue; in this case, the dequeue requires 8( n) time. 

Using the data structures with which we are already familiar, either the enqueue 
or dequeue operation for a priority queue requires 8( n) time. To improve on this, 
we will learn a new data structure known as a binary heap. The term heap is used to 
describe several different data structures in computer science. Computer scientists 
refer to the memory pool from which dynamic memory is allocated and deallocated 
as a heap. In this chapter, we will use the term heap to refer to the binary heap we 
are discussing here. A binary heap is a complete tree with the additional property 
that for every node, the item at that node is not less than the items in its children's 
nodes. You can also reverse this property so that the item at each node is not 
greater than the items at the node's children if you want to extract items in the 
reverse order. Remember that a complete tree means that at every depth level except 
the last level, each level has the maximum number of nodes and at the last level, 
the nodes are filled from the left . Figure 13 . 1 shows examples of complete trees that 
are and are not binary heaps; the tree on the right is not a heap. In these examples, 
we are showing only the one value that is required to indicate the position in the 



446 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables 

heap; this value corresponds to the priority for a priority queue. To actually create 
a priority queue, we would need to store both the priority value and the data you 
want to store in the priority queue. 

heap not a heap 

Figure 13 . 1 : Two complete trees with only the left one satisfying the heap property 

In order to make the binary heap practical for a priority queue, we must find 
algorithms to insert and remove an item from the binary heap in less than 8(n) 
time. Given our definition of the binary heap, the highest priority item is at the 
root of the tree so it is easy to find and return it in 8(1 )  time. Once we have done 
that , we need to update the heap so that the next highest priority item is at the 
root of the tree. Because of the heap property, the next highest priority item is one 
of the two children of the original root node. We could move to the root and repeat 
the process by moving the higher priority of its two children up to the spot in the 
second level. We could continue this process until we reach the bottom of the tree. 
The problem is that we may end up with a non-complete tree because the item we 
moved up from the bottom row may not have been the right-most node in the row. 
To prevent this from happening we can follow a slightly different process. We can 
temporarily move the right-most item in the bottom level of the tree to the root 
node and then move it down the tree by swapping it with the higher priority child. 
We repeat this process of moving the item down the tree until the item we originally 
moved to the root has moved down the tree to a location where the heap property 
is satisfied. Since we moved the item at the right-most spot in the bottom row, the 
tree will remain a complete tree. 

Figure 13 . 2  shows the process of shifting the last item down the tree. In this 
example, the highest priority item 9 is removed from the heap and the last item in 
the heap (4) is temporarily moved to the root of the tree. We move 4 down the tree 
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until the heap property is satisfied. We check the root 's two children and find the 
higher priority item is 8 and that is larger than 4 so we swap the two items. Now we 
check the two children of the current location where 4 is and find the higher priority 
item is 7. We swap 7 and 4 since 7 has a higher priority. Now we check the 4 node's 
two children and find that both have a lower priority (2 and 0) so we are done. In 
practice we do not swap items; instead, we keep track of the item that was last in 
the tree and move the items up the tree until we find the spot the last item needs 
to be placed and then move it there. In this exanlple, we would move 8 to the root , 
move 7 to where 8 was and then place 4 where 7 was since that is the location that 
satisfies the heap property. 

Figure 13 . 2 :  Removing 9 and reorganizing the heap 

We can use a similar process for inserting an item into the heap. We place the 
new item at the last spot in the bottom row of the tree and then move it up the 
tree by swapping it with its parent until the heap property is satisfied. This will 
also ensure that the tree remains a complete tree. Figure 1 3. 3  shows an example of 
this process. The value 8 is added to the end of the heap and then swapped with 4 
and then swapped with 7 .  At this point, 8 is less than its parent (9) and the heap 
property is again satisfied. As with removing an item, in practice, we do not swap 
the items; instead we would move 4 to its new location, move 6 to its new location, 
and then place 8 in the correct location. 
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Figure 13 . 3 :  Inserting the 8 and reorganizing the heap 

We indicated that to make the binary heap a better implementation for a priority 
queue, the enqueue and dequeue operations needed to be more efficient than 8(n) . 
For both the insertion and deletion operations of the binary heap, the maximum 
number of items moved is the height of the tree. Since the tree is complete, this is 
8(lgn) so both the enqueue and dequeue operations of the priority queue can be 
performed in 8(lgn) time if we use a binary heap to implement the queue. This 
meets our goal of being better than 8(n) . 

When we originally discussed binary trees, we indicated that an array imple­
mentation is appropriate when the tree is complete, so we use an array or list 
to implement the heap instead of linked nodes. As we demonstrated, the basic 
algorithms used in the heap are moving items up and down the tree. We will make 
use of the code to move items down the tree for two different heap methods, so we will 
write a method that performs this operation and call it from those two methods. 
The following Python code shows this method, commonly known as heapify or 
percolate_down, along with the constructor and a method to return the number of 
elements in the heap. These methods create a heap that is implemented as an array 
using an instance variable named heap with the root node at position one in the 
list . The instance variable heap_size indicates the number of items in the heap. 
Starting the tree at position one of the array results in simpler calculations for the 
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parent, the left child, and right child than storing the root at position zero. With 
the root node at position one, the left child of the element at position i is 2*i ,  the 
right child is 2*i +1 ,  and the parent is i/2 using integer division (5 / / 2 is 2) . 

# Heap . py 
class Heap (obj ect) : 

def __ init __ (self , items=None) : 

" 'post : a heap is created with specified items ' "  

self . heap = [None] 
if items is None : 

self . heap_size = 0 
else : 

self . heap += items 
self . heap_size = len(items) 
self . _build_heap ( )  

def size (self ) : 

" ' post : returns number of items in the heap ' " 

return self . heap_size 

def _heapify (self , position) : 

" ' pre : items from 0 to position - 1 satisfy the heap property 
post : heap property is satisfied for the entire heap ' " 

item = self . heap [position] 
while position * 2 <= self . heap_size : 

child = position * 2 
# if right child , determine maximum of two children 
if (child ! =  self . heap_size and 

self . heap [child+l] > self . heap [child] ) :  
child += 1 

if self . heap [child] > item : 
self . heap [position] = self . heap [child] 
position = child 

else : 
break 

self . heap [position] = item 

The delete_max method returns the element at the root node of the tree and 
uses the _heapify method to update the heap so the heap property is maintained 
as we discussed. We also include the insert method here. 
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def delete_max (self ) : 

" ' pre : heap property is sat isfied 
post : maximum element in heap is removed and returned ' "  

if self . heap_size > 0 :  
max_item = self . heap [1]  
self . heap [1] = self . heap [self . heap_size] 
self . heap_size -= 1 
self . heap . pop 0 
if self . heap_size > 0 :  

self . _heapify ( 1 )  
return max_item 

def insert (self , item) : 

" ' pre : heap property is satisf ied 
post : item is inserted in proper location in heap ' " 

self . heap_size += 1 
# extend the length of the list 
self . heap . append (None) 
position = self . heap_size 
parent = position II 2 
while parent > 0 and self . heap [parent] < item : 

# move item down 
self . heap [position] = self . heap [parent] 
position = parent 
parent = position II 2 

# put new item in correct spot 
self . heap [position] = item 

In some cases we may have a list of values that we want to turn into a heap. We 
could accomplish this by inserting the items one at a time into the heap. There is a 
more efficient method we can use that manipulates the existing array in place using 
the same technique of shifting items down the tree that we used in the _heapify 
method. Leaf items in the complete tree cannot have children that violate the heap 
property and also cannot be moved down since there is no child to swap the item 
with. This tells us that we can start at the middle of the array since any items 
beyond that do not have children. We can then update the tree in a bottom-up 
manner so the heap property eventually holds for the entire tree. This is done by 
calling our _heapify method for each non-leaf node in the tree starting at the last 
node that has a child (which is the middle element in the array) . The Python code 
for this is 
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" ' pre : self . heap has values in 1 to self . heap_size 
post : heap property is satisf ied for entire heap ' " 

# 1 through self . heap_size 
for i in range (self . heap_size II 2 ,  0 ,  - 1 ) : # stops at 1 

self . _heapify(i )  
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We know that the worst-case running time of _heapify is 8(lgn) so the running 
time for the _build_heap method is no more than 8(n * 19n) . We notice that the 
_heapify method is called first with nodes at the next to last level of the tree and 
then with nodes closer to the root. Since we are calling it for each of these nodes, 
the total number of comparisons or moves performed by all the calls to _heapify 
is the sum of the heights of each of the tree nodes. For a full tree with n nodes and 
height h = 19n, there is one node with height h,  two nodes with height h - 1 ,  four 
nodes with height h - 2, and so on up to 2h-1 nodes with height 1. We will not go 
through the mathematical details, but the sum of this is 8(n) . This means that our 
_build_heap method is 8(n) . 

We have written the binary heap so that we can easily extract the maximum 
value. We could just as easily make it so that we can efficiently extract the minimum 
element. For this case the heap property is that for each node, its child nodes are 
greater than the node. With this change, we would write a delete_min method 
instead of a delete _max method. 

1 13 .2 . 1 1 Heapsort 

We can use the _heapify and remove methods to sort items in 8(n * 19n) time. 
This algorithm is appropriately known as heapsort. Your first thought might be to 
modify the code to remove the minimum from the heap each time. You could then 
repeatedly call the delete_min method and append the items onto the end of an 
array or list. The drawback of this technique is that it requires a separate array 
or list , doubling the amount of memory required. Since the heap size decreases 
each time we remove an item, we can use the space at the end of the array for the 
removed items. To use this technique, we organize the heap so that the maximum 
element is removed from the heap. Each time we remove an item, we can place it 
at the last spot in the heap before the item was removed. After we have removed 
all the items except one, the resulting array will be sorted. After this process, the 
heap property will not be satisfied so we can no longer use it as a heap; the heap 
property will actually be reversed since the items are now sorted from minimum to 
maximum. The following Python code implements the heapsort algorithm. 
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def heapsort (self ) : 

" ' pre : heap property is satisfied 
post : items are sorted in self . heap [1 : self . sorted_size] ' "  

sorted_size = self . heap_size 
for i in range (O , sorted_size - 1 ) : 

# Since delete_max calls pop to remove an item , we need 
# to append a dummy value to avoid an illegal index . 
self . heap . append(None) 
item = self . delete_max ( )  
self . heap [sorted_size - i ]  = item 

The heapsort algorithm can be used on an existing heap or we can first call 
_build_heap on an unorganized array. Since the _build_heap method is 8(n) and 
each delete_max call is no worse than 8(lgn) , the overall running time for the 
heapsort is 8(n * 19n) . Also note that we need to call delete_max only n - 1  times 
since after the last call , the final remaining element in the heap is the minimum 
item which is at the root of the tree (the first position of the array) . After these 
n - 1 calls, the array is sorted. 

1 13 .2 .2 1 Notes on Heap  and Priority Queue I mplementations 

As mentioned earlier, since the heap is a complete tree, it makes sense to implement 
it as an array. This provides the efficient access to both the parent and the children 
that is needed for moving items up and down the tree. The formulas for accessing 
the parent and children are simpler if the root is at position one in the array instead 
of position zero. This means the array size must be one larger than the number 
of items in the tree. In Python you must explicitly store a value in position zero 
of the list ; it is common to store None as the placeholder. In languages where you 
explicitly allocate space in the array, you will need to resize the array in the insert 
method if the array is already full. This means you need an instance variable to 
indicate the number of items in the tree and the maximum size of the array. It is 
common to double the size of the array when resizing it . This means that no more 
than 50% of memory is wasted and that the amortized cost of the resizing operation 
is 8 ( 1 )  per insertion. 

As we discussed at the beginning of this chapter , if you have a binary heap 
then it is easy to implement a priority queue. A priority queue class is typically 
implemented with a binary heap as an instance variable. The enqueue and dequeue 
methods of the priority queue call the insert and delete methods using the binary 
heap instance variable. The priority is typically an integer value while the item 
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can be of any data type. In C++ we will want to use templates to implement 
both the binary heap and priority queue classes. In languages that provide operator 
overloading, the data type you insert into the binary heap needs to support the 
comparison operators. In Python you can simply store the items in the queue as a 
tuple of the form (priority , item) since the tuples will be compared first by the 
priority part of the tuple. In C++, you can create a class containing two instance 
variables: the integer priority and the data element being inserted in the heap and 
priority queue. You will need to write the comparison operators for this class so 
that elements are compared by the integer priority and the other data element is 
ignored. 

1 13 . 3 1  Ba l anced Trees 

Earlier we studied binary search trees and noticed that the worst case search time 
was the height of the tree. Ordinary binary search trees can have height n for n 
items in the tree. Consider what happens if you insert the items in sorted order; 
each node has only a right child, making the height n. If the tree is approximately 
balanced then the height of the tree is closer to 19n than n. This means that if the 
tree is balanced, both insertions and searches run in 8(lgn) time. A straightforward 
method for maintaining a balanced tree is to update the tree structure as needed as 
we insert the items. To make this a good solution, the balancing operation must be 
able to be performed efficiently. 

The first issue we need to discuss is what we mean by the tree being balanced. 
A perfectly balanced tree is a full tree. That is obviously not possible unless the 
number of items in the tree is exactly one less than a power of two ( 1 ,  3, 7, 15 ,  
31 ,  63 ,  and so on) . A complete tree would have the same worst-case search time 
of 8(lgn) as a full tree since the height of a complete tree is 19n. The problem is 
that it would be computationally expensive to rearrange the tree at each insertion 
to maintain a complete tree. To convince yourself of this, think about what you 
would do to maintain a complete tree if the elements were inserted in order. 

We need to be less restrictive on the balancing requirement at the expense of 
the tree having more levels . We could start with requiring the height of the left and 
right subtrees of the root node to be the same. As Figure 1 3 .4  shows, this is not 
sufficient . The height of the tree is n/2, and thus the search time would be 8(n) . 

This should lead you to realize that we need to enforce the balancing at every 
node but cannot require exact balancing or we would have a full tree. A reasonable 
solution is to require that the heights of the left and right subtrees of each and every 
node differ by at most one. This is the solution developed by G.  M. Adelson-Velskii 
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Figure 13 .4 :  Only requiring root node to have subtrees of same height allows for 
trees of height n / 2 

and E. M.  Landis in the 1960s and is known as an AVL tree. Figure 13 . 5  shows an 
example of an AVL tree and a non-AVL tree. The tree on the right is not an AVL 
tree because the height of the 5 node's left subtree is one and the height of its right 
subtree is three. The height of the root node's subtrees also differ by more than 
one. 

The next question you should be asking yourself is what is the worst-case height 
of an AVL tree? Your intuition might make you think that the height can be no 
worse than twice that of a full tree with the same number of nodes since at every 
node the height of the subtrees differ by at most one. This tells us that at most 
half the spots in a full tree could be empty while still maintaining the balancing 
property. If the height is at most twice that of the best possible case (which is 
19n ) ,  the height of an AVL tree is at most 2 * 19n. This tells us that the worst-case 
search time is 8(lgn) and this is what we want . To convince us that this intuition is 
correct , let 's look at some examples. Figure 13 .6  shows the worst possible cases for 
AVL trees (Le. , the configuration that achieves the maximum height for a specified 
number of nodes) . As it turns out the worst case is closer to 1 .44 * 19n, but this 
improvement over 2 * 19n does not affect our calculation of the worst-case running 
time of the search function. 

Now that we have convinced ourselves that AVL trees will provide the 8(lgn) 
search time we want , we need to determine an efficient algorithm that maintains the 
balancing property as we insert items into the binary search tree. Adelson-Velskii 
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Figure 13 .5 :  An AVL tree on the left and a non-AVL tree on the right 
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and Landis developed these algorithms for rebalancing the tree that we will look at 
next. 

In order for the balancing property to be violated, we must be inserting a node 
into an existing leaf node (if a node already has one child, adding a second child does 
not violate the balancing property for any node in the tree) . As you might suspect , 
there will be some symmetries in the cases depending on whether we are inserting 
a new node in a left or right subtree of the node whose balancing property will be 
violated. For the AVL property to be violated at a node, that node must have a 
subtree with a depth of at least two since the height of the node's two subtrees must 
differ by two and the newly inserted node must be at least two levels deeper in the 
tree than the node at which the AVL tree property is violated. Since each node has 
at most two children, this gives us four cases. 

Figure 13 . 7  shows two of the symmetric cases. In the first case, the value 3 was 
just inserted. We know this because that is the node that causes the AVL property 
to be violated. The left subtree of the 8 node has a height of three and its right 
subtree has a height of one. This is an insertion into the left subtree of the left 
child of the 8 node. We rearrange the tree by shifting the 5 node to the root and 
making the original root node the right child of the 5 node. We then need to figure 
out where to place the 7 node. We know that the original root node containing the 
8 will not have a left child after the rotation since its left child before the rotation 
(5) moved up a level. We can place the 7 node as the left child of the 8 node. It 
is important to note that the binary search tree ordering is maintained by these 
changes made to the tree structure. 

The second example in Figure 13 . 7  shows the mirror image of the first case. In 
this case it is an insertion into the right subtree of the right child of the node at 
which the AVL tree property is violated. The right subtree of the 3 node has a 
height of three and the left subtree has a height of one so we know that the 8 node 
was just inserted. We shift the 6 node up to the root and move 5 to the right child 
of 3. Again, we know the 3 node will not have a right child after the rotation since 
its right child before the rotation (6) moved up a level. 

In the rotation examples we just discussed, we replaced the root node in both 
cases. In many cases, the root node will not be the deepest node at which the AVL 
property of the tree is violated and the root will not change. The rotation will always 
occur at the deepest node at which the AVL property is violated. Figure 1 3 .8  shows 
an example similar to the first single rotation we discussed. In this case the subtree 
rooted at the 8 node is the left child of a root node with a right subtree. When we 
insert the 3 node, the AVL property is violated at the 8 node and we make the same 
changes as before (not shown in Figure 13 .8 ) .  The key point to realize is that the 
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Figure 13 . 7: Two mirror image AVL single rotations 

Figure 13 .8 :  A case where the AVL single rotation does not replace the root node 
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subtree with the root 8 has the same height before the insertion of the 3 as it does 
after the insertion and rotation fix. Since this is true, if the AVL tree property held 
at the root node 10 before the insertion, it will still hold after the insertion and the 
rotation that rearranges the root's left subtree. The height of the left subtree does 
not change so it will still differ by at most one from the height of the right subtree. 
This tells us that at most one rotation is needed to return the tree to a balanced 
state no matter where the rotation occurs. 

In the examples so far, the newly inserted node is three levels below the node 
that is at the root of the rotation. If we insert the numbers 3, 2, and 1 then the 
3 is the root of the rotation and the 2 is the new root after the rotation. In that 
case, the newly inserted node is two levels below the root . It is also possible that 
the newly inserted node is four or more levels below the node that is at the root of 
the rotation. Figure 13 . 9  shows an example of this. 

Figure 13 . 9 :  AVL single rotation in which the newly inserted node is four levels 
below the root of the rotation 

In this example, the 13 node is the newly inserted node. The AVL property 
holds at each node except the root node (4) so the rotation happens at that level. If 
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you are thinking about the implementation of the insertion and rotation, this may 
cause you to realize that an iterative solution will be difficult since once we find the 
location to insert at the bottom of the tree , we may need to move all the way back 
up the tree to find the node for which the AVL tree property is violated. Since most 
tree implementations do not have a pointer to the parent we do not have an easy 
way to do this. A recursive solution will make this much simpler. As it returns from 
each level of recursion, it is essentially moving back up the tree. We will discuss the 
implementation details later in this section. 

We have examined two cases in which the AVL property is violated for a specific 
node: inserting into the left subtree of the left child of the node and inserting into 
the right subtree of the right child. The other two cases are inserting into the right 
subtree of the left child and inserting into left subtree of the right child. A single 
rotation cannot update the tree so that the AVL property is maintained for these 
two cases. Fortunately, in these cases, two rotations will update the tree so the AVL 
property is maintained. 

Figure 13 . 1 0  shows an AVL tree that just had the value 4 inserted into the tree. 
The A VL property no longer holds for the root node since the height of its left 
subtree is now three and the height of its right subtree is one. This figure shows the 
case of inserting into the right subtree of the left child. None of the single rotations 
we examined earlier will fix this case; however , performing two single rotations will . 
Figure 13. 1 1  shows the intermediate result after the first rotation on the left and 
then the final result on the right after the second rotation. After the two rotations, 
the tree again meets the AVL property. We will leave drawing the case of inserting 
into the left subtree of the right child as an exercise. As is the case with single 
rotations, the node at which the property is violated after an insertion does not 
have to be the root node. The root node 6 in Figure 13 . 1 0  could be part of a left or 
right subtree with a tree of an appropriate height on the other side of the tree that 
maintains the AVL property. 

In order to implement an AVL tree we must keep track of a node's height which 
is defined as the ma.ximum of the height of its two subtrees plus one. This means 
our TreeNode class rnust contain an additional instance variable to store this. We 
also need an algorithm to compute the height of a node. Since the height of a node 
is defined in terms of the heights of its subtrees, we will need to compute the heights 
starting at the bottom of the tree as we insert new items and update the heights as 
we move up the tree. The height of a node will be one plus the maximum of the 
heights of its left subtree and its right subtree. We will use the following TreeNode 
class and get_height function in our sample tree node. 
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Figure 13 . 10 :  Insertion of the value 4 into an AVL tree 

Figure 13 . 1 1 : Result after the first rotation and result after the second rotation 
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# TreeNode . py 
class TreeNode (obj ect) : 

def __ init __ (self , data=None , left=None , right=None , height=O) : 

" 'post : TreeNode with specif ied data and left/right subtrees is created ' "  

self . item = data 
self . left = left 
self . right = right 
self . height = height 

def get_height (t) : 

" ' post : returns height of a subtree at node t ,  empty tree has height - 1 ' "  

if t is None : 
return -1  

else : 
return t . height 

It is important to note that TreeNode has an instance variable named height 
and that the get_height function is not a method of the class; it is a standalone 
function. We can determine this by the fact that get_height is not indented as 
the TreeNode method is . The get_height function allows us to easily determine 
the height of a node's two subtrees. If we use it to determine the height of the left 
subtree of the node and that node does not have a left subtree (i .e . ,  its left instance 
variable is None) ,  it will return -1 .  This will result in a leaf node having a height 
of zero since the height of each of its two subtrees is -1  and we add 1 to that .  We 
cannot make the get_height function a method in the TreeNode class and still be 
able to call it with a non-existent node (None) as we can with get_height being a 
standalone function. This is necessary when we want to determine the height of the 
left or right subtree of a node that may be empty (the left or right child is None) . 

The following code fragment contains a partial Python implementation of an 
AVL tree. The tree has one instance variable containing the root node. The value 
None for root indicates an empty tree . A recursive implementation of the insert 
method is much simpler than an iterative method since we need to move back up the 
tree and adjust the heights and possibly perform a single or double rotation at one 
of the ancestors of the newly inserted node. The recursive calls to insert the node 
in a left or right subtree of a node return and move back up the tree, allowing us to 
make the appropriate updates after the recursive call. To allow a programmer using 
our tree to call the insert method without specifying the root instance variable in 
the call , we use the technique of having the insert method call a helper method 
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that does all the work with the root instance variable as a parameter. The code 
fragment includes the calls for inserting into the left subtree; the similar code for 
the right subtree is left as an exercise. 

# AVLTree . py 
from TreeNode import * 

class AVLTree (obj ect ) : 

" ' post : creates empty AVL tree ' "  

self . root = None 

def insert (self , value) : 

" ' post : insert value into proper location in AVL tree ' "  

self . root = self . _insert_help (self . root , value) 

def _insert_help (self , t ,  value) : 

" ' private helper method to insert value into AVL (sub) tree with 
root node t ' " 

if t is None : 
t = TreeNode (value) 

elif value < t . item : 
t . left = self . _insert_help (t . left , value) 
# left subtree height may be now larger than right subtree 
if get_height (t . left) - get_height (t . right) == 2 :  

else : 

# determine which subtree the new value was inserted 
if value < t . left . item : 

# insertion into left subtree of left child 
t = self . _left_single_rotate (t)  

else : 
# insertion into right subtree of left child 
t = self . _right_left_rotate (t)  

# exercise for reader 

# update height of tree rooted at t 
t . height = max (get_height (t . left) , get_height (t . right» + 1 
return t 
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The insert method passes root as the parameter to the _ insert_help function. 
When the tree is empty, the root must be changed to the newly created node, thus 
the _insert_help method needs to change the parameter that is passed to it . When 
the tree is not empty, the _insert_help method makes recursive calls with t . left 
or t . right as the parameter. When we get to the bottom of the tree where the new 
node will be created, the value of the parameter that is passed to _insert_help is 
None . When the new node is created, we need to change the left or right instance 
variable of the node that is above it in the tree. That is the node whose left 

or right instance variable is the parameter that is passed to the _insert_help 
function so you might think this does what we want. The key point to remember 
is that the formal parameter t is being set to a new object so that does not change 
the actual parameter (t . left or t .  right) that was passed. To solve this issue in 
Python, we must pass the parameter and return the new value of the parameter 
(i .e . , we must call it as t = self . _insert_help Ct . left ) and the _insert_help 
method needs to end with a return t statement) . The same issue occurs with the 
rotation methods so those methods need to be called in a similar manner. In C++, 
we may use pass by reference to accomplish this . We will discuss it at the end of 
this section. 

As each recursive call to _insert_help returns, the code checks the heights of 
the left and right subtrees. Thus, the code will check the heights of the subtrees 
at each node along the path from the inserted node to the root. If the heights of 
the subtrees of any node differ by two, the code performs the appropriate single 
or double rotation. The following code is the single and double rotations that are 
used by the _insert_help fragment . The mirror image rotations are needed by 
the section of _insert_help that you are to write. The _left_single_rotate 
implements the first case in Figure 13 . 7. 

" ' private rotation method for inserting into right subtree of 
left child of t ' " 

t . left = self . _right_single_rotate (t . left)  
t = self . _left_single_rotate (t)  
return t 
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" ' private rotation method for inserting into left subtree of 
left child of t ' " 

grandparent = t 
parent = t . left 

grandparent . left = parent . right 
parent . right = grandparent 
t = parent 

grandparent . height = max (get_height (grandparent . left ) , 
get_height (grandparent . right ) ) + 1 

parent . height = max (get_height (parent . left ) , 
get_height (parent . right ) ) + 1 

return t 

Although it is not clear from the _insert_help code, at most one single rotation 
or one double rotation fixes the AVL balancing property when a new item is inserted 
in the tree. The reason for this is the height of each subtree is the same after the 
insertion and rotation as before the insertion. The height of the tree only increases 
when we insert an item that does not require a rotation. As the recursive calls 
return, at most one rotation fix will occur. The rotation code executes in 8(1 )  
time since it is updating a few references or pointers. Because the height of the 
tree is 8(lgn) , the insertion process will require at most 8(lgn) steps to find the 
correct spot , 8(lgn) steps to recurse back up the tree, and a constant number of 
steps for the zero, one, or two rotations. This makes the running time for the overall 
algorithm of inserting and maintaining the AVL property 8(lgn) . Implementing a 
search method will also be 8(lgn) since the height of the tree is 8(lgn) . 

Maintaining the balancing property when deleting an arbitrary node from an 
AVL tree is much more complicated and we will not look at the details of an 
algorithm for it in this book. If deletion is required, possible solutions are to 
mark nodes as inactive and periodically build a new tree without these items if 
the tree becomes unbalanced. For a theoretical computer scientist, this is not an 
ideal solution, but in practice it might be better than developing and debugging a 
complicated algorithm that will not result in significant computation time savings. 
Since developer time is relatively expensive and computational time is relatively 
cheap, the choice of a simpler, but less efficient , algorithm is sometimes made. This 
does not mean that we should not study the best algorithms and data structures 
since we may need them at times, but it does mean there are cases where it is not 
worth the effort to implement more complicated algorithms and data structures. The 
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best possible case is having a well-designed, tested library of efficiently implemented 
data structures and algorithms that you can reuse for many applications. 

We noted that the _insert_help method of the AVLTree needs to change the 
parameter that is passed to it . In Python when we want to change a parameter, 
we need to write code such as x = f (x) and have the function return the formal 
parameter that corresponds to the actual parameter x. In C++, we can accomplish 
this using pass by reference as we discussed in subsection 8 . 1 2 .3 .  Using our same 
example, the prototype would be void f ( int &x) and we could call it as f (x) 
without needing the function to return x. 

In a C++ implelnentation of the AVLTree class, the parameter that is passed to 
the _insert_help and rotation methods is a pointer to a TreeNode . This may be 
the first time you have attempted to pass a pointer by reference in C++. The syntax 
for this is to place the ampersand after the asterisk that indicates we are passing 
a pointer. For exanlple, a prototype for the _insert_help function when we are 
storing int variables in the tree is void _insert_help (BinaryTreeNode *&node , 

int item) . A way to remember the order of the asterisk and the ampersand is 
to recall the statement : passing a pointer by reference. The pointer symbol (the 
asterisk) is placed before the reference symbol (the ampersand) . 

1 13 .4 1 Other Tree Structu res 

There are a number of additional tree data structures such as other implementations 
of balanced binary trees and non-binary trees. We will not discuss the details of 
these data structures in this book. Some of these other tree structures are used 
in the implementations of databases. If you are interested in learning more about 
these topics, search for information on red black trees, B-trees, and splay trees. 

1 13 . 5 1 H ash Ta b les 
With our balanced binary tree implementation, the worst-case running time to find 
or insert an item is 8 (logn) time. Hash tables are a data structure that improve 
the lookup time to 8(1) in most cases, although the worst case can be 8(n) . As 
mentioned in the introductory section of this chapter, Python's built-in dictionary 
data type is implemented as a hash table . Hash tables are also known as dictionaries 
or as associative arrays. As the "associative array" name implies , a hash table 
associates a key with a value as Python's dictionary does. The standard array data 
structure allows us to look up a value based on the position in the array while 
associative arrays allow us to look up a value based on a key. The goal of a hash 



466 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables 

table implementation is to provide efficient methods for inserting, deleting, and 
searching; we want the typical case for each of these methods to be 8(1 ) .  

We will begin our explanation o f  the implementation o f  hash tables by looking 
at a simplified example in which the set of all possible keys is small and known in 
advance. The set of capital letters A through Z meets that requirement . Hash tables 
use an array to store the data. This means we can quickly look up an element by 
position. What we want to do is look up the key based on its value, so we need a 
function to map the key to a position in the array storing the key and value. In our 
example we need to be able to map each letter to a corresponding position in the 
array. The term for this mapping is a hash function or hashing function. In our 
example we know that the array size needs to be 26 and that a simple hash function 
would map the letter A to position 0 and the letter Z to position 25.  The following 
Python function is an implementation of such a hash function.  

def hash_letter (c) : 
" ' pre : c is a one character string of a capital letter A-Z ' " 
return ord(c)  - ord ( ' A ' ) 

The hash_letter function uses the Python ord function to convert a letter to 
its ASCII code and then subtracts the ASCII code for the letter A to give us a value 
between 0 and 25. We could use this function with an array or list of size 26. The 
hash function maps a key to the corresponding position in the array or list where 
the key's value is stored. If a key is not in the hash table, we must use a special 
value to indicate that position is not in use; in Python, we could use the value None , 
assuming that is not a valid value to be stored in the hash table. We do not need to 
store the key in the array since there is only one key that can map to each location 
in the array or list . The following is a complete Python implementation of a hash 
table (without using the built-in Python dictionary) that only allows capital letters 
as the keys; the running time for each method is 8(1 ) .  

# HashLetter . py 
class HashLetter (obj ect ) : 

def __ init __ ( self) : 
" ' post : initializes simplified hash table ' "  

self . table = 26 * [None , ]  
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def __ getitem __ (self , key) : 
" ' post : returns value for specif ied key ' " 

assert ' A '  <= key <= ' z '  
pos = ord (key) - ord( ' A ' ) 
if self . table [pos] == None : 

raise KeyError (key) 
else : 

return self . table [pos] 

def __ setitem __ (self , key , value) : 
" 'post : value for specified key is inserted into hash table ' "  

assert ' A '  <= key <= ' z '  
pos = ord (key) - ord ( ' A ' ) 
self . table [pos] = value 

def __ delitem __ (self , key) : 
" ' specified key is removed from hash table ' "  

assert ' A '  <= key <= ' z '  
pos = ord (key) - ord ( ' A ' ) 
self . table [pos] = None 

467 

The HashLetter class contains a single instance variable that is a list with 26 
items. We store the value None in each position to indicate that the hash table 
does not contain a value at that location. We add a key/value pair to the hash 
table by mapping the letter key to the corresponding position in the list using the 
hash function and then store the value at that position in the list . Hash tables do 
not support storing multiple values for the same key (attempting to store a second 
value for a key overwrites the first value) . When we attempt to look up a letter 
key, we use the hash function to map to a position in the Python list . If the value 
at that position in the list is None , that letter key is not in the hash table and the 
code raises a KeyError as the built-in Python dictionary does. If the value at the 
position in the list is not None , that is the value associated with the letter key and 
it is returned. 

Since we have overloaded the various bracket operators, we can use the HashLetter 
class just as we would a Python dictionary for the key values A-Z. The follow­
ing example using the interactive Python interpreter shows a sample use of our 
HashLetter class. 
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» >  d = HashLetter ( )  
» >  d [ ' a ' ]  = 4 
Traceback (most recent call last ) : 

File "<stdin> " , line 1 ,  in ? 
File IHashLetter . py" , line 19 , in setitem __ 

assert ' A '  <= key <= ' z '  
AssertionError 
» >  d [ ' A ' ]  4 
» >  d [ ' B ' ]  = 5 
» >  d [ ' A ' ]  
4 
» >  d [ ' C ' ]  
Traceback (most recent call last ) : 

File " <stdin> " , line 1 ,  in ? 
File IHashLetter . py" , line 13 , in __ getitem __ 

raise KeyError , key 
KeyError : ' c '  
» >  d [ ' A ' ]  
4 
» >  d [ ' B ' ]  
5 
» >  del d [ ' B ' ]  
» >  d [ ' B ' ]  
Traceback (most recent call last) : 

File "<stdin>" , line 1 ,  in ? 
File IHashLetter . py " , line 13 , in __ getitem __ 

raise KeyError , key 
KeyError : ' B '  
» >  d [ ' A ' ]  
4 

The strategy used in our simple example works fine when we know the possible 
key values in advance, but that is typically not the case. It also does not work well 
when the set of possible key values is large, but many of the key values will not be 
used. If our set of possible key values was all the integers from 0 to 2 billion, our 
array would need to be huge and take up more memory than a typical computer has. 
What if the possible key values were English words? What hash function should we 
use and how big should our array be? What do we do if two keys hash to the same 
position in the array? These are the implementation issues we will discuss in the 
remainder of this section. 

The first step is to convert a key to a number so that we can then apply a 
mathematical function to map it to a position in the array. Hash tables are not 
limited to using numbers and strings as keys; we can take any data, whether it is a 
number, string, or class with various data members and use the data values to map 
to a number. In our simple example, we used the ord function to map the letter 
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to a number based on its ASCII value. In the case of words, we could use some or 
all of the characters. We could pick the first two characters and add their ASCII 
values together or apply a function that multiplies each of them by a constant and 
adds the results together. Unfortunately, certain sequences of two characters occur 
often in the English language so a number of words would hash to the same position 
in the array. This problem is known as a collision. We can make this less likely to 
happen by using more letters and using a multiple based on the position; but we 
cannot prevent the problem from happening in some cases. We could generate a 
unique hash value for four unique letters using the following Python function for a 
string w .  

def hash (w , array_size) : 

" ' pre : w is an ASCII string 
post : returns a value between 0 and array_size - 1 ' " 

v = 0 
for i in range (min (len(w) , 4» : 

v = 128 * v + ord (w [i] ) 
return v % array_size 

Before we apply the modulus operation, this hash function produces a unique 
number for all the unique sequences of four letters since the ASCII code for char­
acters is less than 128 .  Obviously words that start out with the same first four 
letters (e.g. ,  friend and friendship) will still produce the same value. The hash 
value may be a fairly large number, so to make certain the hash value is within 
the array size we compute the hash value modulus the array size. This produces a 
value between ° and one less than the size of the array. Once we apply the modulus 
function, different four-letter words in our example may map to the same position 
if the size of the array is less than 1284 • We could use more than four letters, but 
that will take longer to compute the hash function, and once we apply the modulus 
operation to make certain we do not map beyond the end of our list , we can still 
end up with multiple words mapping to the same position in the list . 

In our simple example, the letters map to the array in order (A mapped to 
position 0, B mapped to position 1 ,  and so on) , but it is not important that the 
mapping is in order. When the set of possible keys is larger than the typical number 
of keys that will be in the hash table (as is the case with storing a number of English 
words) , you typically will not want the words to map in order; all that matters is 
that the hash function is a fast calculation that maps to the position where we 
expect to find the key and its value. With our hash function for words, the items 
certainly do not map in order unless the array size is very large. 
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As mentioned before, no matter what hash function we use, we can end up with 
multiple key values mapping to the same array position, and this is known as a 
collision. In fact, if we know the hash function, we can usually determine many keys 
that map to the same position. There are two common solutions to the collision 
problem, known as chaining and open addressing. With chaining, each array position 
stores a list of the key and item values whose keys map to that position. In the worst 
case all the keys we are storing would be in one position. With open addressing, if 
a key maps to a position that already has a key/value, we repeatedly apply another 
function until we find the key or find an empty position in the array. Using either 
method, we will have to store both the key and the value in the array so we can 
determine if we have found an existing key in the array. We did not need to do 
this with our simple HashLetter example because each key could map to only one 
location in the array. 

The simplest form of open addressing is known as linear probing. In this case, 
our new hash function is f (key, i) = (hash(key) + i) mod size for each i from 0 to 
size - 1 where size is the size of the array for the hash table. What this effectively 
says is if the key is not found in hash( key) with i = 0 then we start with i = 1 and 
see if the next position in the array has the key or is empty. We keep looking at the 
next position in the array, wrapping around from the end to the beginning, until 
we find either the key or an empty spot or get back to the original hash location. 
Obviously, if we find the key, we have found its key/value. If we reach an empty 
position in the array before finding the key, we know the key is not in the hash 
table. We should not get back to the original spot unless the hash table is full; for 
any practical hash table, it is necessary to resize the array before it gets full to make 
the hash table useful. 

There are more complex open addressing functions than linear probing. One 
is known as quadratic probing. It uses the hash function f(key, i) = (hash(key) + 
a * i2 + b * i) mod size where a and b are integer constants and i plays the same 
role as it does in linear probing. Instead of looking in consecutive locations , this 
function will jump ahead a number of positions each time it finds a location that is 
not empty and does not match the key. This produces less clustering of key/value 
pairs in consecutive locations, but two keys with the same result for the hash( key) 
function will search the same set of positions. 

Another approach is known as double hashing. It uses two hash functions hl and 
h2. If the first hash function hl does not map to the key or an empty location, we 
repeatedly compute hl (key) + i * h2 (key) mod size with the values 0 to size - 1 for i 
until we find the key or an empty position. For any of the open addressing methods, 
the worst case requires that every array position be examined. For double hashing 
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to work well (i .e . ,  the entire hash table is not examined) , the value produced by 
h2(key) must be relatively prime (i .e. , it cannot share any prime factors) with the 
size of the array. This can easily be done by having the size of the hash table be a 
power of 2 and having h2(key) produce an odd number. In practice double hashing 
works better than linear probing or quadratic probing. 

The following Python code example demonstrates a hash table using chaining. 
The constructor creates a list of the specified size . Each position in the list is 
initialized to an empty list . As items are added to the hash table, they will be 
appended to the inner list at the appropriate position in the outer list . The _hash 
function is not necessarily a good hash function, but it does incorporate the size of 
the array into the calculation, allowing it to continue working after we resize the 
array. The list self . coef is used to hold a multiplier to apply to each letter in the 
string. For example, with the list [ 1 1 , 2 ,  5] and the word "cat " ,  we calculate 1 1  
* ord ( ' c ' )  + 2 * ord ( ' a ' ) + 5 * ord ( ' t ' )  and then take that result modulus 
the array size . If your hash table becomes nearly full and you resize the list , you will 
want to use larger values for the self . coef list of coefficients. Each of the other 
methods uses the hash function to map the key to a position in the array. We have 
included a str method so we can view the details of the internal data members 
of the hash table. 

# HashTable . py 
class HashTable (obj ect ) : 

def __ init __ (self , size=11 ) : 
self . array_size = size 
self . table = [] 
for i in range (self . array_size) : 

self . table . append( [] )  
self . size = 0 
self . coef = [self . array_size , 2 ,  3 ,  7 ,  5 ,  13] 

def _hash (self , key) : 
pos = 0 
for i in range (min (len (key) , 6) ) :  

pos += self . coef [i] * ord (key [i] ) 
return pos % self . array_size 

def __ setitem __ (self , key , value) : 
pos = self . _hash(key) 
for i ,  (k , v) in enumerate (self . table [pos] ) :  

if key == k :  
self . table [pos] [i] = (key , value) 
return 

self . table [pos] . append ( (key , value) )  
self . size += 1 
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def __ getitem __ (self , key) : 

pos = self . _hash (key) 
for k ,  v in self . table [pos] : 

if key == k :  
return v 

raise KeyError (key) 

def __ delitem __ (self , key) : 

pos = self . _hash(key) 
for i ,  (k , v) in enumerate (self . table [pos] ) :  

if key == k :  
del self . table [pos] [i] 
self . size -= 1 
return 

raise KeyError (key) 

s = [] 
for line in self . table : 

s . append ( '  , + str (line) ) 
return , [\n ' + ' \n ' . j oin(s)  + ' \n] ' 

We will use the following code fragment to demonstrate our hash table. It uses 
words as the keys and the numbers as the values they map to (for example, the key 
"quick" has value 1 ) .  

# test_HashTable . py 
from HashTable import HashTable 
h = HashTable 0 
i = 0 
for s in ' the quick brown fox jumps over the lazy dog ' . split ( ) : 

h [s] i 
i += 1 

print h 
print h . size 
print h [' jumps ' ]  
del h E '  jumps ' ]  
print h 
print h . size 



try : 
print h E '  jumps ' ]  

except KeyError : 
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print 'key error raised as expected ' 
else : 

print 'key error should have been raised ' 
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The output of this example using our chaining hash table is the following. Make 
certain you understand where each key mapped to and when collisions occurred. 

[ 
[] 
[] 
[] 
[ (  ' dog ' , 8 ) ]  
[] 
[ ( , the ' , 6) ] 
[ ( ' quick ' , 1 ) , ( ' jumps ' ,  4) , ( ' over ' , 5) ] 
[] 
[ ( ' brown' , 2) ] 
[] 
[ ( ' fox ' , 3) , ( ' lazy ' , 7) ] 

] 
8 
4 
[ 

[] 
[] 
[] 

[ (  ' dog ' , 8)]  
[] 
[ ( , the ' , 6 ) ]  
[ (  ' quick ' , 1 ) , ( ' over ' , 5) ] 
[] 
[ ( , brown ' , 2) ] 
[] 
[ ( ' fox ' , 3) , ( ' lazy ' , 7 ) ]  

] 
7 
key error raised as expected 

The following Python code example demonstrates a hash table using open ad­
dressing with linear probing. This code will not work if you try to insert more 
key /value pairs than the array holds. One of the exercises asks you to extend this 
code to solve that problem. The constructor creates a list of the specified size and 



474 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables 

initializes each position to None . We use the same hash function as before. The 
methods to get , set , and delete a key must search for the specified key starting at 
the position returned by the hash function. When searching, we must continue until 
we find the key or find None . We use the modulus function when incrementing pos 
so it wraps from the end of the list to position O. 

# HashTable2 . py 
class HashTable (obj ect ) : 

def __ init __ (self , size=1 1 ) : 
self . array_size = size 
self . table = self . array_size * [None] 
self . size 0 
self . coef = [self . array_size , 2 ,  3 ,  7 ,  5 ,  13] 

def _hash (self , key) : 

pos = 0 
for i in range (min(len (key) , 6) ) :  

pos += self . coef [i] * ord (key [i] ) 
return pos % self . array_size 

def __ setitem __ (self , key , value) : 
pos = self . _hash(key) 
while True : 

if self . table [pos] is not None : 
if self . table [pos] [0] == key : 

self . table [pos] (key , value) 
return 

else : 
self . table [pos] 
self . size += 1 
return 

(key , value) 

pos = (pos + 1) % self . array_size 

def __ getitem __ (self , key) : 
pos = self . _hash (key) 
start = pos 
while True : 

if self . table [pos] is not None : 
if self . table [pos] [0] == key : 

return self . table [pos] [1] 
pos = (pos + 1 )  % self . array_size 
if pos == start : 

raise KeyError (key) 
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def __ delitem __ (self , key) : 

# this method is incorrect , see the Exercises 
pos = self . _hash (key) 
start = pos 
while True : 

if self . table [pos] is not None : 
if self . table [pos] [0] == key : 

self . table [pos] None 
self . size -= 1 
return 

pos = (pos + 1 )  % self . array_size 
if pos == start : 

raise KeyError (key) 
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We will demonstrate our open addressing hash table using a similar example: 

# test_HashTable2 . py 
from HashTable2 import HashTable 

h = HashTable 0 
i = 0 
for s in ' the quick brown fox jumps over the lazy dog ' . split ( ) : 

h [s] i 
i += 1 

print ' [ ,  
for item in h . table : 

print str (item) 
print , ] , 

print h . size 
print h [ ' lazy ' ]  
del h [ ' lazy ' ]  
print ' [ ,  
for item in h . table : 

print str (item) 
print ' ] ' 
print h . size 
try : 

print h [ ' lazy ' ]  
except KeyError : 

print ' key error raised as expected ' 
else : 

print ' key error should have been raised ' 

The output of this example using our open addressing with linear probing hash table 
is the following. 
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( ' lazy ' , 7)  
None 
None 
( ' dog ' , 8) 
None 
( ' the ' , 6)  
( ' quick ' , 1)  
( '  jumps ' ,  4) 
( ' brown ' , 2) 
( ' over ' , 5)  
( ' fox ' , 3)  
] 
8 
7 
[ 
None 
None 
None 
( ' dog ' , 8) 
None 
( ' the ' , 6)  
( ' quick ' , 1)  
( ' jumps ' ,  4)  
( ' brown ' , 2)  
( ' over ' , 5)  
( ' fox ' , 3)  
] 
7 
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key error raised as expected 

Since we used the same hash function as our chaining example, we know that 
quick, j umps ,  and over all hash to the same position in the list as do fox and lazy. 
From the output , you can see that the open addressing stored them at the first open 
position in the list and wrapped around to the beginning of the list for lazy as it 
needed to. 

It should be clear that for a hash table implementation to work well, the hash 
function must not generate collisions often. To prevent collisions, we need to make 
certain that the array has a reasonable number of empty positions at all times and 
the hash function must distribute the possible keys across all the array positions 
fairly evenly (Le. , we do not want many of the possible keys mapping to a small 
number of array positions) . Designing such a hash function without prior knowledge 
of the keys is not an easy task. 



13.5 Hash Tables 477 

When the hash table array becomes nearly full, we need to make a larger array to 
maintain good performance. The steps for doing this are create a new larger array, 
create a new hash function that maps the keys to the larger array, and then remap 
each key/value in the old array to the new larger array. Creating a new hash function 
is not as simple as modifying the modulus value (although that is one modification 
that needs to be made) for the new array size, since the hash values may always be 
less than the new larger array size using the current hash function. We may need 
to modify the hash function so it produces larger values. In our example the hash 
function for a word used four letters; we could use more letters to result in a larger 
value. Another option is to use larger coefficients. With the new hash function, the 
keys should map to different positions in the new array and some should map to 
index locations that are higher than the length of the original smaller array; if they 
do not , we have not solved our problem of reducing collisions. Just as we discussed 
when resizing a dynamic array in Chapter 10 ,  the resizing operation is expensive; 
the running time of resizing our hash table is 8(n) . If we make the array twice as 
large so that we do not need to do another resizing until we insert n more items, 
we can amortize the cost of the resizing over n inserts, resulting in only a constant 
amount of time being added to the cost of each insert. 

As we mentioned, the worst case is when all keys map to the same array position 
resulting in 8(n) time for each of the methods the hash table supports (insert , 
search, and delete ) . It does not matter whether we use chaining or open addressing 
in this case; the result is still 8( n) . In practice, if we keep the number of elements 
in the hash table proportional to the size of the array (for example, we could make 
certain that the array size is always 50% larger than the number of items in the 
hash table) and use a good hash function, the number of items in each chain or 
the number of items before an empty position when using open addressing will be 
a relatively small constant . When this is true, each of the methods will be 8(1 )  in 
most cases. 

As we mentioned before, creating a good hash function is the key to making the 
hash table efficient . Randomly picking the coefficients as we did in this chapter will 
generally not work well. If your language provides a built-in hash table (as Python 
does with its dictionary) ,  you should likely use it , as the developers of the language 
have spent considerable time developing a good implementation. If you must write 
your own hash table, we recommend you research hash tables in more detail before 
attempting to implement one for use in a real-world application. 
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1 13 . 6 1  Chapter S ummary 

This chapter introduces three advanced data structures and discusses the algorithms 
for implementing them efficiently. The following is a summary of the concepts 
discussed in this chapter. 

• A binary heap is a complete tree with the property that at each node in the 
tree, its children are not less than it . This makes it efficient to remove items 
from smallest to largest. The property can be reversed if you want larger items 
to be removed first . 

• Priority queues allows items to be removed by highest priority instead of first 
in, first out. A binary heap is typically used to efficiently implement a priority 
queue. 

• A binary heap can also be used to sort a list in 8( n * 19n) time, but in practice 
other sorting algorithms are typically used. 

• By updating the tree structure as elements are inserted into a binary search 
tree, we can ensure that the tree remains approximately balanced. With an ap­
proximately balanced tree, the insert and search operations can be performed 
in 8(lgn) time. The AVL tree is one implementation of a balanced tree. 

• Hash tables are a data structure that maps keys to a value. They typically 
provide 8(1 )  running time for insert , delete, and lookup operations although 
the worst case can be 8(n) . Python's built-in dictionary is implemented using 
a hash table. 

• A collision happens when two keys in a hash table map to the same location in 
the list or array that stores the key/value pairs. The solutions to collisions are 
chaining and open addressing. When writing a hash function,  it is important 
to try to minimize the number of collisions that will likely occur. 

1 13 . 7 1 Exercises 

True/ Fa lse Questions 

1. A binary heap always stores the elements as an array in sorted order. 

2. The _build_heap method for our heap implementation places the elements in 
an array in sorted order. 
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3. An AVL tree is always a complete tree. 

4. An AVL tree Inay be a complete tree. 

5. The running time of the insert method for the AVL tree will always be 
8(lo92n) . 

6. The insert method for the AVL tree may require more than one single or one 
double rotation to maintain the AVL property. 

7. Inserting an element into a hash table may require 8(1 )  time. 

8. Inserting an element into a hash table may require 8(n) time. 

9. Inserting an element into a hash table may require 8(n2) time. 

10. A hash table could be implemented using an AVL tree. 

M ult ip le Choice Quest ions 

1. Assuming a binary heap is arranged for efficient removal of the largest item, 
what is the running time to find the largest element but not remove it (like 
the stack method top) ? 

a) 8(1 )  
b) 8(lo92n) 
c) 8(n) 
d) 8(n2) 

2 .  Assuming a binary heap is arranged for efficient removal of the maximum item, 
what is the running time to remove the maximum element and maintain the 
heap property? 

a) 8(1 )  
b) 8(lo92n) 
c) 8(n) 
d) 8(n2) 

3. If you have an implementation of a binary heap, how should you implement a 
priority queue? 

a) Copy the sections of code from the heap implementation into the priority 
queue implementation. 
b) In the priority queue, create an instance of a binary heap. 
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c) Have the priority queue be a subclass of the binary heap class. 
d) none of the above 

4. When implemented using a binary heap, the running time of a priority queue's 
enqueue method is 

a) 8(1 ) .  
b) 8(lo92n) . 
c) 8(n) . 
d) 8(n2) .  

5 .  When implemented using a binary heap, the running time of a priority queue's 
dequeue method is 

a) 8(1 ) .  
b) 8(lo92n) . 
c) 8(n) . 
d) 8(n2) .  

6 .  The worst-case height of a binary search tree is 

a) 8(1 ) .  
b) 8(lo92n) . 
c) 8(n) . 
d) 8(n2) .  

7 .  The worst-case height of an AVL tree is 

a) 8(1 ) .  
b) 8(lo92n) . 
c) 8(n) . 
d) 8(n2) .  

8 .  The worst-case running time of inserting an element into a hash table is 

a) 8(1 ) .  
b) 8(lo92n) . 
c) 8(n) . 
d) 8(n2) .  

9 .  The best-case running time of inserting an element into a hash table is 

a) 8(1 ) .  
b) 8(lo92n) . 
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c) 8(n) . 
d) 8(n2) .  

10. If your application needs to repeatedly insert data elements into a data struc­
ture and occasionally (intermixed with the insert operations) output the 
elements in sorted order, which data structure should you use? 

a) binary heap 
b) priority queue 
c) AVL tree 
d) hash table 

Short-Answer Questions 

1. Given the following array representation of a binary heap (where we want to be 
able to efficiently extract the smallest element ) ,  draw the tree representation 
and also draw the resulting tree after one elment is removed from the heap. 

5 ,  21 , 8 ,  27 , 22 , 10 , 12 , 28 

2. Draw the tree representation of a binary heap (where we want to be able to 
efficiently extract the largest element) after inserting each of the following 
numbers in this order (i.e. , draw eight trees) . 

2 ,  43 , 25 , 10 , 6 ,  12 , 55 , 4 

3. Draw an AVL tree where an item was just inserted into the left subtree of a 
right child that causes the AVL tree property to now be violated. 

4. For the following AVL tree, which node was just inserted? 



482 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables 

5. For the AVL tree in question 4, which of the four rotation methods (left_single_rotate, 
right_single_rotate, right_left_rotate, and left_right_rotate ) must 
be called to maintain the AVL tree property? 

6. For the AVL tree in question 4, which tree node is passed as the parameter to 
the rotation method? 

7. For the AVL tree in question 4, draw the tree after the rotation(s) . 

8. For the following AVL tree, which node was just inserted? 

9. For the AVL tree in question 8, which of the four rotation methods (left_single_rotate, 
right_single_rotate,  right_left_rotate,  and left_right_rotate ) must 
be called to maintain the AVL tree property? 

10. For the AVL tree in question 8, which tree node is passed as the parameter to 
the rotation method? 

1 1 .  For the AVL tree in question 8, draw the tree after the rotation(s) . 

12 .  What Python class is implemented as a hash table? 

13 .  What is the best-case lookup (in 8 notation) for a hash table with n items? 

14. What is the worst-case lookup (in 8 notation) for a hash table with n items? 

15 .  What is wrong with setting the array element to None in the __ deli tern __ 
method of the open addressing version of the HashTable class? How could we 
solve this problem? 
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16.  What would happen if you attempted to insert another key/value pair into 
the open addressing hash table example when the number of items in the hash 
table matches the capacity of the list? 

17. What are the drawbacks of using an AVL tree to implement a hash table and 
what would the worst-case running time of each method be? 

18. Describe how you could use a hash table to efficiently implement an algorithm 
that would remove duplicate elements (or create a new list without the dupli­
cates) from a list without changing the order of the elements in the list . What 
would the running time of your algorithm be? Why? 

Programm ing Exercises 

1 .  Write a priority queue class in Python using a binary heap. 

2. Write a binary heap class in C++. 

3 .  Write a priority queue class in C++ using a binary heap. 

4. Complete the AVL tree class using Python. 

5. Write an AVL tree class using C++. 

6. Modify the Python chaining example so it doubles the size of the array when­
ever the number of items in the hash table reaches 70% of the array size. 

7. Modify the Python open addressing example so that it doubles the size of the 
array whenever the number of items in the hash table reaches 70% of the array 
size. 

8 .  Implement a hash table class in C++ using chaining. 

9. Implement a hash table in C++ using open addressing. 
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Object ives 

• To understand the matrix and adjacency list graph data structures and the 
trade-offs between them. 

• To implement the adjacency list graph data structure. 

• To implement various graph algorithms including breadth-first and depth-first 
searches and understand how these fundamental graph traversals can be used 
to solve a number of graph problems. 

• To understand the minimum spanning tree problem and two algorithms to 
solve it . 

• To understand how to analyze the efficiency of various graph algorithms. 

1 14 . 1 1 I ntrod uct ion 

Graphs are used to  model a wide variety of  problems in  many different application 
areas. A graph is a set of vertices and the set of edges that connect the vertices. A 
simple example of a graph is our system of roads; the roads are edges and the inter­
sections are vertices. We may want to classify the edges as directed or undirected. 
A directed edge is a one-way street and an undirected edge is a bidirectional street. 
In addition to naming the vertices and edges, we may want to assign attributes to 
the edges and vertices such as a weight to an edge. In our road example, the weight 
could be the length of the road. 

We will refer to a graph G as the set V of vertices and the set E of edges. Formally, 
mathematicians use the cardinality notation (for example, I V I )  to indicate the 
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number of elements in the set . In most cases it is clear when we are referring 
to the number of vertices instead of the set of vertices and we will just use V to 
indicate the number of vertices and E to indicate the number of edges. The term 
degree refers to the number of edges connected to a vertex. For a directed graph, a 
vertex has both an in-degree and an out-degree referring to the number of incoming 
edges and outgoing edges, respectively. Many problems and questions related to 
graphs require finding paths between vertices. A path from one vertex to another is 
a sequence of vertices such that there is an edge between each pair of consecutive 
vertices in the sequence. In our road example, we can ask questions such as is there 
a path from one intersection to another, what is the shortest number of edges to 
traverse from one intersection to another, and what is the shortest weighted path. 

Most graphs with V vertices have at least V-I edges or the graph is not connected. 
Formally, a graph is connected if for every pair of vertices, there is a path between 
those two vertices. The maximum number of edges in a graph is 8(V2) when there 
is an edge between every pair of vertices . There can be more than 8(V2) edges 
if you allow multiple edges between two vertices; this is an uncommon situation 
since there is generally no reason to have two edges between the same vertices, but 
it is possible in a weighted graph where the different edges between the same two 
vertices could have different weights. A graph with edges between every pair of 
vertices is known as a complete graph. For many applications, the number of edges 
is usually much smaller than the maximum and is typically a fairly small multiple 
of the number of vertices. 

Another property of a graph that is often useful to know is whether or not it has 
a cycle. A cycle is a path with a length of at least one that starts and ends at the 
same vertex. In many cases it only makes sense to discuss cycles in directed graphs 
since by definition an undirected edge between two vertices forms a cycle. The term 
acyclic refers to a graph without any cycles. The acronym DAG is commonly used 
to refer to a directed acyclic graph. 

We will start by covering the two common data structures for representing 
graphs. We will then cover the fundamental graph algorithms used in many ap­
plications. We cannot cover all the the graph algorithms or all the applications of 
these algorithms in one chapter as entire books are written on the subject . We will 
focus on the two fundamental graph algorithms known as the breadth-first search 
and depth-first search and their uses in common graph problems. As we always do, 
we will examine the efficiency of the algorithms. 
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1 14 . 2 1 Gra ph Data Structu res 

The two different data structures commonly used to represent graphs are an ad­
jacency matrix and an adjacency list. In general, the matrix representation is 
appropriate when there are edges between many pairs of vertices; this is referred 
to as a dense graph. For most applications the graph is sparse (i.e. , the number of 
edges is much smaller than the maximum number of possible edges) ; in these cases 
the adjacency list representation is usually more appropriate. The efficiency of many 
of the graph algorithms is affected by the data structure you use to represent the 
graph. 

B D 

A 

c E 

Figure 14 . 1 :  Sample directed graph 

We will use the graph in Figure 14 . 1 to describe the two different graph rep­
resentations. The adjacency matrix representation of a graph is a square matrix 
of the size V by V. Each row and column corresponds to a vertex. The entries 
in a row indicate the vertices that have an edge originating from the vertex that 
corresponds to the row. A 1 in the matrix indicates there is an edge from the vertex 
corresponding to the row to the vertex corresponding to the column. For our sample 
graph, the matrix representation is the following assuming the rows and columns 
correspond to the vertices in alphabetical order. 

o 1 0 0 0  
0 0 1 1 0 
1 0 0 1 0  
o 0 0 0 1 
o 0 0 0 0  

We will follow the convention that matrix entries are referred to first by row and 
then by column and that we number the rows and columns starting at zero. Using 
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the letter g to denote our matrix representation of the graph, the entry g [0] [0] is 
the upper left entry and the remaining elements in the row are g [0] [1] , g [0] [2] , 
g [0] [3] , and g [0] [4] . Using alphabetical order for the vertices, the entry g [2] [3] 
corresponds to the edge from vertex C to vertex D. If you need to store additional 
information about an edge (such as a weight or a name) , you could store that as the 
matrix entry with a special value indicating that there is not an edge (such as None 
or 0) . You could also use a separate data structure to represent this information 
since the basic matrix of Is and Os supports a useful property. If the matrix uses a 
1 to indicate an edge between two vertices and a 0 to indicate the lack of an edge 
between two vertices, the result of multiplying the matrix by itself results in another 
matrix of size V by V and the entry at row i ,  column j in this product corresponds to 
the number of paths of length 2 from vertex i to vertex j .  Matrix multiplication is 
not performed by multiplying the corresponding entries in the two matrices; instead 
the value for the product g * g at row i, column j is the dot product or row i of 
g with column j of g. We will not cover the additional details of this, but if you 
are familiar with matrix multiplication, you should be able to determine why the 
product indicates paths of length 2. Calculating g * g * g will tell you the number 
of paths of length 3 for the same reason. 

If the graph edges are not directed then the matrix will be symmetric. In a 
symmetric matrix, the entry at row i ,  column j is the same as the entry at row j ,  
column i for every position in the matrix; this means we only need to represent half 
the matrix (using the diagonal to split it) . As you may have figured out for yourself, 
a matrix is easily represented by a two-dimensional array in C++. In Python,  you 
could use nested lists, but to use matrices in Python, we recommend you download 
and install the numarray module for Python. It provides many matrix operations 
via a module implemented in the C programming language, but accessible from 
Python. This is equivalent to the Python interpreter supporting matrix operations 
directly since the Python interpreter is implemented in C .  

The adjacency list representation i s  more commonly used since most graphs in 
real-world applications are sparse. For the matrix representation this means we 
have lots of Os . In the adjacency list representation we do not explicitly indicate 
the lack of an edge, only where there is an edge. This makes the representation 
more compact for sparse graphs and also means the graph processing algorithms do 
not have to examine entries where there are not edges as they would in the matrix 
representation. Using the matrix representation to find all the edges from a vertex, 
you have to examine V entries, but in the adjacency list representation, you examine 
only the actual edges originating from the vertex. A pictorial representation of 
the adjacency list data structure for our sample graph in Figure 14 . 1 is shown in 
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Figure 14 .2 .  As the figure shows, we have a list of the five vertices and each vertex 
has a list of the vertices adjacent to it . In addition to the name of the adjacent 
vertex, we could stored additional information such as a label or weight for the 
edge. Based on this , you should be able to determine that examining all the edges 
in a graph using the adjacency matrix representation requires V2 operations, but 
only V + E operations are required to examine all the edges in a graph using the 
adjacency list representation. This observation will be useful when we examine the 
efficiency of many of the graph algorithms. 

A 

B 

c 

o 

E 

Figure 14 .2 :  Adjacency list representation for sample directed graph 

Using the built-in list data type, the following example shows a possible Python 
representation of the graph using a weight of one for each edge. The example also 
shows how to access the vertices and edges. 

» >  g = 

» > g [O] 

[ ' A ' , [ ( ' B ' , 1 ) ] ] . 
[ ' B ' , [ ( ' C ' , 1 ) , ( ' 0 ' , 1 ) ] ] , 
[ ' C ' , [ ( ' A ' , 1 ) , ( ' 0 ' , 1 ) ] ] , 
[ ' 0 ' ,  [ ( ' E ' , 1 ) ] ] , 
[ ' E ' , [] ] ]  

[ ' A ' , [ ( ' B ' , 1 ) ] ]  
» >  g [O] [0] 
' A '  
» >  g [0] [1] 
[ ( ' B ' , 1 ) ]  
» >  g [ 1 ]  [1] 
[ ( ' C ' , 1 ) , ( ' 0 ' ,  1 ) ]  
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As we discussed earlier in this book, Python's built-in dictionary is highly 
optimized and is generally a good choice to use for implementing your own data 
structures. The common way to implement a graph using a dictionary is to use 
the vertices as keys with each vertex key mapping to another dictionary that has 
the adjacent vertices as its keys. In the nested dictionary, each adjacent vertex key 
maps to the information about the edge (e.g. , we could store the weight or a name 
for the edge as the value) . For our sample graph, the dictionary representation and 
the results of accessing some of the items is the following: 

» >  g = { 
' A '  : 
' B '  : 
' c '  : 
' D '  : 
' E '  : 

» > g [ ' A ' ]  
{ ' B ' : n 
» >  g [ ' B ' ]  

{ ' B '  : 
{ ' C '  : 
{ ' A ' : 
{ ' E '  : 
{}} 

{ ' C ' : 1 ,  ' D ' : n 
» >  g [ ' B ' ]  [ ' D ' ]  
1 

n , 
1 ,  ' D ' : 1} , 
1 ,  ' D ' : 1} , 
1} , 

The Python dictionary implementation also makes it easy to iterate over the 
vertices and over the adjacent vertices for a given vertex as the following code 
fragment shows. 

# for each vertex 
for v in g :  

print ' vertex ' ,  v 
# for each vertex adj acent to v 
for adj in g [v] : 

print adj , g [v] [adj ] 

The output of the code fragment is 

vertex A 
B 1 
vertex C 
A 1 
D 1 
vertex B 
C 1 
D 1 
vertex E 
vertex D 
E 1 
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In C++, the adjacency list representation is commonly implemented as a list 
of lists. If the number of edges and vertices is known ahead of time, arrays or 
dynamic arrays can be used, but often a linked iInplementation of a list is used. As 
you will see when we examine a number of graph algorithms later in this chapter, 
the common operations needed for a graph data structure are the ability to iterate 
over the vertices and to iterate over the adjacent vertices for a given vertex as we 
demonstrated with our Python dictionary code fragment. 

1 14 . 3 1 Shortest Path Algorith ms 

Determining the shortest path between two vertices is a very common problem for 
many applications. As we mentioned in the introductory section for this chapter, 
maps of roads can easily be represented using a graph. You may have used a web 
site to find directions for a trip. These driving direction web sites represent roads 
and intersections as a graph and use shortest path algorithms to find the directions 
for your query. For some shortest path applications, we may only care about the 
number of edges traversed while for other applications with weighted graphs, we 
may care about the sum of the weights for the edges traversed. We will refer to 
the problem in which we care only about the number of edges as the unweighted 
shortest path problem and the problem in which we want to minimize the sum of 
the edges' weights as the weighted shortest path problem. The unweighted shortest 
path problem is a simplified case of the weighted shortest path problem in which 
all the edges have the same weight . This means we could use the same algorithm 
to solve both problems, but the simplified case allows us to use a simpler and more 
efficient algorithm for unweighted graphs. 

If you have used a web site to find driving directions, you may remember that 
they typically find the quickest route, which is not necessarily the shortest route. 
For longer trips, the quickest route is often not the shortest route since highways 
typically provide the fastest routes even though they may not be the shortest routes. 
Some of these web sites also provide an option to find the shortest path and in this 
case the length of the roads can be used as the weight for the edges. To find the 
quickest route, the weights must be a function of the length and the average speed 
at which the roads can be traversed. 

As you can imagine, determining the shortest or fastest route is a problem that 
must be solved every day by shipping and delivery companies. In addition to driving 
directions, determining the shortest path is also useful for routing traffic on the 
Internet and for determining how to connect traditional circuit switched phone calls. 
Because of the many applications of shortest path algorithms, they are some of the 
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most common and widely studied graph algorithms. We will examine algorithms 
for both the unweighted and weighted shortest path problems. 

1 14 . 3 . 1 1 The U nweighted Shortest Path 

We will use the graph in Figure 14 .3  to develop the unweighted shortest path 
algorithm. This graph is undirected , although the algorithm we are developing 
works on both directed and undirected graphs. When using the adjacency list 
representation with undirected graphs, each edge must appear in two lists. For 
our sample graph, the adjacency list for vertex A must indicate there is an edge to 
vertex B and the adjacency list for vertex B must indicate there is an edge to vertex 
A. Since the adjacency matrix for an undirected graph is symmetric , we only need 
to store each edge once in the matrix (i.e. , we can store half the matrix split on the 
diagonal) . 

F 
B __ 

--------------------� � 

s D G 

Figure 14 .3 :  Sample graph for unweighted shortest path problem 

One of the nice properties of the algorithm we are developing is that it is just as 
easy to find the shortest path from one vertex to another as it is to find the shortest 
path from one vertex to all the other vertices. We will use the vertex labeled S in 
Figure 14 .3  as the starting vertex from which we find the shortest path to all the 
other vertices . As you may have determined by now, in order to find the shortest 
path we must follow edges starting at the specified starting vertex. From vertex S 
we can move to vertex A and indicate that the distance to it is one; we also could 
have started by moving to vertex B or vertex C. Since we are now at vertex A, we 
have two choices; we could return to vertex S or we could move to vertex B.  There 
is no reason to return to vertex S since we have already been there. If we move 
to vertex B then we are effectively indicating the shortest path from vertex S is to 
move to vertex A and then to vertex B .  This is a path of length two. As you can 
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see from the graph there is a path directly from vertex S to vertex B with a length 
one. This tells us that we cannot just move frorn the starting vertex along a path 
and expect to find the shortest path to each vertex. 

One key point to realize is that a shortest path from one vertex to another 
contains a shortest path to each of the vertices along the path between the original 
two vertices. Using our sample graph, if the shortest path from vertex S to vertex 
G includes the edge from vertex D to vertex G then the path it uses from vertex S to 
vertex D must be a shortest path from vertex S to vertex D; otherwise, we could find 
a shorter path from vertex S to vertex G by following a shorter path from vertex S to 
vertex D and then traversing the edge from vertex D to vertex G. What this tells us 
is that we must move outward from the starting vertex following the shortest paths. 
This corresponds to moving from the starting vertex to all the vertices that have an 
edge from the starting vertex. Once we have discovered all vertices of distance one 
from the starting vertex, we can then follow the edges from each of those vertices 
to find all vertices that have distance two from the starting vertex. This order of 
processing the vertices is known as breadth first. The algorithm is referred to as a 
breadth first search and abbreviated BFS. As we move outwards we do not want to 
revisit vertices that we have already discovered. It may be easier to visualize this if 
we redraw the same graph using concentric circles to indicate the distance from the 
starting vertex S. Figure 14 .4  shows the graph in this form. 
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Figure 14 .4 :  Graph frorn Figure 14 .3  drawn with vertices on concentric circles 
showing the distance from vertex S 
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From the starting vertex S ,  we first want to discover the vertices that are directly 
connected to S (vertices A, B, and C) and thus have distance one. Once we have 
discovered those, we want to examine the vertices that are adjacent to A, B,  and C 
that we have not already found (D and F) as these are the vertices with distance two, 
and so on. The key point is that each time we first visit a vertex, we are finding 
the shortest path to it since we are moving outwards from the starting vertex one 
level at a time from the concentric circle point of view. In order to be able to list 
the shortest path to any given vertex, we must keep track of the previous vertex 
used to reach each vertex; this is commonly referred to as the parent vertex. To 
find the shortest path from our source vertex to any given vertex, we start at the 
specified vertex and move backward by following the parent vertices until we reach 
the source vertex. This gives us a list of the vertices on the shortest path from the 
source vertex to the specified vertex. 

Once we have convinced ourselves that these ideas will work, we need to deter­
mine how to convert these ideas to a precise, detailed algorithm. The part you may 
have difficulty with is figuring out how to move outwards in concentric circles. Once 
we have moved out one step from the source vertex along each of its edges, we need 
to figure out how to move outwards one step from each of those vertices. It may 
seem difficult to keep track of the order we need to process the vertices and their 
edges, but if you try it out with some simple graphs you may see that processing the 
vertices in the order they are discovered will work. We already have learned about 
a simple data structure that allows us to process items in order: a queue. Each time 
we come across a vertex that we have not already seen, we can insert it into the 
queue and keep track of the vertex used to find it (its parent) . The pseudocode for 
our algorithm is the following: 

set parent of each vertex to a default value such as None/NULL 
set distance for source vertex to 0 
insert source vertex into queue 
vhile queue is not empty 

remove a vertex v from queue 
for each vertex v adjacent to v 

if v ' s  parent is None/NULL 
set v ' s  parent to v 
set v ' s  distance to 1 + v ' s  distance 
insert vertex v into queue 

We will show how the preceding pseudocode works using our sample graph in 
Figure 14 .3 .  A view of the parent and distance for each vertex is shown in the 
following table: 
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S A B C D E F G 
parent - None None None None None None None 
distance 0 

We insert vertex S into the queue and start the while loop. The for loop 
will process the three adjacent vertices, A, B, and C. The actual order they are 
processed will not affect the correctness of the algorithm as far as finding the shortest 
path for each vertex, but the algorithm may find a different path with the same 
length depending on the order the vertices are processed. For this example, we 
will always process the adjacent vertices in alphabetical order. After processing the 
three adjacent vertices, the queue contains the three vertices, A, B, and C. The table 
is : 

S A B C D E F G 
parent - S S S None None None None 
distance 0 1 1 1 

The while loop executes again and we remove A from the queue and process its 
adj acent vertices B and S. Since both of those already have a parent vertex, we do 
not add them to the queue or change their distance. The while loop executes again 
and we remove B from the queue. We process its adjacent vertices A and F. Since A 
already has a parent , we move on to F. We set F's parent to B ,  set its distance to 2,  
and insert it into the queue. The queue now contains C and F and the table is 

S A B C D E F G 
parent - S S S None None B None 
distance 0 1 1 1 2 

Next we remove C from the queue and process the adjacent vertices which sets 
D's parent to C, sets D's distance to 2, and inserts D into the queue so it now contains 
F and D. When we remove F from the queue, we set E's and G's distances to 3 and 
their parents to F. The queue then contains D, E, and G and the table is 

S A B C D E F G 
parent - S S S C F B F 
distance 0 1 1 1 2 3 2 3 

The while loop still needs to run three more times to remove D, E, and G from 
the queue, but since all the vertices now have their parent and distance set , the if 
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statement will be false each time we process the adjacent vertices. As we indicated 
earlier, the order we process adjacent vertices may affect the parents of each vertex 
(and thus the path) , but not the shortest distance. If we had processed C before B 
when examining the vertices adjacent to S then D would have appeared in the queue 
before F. Thus E's parent would be D instead of F, but in either case E's distance is 
3. 

The table contains all the information necessary to find the shortest path from 
the vertex S to any of the other vertices. The parent information for each vertex 
provides a shortest path from that vertex back to the source vertex S. For example, 
to find the shortest path to vertex E, we start at E and its parent is F. The parent of 
F is B and B's parent is S. This tells us a shortest path from S to E is S ,  B ,  F ,  E. 

As always, we should determine how efficient our algorithm is . We have two 
nested loops, but the number of times the inner for loop runs is not the same for 
each iteration of the while loop if we use the adjacency list representation, so the 
analysis is not simply a matter of multiplying the number of times the two loops 
run. If you review the previous paragraphs describing the steps of the algorithm 
on our sample graph, you notice that each vertex is inserted into the queue exactly 
once and each time through the while loop, one vertex is removed from the queue. 
This tells us that the outer loop runs V times (where V is the number of vertices) .  
The number of times the inner loop runs varies depending on how many adjacent 
vertices each vertex has. 

The analysis technique we can use here is to determine the total number of 
times the inner loop executes during all the executions of the outer loop. This is 
actually fairly simple since each edge is processed twice (once for each direction of 
the bidirectional edge) during the entire execution of the loop. If the edges are 
directed, each edge is processed exactly once. Since the other steps all required a 
constant amount of time, the running time of the algorithm is e (V + E) . This is a 
common pattern for graph algorithms; any algorithm that processes each edge and 
each vertex a constant number of times with all other operations being constant will 
have this run-time. 

1 14 .3 .2 1 The Weighted Shortest Path 

Our unweighted shortest path algorithm is fairly simple and efficient. The question 
is will it also work if the graph is weighted? Unfortunately, the answer is no in most 
cases. Figure 14 .5  shows a graph in which the unweighted shortest path algorithm 
will not produce the correct results. The reason our algorithm works correctly on 
unweighted graphs is that we have always found the shortest path to a vertex before 
we start examining the vertices adjacent to it . The problem with our unweighted 
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algorithm when using it on the graph in Figure 14 .5  starting at vertex S is that we 
first discover vertex A with the distance 3 and vertex B with the distance 1 placing 
them in the queue. When we remove A from the queue, we set C's distance to 5. 
The problem is there is a shorter path to A by moving from S to B and then to A.  
Our unweighted shortest path algorithm does not provide a mechanism for finding 
this improved path to A and then adjusting the path to C .  

B 
c 

s 3 A 

Figure 14 .5 :  Weighted graph 

If a graph has negative weights then we cannot always find a shortest path. If 
there is a cycle whose weights add up to a value less than zero, we could repeatedly 
take that cycle to produce shorter paths. The algorithm we will discuss in this 
section will only work on graphs with non-negative weights; for most practical 
applications the weights will always be positive. The key concept needed to create 
a correct algorithm for the non-negative weighted shortest path is to always move 
outwards along shortest paths. In other words, we must always look at the edges off 
of a discovered vertex with the shortest distance of all the discovered vertices. When 
we do this, we may find a shorter path to a vertex that we have already discovered. 
Fortunately, we will not have examined the edges off this already discovered vertex 
since it had a larger distance than the vertex used to find the new shorter distance 
to this vertex. The result is we may need to adjust the distance to an already 
discovered vertex; however we have not yet examined its edges so we will not have 
to adjust any additional vertex distances because of the new shorter path found 
to this vertex. This algorithm was initially developed by Edgar Dijkstra and is 
appropriately named Dijkstra 's algorithm. 

We will examine how this algorithm works on the graph in Figure 14 .6  before 
developing pseudocode for our algorithm and discussing the necessary data struc­
tures. The graph is directed and we will start at vertex S. As with the unweighted 
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algorithm, the process described here will work on both directed and undirected 
graphs as long as the graph data structure properly indicates the type of edges. 

A 1 B 1 c ----------��--------�� 
2 

s 

E 

F 

Figure 14 .6 :  Graph for demonstrating Dijkstra's algorithm 

We start with vertex S and examine its adjacent vertices, after which the table 
of parent and distance values is 

S A B C D E F 
parent - S S S 
distance 0 1 4 1 

We are done processing the vertex S and need to process a vertex with the 
smallest distance value. We can choose either A or F since both have a distance of 
one. If we choose the vertex A and process its adjacent vertices, the table is 

S A B C D E F 
parent - S A S S 
distance 0 1 2 4 1 

N ow we are done processing the vertices S and A and need to choose a vertex 
with the smallest distance from the remaining vertices. This means we must choose 
the vertex F. After processing the vertices adjacent to F, the table is 
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S A B C D E F 
parent - S A S F S 
distance 0 1 2 4 6 1 

We have now processed the vertices S, A, and F and must choose vertex B as it is 
the remaining vertex with the smallest distance. When we examine the edge from B 
to D, we notice that D already has a parent, but this new path to D using the vertex 
B is smaller than the previously discovered path so we need to change the parent 
and the distance for the vertex D. The table is now 

S A B C D E F 
parent - S A B B F S 
distance 0 1 2 3 3 6 1 

After processing the vertices S ,  A ,  F ,  and B,  we can choose either vertex C or D 
since both have a distance of three. If we choose the vertex C, we will change the 
parent and distance for the vertex E since reaching the vertex E from the vertex C 
is better than the previous path from the vertex D .  The table is now 

S A B C D E F 
parent - S A B B C S 
distance 0 1 2 3 3 5 1 

We now choose the smaller distance from the two remaining vertices D and E, 
and that is D. When we examine the edge from D to E, we find that path is worse 
than the previously discovered path so we do not update the parent or distance for 
the vertex E. Finally, we examine the vertex E and it does not have any edges to 
process so we are done and the table is 

S A B C D E F 
parent - S A B B C S 
distance 0 1 2 3 3 5 1 

This algorithm is similar to the unweighted shortest path algorithm, but the 
weights do add some complications . The main differences are that we need a priority 
queue to process the vertices in distance order. As we process the adjacent vertices, 
we also may need to update a vertex's parent and distance if this new path is shorter, 
as we saw in our exanlple. The following pseudocode matches the steps we used in 
our example. 
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set parent of each vertex to a default value such as None/NULL 
set distance of each vertex to inf inity 
set distance for source vertex to 0 
insert all vertices into a priority queue (distance is priority) 
while priority queue is not empty 

remove vertex v with smallest distance from priority queue 
for each vertex w adjacent to v 

if w ' s distance > (v ' s  distance + weight of edge v to w) 
set w ' s  parent to v 
set w ' s  distance to v ' s  distance + weight of edge v to w 

This does not seem too difficult , but the priority queue described in section 1 3 . 2  
using a binary heap will not work. The problem is that since the distance for a 
vertex may change after it is inserted into the priority queue, we may need to adjust 
its position in the heap. With the binary heap we described, there is no efficient 
way to find a given vertex in the binary heap. Once we do find it , we can use the 
same technique of moving it up or down the tree until we find a position where it 
can be placed without violating the heap property. One solution is to use a hash 
table to map the vertex to its position in the binary heap array llist allowing us to 
quickly find it, move the item up or down the tree, and then update the hash table 
to indicate the new position in the heap. 

Analyzing the efficiency of Dijkstra's algorithm is a little more difficult . Each 
vertex is removed once from the priority queue and each edge is processed once dur­
ing the entire execution of the algorithm, so this part is the same as the unweighted 
shortest path algorithm. What is different here is that we must extract the vertices 
from the priority queue and the priorities will change after the vertices are inserted 
into the priority queue. If we use a standard list for the priority queue and search 
for the smallest item each time we remove an item from the priority queue, it will 
require V steps. If we use a linked list , after we find the vertex we can then remove 
it in 8( 1 )  time. But if we are using an array-based list, we should just mark it as 
removed since the removal requires shifting the elements. If we mark it as removed, 
the while loop requires V*V steps plus the E total steps the for loop executes. Even 
if we use a linked implementation of a list and remove the vertex, the worst-case 
number of steps is V* (V-l ) /2 so the overall algorithm is 8(V2 + E) . 

If we use the binary heap implementation along with a hash table to track where 
each item is located in the heap, the amount of time required to remove each item 
from the priority queue and readjust the binary heap is 8(lgV) . As each edge is 
processed, the vertex it leads to may have its distance adjusted, requiring that it 
be moved up or down the binary heap. Since the binary heap is a complete tree, 
8(lgV) steps may be required to move the vertex up or down the tree. This gives 
us an overall running time of 8((V + E)lgV) .  There is a data structure known as 
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a Fibonacci heap that can be used to implement a priority queue that supports a 
method for changing the priority of an item more efficiently, but we will not cover 
the details of its implementation in this book. 

1 14 .4 1  Depth Fi rst Algorith ms 

In the previous section we examined the breadth first search algorithm that moves 
out in concentric circles frmll the starting vertex. Now, we will examine the depth 
first search (DFS) algorithm and look at several graph problems it can be used to 
solve. As you may be able to determine from the name, the depth first search moves 
along one path as far as possible before backtracking and examining other paths off 
the earlier discovered vertices. 

During the depth first search execution , each vertex goes through three phases. 
In the first phase the vertex has not yet been discovered. In the second phase the 
vertex has been discovered, but the algorithm has not completed processing all the 
undiscovered vertices that are reachable from this vertex. In the third phase we are 
done processing the vertex and all the vertices that are reachable from the vertex. 
One technique used to keep track of these phases is to assign each vertex a starting 
time when the vertex is first discovered and an ending time when the vertex and 
all its reachable vertices have been completely processed. Each time we assign a 
number to a vertex we increase the number by one so if we start with the number 
one, we use the numbers from 1 to 2*V since each vertex has a starting and ending 
time. A vertex that does not have a starting or ending time is in the first phase. 
A vertex that has a starting time but not an ending time is in the second phase. 
A vertex with both a starting and ending time is in the third phase . As with the 
breadth first algorithm, we will assign each vertex a parent indicating the vertex 
that was used to discover this vertex. 

We will use the graph in Figure 14 . 7  to demonstrate the depth first search. As 
in our previous examples, we will start at the vertex S and always choose vertices 
in alphabetical order when we have a choice between two or more vertices . Starting 
at the vertex S, we assign 1 as its starting time and move to the vertex A and assign 
2 as its starting time and S as its parent . Next we move to the vertex C and set its 
starting time to 3 and A as its parent. There are no outgoing edges from the vertex 
C so we set its ending time to 4 and backtrack to the vertex A .  The vertex A does not 
have any more outgoing edges to undiscovered vertices so we set its ending time to 
5 and backtrack to the vertex S. At this point our table of information for the DFS is 
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Figure 14 . 7 : Graph for depth first search example 

S A B C D E F G 
parent - S A 
start time 1 2 3 
end time 5 4 

The vertex S still has additional edges to undiscovered vertices so we move to 
the vertex E and set its starting time to 6 and its parent to S. Next we move to the 
vertex F and assign 7 as its starting time and E as its parent. The vertex F does 
not have any outgoing edges to undiscovered vertices so we set its ending time to 8 
and backtrack to the vertex E. The vertex E does not have any outgoing edges to 
undiscovered vertices so we backtrack to the vertex E setting its ending time to 9 
and then backtrack to the vertex S and set its ending time to 10 .  Our table is now 

S A B C D E F G 
parent - S A S E 
start time 1 2 3 6 7 
end time 10 5 4 9 8 

At this point we have visited every vertex that is reachable from the vertex S so 
if we still have undiscovered vertices, we need to start our algorithm from another 
vertex. We will pick the vertex B and set its starting time to 1 1 .  It does not have any 
outgoing edges to undiscovered vertices so we set its ending time to 12 .  The next 



14.4 Depth Fi rst Algorithms 503 

undiscovered vertex is D so we set its starting time to 13.  We examine its outgoing 
edges and find C which has already been discovered and F which has already been 
discovered. Next we find G which has not been discovered so we set the starting 
time for G to 14 and its parent to D. G does not have any outgoing edges so we set its 
ending time to 15 and backtrack to D. D does not have any other outgoing vertices 
so we set its ending time to 16.  At this point , there are no undiscovered vertices so 
we are done and our final table of information is 

S A B C D E F G 
parent - S - A - S E D 
start time 1 2 1 1  3 13 6 7 14 
end time 10 5 12 4 16 9 8 15 

The DFS process should remind you of the binary tree traversals, specifically 
the preorder traversal. The differences are that with graphs, each vertex can have 
any number of children and because there can be multiple paths to a vertex and 
cycles, we need to determine if we have already visited a vertex. We can use the 
starting time to determine whether or not a vertex has already been visited. Based 
on the similarity to the tree traversal algorithms, you should realize that a recursive 
algorithm will be useful to support the backtracking. Our pseudocode will use two 
functions. The first function is not recursive and makes certain that we eventually 
process all the vertices and calls the recursive function for each undiscovered vertex. 

dfs (g) 
for each vertex v in graph g :  

set v ' s starting time t o  0 
t = 0 
for each vertex v in g :  

if v ' s start time i s  0 :  
dfs_traverse (g , v) 

dfs_traverse (g ,  v) 
t += 1 
set v ' s  start time to t 
for each vertex u adj acent to v :  

if u ' s  start time i s  0 :  

t += 1 

set u ' s  parent to v 
dfs_traverse (g ,  u) 

set v ' s  end time to t 

The variable t needs to have its old value remelnbered each time the dfs_traverse 
function is called. There are a number of ways to achieve this. One is to make 
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t a local variable in dfs and pass it by reference to dfs_ traverse and have 
dfs_ traverse also pass it to itself during each recursive call. Another option is 
to make it a global variable and not pass it as a parameter. A common technique 
used to solve this in object-oriented programming is to make the variable t an 
instance variable in a class and define dfs and dfs_ traverse as methods of the 
class. You could also make the parent , start , and end information for the vertices 
members of the class (e .g. , in Python, you could use dictionaries that map a vertex 
to its parent , starting time, and ending time) . 

The run-time analysis for the depth first search is similar to the breadth first 
search. The df s function processes each vertex a constant number of times, and the 
df s _ traverse function processes each edge once and performs a constant number 
of operations as it processes each edge, so the overall run-time is 8 (V + E) . 

As we mentioned earlier, the DFS algorithm is similar to tree traversals. We can 
view each call from dfs to dfs_traverse as producing a separate tree. Figure 14 .8  
shows the trees produced when we execute the DFS algorithm on our sample graph. 
This graph produced three trees, one of which is the single vertex B. If you examine 
the starting and ending times, you will notice that the time intervals for each tree do 
not overlap. This tree representation only includes edges that were used to discover 
a vertex. 

s B D 
. 

! A 
E 

G 

c F 

Figure 14 .8 :  Graph for depth first search example 

Now we examine a graph problem known as topological sort and see how it can 
be solved using a depth first search. A topological sort is an ordering of the vertices 
such that if there is an edge from the vertex u to the vertex v, then u appears 
before v in the ordering. As the definition implies, the topological sort can only be 
performed on directed graphs and there cannot be any cycles in the graph. Since an 



14.4 Depth Fi rst Algorithms 505 

undirected edge between two vertices u and v is equivalent to a directed edge from 
u to v and a directed edge from v to u, it is impossible to order the vertices u and v 
so that the topological sort definition is satisfied. A cycle causes the same problem 
since for any two vertices u and v that are part of the cycle, there is a path from u 
to v and a path from v to u. 

A topological sort can be used to find an ordering for a set of tasks in which 
some tasks must be completed before other tasks can be performed. The process 
for generating the graph is straightforward. Each task corresponds to a vertex in 
the graph and a directed edge from u to v indicates that the task corresponding to 
u must be performed before the task corresponding to v. In order for there to be a 
solution, the resulting graph must be a directed acyclic graph. 

A simple example of a problem that can be solved with a topological sort is the 
order in which you can take college courses. A course may have prerequisites that 
must be taken before you can take that course. You can create a graph in which each 
course is a vertex and directed edges are drawn to courses from their prerequisites . 
A topological sort of this graph will give you an order in which you can take courses 
that satisfies the prerequisites . As is the case in many topological sort problems, 
there is likely more than one order in which you can take courses. 

Figure 14 .9 :  Graph showing course prerequisites 

Figure 14 .9  shows a graph of course prerequisites . The only courses we can take 
first are those with no prerequisites , corresponding to vertices with no incoming 
edges. In the sample graph, we can start with either CS160 or CS170.  Once we 
take CS160, we can then take any course for which it is a prerequisite . Another 
way to look at this is that once we take a course, we can remove all the outgoing 
edges from that course. This idea should lead you to a simple algorithm for solving 
the topological sort problem. As we just mentioned, you must start with a vertex 
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that has no incoming edges. We then remove the outgoing edges for that vertex, 
indicating that we have met that prerequisite. We can now again look for a vertex 
with in-degree zero. These steps can be repeated until we have processed each 
vertex. The question is how efficient is this algorithm? 

If we use the adjacency matrix representation, finding a vertex with in-degree 
zero can take V steps. Removing the outgoing edges will then take another V steps. 
We have to do this V times, resulting in an algorithm of 8(V3) .  This is not a 
particularly efficient algorithm, but it always a good idea to check the possibilities 
for both the matrix and adjacency list before implementing an algorithm so you can 
pick the data structure that is more efficient for the algorithm. 

Our adjacency list representation does not make it easy to find a vertex with 
in-degree zero, but as we remove the outgoing edges, we are decreasing the in-degree 
of the vertices to which they connect . So a way to solve this more efficiently is to 
calculate and store the initial in-degree of each vertex and place the vertices that 
initially have in-degree zero in a queue. As we process a vertex from the queue, we 
can decrease the in-degree count of its adjacent vertices and if a vertex's in-degree 
reaches zero, insert it into the queue. The efficiency analysis is not too difficult . 
We need to calculate the in-degree of each vertex which we can do by using the 
common nested loops that process each vertex and then each edge/adjacent vertex. 
As we execute these loops, we build up a count of the in-degree for each vertex. This 
requires 8 (V + E) time. We then process each vertex and the edges again which is 
also 8 (V + E) and thus the overall run-time. 

As we mentioned at the beginning of the section, the DFS algorithm can also 
be used to solve the topological sort problem. Before reading the rest of the section 
that describes how, go back and look at our DFS sample graph (it is a DAG) and 
the table of parents,  starting times, and ending times and try to determine how to 
use the DFS algorithm to solve the topological sort problem. A hint is to look at 
the ending times. 

As you may have discovered on your own, if you order the vertices by decreasing 
the ending time, you get a valid topological sort order. This can easily be done by 
inserting the vertices at the beginning of a list as we set their ending time. If we 
use a linked list , each of these inserts can be performed in 8 ( 1 )  time so the running 
time of DFS, 8(V + E) , is the running time of this topological sort algorithm. The 
question is why does this work. They key point to remember is that there cannot 
be a path from u to v if v comes before u in the topological sort . Based on how the 
ending times are computed, we know that if there is a path from u to v, then u has 
a higher ending time and thus would appear earlier in our topological sort . 
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To convince ourselves that this is correct , there are three possible situations we 
need to look at . One is that we discovered v on a path from u. In this case, v's 
starting and ending times are between u's starting and ending times and thus v's 
ending time is less than u's ending time. This is the case with the vertices S and F in 
our DFS example. Another possibility is that we first discovered v on a path from 
another vertex that does not reach u and then we later found the already discovered 
v from another path that includes u. In this case there is a path from u to v, but 
u will have a higher ending time and thus appear before v in the topological sort . 
An example of this from our graph is vertex C and vertex D. The vertex C was first 
discovered on a path from the vertex S and then later found on a path starting at 
the vertex D; thus D has a higher ending time than C.  The third possibility is that 
there is no path between two vertices and thus the relative order of the two vertices 
in the topological sort does not matter. 

1 14 .5 1 M i n i m u m  Spa n n i ng Trees 

The minimum spanning tree problem is to find a subset of edges in a weighted 
undirected graph (in which all the weights are non-negative) that connects all the 
vertices and minimizes the sum of the weights of the chosen edges. The subset 
of edges is a tree since there cannot be a cycle in the set of edges that minimizes 
the weights. The reason there cannot be a cycle is that removing an edge that is 
part of the cycle would reduce the sum of the weights and the graph would still be 
connected; thus, we know there cannot be a cycle in a minimum spanning tree. A 
minimum spanning tree for a graph with V vertices must have V-1 edges. This is easy 
to see if you consider a straight line of vertices and how many edges it would take 
to connect them. It does not make sense to add additional edges since this would 
increase the weight and form a cycle. We will now discuss two different algorithms 
for finding a minimum spanning tree of a graph. 

1 14 .5 . 1 1 Kruska l 's Algorithm 

Combining the ideas of  wanting to  minimize weights and not having a cycle should 
lead you to a possible algorithm. We want to repeatedly add the edge with the 
minimum weight as long as adding that edge does not form a cycle until we have 
V-1 edges. This algorithm does work and is known as Kruskal 's algorithm after the 
person who first discovered it . 

Figure 14 . 1 0  shows a graph that we will use to discuss the minimum spanning 
tree problem. The first step in Kruskal's algorithm is to sort the edges by weight 
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Figure 14 . 1 0 : Minimum spanning tree graph 

since we need to process the edges by weight . In the figure, the first edge we should 
add is AB since it has the minimum weight. Next we can attempt to add any of the 
edges with weight 2. For this example, we will pick edge BC. Adding it does not form 
a cycle. We continue with one of the other edges with weight 2 and pick edge CD. 
Adding it does not form a cycle. The last edge with weight 2 is edge BG and adding 
it does not form a cycle. There are three edges with weight 3. If we pick edge AF 
first , adding it does not form a cycle. Attempting to add edge FG would form a cycle 
so we cannot add it . Adding edge DH does not form a cycle so we include it . The 
next lowest weight is edge GH, but adding it would form a cycle. We then examine 
edge CH which also would form a cycle so we cannot add it . Next we look at edge 
FH which also would form a cycle. The last edge in sorted order is DE and adding it 
does not form a cycle so it is included; it is needed to connect vertex E. 

This gives us the set of edges (AB, BC, CD, BG, AF, DH, DE) . Our guidelines state 
that there must be V-l edges and our set fits since there are eight vertices and seven 
edges. As we can determine from this example, there is not necessarily a unique 
solution to the minimum spanning tree problem. In our example, we can include 
either AF or GF; both of these edges allow us to connect to the vertex F and have 
the same weight. 

The difficult step to implement in the algorithm is determining if adding an edge 
forms a cycle. We can use the DFS algorithm to determine if an undirected graph 
has a cycle (we leave that as an exercise) ,  but we will examine a data structure 
known as a disjoint set that you can use to easily determine if adding a single edge 
to a set of edges results in a cycle. Once you have a disjoint set , implementing 
Kruskal's algorithm is fairly easy. 
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1 14 .5 .2 1 The Disjoi nt Set Data Structure 

A disjoint set data structure is a group of sets that do not contain any elements 
in common. The common operations that it supports are make_set (x) , f ind (x) , 
and union (x , y) . The make _set (x) method adds a new set to the group of sets 
with the single element x; none of the other methods in the set may contain the 
element x. The find (x) method returns an identifier that indicates the set that 
contains x. The COIIlmon technique is to have the find (x) method return a specific 
item in the set . The key point that must be true is that if you call find (x) and 
find (y) and they are in the same set , then both must return the same identifier. 
The union (x , y) method joins the set that contains x with the set that contains 
y; the precondition for the union method is that the two parameters are not in the 
same set . The union method decreases the number of sets in the group by one. The 
following is a Python implementation of a Disj ointSet class. 

# Disj ointSet . py 
class Disj ointSet (obj ect ) : 

def __ init __ ( self ) : 

self . sets = {} 

def make_set (self , x) : 
" ' post : adds a set to the group of sets for the single element x 
raises KeyError if already a set containing x ' " 

# check if set for this item already exists 
if x in self . sets : 

raise KeyError , ' %s already in Disj ointSet ' % str (x) 
# map element to the set/list containing it 
self . sets [x] = [x] 

def find(self , x) : 
" ' post : returns set/list containing x 
raises KeyError if there is not a set containing x ;  
for efficiency use the " is "  operator t o  determine i f  two 
elements are in the same set by making two calls to f ind 
(e . g . , if dj . find(x) is dj . find(y) : ) ' "  

return self . sets [x] 
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def union(self , x, y) : 
" ' post : the sets containing x and y are merged/j oined 
raises KeyError if the two sets are already the same ' "  

if self . sets [x] is self . sets [y] : 
raise KeyError , ' %s and %s are in the same set ' % ( 
str (x) , str ey) ) 

# determine smaller list so we are adding fewer items to the 
# existing list 
if len(self . sets [x] ) > len(self . sets [y] ) :  

# save list of elements in smaller set 
temp = self . sets [y] 
# for each element in smaller set , map it to the larger list 
for k in self . sets [y] : 

self . sets [k] = self . sets [x] 
# add all elements in smaller set/list to larger set/list 
self . sets [x] . extend (temp) 

else : 
# save elements in smaller set 
temp = self . sets [x] 
# for each element in smaller set , map it to the larger list 
for k in self . sets [x] : 

self . sets [k] = self . sets [y] 
# add all elements in smaller set/list to larger set/list 
self . sets [y] . extend (temp) 

This Python implementation of a disjoint set works by using a dictionary to 
map each element to the list containing all the elements that are in the set . The 
make_set (x) method checks that x is not already in one of the sets and then creates 
a list containing x and maps x to that list . The find method returns the list 
containing the set . Since Python uses references and all the elements in the set refer 
to the same list, we can use the is operator to determine if the two sets are the 
same. By checking if f ind (x) is f ind (y) we check if the dictionary maps x and 
y to the same list in memory. This can be performed in 8(1 )  time since it only 
needs to check if the two addresses are the same. Note that this is not the same as 
using the == operator; it checks to see if the two lists contain the same elements and 
would require 8(n) time to determine if two lists of length n are the same. 

The union (x , y) method works by saving a reference to the shorter list . It 
then goes through each element in the shorter list and maps them to the longer list . 
Finally, we add each method in the shorter list onto the end of the longer list using 
the extend method of the built-in list . Assuming that each dictionary mapping can 
be performed in 8( 1 )  time and the extend method requires an average 8(1 )  per 
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each element added, each union call requires on average 8(  min( m, n) ) where m and 
n are the lengths of the two lists being joined. 

If you are implementing a disjoint set in C++, it can be implemented using a 
modified linked list . Each make_set method creates a separate linked list . Each 
node in the list needs both a pointer to the next element in the linked list and to 
the first element in the list . The union method then needs to set the next link of 
the last element in the longer list to the first node in the shorter list and then run 
through the nodes that were in the shorter list and set their pointer to the first 
node to the first node of the new combined list . The analysis for this is the same as 
our Python union method. The f ind method can then use the pointer to the first 
node to return the first element as the identifier . Using an array or list of linked 
lists still requires our find method to search through all the elements to find the 
list containing the element . You could also use the hash table technique used in our 
Python implementation. There are other techniques for implementing disjoint sets, 
but we will not cover them in this book. 

The disjoint set class can be used in Kruskal 's algorithm to help us determine 
if adding an edge forms a cycle. The first step is to form a set for each vertex (the 
disjoint set contains V sets, each with one element) . When we check if we should add 
an edge, we check if the two edges are in the same set . If they are not , we add the 
edge and join the two sets. As we do this , each set corresponds to the vertices that 
are connected by the edges we have added. If we attempt to add an edge whose two 
vertices are in the same set , we know there is already a path between those edges 
and adding this new edge would create a cycle. 

Using the disjoint set in Kruskal's algorithnl requires performing V-I union 

operations. The worst case is that we are joining sets of equal size since we then 
have to update the most pointers or entries in the hash table. One way to analyze 
this is to compare it to the merge steps of the nlergesort algorithm. We start by 
rnerging/joining V sets with one element into V /2 sets with two elements.  Next we 
join those into V / 4 sets with four elements. We continue this until we have one 
set with V elements. The total number of steps required for this is 8(VlgV) . The 
overall running time of Kruskal's algorithm is then dominated by the sorting of the 
E edges that requires 8(ElgE) time. 

1 14 .5 .3 1 Prim 's Algorithm 

Kruskal's algorithm creates a set of trees that eventually are connected together. 
In this section we will describe another algorithrn that was developed by Robert 
Prim for solving the minimum spanning tree problem that repeatedly adds edges 
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to one connected tree until V-I edges have been added. Using this algorithm, one 
connected tree is maintained during the algorithm. 

The basic idea is to pick a starting vertex and add the adjacent edge with the 
smallest weight. These two vertices are now part of the tree. We continue by 
choosing the edge with the smallest weight such that of one of its vertices is in the 
tree and one is not . Since we are always choosing an edge with one endpoint in the 
tree we have formed so far, we will never have multiple trees as Kruskal's algorithm 
may during its intermediate steps. Using the graph in Figure 14 . 1 0  and starting 
at the vertex A, the following is one possible ordering of the addition of the edges 
using Prim's algorithm: AB, BC, CD, BG, AF, DH, DE. The algorithm is very similar 
to Dijkstra's algorithm for the weighted shortest path problem. We leave the exact 
algorithm and the analysis of it as an exercise. 

\ 14 . 6 1 Chapter S ummary 

This chapter only scratches the surface of the many graph problems and applications. 
If you are interested in learning more about graph problems, we suggest you search 
for information on strongly connected components, Euler tours, Hamiltonian cycles, 
all pairs shortest paths,  and network flow problems. The following is a summary of 
the topics discussed in this chapter. 

• A graph is a set of vertices and the edges that connect the vertices. 

• Graph edges may be directed (one-way) or undirected (two-ways) .  

• The two common data structures for a graph are an adjacency matrix that has 
the size V by V and an adjacency list . An adjacency list has a list of V vertices 
and each vertex contains a list of the adjacent vertices, including information 
about the edge. 

• The running time of graph algorithms is given in terms of the number of 
vertices (V) and the number of edges (E) . 

• When using Python, a dictionary of dictionaries is the common method for 
representing a graph in adjacency list form. 

• Many graph algorithms use either a breadth first search or a depth first search. 

• A minimum spanning tree is a set of edges with the minimum weight sum that 
completely connects the vertices. An MST has V-I edges. 



14.7 Exercises 513 

1 14 . 7 1  Exercises 

True/ Fa lse Questions 

1. A matrix representation of a graph always requires more memory than an 
adjacency list for the same graph. 

2 .  The weighted shortest path algorithm can be used on a graph that does not 
have weights . 

3. The unweighted shortest path algorithm will work on a directed graph that 
has a cycle. 

4. The weighted shortest path algorithm will never work on a directed graph that 
has a negative weight and a cycle. 

5. The breadth first algorithm is commonly implemented using recursion. 

6. The depth first algorithm is commonly implemented using recursion. 

7. If each vertex is reachable from a starting vertex in a graph that does not have 
any cycles, the starting vertex will have the largest ending time for the depth 
first search. 

8. If a graph has cycles, the starting vertex will never have the largest ending 
time for the depth first search. 

9. Only a graph without cycles can be topologically sorted. 

10 .  The number of edges in a minimum spanning tree for a graph may vary 
depending on which edges are chosen. 

Mu lt ip le Choice Quest ions 

1. If you calculate M20 where M is the adjacency matrix representing a connected 
graph with 10 vertices, which of the following statements is true. 

a) There will be at least one 0 in M20 . 
b) There will not be any Os in M20 . 
c) The entries will all be 1 in M20. 
d) none of the above 
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2 .  If you calculate M20 where M is the adjacency matrix representing an uncon­
nected graph with 10 vertices, which of the following statements is true. 

a) There will be at least one 0 in M20 . 
b) There will not be any Os in M20 . 
c) The entries will all be 1 in M20 . 
d) none of the above 

3 .  If a graph has 2 * V edges, what is the running time of the unweighted shortest 
path algorithm if you use an adjacency matrix? 

a) 8(V) 
b) 8(V + E) 
c) 8(V2 ) 
d) none of the above 

4. If a graph has 2 * V edges, what is the running time of the unweighted shortest 
path algorithm if you use an adjacency list? 

a) 8 (V) 
b) 8(V + E) 
c) 8(V2 ) 
d) none of the above 

5. If a graph has 0.5 * V2 edges, what is the running time of the unweighted 
shortest path algorithm if you use an adjacency matrix? 

a) 8 (V) 
b) 8 (V + E) 
c) 8(E) 
d) none of the above 

6. If a graph has 0.5 * V2 edges, what is the running time of the unweighted 
shortest path algorithm if you use an adjacency list? 

a) 8 (V) 
b) 8 (V + E) 
c) 8(V2 ) 
d) b or c are equivalent 

7. When running the depth first search, which of the following are possible for 
the ending time of the starting vertex: 

a) It may have the smallest ending time. 
b) It may have the largest ending time. 
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c) neither a or b 
d) both a and b 

8. When running the depth first search on a connected graph, which of the 
following are possible for the ending time of the starting vertex: 

a) It may have the smallest ending time. 
b) It will have the largest ending time. 
c) neither a or b 
d) both a and b 

9. The number of edges in a minimum spanning tree for a graph with V vertices 
and E edges is 

a) V-I .  
b )  V. 
c) E-1 .  
d)  E. 

10. Which of the following are a possible number of topological sort orderings for 
a directed acyclic graph with five vertices? 

a) 0 
b) 1 
c) 120 
d) b and c 
e) all of the above 

Short-Answer Questions 

1. Exactly how many edges are in a complete graph with V vertices? 

2. Write the matrix representation for the graph in Figure 14 .3 .  

3. Draw the adjacency list representation for the graph in Figure 14 .3 .  

4 .  Write the Python dictionary representation of  the graph in  Figure 14 .6 .  

5. What is the run-time of  the unweighted shortest path algorithm if  an adjacency 
matrix is used instead of an adjacency list to represent the graph? 

6. Does removing the corresponding row and column from the adjacency matrix 
as we find a vertex with incoming degree zero improve the asymptotic efficiency 
of our first topological sort algorithm? 
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7. What is the asymptotic efficiency of the second topological sort algorithm 
presented in this chapter that tracks the in-degree of each vertex? 

8. Describe how to use the DFS algorithm to determine if a graph has a cycle. 

9. Write an exact set of steps (pseudocode) for Prim's algorithm. What is the 
running time of your steps? 

Programming Exercises 

1 .  Implement the unweighted shortest path algorithm in Python. 

2. Use the unweighted shortest path algorithm to write a program that solves 
the Kevin Bacon game. 

3. Implement a priority queue that supports changing the priority of items al­
ready in the priority queue. 

4. Using your priority queue from the previous question, implement Dijkstra's 
algorithm for finding the weighted shortest path. 

5 .  Implement the topological sort algorithm that keeps track of the current in­
degree of each vertex and adjusts it as we process a vertex. 

6. Implement a disjoint set class in C++ using linked lists. 

7. Implement Kruskal's algorithm using a disjoint set class. 

8. Use the DFS algorithm to determine if an undirected graph has a cycle in 
8(V) time. 

9. Implement Prim's algorithm. 
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Object ives 

• To understand, implement , and analyze the efficiency of the quicksort algo­
rithm. 

• To review divide-and-conquer algorithms and learn a technique for analyzing 
the efficiency of recursive algorithms. 

• To understand the greedy algorithm and dynamic programming techniques 
and when they can be used. 

• To understand the implementation of the Huffman compression algorithm and 
the longest common subsequence algorithrn. 

• To introduce the topic of NP-complete problems. 

1 15 . 1 1 I ntrod uct ion 

Most of  this book has focused on data structures and algorithms for manipulating 
those data structures. In this chapter we will not learn new data structures, but 
instead we will focus on learning a few algorithm techniques that can be applied 
to many different problems. You have already used some of these techniques, but 
in this chapter we will categorize them. This will help you tackle new problems by 
thinking about which categories of techniques can be applied to new problems you 
encounter. As you have likely noticed by now, your programming skills improve by 
using the knowledge and experience you have gained from solving problems in the 
past. This chapter will add new tools to your toolbox of knowledge. 

517 



518 Chapter 15 Algorithm Techniques 

1 15 . 2 1 Divide a n d  Conquer 

Divide and conquer i s  the name given to  the strategy we have seen the most often in 
this book. The mergesort algorithm we examined is a classic example of divide and 
conquer. As the name implies, the basic idea of divide-and-conquer algorithms is to 
split a problem into smaller subproblems. As we saw with the merge sort algorithm 
in subsection 6 . 5 . 1 ,  divide-and-conquer algorithms commonly have a step where the 
solutions to the smaller problems are combined to form the solution to the original 
problem. Many of the algorithms for processing trees can be viewed as divide-and­
conquer algorithms since they process subtrees. The binary search algorithm for 
finding an item in a sorted list is also a divide-and-conquer algorithm since we keep 
dividing the list in half to find the item for which we are searching. The binary 
search algorithm does not need a step to combine the solutions to the subproblems 
as most of the other divide-and-conquer algorithms do. 

Many divide-and conquer algorithms are written as recursive functions and each 
recursive call is made with a smaller subproblem. However, divide-and-conquer 
algorithms do not have to be written as recursive functions. The binary search 
algorithm can be written recursively or iteratively. As we discussed in Chapter 6 ,  
iteration i s  typically better than recursion i f  the iterative algorithm is simple since 
the function call overhead of recursion makes it less efficient than an iterative 
algorithm with the same asymptotic running time. Analyzing the running time of 
recursive functions is often more difficult than analyzing iterative solutions. Since 
many of the divide-and-conquer algorithms are recursive, we will discuss techniques 
for analyzing the running time of recursive functions before examining another 
divide-and-conquer algorithm. 

1 15 . 2 . 1 1 Ana lyzing Recursive Functions 

You may recall that when analyzing the merge sort algorithm, we graphically looked 
at the steps of the recursive calls and how much work was done at each level. When 
analyzing the tree algorithms, we discussed how many times each tree node was 
traversed and how much work was required per node to determine the running time. 
Drawing pictures of what happens as each recursive call is made is a common method 
for determining the amount of work the algorithm performs. We also used this 
technique to help analyze the running time of the recursive Fibonacci function; we 
can determine from Figure 6 .2  in Chapter 6 that the amount of work to calculate the 
nth recursive Fibonacci number is almost twice as much work as the work required 
to find the n-lst Fibonacci number. The diagrams can provide some intuition, but 
it is easy to make mistakes when using the diagrams since they are not a formal 
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mathematical method. As you can see, analyzing recursive functions is more difficult 
than analyzing iterative code. 

In some limited cases of recursive functions, we can use a simple equation or 
algorithm to determine the running time of the code. The main restrictions required 
to use this algorithmic formula are that the code makes the same fixed number of 
recursive calls each time the function is called and each call is made with the same 
fixed fraction of the problem. To understand these restrictions we will discuss the 
topic of recurrence relations. A recurrence relation is an equation that is defined 
recursively. You may have seen a form of recurrence relations known as difference 
equations in your math studies. 

An example of a recurrence relation is T(n) = T(n/2) + c. This recurrence 
relation states that the time to solve a problern of size n is the time to solve a 
problem of size n/2 plus some fixed constant c. The running time of the binary 
search algorithm can be written as that recurrence relation. Solving a recurrence 
relation means finding a closed form solution without the recursive reference. This 
can be difficult , but most recurrence relations that meet the criteria discussed in the 
previous paragraph can be solved fairly easily. We already know that the solution 
to the recurrence relation T(n) = T(n/2) + c is 8(lgn) since that is the running 
time of the binary search algorithm. The recurrence relation that corresponds to 
the mergesort algorithm is T(n) = 2T(n/2) + c * n since the algorithm makes two 
recursive calls, each with a list half the size of the original list , and then has a loop 
that runs n times where n is the size of the list made for that recursive call. We 
know the answer to this recurrence relation is 8(n * 19n) . 

There is an algorithmic formula commonly referred to as the master theorem for 
solving most, but not quite all ,  recurrence relations that are of the form T(n) = 
a * T ( n / b) + f ( n ) . This corresponds to our restrictions of the fixed number of 
recursive calls (a times in this formula) and the fixed fraction (nib) of the problem. 
We can use the master theorem to find the asymptotic running time of recursive 
algorithms that have recurrence relations that fit this form. 1 The master theorem 
has three cases: 

1 .  if f(n) = O(nI09ba-e) for a constant e > 0 then T(n) = 8(nlo9ba) 

2 .  if  f(n) = 8(nlo9ba) then T(n) = 8(nlo9ba * log2n) 

3. if f(n) = f2 (nI09ba+e) for a constant e > 0 and if a * f (n/b) <= c * f (n) for a 
constant c < 1 and all n >= no for a constant no > 0 then T(n) = 8(f (n) ) 

1 For the full details of the theorem and a proof of the theorem, see Thomas Cormen, 
Charles Leiserson, Ronald Rivest, and Clifford Stein,  Introduction to Algorithms, (Cambridge, 
Massachusetts: McGraw-Hill Book Company, 2001 ) , 2nd ed. 76-84. 
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We defined the difference between big 0 and theta notation earlier, but have not 
seen the omega (0) notation before. Recall that big 0 means "less than or equal to" 
and that theta means "equal to." As you may be able to guess, the omega notation 
means greater than or equal to. As the three cases in the formula indicate, we need 
to compare nlogba and f (n) for the recurrence relation T(n) = a * T(n/b) + f (n) . 
If f (n) < nlogba , then the solution is 8(nlogba) . If f (n) = nlogba then the solution 
is 8(nlogba * log2n) . And if f (n) > nlogba then the solution is 8(f(n)) if the extra 
condition is also met . This extra condition means the formula cannot be applied to 
all recurrence relations of the form T(n) = a * T(n/b) + f(n) , but it does work for 
most of them. In summary, the answer is the larger of nlogba and f (n) (assuming 
the extra condition is met when f (n) is larger) . If they are the same, you multiply 
them by log2n to get the solution. 

We will now look at a couple examples. The mergesort algorithm has the 
recurrence relation: T(n) = 2T(n/2) + n. We first need to calculate logba which is 1 
since both a and b are 2. So we now compare n1 to n and they are the same so that 
tells us we need to use the second case of the formula and the answer is 8(n * log2n) . 
The binary search algorithm has the recurrence relation: T(n) = T(n/2) + 1 .  We 
calculate logba which is O. We now compare nO and 1 which are the same so we 
again use the second case of the theorem and the answer is 8(log2n) . 

We will now examine simple, but useless, Python functions to see examples of 
the other two cases of the formula. The first one is 

# recursive . py 
def f 1 (n) : 

if n > 1 :  
a = f 1 (n / / 3) 
b = f 1 (n / / 3) 
c = a + b 

else : 
c = 0 

for i in range (n) : 
c += i 

return c 

print f 1 (20) 

The function f1 has the recurrence relation T(n) = 2T(n/3) + n. We calculate log32 
which is less than one so we know nlogba is less than n1 so this is case three of the 
formula. We also need to show that 2 * n/3 <= c * n for some positive constant and 
large values of n. We can easily pick c = 1 and no = 2 to meet the requirement . 
Thus, the answer is 8(n) . 



Our second exaruple is 

# recursive . py 
def f2 (n) : 

if n > 1 :  
a = f2 (n II 3) 
b = f2 (n II 3) 
return a+b 

else : 
return 1 

print f2 (20) 
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The function f2 has the recurrence relation T(n) = 2T(n/3) + 1. We calculate l0932 
which is less than one so we know nl09ba is greater than nO so this is case one of 
the formula and the answer is 8(nlo932) ; this is 8(nO.631 ) ,  accurate to three decimal 
places. 

Unfortunately, the formula cannot be applied to all recursive functions; we can 
apply it only to those whose recurrence relation fits the pattern T(n) = aT(n/b) + 
f (n) . The recurrence relation for the recursive Fibonacci function is T(n) = T(n -
1 )  + T(n - 2) so we cannot use the formula. If we change our sample function f 1  so 
one, but not both, of the recursive calls is f 1  (n/2 ) , the formula cannot be applied. 
In these cases, you must use other techniques to find the run-time analysis as we 
discussed earlier in this section. 

1 15 . 2 . 2 1 Quicksort 

Since we have examined a number of divide-and-conquer algorithms (binary search, 
mergesort, tree algorithms) , we will examine only one more divide-and-conquer 
algorithm in this chapter. The quicksort algorithm is a divide-and-conquer algorithm 
for sorting and is appropriately named as it is typically the fastest general purpose 
sorting algorithm even though its worst-case running time can be 8(n2) .  The basic 
idea of the quicksort algorithm is straightforward, but creating an algorithm that is 
correct in all cases and efficient in most cases requires skill and attention to special 
cases. 

A drawback of the mergesort algorithm is that it requires an extra temporary 
array that is the same size as the array you are sorting. The quicksort algorithm 
has the advantage that it sorts the algorithm in place (i .e . , it does not require a 
second array) . The basic idea of quicksort is similar to mergesort : split the list 
into two parts and recursively sort each part , but the details of how this is done 
are different . The quicksort algorithm starts by picking an element known as the 
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pivot from the list . It then moves the elements less than the pivot to the left side 
of the list and elements greater than the pivot to the right side of the list . The 
pivot element is then placed between the two lists; this is the correct position for 
the pivot when the entire list is sorted. The next step is to recursively sort the two 
smaller arrays on either side of the pivot . When the recursive call has an array of 
size 0 or 1 ,  the recursion ends. It should be clear that a merge step is not needed 
since the partitioning step of moving small elements to the left and large elements 
to the right with the pivot in the middle places the elements in sorted order. 

Before we try to write code to implement the algorithm, we will look at an 
example of how the algorithm works using the array 7 , 6 ,  1 ,  3 ,  2 ,  5 ,  4. If we 
pick the last element (4) as the pivot and follow the algorithm of moving small 
elements to the left and large elements to the right and placing the pivot in the 
middle, one possible result is 1 ,  3 ,  2 followed by the pivot 4 followed by 7 ,  6 ,  
5 .  Note that 4 is now in the correct location for the final sorted array. We now 
recursively sort the left array. If we again pick the last element (2) as the pivot 
and move small elements to the left and large elements to the right , we now have 
the sorted section 1 ,  2 ,  3 .  Even if we still make recursive calls with the left array 
1 and the right array 3,  the calls would immediately return since the arrays have 
length one. It could be the case where one side has length one and the other side 
may have more, so the code will be simpler if we make the recursive calls. We now 
recursively sort the right array 7 ,  6 ,  5 of the original problem. If we again pick 
the last element as the pivot (5) , we could end up with 5 ,  7 ,  6. In this case there 
are no smaller elements so the pivot is moved to the left . Again, note that the pivot 
is in the correct location as it will always be after placing the elements less than it 
to the left and elements greater than it to the right . We now recursively sort the 
array 6 ,  7 and pick 7 as the pivot . This small array is now sorted and the entire 
original array is also sorted. 

The implementation details we have not discussed yet are how to effectively 
pick the pivot so the algorithm is efficient and how to move small elements to 
the left and large elements to the right. We will now look at our first , but not 
final, implementation of the quicksort algorithm which shows how to move smaller 
elements to the left and larger elements to the right . 

# qswrong . py 
# this has a subtle bug 
# it will not work if all the elements are equal 



def quicksort (a ,  left , right ) : 
if left < right : 

pivot = a [right] 
i = left 
j = right - 1 
while True : 
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while a [i] < pivot : 
i += 1 ;  

while pivot < a [j ] : 
j = j - 1 

if i < j : 
# swap 
a [i] , a [j ]  = a [j ] , a [i] 

else : 
break 

# swap 
a [i] , a [right] = a [right] , a [i] 
quicksort (a, left , i-i)  
quicksort (a ,  i+1 , right) 

a = range ( 15 ,  - 1 , - 1 )  
quicksort (a ,  0 ,  len (a) -1 )  
print a 
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Assuming the list size is greater than one, this implementation picks the last 
element in the list as the pivot. It then starts at the left and moves forward in the 
list until it finds an element larger than the pivot. Once it does, it starts at the 
right end of the array, just to the left of the last element which is the pivot , and 
moves backwards until it finds an element smaller than the pivot . Once it does, 
it then swaps the two elements it found so the element smaller than the pivot is 
moved to the left and the larger element is moved to the right . I t then continues 
the process starting again where it left off on the left side moving forward in the list 
until it finds an element larger than the pivot and then repeats the process moving 
backwards from where it left off on the right side. Once those two inner while loops 
meet , the outer while loop stops. Thus, the code in the while True loop will run 
n - 1 times since it examines each element except the pivot once while the index 
variables i and j move towards each other. When the two indices cross, the pivot 
is placed at that location which is the correct location in the final sorted list . The 
code then recursively sorts the section of the list to the left of the pivot and the 
section of the list to the right of the pivot . Note that at no point is an extra copy 
of the list created; the elements are swapped within the original list . 

Our question, of course, is how efficient is this algorithm. The analysis is not as 
easy as mergesort since the size of the two lists with which the recursive calls are 
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made will vary depending on the input and which element is picked as the pivot . 
The experience you have developed should lead you to know that we want the two 
lists to be of equal size. This will give us the recurrence relation T(n) = 2T(n/2) +n  
since we make two recursive calls with lists half the size and the steps to move the 
smaller elements to the left and larger elements to the right require 8(n) time. This 
is the common recurrence relation for many divide-and-conquer algorithms and the 
answer is 8(n * l092n) . This matches the mergesort algorithm, but the constants 
that the 8 notation hides are smaller for the quicksort algorithm since we are not 
copying the elements to and from a second list . This is a significant benefit for large 
lists; with mergesort , recall that we need an extra array that is the same size as the 
array we are sorting. Thus, in practice, the quicksort will be faster than mergesort 
if we can split the list in two approximately equal halves. 

Unfortunately, the quicksort algorithm may not necessarily split the list in half 
each time. What happens with our first implementation if the list is already sorted? 
In this case, the pivot will be the largest element in the list section we are sorting 
each time it makes a recursive call and we will be splitting the list into two lists, one 
of zero elements and one with only one element less than the original list , since the 
pivot element is not included in the recursive call. A similar partition into zero and 
n - 1 elements will happen if the list is in reverse order. These cases correspond to 
the recurrence relation T(n) = T(n - 1 )  + n. This does not meet the pattern that 
can be solved with the master theorem, so we must try a different technique. One 
way to look at this is to keep expanding the recurrence relation. 

T (n) = n + T (n-i)  
= n + (n-i )  + T (n-2)  
= n + (n-i )  + (n-2) + T (n-3) 
= n + (n-i )  + (n-2) + (n-3) + T (n-4) 

= n + (n- i )  + (n-2) + (n-3) + . . . + i 

As we just showed, this will result in the sum of the first n integers and we 
know that is 8(n2) .  Thus, the worst case for quicksort is worse than mergesort and 
equivalent to the original iterative sorting algorithms we examined in Chapter 3 .  

Unfortunately, in  addition to  being inefficient for these two cases, this imple­
mentation is not quite correct . If all the elements in the list are the same, the code 
will not work correctly. We leave it as an exercise to determine what happens and 
how to fix it . This is an example of how difficult it is to get the implementation of 
the quicksort algorithm correct . 

Based on what we learned in the previous paragraphs, it should be clear that the 
choice of pivot is crucial to the performance of the algorithm. One possible choice to 
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avoid the worst-case behavior when the list is already sorted is to randomly choose 
the pivot. This would mean that no specific input would be more likely to produce 
the worst-case running time . Another common option is to examine three elements 
and pick the median of those three as the pivot ; this increases the likelihood that 
the pivot will be closer to the median element of the list .2 We will now look at the 
quicksort algorithm implemented using this as the pivot strategy. This algorithm is 
also correct for all input cases, unlike our first algorithm. 

# quicksort .py 

def quicksort (a ,  left , right) : 

" ' post : sorts a [left : right+i] (i . e . , a [left] through a [right] ) ' "  

if left < right-i : 
pivot = median3 (a ,  left , right) 
i = left 
j = right - 1 

while True : 
i += 1 
while a [i] < pivot : 

i += 1 
j -= 1 
while a [j ]  > pivot : 

j -= 1 
if i < j : 

# swap 
a [i] , a [j ]  

else : 
break 

# swap 

a [j ] , a [i] 

a [i] , a [right-i] = a [right-i] , a [i] 
quicksort (a ,  left , i-i)  
quicksort (a , i+i , right) 

elif left < right : 
if a [left] > a [right] : 

a [left] , a [right] = a [right] , a [left] 

2 An exercise in Thomas Cormen, Charles Leiserson, Ronald Rivest , and Clifford Stein, 
Introduction to Algorithms, (Cambridge, Massachusetts: McGraw-Hill Book Company, 2001 ) , 2nd 
ed. discusses this approach. 
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def median3 (a , left , right ) : 

center = (left + right) II 2 
if a [center] < a [left] : 

a [left] , a [center] = a [center] , a [left] 
if a [right] < a [left] : 

a [left] , a [right] = a [right] , a [left] 
if a [right] < a [center] : 

a [center] , a [right] = a [right] , a [center] 
a [center] , a [right-1]  = a [right-1] , a [center] 
return a [right-1] 

If there are at least three elements in the list , the quicksort function uses the 
median3 function to pick the pivot element . It examines the first , middle, and last 
elements and places the smallest element in the first position, the largest element in 
the last position, and the pivot in the next to last position. The quicksort function 
then works basically the same as our original algorithm. Note that we can start the 
index i at the second element in the section of the list since we know the element 
the median3 function placed in the first position is less than or equal to the pivot. 
Similarly, we can start the index j to the left of where we placed the pivot since we 
know the pivot and the element in the last position are greater than or equal to the 
pivot. Other than these minor changes, the code inside the while True loop works 
exactly the same as our original implementation. The last else statement handles 
the case where we have fewer than three elements in the section of the list we are 
sorting. 

To further improve the speed of the implementation, we could write the original 
if statement as if (right - left < 10)  and then have the else case use the 
selection sort or insertion sort algorithm to handle small lists. These iterative 
algorithms will be faster than a recursive algorithm for small lists. Since the recursive 
calls will eventually be sorting small lists, this change can increase the speed a 
significant amount . 

In practice this improved implementation of the quicksort algorithm will have 
an average running time of 8(n * 19n) and be faster than mergesort and other 
8(n * 19n) sorting algorithms even though the worst case running time of the 
quicksort algorithm is 8(n2) .  Note that using the median3 function,  the algorithm 
will partition a sorted list or a list in reverse order into equal halves and thus will 
have a run-time of 8(n * 19n) with this improved implementation. As long as the 
algorithm does not repeatedly split the list into two sections that are very uneven, 
quicksort will be faster than mergesort . In fact, if the algorithm splits the list into 
sizes that are fixed percentages such as 1/4 and 3/4, the 8(n * 19n) running time 
will still be achieved. Proving this is beyond the scope of this book. Even though 
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we typically analyze the worst-case running time, studying the quicksort algorithm 
has shown us that sometimes the average case analysis is more important (but also 
more difficult to do) . 

/ 15 . 3 1 Greedy Algorithms 

The greedy algorithm strategy, like most computer science terminology, i s  appropri­
ately named. The common pattern in algorithms classified as greedy is that when 
making a choice, they always pick the choice that looks best at the moment. The 
greedy strategy is typically applied to optimization problems. Optimization prob­
lems usually contain one of these phrases: what is the best , what is the minimum, 
or what is the maximum. An example of an optimization problem is what is the 
minimum number of coins needed to total 42 cents? In the United States, you would 
choose one quarter worth 25 cents, one dime worth 10 cents, one nickel worth 5 cents, 
and two pennies worth 2 cents. This is a problem in which the greedy strategy can 
be applied. The greedy choice is to always choose the largest coin possible. Starting 
at 42 cents, we choose a quarter leaving us with 17 more cents. The largest possible 
coin we can use now is a dime leaving us with 7 cents. The largest possible coin we 
can use now is a nickel leaving us with 2 cents that we form using two pennies. 

U sing a greedy strategy involves two main steps. The first is to determine how 
a greedy choice can be applied to the problem. In the case of our coin problem the 
greedy choice we determined is to always use the largest possible coin. The second 
step is to prove that the greedy choice will in fact lead to the optimal solution. In 
our example of United States coins , the greedy choice works because all the coins 
are multiples of five. These coin values make it easy to determine that the greedy 
algorithm will work for all possible totals . 

Unfortunately, the greedy strategy cannot be applied to all optimization prob­
lems. Consider the widely studied problem known as the traveling salesman problem. 
Given a group of cities with straight line distances between them, determine the 
order to visit all the cities that minimizes the total distance traveled. A greedy 
choice could be to choose the closest city from your current location, then choose 
the closest city to it that has not been visited, and so on until all the cities have 
been visited. This strategy will not result in the shortest path being found in all 
cases. We will discuss this problem again in section 1 5 . 5 . 

Greedy algorithrns can be used in compression algorithms. The basic idea of 
compression is to reduce the amount of storage needed for data. There are two 
categories of compression: lossy and loss less. As the name implies, when you use 
lossy compression , you lose some of the data and cannot reproduce the original data 
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exactly; lossless compression allows you to uncompress the data and get back the 
exact original data. You have likely used compressed data whether you realize it 
or not . Most audio formats, such as MP3 and AAC, use compression to reduce 
the amount of data required to store and play audio files. Similarly, most video 
is stored and transmitted in compressed format. Digital television is broadcast 
in a lossy compression format (typically the MPEG-2 compression format) ; other 
common video compression formats you may have heard of are MPEG-4 and H.264, 
which is a specific form of MPEG-4. Lossy compression is acceptable for audio and 
video applications since the exact original data is not needed. There is a trade-off 
between the amount of compression and the quality of the audio or video. As long 
as enough bits are used in the compressed version, when the data is uncompressed, 
the audio or video will sound or look "good enough" for most people. In the United 
States, different networks use different amounts of compression and in some cases, 
the loss of quality is noticeable in fast moving scenes such as those in sports. 

For other applications, lossy compression will not work. If you compress your 
source code or a research paper, you need to get the original version back when 
you uncompress it. In this section, we will look at one of the simpler compression 
algorithms known as Huffman codes that uses a greedy strategy; it was developed 
by David Huffman in the 1950s.  In this section, we will discuss the algorithm using 
examples with plain ASCII text , but the algorithm can be applied to any data that 
is represented using bits. 

Uncompressed ASCII files use eight bits to store each letter; unicode uses 16 bits 
for each character. The basic idea of Huffman codes is to use fewer bits for letters 
that occur more frequently in the text you are compressing and more bits for letters 
that occur less often. We may end up using two or three bits for letters that occur 
frequently in our text such as a, e ,  and s. and more than eight bits for letters 
that occur less frequently such as z or q. For most files with more than a few 
hundred letters, the total number of bits needed when using this mixture of short 
and long codes will be less than the original uncompressed file . We also need to 
store information about the bit code for each letter so we can uncompress the file . 
Attempting to compress a very small file will result in a larger file because of the 
overhead of storing the decoding information. Of course, if the file is small, there is 
no need to compress it . 

The technique Huffman codes use to create the compressed file generate what 
are known as prefix codes or more accurately, prefix-free codes; you will find both 
terms are used interchangeably. For codes to be considered prefix-free, no code can 
be a prefix of another code. The codes 10, OI l ,  010, and 1 10 form a prefix-free 
code set . If we assign these codes in order to the letters, a, b, c ,  d and have the 
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bit sequenceO l l l l0l00l0l0,  we can easily decode the sequence by processing each 
bit one at a time until we find a letter that matches.  In this example, we find the 
first three bits correspond to the letter b. We continue processing bits and find 
the next three bits correspond to the letter d. The next two bits then correspond 
to the letter a, followed by three bits for the letter c ,  followed by two bits for the 
letter a. Since no code is a prefix for any other code, this is the only way to decode 
the message and we can stop processing bits and output a letter as soon as the bit 
sequence matches one of the letters. 

An easy way to visualize this and to process it is to make a tree using the codes. 
The bit ° corresponds to moving left in the tree and the bit 1 corresponds to moving 
right in the tree. Figure 1 5 . 1  shows the codes in this example. This allows you to 
start at the root of the tree and move down the tree as you process each bit . When 
you reach a leaf node with a letter, you output that letter and start the process 
again at the root of the tree. As the tree representation makes it easy to see, the 
letters will always be at leaf nodes. If a letter was not at a leaf node, the code 
would not be a prefix-free code and would be ambiguous when we tried to process 
it a bit at a time. Consider the codes 0 ,  1 1 ,  and 1 10 that are not a prefix-free code 
corresponding to the letters a, b, and c .  If we attempt to decode 1 10 ,  is it the letter 
c or the two-character sequence ba? With prefix-free codes, we do not have this 
problem. 

o 

1 

n w 
o 1 o 

Figure 1 5 . 1 :  Prefix codes represented as a tree 

Of course, the problem is how to form the tree that will result in the most 
compression. As we stated earlier, we want the more frequent letters to have shorter 
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codes and the less frequent letters to have longer codes. That means frequent letters 
need to be near the root of the tree and less frequent letters need to be farther down 
the tree. Because of this, our first step is to process the input file, determine the 
frequency of each letter, and sort the letters by frequency. To demonstrate the 
algorithm, we will use a common palindrome "a man a plan a canal panama" since 
it has only a few unique letters keeping our tree fairly small. The following table 
shows the letter frequencies for this phrase: 

Letter Frequency 

c 1 
m 2 
I 2 
p 2 
n 4 
space 6 
a 10 

Remembering the two requirements that all characters must be at leaf nodes and 
we want less frequently occurring letters near the bottom of the tree, we will create 
tree nodes for each character and build up the tree starting at the bottom of the 
tree. We show this pictorially in Figure 1 5 . 2  with each node showing the character 
followed by its frequency. We have ordered them by increasing frequency. 

p :2 n :4 

Figure 15 . 2 :  Starting trees for Huffman codes 

The algorithm Huffman developed works by combining the two trees that are 
currently the smallest into one tree. The first step for our example selects the 
characters c and m and combines them into one rooted tree with a total frequency 
of three (the sum of the two individual frequencies) . This is shown in Figure 1 5 .3 .  

N ext we select the characters 1 and p since they have the two smallest frequencies 
and create a new combined tree with them as shown in Figure 1 5 .4 .  The two smallest 
frequencies now total 3 and 4 so we combine them as shown in Figure 1 5 .5 .  We 
continue the process and combine the two trees with frequency totals 4 and 6 as 
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Figure 1 5 .3 :  Combining the first two trees 

shown in Figure 1 5 .6 .  The next step combines the two trees with frequency totals 
7 and 10 .  Finally, we combine the two remaining trees and obtain the final result 
shown in Figure 1 5 . 7. 

Figure 1 5 .4 :  Combining the second two trees 

The table after the figures shows the characters, their original frequency, their 
bit code, and the total number of bits required to store that letter using the bit code 
(the frequency multiplied by the length of the bit code) . For the example string "a 
man a plan a canal panama, " 76 bits are required. As mentioned earlier, we also 
have to store the letter and its code so that we can decode it . In this case, the short 
length of the string will likely result in the compressed file being larger because of 
the overhead of storing the code for each letter. 
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Figure 15 . 5 :  Combining the third two tress 

Figure 15 . 6 :  Combining the fourth two trees 

Figure 1 5 .7 :  Final tree for Huffman codes 
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Letter Frequency Code Total hits 

c 1 1000 4 
m 2 1001 8 
1 2 1010 8 
p 4 101 1 16 
n 4 1 10 12 
space 6 1 1 1  18 
a 10 0 10 

76 

Notice that more than one tree can be formed if there are ties in the frequencies 
as we combine the trees. To show this, we change the last two steps to pick the 
tree with frequency 7 and the tree containing the letter a that has frequency 10 
instead of the tree containing the characters n and the space as we originally did. 
This results in the final tree shown in Figure 1 5 .8 .  You can also arbitrarily choose 
which tree is the left child and which is the right child any time you combine two 
trees, which results in slightly different codes. 

t:::l ,� O 1 

� .. cj0 

1 . , 0 t:iJ I�� I 
o 1 

Figure 1 5 .8 :  Another possible Huffman code 

The following table shows the characters, their original frequency, the bit code 
for the tree in Figure 15 . 8 ,  and the total number of bits required. Notice that the 
total number of bits required to represent the string is again 76 bits. This should not 
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surprise you since we are replacing one node whose subtree has a frequency total of 
10 with another subtree whose frequency has a total of 10 .  In either case the same 
number of total bits are required to represent that subtree. 

Letter Frequency Code Total hits 
c 1 0000 4 
m 2 0001 8 
1 2 0010 8 
p 4 001 1  16 
n 4 10 8 
space 6 1 1  12 
a 10 01 20 

76 

Two remaInIng questions are how do we implement this algorithm and how 
efficient is it . The first step is to read the file that we want to compress and compute 
the frequency total. In Python, we can use a dictionary with the characters as keys 
mapping to their frequency. In C++, unless you already have a hash table, you 
could use an array to store the frequencies since as we read each byte of the file, 
we know there are at most 256 possible values (or 128 if the file is entirely ASCII) . 
Thus, we can use an array of length 256 with each value initialized to zero and add 
one to the appropriate array location each time we read a byte from the file. This 
algorithm is 8(n) where n corresponds to the number of bytes in the file. The next 
step is to sort the frequencies. Since there are at most 256 items to sort , this can 
be considered 8(1 ) .  Next we want to create a tree node for each frequency and 
store them in order. A binary heap or priority queue is the exact data structure we 
need to efficiently implement the algorithm demonstrated in the earlier figures. We 
remove the two lowest frequency elements from the heap and insert the tree formed 
by combining the two removed elements. Again, the amount of work is constant 
since a fixed number of items are being inserted and removed from the heap. Even 
if we do not consider these numbers constants, the sorting takes 8(n * Zgn) time 
as does inserting and removing the n items from the heap where n is the unique 
number of different characters in the file . 

We can now use the tree to determine the bit code for each character based on its 
location in the tree. A postorder traversal in which we update an extra parameter 
that is a list corresponding to the bits can be used to efficiently determine the code 
for each character. Each time a left path is followed, we append a zero onto the list 
and each time a right path is followed, we append a one onto the list . Each time 
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a recursive call returns, we remove the last elenlent in the list . The running time 
for this is linear in terms of the number of nodes in the tree. Again, this can be 
considered a constant since there are at most 512 nodes in the tree. The next step 
is to store each unique letter and its code in a new file followed by the code for each 
letter in the order they appear in the original file. As you can see, for large files 
the running time is dominated by reading and writing the characters and is linearly 
related to the number of bytes in the file . 

To decompress the file, we need to read the header information containing the 
bit code for each character in the file . You could then form the tree or create a hash 
table matching each code to its letter. As you then read the file a bit at a time, you 
use the tree to decode it as we discussed at the beginning of this section or keep 
building up the code until you get a code that is a key in the hash table. The time 
required for this is again linearly related to the number of bytes in the file . 

To actually compress the file, we need to do bit-level manipulation. Most 
programming languages, but not all ,  provide operators for performing bit-level 
manipulation. In Python and C++, the « and » operators can be used to shift 
bits and the binary & and I operators can be used to perform bit-level and and or 
operations. The following shows an example of this using the interactive Python 
interpreter. 

» >  x = 1 
» >  x = (x « 1 )  I 1 
» >  x 
3 
» >  x = (x « 1 )  I 0 
» >  x 
6 

The statement x«1 shifts the bits left one position, resulting in x being 2 
assuming it was initially 1 .  After using the I operator to do a bitwise "or" operation, 
x is now 3. Shifting the value 3, which is represented as 1 1  in base 2, left one position 
gives us 1 10. The bitwise "or" with zero does not change it , so x is now 6. This 
type of bit-level operations can be used in the Huffman compression algorithm to 
build up the bit codes for sequences of characters . Each time you reach a certain 
number of bits, such as 8 or 32, you can write that value out to the file and start 
the process again. 

The final question is how good is the compression using this greedy choice. The 
answer is it is optimal for prefix-codes since we are using the shortest number of 
bits for the most frequent letters. However, if you implement the algorithm and 
compare the compression to compression programs such as gzip, bzip2, or zip, 
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you will likely find they compress the files more than your Huffman compression 
program. The reason they work better is they often group multiple letters together 
and form codes for those. For example, the two-character sequences sh, th, and 
ch occur frequently in English words. If we use short bit codes for these multiple 
character sequences, we usually achieve more compression than compressing each 
single character with a bit code. 

1 15 .4 1 Dynam ic  Progra m m i ng 

Dynamic programming is another technique that is often applied to optimization 
problems and is similar to the divide-and-conquer strategy. The basic divide-and­
conquer strategy works well when each subproblem appears only once as we split 
the problem into subproblems. Recall that the recursive Fibonacci algorithm in 
Chapter 6 is inefficient because it required that we recompute the same subproblems 
multiple times. Dynamic programming solves this problem by storing the answer 
to each subproblem and reusing the stored value instead of recalculating it . Our 
iterative Fibonacci solution can be classified as a dynamic programming algorithm. 
As a reminder, here is the iterative Fibonacci function from Chapter 6 that has a 
running time of 8 (n ) . 

def loopfib (n) : 
# pre : n > 0 
# returns the nth Fibonacci number 

curr = 1 
prev = 1 
for i in range (n-2) : 

curr , prev = curr+prev , curr 
return curr 

This is one of the simpler dynamic programming examples since we only need to 
store the answer to the two most recent subproblems and it is easy to combine the 
answers to the subproblems to find the answer to the current problem. As with the 
divide-and-conquer strategy, one key concept for dynamic programming algorithms 
is to determine how to combine the solution to the subproblems into the solution to 
the original problem. In some cases, we need to examine only one or two subproblems 
to solve the original problem. In other cases, we need to look at a number of 
subproblems. In cases that require examining a number of subproblems, dynamic 
programming is very common since we will often be examining the same subproblem 
multiple times while solving the original problem. This concept is typically referred 
to as overlapping subproblems. 
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Having overlapping subproblems is not the only criterion that is required to 
apply the dynamic programming technique. The other important criterion that an 
optimization problem must meet is that the solution to the original problem must 
contain optimal solutions to the subproblems. Determining how to combine the 
optimal solutions to subproblems to determine the optimal solution to the original 
problem is typically the most difficult task when designing a dynamic programming 
algorithm. 

While divide-and-conquer algorithms are typically implemented recursively, dy­
namic programming algorithms typically start with the base case problem and use 
it to determine the solution to the larger problems until the solution to the original 
problem is reached. Because of this, dynamic programming algorithms are typically 
not implemented using recursion. Instead, the typical method uses an iterative 
solution that stores the solutions to the subproblems in a table and fills in the table 
with the answers to larger problems as it works to compute the answer to the original 
problem. We will now examine one problem in detail that dynamic programming 
can be applied to and give the basic algorithm for another problem that dynamic 
programming should be used to solve. 

1 15 .4 . 1 1 Longest Common Subsequence 

The longest common subsequence problem is a fairly simple problem to understand, 
which makes it a nice first example for dynamic programming. For this problem, 
we define a sequence as a finite, ordered list of items. A Python tuple, list , or 
string qualifies as a sequence. A subsequence is an ordered subset of the original 
sequence; in other words, you may remove some (possibly none) of the items from the 
original sequence, but not change the order of the sequence. The longest common 
subsequence problem is, given two sequences, what is the maximum length sequence 
that is a subsequence of the two sequences. For example, consider the two words 
abracadabra and batter as sequences of letters; a longest common subsequence for 
these two sequences is bar. There may be more than one common sequence with 
the same maximum length, but in this case, bar is the only subsequence of length 
three. 

A brute force algorithm is to determine all the subsequences for one of the 
sequences and then check if it is a subsequence of the other sequence and keep 
track of the longest subsequence found. For a sequence of length n, the number of 
subsequences is 2n . This is easy to picture by viewing each item in the sequence as 
an item that can be selected or not selected. This allows us to count the number of 
subsequences by treating the sequence as n binary digits. Given n bits, the number 
of items that can be represented is 2n so this results in an algorithm that is 8(2n) 



538 Chapter 15 Algorithm Techn iques 

just to compute all the subsequences. We then need to find the longest subsequence 
that is a subsequence of the other sequence. 

It is likely not intuitively obvious to you that dynamic programming can be 
applied to this problem. This is why we study examples of the various algorithm 
techniques. The experience of seeing techniques for solving various problems can 
help you determine when these techniques might be applied to new problems. To 
use dynamic programming for this problem, we need to determine how we can find 
the optimal solution to larger problems given the solution to smaller problems. This 
is where intuition and experience will help you. 

Our first step is to examine small problems, so we will start with sequences 
of length one (i .e . , the base case for the problem) .  If the two sequences contain 
the same element, the common subsequence length is one, otherwise it is zero. A 
possible next step is to see what happens if we add a letter to two sequences for 
which we know the longest common subsequence. If we have two sequences and add 
the same character to each sequence, the length of the longest common subsequence 
between the two longer sequences is one more than the longest common subsequence 
of the two original sequences. For example, consider the sequences abed and eabe ; 
the longest common subsequence of these two sequences is abo If we add the letter 
f onto the end of each sequence, the longest common subsequence is abf .  

Now that we have some initial ideas, let 's draw a table t o  see if that can help 
us determine a complete set of steps for the problem. Since we have two sequences, 
we will make a two-dimensional table using our first sample sequences. We will let 
the entry [i ,  j] in the table refer to the length of the longest common subsequence 
for the sequence of letters 1 through i of the one sequence and 1 through j of the 
other sequence. We have filled in the first row and column in the following table. 

a b r a c a d a b r a 
b 0 1 1 1 1 1 1 1 1 1 1 
a 1 
t 1 
t 1 
e 1 
r 1 

The upper left zero corresponds to the longest common subsequence between 
the letter a in abraeadbra and the letter b in batter. The one in the next position 
to the right corresponds to the longest common subsequence between the sequence 
ab of abraeadbra and the letter b of batter. Once you have a one in the first row, 
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the rest of the entries in the first row must be a one based on how the entries in the 
table are defined. The first column is filled out in exactly the same manner. Once 
the first row and first column in the table have been calculated and stored, the rows 
or columns can be computed in order. We have filled out the second row of numbers 
in the next updated copy of the table. 

a b r a c a d a b r a 
b 0 1 1 1 1 1 1 1 1 1 1 
a 1 1 1 2 2 2 2 2 2 2 2 
t 1 
t 1 
e 1 
r 1 

If we now think about what each table entry means, we can determine how to 
compute each entry based on the entries above it , to the left of it , and diagonally 
up and to the left . As discussed earlier when developing some intuition for the 
algorithm, if the element at position i in the one sequence matches the element at 
position j in the other sequence, we can add one to the longest common subsequence 
between the first i - I  entries of the one sequence and the first j - 1 entries in the 
other sequence. An example of this is the first two in the second row of numbers. 
This corresponds to the longest common subsequence of abra and ba. We have 
already determined that the length of the longest common subsequence between 
abr and b is one. When we add the letter a to each of those two sequences, we 
can add one to the length of the common subsequence, giving us two. In our table, 
this corresponds to adding one to the entry diagonally above it to the left when the 
elements match. 

We also have to determine what to do if the letters do not match. An example 
of this is adding the letter c to abrac . We want to know the length of the longest 
common subsequence between it and ba. Since the letter c does not match the 
last letter of ba we cannot increase the length of the longest common subsequence. 
Instead, the longest common subsequence of abrac and ba must be the maximum 
of the longest common subsequence of abrac and b and the longest common sub­
sequence of abra and ba. This corresponds to the maximum of the entries in the 
table above and to the left of the entry we are computing. The final table for the 
example is the following. 
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a b r a c a d a b r a 
b 0 1D 1L 1L 1L 1L 1L 1L 1L 1L 1L 
a 1D 1L 1L 2D 2L 2L 2L 2L 2L 2L 2L 
t 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L 
t 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L 
e 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L 
r 1U 1L 2D 2L 2L 2L 2L 2L 2L 3D 3L 

Given this table, we likely also want to determine what the longest common 
subsequence is . The key point to realize is that when we added one to the diagonal 
entry, we were adding a letter to the common subsequence. By keeping track of 
which entry we used to compute an entry, we can determine the actual common 
subsequence. We can picture an arrow in addition to the number indicating which 
entry we used to determine the value for each entry. For our table we have used the 
letter D to indicate a diagonal entry, the letter L to indicate a left arrow, and the letter 
U to indicate an up arrow. Starting at the lower right corner of the table, we chose 
the three to the left when picking the maximum of the left and above entries. From 
there we chose the diagonal entry so the last letter in our common subsequence is r.  
We continue following the arrows, inserting letters at the beginning of our common 
subsequence when we follow a diagonal arrow. When an arrow moves us out of the 
numeric entries, we are done and have determined the longest common subsequence. 

Continuing our example, we will insert the letter a when we reach the entry in 
the table corresponding to abra and ba. We finally insert the letter b when we reach 
the entry in the table corresponding to ab and b.  That diagonal entry moves us off 
the table, indicating that our common subsequence is bar.  In our example, we broke 
all ties when choosing the maximum of the left and above entries by choosing the 
left entry. Choosing the above entry could result in a different common subsequence 
with the same maximum length. 

The run-time analysis of this algorithm is fairly simple. We have to fill in the 
table. Computing each entry requires a constant amount of time. Given sequences of 
length m and n, the running time is 8(m * n) . The running time for our brute force 
algorithm of creating all subsequences of the shorter sequence and then checking if 
they are subsequences of the other sequence is at least 8 (2n) where n is the length 
of the shorter sequence. Clearly, the dynamic programming algorithm is much more 
efficient. 

One drawback to our algorithm is that it requires 8 (m * n) space to compute 
the result . A common application for the longest common subsequence problem 
is DNA matching, which uses long strings of letters. Fortunately Dan Hirschberg, 
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a computer science professor, developed an algorithm that requires only a linear 
amount of space, making it much more efficient for long sequences. 

1 15 .4 .2 1 Memoization 

As we mentioned before, the iterative approach of storing and computing table 
entries in fixed order is the common technique used to implement dynamic pro­
gramming algorithms; however, it is possible to implement them using recursion. 
The term memoization refers to using the recursive formula for the divide-and­
conquer strategy, but storing results as they are calculated so that we do not need 
to calculate them multiple times. Before a recursive call is made to compute an entry, 
the code first checks to see if that result has already been computed and stored. If 
so there is no need to make the recursive call to compute it and we can simply use 
the stored value. This gives us a running time equivalent to our iterative solution, 
but retains the recursive form of divide and conquer. One possible method to store 
the calculated values in a hash table. This is easy to implement in Python using 
its dictionary. An array or list could also be used to store the previously computed 
values. A memoized implementation of the Fibonacci function is the following: 

# fibm . py 
def f ibm (n ,  d=None) : 

if n < 2 :  
return n 

if d is None : 
d = {o : i ,  i :  1} 

if n-i not in d :  
d [n-i]  = f ibm (n- i , d) 

if n-2 not in d :  
d [n-2] = fibm (n-2 , d) 

return d [n-i] + d [n-2] 

If you execute it , you will find its actual running time is similar to the iterative 
Fibonacci function whereas the pure recursive Fibonacci function is much slower for 
values greater than 25. Generally the iterative inlplementation will be slightly faster 
than a memoized recursive implementation due to the overhead of the numerous 
function calls made in a recursive algorithm. 

1 15 .4 .3 1 Matrix Cha i n  Mu lt ip l ication 

Determining the nlost efficient way to multiply a number of matrices together 
is another problem that dynamic programming can be used to solve. We will 
first provide some brief background on matrices before discussing how dynamic 
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programming relates to the problem. A matrix is a two-dimensional array of 
numbers. In order to multiply two matrices together, the number of columns in 
the first matrix must match the number of rows in the second matrix. For example, 
a 6 by 8 matrix can be multiplied by an 8 by 4 matrix, but the 8 by 4 matrix cannot 
be multiplied by a 6 by 8 matrix. The size of the resulting matrix is the number of 
rows in the first matrix by the number of columns in the second matrix; the result 
of multiplying the 6 by 8 matrix by the 8 by 4 matrix is a 6 by 4 matrix. The 
amount of work required to perform the calculation is the product of the number 
of rows in the first matrix, the number of columns in the first matrix (which is the 
same as the number of rows in the second matrix) , and the number of columns in 
the second matrix. To multiply the 6 by 8 matrix by the 8 by 4 matrix requires 
6*8*4=192 steps. If you are not familiar with how to multiply two matrices, do a 
quick Internet search or ask your instructor. 

Matrix multiplication is not commutative even when the sizes of the matrices 
allow the order of the two operands to be reversed. However, matrix multiplication 
is associative. Consider the amount of work to multiply three matrices A, B, and C 
with the sizes 2 by 10, 10 by 4, and 4 by 3, respectively. If we calculate (AB) C, by 
first multiplying the 2 by 10 and 10 by 4 matrices together, we get a 2 by 4 matrix 
that requires 80 steps. Multiplying the resulting 2 by 4 matrix by the 4 by 3 matrix 
requires 24 steps for a total of 104 steps to calculate the final 2 by 3 matrix. If 
we instead calculate A (BC) by first multiplying the 10 by 4 matrix with the 4 by 3 
matrix, we get a 10 by 3 matrix that requires 120 steps. We then multiply the 2 by 
10 matrix by the 10 by 3 matrix to obtain the same 2 by 3 matrix, but this requires 
60 more steps for a total of 180 steps. This means we want to parenthesize the 
matrices as (AB) C instead of A (BC) to produce the result with fewer calculations. 

For three matrices, there are only two choices on how to parenthesize the calcu­
lation as we showed in the previous paragraph. If we have four matrices ABCD, our 
choices are A (  (BC) D) , A (B (CD) ) ,  (AB)  (CD) , « AB) C) D , and (A (BC) ) D. The question 
is how can we apply dynamic programming to this problem. The key point to realize 
is that if the optimal way to parenthesize the product is to multiply ABC together and 
then multiply that by the matrix D ,  then we will need the optimal way to multiply 
ABC which is either (AB) C or A (BC) . This is what allows dynamic programming to 
be applied to this problem; the optimal solution to the original problem contains 
optimal solutions to the subproblems. If we have five matrices, ABCDE, the optimal 
way to multiply them together might be (ABC) (DE) . If it is, we will want the optimal 
way to multiply ABC together. 

If we have a large number of matrices to multiply together, the different parenthe­
sizations can result in widely different amounts of required calculations. Determining 
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the optimal order is commonly known as the matrix chain multiplication problem. 
We saw the number was significantly different with just three matrices in our initial 
example. With more matrices, the differences can be even more dramatic, so if you 
have a large number of matrices to multiply together, it is likely worth it to first 
determine the optimal parenthesization. 

The dynamic programming solution to this problem starts with calculating the 
optimal way to multiply each group of three consecutive matrices together. The 
next step is to determine the optimal way to multiply each group of four consecutive 
matrices together, and so on. This will require an n-by-n table if we have n matrices 
labeled Ao , AI , . . .  , An-I  to multiply together. The entry in the table at the position 
[i] [j] indicates the optimal number of steps for multiplying matrices Ai through Aj . 
We only need to compute half the table since it is symmetric (Le. , entry [i] [j] will 
be the same as [j] [iD . Unlike the longest common subsequence problem where a 
constant amount of work is required to compute each table entry, the amount of 
work to compute this table is the difference between i and j .  We will leave the 
remaining details of this algorithm as an exercise. 

Some dynamic programming algorithms require a one-dimensional table, while 
others require a two-dimensional table as we have seen in our examples here. It 
is possible that some problems could require even higher dimension tables. Some 
algorithms will require a constant amount of steps to compute each entry in the 
table and others require more calculations to compute an entry in the table. As an 
algorithm designer, your job is to determine if dynamic programming can be applied 
to the problem, and if so, what is the least amount of work required to calculate the 
final result . 

1 15 . 5 1 N P-Complete P rob lems 

Since this i s  an introductory book, we will cover only the basic details of  NP-complete 
problems. "NP" stands for "non-deterministic polynomial" time. NP problems have 
the property that you can verify a solution in polynomial time; we will discuss what 
this means shortly. The category P of problems corresponds to all problems that can 
be solved in polynomial time . Thus, P is a subset of NP. The open question is does 
P equal NP or is P a proper subset of NP. NP-complete problems are a category 
of problems for which no polynomial time algorithms are known. The interesting 
point is that if one NP-complete problem could be solved in polynomial time, then 
all NP-complete problems could be solved in polynomial time. 

The traveling salesman problem mentioned earlier in this chapter is an NP­
complete problem. The only known algorithm to solve the traveling salesman 
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problem exactly is to measure all the possible paths and pick the shortest . Un­
fortunately, there are 2n possible paths if you have n cities so this algorithm is 
extremely inefficient. If someone tells you that a certain path has a length of 1 ,000, 
we can verify in polynomial time (linear time in fact) that the path has a length of 
1 ,000. Because of this, the problem qualifies as an NP problem. And since there is 
no known polynomial time algorithm to solve it , it is NP-complete. 

Graduate computer science students typically study how to prove that a problem 
is NP-complete. The process of proving a problem is NP-complete is known as 
reducing or reduction. The basic idea is to create a transformation between the 
problems that can be performed in polynomial time. Thus, if we could solve our 
problem in polynomial time, we could apply the polynomial transformation and 
solve the known NP-complete problem in polynomial time. This is why if we could 
solve one NP-complete problem in polynomial time, we could solve all of them in 
polynomial time. 

It is important to know if a problem you are attempting to solve is NP-complete 
since that means no polynomial time algorithm is known to solve it . This can 
prevent you from wasting time trying to find an efficient algorithm. Of course, if 
your problem is NP-complete and you find a polynomial algorithm then you have 
just solved one of the open problems in computer science. Knowing that your 
problem is NP-complete also tells you that if you have a large problem to solve, 
you will unlikely be able to solve it in a reasonable amount of time. Instead, you 
might search for algorithms that approximate an optimal solution. In some cases 
you might be able to show that your approximation algorithm produces a solution 
that is within a certain percentage of the optimal solution. For example, we might 
be able to find an algorithm that produces a path for the traveling salesman problem 
that is no worse than twice the length of the optimal solution. 

As we mentioned, proving an algorithm is NP-complete is an advanced topic and 
we will not cover it in any detail in this book. Fortunately, other mathematicians and 
computer scientists have proven a number of problems are NP-complete. An entire 
book3 was written categorizing a number of NP-complete problems and how they 
can be reduced. If you are struggling with coming up with an efficient algorithm for 
your problem, a first step would be to check a list of known NP-complete problems 
to see if your problem is already known to be NP-complete. 

3Michael Garey and David Johnson, Computers and Intractability: A Guide to the Theory of 
NP- Completeness, (New York: Freeman, 1979) . 
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1 15 . 6 1 Cha pter S ummary 

This chapter formalizes a categorization of some of the algorithm strategies we have 
used throughout this book and when each strategy can be applied. Understanding 
these techniques and when to apply them will help you develop algorithms to 
solve new problems you encounter. The following summarizes the specific concepts 
presented in this chapter. 

• Divide-and-conquer algorithms break problems into subproblems and then 
combine the solutions to the subproblems to solve the original problem. 

• Divide-and-conquer algorithms typically are written using recursion; the mas­
ter theorem can be used to analyze the running time of many recursive algo­
rithms. 

• The quicksort algorithm is commonly used for sorting. In practice, a good 
implementation of it is fast , but it can be slow depending on the initial order 
of elements to be sorted and the choice of the pivot element. 

• Greedy algorithms are typically applied to optimization problems and work 
correctly when making the choice that looks best at the moment leads to the 
optimal solution to the original problem. Prefix codes for compression are an 
example of a greedy algorithm. 

• Dynamic programming is an algorithm strategy similar to divide and conquer. 
It is often applied to optimization problems. It should be used when a divide­
and-conquer strategy would attempt to solve the same subproblem multiple 
times. Instead of resolving the subproblems each time, we solve it once and 
store the answer so it can be used the next time that subproblem would be 
solved. 

• There are a number of problems for which no known polynomial time algorithm 
exists. The category of NP-complete problems is a subset of these problems 
with the interesting property that if one NP-complete problem could be solved 
in polynomial time then all the NP-complete problems could be solved in 
polynomial time. 
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\ 15 . 7 \ Exercises 

True/Fa lse Questions 

1. Quicksort is always the most efficient algorithm for sorting. 

2. Quicksort is a divide-and-conquer algorithm. 

3 .  The quicksort algorithm requires less memory than the mergesort algorithm. 

4. The choice of the pivot element affects the running time of the quicksort 
algorithm. 

5. All recurrence relations can be solved using the master theorem. 

6. Greedy algorithms will work correctly for all optimization problems. 

7. Dynamic programming should be used for all divide-and-conquer problems. 

8. Dynamic programming algorithms store the results of the subproblem solu­
tions so they can be reused without recalculating them. 

9 .  There is always a unique answer to the longest common subsequence problem. 

10 .  Any dynamic programming algorithm can be implemented recursively using 
memoization. 

1 1 .  If we could solve one NP-complete problem in polynomial time, we could solve 
all NP-complete problems in polynomial time. 

M u lti p le Choice Questions 

1. Using the master theorem, what is the answer to the recurrence relation 
T(n) = 3T(n/2) + n? 

a) 8(n) 
b) 8(nlog23) 
c) 8(nlog23 * l092n) 
d) It cannot be solved with the master theorem. 

2. Using the master theorem, what is the answer to the recurrence relation 
T(n) = 4T(n/2) + n2? 

a) 8(n) 
b) 8(n2) 
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c) 8(n2 * log2n) 
d) It cannot be solved with the master theorem. 

3. Using the master theorem, what is the answer to the recurrence relation 
T(n) = 2T(n/3) + 2T(n/4) + n? 

a) 8(nlog;J2) 
b) 8(nO.5) 
c) 8(nO.5 * log2n) 
d) It cannot be solved with the master theorem. 

4. When is it acceptable to use lossy compression instead of lossless compression? 

a) in all cases 
b) to compress the source code for your programs 
c) to compress an executable program 
d) when you do not need to reproduce the exact original version 

5. When should dynamic programming be used with a divide-and-conquer algo­
rithm? 

a) for all divide-and-conquer problems 
b) when the divide-and-conquer algorithm's running time is not 8( n * log2n) 
c) when there are overlapping subproblems 
d) only for optimization problems 

Short-Answer Questions 

1. What happens with our original quicksort implementation if all the elements 
in the list are the same? How could we correct the code? 

2. Give the denomination of three coins and a total value for which using the 
greedy strategy does not result in the minimum number of coins being used. 

3 .  Show your work and the final prefix codes using the Huffman coding algorithm 
for the following letters and their frequencies: {a: 2, b: 3, c: 6, d: 12,  e: 24, 
f: 9} .  

4. What is the total number of different parenthesizations for a product of five 
matrices? 

5. What is the running time of the matrix chain dynamic programming algorithm 
for n matrices (for determining the optinlal order, but not computing the 
matrix products)? 
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Program m i ng Exercises 

1 .  Search for a divide-and-conquer algorithm that finds the two closest points in 
a plane. Implement this algorithm. 

2 .  Using Huffman codes, write programs to compress and uncompress a file. 

3. Implement the longest common subsequence algorithm described in this chap­
ter . 

4. Search for Dan Hirschberg's algorithm and use it to solve the longest common 
subsequence problem. 

5. Implement the matrix chain multiplication problem using dynamic program­
ming. 
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abstract data type A description of a data type that is independent of any particular 
implementation. 

abstraction The purposeful hiding or ignoring of some details in order to concentrate 
on those that are relevant . 

actual parameter An argument that appears in the call to a function. 

acyclic graph A graph that does not contain any cycles. 

adjacency list A technique for implementing graphs. It is a list of nodes that are 
connected to a given node via an edge. 

adjacency matrix A technique for implementing graphs. It is a matrix where each 
entry (r ,c) represents information about the edge (or lack thereof) from node 
r to node c .  

algorithm analysis Using mathematical techniques to determine the computing re­
sources (e.g. , time and space) required by an algorithm. 

aliasing Describes the situation where there are multiple live references to the same 
data. Changes to the data through one reference will be visible to the other 
references as well. 

API Application programming interface. 

application programming interface The set of values, operations, and objects pro­
vided by a code library or framework. 

array A collection implemented as a sequence of identical "cells" in a contiguous 
block of memory. 

549 
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ASCII American Standard Code for Information Interchange. A standard for en­
coding text where each character is represented by a number 0-127. 

assembly code A low-level programming language whose structures have a direct 
correspondence to the underlying machine language of a particular computer 
archi tecture. 

associative array A container type that implements a mapping from keys to values. 

asymptotic notation Big-O notation. A way of describing an upper bound on the 
resources required by an algorithm for an input of a given size. 

attribute A component of an object . Sometimes it is used to mean the data in an 
object , as opposed to its operations. 

AVL tree A technique for maintaining a binary search tree in a (nearly) balanced 
fashion for efficient lookup. 

balanced tree A tree where the all the nodes at each level have (nearly) the same 
number of descendants. 

base case In recursive functions or problem-solving, this is a small version of the 
problem that does not require recursive decomposition . 

big-O notation A way of describing an upper bound on the resources required by 
an algorithm for an input of a given size. 

binary heap A heap data structure implemented as a binary tree. 

binary search A very efficient searching algorithm for finding items in a sorted 
collection. Requires time proportional to log2 n where n is the size of the 
collection. 

binary search tree A binary tree with the binary search property. For every node, 
the data in its left subtree is smaller than the data and the node, and the data 
in its right subtree is larger. 

binary tree A tree in which each node has at most two children. The two children 
are traditionally named "left" and "right." 

binding A binding is an association between two things. A variable is a binding of 
an identifier (name) with a memory location. 
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bit Binary digit , fundamental unit of information.  It is usually represented using 0 
and 1 .  

breadth first traversal An algorithm that explores a tree or graph in  a fashion that 
guarantees that every node's immediate children are examined before its other 
descendants. 

byte A group of eight bits. It is the smallest addressable unit of storage on most 
modern computers. 

byte code An intermediate form between high-level source code and machine lan­
guage. Byte code can execute on a virtual machine interpreter or be further 
compiled to machine code. 

chaining A technique for maintaining multiple items in a single "slot" of some 
container structure. A chain of items is typically maintained as a linked list . 

class A class describes a set of related objects .  In object-oriented languages, the 
class mechanism is used as a "factory" to produce objects .  

class variable A variable that " lives" in a class and whose value is shared by all 
instances of the class. 

client In programming, a module that uses another component is called a client for 
the component . 

collision Occurs when two or more distinct iteIns hash to the same location in a 
hash table. 

compiler A program that translates a program written in a high-level language into 
the machine language that can be executed by a particular computer. 

complete graph A graph in which every pair of nodes is connected by an edge. 

complete tree A tree where every node except at the deepest level has the maximum 
possible number of children. 

connected graph A graph in which there is a path from every node to every other 
node. 

const method In C++, a method declared with the const designation cannot change 
any of the instance variables. 

constructor The method that creates a new instance of a class. 
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container class A class of objects whose primary function is to store a collection of 
objects. 

copy constructor A C++ constructor that takes an object of the type being con­
structed as a parameter and creates a new copy of it . 

cycle A path in a graph that starts and ends on the same node. 

data compression A technique for representing information more compactly (using 
fewer bits) for the purpose of storage or transmission. 

data structure A way of storing data so that it can be effectively used for some 
application. 

data type A particular way of representing data. The data type of an item deter­
mines what values it can have and what operations it supports. 

debugging The process of finding and eliminating errors in a program. 

decision statement A control structure that allows different parts of a program to 
execute depending on the exact situation. Usually decisions are controlled by 
Boolean expressions. 

declaration A statement that states properties of a variable or function (such as its 
type) to the underlying compiler or interpreter. 

deep copy A complete copy of some data such that no mutable structure is shared 
between the two copies. 

definition A statement that provides the implementation of a variable or function. 

degree In an undirected graph, it is the number of edges incident to a particular 
node. 

depth first traversal An algorithm that explores a tree or graph by following a single 
path of descendants to the maximum depth before backing up and considering 
alternative paths. 

dequeue The operation that removes an item from a FIFO queue. 

dereference The process of retrieving the item that is referred to by a pointer (an 
address) .  
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destructor The method that is called to "clean-up" an object that is no longer 
needed. In C++, for example, a destructor is used to deallocate dynamic 
memory. 

dictionary A mapping from keys to values, also called an associative array. 

Dijkstra's algorithm An efficient algorithm for finding the shortest paths in a graph. 

directed acyclic graph A graph having directed (one-way) edges and no cycles when 
paths are followed in the directed fashion. 

directed graph A graph in which edges have a distinguished direction. Each edge 
has a from-node and a to-node. 

disjoint set structure A data structure for keeping track of the partitioning of a set 
into disjoint subsets. 

disjoint sets Sets that have no elements in common. 

divide-and-conquer algorithm An algorithm design technique that breaks a problem 
into smaller versions of the original. 

duck typing Refers to the method of type equivalence used in dynamic programming 
languages. Any type object can be passed to a function or method provided the 
object implements all of the operations that the function or method requires. 
The name refers to the quip "If it quacks like a duck and waddles like a duck, 
then it 's a duck." 

dummy node A special node at the front or rear of a linked list that is used as a 
marker rather than to contain data. 

dynamic memory Memory that is allocated and deallocated to a program at run­
time. 

dynamic programming A technique for developing efficient algorithms involving 
problems that can be decomposed into a series of overlapping subproblems. 

dynamic typing A programming language mechanism where data types are attached 
to values rather than variables, and the actual data type stored in a particular 
variable can change over time. 

encapsulation Hiding the details of something. Usually this is the term used to 
describe the distinction between the implementation and use of an object or 
function . Details are encapsulated in the definition. 
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event-driven simulation A technique for programming simulations that relies on 
probabilistic generation of events and adjusts a global "clock" to when the 
next even happens. Compare to time-driven simulation. 

explicit heap dynamic The situation in C++ where memory can be allocated and 
deallocated at run-time directly under programmer control. 

exponential algorithm An algorithm with resource requirements that grow as an 
exponential function of the size of the input. 

formal parameter A parameter that appears in a function definition (as opposed to 
a function call) . 

forward declaration A partial description of some program element that is used 
to inform the compiler of something that will be completely defined later in 
the program. In statically typed languages, it is often necessary for defining 
recursive data structures. 

full tree A tree where every non-leaf node has the maximum possible number of 
children.  

global variable A variable that is  accessible to all parts of a program. 

graph An abstract data type comprising a set of nodes and a set of edges that relate 
pairs of nodes. 

greedy algorithm An algorithm design technique wherein each step of a multi-step 
strategy is chosen to make the maximum possible immediate progress toward 
the final goal. 

hash function An operation for turning some data into a relatively small integer, 
often for the purpose of locating that data in an array. 

hash table A container data structure that implements a mapping and uses hashing 
(mapping keys into numbers) to support efficient insertion and retrieval. 

head The traditional name for the first node in a linked list . 

header node A dummy node at the front of a linked list . 

heap (data structure) An ordered container data structure that supports efficient 
insertion of items and removal of a minimum (or maximum) item. 
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heap (memory allocation) The area of memory from which objects can be dynami­
cally allocated at run-time. 

heap sort An n log n sorting algorithm that relies on the heap data structure. 

Huffman coding A data compression algorithm based on a tree data structure. 

implementation independence The ability to change the implementation of a service 
without affecting the clients of the service . 

implicit heap dynamic Allocation of memory for objects at run-time that is man­
aged automatically by the run-time system of the programming language. 
Garbage-collected languages such as Python provide implicit heap dynamic 
storage. 

in-degree For a directed graph node, it is the count of incoming edges. 

inheritance Defining a new class as a specialization of another class. 

inline function/method A mechanism to tell a compiler that the body of a func­
tion/method should be directly inserted at each point in the program where 
the function/method is called, thus avoiding the run-time overhead of the 
function/method call. 

instance variable A piece of data stored inside an object . 

instantiation In C++, the process of creating a specific instance of a templated 
function or class . 

interface The connection between two components. For a function or method, the 
interface consists of the name of the function or method, its parameters, and 
its return values. For an object , it is the set of methods (and their interfaces) 
that are used to manipulate the object . The term "user interface" is used to 
describe how a person interacts with a computer application. 

interpreter A computer program that simulates the behavior of a computer that 
understands a high-level language. It executes the lines of source code one by 
one and carries out the operations. 

invariant A precondition and postcondition for a function, method, loop, or class. 
For a class , an invariant is a precondition and postcondition for each method. 
For a loop, an invariant is a value that is true before each iteration and true 
when the loop completes. 
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iterator An object that encapsulates the position of a traversal through a collec­
tion. An iterator is used to loop through a collection in an implementation 
independent fashion. 

Kruskal's algorithm An algorithm to find a minimal spanning tree of a weighted 
graph. 

I-value The "meaning" of an identifier when it appears on the left-hand side of an 
assignment statement . 

library A collection of useful functions or classes that can be imported and used in 
a program. 

lifetime (of a variable) The time during execution of a program when a variable is 
bound to a storage location. 

linear algorithm An algorithm with running time that is directly proportional to 
the size of the input . 

linker A program that assembles separately compiled program units into an exe­
cutable whole. 

list A general Python data type for representing sequential collections. Lists are 
heterogeneous and can grow and shrink as needed. Items are accessed through 
subscripting. 

literal A way of writing a specific value in a programming language. For example, 
3 is an int literal and "Hello " is a string literal. 

local variable A variable inside a function or method whose scope is limited to that 
function or method. 

lossless compression Any compression technique in which all information is pre­
served, thus guaranteeing accurate reconstruction of the original data. 

lossy compression Any compression technique in which some information may be 
lost, thus leading to imperfect reconstruction of the original data. 

machine code A program in the machine language of a specific computer. 

macro In C++, it is analogous to a function definition, but when "called" it results 
in a textual expansion by the C++ preprocessor prior to compilation of the 
program. 
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memoization An algorithmic technique for automatically "caching" previously com­
puted results so that they can be returned without requiring additional com­
putation when needed again later. 

memory leak A program error in which memory is allocated but not deallocated 
when it is no longer in use. 

method A function that lives inside an object . Objects are manipulated by calling 
their methods. 

minimum spanning tree A subgraph that is a tree connecting all the nodes of a 
graph and having the least total cost as measured by the sum of the weights 
of the included edges. 

mutable Changeable . An object whose state can be changed is said to be mutable. 
For example, Python ints and strings are not mutable, but lists are. 

mutator method A method that changes the state of an object (i .e . , modifies one 
or more of the instance variables) .  

namespace The set of identifiers that are defined in a given scope. Python uses an 
inspect able dictionary to represent namespaces. 

non-local variable A variable that is accessible in, but not defined within, some 
given scope. Global variables are non-local . 

NP The class of problems that is solvable by non-deterministic polynomial time 
algorithms. Intuitively, these are problems whose solutions can be checked for 
correctness in polynomial time, but the generation of the solution is done in 
exponential time. 

NP-complete A problem known to be as hard as any problem in NP. Every NP 
problem can be reduced to it. 

object A program entity that has some data and a set of operations to manipulate 
that data. 

object-based Describes design and programming that use objects as the principle 
form of abstraction. 

object-oriented Describes object-based design or programming that includes char­
acteristics of polymorphism and inheritance. 
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open addressing The process of finding an alternative slot in a hash table to avoid 
a collision. Compare it to chaining. 

operator overloading Attaching more than one method or function to a particular 
syntactic operator. 

out-degree In a directed graph, the count of the number of edges leaving a node. 

overflow Occurs when the number of bits required to store a value exceeds the 
number of bits allocated for it . 

P The class of problems that can be solved deterministically in polynomial time. 

parameter A special variable in a function that is initialized at the time of call with 
information passed from the caller. 

pass by reference A parameter passing technique used in some computer languages 
that allows the value of a variable used as an actual parameter to be changed 
by the called function. 

pass by value A parameter passing technique in which the formal parameters are 
assigned the values from the actual parameters. The function cannot change 
which object an actual parameter variable refers to. 

path In a graph, a sequence of nodes such that there are edges connecting successive 
nodes in the sequence. 

pointer A value that is the address in memory of some data. 

polymorphism Literally "many forms." In object-oriented programming, the ability 
for a particular line of code to be implemented by different methods depending 
on the data type of the object involved. 

prefix code An encoding scheme in which no code word is a prefix of any other code 
word. 

prefix-free code A prefix code. 

Prim's algorithm An algorithm to find a minimum cost spanning tree of a graph. 

priority queue A container abstract data type that includes operations for inserting 
items and removing the maximum (or minimum) item. 
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pseudocode The writing of algorithms using precise natural language, instead of 
computer language . 

quadratic algorithm An algorithm whose resource needs vary with the square of the 
size of the input . 

queue A container abstract data type with first in, first out access. 

quicksort An n log n average case sorting algorithm. 

r-value The meaning of an identifier when it appears on the right-hand side of an 
assignment statement . 

recurrence relation An equation that defines the terms of a sequence using opera­
tions on previous terms in the sequence. 

recursion A technique of defining something in terms of itself. 

reference count A field associated with an object that counts how many variables 
refer to it . Python does automatic reference counting and performs garbage 
collection when the reference count goes to o. 

reference semantics When the variables of a language always store references to 
heap-allocated data objects rather than storing the objects themselves. 

regression testing Running a set of previously passed tests over again when a pro­
gram has been changed. 

reserved word An identifier that is part of the built-in syntax of a language. 

row-major order Storing a multi-dimensional array linearly into memory one row 
after the next . 

scope The textual area of a program where a particular variable may be referenced. 

semantics The meaning of a construct . 

shallow copy A copy of a data structure where only the upper level of references are 
duplicated and the copy shares lower-level structures with the original. 

short-circuit evaluation An evaluation process that returns an answer as soon as the 
result is known, without necessarily evaluating all of its subexpressions. In the 
expression (True or isover O )  the isover O function will not be called. 
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signature Another term for the interface of a function. The signature includes the 
name, parameter(s) , and return value(s) . 

simulation A program designed to abstractly mimic some real-world process. 

specification A precise description of what some component does, as opposed to 
how it works. 

stack dynamic A term to describe variables that are allocated on the run-time 
stack. When a function or method begins, stack-dynamic variables are given 
memory on the run-time stack. When a function or method ends, the run-time 
stack shrinks, effectively deallocating the memory used for the stack-dynamic 
variables. 

static typing A programming language technique in which data types are attached 
to variables and variables may only be assigned values having the declared 
type. 

static variable In C++ a static variable is a local variable that maintains its value 
from one function invocation to the next . 

symmetric matrix A square matrix that is the same as its transposition. 

syntax The form of a language. 

template A C++ mechanism for writing generic functions or classes that are pa­
rameterized by data types and automatically specialized (instantiated) by the 
compiler. 

test-driven development A method for incremental program development where 
each new component of functionality is identified by writing an automated 
test before writing production code that passes the test . 

theta notation An algorithm analysis that provides a tight bound on the resources 
needed as a function of input size . 

topological sort A total linear ordering of the nodes in a directed acyclic graph such 
that no node appears after one of its descendants.  

traversal The process of sequentially visiting each item in a data structure. 

tree A hierarchical data structure consisting of a root node and its descendants. 

tuple A Python sequence type that acts like an immutable list . 
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undirected graph A graph in which an edge represents a symmetric pairing of nodes. 

unit testing 'frying out a component of a program independent of other pieces. 

value semantics In an assignment statement , the value of an expression is actually 
copied into the variable. Compare it to reference semantics in which the 
variable would store another reference to the same value. 

variable In programming languages, an abstraction of a named storage location. 

weighted graph A graph in which the edges have associated numeric values. 
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master theorem, 519 
merge sort , 204 
recPower, 197 
reverse, 195 

recursive function, 193 
reference, 109 

returning, 328, 386, 415 
reference count , 1 10 
reference semantics, 359 
regression testing, 67 
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reinterpret_cast , 404 
resizing an array, 89, 368, 385 
returning a reference, 328 , 386, 415 
reverse Polish notation, 161 
reverse.py, 195 
Ritchie, Dennis, 256 
row major, 295 

scope, 305 
scope resolution operator, 324 
searching, 17  

binary search, 2 1 ,  198 
linear search, 19 

selection sort, 202 
selectionSort.py, 202 
set , 435 
shallow copy, 1 12 
shallow copy, 131 , 374 
side effect , 16 
signature, 6 
simulation.py, 177 
sorting, 81 

heap sort , 451 
merge sort , 204 
quicksort , 521 
selection sort , 202 

specification, 6 
stack, 156 
stack dynamic, 359 
stack trace, 286, 393 
Stack.py, 160 
Stack. template, 436 
Standard Template Library (STL) , 

431 , 435 
static, 306, 311 ,  344, 347 
static variable declaration, 31 1 
statistics, 14 
string, 330 
Stroustrup, Bjarne, 256 
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subclass, 54, 65 
superclass, 54, 65 
switch, 307 
symmetric matrix, 488 

template classes, 435 
template functions, 429 
terminal, 166 
test-driven development , 67 
theta notation, 30 
this ,  325, 379 
Thompson, Ken, 256 
time-driven simulation, 180 
top-down design, 55 
top-down design, 13 
Tower of Hanoi (Brahma) , 207 

recursive solution, 210 
traveling salesman problem, 527, 543 
tree, 224 

ancestor, 224 
AVL, 453-65 
binary search, 230 
binary tree, 224 
children, 224 
complete binary, 225, 445 
depth,  224 
descendant, 224 
full binary, 225 
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height , 225 
in-order traversal, 238 
inorder traversal, 226 
leaf, 224 
parent, 224 
postorder traversal, 226, 534 
preorder traversal, 225 
root, 224 
siblings, 224 
subtree, 225 
traversal, 225 

TreeMap. py, 243 
TreeNode.py, 228, 461 
Turing, Alan, 1 
type conversion, 281 
typedef , 408 

unit testing, 63, 303 

value semantics , 359 
vec1 .cpp, 432 
vec2 .cpp, 433 
vec3.cpp, 434 
vector , 431 
visitor pattern, 239 

word jumble, 219 

yield, 139 
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