
Data Structures and Algorithms
Using Python and C++

David M. Reed
Capital University

John Zelle
Wartburg College

Frank l i n , Beed le & Associates, I ncorporated
8536 SW St. Helens Drive, Ste. D

Wilsonville , Oregon 97070
www.fbeed le.com

President and Pub l isher Jim Leisy (j im leisy@fbeed le.com)
Project Manager Tom Sumner
Editor Stephan ie Welch

Pri nted i n the U .S .A .

Names of a l l products here in are used for identification purposes only and are trademarks
and/or registered trademarks of thei r respective owners . Frank l i n , Beed le & Associates,
I nc., makes no c la im of ownersh ip or corporate association with the products or compa­
n ies that own them .

©2009 Frankl i n , Beed le & Associates I ncorporated . No part of this book may be repro­
duced, stored i n a retrieva l system, transmitted , or transcri bed, i n any form or by any
means-electronic , mechan ica l , telepathic, photocopying, record i ng, or otherwise-with­
out prior written permission of the publ isher. Requests for permission shou ld be addressed
as fol lows:

Rights a nd Permissions
Fra nk l i n , Beed le & Associates, I ncorporated
8536 SW St . Helens Drive, Su ite D
Wi lsonvi l le , Oregon 97070

I SBN 978-1-59028-233-5

Library of Congress Cata logi ng- in-Publ ication data may be obta i ned from the pub l isher.

Preface

Chapter 1 Abstraction and Analysis
1 . 1 Introduction

1 . 1 . 1 Programming in the Large .
1 . 1 . 2 The Road Ahead . .

1 . 2 Functional Abstraction
1 . 2.1 Design by Contract . .
1 . 2 . 2 Testing Preconditions
1 . 2 . 3 Top-Down Design "

1 . 2 . 4 Documenting Side Effects
1 . 3 Algorithm Analysis . .

1 . 3 . 1 Linear Search
1 . 3 . 2 Binary Search
1 . 3 . 3 Informal Algorithm Comparison
1 . 3 . 4 Formal Analysis
1 . 3 . 5 Big 0 Notation vs. Theta Notation

1 .4 Chapter Summary
1 . 5 Exercises

Chapter 2 Data Abstraction
2 . 1 Overview
2 . 2 Abstract Data Types

2 . 2 . 1 From Data Type to ADT
2 . 2 . 2 Defining an ADT
2 . 2 . 3 Implementing an ADT .

2 . 3 ADTs and Objects

iii

Contents

Xl

1
1
2
3
5
5
9

13
16
17
17
21
22
24
30
32
33

39
39
40
40
41
43
46

iv Contents

2 . 3 . 1 Specification
2 . 3 . 2 Implementation
2 . 3 .3 Changing the Representation
2 . 3 . 4 Object-Oriented Design and Programming .

2 . 4 An Example ADT: Dataset
2 . 4 . 1 The Process of OOD . .
2 . 4 . 2 Identifying an ADT . ,

2 . 4 . 3 Implementing the ADT
2 . 5 A n Example ADT: Rational .

2 . 5 . 1 Operator Overloading
2 . 5 . 2 The Rational Class . . .

2 . 6 Incremental Development and Unit Testing
2 . 7 Chapter Summary
2 . 8 Exercises

Chapter 3 Container Classes
3 . 1 Overview
3 . 2 Python Lists
3 . 3 A Sequential Collection: A Deck of Cards
3 . 4 A Sorted Collection: Hand . . .

3 . 4 . 1 Creating a Bridge Hand
3 . 4 . 2 Comparing Cards . . .
3 . 4 . 3 Sorting Cards

3 . 5 Python List Implementation
3 . 5 . 1 Array-based Lists . . .
3 . 5 . 2 Efficiency Analysis . .

3 . 6 Python Dictionaries (Optional)
3 .6 . 1 A Dictionary ADT . . .
3 . 6 . 2 Python Dictionaries . .
3 . 6 . 3 Dictionary Implementation
3 . 6 . 4 An Extended Example: A Markov Chain

3 . 7 Chapter Summary
3 . 8 Exercises

Chapter 4 Linked Structures and Iterators
4 . 1 Overview
4 . 2 The Python Memory Model

4 . 2 . 1 Passing Parameters
4 . 3 A Linked Implementation of Lists .

46
48
50
51
55
55
56
58
60
60
61
63
67
68

75
75
76
77
80
81
83
85
87
87
89
89
90
90
93
95
99

100

107
107
108
1 14
1 17

Contents

4 . 4 Linked Implementation of a List ADT
4 . 5 Iterators

4 . 5 . 1 Iterators in Python
4 . 5 . 2 Adding an Iterator t o LList . .
4 . 5 . 3 Iterating with a Python Generator

4 . 6 A Cursor-based List API (Optional)
4 . 6 . 1 A Cursor API
4 . 6 . 2 A Python CursorList
4 . 6 .3 A Linked CursorList

4 . 7 Links vs. Arrays .
4 . 8 Chapter Summary
4 . 9 Exercises

Chapter 5 Stacks and Queues
5 . 1 Overview
5 . 2 Stacks

5 . 2 . 1 The Stack ADT
5 . 2 . 2 Simple Stack Applications
5 . 2 .3 Implementing Stacks
5 . 2 . 4 An Application: Expression Manipulation
5 . 2 . 5 An Application: Grammar Processing (Optional)

5 . 3 Queues
5 . 3 . 1 A Queue ADT
5 . 3 . 2 Simple Queue Applications

5 . 4 Queue Implementations
5 . 5 An Example Application: Queueing Simulations (Optional)
5 . 6 Chapter Summary
5 . 7 Exercises . .

Chapter 6 Recursion
6 . 1 Introduction .
6 . 2 Recursive Definitions
6 . 3 Simple Recursive Examples

6 . 3 . 1 Example: String Reversal
6 . 3 . 2 Example: Anagrams . . .
6 . 3 . 3 Example: Fast Exponentiation
6 . 3 . 4 Example: Binary Search .

6 . 4 Analyzing Recursion
6 . 5 Sorting

v

122
135
136
137
138
140
141
142
144
147
148
148

155
155
155
156
157
159
160
163
169
169
170
172
174
180
181

189
189
191
193
193
195
197
198
199
202

vi

6 .6
6 . 7
6 . 8

Contents

6 . 5 . 1 Recursive Design: Mergesort . .
6 . 5 . 2 Analyzing Mergesort
A "Hard" Problem: The Tower of Hanoi
Chapter Summary
Exercises

Chapter 7 Trees
7 . 1 Overview
7 . 2 Tree Terminology
7 . 3 An Example Application: Expression Trees
7 . 4 Tree Representations
7 . 5 An Application: A Binary Search Tree . . .

7 . 5 . 1 The Binary Search Property
7 . 5 . 2 Implementing A Binary Search Tree
7 . 5 . 3 Traversing a BST
7 . 5 . 4 A Run-time Analysis of BST Algorithms .

7 . 6 Implementing a Mapping with BST (Optional)
7 . 7 Chapter Summary
7 . 8 Exercises

Chapter 8 C++ Introduction for Python Programmers
8 . 1 Introd uction .
8 . 2 C++ History and Background
8 . 3 Comments, Blocks of Code, Identifiers, and Keywords
8 . 4 Data Types and Variable Declarations

8 . 5 Include Statements, Namespaces, and Input/Output
8 . 6 Compiling
8 . 7 Expressions and Operator Precedence
8 . 8 Decision Statements
8 . 9 Type Conversions . .
8 . 1 0 Looping Statements
8 . 1 1 Arrays

8 . 1 1 . 1 Single-Dimension Arrays .
8 . 1 1 . 2 M ulti-Dimensional Arrays
8 . 1 1 . 3 Arrays of Characters . . .

8 . 1 2 Function Details
8 . 1 2 . 1 Declarations, Definitions, and Prototypes
8 . 1 2 . 2 Pass by Value . . .
8 . 1 2 . 3 Pass by Reference

202
205
207
212
212

223
223
224
226
228
230
230
230
238
241
242
245
245

255
255
256
262
263
267
271
274
277
281
282
285
285
287
287
288
289
292
293

Contents

8 . 1 2 . 4 Passing Arrays as Parameters .
8 . 1 2 . 5 const Parameters
8 . 1 2 . 6 Default Parameters

8 . 1 3 Header Files and Inline Functions .
8 . 14 Assert Statements and Testing . .
8 . 1 5 The Scope and Lifetime of Variables
8 . 1 6 Common C++ Mistakes by Python Programmers .
8 . 1 7 Additional C++ Topics (Optional) .

8 . 1 7 . 1 The C++ Switch Statement .
8 . 1 7 . 2 Creating C++ Namespaces
8 . 1 7 .3 Global Variables

8 . 1 8 Chapter Summary
8 . 1 9 Exercises . . .

Chapter 9 C++ Classes
9 . 1 Basic Syntax and Semantics
9 . 2 Strings
9 . 3 File Input and Output . . .
9 . 4 Operator Overloading . . .
9 . 5 Class Variables and Methods
9 . 6 Chapter Summary
9 . 7 Exercises

Chapter 10 C++ Dynamic Memory
10 . 1 Introduction . . .
1 0 . 2 C++ Pointers
10 . 3 Dynamic Arrays
1 0 . 4 Dynamic Memory Classes

1 0 .4 . 1 Destructor
1 0 . 4 . 2 Copy Constructor
1 0 .4 .3 Assignment Operator
1 0 .4 .4 A Complete Dynamic Array Class
10 . 4 . 5 Reference Return Types

1 0 . 5 Dynamic Memory Errors
1 0 . 5 . 1 Memory Leaks
1 0 . 5 . 2 Accessing Invalid Memory
10 . 5 . 3 Memory Error Summary .

1 0 . 6 Chapter Summary
1 0 . 7 Exercises

vii

294
296
297
298
303
305
306
307
307
310
310
312
313

319
319
330
333
335
343
347
348

353
353
360
366
371
371
373
378
381
386
388
388
390
393
395
395

viii Contents

Chapter 11 C++ Linked Structures
1 1 . 1 Introduction
1 1 . 2 A C++ Linked Structure Class
1 1 .3 A C++ Linked List
1 1 . 4 C++ Linked Dynamic Memory Errors
1 1 . 5 Chapter Summary
1 1 . 6 Exercises

Chapter 12 C++ Templates
1 2 . 1 Introduction
1 2 . 2 Template Functions
1 2 . 3 Template Classes . .

1 2 . 3 . 1 The Standard Template Library vector Class .
1 2 . 3 . 2 User-defined Template Classes

1 2 . 4 Chapter Summary
1 2 . 5 Exercises

Chapter 13 Heaps, Balanced Trees, and Hash Tables
13 . 1 Introduction
1 3 . 2 Priority Queues and Heaps

1 3 . 2 . 1 Heapsort
1 3 . 2 . 2 Notes on Heap and Priority Queue Implementations

1 3 . 3 Balanced Trees
1 3 . 4 Other Tree Structures
1 3 . 5 Hash Tables
1 3 . 6 Chapter Summary
1 3 . 7 Exercises

Chapter 14 Graphs
14 . 1 Introduction
1 4 . 2 Graph Data Structures . .
1 4 . 3 Shortest Path Algorithms

1 4 . 3 . 1 The Unweighted Shortest Path
1 4 . 3 . 2 The Weighted Shortest Path

14 .4 Depth First Algorithms . .
1 4 . 5 Minimum Spanning Trees

14 . 5 . 1 Kruskal's Algorithm
1 4 . 5 . 2 The Disjoint Set Data Structure
1 4 . 5 . 3 Prim's Algorithm

403
403
404
407
421
422
422

427
427
429
431
431
435
440
440

443
443
444
451
452
453
465
465
478
478

485
485
487
491
492
496
501
507
507
509
5 1 1

1 4 . 6 Chapter Summary
1 4 . 7 Exercises

Chapter 15 Algorithm Techniques
1 5 . 1 Introduction

Contents

1 5 . 2 Divide and Conquer
1 5 . 2 . 1 Analyzing Recursive Functions
1 5 . 2 . 2 Quicksort

1 5 . 3 Greedy Algorithms
1 5 . 4 Dynamic Programming

1 5 . 4 . 1 Longest Common Subsequence
1 5 .4 . 2 Memoization
1 5 . 4 . 3 Matrix Chain Multiplication

1 5 . 5 NP-Complete Problems
1 5 . 6 Chapter Summary
1 5 . 7 Exercises .

Appendix Glossary

Index

ix

512
513

517
517
518
518
521
527
536
537
541
541
543
545
546

549

563

Preface

This book is intended for use in a traditional college-level data structures course
(commonly known as CS2) . The authors have found that Python is an excellent
language for an introductory course. Its relatively simple syntax allows students to
focus on problem solving more so than the more complicated syntax of languages
such as Java, C++, and Ada. Python's built-in data structures and large standard
library also allow students to write more interesting programs than can easily be
written with other languages. This book assumes that students have learned the
basic syntax of Python and been exposed to the use of existing classes. Most
traditional CSI courses that use Python will have covered all the necessary topics,
and some may have covered a few of the topics covered in this book.

Python's object-oriented features make it an elegant language for starting a data
structures course. We have found that most students successfully completing a CSI
course know how to use classes, but many of them need more experience to learn
how to design and write their own classes. This is not surprising given the limited
amount of time that is typically spent designing classes in a CSI course. We address
this issue by including a number of examples of class design in the first few chapters
of this book.

Starting with Python in a CS2 course allows students to continue expanding
their skills and gain experience designing and writing classes in a simple, familiar
language. Python also makes it relatively easy to learn about linked structures.
Every name in Python is a reference, so there is no additional syntax that needs to
be learned in order to write linked structures. These advantages allow topics to be
covered more quickly than is possible using more complex languages.

One potential drawback of Python for a data structures course is that it hides
the complexity of memory management. This is a benefit in a first course, but we
think that in a second course it is important that students begin to understand
some of these low-level details that the Python interpreter hides from them. Since

xi

xii Preface

we can cover the basic data structures in less time using Python, there is time to
learn a second language, even in a single-semester CS2 course. After the students
have continued to improve their Python programming skills while covering the first
few chapters of the book, it is relatively easy for them to learn a second object­
oriented language. By using C++ as the second language, the students are exposed
to a lower-level, compiled language. The syntax of C++ is more complicated
than Python, but that is a relatively small hurdle once students have mastered
fundamental programming concepts using Python. For example, now that they
understand the basic concepts of programming and the semantics of statements
such as conditional statements and looping statements, they can focus on learning
the C++ syntax for these statements.

Once the students have learned fundamental C++ syntax, we cover the con­
cepts of dynamic memory management by rewriting linked structures in C++.
This reinforces the basic data structure concepts while focusing on the memory
management issues. This book is not intended to provide complete coverage of
the C++ language; instead, it is designed to introduce a large subset of the C++
language so students can understand the low-level details of memory management
and write object-oriented code in C++. After covering the basics of the C++
language, we also introduce some of the more advanced data structures by providing
Python implementations and leaving the student to write them in C++. In effect ,
Python becomes an executable pseudocode for presenting key algorithms and data
structures.

Coverage Options

Since Python allows coverage of topics more quickly than other languages, a five
semester-hour CS2 course can cover most , if not all , of this book. One of the
authors covers the entire book over two courses that are three semester-hours each.
In the three semester-hour CS2 course, the first seven chapters are covered in eight
weeks and then the first three C++ chapters are covered in seven weeks, allowing
plenty of time for the students to write a significant amount of C++ code. The final
five chapters are covered in detail in the second three semester-hour course. This
allows a week of review at the beginning of the course and more time to discuss the
advanced algorithms and data structures in the last three chapters.

Depending on the amount of experience students have with object-oriented
programming, the first three chapters of the book may be covered fairly quickly or
may require more detailed coverage. We introduce the asymptotic run-time analysis
of algorithms in the first chapter so that we can analyze the running time of all

Preface xiii

the data structure implementations. We also introduce one of Python's unit-testing
frameworks early on so the students can formally test their code. After completing
the discussion of linked structures in Chapter 4, the basic concepts of stacks and
queues can be covered quickly, or the example applications can be used to continue
developing algorithm and design skills. Some CSI courses cover recursion, although
in the our experiences, most students do not fully understand recursion the first
time they study it . Since the study of tree data structures requires recursion, a
chapter on recursion (Chapter 6) is included before trees (Chapter 7) .

After the chapter on trees, the book switches to C++. Chapter 8 provides an
introduction to C++ assuming the reader knows Python. Chapter 9 covers the
details of writing and using classes in C++ . Chapters 10 and 1 1 cover the issues of
dynamic memory and writing linked structures in C++. We strongly recommend
that you cover chapters 8 through 1 1 in order. Chapter 12 covers the basics of
using and writing template code, but is not intended to provide complete coverage
of templates. Chapter 12 may be skipped as none of the remaining chapters require
an understanding of templates. The last three chapters cover some of the advanced
data structures and algorithms. These three chapters can be covered in any order
although there are a few references to topics in the other chapters.

Acknowledgments

We would like to thank Nancy Saks and Steve Bogaerts at Wittenberg University
for comments on early drafts of the C++ chapters. We also thank Franklin , Beedle
& Associates, especially Jim Leisy and Tom Sumner. We also need to thank our
editor, Stephanie Welch, who found numerous minor mistakes, helping us improve
the quality of this book.

David thanks Capital University for their support through a sabbatical , which
allowed him to start the book. David would also like to thank his students who
used early drafts and provided suggestions for improvements. The following Capital
University students deserve special recognition for their many suggestions: Kyle
Beal, Michael Herold, Jeff Huenemann, John Larison, and Brenton Wolfe. Finally,
David would like to thank his wife, Sherri, for her support and understanding during
the countless hours required to complete this book.

John extends thanks to his departmental colleagues at Wartburg College who
have always been supportive of his writing endeavors and his students who have
helped "test drive" some of the material. Most importantly, John thanks his family,
especially his wife Elizabeth Bingham; for the love , support , and understanding that
makes projects like this possible.

Chapter 1

Object ives

Abstraction and

Analysis

• To understand how programming "in the large" differs from programming "in
the small."

• To understand the motivation and use for pre- and postconditions.

• To develop design and decomposition skills.

• To understand the importance of algorithm efficiency and learn how to analyze
the running time of simple algorithms.

[II] I ntrod uct ion

Believe i t or not , a first course in computer programming covers all the tools strictly
necessary to solve any problem that can be solved with a computer. A very famous
computer scientist named Alan Turing conjectured, and it is now widely accepted,
that any problem solvable with computers requires only the basic statements that all
computer programming languages include: decision statements (e.g. , if) , looping
statements (e .g. , for and while) and the ability to store and retrieve data. Since
you already know about these, you may wonder what else there is to learn. That's
a good question.

1

2 Chapter 1 Abstraction and Ana lysis

1 1 . 1 . 1 1 Programm ing i n the Large

If you think of computer programming as a process similar to constructing a building,
right now you have the knowledge equivalent to how to use a few tools such as a
hammer, screwdriver, saw, and drill. Those might be all the tools necessary to build
a house, but that does not mean you can build yourself a habitable home, let alone
one that meets modern building codes. That 's not to say that you can't do some
useful things. You are probably capable of building benches or birdhouses, you're
just not yet ready for the challenges that come with a larger project .

In programming, just as in house construction, tackling bigger projects requires
additional knowledge, techniques, and skills. This book is intended to give you a
solid foundation of this additional knowledge that you can build on in future courses
and throughout your career. As you work your way through this material , you will
be making a transition from programming "in the small" to programming "in the
large."

Software projects can vary in difficulty in many ways. Obviously, they may
range from the very small (e.g . , a program to convert temperatures from Celsius to
Fahrenheit) to the very large (e.g. , a computer operating system) to anything in­
between. Projects also differ widely in how mission-critical the developed systems
are. A web-based diary need not be designed to the same exacting specifications as,
say, an online banking system, and neither is as critical as the software controlling
a medical life-support device.

There is no single property that makes any particular project "large" or "dif­
ficult." In general, though, there are a number of characteristics that distinguish
real-world programming from the simpler academic exercises that you have probably
seen so far. Here are some of them:

program size So far you may have written programs that comprise up to hundreds
(perhaps thousands) of lines of code. It is not uncommon for real applications
to have hundreds of thousands or millions of lines . For example, the Linux
operating system kernel contains around six million lines of code.

single programmer vs. programming team Most of the programs you have worked
on so far have probably been your own projects. However, most software today
is produced by teams of developers working together. No single programmer
has complete knowledge of every facet of the system.

working from scratch vs. existing code base You have probably written most of your
programs pretty much starting from scratch. In real-world projects, program-

1 . 1 I ntroduction 3

ming happens in the context of existing applications. Existing systems may be
extended, borrowed from, superseded, or used in concert with new software.

system lifetime When you are first learning to program, you may write many pro­
grams just for practice. Once your program has been graded, it may not ever
be looked at again. Most real software projects have extended lifetimes. While
they are in use, they continue to be refined, improved, and updated.

environment complexity A small project may be written in a single programming
language using a small set of standard libraries. Larger projects tend to use
many languages and a vast array of supporting development tools and software
libraries.

1 1 . 1 .2 1 The Road Ahead

The fundamental problem of programming in the large is managing the associated
complexity. Humans are good at keeping track of only a few things at a time. In
order to deal with a complex software system, we need ways of limiting the number
of details that have to be considered at any given moment . The process of ignoring
some details while concentrating on those that are relevant to the problem at hand
is called abstraction. Effective software development is an exercise in building
appropriate abstractions. Therefore, we will visit the idea of abstraction frequently
throughout this book.

Another important technique in coping with complexity is to reuse solutions that
have been developed before. As a programmer, you will need to learn how to use
various application programming interfaces (APIs) for the tools/libraries you will
use. An API is the collection of classes and functions that a library of code provides
and an explanation of how to use them (i.e. , what the parameters and return types
are and what they represent) . For example, you have already learned some simple
APls such as the functions provided in the Python math module and methods for
built-in data structures such as the list and dictionary. Another common example
of an API is a graphical user interface (GUI) toolkit.

Most languages provide APIs for accomplishing many common tasks. APIs will
vary from language to language and from one operating system to another. This
book cannot possibly begin to cover even a small fraction of the APIs that you
will learn and use during your career. However, by learning a few APIs and, more
importantly, by learning to develop your own APls, you will acquire the skills that
will make it easy for you to master new APIs in the future.

Just as important as being able to reuse existing code through APIs is the
ability to leverage existing knowledge of good design principles. Over the years,

4 Chapter 1 Abstraction and Analysis

computer scientists have developed algorithms for solving common problems (e.g. ,
searching and sorting) and ways of structuring data collections that are used as
the basic building blocks in most programs. In this course, you will be learning
how these algorithms and data structures work so that you can write larger, more
complicated programs that are well designed and maintainable using these well­
understood components. Studying these existing algorithms and data structures
will also help you learn how to create your own novel algorithms and data structures
for the unique problems you will face in the future.

Computer scientists have also developed techniques for analyzing and classifying
the efficiency of various algorithms and data structures so that you can predict
whether or not a program using them will solve problems in a reasonable amount
of time and within the memory constraints you have. Naturally, you will also need
to learn algorithm analysis techniques so that you can analyze the efficiency of the
algorithms you invent .

This book covers abstraction and data structures using two different program­
ming languages. Getting experience in more than one language is important for a
number of reasons. Seeing how languages differ, you can start to gain an appreciation
of how different tools available to the developer are suitable for different tasks.
Having a larger toolkit at your disposal makes it easier to solve a wider variety of
problems. However, the most important advantage is that you will also see how the
underlying ideas of abstraction, reuse, and analysis are applied in both languages.
Only by seeing different approaches can you really appreciate what are underlying
principles versus what are just details of a particular language. Rest assured, those
underlying principles will be useful no matter what languages or environments you
may have in your future.

Speaking of programming languages, at about the time this book is going to
press, a new version of Python is coming out (Python 3.0) . The new version includes
significant redesign and will not be backward compatible with programs written for
the 2.x versions of Python. The code in this book has been written in Python 2 .x
style. As much as possible, we have tried to use conventions and features that are
also compatible with Python 3.0, and the conversion to 3.0 is straightforward. To
make the code run in Python 3.0, you need to keep the following changes in mind.

• print becomes a function call . You must put parentheses around the sequence
of expressions to print .

• The input function acts like the old raw_input . If you want to evaluate
user input, you must do it yourself explicitly (eval (input ("Enter a number :

"))) .

1 .2 Functiona l Abstraction 5

• range no longer produces a list . You can still use it as before in for loops
(e.g. , for i in range (10) :) , but you need to use something like nums =
list (range (10)) to produce an explicit list .

• The single slash operator, / , always produces floating point division. Use the
double slash, / / , for integer division (this also works in Python 2 .x) .

We have provided both Python 2.x and Python 3.0 versions of all the code from
the text in the online resources, so you should be able to use this book comfortably
with any modern version of Python.

[I1J Functiona l Abstract ion

In order to tackle a large software project, i t is essential to be able to break i t into
smaller pieces. One way of dividing a problem into smaller pieces is to decompose
it into a set of cooperating functions. This is called functional (or procedural)
abstraction.

1 1 . 2 . 1 1 Design by Contract

To see how writing functions is an example of abstraction, let 's look at a simple
example. Suppose you are writing a program that needs to calculate the square root
of some value. Do you know how to do this? You may or may not actually know an
algorithm for computing square roots, but that really doesn't matter, because you
know how to use the square root function from the Python math library.

I
import math

��wer = math . sqrt (x)

You can use the sqrt function confidently, because you know what it does, even
though you may not know exactly how it accomplishes that task. Thus, you are
focusing on some aspects of the sqrt function (the what) while ignoring certain
details (the how) . That's abstraction.

This separation of concerns between what a component does and how it ac­
complishes its task is a particularly powerful form of abstraction. If we think of a
function in terms of providing a service, then the programs that use the function
are called clients of the service, and the code that actually performs the function is
said to implement the service. A programmer working on the client needs to know

6 Chapter 1 Abstraction and Ana lysis

only what the function does. He or she does not need to know any of the details of
how the function works. To the client , the function is like a magical black box that
carries out a needed operation. Similarly, the implementer of the function does not
need to worry about how the function might be used. He or she is free to concentrate
only on the details of how the function accomplishes its task, ignoring the larger
picture of where and why the function is actually called.

In order to accomplish this clean separation, the client and implementer must
have a firm agreement about what the function is to accomplish. That is , they
must have a common understanding of the interface between the client code and
the implementation. The interface forms a sort of abstraction barrier that separates
the two views of the function. Figure 1 . 1 illustrates the situation for the Python
string split method (or the equivalent split function in the string module) . The
diagram shows that the function/method accepts one required parameter that is a
string and one optional parameter that is a string and returns a list of strings. The
client using the split function/method does not need to be concerned with how the
code works (i .e . , what 's inside the box) , just how to use it . What we need is a
careful description of what a function will do, without having to describe how the
function will accomplish the task. Such a description is called a specification.

split function/
method

optional separator string
(defaults to any whitespace)

list of strings

Figure 1 . 1 : Split function as black box with interface

Obviously, one important part of a specification is describing how the function
is called. That is, we need to know the name of the function, what parameters
are required, and what if anything the function will return. This information is
sometimes called the signature of a function. Beyond the signature, a specification
also requires a precise description of what the function accomplishes. We need
to know how the result of calling the function relates to the parameters that are
provided. Sometimes, this is done rather informally. For example, suppose you are
writing a math library function for square root. Consider this specification of the
function:

1.2 Functiona l Abstraction 7

def sqrt (x) :
" " "Computes the square root of x" " "

This doesn't really do the job. The problem with such informal descriptions
is that they tend to be incomplete and ambiguous. Remember, both the client
and the implementer (even if they're one and the same person) should be able to
fulfill their roles confidently based only on the specification. That's what makes the
abstraction process so useful . What if the implementation computes the square root
of x, but does not return the result? Technically, the specification is met, but the
function will not be useful to the client . Is it OK if sqrt (16) returns -4? What if
the implementation works only for floating-point numbers, but the client calls the
function with an integer parameter? Whose fault is it then if the program crashes?
What happens if the client calls this function with a negative number? Perhaps
it returns a complex number as a result , or perhaps it crashes. What happens if
the client calls this function with a string parameter? The bottom line is that the
simple, informal description just does not tell us what to expect .

Now this may sound like nitpicking, since everyone generally "understands" what
the square root function should do. If we had any questions, we could just test
our assumptions by either looking at the code that implements the function or
by actually trying it out (e.g. , try computing sqrt (- 1) and see what happens) .
But having to do either of these things breaks the abstraction barrier between the
client and the implementation. Forcing the client coder to understand the actual
implementation means that he or she has to wrestle with all the details of that code,
thus losing the benefit of abstraction. On the other hand, if the client programmer
simply relies on what the code actually does (by trying it out) , he or she risks
making assumptions that may not be shared by the implementer. Suppose the
implementer discovers a better way of computing square roots and changes the
implementation. Now the client 's assumptions about certain "fringe" behavior may
be incorrect . If we keep the abstraction barrier firmly in place, both the client code
and the implementation can change radically; the abstraction barrier ensures that
the program will continue to function properly. This desirable property is called
implementation independence.

Hopefully you can see how precise specification of components is important when
programming in the large. In most situations, careful specification is an absolute
necessity; real disaster can loom when specifications are not clearly spelled out and
adhered to. In one notorious example, NASA's 1999 Mars Climate Orbiter mission
crashed at a loss of $125 million due to a mismatch in assumptions: a module was
being given information in imperial units, but was expecting them in metric units.

8 Chapter 1 Abstraction and Ana lysis

Clearly, we need something better than an informal comment to have a good
specification. Function specifications are often written in terms of preconditions
and postconditions. A precondition of a function is a statement of what is assumed
to be true about the state of the computation at the time the function is called.
A postcondition is a statement about what is true after the function has finished.
Here is a sample specification of the sqrt function using pre- and postconditions:

def sqrt (x) :
" " "Computes the square root of x .

pre : x i s an int or a float and x >= 0
post : returns the non-negative square root of x" " "

The job of the precondition is to state any assumptions that the implementation
makes, especially those about the function parameters. In doing so, it describes the
parameters using their formal names (x in this case) . The postcondition describes
whatever the code accomplishes as a function of its input parameters. Together, the
pre- and post conditions describe the function as a sort of contract between the client
and the implementation. If the client guarantees that the precondition is met when
the function is called, then the implementation guarantees the postcondition will
hold when the function terminates. For this reason, using pre- and postconditions
to specify the modules of a system is sometimes called design by contract.

Pre- and post conditions are specific examples of a particular kind of documen­
tation known as program assertions. An assertion is a statement about the state
of the computation that is true at a specific point in the program. A precondition
must be true just before a function executes, and the postcondition must be true
immediately after. We will see later that there are other places in a program where
assertions can also be extremely valuable for documentation.

If you are reading very carefully, you might be a bit uneasy about the postcondi­
tion from the sqrt example above. That postcondition describes what the function is
supposed to do. Technically speaking, an assertion should not state what a function
does, but rather what is now true at a given point in a program. It would be
more correct to state the postcondition as something like post : RETVAL == y'x,
where RETVAL is a name used to indicate the value that was just returned by the
function. Despite being less technically accurate, most programmers tend to use the
less formal style of postcondition presented in our example. Given that the informal
style is more popular and no less informative, we'll continue to use the "returns
this , that , and the other thing" form of postcondition. Those who are sticklers for
honest-to-goodness assertions can, no doubt , do the necessary translation.

1 .2 Functiona l Abstraction 9

This brings up an important point about pre- and post conditions in particular,
and specifications in general. The whole point of a specification is that it provides a
succinct and precise description of a function or other component . If the specification
is ambiguous or longer or more complicated than the actual implementation code,
then little has been gained. Mathematical notations tend to be succinct and exact,
so they are often useful in specifications. In fact , some software engineering methods
employ fully formal mathematical notations for specifying all system components.
The use of these so-called formal methods adds precision to the development process
by allowing properties of programs to be stated and proved mathematically. In the
best case, one might actually be able to prove the correctness of a program, that
is , that the code of a program faithfully implements its specification. Using such
methods requires substantial mathematical prowess and has not been widely adopted
in industry. For now, we'll stick with somewhat less formal specifications but use
well-known mathematical and programming notations where they seem appropriate
and helpful.

Another important consideration is where to place specifications in code. In
Python, a developer has two options for placing comments into code: regular
comments (indicated with a leading #) and docstrings (string expressions at the
top of a module or immediately following a function or class heading) . Docstrings
are carried along with the objects to which they are attached and are inspectable at
run-time. Docstrings are also used by the internal Python help system and by the
PyDoc documentation utility. This makes docstrings a particularly good medium
for specifications, since API documentation can then be created automatically using
PyDoc. As a rule of thumb, docstrings should contain information that is of use to
client programmers, while internal comments should be used for information that is
intended only for the implementers.

1 1 . 2 . 2 1 Testi ng Precond itions

The basic idea of design by contract requires that if a function's precondition is met
when it is called, then the postcondition must be true at the end of the function. If
the precondition is not met , then all bets are off. This raises an interesting question.
What should the function do when the precondition is not met? From the standpoint
of the specification, it does not matter what the function does in this case, it is "off
the hook," so to speak. If you are the implementer, you might be tempted to simply
ignore any precondition violations. Sometimes, this means executing the function
body will cause the program to immediately crash; other times the code might run,
but produce nonsensical results. Neither of these outcomes seems particularly good.

10 Chapter 1 Abstraction and Ana lysis

A better approach is to adopt defensive programming practices. An unmet
precondition indicates a mistake in the program. Rather than silently ignoring such
a situation, you can detect the mistake and deal with it. But how exactly should
the function do this? One idea might be to have it print an error message. The
sqrt function might have some code like this:

def sqrt (x) :

if x < 0 :
print ' Error : can ' t take the square root of a negative '

else :

The problem with printing an error message like this is that the calling program
has no way of knowing that something has gone wrong. The output might appear, for
example, in the middle of a generated report . Furthermore, the actual error message
might go unnoticed. In fact , if this is a general-purpose library, it 's very possible
that the sqrt function is called within a GUI program, and the error message will
not even appear anywhere at all .

Most of the time, it is simply not appropriate for a function that implements a
service to print out messages (unless printing something is part of the specification
of the method) . It would be much better if the function could somehow signal that
an error has occurred and then let the client program decide what to do about the
problem. For some programs, the appropriate response might be to terminate the
program and print an error message; in other cases, the program might be able to
recover from the error. The point is that such a decision can be made only by the
client .

The function could signal an error in a number of ways. Sometimes, returning
an out-of-range result is used as a signal. Here's an example:

I
def �:�t (xl ,

if x < 0 :
return -1

Since the specification of sqrt clearly implies that the return value cannot be
negative, the value -1 can be used to indicate an error. Client code can check the
result to see if it is OK. Another technique that is sometimes used is to have a global (accessible to all parts of the program) variable that records errors. The client code
checks the value of this variable after each operation to see if there was an error.

1 . 2 Functional Abstraction 11

Of course, the problem with this ad hoc approach to error detection is that a
client program can become riddled with decision structures that constantly check to
see whether an error has occurred. The logic of the code starts looking something
like this:

x = someOperation ()
i f x i s not OK :

fix x
y = anotherOperation (x)
if y is not OK :

abort
z = yetAnotherOperation(y)
if z is not OK :

z = SOME_DEfAULT_VALUE

The continual error checking with each operation obscures the intent of the original
algorithm.

Most modern programming languages now include exception handling mecha­
nisms that provide an elegant alternative for propagating error information in a
program. The basic idea behind exception handling is that program errors don't
directly lead to a "crash," but rather they cause the program to transfer control to
a special section called an exception handler. What makes this particularly useful
is that the client does not have to explicitly check whether an error has occurred.
The client just needs to say, in effect , "here's the code I want to execute should any
errors come up." The run-time system of the language then makes sure that , should
an error occur, the appropriate exception handler is called.

In Python, run-time errors generate exception objects. A program can include a
try statement to catch and deal with these errors. For example, taking the square
root of a negative number causes Python to generate a ValueError, which is a
subclass of Python's general Exception class. If this exception is not handled by
the client , it results in program termination. Here is what happens interactively:

» > sqrt (-1)
Traceback (most recent call last) :

file "<stdin> " , line 1 , in ?
ValueError : math domain error
» >

Alternatively, the program could "catch" the exception with a try statement:

12

» > try :
sqrt (-l)

except ValueError :

Chapter 1 Abstraction and Ana lysis

print "Doops , sorry . "

Doops , sorry .
» >

The statement(s) indented under try are executed, and if an error occurs, Python
sees whether the error matches the type listed in any except clauses. The first
matching except block is executed. If no except matches, then the program halts
with an error message.

To take advantage of exception handling for testing preconditions, we just need
to test the precondition in a decision and then generate an appropriate exception
object . This is called raising an exception and is accomplished by the Python raise
statement . The raise statement is very simple: raise <expr> where <expr> is an
expression that produces an exception object containing information about what
went wrong. When the raise statement executes, it causes the Python interpreter
to interrupt the current operation and transfer control to an exception handler. If
no suitable handler is found, the program will terminate.

The sqrt function in the Python library checks to make sure that its parameter
is non-negative and also that the parameter has the correct type (either int or
float) . The code for sqrt could implement these checks as follows:

def sqrt (x) :
if x < 0 :

raise ValueError (' math domain error ')
if type (x) not in (type (l) , type (11) , type (1 . 0)) :

raise TypeError (' number expected ')

compute square root here

Notice that there are no elses required on these conditions. When a raise executes,
it effectively terminates the function, so the "compute square root" portion will only
execute if the preconditions are met.

Oftentimes, it is not really important what specific exception is raised when a
precondition violation is detected. The important thing is that the error is diagnosed
as early as possible . Python provides a statement for erubedding assertions directly
into code. The statement is called assert . It takes a Boolean expression and raises
an AssertionError exception if the expression does not evaluate to True . Using
assert makes it particularly easy to enforce preconditions.

1 . 2 Functiona l Abstraction 13

def sqrt (x) :
assert x >= 0 and type (x) in (type (1) , type (11) , type (1 . 0))

As you can see, the assert statement is a very handy way of inserting �ssertions
directly into your code. This effectively turns the documentation of preconditions
(and other assertions) into extra testing that helps to ensure that programs behave
correctly, that is, according to specifications.

One potential drawback of this sort of defensive programming is that it adds
extra overhead to the execution of the program. A few CPU cycles will be consumed
checking the preconditions each time a function is called. However, given the
ever-increasing speed of modern processors and the potential hazards of incorrect
programs, that is a price that is usually well worth paying. That said, one additional
benefit of the assert statement is that it is possible to turn off the checking of
assertions, if desired. Executing Python with a -0 switch on the command line
causes the interpreter to skip testing of assertions. That means it is possible to have
assertions on during program testing but turn them off once the system is judged
to be working and placed into production.

Of course, checking assertions during testing and then turning them off in the
production system is akin to practising a tightrope act 10 feet above the ground with
a safety net in place and then performing the actual stunt 100 feet off the ground on
a windy day�without the net. As important as it is to catch errors during testing,
it's even more important to catch them when the system is in use. Our advice is to
use assertions liberally and leave the checking turned on.

1 1 . 2 . 3 1 Top-Down Design

One popular technique for designing programs that you probably already know
about is top-down design. Top-down design is essentially the direct application of
functional abstraction to decompose a large problem into smaller, more manageable
components. As an example, suppose you are developing a program to help your
instructor with grading. Your instructor wants a program that takes a set of
exam scores as input and prints out a report that summarizes student performance.
Specifically, the program should report the following statistics about the data:

high score This is the largest number in the data set .

low score This is the smallest number in the data set .

14 Chapter 1 Abstraction and Ana lysis

mean This is the "average" score in the data set . It is often denoted x and calculated
using this formula:

_ L Xi
X= --

n

That is , we sum up all of the scores (Xi denotes the ith score) and divide by
the number of scores (n) .

standard deviation This is a measure of how spread out the scores are. The standard
deviation, s, is given by the following formula:

s=

In this formula x is the mean, Xi represents the ith data value, and n is the
number of data values. The formula looks complicated, but it is not hard
to compute. The expression (x - Xi)2 is the square of the "deviation" of an
individual item from the mean. The numerator of the fraction is the sum of
the deviations (squared) across all the data values.

As a starting point for this program, you might develop a simple algorithm such
as this .

Get scores from the user
Calculate the minimum score
Calculate the maximum score
Calculate the average (mean) score
Calculate the standard deviation

Suppose you are working with a friend to develop this program. You could divide
this algorithm up into parts and each work on various pieces of the program. Before
going off and working on the pieces, however, you will need a more complete design
to ensure that the pieces that each of you develops will fit together to solve the
problem. Using top-down design, each line of the algorithm can be written as a
separate function. The design will just consist of the specification for each of these
functions.

One obvious approach is to store the exam scores in a list that can be passed as
a parameter to various functions. Using this approach, here is a sample design:

1 . 2 Functiona l Abstraction

stats . py
def get_scores () :

" " "Get scores interactively from the user

post : returns a list of numbers obtained from user" " "

def min_value (nums) :
" " " find the minimum

pre : nums is a list of numbers and len(nums) > 0
post : returns smallest number in nums " " "

def max_value (nums) :
" " " find the maximum

pre : nums is a list of numbers and len(nums) > 0
post : returns largest number in nums " " "

def average (nums) :
" " " calculate the mean

pre : nums is a list of numbers and len (nums) > 0
post : returns the mean (a float) of the values in nums " " "

def std_deviation (nums) :
" " " calculate the standard deviation

pre : nums is a list of numbers and len(nums) > 1
post : returns the standard deviation (a float) of the values

in nums " " "

15

With the specification of these functions in hand, you and your friend should
easily be able to divvy up the functions and complete the program in no time.
Let 's implement one of the functions just to see how it might look. Here's an
implementation of std_deviation.

def std_deviation(nums) :

xbar = average (nums)
sum = 0 . 0
for num in nums :

sum += (xbar - num) **2
return math . sqrt (sum / (len(nums) - 1))

Notice how this code relies on the average function. Since we have that function
specified, we can go ahead and use it here with confidence, thus avoiding duplication

16 Chapter 1 Abstraction and Ana lysis

of effort . We have also used the "shorthand" += operator, which you may not have
seen before. This is a convenient way of accumulating a sum. Writing x += y
produces the same result as writing x = x + y.

The rest of the program is left for you to complete. As you can see, top-down
design and functional specification go hand in hand. As necessary functionality is
identified, a specification formalizes the design decisions so that each part can be
worked on in isolation. You should have no trouble finishing up this program.

1 1 .2 .4 1 Documenting S ide Effects

In order for specifications to be effective, they must spell out the expectations of
both the client and the implementation of a service. Any effect of a service that is
visible to the client should be described in the postcondition. For example, suppose
that the std_deviation function had been implemented like this :

def std_deviation (nums) :
This is bad code . Don ' t use it .
xbar = average (nums)
n = len(nums)
sum = 0 . 0
while nums ! = [] :

num = nums . pop ()
sum + = (xbar - num) **2

return math . sqrt (sum / (n - 1))

This version uses the pop () method of Python lists. The call to nums . pop ()
returns the last number in the list and also deletes that item from the list. The
loop continues until all the items in the list have been processed. This version of
std_deviation returns the correct value, so it would seem to meet the contract
specified by the pre- and postconditions. However, the list object nums passed as
a parameter is mutable, and the changes to the list will be visible to the client .
The user of this code is likely to be quite surprised when they find out that calling
std_deviation (examScores) causes all the values in examScores to be deleted!

These sorts of interactions between function calls and other parts of a program
are called side effects. In this case, the deletion of items in examScores is a side
effect of calling the std_deviation function. Generally, it 's a good idea to avoid
side effects in functions, but a strict prohibition is too strong. Some functions are
designed to have side effects. The pop method of the list class is a good example.
It's used in the case where one wants to get a value and also, as a side effect , remove
the value from the list . What is crucial is that any side effects of a function should

1 .3 Algorithm Ana lysis 17

be indicated in its postcondition. Since the postcondition for std_deviation did
not say anything about nums being modified, an implementation that does this is
implicitly breaking the contract . The only visible effects of a function should be
those that are described in its postcondition.

By the way, printing something or placing information in a file are also examples
of side effects . When we said above that functions should generally not print any­
thing unless that is part of their stated functionality, we were really just identifying
one special case of (potentially) undocumented side effects.

[1]J Algorith m Ana lysis

When we start dealing with programs that contain collections of data, we often need
to know more about a function than just its pre- and postconditions. Dealing with
a list of 10 or even 100 exam scores is no problem, but a list of customers for an
online business might contain tens or hundreds of thousands of items. A programmer
working on problems in biology might have to deal with a DNA sequence containing
Inillions or even billions of nucleotides. Applications that search and index web
pages have to deal with collections of a similar magnitude. When collection sizes
get large, the efficiency of an algorithm can be just as critical as its correctness. An
algorithm that gives a correct answer but requires 10 years of computing time is not
likely to be very useful.

Algorithm analysis allows us to characterize algorithms according to how much
time and memory they require to accomplish a task. In this section, we'll take a
first look at techniques of algorithm analysis in the context of searching a collection.

1 1 . 3 . 1 1 Li near Search

Searching is the process of looking for a particular value in a collection. For example,
a program that maintains the membership list for a club might need to look up the
information about a particular member. This involves some form of a search process.
It is a good problem for us to examine because there are numerous algorithms that
can be used, and they differ in their relative efficiency.

Boiling the problem down to its simplest essence, we'll consider the problem of
finding a particular number in a list . The same principles we use here will apply to
more complex searching problems such as searching through a customer list to find
those who live in Iowa. The specification for our simple search problem looks like
this :

18 Chapter 1 Abstraction a nd Ana lysis

def search (items , target) :
II lI lI Locate target in items

pre : items is a list of numbers
post : returns non-negative x where items [x] == target , if target in

items ; returns - 1 , otherwise ll ll il

Here are a couple interactive examples that illustrate its behavior:

» > search ([3 , 1 , 4 , 2 , 5] , 4)
2
» > search([3 , 1 , 4 , 2 , 5] , 7)
-1

In the first example, the function returns the index where 4 appears in the list . In
the second example, the return value -1 indicates that 7 is not in the list .

Using the built-in Python list methods, the search function is easily imple­
mented:

search1 . py
def search(items , target) :

try :
return items . index (target)

except ValueError :
return -1

The index method returns the first position in the list where a target value occurs.
If target is not in the list , index raises a ValueError exception. In that case, we
catch the exception and return - 1 . Clearly, this function meets the specification; the
interesting question for us is how efficient is this method?

One way to determine the efficiency of an algorithm is to do empirical testing.
We can simply code the algorithm and run it on different data sets to see how long it
takes. A simple method for timing code in Python is to use the time module's time
function, which returns the number of seconds that have passed since January 1 ,
1970. We can just call that method before and after our code executes and print the
difference between the times. If we placed our search function in a module named
search1 . py, we could test it directly like this :

time_search . py
import time
from search1 import search

1 .3 Algorithm Ana lysis

items = range (1000000) # create a big list

start = time . time ()
search(items , 999999) # look for the last item
stop = time . t ime ()
print stop - start

start = time . time ()
search (items , 499999) # look for the middle item
stop = time . t ime ()
print stop - start

start = time . time ()
search(items , 10) # look for an item near the front
stop = time . t ime ()
print stop - start

19

Try this code on your computer and note the time to search for the three
numbers. What does that tell you about how the index method works? By the way,
the Python library contains a module called timei t that provides a more accurate
and sophisticated way of timing code. If you are doing much empirical testing, it 's
worth checking out this module.

Let 's try our hand at developing our own search algorithm using a simple "be the
computer" strategy. Suppose that I give you a page full of numbers in no particular
order and ask whether the number 13 is in the list . How will you solve this problem?
If you are like most people, you simply scan down the list comparing each value to
13. When you see 13 in the list , you quit and tell me that you found it . If you get
to the very end of the list without seeing 13 , then you tell me it 's not there.

This strategy is called a linear search. You are searching through the list of
items one by one until the target value is found. This algorithm translates directly
into simple code.

search2 . py
def search(items , target) :

for i in range (len(items)) :
if items [i] == target :

return i
return - 1

20 Chapter 1 Abstraction and Ana lysis

You can see here that we have a simple f or loop to go through the valid indexes
for the list (range (len (items))) . We test the item at each position to see if it is
the target . If the target is found, the loop terminates by immediately returning the
index of its position. If this loop goes all the way through without finding the item,
the function returns -1 .

One problem with writing the function this way is that the range expression
creates a list of indexes that is the same size as the list being searched. Since an
int generally requires four bytes (32 bits) of storage space, the index list in our test
code would require four megabytes of memory for a list of one million numbers. In
addition to the memory usage, there would also be considerable time wasted creating
this second large list . Python has an alternative form of the range function called
xrange that could be used instead. An xrange is used only for iteration, it does
not actually create a list . However, the use of xrange is discouraged in new Python
code. 1

If your version of Python is 2 .3 or newer, you can use the enumerate function.
This elegant alternative allows you to iterate through a list and, on each iteration,
you are handed the next index along with the next item. Here's how the search
looks using enumerate .

search3 . py
def search(items , target) :

for i , item in enumerate (items) :
if item == target :

return i
return - 1

Another approach would be to avoid the whole range/xrange/enumerate issue
by using a while loop instead.

search4 . py
def search(items , target) :

i = 0
yhile i < len (items) :

if items [i] == target :
return i

i += 1
return -1

1 In Python 3 .0 , the standard range expression behaves like xrange and does not actually create
a list.

1 . 3 Algorithm Ana lysis 21

Notice that all of these search functions implement the same algorithm, namely
linear search. How efficient is this algorithm? To get an idea, you might try
experimenting with it. Try timing the search for the three values as you did using
the list index method. The only code you need to change is the import of the actual
search function, since the parameters and return values are the same. Because we
wrote to a specification, the client code does not need to change, even when different
implementations are mixed and matched. This is implementation independence at
work. Pretty cool, huh?

1 1 . 3 .2 1 Binary Search

The linear search algorithm was not hard to develop, and it will work very nicely
for modest-sized lists. For an unordered list , this algorithm is as good as any. The
Python in and index operations both implement linear searching algorithms.

If we have a very large collection of data, we might want to organize it in some
way so that we don't have to look at every single item to determine where, or if, a
particular value appears in the list . Suppose that the list is stored in sorted order
(lowest to highest) . As soon as we encounter a value that is greater than the target
value, we can quit the linear search without looking at the rest of the list . On
average, that saves us about half of the work. But if the list is sorted, we can do
even better than this.

When a list is ordered, there is a much better searching strategy, one that you
probably already know. Have you ever played the number guessing game? I pick a
number between 1 and 100, and you try to guess what it is. Each time you guess, I
will tell you if your guess is correct , too high, or too low. What is your strategy?

If you play this game with a very young child, they might well adopt a strategy
of simply guessing numbers at random. An older child might employ a systematic
approach corresponding to linear search, guessing 1 , 2 , 3 , 4, and so on until the
lnystery value is found.

Of course, virtually any adult will first guess 50. If told that the number is
higher, then the range of possible values is 50-100. The next logical guess is 75.
Each time we guess the middle of the remaining numbers to try to narrow down the
possible range. This strategy is called a binary search Binary means two, and at
each step, we are dividing the remaining numbers into two parts.

We can employ a binary search strategy to look through a sorted list . The basic
idea is that we use two variables to keep track of the endpoints of the range in the
list where the item could be. Initially, the target could be anywhere in the list , so
we start with variables low and high set to the first and last positions of the list ,
respectively.

22 Chapter 1 Abstraction a nd Ana lysis

The heart of the algorithm is a loop that looks at the item in the middle of the
remaining range to compare it to x. If x is smaller than the middle item, then we
move high, so that the search is narrowed to the lower half. If x is larger, then we
move low, and the search is narrowed to the upper half. The loop terminates when
x is found or there are no longer any more places to look (i .e . , low > high) . The
code below implements a binary search using our same search API.

bsearch . py
def search (items , target) :

low = 0
high = len(items) - 1
while low <= high :

mid = (low + high)
item = items [mid]
if target == item :

return mid
elif target < item :

high = mid - 1
else :

low = mid + 1
return - 1

There is still a range to search
II 2 # position of middle item

Found it ! Return the index

x is in lower half of range
move top marker down
x is in upper half
move bottom marker up
no range left to search ,
x is not there

This algorithm is quite a bit more sophisticated than the simple linear search.
You might want to trace through a couple of sample searches to convince yourself
that it actually works.

1 1 . 3 . 3 1 I nforma l Algorithm Com parison

So far, we have developed two very different algorithms for our simple searching
problem. Which one is better? Well, that depends on what exactly we mean by
better. The linear search algorithm is much easier to understand and implement.
On the other hand, we expect that the binary search is more efficient, because it
doesn't have to look at every value in the list . Intuitively, then, we might expect the
linear search to be a better choice for small lists and binary search a better choice
for larger lists. How could we actually confirm such intuitions?

One approach would be to do an empirical test . We could simply code both
algorithms and try them out on various-sized lists to see how long the search takes.
These algorithnls are both quite short, so it would not be difficult to run a few
experiments. When this test was done on one of our computers (a somewhat dated
laptop) , linear search was faster for lists of length 10 or less , and there was not much
noticeable difference in the range of length 10-1 ,000. After that , binary search was

1 . 3 Algorithm Ana lysis 23

a clear winner. For a list of a million elements, linear search averaged 2 .5 seconds
to find a random value, whereas binary search averaged only 0.0003 seconds.

The empirical analysis has confirmed our intuition, but these are results from
one particular machine under specific circumstances (amount of memory, processor
speed, current load, etc.) . How can we be sure that the results will always be the
same?

Another approach is to analyze our algorithms abstractly to see how efficient they
are. Other factors being equal, we expect the algorithm with the fewest number of
"steps" to be the more efficient. But how do we count the number of steps? For
example, the number of times that either algorithm goes through its main loop will
depend on the particular inputs. We have already guessed that the advantage of
binary search increases as the size of the list increases.

Computer scientists attack these problems by analyzing the number of steps
that an algorithm will take relative to the size or difficulty of the specific problem
instance being solved. For searching, the difficulty is determined by the size of the
collection. Obviously, it takes more steps to find a number in a collection of a million
than it does in a collection of ten. The pertinent question is how many steps are
needed to find a value in a list of size n. We are particularly interested in what
happens as n gets very large.

Let 's consider the linear search first . If we have a list of 10 items, the most work
our algorithm might have to do is to look at each item in turn. The loop will iterate
at most 10 times. Suppose the list is twice as big. Then we might have to look at
twice as many items. If the list is three times as large, it will take three times as
long, etc . In general, the amount of time required is linearly related to the size of
the list n. This is what computer scientists call a linear time algorithm. Now you
really know why it's called a linear search.

What about the binary search? Let 's start by considering a concrete example.
Suppose the list contains 16 items. Each time through the loop, the remaining range
is cut in half. After one pass, there are eight items left to consider. The next time
through there will be four, then two, and finally one. How many times will the loop
execute? It depends on how many times we can halve the range before running out
of data. This table might help you to sort things out:

List Size Halvings
1 0
2 1
4 2
8 3
16 4

24 Chapter 1 Abstraction and Ana lysis

Can you see the pattern here? Each extra iteration of the loop allows us to
search a list that is twice as large. If the binary search loops i times, it can find a
single value in a list of size 2i . Each time through the loop, it looks at one value (the
middle) in the list . To see how many items are examined in a list of size n, we need
to solve this relationship: n = 2i for i . In this formula, i is just an exponent with a
base of 2. Using the appropriate logarithm gives us this relationship: i = log2 n. If
you are not entirely comfortable with logarithms, just remember that this value is
the number of times that a collection of size n can be cut in half.

OK, so what does this bit of math tell us? Binary search is an example of a
log time algorithm. The amount of time it takes to solve a given problem grows as
the log of the problem size. In the case of binary search, each additional iteration
doubles the size of the problem that we can solve.

You might not appreciate just how efficient binary search really is. Let 's try to
put it in perspective. Suppose you have a New York City phone book with, say, 12
million names listed in alphabetical order. You walk up to a typical New Yorker
on the street and make the following proposition (assuming their number is listed) :
"I'm going to try guessing your name. Each time I guess a name, you tell me if your
name comes alphabetically before or after the name I guess." How many guesses
will you need?

Our analysis above shows the answer to this question is l092 12,000,000. If you
don't have a calculator handy, here is a quick way to estimate the result. 210 = 1 ,024
or roughly 1 ,000, and 1 ,000 x 1 ,000 = 1 ,000,000. That means that 210 x 210 =
220 � 1 ,000,000. 220 is approximately one million. So, searching a million items
requires only 20 guesses. Continuing on, we need 21 guesses for two million, 22 for
four million, 23 for eight million, and 24 guesses to search among sixteen million
names. We can figure out the name of a total stranger in New York City using only
24 guesses! By comparison, a linear search would require (on average) 6 million
guesses. Binary search is a phenomenally good algorithm!

We said earlier that Python uses a linear search algorithm to implement its built­
in searching methods. If a binary search is so much better, why doesn't Python use
it? The reason is that the binary search is less general; in order to work, the list must
be in order. If you want to use binary search on an unordered list , the first thing
you have to do is put it in order or sort it . This is another well-studied problem in
computer science, and one that we will return to later on.

1 1 . 3 .4 1 Forma l Ana lysis

In the comparison between linear and binary searches we characterized both algo­
rithms in terms of the number of abstract steps required to solve a problem of a

1 . 3 Algorithm Ana lysis 25

certain size . We determined that linear search requires a number of steps directly
proportional to the size of the list , whereas binary search requires a number of
steps proportional to the (base 2) log of the list size . The nice thing about this
characterization is that it tells us something about these algorithms independent
of any particular implementation. We expect binary search to do better on large
problems because it is an inherently more efficient algorithm.

When doing this kind of analysis, we are not generally concerned with the exact
number of instructions an algorithm requires to solve a specific problem. This is
extremely difficult to determine, since it will vary depending on the actual machine
language of the computer, the language we are using to implement the algorithm,
and in some cases, as we saw with the searching algorithms, the specifics of the
particular input . Instead, we abstract away many issues that affect the exact running
time of an implementation of an algorithm; in fact , we can ignore all the details
that do not affect the relative performance of an algorithm on inputs of various
sizes . Always keep in mind that our goal is to determine how the algorithm will
perform on large inputs. After all , computers are fast ; for small problems, efficiency
is unlikely to be an issue.

To summarize, in performing algorithm analysis, we can generally make the
following simplifications .

• We ignore the differences caused by using different languages and different
machines to implement the algorithm .

• We ignore the differences in execution speed of various operations (i .e . , we do
not care that a floating-point division calculation may take longer than an
integer division) ; we assume all "basic operations" (assignment , comparison,
most mathematical operations, etc .) take the same amount of time.

• We assume all constant time operations that are independent of the input size
are equivalent (Le. , we do not care if it takes 10 operations, 100 operations,
or even 1 ,000 operations as long as those operations will solve the problem no
matter what the input size is) .

Obviously, each of these simplifications could make a significant difference in
comparing the actual running time of two algorithms, or even two implementations
of the same algorithm, but the result still shows us what to expect as a function of
the input size. Hence, the results do tell us what kind of relative performance to
expect for larger problems. Computer scientists use a notation known both as big
o or asymptotic notation to specify the efficiency of an algorithm based on these
simplifications.

26 Chapter 1 Abstraction and Ana lysis

Before looking at the details of big 0 notation, let 's look at a couple simple
mathematical functions to gain some intuition. Consider the function f (n) = 3n2 +
lOOn + 50. Suppose you are trying to estimate the value of this function as n grows
very large. You would be justified in only considering the first term. Although for
smaller values of n the lOOn term dominates, when n gets large, the contributions
of the second and third term are insignificant . For example at n = 1 ,000,000 using
only the first term gives a result that is within 0.01 percent of the true value of the
function.

To see why the first term dominates as n increases, you just have to look at the
"shape" of the graphs for the first and second terms (see Figure 1 . 2) . Even though
x is larger than x2 over the interval from 0 to 1 , x2 overtakes it for n > 1 . Even
when we multiply x by some constant, say 100, that would change the slope of the
line, since the function x2 curves upward, it will still overtake the line for 100 * x
(at x = 100) . No matter what constants we multiply these functions by, the shape
of the two graphs dictates that for sufficiently large values, the curve for x2 will
eventually dominate.

x'x

o�-=�--�------�------�------�------�----�
o 0.5 1 .5 2.5

Figure 1 .2 : x2 is less than x between 0 and 1 , but for larger values, x2 is greater

The idea of a dominating function is formalized in big 0 notation. For example,
when an algorithm is said to be O(n2) , it means the number of steps for the algorithm
with input size n is < cn2 for all n > no for some constants c and no . To prove
an algorithm is O(n2) we would have to find those two constants. In most cases,

1 .3 Algorithm Ana lysis 27

it is pretty obvious (as in the examples above) . What constants could we pick for
the function 3n2 + lOOn + 50? We do not need to care about having a tight bound.
We could pick 1 ,000,000 for both constants since 3n2 + lOOn + 50 < 1 ,000,000n2 for
every n > 1 ,000,000. If an algorithm is 2n3 , can we find two constants to prove it is
O(n3)? In practice we generally do not worry about finding the constants . In most
cases, it is fairly easy to convince ourselves of the relative growth rate. It should be
clear that for any polynomial, it is the largest degree that matters so any polynomial
of degree x is O(nX) .

Now that you've seen the mathematical details, let 's look at some short examples
and determine the running time.

n = input (' enter n : ')
for i in range (n) :

print i

This code fragment is O(n) . The input size, n, determines how many operations
occur. The print statement will be executed n times. The input statement will be
executed once. If we think about how the f or statement works, we realize that the
range statement generates a list of n items that itself takes at least n steps. Each
time through the for statement , i is assigned to the next item in the list , so we can
easily convince ourselves that there are around 2n + 1 basic steps to execute this
code. This should be enough to convince you that the algorithm is O (n) . We still
have ignored the fact that the Python code needs to determine when the end of the
list is reached, but in practice we normally do not need to go into all the details we
did to convince ourselves of the running time of short code fragments.

Consider this short fragment . Can you determine its running time?

n = input (' enter n : ')
for i in range (100) :

print i

With a quick look, you might be tempted to say this code is also O (n) since you see
a for loop. In this case, however, the for loops executes 100 times no matter what
the input is. This is essentially no different than 100 print statements, and that is
100 constant-time operations. This code fragment runs in the same constant time
regardless of the input, and we refer to all constant operations as simply 0 (1) .

Here's an example with two loops in it:

28

n = input (' enter n : ')
for i in range (n) :

print i
for j in range (n) :

print j

Chapter 1 Abstraction and Ana lysis

These two loops execute sequentially, one right after the other. So the total running
time is O(n + n) , which is still O(n) . If you find that surprising, just think of it
as O(2n) and remember that constant multipliers do not affect the big 0 notation.
In general when adding sequential sections of an algorithm together, the big 0 for
the overall algorithm is the maximum of the big Os of the individual parts. That
means you just need to find the part of the algorithm that executes the most steps
and analyze it .

Let 's try another example with two loops.

n = input (' enter n : ')
for i in range (n) :

for j in range (n) :
print i , j

In this fragment , the loops are nested. Notice that the second loop executes n times
for each iteration of the first loop. This means the print statement executes a
total of n2 times, and so the code has O(n2) running time. Frequently, when you
have nested loops, the running time is the product of the number of times each loop
executes.

N ow consider this example:

n = input (' enter n : ')
total = 0
for i in range (n) :

for j in range (10) :
print i , j
total = total + 1

Since this example also has two nested loops, you might think it is O(n2) , but note
that the one loop always executes 10 times no matter what the value of n is. We can
still apply the rule of multiplying the number of times each loop executes; the result
is 10 * n and that tells us this fragment is O(n) (remember, constant multipliers are
ignored in asymptotic analysis) .

Let 's try a slightly trickier case of nested loops.

n = input (' enter n : ,)
for i in range (n) :

for j in range (i , n) :
print i , j

1 .3 Algorithm Ana lysis 29

Here again we have two loops nested, but the inner loop executes a different number
of times during each iteration of the outer loop. Our simple multiplication rule won't
work, but fortunately, the analysis is not too difficult . Remember we want to know
for an input of size n, how many times does the print statement execute? Let's
think it through. The first time through the outer loop, the inner loop executes n
times. The second time it executes n - 1 times, and so forth, until finally, on the
last iteration of the outer loop, the inner loop executes 1 time. To get the total
number of iterations of the inner loop, we just add these all up: 1 + 2 + . . . + n.

You may have seen a formula for this sum in one of your math courses. If not,
here is one way to figure it out . Suppose we add this value to itself lined up in this
way:

(1
+ (n

+ 2 + 3 +
+ (n-1) + (n-2) +

+ n)
+ 1)

Each column sums t o n + 1 and there are n columns. The total of all the columns
is n(n + 1) . That sum is just double the original, so dividing by 2 gives use this
formula: n(n + 1) /2. Expanding this produces a quadratic polynomial, so we can
conclude this code fragment has running time 0(n2) .

Finally, here's a little example using a while loop.

n = input (' enter n : ')
while n > 1 :

n = n II 2 # II is integer division

This code is a little different from all the other code fragments. We have a loop, but
it does not execute n times. Each time through the loop, n is divided by 2 so we
need to determine how many times it will take to reach 1 . This is the same problem
we examined with the "guess a number game" and binary search. The number of
iterations increases by 1 each time the size of the input doubles. So the number of
steps for an input of size n is represented as x in the equation 2x = n. The answer
is x = l092n. In many algorithms, the input is divided in half and we end up with
0(l092) in asymptotic notation.

Now returning to the search functions, you have all the tools you need to formally
analyze the code we wrote. Our linear search uses a for loop that executes n times,

30 Chapter 1 Abstraction and Ana lysis

so it is O(n) . This is the reason it is referred to as a linear search; the running time
of the function is a linear function (i .e . , a polynomial of degree 1) . And, as discussed
earlier, the binary search algorithm for sorted lists is O(log2n) . The loop executes
(at most) log2n times and the number of operations executed each time through the
loop is a constant .

Asymptotic notation tells us how efficient we can expect our algorithm to be for
large data sets. For small cases or code that is only going to be executed once or
twice, efficiency is often not a significant concern. Of course, if your program will
take two years to solve the problem, then it is. The big 0 notation allows us to
extrapolate and determine how long our program will take to run on a larger data
set . If we want to know how long our program will take to run with an input twice
as large, we can plug 2n in for n in our function. For example, if the analysis of an
algorithm is O(n2) and we double the input , we can expect it to take four times as
long, since (2n)2 is 4n2 . If it takes one minute for our algorithm to execute on an
input of size one million we can expect it to take four minutes on an input of size
two million.

/ 1 . 3 . 5 1 Big 0 Notation vs . Theta Notation

Technically, big 0 notation gives us only an upper bound on the efficiency of an
algorithm. Look back at the definition of big O . If an algorithm is O(n) , then it is
also O(n2) , O (n3) , etc. In fact , we can say that most algorithms are O(2n) , but that
is not very useful when we want to compare two specific algorithms. Usually when
we do a big 0 analysis of an algorithm we are trying to find a "tight" upper bound.
For example, we know that a linear search will take twice as long to discover that a
number is not in a list when the size of the list doubles. It would be more informative
to say that the asymptotic growth rate of linear search is not just bounded by n,
but it is n .

8 is used to describe situations where we have a tight upper (and lower) bound.
To formally prove an algorithm is 8(f(n)) we must find constants Cl , C2 , and no
such that the number of steps for the algorithm is greater than clf (n) and the
number of steps is less than c2f (n) for all n > no . By bounding it between two
multiples of f (n) we show that the number of steps grows at the same rate as f (n)
so the number of steps in the algorithm is essentially equal to some multiple of f (n)
(for large values of n) . In practice, we will not actually find the constants unless
analyzing the algorithm is particularly difficult . See Figure 1 . 3 for an example of
bounding a function.

The growth rates of some functions that commonly appear in the analysis of
algorithms are shown in Figure 1 .4 . Note how important the order of the algorithm

n

100

1 ,000

10,000

100,000

1 ,000,000

1 . 3 Algorithm Ana lysis

800000 �------�--------�------
�

�

----__ �

700000

600000

500000

400000

300000

200000

100000

0.25·x·x -..

0.50·x·x

0.75·x·x

0 L-__ -=��==== ____ L_ ______ � ________ � ______ �
o 200 400 600 800 1 000

Figure 1 .3 : 0.5x2 is between 0.25x2 and 0 .75x2

log2 (n) Vn n log2 (n) n2 n3

6.6 10 660 10,000 1 ,000,000

10 32 10,000 1 ,000,000 109

13 100 130,000 108 1012

17 320 1 , 700,000 1010 1015

20 1 ,000 2 * 107 1012 1018

Figure 1 .4 : Approximate growth rate of common functions

31

2n

1030

10301

103010

1030103

10301029

is for making the problem solvable in a reasonable amount of time. Algorithms that
have exponential growth (e.g. , 2n) cannot be used to solve problems of even modest
sizes . How long would it take an exponential algorithm to complete with an input of
size 100 if we can perform one billion operations per second? Using the information
in Figure 1 .4 , we see that 2100 is about 1030 (i .e. , one followed by 30 zeros) ; this
is a very large number. Dividing it by one billion operations per second tells us it
will take 1021 seconds or over 1013 years to run our algorithm on an input of size
100. The universe is thought to be between 10 and 20 billion years old so this is
thousands of times longer than the universe has existed!

If we know how long it takes to solve a problem of a certain size, we can use the
theta classification to approximate how long it will take to solve problems of larger
sizes. For example, if we have a 8(n2) sorting algorithm that takes 25 seconds to

32 Chapter 1 Abstraction a nd Ana lysis

sort one million items on our computer, we can estimate how long it will take to
sort two million items on our computer with the same code. This information gives
us the equation c(1 ,000,000)2 = 25 seconds. Remember that theta notation (like
big 0) hides the constant multiplier in front of the largest term. When setting up
a specific equation, we need to include that multiplier term. We can solve for c and
get c = 2 .5(10- 1 1) . We can now calculate 2 . 5 (10- 1 1) (2, 000, OOO? and we get 100
seconds.

As you might have determined already, we do not even need to solve for c in
this case. We know our algorithm is 8(n2) and now we want to know what happens
when our input size is twice as large. We can just plug in 2n for n and expand:
(2n)2 = 4n2 . This tells us it should take four times as long to solve a problem that
is twice as large when using a 8(n2) algorithm. This matches our earlier answer
(i.e . , 25(4) = 100) .

Obviously, we will try to use 8 notation whenever possible to state the perfor­
mance of an algorithm. For some complicated algorithms it can be difficult to prove
a tight bound and then we might just prove an upper bound (big 0 notation) . We
will also usually only analyze the worst-case running time of an algorithm. You
might argue that the average case is more useful, but that is sometimes difficult to
determine. For our linear search, we found the best case was 8(1) and the worst
case was 8(n) , and it is not too difficult to convince ourselves that the average case
is also 8(n) . If we search once for each item in a list of unique items, the value will
be found once in the first position, once in the second position, once in the third
position, and so on through the last position. We know that sum is n(n + 1) /2 and
for the average case we need to divide that by the n searches we did, resulting in
8(n) . For the binary search, determining the average case is more complicated.

[[i] Chapter S u m mary

This chapter introduced basic concepts that are vital for writing larger software
systems:

• Programming in the large varies from programming in the small along nu­
merous dimensions. The fundamental problem in designing and implementing
larger programs is how to control complexity .

• Abstraction is used to simplify and reduce the amount of information a pro­
grammer needs to understand at any given moment when writing software.
One particularly useful type of abstraction (functional abstraction) allows the
separation of "what" from "how" and facilitates design by contract .

1 . 5 Exercises 33

• Program assertions document a program by stating what must be true at
a given point of execution. Pre- and post conditions are special kinds of
assertions that provide a convenient way to specify the behavior of a function
or method.

• Larger problems can be broken down into smaller problems through top-down
design. Specification of functional decompositions allows multiple program­
mers to work on a project together.

• For larger data sets, the efficiency of algorithms is important. Asymptotic
analysis is used to classify the efficiency of algorithms. Big 0 notation is used
to indicate upper bounds, while theta notation is used to characterize a more
exact growth rate.

[[[] Exercises

True/Fa lse Questions

1. To use functions/classes/methods defined in a library correctly, you must
understand the API (i .e . , what the parameters and return values are) .

2. Assuming the pre- and postconditions and code are correct, the post condition
is guaranteed to be true after the code is executed if the precondition is met
before the code is executed.

3. A function that detects a violation of its precondition should print out an error
message.

4. A function's signature provides a complete specification of its behavior.

5. A well-designed function/method often has undocumented side effects.

6. Using the same computer, programming language, and input data, executing
an algorithm that is 8(n) must be faster than executing an algorithm that is
8(n2) .

7 . A function with more lines of code can be faster than a function with fewer
lines.

8. Theta notation is an effective measure of algorithm efficiency when the ex­
pected input size for the algorithm is small.

34 Chapter 1 Abstraction and Ana lysis

9. All O(n2) algorithms are 8(n2) .

10 . All 8(n2) algorithms are O(n2) .

M u lt ip le Choice Questions

1. Which of the following is not part of the signature of a function?

a) the name of the function
b) how the function works
c) the parameters
d) the return value

2. Which of these actions inside a function would produce a side effect?

a) setting an immutable parameter to a new object
b) setting a mutable parameter to a new object
c) modifying a mutable parameter
d) returning a value

3. Which of the following indicates that a function's precondition was met?

a) the function does not crash
b) the function returns a value
c) the function raises an exception
d) none of the above

4. In general what will have the biggest effect on how long your algorithm takes
to execute on a large data set?

a) the efficiency of your algorithm
b) the computer language used to implement the algorithm
c) the number of lines of code in your algorithm
d) the speed of the hard disk on the computer

5. A function with two loops has an asymptotic running time of

a) 8(log2n)
b) 8(n)
c) 8(n2)
d) not enough information to determine

6. If a 8(n2) algorithm requires 3 seconds to execute on an input of one million
elements, approximately how long should it take on an input of two million
elements?

1 .5 Exercises 35

a) 6 seconds b) 9 seconds c) 12 seconds d) 18 seconds

7. If a 8(n3) algorithm requires 4 seconds to execute on an input of one million
elements, approximately how long should it take on an input of two million
elements?

a) 8 seconds b) 16 seconds c) 32 seconds d) 64 seconds

8. If a 8 (lo92n) algorithm requires 20 seconds to execute on an input of one
million elements, approximately how long should it take on an input of two
million elements?

a) 21 seconds b) 25 seconds c) 30 seconds d) 40 seconds

9. If a 8(2n) algorithm requires 10 seconds to execute on an input of 10 elements,
approximately how long should it take on an input of 20 elements?

a) 20 seconds b) 100 seconds c) 1 ,000 seconds d) 10,000 seconds

10. If a computer is capable of performing one billion operations per second,
approximately how long would it take to execute an algorithm that requires
n2 operations on an input of two million elements.

a) 400 seconds
b) 2 ,000 seconds
c) 4,000 seconds
d) 20,000 seconds

Short-Answer Questions

1. What is a side effect of a function/method?

2. Describe the basic approach of top-down design and how it relates to design
by contract.

3 . If you need to repeatedly search a random list of 20 items for different values
that are input by the user, what search method should you use? Should you
create another list that contains the same items but is sorted and search it?
Why or why not?

4. If you need to repeatedly search a random list of 2 ,000,000 items for different
values that are input by the user, what search method should you use? Should
you create another list that contains the same items but is sorted and search
it? Why or why not?

36 Chapter 1 Abstraction and Ana lysis

5. For the preceding problems is a Python list the most appropriate data type
to store the numbers? If not, what Python data type would you use?

6. If a computer is capable of performing one billion operations per second, how
long would it take to execute an algorithm that requires 2n operations for an
input of n = 100 elements?

7. If a computer is capable of performing one billion operations per second, how
long would it take to execute an algorithIll that requires n2 operations on an
input of n = 1 ,000,000. How long would it take if the algorithm requires n3
operations?

8. Give a theta analysis of the time efficiency of the following code fragments.

a) n = input (' enter n : ')
for i in range (n) :

x = 2 * n
vhile x > 1 :

x = x / 2

b) n = input (' enter n : ')
total = 0
for i in range (n) :

for j in range (10000) :
total += j

print total

c) total = 0
n = input (' enter n : ')
for i in range (2 * n) :

for j in range (i , n) :
total += j

for j in range (n) :
total += j

print j

9. Our first version of the linear search algorithm used the Python index method
and did not have any loops. Yet we said that the linear search algorithm
is 8(n) . Generally, an algorithm without any loops is 8(1) . Explain the
(apparent) discrepancy.

1 .5 Exercises 37

Programm ing Exercises

1 . Create a list of one million integers numbered 0 to 999,999. Time (using the
time . time function as we did in the examples in this chapter) the worst and
best cases for the list index method version of the linear search, the linear
search code written using a for statement, and the binary search code. In
comments list the specifications of your computer (CPU chip and clock speed ,
operating system, and Python version) along with the worst and best times
for each of the three searches.

2. Create a random list of 10,000, 100,000, and 1 ,000,000 integers with each
number between 1 and 10 million. Measure how long it takes to sort each
list using the built-in list 's sort method. In comments, list the specifications
of your computer (CPU chip and clock speed, operating system, and Python
version) along with how long it took to sort each list . Also include comments
that indicate what you think the e classification is for the sort method based
on the running times.

3. The selection sort algorithm sorts a list by finding the smallest element and
swapping it with the element in position zero of the list . It then finds the next
smallest element and swaps it with the element in position one of the list .
This process repeats until we have found the n - 1 th smallest element and put
it in position n - 2. At this point , the largest element is in position n - 1 .
Implement this algorithm in Python and indicate what its e classification is
in comments . Also time your code for the three lists described in the previous
question.

4. Design your own experiment to compare the behavior of linear search and
binary search on lists of various sizes. Plot your results on a graph and see
if you can find a "crossover" point where linear search actually beats binary
search on your computer. Since the searches will be very quick for smaller
lists, you will need to be somewhat clever in how you time the searches in
order to get valid data. (Hint : get larger timing intervals by timing how long
it takes to do a given search many times.) Write up a complete lab report
explaining your experimental set-up, methods, data, and analysis.

5. Complete the implementation of the simple statistics program in subsection 1 . 2 . 3 .
Be sure to thoroughly test your program on some data sets with known results.

6. Add a function to the example in subsection 1 . 2 .3 that returns five integers:
the number of scores in the 90s, in the 80s, in the 70s, in the 60s, and below

38 Chapter 1 Abstraction and Ana lysis

60. Be sure to provide a complete specification of your new function including
appropriate pre- and post conditions along with the implementation code.

7. Whenever the average value of a set of data is needed, it is usually also
appropriate to calculate the standard deviation. The current API for the
simple statistics program of section subsection 1 . 2 . 3 is somewhat inefficient in
this regard, as asking for both the average and the standard deviation results
in the former being computed twice (why?) . Redesign the API for this simple
library to overcome this issue. Your new design should allow the user to
efficiently calculate just the average, just the standard deviation, or both.

8 . Design and implement a quiz program. The program should read question
and answer information from a file. For example, a state capital quiz would
contain the state and its capital on each line (e.g. , Ohio : Columbus) . Your
program should ask a fixed number of questions and output the number of
correct answers. Create at least three separate functions in your design.

9. Write a specification and implementation for a function that "squeezes" the
duplicates out of a sorted list . For example:

» > x = [1 , 1 , 3 , 3 , 3 , 4 , 5 , 5 , 8 , 9 , 9 , 9 , 9 , 10]
» > squeeze (x)
» > x
[1 , 3 , 4 , 5 , 8 , 9 , 10]

Test your function thoroughly and analyze its theta efficiency.

Chapter 2 Data Abstraction

Object ives

• To learn how abstract data types are used in software design.

• To review the basic principles and techniques of object-oriented design.

• To learn about unit testing and how to write unit tests in Python.

• To learn about operator overloading and how to overload operators in Python.

[1JJ Overview

Algorithms are one fundamental building block of programs. In Chapter 1 , we
saw the benefits that come from separating the idea of what a function does from
the details of how it is implemented. In this chapter, we'll take a look at the
data that our programs process. Separating behavior from implementation is even
more powerful when we consider data objects. This process of data abstraction is
a foundational concept that must be mastered in order to build practical software
systems. Computer scientists formalize the idea of data abstraction in terms of
abstract data types (ADTs) . Abstract data types, in turn, are the foundation for
object-oriented programming, which is the dominant development method for large
systems.

We'll start out by examining ADTs and how they relate to object-oriented
programming. Along the way we'll show how object-oriented programming can
be used to extend a programming language with new data types that can make it
more suitable for solving problems in new domains. In languages that support a
special technique known as operator overloading, new data types can be made to
look and act just like the language's own built-in types.

39

40 Cha pter 2 Data Abstraction

Using ADTs and objects , program design becomes a process of breaking a
problem into smaller pieces: a set of cooperating objects that provide most of the
program's functionality. As these smaller pieces are implemented, they can be tested
in isolation so that developers have confidence in their correctness before the parts
are combined into a larger system. Learning how to do effective testing is another
important piece of the software development puzzle.

1 2 . 2 1 Abstract Data Types

One important property of any value stored in a computer is its data type. The type
of an object determines both what values it can have and what we can do with it (i.e . ,
what operations it supports) . For example, on a 32-bit computer the built-in type
int can represent integers in the range from -231 to 231 - 1 and can be used with
operations such as addition (+) , subtraction (-) , multiplication (*) and division(/) .
Knowing this information, you can write programs that use ints without having to
know how such numbers are actually stored on the computer. Using our terminology
from last chapter, we would say that a program that manipulates int values is a
client of the int data type.

Of course, in order for a data type to actually be useful, there must be some un­
derlying implementation of that type. The implementation consists of both a way to
represent all the possible values of the type and a set of functions that manipulate the
underlying representation. Consider again the int data type. It is typically stored
on today's computers as a 32-bit binary number. Algorithms for operations such
as addition and subtraction are defined in the underlying machine hardware, and
functions for input and output of ints are built into most programming languages.

1 2 . 2 . 1 1 From Data Type to ADT

Applying the idea of abstraction, we can separate the concerns of how data is
represented from how it is used. That is , we can provide a specification for a
data type that is independent of any actual implementation. Such a specification
describes abstract data type . A precise and complete description allows client
programs to be written without worrying about how an ADT is realized in the
computer. In this way, data abstraction extends the advantages of implementation
independence. We can delay decisions about how data should be represented in our
programs until we have sufficient information about how that data is going to be
used. We can also go in and change a representation, and the abstraction barrier
ensures that the rest of the program will not be adversely affected.

2 .2 Abstract Data Types 41

Data abstraction is particularly important for those parts of a program that are
likely to change. Major design decisions can be encapsulated in ADTs, and the
implementation of the ADTs can be adjusted as necessary without affecting the rest
of the program. As you will see, it is often the case that changing how data is
represented can have a major impact on the efficiency of the associated operations;
so, having the freedom to modify representations is a big win when trying to tune
a program's efficiency.

Another advantage of ADTs is that they promote reuse. Once a relevant abstrac­
tion has been implemented, it can be used by many different client programs. Those
clients are freed from the hassle of having to reinvent the data type. This allows
programmers to extend programming languages with new data objects that are
useful in their particular area of programming. After the ADT has been thoroughly
tested, it can be used with confidence and the implementation details never have to
be revisited.

1 2 . 2 .2 1 Defi n i ng an ADT

You can think of an ADT as a collection of functions or methods that manipulate
an underlying representation. The representation is really just some collection of
data. To specify an ADT we just describe what the operations supported by the
ADT do. We can apply the same techniques we used for specifying functions. The
only difference is that a single ADT is described by a collection of functions.

Let's look at a simple example. Suppose we are writing some programs dealing
with card games, say bridge or Texas hold 'em. A playing card could be modeled
as a simple ADT. Here's a description of the ADT:

ADT Card :
A simple playing card . A Card is characterized by two components :
rank : an integer value in the range 1-13 , inclusive (Ace-King)
suit : a character in ' cdhs ' for clubs , diamonds , hearts , and

spades .

Operations :

create (rank , suit) :
Create a new Card
pre : rank in range (1 , 14) and suit in ' cdhs '
post : returns a Card of the given rank and suit

suit 0 :
Card suit
post : Returns Card ' s suit as a single character

42 Chapter 2 Data Abstraction

rank O :
Card rank
post : Returns Card ' s rank as an int

suitName O :
Card suit name
post : Returns one of (' clubs ' , ' diamonds ' , ' heart s ' ,

' spades ') corrresponding to Card ' s suit .

rankName O :
Card rank name
post : Returns one of (' ace ' , , two ' , , three ' , . . . , , king ')

corresponding to Card ' s rank .

toString O :
String representation of Card
post : Returns string naming the Card , e . g . ' Ace of Spades '

Notice how this specification describes a Card in terms of some abstract at­
tributes (rank and suit) and the things that we can do with a card. It does not
describe how a Card is actually represented or how the operations are achieved. In
fact , the specification doesn't even explicitly refer to any card object or parameter;
it is implicit that these are the operations that can somehow be applied to any card.

In the process of designing an ADT, our goal is to include a complete set of
operations necessary to make the ADT useful. Of course, there are many different
design choices that could be made for the Card ADT. For example, we could have
different names for the operations; some designers prefer to use names starting
with "get" for accessing components of an ADT. Thus, they might use getSuit and
getRank in place of suit and rank. Other designers might choose different types for
the parameters of the various operations. Perhaps suits might be represented with
ints instead of strings. Another approach is to "hide" the exact representation
of suits and ranks by simply providing a set of variables representing the suits and
ranks. For example, an identifier named CLUBS might be assigned to some value
representing that suit , similar to the way the identifier None refers to Python's
special None object . The ranks could be represented using names like ACE, TWO ,
THREE, etc.

As you gain experience working with ADTs, you will develop your own design
sense. The most important thing to keep in mind is implementation independence.
An ADT describes only a set of operations, not how those operations are imple­
mented. One good way of "testing" the design for an ADT is to try writing some
client algorithms that use it. For example, here is an algorithm that prints out the
rank, suit , and "name" of all the cards in a standard deck:

2 .2 Abstract Data Types

for s in ' cdhs ' :
for r in range (1 , 14) :

card = create (r , s)
print ' Suit : ' , suit (card)
print ' Rank : ' , rank (card)
print toString(card)

43

Notice how this algorithm is expressed using a Python-like syntax, but makes
use of the abstract functions of the ADT presented above. The algorithm shows us
that our set of operations would be sufficient to create and print out all 52 possible
cards.

1 2 . 2 . 3 1 I mplementi ng an ADT

It is possible to design and reason about ADTs in a language-independent fashion,
but once we get down to the point of implementing and using an ADT in a program,
we need to fill in some details that are specific to the particular programming envi­
ronment . There are numerous ways that a programmer could go about translating
an ADT into a particular programming language. Virtually all languages provide
the ability to define new functions, so one way of implementing an ADT is simply
to write an appropriate set of functions. For example, in Python we could write a
function for each Card operation and place them together in a module file.

Of course, in writing the functions we will need to decide how a Card will be
represented on the computer. The abstract type has components for rank and suit .
In Python, a simple representation would be to package the rank and suit together
as a pair of values in a tuple. A Python tuple is an immutable (unchangeable)
sequence of values . A tuple literal is indicated by enclosing a comma-separated
sequence in parentheses. Using tuples, the ace of clubs would be represented by the
tuple (1 , ' c ') and the king of spades would be (13 , ' s ') .

The underlying representation of an ADT is called the concrete representation.
We would say that the tuple (5 , ' d ') is the concrete representation of the abstract
Card known as the five of diamonds.

Now that we have a representation for our Card ADT, writing the implementa­
tion code is straightforward. Here is one version:

cardADT . py
Module f ile implementing the card ADT with functions

SUITS = ' cdhs '
_SUIT_NAMES = [' clubs ' , ' diamonds ' , ' hearts ' , ' spades ']

44 Chapter 2 Data Abstraction

_RANKS = range (1 , 14)
_RANK_NAMES [' Ace ' , ' Two ' , ' Three ' , ' Four ' , ' Five ' , ' Six ' ,

' Seven ' , ' Eight ' , ' Nine ' , ' Ten ' ,
' Jack ' , ' Queen ' , ' King ']

def create (rank , suit) :
assert rank in _RANKS and suit in _SUITS
return (rank , suit)

def rank (card) :
return card [O]

def suit (card) :
return card [1]

def suitName (card) :
index = _SUITS . index (suit (card))
return _SUIT_NAMES [index]

def rankName (card) :
index = _RANKS . index (rank (card))
return _RANK_NAMES [index]

def toString (card) :
return rankName (card) + ' of ' + suitName (card)

Take a look at the create function. It uses an assert to check that the
preconditions for creating a card are met, and then it simply returns a rank-suit
tuple. In this way, the function returns a single value that represents all the
information about a particular card.

The rank and suit operations simply unpackage the appropriate part of the card
tuple. Tuple components are accessed through indexing, so card [0] gives the first
component, which is the rank, and card [1] gives the suit . These two operations
are so simple, you might even wonder if they are necessary. Couldn't a client using
the Card ADT simply access the suit directly by doing something like myCard [1] ?
The answer is that the client could do this , but it shouldn't. The whole point of an
ADT is to uncouple the client from the implementation. If the client accesses the
representation directly, then changing the representation later will break the client
code. Remember this rule: clients may use an ADT only through the provided
operations.

One other point worth noting about this code is the use of some special values:
_RANKS, _SUITS, _RANK_NAMES, and _SUIT _NAMES . The sui tName and rankName
methods could have been written as large multi-way if statements. Instead, we have
employed a table-driven approach. We use the index method to find the position

2 .2 Abstract Data Types 45

of a rank or suit , and then use it to look up the corresponding name. This shortens
the code and makes it much easier to modify. For example, we could easily add a
fifth suit by simply adding another item to the end of _SUITS and _SUIT _NAMES .

Just in case you were wondering, there's a reason for the funny-looking variable
names used for the lookup tables. The use of uppercase is a programming convention
often employed for constants, that is, things that are assigned once and never
changed. The leading underscore is a Python convention indicating that these names
are "private" to the module. If the client imports the module via

I from cardADT import *

the identifiers beginning with an underscore are not imported into the local program.
This keeps implementation details, such as the use of lookup tables, from cluttering
up the client's namespace (the set of defined identifiers) .

N ow that we have the Card ADT implementation, we can actually code up our
program that prints out cards using this card module.

test_cardADT . py
import cardADT

def printAll O :
for suit in ' cdhs ' :

for rank in range (1 , 14) :
myCard = cardADT . create (rank , suit)
print cardADT . toString(myCard)

if __ name
printAll O

To summarize, one way of implementing an ADT is to choose a concrete rep­
resentation and then write a set of functions that manipulate that representation.
If our implementation language includes modules (a la Python) , we can place the
implementation in a separate module so that it has its own independent namespace.

If the implementation language does not support the idea of separate modules,
then we could run into trouble with the names of operations between ADTs "clash­
ing." For example, if we were writing a program to play a card game, we might also
have a deckADT representing a deck of cards. Of course, the deckADT would have its
own create method. Without modules, we'd have to rely on naming conventions
to keep the operations straight . For example, all of the operations on cards might
begin with card_ while those for decks would start with deck_ . Thus, we would
have separate functions, card_create and deck_create.

46 Chapter 2 Data Abstraction

1 2 . 3 1 ADTs a nd Objects

As we have seen, an ADT comprises a set of operations that manipulate some
underlying data representation. This should sound familiar to you. If you are
working in an object-oriented language (such as Python) , then it is natural to
think of implementing an ADT as an object, since objects also combine data and
operations. Simply put , an object "knows stuff (data) and does stuff (operations) ."
The data in an object is stored in instance variables, and the operations are its
methods. We can use the instance variables to store the concrete representation of
an ADT and write methods to implement the operations.

As you know, new object types are defined using the class mechanism. As the
Python language has evolved, it has come to support two different kinds of classes
sometimes called the classic and new-style classes. For our examples, classic and
new-style classes behave exactly the same. We will use Python's new-style classes
throughout this book as they are strongly recommended for new code. A new-style
class is indicated simply by having the class inherit from the built-in class obj ect.
You do not need to know any details about inheritance in order to use new-style
classes; you just need to change the class heading slightly. For example, to create a
Card class with new-style classes, we write class Card (obj ect) : instead of class
Card : . !

\ 2 .3 . 1 \ Specification

In object-oriented languages, new object data types can be created by defining a
new class. We can turn an ADT description directly into an appropriate class
specification. Here is a class specification for our Card example:

class Card(obj ect) :
" " "A simple playing card . A Card is characterized by two components .
rank : an integer value in the range 1-13 , inclusive (Ace-King)
suit : a character in ' cdhs ' for clubs , diamonds , hearts , and

spades . 11 1 1 "

def __ init __ (self , rank , suit) :
I I II II Constructor
pre : rank in range (1 , 14) and suit in ' cdhs '
post : self has the given rank and suit " " "

1 In Python 3.0, support for classic classes has been dropped and either class heading form will
produce a new-style class.

def suit (self) :
II II II Card suit

2 .3 ADTs and Objects

post : Returns the suit of self as a single character II II II

def rank(self) :
II II II Card rank
post : Returns the rank of self as an int ll ll ll

def suitName (self) :
II II II Card suit name
post : Returns one of (' Clubs ' , ' Diamonds ' , ' Hearts ' ,

' Spades ') corrresponding to self ' s suit . 1I 1I 1I

def rankName (self) :
II II II Card rank name
post : Returns one of (' Ace ' , ' Two ' , ' Three ' , . . . , ' King ')

corresponding to self ' s rank . 11 11 11

def __ str __ (self) :
II II I I String representation
post : Returns string representing self , e . g . ' Ace of Spades ' 11 11 11

47

Basically, this specification is just the outline of a Card class as it would look in
Python. The docstring for the class gives an overview, and the docstrings for the
methods specify what each one does. Following Python conventions, the method
names that begin and end with double underscores (__ init __ and __ str __) are
special. Python recognizes __ init __ as the constructor, and the _ _ str _ _ method
will be called whenever Python is asked to convert a Card object into a string. For
example:

» > c = Card(4 , ' c ')
» > print c
Four of Clubs

We have now translated our ADT into an object-oriented form. Clients of this
class will use dot notation to perform operations on the ADT. Here's the code that
prints out all 52 cards translated into its object-based form:

48 Chapter 2 Data Abstraction

printcards . py
Simple test of the Card ADT

from Card import Card

def printAII () :
for suit in ' cdhs ' :

for rank in range (1 , 14) :
card = Card (rank , suit)
print ' Rank : ' , card . rank ()
print ' Suit : ' , card . suit ()
print card

if __ name
printAII ()

Notice that the constructor is invoked by using the name of the class, Card, and the
__ str __ method is implicitly called by Python when it is asked to print the card.

1 2 . 3 . 2 1 I m plementation

We can translate our previous implementation of the card ADT into our new class­
based implementation. Now the rank and suit components of a card can just be
stored in appropriate instance variables :

Card . py
class Card (obj ect) :

II I I II A simple playing card . A Card is characterized by two components :
rank : an integer value in the range 1- 13 , inclusive (Ace-King)
suit : a character in ' cdhs ' for clubs , diamonds , hearts , and
spades . 11 11 11

SUITS = ' cdhs '
SUIT_NAMES = [' Clubs ' , ' Diamonds ' , ' Hearts ' , ' Spades ']

RANKS = range (1 , 14)
RANK NAMES [' Ace ' , ' Two ' , ' Three ' , ' Four ' , ' Five ' , ' Six ' ,

' Seven ' , ' Eight ' , ' Nine ' , ' Ten ' ,
' Jack ' , ' Queen ' , ' King ']

def _ _ init _ _ (self , rank , suit) :
II II II Constructor
pre : rank in range (1 , 14) and suit in ' cdhs '
post : self has the given rank and suit II II I I

self . rank_num = rank
self . suit_char = suit

def suit (self) :
" " "Card suit

2 .3 ADTs and Objects

post : Returns the suit of self as a single character" " "

return self . suit_char

def rank (self) :
" " " Card rank
post : Returns the rank of self as an int " " "

return self . rank_num

def suitName (self) :
" " "Card suit name
post : Returns one of (' clubs ' , ' diamonds ' , ' hearts ' ,

' spades ') corresponding to self ' s suit . " " "

index = self . SUITS . index (self . suit_char)
return self . SUIT_NAMES [index]

def rankName (self) :
" " " Card rank name
post : Returns one of (' ace ' , ' two ' , ' three ' , . . . , ' king ')

corresponding t o self ' s rank . " " "

index = self . RANKS . index (self . rank_num)
return self . RANK_NAMES [index]

def __ str __ (self) :
" " " String representation
post : Returns string representing self , e . g . ' Ace of Spades ' " " "

return self . rankName () + ' of ' + self . suitName ()

49

Notice that the lookup tables from the previous version have now been imple­
mented as variables that are assigned inside of the Card class but outside of any
of the methods of the class. These are class variables. They "live" inside the class
definition, so there is one copy shared by all instances of the class. These variables
are accessed just like instance variables using the self . <name> convention. When
Python is asked to retrieve the value of an object 's attribute, it first checks to see
if the attribute has been assigned directly for the object . If not, it will look in
the object 's class to find it . For example, when the sui tName method accesses
self . SUITS , Python sees that self does not have a SUIT attribute, so the value
from the Card class is used (because self is a Card) .

50 Chapter 2 Data Abstraction

You now have three different kinds of variables for storing information in pro­
grams: regular (local) variables, instance variables, and class variables. Choosing
the right kind of variable for a given piece of information is an important decision
when implementing ADTs. The first question you must answer is whether the data
needs to be remembered from one method invocation to another. If not, you should
use a local variable. The index variable used in rankName 0 is a good example of
a local variable; its value is no longer needed once the method terminates. Notice
that there is also a local variable called index in the sui tName method. These are
two completely independent variables, even though they happen to have the same
name. Each exists only while the method where they are used is executing. We could
have written this code using an instance variable self . index in these two methods.
Doing so would be a misleading design choice, because we have no reason to hang
onto the value of index from the last execution of rankName or sui tName . Reusing
an instance variable in this case would imply a connection where none exists .

Data that does need to be remembered from one method invocation to another
should be stored in either instance variables or class variables. The decision about
which to use in this case depends on whether the data may be different from one
object to the next or whether it is the same for all objects of the class. In our card
example, self . rank_num and self . suit_char are values that will vary among
cards. They are part of the intrinsic state of a particular card, so they have to be
instance variables. The suit names, on the other hand will be the same for all cards
of the class, so it makes sense to use a class variable for that . Constants are often
good candidates for class variables, since, by definition, they are the same from one
object to the next . However, there are also times when non-constant class variables
make sense. Keeping these simple rules in mind should help you turn your ADTs
into working classes.

As you can see there is a natural correspondence between the notion of an ADT
and an object-oriented class. When using an object-oriented language, you will
usually want to implement an ADT as a class. The nice thing about using classes
is that they naturally combine the two facets of an ADT (data and operations) into
a single programming structure.

1 2 . 3 . 3 1 Changi ng the Representation

We have emphasized that the primary strength of using ADTs to design software
is implementation independence. However, the playing card example that we've
discussed so far has not really illustrated this point . After all, we said that a card
has a rank that is an int and a suit that is a character, then we simply stored these

2 .3 ADTs and Objects 51

values as instance variables. Isn't the client directly using the representation when
it manipulates suits and ranks?

The reason it seems that the client has access to the representation in this case
is simply because the concrete representation that we've chosen directly mirrors the
data types that are used to pass information to and from the ADT. However, since
access to the data takes place through methods (like suit and rank) we can actually
change the concrete representation without affecting the client code. This is where
the independence comes in.

Suppose we are developing card games for a handheld device such as a PDA
or cell phone. On such a device, we might have strict memory limitations. Our
current representation of cards requires two instance variables for each card; the
rank, which is a 32-bit int i and the suit , which is a character. An alternative way
to think about cards is simply to number them. Since there are 52 cards, each can
be represented as a number from 0 to 51 . Think of putting the cards in order so
that all the clubs come first , diamonds second, etc . Within each suit , put the cards
in rank order. Now we have a complete ordering where the first card in the deck is
the ace of clubs, and the last card is the king of spades.

Given a card's number, we can calculate its rank and suit. Since there are
13 cards in each suit , dividing the card number by 13 (using integer division)
produces a value between 0 and 3 (inclusive) . Clubs will yield a 0, diamonds a
1 , etc. Furthermore, the remainder from the division will give the relative position
of the card within the suit (i .e. , its rank) . For example, if the card number is 37,
37//13 = 2 so the suit is hearts, and 37%13 = 11 which corresponds to a rank of
queen since the first card in a suit (the ace) will have a remainder of O. So card 37
is the queen of hearts. Using this approach, the concrete representation of our Card
ADT can be a single number. We leave it as an exercise for the reader to complete
an implementation of the Card class using this more-memory-efficient alternative
representation.

1 2 . 3 .4 1 Object-Oriented Design and Programm ing

As you have seen, there is a close correspondence between the ideas of ADTs
and object-oriented programming. But there is more to object-orientation (00)
than just implementing ADTs. Most 00 gurus talk about three features that
together make development truly object-oriented: encapsulation, polymorphism,
and inheritance.

52 Chapter 2 Data Abstraction

Enca psu lation

As you know, objects know stuff and do stuff. They combine data and operations.
This process of packaging some data along with the set of operations that can be
performed on the data is called encapsulation.

Encapsulation is one of the major attractions of using objects . It provides a
convenient way to compose solutions to complex problems that corresponds to our
intuitive view of how the world works. We naturally think of the world around us
as consisting of interacting objects . Each object has its own identity, and knowing
what kind of object it is allows us to understand its nature and capabilities. When
you look out your window, you see houses, cars, and trees, not a swarming mass of
countless molecules or atoms.

From a design standpoint , encapsulation also provides the critical service of
separating the concerns of "what" vs. "how." The actual implementation of an
object is independent of its use. Encapsulation is what gives us implementation
independence. Encapsulation is probably the chief benefit of using objects, but alone
it only makes a system object-based. To be truly objected-oriented, the approach
must also have the characteristics of polymorphism and inheritance.

Polymorphism

Literally, the word polymorphism means "many forms." When used in object­
oriented literature, this refers to the fact that what an object does in response
to a message (a method call) depends on the type or class of the object . Consider a
simple example. Suppose you are working with a graphics library for drawing two­
dimensional shapes. The library provides a number of primitive geometric shapes
that can be drawn into a window on the screen. Each shape has an operation that
actually draws the shape. We have a collection of classes something like this:

class Circle (obj ect) :
def draw (self , window) :

code to draw the circle

class Rectangle (obj ect) :
def draw (self , window) :

code to draw the rectangle

class Polygon(obj ect) :
def draw (self , window) :

code to draw the polygon

2 .3 ADTs and Objects 53

Of course, each of these classes would have other methods in addition to its draw
method. Here we're just giving a basic outline for illustration.

Suppose you write a program that creates a list containing a mixture of geometric
objects: circles, rectangles, polygons, etc. To draw all of the objects in the list , you
would write code something like this :

I for obj in obj ect s :
obj . draw(win)

N ow consider the single line of code in the loop body. What function is called when
obj . draw (win) executes? Actually, this single line of code calls several distinct
functions. When obj is a circle, it executes the draw method from the circle class.
When obj is a rectangle, it is the draw method from the rectangle class, and so on.
The draw operation takes many forms; the particular one used depends on the type
of obj . That 's the polymorphism.

Polymorphism gives object-oriented systems the flexibility for each object to
perform an action just the way that it should be performed for that object . If we
didn't have objects that supported polymorphism we'd have to do something like
this :

for obj in obj ects :
if type (obj) is Circle :

draw _ circle (. . .)
elif type (obj) is Rectangle :

draw_rectangle (. . .)
elif type (obj) is Polygon :

draw_polygon (. . .)

Not only is this code more cumbersome, it is also much less flexible. If we
want to add another type of object to our library, we have to find all of the places
where we made a decision based on the object type and add another branch. In
the polymorphic version, we can just create another class of geometric object that
has its own draw method, and all the rest of the code remains exactly the same.
Polymorphism allows us to extend the program without having to go in and modify
the existing code.

I n heritance

The third important property for object-oriented development is inheritance. As
its name implies, the idea behind inheritance is that a new class can be defined to
borrow behavior from another class. The new class (the one doing the borrowing)

54 Chapter 2 Data Abstraction

is called a subclass, and the existing class (the one being borrowed from) is its
superclass .

For example, if we are building a system to keep track of employees, we might
have a class Employee that contains the general information and methods that
are common to all employees. One sample attribute would be a homeAddress
method that returns the home address of an employee. Within the class of all
employees, we might distinguish between SalariedEmployee and HourlyEmployee.
We could make these subclasses of Employee, so they would share methods like
homeAddress ; however, each subclass would have its own monthlyPay function,
since pay is computed differently for these different classes of employees. Figure 2 . 1
shows a simple class diagram depicting this situation. The arrows with open heads
indicate inheritance; the subclasses inherit the homeAddress method defined in the
Employee class, but each defines its own implementation of the monthlyPay method.

Employee

HourlyEmployee Salaried Employee

Figure 2 . 1 : Simple example of inheritance with subclasses inheriting one shared
method and each separately implementing one method

Inheritance provides two benefits. One is that we can structure the classes of
a system to avoid duplication of operations. We don't have to write a separate
homeAddress method for the HourlyEmployee and SalariedEmployee classes. A
closely related benefit is that new classes can often be based on existing classes, thus
promoting code reuse.

2 .4 An Example ADT: Dataset 55

1 2 . 4 1 An Exa m p le ADT: Dataset

Now that we've covered ADTs and object-oriented principles, let 's go back and look
at the simple statistics problem introduced in Chapter 1 . This time, we're going to
tackle the problem using an object-oriented approach.

1 2 .4 . 1 1 The P rocess of 000

The essence of design is describing a system in terms of "black boxes" and their
interfaces. Each component provides a service or set of services through its interface.
In top-down design, functions serve the role of our black boxes. A client program
can use a function as long as it understands what the function does. The details
of how the task is accomplished are encapsulated in the function definition. In
object-oriented design (OOD) , the black boxes are objects .

If we can break a large problem into a set of cooperating classes, we drastically
reduce the complexity that must be considered to understand any given part of the
program. Each class stands on its own. Object-oriented design is the process of
finding and defining a useful set of classes for a given problem. Like all design, it is
part art and part science.

There are many different approaches to OOD, each with its own special tech­
niques , notations, gurus , and textbooks . Probably the best way to learn about
design is to do it. The more you design, the better you will get . Just to get you
started, here are some intuitive guidelines for object-oriented design:

1 . Look for object candidates. Your goal is to define a set of objects that will
be helpful in solving the problem. Start with a careful consideration of the
problem statement . Objects are usually described by nouns. You might
underline all of the nouns in the problem statement and consider them one by
one. Which of them will actually be represented in the program? Which of
them have "interesting" behavior? Things that can be represented as primitive
data types (numbers or strings) are probably not important candidates for
objects . Things that seem to involve a grouping of related data items (e.g. ,
coordinates of a point or personal data about an employee) probably are.

2. Identify instance variables. Once you have uncovered some possible objects,
think about the information that each object will need to do its job. What
kinds of values will the instance variables have? Some object attributes will
have primitive values; others might themselves be complex types that suggest
other useful objects/classes. Strive to find good "home" classes for all the data
in your program.

56 Chapter 2 Data Abstraction

3. Think about interfaces. When you have identified a potential object/class
and some associated data, think about what operations would be required for
objects of that class to be useful . You might start by considering the verbs
in the problem statement . Verbs are used to describe actions�what must
be done. List the methods that the class will require. Remember that all
manipulation of the object's data should be done through the methods you
provide.

4. Refine the nontrivial methods. Some methods will look like they can be
accomplished with a couple of lines of code. Other methods will require
considerable work to develop an algorithm. Use top-down design and stepwise
refinement to flesh out the details of the more difficult methods. As you
go along, you may very well discover that some new interactions with other
classes are needed, and this might force you to add new methods to other
classes. Sometimes you may discover a need for a brand new kind of object
that calls for the definition of another class.

5. Design iteratively. As you work through the design, you will bounce back and
forth between designing new classes and adding methods to existing classes.
Work on whatever seems to be demanding your attention. No one designs a
program top to bottom in a linear, systematic fashion. Make progress wherever
it seems progress needs to be made.

6. Try out alternatives. Don't be afraid to scrap an approach that doesn't seem
to be working or to follow an idea and see where it leads. Good design involves
a lot of trial and error. When you look at the programs of others, you are
seeing finished work, not the process they went through to get there. If a
program is well designed, it probably is not the result of a first try. Fred
Brooks, a legendary software engineer, coined the maxim: "Plan to throw one
away." Often you won't really know how a system should be built until you've
already built it the wrong way.

7. Keep it simple. At each step in the design, try to find the simplest approach
that will solve the problem at hand. Don't design in extra complexity until it
is clear that a more complex approach is needed.

1 2 .4 .2 1 Identifyi ng an ADT

Recall that in the statistics problem our goal was to report some simple statistics
for a set of exam scores. What are the likely candidates for objects in this program?

2 .4 An Example ADT: Dataset 57

Looking at the problem description, we are going to have to manipulate scores (a
noun) . Should a score be an object? Since a score is just a number, it looks like
one of the built-in numeric types can be used for this , probably float . What else
is there? In order to compute the required statistics, we need to keep track of an
entire set of scores. In statistics, we would call these scores a dataset. Collections are
often good candidates for ADTs; let 's try specifying a Dataset class. It's obvious
that we want methods that return the minimum value, maximum value, mean, and
standard deviation of the values in the dataset, since those are the statistics called
for in the original problem.

The only remaining question is how we get the numbers into the Dataset in the
first place. Once simple approach is to have an add method that places another
number in the dataset . We can construct an initially empty set and then add the
numbers one at a time. Here's a sample specification:

Dataset . py
class Dataset (obj ect) :

" " "Dataset is a collection of numbers from which simple
descriptive statistics can be computed . " " "

def __ init __ (self) :
" " "post : self is an empty Dataset " " "

def add(self , x) :
" " "add x to the data set
post : x is added to the data set " " "

def min (self) :
" " "find the minimum
pre : size of self >= 1
post : returns smallest number in self " " "

def max (self) :
" " "find the maximum
pre : size of self >= 1
post : returns largest number in self " " "

def average (self) :
" " " calculate the mean
pre : size of self >= 1
post : returns the mean of the values in self " " "

def std_deviation (nums) :
" " " calculate the standard deviation
pre : size of self >= 2
post : returns the standard deviation of the values in self " " "

58 Chapter 2 Data Abstraction

Examining this specification immediately suggests one more operation that we
should add to the ADT. Since various operations have preconditions based on how
many values are in the dataset, we really should have an operation that returns
this. It 's always a good idea to ensure that the preconditions of ADT operations are
testable. This allows the client to make sure it is using an ADT properly and also
allows the implementation to easily check the preconditions. Let 's add one more
method:

def size (self) :
11 11 11

post : returns the size of self (number of values added)

As before, we can "test " our design by writing some code that makes use of it .
In this case, we can actually write the main program for our application, relying on
the Dataset ADT to do the hard work. All we need is a sentinel loop to input the
data:

test_Dataset . py
def main e) :

print ' This is a program to compute the min , max , mean and '
print ' standard deviation for a set of numbers . \n '
data = Dataset 0
while True :

xStr = raw_input (' Enter a number « Enter> to quit) : ')
if xStr == " .

break
try :

x = float (xStr)
except ValueError :

print ' Invalid Entry Ignored : Input was not a number '
continue

data . add (x)
print ' Summary of ' , data . size () , ' scores . '
print ' Min : ' , data . min()
print ' Max : ' , data . max ()
print ' Mean : ' , data . average ()
print ' Standard Deviation : ' , data . std_deviation ()

i f __ name
maine)

1 2 .4 .3 1 I m plementing the ADT

To implement our Dataset ADT, we need to come up with a concrete representation
for the set of numbers. One obvious approach would be to use a list of numbers,

2 .4 An Example ADT: Dataset 59

just as we did in the original version developed using top-down design. In this
approach, the add method would simply append another number to the list . Each
of the statistics methods could then loop through the list of numbers to perform
their calculations.

Of course, as with virtually any ADT, there are other possible concrete repre­
sentations. Do we really need to store a list of all the numbers in the Dataset?
Actually, none of the methods really needs to know the specific numbers in the
collection, they just need some summary information about the numbers. Clearly,
for the min and max methods, we just need to know the smallest and largest values,
respectively, that have been added to the set so far. For average we just need to
know the sum of the values and the size of the dataset. We could store summary
information such as the size, minimum, maximum, and sum of the data as instance
variables. These instance variables would be updated in the add method when a
new number is added to the Dataset . The actual number would not need to be
stored separately.

There is still a problem in figuring out the standard deviation. Our original
formulation of standard deviation required us to compute the difference of each
value with the mean. Of course, we can't know the mean until we have all the data
values, so calculating the individual differences appears to require iterating back
through the collection of numbers after the mean is known. It turns out , however,
that there is an equivalent formulation of standard deviation, sometimes called the
"shortcut formula, " that is computed as follows:

s =
n - l

This formula does not require us to know each Xi , instead we just need the sum of
the values and the sum of the squares of the values. To use this formula, we just
need one additional instance variable for the sum of the squares.

So, we have two possible concrete representations for the Dataset class. The
first version, based on the original design, maintains a single instance variable (say
self . data) containing a list of all the numbers. The second version maintains in­
stance variables (self . _size , self . _min, self . _max , self . _sum, self . _sum_squares)
representing summary information of the data.2

You should have little difficulty implementing the Dataset class using either of
these concrete representations. Writing the actual code is left as an exercise. Even

2The use of leading underscores in the instance variable names is a common convention both to
"mark" them as instance variables and to keep them from conflicting with similarly named methods
(max, the method, vs. _max, the instance variable) .

60 Chapter 2 Data Abstraction

without the code, however, it 's possible to analyze the relative efficiency of these two
representations. The second representation has several advantages over the version
originally developed with top-down design. Obviously, it is more efficient in terms
of storage space, since it does not have to remember the list of values that have
been added to the set . In fact , the memory footprint of this more-efficient Dataset
object does not even change when more data is added.

Interestingly, the second representation is also more efficient in terms of execution
time. In the first version, each of the statistical operations has to loop over the list
of numbers and thus has 8(n) efficiency where n is the size of the dataset . The
second version needs no loops, and all the operations are constant time, 8(1) .

1 2 . 5 1 An Exam p le ADT: Ration a l

Hopefully, you're getting the hang of designing and implementing ADTs using
objects . New classes allow us to extend our available vocabulary for solving new
kinds of problems. In this section, we're going to take a look at some practical
techniques to extend Python with a new numeric data type.

As you know, numbers with fractional values are generally represented using
the float data type. One disadvantage of using floats is that the underlying
representations are only approximations. The number is first converted into binary
(base 2) so any fractions having denominators that are not powers of 2 will translate
into a quotient with an infinitely repeating pattern. When the quotient is truncated
to fit into a finite memory location, some precision is lost . For some applications, it
would be nice to have a data type that manipulated the fractions directly so that
values such as 1

1
0 can be stored and used accurately. Let's extend the language with

a new Rational class to represent rational numbers (fractions) .

1 2 . 5 . 1 1 Operator Overload ing

Abstractly, our rational class should behave just like rational numbers in mathemat­
ics . A rational number has a numerator and a denominator that are integers and
supports the usual numeric operations. Concretely, we'll implement the rational
number ADT in a Rational class.

In building the Rational class, we'd like to make it behave as much as possible
like the existing numeric types. We generally use mathematical operators such as + ,
- , * , and / to perform functions on integers and floating-point numbers. Technically,
these operators are said to be overloaded in Python (and many other languages) in
that each can be used to indicate a number of different operations. For example, the

2.5 An Example ADT: Rationa l 61

+ sign is used for both integer and floating-point addition. The type of operation
carried out depends on the data types of the operands. We don't notice this much
with addition, but it makes a big difference when using the division operator. 3

Sometimes when we design our own classes, it makes sense to use existing
operators in the context of our new data type. Some object-oriented languages
such as Python and C++ support a mechanism that allows programmers to invoke
new functions with existing operators, thus extending operator overloading to new
programmer-defined types. Other languages, Java for example, do not .

If we were implementing Rationals in a language without operator overloading,
we might write code for a method add and call it using the syntax r3 = ri . add (r2)
to add two rational numbers and store the result in r3. There is nothing wrong
with this, but it is more familiar and readable if addition can be written as r3 =
ri + r2. As you can see, operator overloading is not necessary but it can lead to
enhanced readability when used properly. Of course, it can also lead to decreased
readability if used sloppily. Think about what would happen if someone wrote code
that caused the plus operator to subtract the two objects or do some completely
unrelated function.

In Python, certain built-in operators can be overloaded in a new class by defining
methods having special names that begin and end with two underscores. The
Python Reference Manual specifies the complete list of operators that may be
extended. Table 2 . 1 is a partial list of the methods you can write to provide
operator functionality for your own classes . . This table shows us that if we want to
be able to write c = a + b for instances of a class, we need to write the method
__ add __ (self , other) for the class. Once we do this, the code c = a + b is
equivalent to writing c = a . __ add __ (b) . In Python it is not necessary that a and
b are the same data type, but in most cases, it makes sense for that to be the case.

1 2 . 5 .2 1 The Rationa l C lass

Using Python's operator overloading, it 's quite easy to write a class for rational
numbers. The following code shows the start of a Rational class; it implements the
__ IDul __ and __ str __ methods along with a constructor that supports zero, one, or
two parameters in addition to the self parameter. As usual, the preconditions and
post conditions for each method are specified as part of the documentation strings.
This example has two instance variables, num and den. Note that the __ IDul _ _

method creates a new Rational object and does not modify the instance variables

3In Python 3.0 the slash U) always produces floating-point division, and the double slash U /)
is used for integer division.

62 Chapter 2 Data Abstraction

Method Returns
__ add __ Cself , other) self + other
__ sub __ Cself , other) self - other
__ mul __ Cself , other) self * other
__ div __ Cself , other) self / other
__ neg __ Cself) -self
__ and __ Cself , other) self & other
__ or __ Cself , other) self I other
__ iadd __ C self , other) self += other
__ isub __ Cself , other) self -= other
__ imul __ Cself , other) self *= other
__ idiv __ Cself , other) self /= other
__ It __ Cself , other) self < other
__ le __ Cself , other) self <= other
__ gt __ Cself , other) self > other
__ ge __ Cself , other) self >= other
__ eq __ Cself , other) self -- other
__ ne __ C self , other) self ! = other

Table 2 . 1 : Some operator methods that can be overloaded in Python classes.

for self or other. When overloading operators, it 's important to preserve the
"standard" semantics of operators, which is that they produce new values without
modifying the originals. When we see c = a + b, we do not expect the values of a
and b to be changed!

Rational . py
demonstrates operator overloading

class Rational Cobj ect) :

def __ init __ Cself , num = 0 , den = 1) :

" " " creates a new Rational obj ect
pre : num and den are integers
post : creates the Rational obj ect num / den" " "

self . num num
self . den den

2 .6 I ncrementa l Development and Un it Testi ng

def __ mul __ (self , other) :

11 11 11 * operator
pre : self and other are Rational obj ects
post : returns Rational product : self * other ll ll ll

num = self . num * other . num
den = self . den * other . den
return Rational (num , den)

I I I I I I return string for printing
pre : self is Rational obj ect
post : returns a string representation of self ll ll ll

return str (self . num) + ' I ' + str (self . den)

63

Of course, a complete Rational class would have to implement methods for all
of the basic numeric operations. You're probably itching to dig in and finish out
this class. That's a great idea, but we suggest looking at the material in the next
section before you tackle the completion of this class.

1 2 . 6 1 I ncrementa l Deve lopment a nd U n it Test i ng

Once we break the development of a program into separate classes, it 's nice to be
able to test each class once it's developed. In fact , it 's very convenient if we can test
the class as it 's being developed. In Python, one good way of testing an evolving
class is to use the Python shell to try it out interactively. For example, we could
test out the multiplication method for our Rational class:

» > from Rational import Rational
» > r1 = Rational (1 , 2)
» > r2 = Rational (1 , 3)
» > print r1 * r2
1/6

Testing a component in isolation like this is known as unit testing. By testing
a single component , we can easily isolate where errors are occurring. Once we have
confidence in the individual components, then we can start combining them into a
system.

One disadvantage of interactive unit testing is that each time we change a
component , we have to go back and re-create the tests. Suppose our multiplication

64 Chapter 2 Data Abstraction

test had given us an incorrect result ; we would go back, locate the error, and fix the
code. After making the fix, we would have to retype the four lines of testing code
again. This is OK for small tests, but it becomes very tedious when the tests are
more sophisticated.

An alternative to interactive unit testing is to write unit tests as actual programs
that can be run whenever needed. This is such a common task that numerous
frameworks have been developed to make writing unit tests easier. The Python
library includes two different frameworks for unit testing: uni ttest and doctest.
The Python uni ttest module is based on a popular framework (generically called
xUni t) that has been ported to many object-oriented languages. We'll use this
framework in our unit testing examples. Here is some code, using the unittest
module, that tests our simple Rational class.

test_Rational . py
unittest example

import sys
import unittest

sys . path . insert (O , ' . . ')
from Rational import *

class RationalTest (unittest . TestCase) :

def testConstructorOnelnt (self) :

r = Rational (-3)
self . assertEqual (str (r) , ' -3/1 ')

def testConstructorTwolnt (self) :

r = Rational (3 , 4)
self . assertEqual (str (r) , ' 3/4 ')

def testMul (self) :

r1 = Rational (2 , 3)
r2 = Rational (3 , 4)
r3 = r1 * r2
self . assertEqual (str (r3) , ' 6/12 ')

2 .6 I ncrementa l Development and Un it Testing

def main (argv) :
uni ttest . main 0

if __ name == ' __ main __ "

main(sys . argv)

65

Although there's not much code in this example, there are several things that you
may not have seen before, starting right near the top with the sys . path . insert .
Many programmers follow the convention of creating a subdirectory named test
containing the code for tests. This keeps the production code for the program
separated from the code that is written just for testing. Following this convention,
we're assuming that test_rational . py is placed in a subdirectory a level below
the directory where the code for the Rational class (Rational . py) is placed.

One issue with putting the testing code in its own directory is that Python
will not know where to look when the testing code asks to import the Rational
module. The sequence of directories that Python searches to find a module is called
the path. Normally, the path contains Python's system directories where all the
standard library modules are located and also the local directory wherever Python
is executing. So there is no problem as long as we are importing either system-wide
modules or modules that are in the same folder as the running program. In order
for the testing code to import the Rational module, however, we need to modify
the standard path. Python makes the path available to programmers as a list in
the system module, sys . path. This is just a list of strings specifying the various
directories where Python modules live. Executing sys . path . insert (0 , ' . . ') puts
" . . " at the front of the path list . The " . . " is a convention to indicate the parent
of the current directory (which is represented with " . " , by the way) . This allows
the test code to search the parent directory for the Rational . py file when the line
from Rational import * is executed .

The heart of the testing code is a class named RationalTest defined using the
line class Rational Test (uni ttest . TestCase) : . This declaration indicates that
the Rational Test class inherits from the TestCase class in the uni ttest mod­
ule. Another way to state this is the Rational Test class subclasses the TestCase
class defined in the uni ttest module. By virtue of inheritance, any instance of
RationalTest will also be an instance of the superclass TestCase. You can think
of a TestCase instance as a set of tests that we want to run.

The TestCase superclass defines a number of very useful methods for unit tests.
The two most commonly used are assertEqual (also known as failUnlessEqual)
and assertNotEqual (also known as faillfEqual) . Each method takes two addi­
tional parameters that are tested for equality and an optional third parameter that
is a message to be displayed if the test fails. The assertEqual test fails if the two

66 Chapter 2 Data Abstraction

parameters are not equal, and the assertNotEqual fails if the two parameters are
equal. The TestCase class supports many additional methods that you can learn
about by consulting the uni ttest documentation.

Within our RationalTest class, each of the methods that start with the four
letters test will be called automatically by the uni ttest framework when the
testing code runs. The idea of unit testing is to write methods that test all the
code you have written. You will notice in this case there are more test methods
than methods in the Rational class. This is common since one test is often not
enough to ensure that a function/method works correctly. To run the tests, we just
need to issue a call to the main function in the uni ttest module. This function
will automatically create instances of all the test classes in the file (those that are
subclasses of uni ttest . TestCase) and then execute each of the testing methods.
Note that each test method is run with a "fresh" test case, so that each test is
independent and the order in which the tests run does not matter.

Here is the output of the test_Rational . py test code when all the tests pass:

I
���--­
Ran 3 tests in 0 . 001s

OK

The three dots show the results of our three test methods. A dot indicates successful
completion of the test . If the testing code raises an unhandled exception, the result
is an "E" and a failed check results in an "F."

Of course, the results are more interesting when a test fails . If the __ mul __
method is changed so the one line contains den = self . den * other . num and the
test program is executed again, we get the the following output .

. . F

FAIL : testMul (__ main __ . RationaITest)

Traceback (most recent call last) :
File " . /test_Rational . py " , line 39 , in testMul

self . assertEqual (str (r3) , ' 6/ 12 ')
File l /usr/lib/python2 . 2/unittest . py " , line 286 , in failUnlessEqual

raise self . failureException , \
AssertionError : ' 6/9 ' ! = ' 6/12 '

Ran 3 tests in 0 . 004s

FAILED (failures=1)

2 .7 Chapter Summary 67

Notice that the status line at the top of the output shows that the third test failed ,
and a traceback is printed stating exactly which line caused the failure.

Coding unit tests in this way provides numerous benefits. Obviously, it allows
the tests to be run easily when we go back and modify the code. In fact , we can save
all of our tests, and any time we make changes to the code we can easily rerun all of
the tests, even the ones that passed previously. Running a modified program against
the previously successful tests is called regression testing. It helps to ensure that
the program continues to improve as it is developed (i .e . , that new modifications
haven't broken the previous functionality) .

Another benefit of writing unit tests while writing the class is that they help us
work out the design of a class. The testing code shows how a class is to be used , and
writing the tests helps us determine if our class is well-designed and useful. In fact ,
some modern approaches to software development advocate test-driven development.
With test-driven development , tests are always written before any actual production
code is added to the system. That way, as each function/method is added, it is
immediately testable. You can determine if it works correctly (i.e . , passes your tests
for that code) before writing the next function/method.

We think test-driven development is a very good technique. We recommend that
you write the original class with each method containing just a pass statement .
Next, write the test code for a method and then implement enough of the class to
get the test to pass. Keep repeating this process of writing a test and modifying the
class until the class is complete and passes all of the tests. Being able to run all the
tests each time you make a change to the class will give you the confidence you need
to try out new design ideas as they arise. A testing framework such as this helps
make the promise of implementation independence a practical reality. And you'll be
amazed at how quickly coding goes when coding and testing are done in tandem.

1 2 . 7 1 Chapter S ummary

This chapter has covered the fundamental ideas of data abstraction and object­
oriented programming. Here is a quick summary of some of the key ideas.

• An abstract data type (ADT) defines an API for manipulating data indepen­
dent of the implementation; in object-oriented languages, ADTs are commonly
implemented using classes.

• Encapsulation, polymorphism, and inheritance are the defining techniques
used in objected-oriented code.

68 Chapter 2 Data Abstraction

• Designing classes and programs is both art and science. A general rule is
to study the problem statement and identify nouns as classes and verbs as
methods.

• Operator overloading allows programmers to define methods to be called when
the built-in operators such as +, -, < , > , etc. are used with instances of the
programmer-defined class.

• Unit tests allow parts of a program to be tested in isolation. A unit-testing
framework makes it convenient to write automated unit tests and facilitates
the testing of code as it is written. Regression testing helps ensure that code
changes do not "break" previously working components of a program.

• Test-driven development is a common technique that involves writing test code
for each new feature before writing the production code that implements the
feature.

1 2 . 8 1 Exercises

True/ Fa lse Questions

1. To implement an ADT in Python, you must use classes.

2. If the programming language supports classes, you should usually use them
when implementing an ADT.

3. Class variables can be shared by all instances of a class.

4. When designing a program, one way of locating potential objects is by looking
for verbs in the system description.

5. Encapsulation refers to combining the data and methods into one syntactic
unit .

6. With polymorphism, a programmer writes multi-way if statements to check
the type of an object and determine which method to call.

7. Subclasses inherit methods defined in their superclasses.

8. Operator overloading allows programs to compute results that could not be
computed without operator overloading.

9. To do operator overloading in Python, you must use classes.

2 .8 Exercises 69

10. Unit tests should be executed whenever you make a change to a class.

M u lti ple Choice Questions

1. When developing large software systems, you should:

a) immediately sit down at the computer and start writing code

b) design some of the system, write some code, possibly redesign it , and test
the components as you write them

c) design the entire system before you write any code

d) implement the entire system before you test any of the code

2. Which parts of the program description will be most helpful in identifying
possible objects for a system design?

a) adjectives
b) nouns
c) verbs
d) all of the above

3. Which parts of the program description will be most helpful in identifying
possible methods in a system design?

a) adjectives
b) nouns
c) verbs
d) all of the above

4. How do you distinguish between instance variables and local variables for a
method?

a) instance variables are part of the data for a particular object and are
needed in multiple methods while local variables are needed only within
that method

b) a class should never use local variables; all variables used in methods should
be instance variables

c) a class should never use instance variables; all variables used in methods
should be local variables

d) instance variables should be used for constants only

70 Chapter 2 Data Abstraction

5. If you are examining a Python class that someone else wrote, how do you
determine if a variable is a local variable or an instance variable?

a) the same variable name is used in more than one method
b) the variable is accessed by placing self . before the variable name
c) the variable is used in the __ ini t __ method
d) instance variables are always preceded by an underscore

6. When should you use class variables?

a) when each instance of the class needs its own copy of the data
b) when each instance of the class can share the same copy of the data
c) when the data is constant
d) b and c

7. If you are designing a class to represent a polynomial, which of the following
should be instance variables?

a) the coefficients
b) a value to evaluate with the polynomial
c) the result of evaluating the polynomial with a specific value
d) all of the above

8. If you are designing a class to represent a polynomial, which of the following
should be class variables?

a) the coefficients
b) a value to evaluate with the polynomial
c) the result of evaluating the polynomial with a specific value
d) none of the above

9. When writing unit tests using the Python uni ttest framework the test code
is written as

a) a number of functions
b) a separate class that subclasses your class
c) a separate class that subclasses uni ttest . TestCase
d) part of the class you are testing

10 . What is the purpose of unit testing?

a) to help you to think about your design
b) to help you find errors in your code
c) to allow you to easily test your code each time you change it
d) all of the above

2 .8 Exercises 71

Short-Answer Questions

1. What is the difference between the interface of a class and the implementation
of a class?

2. What are some reasons for writing the unit testing code before writing the
class code?

3. What are some reasons for intermixing the writing of the unit testing code
and the class code?

4. What are some reasons for writing unit testing code after you write the class
code?

5. What happens in Python if you use the same name for an instance variable
and a method? Write a short example to try it .

6. Give two different specifications (i.e. , list the instance variables and method
names, but not the implementation of the methods) for a Deck class that
simulates an entire deck of cards including methods you would want if you
were going to simulate card games with this class.

7. What class or classes might be useful in a program that plays tic-tac-toe?
What instance variables and what methods would your class(es) use?

8. What are the benefits of writing unit tests?

9. What is the purpose of operator overloading?

Programm ing Exercises

1 . Write unit testing code for the Card class of section 2 . 3 .

2 . Implement the Card class using the alternative representation discussed in
subsection 2 . 3 . 3 . Test it using your unit tests from the previous exercise.

3. Write a simple implementation of a card deck to deal cards out randomly. Your
Deck class will contain a list of card objects. Initially, the deck will contain
one instance of each of the 52 possible cards. Your deck should implement
a deal () method that chooses a random location from the list and "pops"
that card. You should also implement a cardsLeft method that tells how
many cards are left in the deck. Note: a more sophisticated Deck class is
implemented in Chapter 3; using that design does not count.

72 Chapter 2 Data Abstraction

4. Using the Deck class from the previous exercise, write a program that plays
blackjack with two players.

5. Using the Deck class from exercise 3, write a program that plays a simple
solitaire game. The game starts by dealing several cards from the deck face­
up. If two of the cards have the same rank, two more cards are dealt from
the deck face-up on top of them. The process continues until all of the cards
have been dealt or there are no cards with matching ranks showing. A player
"wins" if all the cards have been dealt . Your program should allow the user to
choose the number of piles to use for the game and then simulate the dealing
until the game is over.

6. Modify the previous exercise so that it calculates the probability of winning
for any given number of piles.

7. Implement the DataSet class using each of the two concrete representations
suggested in the chapter. Include code to test all of the methods.

8. Write a program to allow two players to play the game Othello (also known
as Reversi) on the computer. If you are not familiar with the game, search
the Internet for the rules of the game. Design your program by creating a
class that keeps track of the pieces on the board and provides methods for
determining if a move is legal, updating the board based on a legal move, and
displaying the board (either as text or graphically) . Also provide methods for
determining what piece is at each position on the board.

9. Write a unit test for your Othello/Reversi class to test the methods that check
for a legal move and update the board based on the move.

10 . Complete the Rational class with the operators for the plus, minus, divide,
and six comparison operators and write a unit testing class to test all the
methods. The comparison operators should return True or False. For bonus
points, have your class always store the fraction in reduced form. (Hint : use
Euclid's GCD algorithm in the class constructor.)

1 1 . Use your Rational class to write a program that investigates Egyptian frac­
tions. An Egyptian fraction is formed as a sum of unit fractions (the numerator
is 1) having unique denominators. For example � can be represented as the
sum: � + l + 2� ' Your program should allow a user to enter an arbitrary
fraction and then print out an equivalent Egyptian fraction. If necessary, do
a bit of research to come up with an algorithm for the conversion.

2 .8 Exercises 73

12 . Write a class to represent a polynomial. The class should store a list of the
coefficients and the degree of the polynomial. Write the methods for the
addition, subtraction, and multiplication methods . Write the __ str __ method
that returns a string representation of the polynomial. Also provide a method
for evaluating the polynomial at a specific value. Write a unit test for your
polynomial class.

Chapter 3 Container Classes

Object ives

• To understand the list ADT as a general container class for manipulating
sequential collections.

• To understand how lists are implemented in Python and the implications this
has for the efficiency of various list operations.

• To develop intuition about collection algorithms such as selection sort and use
Python operator overloading to make new sortable classes.

• To learn about Python dictionaries as an implementation of a general mapping
and understand the efficiency of various dictionary operations.

[[IJ Overview

Program design gets more interesting when we start considering programs that
manipulate large data sets . Typically, we need more efficient algorithms to operate
on large collections. Oftentimes the key to an efficient algorithm lies in how the
data is organized, that is, the so-called data structures on which the algorithms
operate. Object-oriented programs often use container classes to manage collections
of objects. An instance of a container class manages a single collection . Objects
can be inserted into and retrieved from the container object at run-time. Python
includes a number of container classes as built-in types. You are probably familiar
with lists and dictionaries, which are the two main container classes in Python.

In this chapter, we review the basics of Python lists and dictionaries and also
take a look at how these containers are implemented in Python. Knowing how

75

76 Chapter 3 Conta i ner C lasses

a collection is implemented is often crucial to understanding the efficiency of the
supported operations.

1 3 . 2 1 Python L ists

Lists are one of the main workhorse data structures in the Python language. Just
about every program makes use of lists in some form. A thorough understanding
of lists is essential for anyone writing in Python. Given their usefulness, it is not
surprising that containers similar to Python lists are provided by virtually every
high-level programming language.

Informally, a list is a collection of objects that is stored in sequential order. For
example, a list might be used to represent the students in a class or a deck of cards.
Because a list has an ordering, it is meaningful to talk about things such as the first
object in a list or the next object in a list .

U sing our new terminology from last chapter, we can think of a Python list as
implementing an ADT for a sequential collection. Python provides quite a number
of operations on lists. Some operations are supported by built-in functions and
operators, whereas others are list methods. Here is a specification for some of the
operations provided:

Concatenation (l is t 1 + l is t2) Returns a new list that contains the elements of
listl followed by the elements of list2.

Repetition (l ist1 * int1 or int1 * l is t1) Returns a new list corresponding
to the list of elements obtained by concatenating listl with itself int1 times.

Length (len (l is t1)) Returns the number of items in listl .

Index (l ist1 [int1]) Returns the item at position int1 in list1 . The first item in
the list is at index 0 and the last item is at index len (l ist 1) - 1 .

Slice (l ist1 [int1 : int2]) Returns a new list containing the items in list1 starting
at position int1 up to, but not including, int2. If int2 ::; int1 the resulting
list is empty (assuming int1 and int2 are non-negative) .

Check membership (i t em in l is t1) Returns True if item occurs in listl and
False otherwise.

Add at end (l is t 1 . append (obj1)) Modifies list1 by adding obj1 to the end.

3 .3 A Sequentia l Col lection : A Deck of Cards 77

Add anywhere (L ist1 . insert (int1 , obj1)) Modifies listl by adding objl at po­
sition inti . The original items from position intl on are "shifted" to make
room.

Delete index (L is t 1 . pop (int1)) Returns the item at L is t 1 [int1] and modifies
listl by deleting this item from the list . Items in position intl + 1 on are shifted
down one index to "fill the gap." If inti is not supplied, the last item in the
sequence is the one deleted.

Remove object (L is t 1 . remove (obj1)) Deletes the first occurrence of objl in listi.

You probably used descriptions similar to this when you first learned how to use
Python lists . Notice that the description says nothing about how a Python list is
actually implemented in the computer; that 's the hallmark of an ADT. A little later
on, we'll take a look under the hood to see how lists can be implemented. Right
now, we're taking a client 's point of view and looking only at how lists are used.

1 3 . 3 1 A Seq uent ia l Col lect ion : A Deck of Cards

Since Python provides an implementation o f lists, it is common to make use of this
built-in type to implement various collection abstractions. Continuing our card­
game example from last chapter, let 's try implementing a collection to represent a
deck of cards. As a starting point , we need to determine the set of operations that
will be useful for a deck of cards. Obviously, we will need a way to create a new
(full) deck of cards . Usually, the deck is shuffled and used to deal cards into hands.
If we are modeling the ADT using a Python class, we might try something along
these lines:

class Deck (obj ect) :

def __ init __ (self) :
" " "post : Create a 52-card deck in standard order" " "

def shuffle (self) :
" " " Shuffle the deck
post : randomizes the order of cards in self " " "

def deal (self) :
" " "Deal a single card
pre : self is not empty
post : Returns the next card in self , and removes it from self . " " "

78 Chapter 3 Conta iner C lasses

A quick inspection of this specification shows a shortcoming of our design so far.
Notice that the deal method contains a precondition, since we can't deal any card
from an empty deck. For completeness, we should add a way for client code to check
this precondition. We could add something like an isEmpty method that tells when
the deck is exhausted. More generally, we might have a size method that gives the
number of cards left in the deck. In many card games, it's important to know how
many cards are left , so the latter approach seems a bit more useful. Let's add it to
the specification.

def size (self) :
" " "Cards left
post : Returns the number of cards in self " " "

Adding this operation to the ADT also allows us to state the precondition for
the deal method more precisely. Here's the improved specification:

def deal (self) :
" " "Deal a single card
pre : self . size () > 0
post : Returns the next card in self , and removes it from self . " " "

Having thought out the interface for our ADT, we're now ready to start imple­
menting. Obviously, a deck is a sequence of cards, so a natural choice of represen­
tation is to use a Python list to hold the cards in the deck. Here's a constructor for
our Deck.

Deck . py
from random import randrange
from Card import Card

class Deck(obj ect) :

def __ init __ (self) :
cards = []
for suit in Card . SUITS :

for rank in Card . RANKS :
cards . append(Card(rank , suit))

self . cards = cards

Notice how this code uses nested loops to produce every possible combination
of rank and suit. Each subsequent card is appended to the list of cards, and the
resulting list is stored away as an instance variable of the Deck object .

Once we have created a Deck object, checking its size and dealing cards from
the deck can be accomplished with simple list operations.

3.3 A Sequentia l Col lection : A Deck of Cards 79

def size (self) :
return len (self . cards)

def deal (self) :
return self . cards . pop ()

The deal method returns cards in order from the end of the list . Using this approach
the ordering imposed by the Python list data structure determines the order in which
the cards are dealt .

Now all we need is a method to shuffle a deck (Le. , put it into a random order) .
This gives us a chance to exercise our algorithm development skills. You probably
know some ways of shuffling a deck of cards, but the usual methods don't transfer
very well into code. One way to think about the problem is to consider the task of
putting the cards into a specific arrangement. The shuffle operation should ensure
that any of the 52! possible arrangements of the deck is equally likely. That means
that every card in the deck has to have an equal chance of being the first card, and
each of the remaining cards has an equal chance of being the second card, etc.

We can implement a shuffle algorithm by building a new list out of the cards in
the original list . We start with an empty list and repeatedly transfer a card chosen
at random from the old list to the new list . Here's how the algorithm looks in code:

def shuffle (self) :
cardsO = self . cards
cards1 = []
while cardsO ! = [] :

delete a card at random from those in original list
pos = randrange (len(cardsO))
card = cardsO . pop (pos)

transfer the card to the new list
cards1 . append (card)

replace old list with the new
self . cards = cards 1

We can improve this algorithm slightly by doing the shuffle in place. Rather than
going to the trouble of building a second list , we could choose a card at random and
move it to the front of the existing list . Then we ccould pick a card from locations
1 through n and move it to position 1 , etc. There is one subtlety in this approach;
when we place a random card into a given position, we have to be careful not to
clobber the card that is currently in that position. That is , we need to save the card
that is being replaced somewhere so that it is still part of the pool for subsequent

80 Chapter 3 Conta i ner Classes

placement . The easiest way to do this is to simply swap the positions of the two
cards. Here's the in-place version of our shuffle algorithm:

def shuffle (self) :
n = self . size O
cards = self . cards
for i , card in enumerate (cards) :

pos = randrange (i , n)
cards [i] = cards [pos]
cards [pos] = card

Notice that in this code it is not necessary to do self . cards = cards at the end
of the method. The assignment statement immediately before the loop sets cards to
be a reference to the same list as self . cards . Therefore, the changes made to this
list (swapping cards) are changing self . cards. The local variable cards is used for
convenience (so we don't have to keep typing self . cards) and efficiency (retrieval
of local variable values is more efficient than retrieval of instance variables) .

We now have a complete Deck class. Let 's take it for an interactive test drive.

» > d = DeckO
» > print d . deal ()
King o f Spades
» > print d . deal ()
Queen of Spades
» > print d . deal ()
Jack of Spades
» > d . shuffle 0
» > d . size O
49
» > print d . deal ()
Seven o f Hearts
» > print d . deal ()
Nine of Diamonds

Notice how the initial deck deals cards out from the standard ordering. After
shuffling, the cards come out randomly, just as we expect .

1 3 .4 1 A Sorted Col l ect ion : H a nd

In the previous section, we used a Python list as a container class to implement a
deck of cards. A deck has an implicit ordering of cards, namely the order in which
the cards are dealt , and so it made sense to use a list to store the cards. Of course,
the particular order that the deck is in is supposed to be random; that 's why we

3.4 A Sorted Col lection : Hand 81

shufHe a deck. Sometimes we want the objects in a container to be in a specific
order according to the value of each item. The process of putting a collection in
order by value is called sorting. In this section, we'll look at an example of a sorted
collection.

1 3 .4 . 1 1 Creating a Bridge Hand

Let 's put our Deck class to work in an actual application. Suppose we are writ­
ing a program to play the popular card game bridge. Building such a program
incrementally, our first task might be to deal four 13-card hands from a shufHed
deck. We'd also like to display the hands nicely so that we can analyze them. For
example, newspapers that carry bridge columns often show hands arranged by suit
(in the order spades, hearts, diamonds, clubs) with cards in each suit arranged by
decreasing rank (ace, king, queen, . . . , 2) . Note that aces are considered higher than
kings in bridge.

Our task is to deal cards into hands and then to arrange those hands into the
specified order. This suggests the invention of a new kind of collection, a Hand
class. A Hand is initially empty, and cards are added to it one by one as they are
dealt . Considering our Hand as an ADT, we need operations to create a hand, add
a card, put the hand in order (sort it) , and display the cards in the hand. An initial
specification of the class looks like this:

Hand . py
class Hand(obj ect) :

" " "A labeled collection of cards that can be sorted" " "

def �_init __ (self , label=" ") :
" " "Create an empty collection with the given label . " " "

def add(self , card) :
" " " Add card to the hand

def sort (self) :
" " " Arrange the cards in descending bridge order . " " "

def dump (self) :
" " " Print out contents of the Hand . " " "

We have added to our initial description the ability to give each hand a name
or label to identify it. Traditionally, bridge hands are identified with the compass
points north, east, south and west . Notice that we have also added a dump method to
display the contents of the hand. This is useful for testing and debugging purposes.

82 Chapter 3 Conta iner Classes

Since hands are ordered, a Python list is again the container of choice for
implementing the new collection. Most of the operations are trivial to implement .
The constructor must store away the label and create an empty collection. Let's
store it in an instance variable called cards :

Hand . py
class Hand(obj ect) :

def __ init __ (self , label=" ") :
self . label label
self . cards = []

The add operation takes a card as a parameter and puts it into the collection.
A simple append suffices:

def add(self , card) :
self . cards . append(card)

To dump the contents of the hand, we just need to print out a heading and then
loop through the list to print each card.

def dump (self) :
print self . label + " ' s Cards : "
for c in self . cards :

print " " , c

Let 's try out what we've got so far.

» > from Hand import Hand
» > from Card import Card
» > h = Hand("North")
» > h . add(Card(5 , " c " »
» > h . add(Card (iO , "d" »
» > h . add (Card (13 , " s " »
» > h . dump O
North ' s Cards :

» >

Five of Clubs
Ten of Diamonds
King of Spades

That looks good. Notice how the listing of the cards is indented under the hand
heading.

3.4 A Sorted Col lection : Hand 83

1 3 .4 .2 1 Compari ng Cards

That leaves us with the problem of putting the hand in order. The sorting problem
is an important and well-studied one in computer science. We'll take a quick look
at it here and revisit it again in later chapters. If we want to put some things in
a particular order, the first problem we have to solve is what exactly the ordering
should be.

In the case of our bridge program, we want to order our Card objects, grouping
them first by suit and then ordering by rank within suit . Usually orderings are
determined by a relation such as "less than." For example, if we say that a list of
numbers is in increasing order, that means that for any two numbers x and y in the
list , if x < y then x must precede y in the list . Similarly, we need a way of comparing
cards so that we can order them in our Hand. In Chapter 2, we saw how Python
operator overloading allows us to build new classes that "act like" existing classes.
Here, we would like our cards to behave like numbers so that we can compare them
using the standard Python operators such as < , = = , > , and so on.

We can do this by defining methods for these operations in the Card class . Here
are the definitions of the "hook" functions for these operators.

def __ eq __ Cself , other) :

return Cself . suit_char == other . suit_char and
self . rank_num == other . rank_num)

def __ It __ Cself , other) :

if self . suit_char == other . suit char :
return self . rank_num < other . rank_num

else :
return self . suit_char < other . suit_char

def __ ne __ Cself , other) :

return not Cself == other)

def __ le __ Cself , other) :

return self < other or self == other

Notice that we've given "primitive" definitions for __ eq __ and __ It __ ; the rest of
the necessary operators can easily be defined in terms of these two. We have not
bothered to write definitions for __ gt __ and __ ge __ because Python gives us these
for free. In an expression such as x > y, when the > operator is not implemented

84 Chapter 3 Conta iner C lasses

for x, Python will try the symmetric operation y < x. Similarly, x >= y invokes y
<= x .

Now that our Card objects are comparable, there's one last detail to clean up.
When we originally created the Card class, we used a rank of 1 to represent an ace,
but in bridge aces are the highest card, coming right after the king. Right now, our
comparison method will put aces at the low end, since the rank is 1 .

We can handle this issue in a couple of ways. One approach would b e to code
a special case for aces into the comparison methods. Another solution is to simply
modify the Card class to use ranks that run from 2 to 14 with 14 representing the
ace. Taking the latter approach, the start of our modified Card class would now
look like this:

class Card(obj ect) :
II " "A simple playing card . A Card is characterized by two
components :
rank : an integer value in the range 2-14 , inclusive (Two-Ace)
suit : a character in II cdhs " for clubs , diamonds , hearts , and
spades . II " "

SUITS = " cdhs "
SUIT_NAMES = ["Clubs " , "Diamonds ll , "Heart s " , " Spade s "]

RANKS = range (2 , 15)
RANK_NAMES ["Two ll , II Three II , " Four" , "Five ll , " Six" ,

II Seven" , "Eight " , II Nine " , "Ten" ,
" Jack" , " Queen" , "King" , "Acell]

Recall that our Deck class actually has to generate every possible card to create
the initial deck. As such, the Deck class depends on the Card class, and changing the
interface to the Card class might break the Deck class, since it might not know that
14 is now a legal rank but 1 isn't . Fortunately, when we originally coded up Deck we
used Card . RANKS to generate all the possible ranks rather than using a hard-coded
range such as range (1 , 14) . By changing this constant in the Card class, we still
are playing with a full deck. This illustrates the design advantage of using named
constants rather than filling your code with "magic values." In this case, use of the
constant helps us maintain the abstraction barrier between Card and Deck.

Given these modifications to our Card class, we can now compare cards just as
if they were numbers using the relational operators:

3 .4 A Sorted Col lection : Hand

» > Card(14 , " c ") < Card (2 , "d")
True
» > Card(8 , " s ") > Card (10 , " s ")
False
» > Card(6 , " c ") == Card (6 , " c ")
True
» >

85

Notice how the ace of clubs is " less than" the two of diamonds, since we have said
that all clubs proceed any diamond.

1 3 .4 .3 1 Sort ing Cards

N ow that we can compare cards, we just need to come up with an algorithm to put
them in order. Perhaps surprisingly, we can use an algorithm very similar to the
one we used to shuffle the deck. Instead of choosing a card at random to become
the first card in the hand, we choose the biggest card. Then we choose the biggest
of the remaining cards to be the next one, and so on. This algorithm is known as a
selection sort. As we'll see later, it 's not the most efficient way of sorting a list , but
it's an easy algorithm to develop and analyze.

In Python, a particularly simple way to implement the selection sort algorithm
is to use two lists. The "old" list is the original hand, and the "new" list will be
the ordered hand, which starts out empty. As long as there are cards in the old
list , we simply find the largest one, remove it from the old list , and place it at the
back of the new list . When the old list is empty, the new list contains the cards in
descending order. Here's an implementation:

def sort (self) :
cardsO = self . cards
cards1 = []
while cardsO ! = [] :

next_card = max (cardsO)
cardsO . remove (next_card)
cards1 . append (next_card)

self . cards = cards1

Notice how the step of finding the largest card in the old list (cardsO) is
accomplished using the Python built-in function max. This is a nice side effect of
implementing the comparison operators . Now that Card objects can be compared,
any existing Python sequence operations that rely on comparing elements can be
used on collections of Card objects. That certainly simplifies things, doesn't it?

Notice that we have developed a general sorting algorithm. It should work for
sorting lists of any type of object . Right now, it sorts by creating a brand new list

86 Chapter 3 Conta i ner Classes

that is in sorted order. However, just like the shuffling algorithm we did earlier,
the selection sort can easily be converted to sort a list in place. Performing this
conversion is left as an exercise .

Actually, we have done more work than necessary to sort our hands. Since our
Card objects are now comparable, we can let Python do the sorting of the cards for
us by using the sort method that is built into the Python list type. Of course, the
built-in sort will put the cards into ascending order. To get the cards into descending
order, we'll need to reverse them after sorting. Here's a version of the sort method
using this approach.

def sort (self) :
self . cards . sort ()
self . cards . reverse ()

That's certainly easiest , but i f we had jumped to this solution right away, we would
have missed out on the excitement of developing our own sorting algorithm.

How efficient is the selection sort algorithm that we developed? Obviously the
main work of the function is being done inside the while loop. Notice that the loop
continues until the cardsO list is empty. Each time through the loop, exactly one
item is removed from cardsO, so it's clear that this loop will execute n times, where
n is the number of items in the original list . Each time through the loop, we need
to find the largest card in cardsO. In order to find the largest card, the Python max
function must look at each card in the list in turn and keep track of which is the
largest. That's a 8 (c) operation, where c is the number of items in the list being
analyzed. The first time through the while loop, max examines n cards. The next
time through, it only has n - 1 cards to consider, then n - 2 , etc. So the total work
done in all the iterations of the while loop is n + (n - 1) + (n - 2) + . . . + 1 . As we
discussed in subsection 1 . 3 . 4, this sum is given by the formula n(n2+1) . That makes
our selection sort at least an n2 algorithm. While it can be no better than 8(n2) ,
it could even be worse, depending on the efficiencies of the remove and insert
methods, which are also executed in the body of the while loop. We'll consider
those operations in section 3 . 5 .

By contrast, the built-in sort method in Python is a 8 (n log n) algorithm,
which is much more efficient . For our simple hands of 13 cards, that doesn't make
much difference, but for a large list, it can mean the difference between sorting the
collection in seconds vs. hours or days. We'll see how to design more efficient sorting
algorithms in section 6 . 5 .

3.5 Python L ist Implementation 87

1 3 . 5 1 Python L ist I m p lementat ion

When we analyzed the selection sort above, we concentrated on the max operation,
which turned out to be 8(n) , but we ignored the insert and remove methods for
lists. It turns out that both of these methods have the same time complexity as max.
How do we know that? Just as the choice of using a Python list to implement our
collection classes Deck and Hand determines the relative efficiency of the methods
in these classes, the choice of data structures in the implementation of Python
lists determines the efficiency of various list operations. Therefore, understanding
the true efficiency of various operations requires some understanding of Python's
underlying data structures.

1 3 . 5 . 1 1 Array-based Lists

So how can we efficiently store and access a collection of objects in computer
memory? Recall that computer memory is simply a sequence of storage locations.
Each storage location has a number associated with it (much like an index) called its
address. A single data item may be stored across a number of contiguous memory
locations. To retrieve an item from memory, we need a way to either look up or
compute the starting address of the object . If we want to store a collection of objects,
we need to have some systematic method for figuring out where each object in the
collection is located.

Consider the case when all of the objects in a collection are the same size, that
is they all require the same number of bytes to be stored. This would be the case
with a homogeneous (all the same type) collection. A simple method for storing
the collection would be to allocate a single contiguous area of memory sufficient to
hold the entire collection. The objects could then be stored one after the next. For
example, suppose an integer value requires 4 bytes (32 bits) of memory to store.
A collection of 100 integers could be stored sequentially into 400 bytes of memory.
Let 's say the collection of integers starts at the memory location with the address
1024. This means the number at index 0 in the list starts at address 1024, index 1
is at 1028, index 2 is at 1032, etc. The location of the ith item can be computed
simply using the formula address�of �ith = 1024 + 4 * i .

What we have just described is a data structure known as an array. Arrays
are a common data structure used for storing collections, and many programming
languages use arrays as a basic container type. Arrays are very memory efficient
and support quick random access (meaning we can "jump" directly to the item
we want) via the address calculation we just discussed. By themselves, however,
they are somewhat restrictive. One issue is the fact that arrays must generally be

88 Chapter 3 Conta iner Classes

homogeneous. For example, it 's usually not possible to have an array that contains
both integers and strings. In order for the address calculations to work, all elements
must be the same size.

Another shortcoming of arrays is that the size of the array is determined when
memory is allocated for it . In programming language terminology, arrays are said to
be static. When we allocate an array for 100 items, the underlying operating system
grants us an area of memory sufficient to hold that collection. The memory around
the array will be allocated to other objects (or even other running programs) . There
is no way for the array to grow, should more elements be added later. Programmers
can work around this limitation to some extent by creating an array large enough to
hold some theoretical maximum collection size. By keeping track of how many slots
of the array are actually in use, the programmer can allow the collection to grow and
shrink up to that maximum size. However, this negates the memory efficiency of
arrays, since it forces the programmer to request more memory than might actually
be needed. And, of course, we're still out of luck if the size of the collection needs
to grow beyond the anticipated maximum.

In contrast to arrays, Python lists are heterogeneous (they can mix objects of
different types) and dynamic (they grow and shrink) . Underneath, Python lists
are actually implemented using arrays. Remember that Python variables store
references to the actual data objects . Don't worry too much if you are not familiar
with or do not fully understand the concept of references; we will discuss them in
detail in the next chapter. The point here is that what is stored in the consecutive
memory locations of the Python list array are the addresses of actual data objects .
Each address is the same length (typically 32 or 64 bits on modern CPU s) . To
retrieve a value from a list , the Python interpreter first uses the indexing formula to
find the location of the reference (address) to the object and then uses the reference
to retrieve the object . So an array with fixed-sized elements can be used to store
the addresses that are then used to retrieve arbitrarily sized objects.

Of course, Python lists can also grow by calling methods such as insert and
append. Internally, Python allocates a fixed-sized array for a list and keeps track
of this maximum fixed size and the current size of the list . When an attempt is
made to add elements beyond the current maximum size, a new contiguous section
of memory large enough to store all the elements must be allocated. The references
stored in the old array are then copied to the new larger array, and finally the
memory for storing the old list is deallocated (given back to the operating system) .
U sing this trick of dynamic array allocation, Python lists can continue to grow as
long as enough system memory is available to hold the new list .

3.6 Python Dictionaries (Optiona l) 89

\ 3 . 5 . 2 \ Efficiency Ana lysis

Knowing that Python lists are implemented as dynamically resizing arrays, we are
now in a position to analyze the run-time efficiency of various list operations.

Allocating a new larger array is a relatively expensive operation, so the new
array that is allocated is typically significantly larger. Allocating a much larger
array prevents the resize operation from being necessary until quite a number of
additional items have been added to the array. This means appending onto the end
of a Python list will occasionally require 8(n) computation (to allocate a new array
and copy the existing items over) , but most of the time it is a 8(1) operation. If
the size of the array is doubled each time it needs to be made larger, then the 8(n)
resize operation only needs to be executed every n appends. Amortizing the cost
of creating the new larger array over the n appends that can be performed without
the resize operation results in the average cost of an append being 8(1) .

The situation for arbitrary insertion operations anywhere in the list is a little
different . Because the elements of an array are in contiguous memory locations, to
insert into the middle of an array we have to first create a "hole" by shifting all of
the following items one place to the right. When the insertion is at the very front
of the list , the Python interpreter has to move all n elements currently in the array.
So the insertion operation is still 8(n) even if the size doubling trick is used when
the array is full.

Python lists also support a method to delete elements from an existing list . The
analysis for deletion is the same as for insertion. If we delete the element in position
four, all the elements in positions five and above must be shifted down one location.
So deletion, like insertion, is a 8(n) operation. When deleting elements, we do not
need to change the maximum size of the list ; however, if a list grows very large for
a short time period and then shrinks and stays much smaller for the rest of the
program, the memory allocated to store the largest size will always be in use.

/ 3 . 6 / Python D ict iona ries (Opt iona l)

Python lists are an example of a sequential data structure. There is an inherent
ordering of the data. Even in our implementation of the randomly shuffled deck,
the items in the underlying list are still indexed by the natural numbers (0, 1 , 2, . . .) ,
which gives the collection a natural ordering. In fact , one can view lists abstractly
as just a kind of mapping from indexes to items in the list . That is, each valid index
is associated with (maps to) a particular list item.

90 Chapter 3 Conta i ner Classes

The idea of mapping is very general and need not be restricted to using numbers
as the indexes. If you think about it a bit , you can probably come up with all sorts
of useful collections that involve other sorts of mappings. For example, a phone
book is a mapping from names to phone numbers. Mappings pop up everywhere in
programming, and that is why Python provides an efficient built-in data structure
for managing them, namely a dictionary.

1 3 . 6 . 1 1 A Dictionary ADT

You have probably run across Python dictionaries before, but perhaps not given
them much thought . A dictionary is a data structure that allows us to associate
keys with values, that is , it implements a mapping. Abstractly, we can think of a
dictionary as just a set of ordered (key , value) pairs. Viewed as an ADT, we just
need a few operations in order to have a useful container type.

Create
post : Returns an empty dictionary.

put (key , value)
post : The value value is associated with key in the dictionary. (key , value)

is now the one and only pair in the dictionary having the given key.

get (key)
pre: There is an X such that (key , X) is in the dictionary.
post : Returns X.

delete (key)
pre: There is an X such that (key , X) is in the dictionary.
post : (key , X) is removed from the dictionary.

There are many programming situations that call for dictionary-like structures.
Some programming languages such as Python and Perl provide built-in implementa­
tions of this important ADT. Other languages such as C++ and Java provide them
as part of a standard collection library.

1 3 . 6 .2 1 Python D ictionaries

A Python dictionary provides a particular implementation of the dictionary ADT.
Let 's start with a simple example . Remember in our Card example we needed to be
able to turn characters representing suits into full suit names. That's a perfect job
for a dictionary. We could define a suitable Python dictionary like this:

3.6 Python Dictionaries (Optiona l) 91

suits = { " c" : " Clubs " , "d" : "Diamonds " , "h" : "Hearts " , " s " : " Spades" }

As you can see, the syntax for a dictionary literal resembles our abstract description
of a dictionary being a set of pairs. In Python, the key-value pairs are joined with
a colon. In this case, we are saying that the string " e " maps to the string "Clubs " ,

" d " maps to "Diamonds " , etc.
Values can be retrieved from a Python dictionary via a get method, but Python

also allows dictionaries to be indexed in a manner similar to lists. Here are some
interactive examples:

» > suits
{ "h" : "Hearts" , " c " : "Clubs " , " s " : " Spades" , "d" : "Diamonds "}
» > suits . get (" c ")
' Clubs '
» > suits [" c "]
' Clubs '
» > suits [" s "]
' Spades '
» > suits [" j "]
Traceback (most recent call last) :

File " <stdin> " , line 1 , in ?
KeyError : " j "
» > suits . get (" j ")
» > suits . get ("x" , "Not There ")
' Not There '

Notice that when suits was evaluated, the key-value pairs did not print out in the
same order as when the dictionary was created. Dictionaries do not preserve the
ordering of items, only the mapping. The last interactions show a subtle difference
between indexing and the get operation. 'frying to index into a dictionary using
a nonexistent key raises a KeyError exception. However, the get method simply
returns None as a default value in this case. As illustrated in the last interaction,

get also allows an optional second parameter to provide an alternative default value,
should the key lookup fail.

The abstract put operation for changing entries in a dictionary or extending it
with new entries is implemented via assignment in Python. Again, this makes the
syntax for working with dictionaries very similar to that of lists. Here are a few
examples:

92

» > suits [" j "] = " Joker"
» > suits

Chapter 3 Conta iner Classes

{ ' h ' : ' Hearts ' , ' e ' : ' Clubs ' , ' j ' : ' Joker ' , ' s ' : ' Spades ' , ' d ' : ' Diamonds ' }
» > suits [" j "]
' Joker '
» > suits [" e "]
» > suits [" s "]
» > suits

"Clovers "
"Shovels "

{ ' h ' : ' Hearts ' , ' e ' : ' Clovers ' , , j ' : ' Joker ' , ' s ' : ' Shovels ' , ' d ' : ' Diamonds ' }

To remove items, Python dictionaries understand the del function, just as
Python lists do. You can also remove all the entries from a dictionary using the
clear method.

» > suits
{ ' h ' : ' Hearts ' , ' e ' : ' Clovers ' , ' j ' : ' Joker ' , ' s ' : ' Shovels ' , ' d ' :
' Diamonds ' }
» > del suits [' j ']
» > suits
{ ' h ' : ' Hearts ' , ' e ' : ' Clovers ' , ' s ' : ' Shovels ' , ' d ' : ' Diamonds ' }
» > suits . elear ()
» > suits
{}

In addition to these basic operations, Python provides a number of conveniences
for working with dictionaries. For example, we often want to do something to
every item in a dictionary. For that , it's useful to deal with the dictionary in
a sequential fashion. Python dictionaries support three methods for producing list
representations of dictionary components: keys returns a list of keys, values returns
a list of values, and items returns a list of (key , value) pairs. 1 You can also directly
iterate through the keys of a dictionary using a for loop and check whether a given
key is in the dictionary using the in operator.

1 In Python 3.0, these methods return iterator objects (see Chapter 4) . They can easily be
converted to lists, for example list (rnyDiet ionary . i terns 0) .

» > suits . keys O
[' h ' , ' c ' , ' s ' , ' d ']
» > suits . values ()

3 .6 Python Dictionaries (Optiona l)

[' Hearts ' , ' Clovers ' , ' Shovels ' , ' Diamonds ']
» > suits . items ()
[(' h ' , ' Hearts ') , (' c ' , ' Clovers ') , (' s ' , ' Shovels ') , (' d ' , ' Diamonds ')]
» > for key in suits :

print key , suits [key]

h Hearts
c Clovers
s Shovels
d Diamonds
» > ' c ' in suits
True
» > ' x ' in suits
False

1 3 . 6 . 3 1 Dictionary I m plementation

93

As with virtually any ADT, there are numerous ways one could go about imple­
menting dictionaries. The choice of implementation will determine how efficient
the various operations will be. One simple representation would be to store the
dictionary entries as a list of key-value pairs. A get operation would involve
some form of lookup on the list to find the pair with the specified key. Other
operations could also be performed using simple list manipulation. Unfortunately,
this approach will not be very efficient , as some of the operations will require 8(n)
effort . (An exact analysis of the situation is left as an exercise .)

Python uses a more efficient data structure called a hash table. Hash tables are
covered in-depth in section 13 . 5 . Here we just want to give you some intuition so
that you can understand the efficiency of various dictionary operations . That will
enable you to judge the efficiency of algorithms that use Python dictionaries.

The heart of a hash table is a hashing function. A hashing function takes a key
as a parameter and performs some simple calculations on it to produce a number.
Since all data on the computer is ultimately stored as bits (binary numbers) , it's
pretty easy to come up with hashing functions. Python actually has a built-in
function hash that does this . You can try it out interactively.

94

» > hash(2)
2
» > hash (3 . 4)
-751553844
» > hash (" c ")
-212863774
» > hash ("hello ")
-1267296259
» > hash (None)
135367456
» > hash ((1 , " spam" , 4 , "U"))
40436063

Chapter 3 Conta iner Classes

» > hash ([1 , " spam" , 4 , "U"])
Traceback (most recent call last) :

File " <stdin> " , line 1 , in ?
TypeError : list obj ects are unhashable

Feeding anything that is "hashable" to hash produces an int result . Take a
close look at the last two interactions. A tuple is hashable, but a list is not. One
requirement of a hash function is that whenever it is called on a particular object ,
it must always produce the exact same result. Since the hash function relies on
the underlying representation of the object to produce a hash value, the value is
guaranteed to be valid only for objects whose underlying representations are not
subject to change. In other words, we can only hash immutable objects. Numbers,
strings, and tuples are all immutable and, hence, hashable. Lists can be changed,
so Python does not allow them to be hashed.

With a suitable hash function in hand, it's easy to create a hash table to imple­
ment a dictionary. A hash table is really just a large list that stores (key , value)
pairs. However, the pairs are not just stored sequentially one right after another.
Instead they are stored in the list at an index determined by hashing the key. For
example, suppose we allocate a list of size 1000 (this is our "table") . To store the
pair (lI e " , II Clubs ") we compute hash (" e ") % 1000 = 226. Thus, the item will
be stored in location 226. Notice that the remainder operation guarantees we get
a result in range (1000) , which will be a valid index for our table. With a good
hashing function, items will be distributed across the table in a relatively uniform
way.

As long as no two keys in the dictionary hash to the exact same location, this
implementation will be very efficient . Inserting a new item takes constant time,
since we just apply the hash function and assign the item to a location in the list .
Lookup has similar complexity; we just compute the hash and then we know where
to go grab the item. To delete an item we can just put a special marker (e.g. , None)

3 .6 Python Dictionaries (Optiona l) 95

into the appropriate slot . So all basic dictionary operations can be accomplished in
constant (8(1)) time.

But what happens when two keys hash to the same spot? This is called a
collision. Dealing with collisions is an important issue that is covered in section 1 3 . 5 .
For now it suffices t o note that there are good techniques for dealing with this
problem. Using these techniques and ensuring a table of adequate size yields data
structures that, in practice, allow for constant time operations. Python dictionaries
are very efficient and can easily handle thousands, even millions of entries, provided
you have enough memory available. The Python interpreter itself relies heavily on
the use of dictionaries to maintain namespaces, so the dictionary implementation
has been highly optimized.

1 3 .6 .4 1 An Extended Exam ple : A Markov Cha i n

Let's put our new knowledge of dictionaries to use in a program that combines
several Python container classes to build Markov models . A Markov model is a
statistical technique for modelling systems that change over time. One application
of Markov models is in the area of systems for natural language understanding. For
example, a speech recognition system can use predictions about what word is likely
to come next in a sentence in order to decide among homonyms such as "their, "
"they're," and "there."

Our task is to develop a Markov class that could be used in such applications.
We will demonstrate our class by using it to construct a program that can generate
"random" language of a particular style. For example, if we train the program by
feeding it mystery novels, it will generate gibberish that sounds like it came from a
(really) bad mystery novel.

The basic idea behind a Markov model of language is that one can make pre­
dictions about the next word of an utterance by looking at some small sequence of
preceding words. For example, a trigram model looks at the preceding two words
to predict the next (third) word in a sequence. More or fewer words could be used
as a "window" depending on the application. For example, a bigram model would
predict the probabilities for the next word based only on the immediately preceding
word. Our initial design will be for a trigram model ; extending the program to
arbitrary length prefixes is left as an exercise.

Here is a quick specification of our Markov class.

96 Chapter 3 Conta iner C lasses

class Markov(obj ect) :

" " "A simple trigram Markov model . The current state is a sequence
of the two words seen most recently . Initially , the state is
(None , None) , since no words have been seen . Scanning the
sentence "The man ate the pasta" would cause the
model to go through the sequence of states : [(None , None) ,
(None , ' The ') , (' The ' , ' man ') , (' man ' , ' ate ') , (' ate ' , ' the ') ,
(' the ' , ' pasta ')] " " "

11 11 11 post : creates an empty Markov model with initial state
(None , None) . " " "

def add(self , word) :

" " "post : Adds word as a possible following word for current
state of the Markov model and sets state to
incorporate word as most recently seen .

ex : If state was (" the " , "man") and word is " ate" then
" ate" is added as a word that can follow " the man" and
the state is now ("man" , " ate ") " " "

def randomNext (self) :

" " "post : Returns a random choice from among the possible choices
of next words , given the current state , and updates the
state to reflect the word produced .

ex : If the current state is ("the " , "man ") , and the known
next words are [" ate " , "ran" , "hit " , "ran"] , one of
these is selected at random . Suppose "ran" is selected ,
then the new state will be : ("man" , "ran") . Note the
list of next words can contain duplicates so the
relative frequency of a word in the list represents its
probability of being the next word . " " "

def reset (self) :

" " "post : The model state is reset to its initial
(None , None) state .

note : This does not change the transition information that
has been learned so far (via add ()) , it
just resets the state so we can start adding
transitions or making predictions for a " fresh"
sequence . " " "

3.6 Python Dictionaries (Optiona l) 97

Reading this specification closely reveals a number of container structures that
we must weave together to produce a working class. An instance of the Markov
class must always know its current state, which is a sequence of the last two words
encountered. We could represent this sequence as either a list or a tuple. Given the
current state, we need some sort of model that allows us to retrieve a collection of
possible next words. That 's just a mapping, so we can use a dictionary to implement
the model. The keys for the dictionary will be pairs of words, and the values will be
lists of possible next words. Note we must use a tuple to represent the word pair,
since Python lists are not hashable.

We are now in a position to write the code for this class.

import random

class Markov(object) :

def __ init __ (self) :
self . model {} # maps states to lists of words
self . state = (None , None) # last two words processed

def add (self , word) :
if self . state in self . model :

we have an existing list of words for this state
just add this new one (word) .
self . model [self . state] . append (word)

else :
first occurrence of this state , create a new list
self . model [self . state] = [word]

transition to the next state given next word
self . _transition (word)

def reset (self) :
self . state = (None , None)

def randomNext (self) :
get list of next words for this state
1st = self . model [self . state]
choose one at random
choice = random . choice (lst)
transition to next state , given the word choice
self . _transition (choice)
return choice

def _transition (self , next) :
help function to construct next state
self . state = (self . state [1] , next)

98 Chapter 3 Conta i ner Classes

You should read this code carefully to make sure that you understand how the class
makes use of Python dictionaries, lists, and tuples.

All that remains to complete our gibberish-generating program is to write some
code to "train" a model on a large sample of input text and then use the resulting
model to generate a stream of output. Here are a couple of functions that fit the
bill.

test_Markov . py
def makeWordModel (filename) :

creates a Markov model from words in filename
infile = open (filename)
model = Markov O
for line in infile :

words = line . split ()
for w in words :

model . add(w)
infile . close 0
Add a sentinel at the end of the text
model . add (None)
model . reset ()
return model

def generateWordChain(markov , n) :
generates up to n words of output from a model
words = []
for i in range (n) :

next = markov . randomNext ()
i f next i s None : break # got to a final state
words . append(next)

return II " . j oin (words)

Here is an example of the output obtained by training a model on Lewis Carroll's
Alice 's Adventures in Wonderland:

Alice was silent . The King looked anxiously at the mushroom for a
rabbit ! 'I suppose I ought to have it explained, ' said the Caterpillar
angrily, rearing itself upright as it was written to nobody, which isn't
usual, 'Oh, don't talk about cats or dogs either, ' if you want to go nearer
till she got up and down in an encouraging opening for a minute or two.
'They couldn't have wanted it much, ' said Alice, swallowing down her
anger as well as she did not get dry again: they had a little before she
made it out to sea. So they began solemnly dancing round and round
Alice, every now and then treading on her face brightened up at the
Caterpillar's making such a curious appearance in the middle of one!

3.7 Chapter Summary 99

As you can see, parts of this output are tantalizingly close to coherent sentences. In
contrast , here is sample output from a program that just chooses words at random
from the text :

of cup, ' sort ! ' forehead you However, house the went to me unhappy
up impossible settled We had help the always in see, forgot tree of you
'for night? because hadn't her ear. all confused sit took the care went
quite do up, 'How three An Turtle, the was soldiers, solemnly, so went of
the sharply. to Rabbit 'Tis there last , a with that o'clock and belo�, he
Writhing, don't to wig, she into three, But said there, ' offended. turning
This some (she together."

,
such be because and what the had to hatters

better This Mouse new said the pool whiting. with could from bank-the
mile said I she all! turning when 'Begin By how as head them, little,
and Latitude he

Clearly, the trigram model is capturing some important regularities in language.
That's what makes it useful in many language processing tasks such as generating
annoying email solicitations to defeat spam filters. Knowledge is power; please don't
abuse your new skills!

1 3 . 7 1 Chapter S ummary

This chapter has introduced the idea of container classes as a mechanism for dealing
with collections of objects. Here is a summary of some of the key concepts.

• Container objects are used to manage collections. Items can be added to and
removed from containers at run-time.

• The built-in Python list is an example of a container class.

• Lists define a sequential collection where there is a first item and each item
(except the last) has a natural successor.

• Lists can be used to store both sorted and unsorted sequences. Selection sort
is a 8(n2) algorithm for sorting a sequence.

• Python lists are implemented using arrays of references. When a list grows
too large for the current array, Python automatically allocates a new larger
one. This technique allows append operations to be done in 8(1) (amortized)
tilne , but operations that insert or delete items in the midst of the list require
Sen) time .

100 Chapter 3 Conta i ner Classes

• A Python dictionary is a container object that implements a general mapping.

• Dictionaries are implemented with hash tables. Hash tables allow for very
efficient lookup, insertion, and deletion of new mappings, but do not preserve
ordering (sequence) of the items.

• A Markov chain is a mathematical model that predicts the next item in a
sequence based on a fixed window of immediately preceding items. It is
sometimes used as a simple model of natural language for language processing
applications.

1 3 . 8 1 Exercises

True/ Fa lse Questions

1. Python is the only high-level language that has a built-in container type for
sequential collections.

2. The indexing operation on lists returns a sublist of the original.

3. The constructor for the Deek class presented in the chapter creates a deck of
cards that is randomly ordered.

4. Instances of Python classes that implement the necessary hook methods can
be compared using the standard relational operators (such as < , = = , and » .

5. Python lists are implemented using contiguous arrays.

6 . A Python list is a homogeneous container.

7. Arrays do not allow efficient random access.

8. On average, appending to the end of a Python list is a 8(n) operation.

9. Inserting into the middle of Python list is a 8 (n) operation.

10 . Card (6 , " e ") < Card (3 , " s ")

1 1 . Python is unique in that it has a built-in container type that implements a
general mapping (dictionaries) .

12 . Python dictionary keys must be immutable objects.

13 . Looking up an item in a Python dictionary is a 8(n) operation.

3.8 Exercises 101

Mu lt ip le Choice Questions

1 . Which of the following is not true of Python lists?
a) They are implemented underneath as contiguous arrays.
b) All of the items in a list must be of the same type.
c) They can grow and shrink dynamically.
d) They allow for efficient random access.

2. Which of the following is a 8(n) operation?
a) Appending to the end of a Python list .
b) Sorting a list with selection sort .
c) Deleting an item from the middle of a Python list .
d) Finding the ith item in a Python list .

3. Which of the following is not a method of the Deck class presented in the
chapter?
a) size
b) shuffle
c) deal
d) All of the above are methods of the class.

4. Which of the following is not a method of the Hand class presented in the
chapter?
a) add
b) sort
c) deal
d) All of the above are methods of the class.

5. What is the time efficiency of the selection sort algorithm?
a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2)

6. What is the time efficiency of the Python built-in list method sort?
a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2)

7. What is the time efficiency of the operation max (myList) ?

a) 8(log n) b) 8(n log n) c) 8(n) d) 8(n2)

8. What operation is not supported for Python dictionaries?
a) Item insertion
b) Item deletion
c) Item lookup
d) Item ordering (sorting)

102 Chapter 3 Conta i ner Classes

9 . Which of the following is not true of Python dictionaries?
a) They are implemented as hash tables.
b) Values must be immutable.
c) Lookup is very efficient .
d) All of the above are true.

10. A trigram model of natural language
a) uses a prefix of three words to predict the next word.
b) uses a prefix of two words to predict the next word.
c) is more useful than a Markov model.
d) is used to send money overseas.

Short-Answer Questions

1. Using the Deck and Hand classes from this chapter, write snippets of code to
do each of the following:

a) Print out the names of all 52 cards.

b) Print out the names of 13 random cards.

c) Choose 13 cards at random from a 52-card deck and show the cards in
value order (Bridge hand order) .

d) Deal and display four 13-card hands dealt from a shuffled deck.

2. What is the run-time efficiency (8) of the two shuffling algorithms discussed
in the chapter (using two lists vs . in place) . The discussion suggested that
the latter is more efficient . Is this consistent with your e analysis? Explain.

3. Suppose you are involved in designing a system that must maintain informa­
tion about a large number of individuals (for example, customer records or
health records) . Each person will be represented with an object that contains
all of their critical information. Your job is to design a container class to hold
all of these records. The following operations must be supported:

add (person) - adds person object to the collection

remove (name) - removes the person named name from the collection.

lookup (name) - returns the record for the person named name.

list_all - returns a list of all the records in the collection in order by name.

3.8 Exercises 103

For each of the following ways of organizing the data, give an analysis of the
efficiency of the above operations. You should justify each of your analyses
with a sentence or two explaining the algorithm that would achieve that
efficiency. Try to come up with the best approach for each organizational
strategy.

(a) The objects are stored in a Python list in the order that they are added.

(b) The objects are stored in a Python list in order by name.

(c) The objects are stored in a Python dictionary indexed by name.

4. Python has a set type that efficiently implements mathematical sets . You
can get information on this container class by consulting reference documents
or typing help (set) at a Python prompt. Suppose you are implement­
ing your own Set class that includes add, remove, clear, __ contains __ ,
intersection, union, and difference operations. Utilizing each of the
following concrete data structures , explain how you would implement the
required operations and provide an analysis of the run-time efficiency of each
operation.

(a) an unordered Python list .

(b) a sorted Python list .

(c) a Python dictionary. (Note: the elements of the set will be the keys, you
can just use None or True as the value.)

5 . Suppose you were using a language that had dictionaries , but not lists/arrays.
How would you implement a sequential collection? Analyze the efficiency of
operations in the basic list ADT using your approach.

Progra m m ing Exercises

1 . Modify the Deck class to keep track of the current size of the deck using
an instance variable. Does this change the run-time efficiency of the size
operation? Do a bit of research to answer this question.

2 . Look into the functions provided by the Python random module to simplify
the shuffling code in the Deck class.

3. Suppose we want to be able to place cards back into a deck. Modify the Deck
class to include the operations addTop, addBottom, and addRandom (the last
one inserts the card at a random location in the deck) .

104 Chapter 3 Conta i ner C lasses

4. Instead of shuffling a deck of cards, another way to get a random distribution
is to deal cards from random locations of an ordered deck. Implement a Deck
class that uses this approach. Analyze the efficiency of the operations you
provide.

5. It can be inconvenient to test programs involving decks of cards if cards are
always dealt in random order. One solution is to allow the deck to be "stacked"
in a particular order. Design a Deck class that allows the contents of the deck
to be read from a file.

6. Modify the sort method in the Hand class so that it sorts the hand "in place."
Hint: look at the in-place shuffling algorithm.

7. Another way to put a hand in order is to place each card into its proper
location as it is added to the hand. This algorithm is called an insertion sort.
Implement a version of Hand that uses this method to keep the hand in order.

8. Implement an extended Deck class with operations suitable for playing the
card game war. You will need to be able to create an empty deck and place
cards into it .

9. Write a program to play the following simple solitaire game. N cards are dealt
face up onto the table. If two cards have a matching rank, new cards are dealt
face up on top of them. Dealing continues until the deck is empty or no two
stacks have matching ranks. The player wins if all the cards are dealt . Run
simulations to find the probability of winning with various values of N.

10. Write a program that deals and evaluates poker hands.

1 1 . Write a program to simulate the game of blackjack.

12 . Write a program to deal and evaluate bridge hands to determine if they have
an opening bid.

13 . Modify the Markov gibberish generator so that it works at the level of char­
acters rather than words. Note: you should not need to modify the class to
do this, only how it is used.

14. Extend the Markov gibberish generator to allow the size of the prefix to be
determined when the model is created. The constructor will take a pararneter
specifying the length of the prefix. Experiment with different prefix lengths on
texts of various size to see what happens. Combining this with the previous
project , you can produce a very versatile and entertaining gibberish generator.

3 .8 Exercises 105

15 . Write your own dictionary class that implements the various operations of
the mapping ADT. Use a list of pairs as your concrete representation. Write
suitable tests for your class and also provide a theta analysis of each operation.

Chapter 4

Object ives

Linked Structures and

I terators

• To understand Python's memory model and the concepts of names and refer­
ences.

• To examine different designs for lists , evaluate when each one is appropriate ,
and analyze the efficiency of the methods for each implementation.

• To learn how to write linked structures in Python.

• To understand the iterator design pattern and learn how to write iterators for
container classes in Python.

@]] Overview

When you first began learning Python, you may not have concerned yourself with the
details of exactly how variables and their values are stored internally by the Python
interpreter. For many simple programs, all you need to know is that variables are
used to store values; however, as you write larger programs and begin to use more
advanced features, it's important to understand exactly what the Python interpreter
is doing when you assign a variable name to a value (an object) . Understanding these
details will help you avoid certain kinds of mistakes, allow you to better understand
the efficiency of your code, and open the door to new ways of implementing data
structures. It will also make it easier for you to learn other programming languages
that support a similar memory model and understand the trade-offs when you learn
languages with differing models.

107

108 Chapter 4 L i nked Structu res and Iterators

After we cover the details of Python's memory model , we will use that informa­
tion to implement lists in a new way, using a so-called linked structure. The linked
implementation makes some operations more efficient and other operations less
efficient than they are for the built-in Python list . Understanding these trade-offs
will allow you to choose the appropriate implementation techniques depending on
what operations are needed by your application. Along the way, we will also discuss
the iterator pattern, a technique that allows client programs to access items in a
collection without making any assumptions about how the collection is implemented.

If you already understand Python references and Python's memory model , you
may be tempted to skip the next section; however, we suggest you read through
it , as these concepts are crucial for understanding many of the topics covered later.
Unless you are a Python expert, you will likely learn something new in this material.

1 4 . 2 1 The Python Memory Mode l

In traditional programming languages, variables are often thought of as being named
memory locations. Applying that idea to Python, you might think of a variable in
Python as a place, a sort of cubbyhole, corresponding to a location in the computer's
memory where you can store an object . This way of thinking will work pretty well
for simple programs, but it 's not a very accurate picture for how Python actually
manages things. In order to avoid confusion with other languages, some people prefer
to talk about names in Python rather than using the traditional term variables.

In Python, a name always refers to some object that is stored in memory. When
you assign a Python name to an object , internally the Python interpreter uses a
dictionary to map that name to the actual memory location where the object is
stored. This dictionary that maintains the mapping from names into objects is
called a namespace. If you later assign the same name to a different object , the
namespace dictionary is modified so that it maps the name to the new memory
location. We are going to walk through an interactive example that demonstrates
what is happening "under the hood." The details of this are a bit tedious, but if
you fully understand them, you will have a much easier time understanding many
of the topics discussed later.

Let's start with a couple simple assignment statements.

I »> d = ' Dave ' » > j = d

When the statement d = ' Dave ' is executed, Python allocates a string object
containing Dave. The assignment statement j = d causes the name j to refer to the

4.2 The Python Memory Model 109

d

Figure 4. 1 : Two variables assigned to an object

same object as the name d; it does not create a new string object . A good analogy is
to think of assignment as placing a sticky note with the name written on it onto the
object. At this point , the data object Dave has two sticky notes on it : one with the
name d and one with the name j . Figure 4. 1 should help clarify what is happening.
In diagrams such as this , we use an arrow as an intuitive way to to show the "value"
of a reference; the computer actually stores a number that is the address of what
our arrow is pointing to.

Of course, the Python interpreter can't use sticky notes, it keeps track of these
associations internally using the namespace dictionary. We can actually access that
dictionary with the built-in function called locals O .

» > print locals ()
{ ' __ builtins __ ' : <module ' __ builtin __ ' (built-in» , ' __ name __ " ' __ main __ ' ,
' j ' : ' Dave ' , ' __ doc __ ' : None , ' d ' : ' Dave ' }

In this example, you can see that the local dictionary includes some Python
special names (_ _ builtins _ _ , __ name __ , and __ doc __) some of which you may
recognize. We're not really concerned about those here. The point is that our
assignment statements added the two names d and j to the dictionary. Notice, when
the dictionary is printed, Python shows us the names as keys and a representation
of the actual data objects to which they map as values. Keep in mind that the
namespace dictionary actually stores the address of the object (also called a reference
to the object) . Since we usually care about the data, not locations, the Python
interpreter automatically shows us a representation of what is stored at the address,
not the address itself.

If, out of curiosity, we should want to find the actual address of an object, we
can do that . The Python id function returns a unique identifier for each object ;
in most versions of Python, the id function returns the memory address where the
object is stored.

[» > print id (d) , id (j)
432128 432128

110 Chapter 4 L i nked Structu res and Iterators

As you can see by the output of the id function, after the assignment statement
j = d, both the names j and d refer to the same data object . Internally, the Python
interpreter keeps track of the fact that there are two references to the string object
containing "Dave " ; this is referred to as the reference count for the object .

Continuing with the example, let 's do a couple more assignments.

» > j = ' John '
» > print id (d) , id (j)
432128 432256
» > d = ' Smith '
» > print id (d) , id (j)
432224 432256

When we assign j = ' John ' , a new string object containing " John" is created.
Using our sticky note analogy, we have moved the sticky note j to the newly created
data object containing the string " John" . The output of the id function following
the statement j = ' John ' shows that the name d still refers to the same object as
before, but the name j now refers to an object at a different memory location. The
reference count for each of the two string objects is now one.

The statement d = ' Smith ' makes the name d refer to a new string object
containing " Smith" . Note that the address for the string object "Smith" is different
from the string object "Dave " . Again, the address that the name maps to changes
when the name is assigned to a different object . This is an important point to note:
Assignment changes what object a variable refers to, it does not have any effect on
the object itself. In this case, the string "Dave " does not change into the string
" Smi th" , but rather a new string object is created that contains " Smith" .

At this point , nothing refers to the string "Dave " so its reference count is now
zero. The Python interpreter automatically deallocates the memory for the string
object containing "Dave " , since there is no longer a way to access it . By deallocating
objects that can no longer be accessed (when their reference count changes to zero) ,
the Python interpreter is able to reuse the same memory locations for new objects
later on. This process is known as garbage collection. Garbage collection adds
some overhead to the Python interpreter that slows down execution. The gain is
that it relieves the programmer from the burden of having to worry about memory
allocation and deallocation, a process that is notoriously knotty and error prone in
languages that do not have automatic memory management.

It is also possible for the programmer to explicitly remove the mapping for a
given name.

4.2 The Python Memory Model

» > del d _
» > print locals ()
{ ' __ builtins __ ' : <module ' __ builtin __ ' (built-in» , ' __ name , . ' __ main __ ' ,
' j ' : ' John ' , ' __ doc __ ' : None}

111

The statement del d removes the name d from the namespace dictionary so it can
no longer be accessed. Attempting to execute the statement print d now would
cause a NameError exception to be raised just as if we had never assigned an object
to d. Removing that name reduces the reference count for the string " Smith" from
one to zero so it will now also be garbage collected.

There are a number of benefits to Python's memory model. Since a variable
just contains a reference to an object , all variables are the same size (the standard
address size of the computer, usually four or eight bytes) . The data type information
is stored with the object . The technical term for this is dynamic typing. That means
the same name can refer to different types as a program executes and the name gets
reassigned. This also makes it very easy for containers such as lists , tuples, and
dictionaries to be heterogeneous (contain multiple types) , since they also simply
maintain references to (addresses of) the contained objects.

The Python memory model also makes assignment a very efficient operation.
An expression in Python always evaluates to a reference to some object . Assigning
the result to a name simply requires that the name be added to the namespace
dictionary (if it's not already present) along with the four- or eight-byte reference.
In a simple assignment like j = d the effect is to just copy d's reference over to j 's
namespace entry.

It should be clear by now that Python's memory model makes it trivial (usual,
in fact) for multiple names to refer to the exact same object . This is known as
aliasing, and it can lead to some interesting situations. When multiple names refer
to the same object, changes to the object through one of the names will change the
data that all the names refer to. Thus, changes to the data using one name will be
visible via accesses through other names. Here's a simple illustration using lists.

» > Ist1 = [1 , 2, 3]
» > Ist2 = Ist 1
» > Ist2 . append (4)
» > Ist 1
[1 , 2 , 3 , 4]

Since Istl and Ist2 refer to the same object , appending 4 to Ist2 also affects
Ist 1 . Unless you understand the underlying semantics it seems like Ist l has
changed "magically, " since there are no intervening uses of 1st 1 between the first
and last lines of the interaction. Of course these potentially surprising results of

112 Chapter 4 L i nked Structu res and Iterators

aliasing crop up only when the shared object happens to be mutable. Things like
strings, ints, and floats simply can't change, so aliasing is not an issue for these
types.

When we want to avoid the side effects of aliasing, we need to make separate
copies of an object so that changes to one copy won't affect the others. Of course
a complex object such as a list might itself contain references to other objects, and
we have to decide how to handle those references in the copying process. There are
two different types of copies known as shallow copies and deep copies. A shallow
copy has its own top-level references, but those references refer to the same objects
as the original. A deep copy is a completely separate copy that creates both new
references and, where necessary, new data objects at all levels. The Python copy
module contains useful functions for copying arbitrary Python objects. Here's an
interactive example using lists to demonstrate.

» > import copy
» > b = [1 , 2 , [3 , 4] , 6]
» > c = b
» > d = copy . copy (b) # creates a shallow copy
» > e = copy . deepcopy (b) # creates a deep copy
» > print b is c , b -- c
True True
» > print b is d, b -- d
False True
» > print b is e , b == e
False True

In this code, c is the same list as b, d is a shallow copy, and e is a deep copy. By the
way, there are numerous ways to get a shallow copy of a Python list . We could also
have used slicing (d = b [:]) or list construction (d = list (b)) to create a shallow
copy.

So what's up with the output? The Python is operator tests whether two
expressions refer to the exact same object, whereas the Python == operator tests to
see if two expressions yield equivalent data. That means a is b implies a == b but
not vice versa. In this example, you can see that assignment does not create a new
object since b is c holds after the initial assignment. However both the shallow
copy d created by slicing and the deep copy e are distinct new objects that contain
equivalent data to b. While these copies contain equivalent data, their internal
structures are not identical. As depicted in Figure 4 . 2 , the shallow copy simply
contains a copy of the references at the top level of the list , while the deep copy
contains a copy of the mutable parts of the structure at all levels. Notice that the

4 .2 The Python Memory Model 113

b --------�--���---

c

d

e --------jill

Figure 4 .2 : Pictorial representation of shallow and deep copies

114 Chapter 4 L i nked Structures and Iterators

deep copy does not need to duplicate the immutable data items since, as mentioned
above, aliasing of immutable objects does not raise any special issues.

Because of the residual sharing in the shallow copy, we can still get aliasing side
effects . Consider what happens when we start modifying some of these lists.

» > b [0] = 0
» > b . append(7)
» > c [2] . append (5)
» > print b
[0 , 2 , [3 , 4 , 5] , 6 , 7]
» > print c
[0 , 2 , [3 , 4 , 5] , 6 , 7]
» > print d
[1 , 2 , [3 , 4 , 5] , 6]
» > print e
[1 , 2 , [3 , 4] , 6]

Based on Figure 4 . 2 , this output should make sense to you. Changing the top level
of the list referred to by b causes c to change, since it refers to the same object . The
top-level changes have no effect on d or e, since they refer to separate objects that
are copies of b.

Things get interesting when we change the sub list [3 , 4] through c . Of course
b sees these changes (since b and c are the same object) . But now d also sees
those changes, since this sublist is still a shared substructure in the shallow copy.
Meanwhile, the deep copy e does not see any of these changes; since all of the mutable
structures have been copied at every level, no changes to the object referred to by
b will affect it . Figure 4 .3 shows the memory picture at the end of this example.

As a final note, the sort of complete, reference-based diagrams that we have
been using in this section can take up a lot of space and can sometimes be difficult
to interpret . Since the distinction between reference and value is not crucial in
the case of immutable objects, in an effort to keep our diagrams as straightforward
as possible, we will not generally draw immutable objects as separate data objects
when they are contained with another object . Figure 4 .4 shows the same situation
as Figure 4 .3 drawn in a more compact style.

1 4 . 2 . 1 1 Pass ing Parameters

Although there seems to be confusion at times among programmers about Python's
parameter-passing mechanism, once you understand Python's memory model, pa­
rameter passing in Python is very simple. Computer scientists use the terminology
actual parameters to refer to the names of the parameters provided when a function

4.2 The Python Memory Model 115

b --------�--------�----

c

d -�-+---

e ------1-.

Figure 4 .3 : Memory representation at end of shallow and deep copy example

116 Chapter 4 L i nked Structu res and Iterators

c

d ----.IiifI

e ------111!11

Figure 4 .4 : Simplified memory representation at end of shallow and deep copy
example

is called and formal parameters to refer to the names given to the parameters in the
function definition. One way to remember this is the actual parameters are where
the function is actually called. In the following example, b, c , and d are the actual
parameters and e , f , and g are formal parameters.

parameters . py
def func (e , f , g) :

e += 2
f . append (4)
g = [8 , 9]
print e , f , g

def main e) :
b = 0
c = [1 , 2 , 3]
d = [5 , 6 , 7]
func (b , c , d)
print b , c , d

main e)

The output of this example is

120 [1 , 2 , 3 , 4] [8 , 9]

. [1 , 2 , 3 , 4] [5 , 6 , 7]

4 .3 A L inked Implementation of Lists 117

The easy way to think of how parameters are passed in Python is that the formal
parameters are assigned to the actual parameters when the function is called. We
cannot do this ourselves because the names e , f , and g are accessible only within
func, while the names b, c , and d are accessible only inside main. But the Python
interpreter handles the assignment behind the scenes for us when main calls func.
The result is that e refers to the same object as b, f refers to the same object as
c , and g refers to the same object as d when the function starts executing. The
statement e += 2 causes the name e to refer to a new object while b still refers to
the object containing zero. Since f and c refer to the same object , when we append
4 onto that object , we see the result when c prints. We assigned the name g to a
new object so g and d now refer to different objects, and thus the printed value of
d remains unchanged.

It is important to note that a function can change the state of an object that
an actual parameter refers to; however, a function cannot change which object the
actual parameter refers to. So information can be communicated to the caller by
passing a mutable object and having the function mutate it via the corresponding
formal parameter. Keep in mind, however, that assigning a new object to a formal
parameter inside the function or method will never change the actual parameter in
any way, regardless of whether the actual parameter is mutable or not .

1 4 . 3 1 A L i n ked I m p lementat ion of L ists

With this understanding of Python names and references, we are ready to take a
look at a new way of implementing sequential collections. As you learned in the
last chapter, Python lists are implemented using arrays. The drawback of an array
implementation is the expense of inserting and deleting items. Since the array is
maintained as a contiguous block of memory, inserting into the midst of the array
requires shifting the original contents down to make room for the new item. Deleting
results in a similar effort to close the gap. The fundamental problem here is that the
ordering of the sequence is maintained by using an ordered sequence of addresses in
memory.

But this is not the only possible way to maintain sequence information. Instead
of maintaining the sequence information of an item implicitly by its position in
memory, we can instead represent the sequencing explicitly. That is, we can scatter
the elements of the sequence anywhere in memory and have each item "remember"
where the next one in the sequence resides. This approach produces a linked

118 Chapter 4 L i nked Structu res and Iterators

sequence. To take a concrete example, suppose we have a sequence of numbers
called myNums . Figure 4 . 5 shows both a contiguous and a linked implementation of
the sequence.

myNums

myNums

Figure 4 .5 : Contiguous array on the left and linked version on the right

Notice that the linked version of the sequence does not use a single section of
memory; instead, we create a number of objects (often referred to as nodes) each
of which contains a reference to a data value and a pointer/reference to the next
element in the list . With the explicit references, a node can be stored at any location
in memory at all.

Given our linked implementation of myNums , we can perform all of the same
operations that we can do on the array-based version. For example, to print out all
the items in the sequence, we could use an algorithm like this :

current_node = myNums
while <current_node is not at the end of the sequence> :

print current_node ' s data
current_node = current_node ' s link to the next node

Implementing this algorithm requires a concrete representation for nodes that
includes a way to get ahold of the two pieces of information in the node (the data
and the link to the next item) and some way to know when we have reached the
end of the sequence. We could do this in a number of ways; probably the most
straightforward is to create a simple ListNode class that does the job.

4.3 A L inked Implementation of L ists

ListNode . py
class ListNode (obj ect) :

def __ init __ (self , item = None , link = None) :

" " " creates a ListNode with the specified data value and link
post : creates a ListNode with the specified data value and link'' '' ''

self . item = item
self . link = link

119

A ListNode object has an instance variable item to store the data associated
with the node and an instance variable link that stores the next item in the
sequence. Since Python supports dynamic types, the item instance variable can
be a reference to any data type. Thus, just as you can store any data type or a
mixture of data types in the built-in Python list , our linked implementation will also
be able to do that . That just leaves us with the issue of what to do with the link
field to indicate that we have come to the end of a sequence. The special Python
object None is generally used for this purpose.

Let 's play around a bit with the ListNode class . The following code creates a
linked sequence of three items.

n3 = ListNode (3)
n2 = ListNode (2 , n3)
n1 = ListNode (1 , n2)

1 2

I
n1

3 None

I
n2 n3

Figure 4 .6 : Three ListNodes linked together

Tracing the execution of this code produces the situation depicted in Figure 4 .6 .
Here each double box corresponds to a ListNode object with a data element and a
link to the next ListNode object . Notice, we have simplified the diagram by showing
the numbers (which are immutable) inside the ListNode boxes instead of drawing

120 Chapter 4 L i nked Structu res and Iterators

a reference from the item part of the ListNode to the number object . Both n2 and
nl . link are references to the same ListNode object containing the data value 2 and
both n3 and n2 . link are references to the same object containing the data value 3.
We can also access the ListNode object containing the data value 3 as nl . link . link
and its data value as nl . link . link . item. Normally, we do not want to write code
such as that , but it demonstrates how each object and data value can be reached
from the start of the linked structure. Typically we only store a reference to the
first ListNode object and then follow the links from the first item to access other
items in the list.

Suppose we want to insert the value 2 .5 into this sequence so that the values
remain in order. The following code accomplishes this:

I n25 = ListNode (2 . 5 . n2 . 1inkl
n2 . 1ink = n25

Figure 4 . 7 show this pictorially. The statement n25 = ListNode (2 . 5 , n2 . link)
allocates a new ListNode and calls its ini t method. The first line of ini t
self . item = item sets a reference to 2 . 5 in the ListNode . The next line self . link
= link stores a reference to the link parameter that is the ListNode n3 . After the
_ _ ini t _ _ method finishes, the statement n2 . link = n25 sets the link instance
variable of ListNode n2 so it refers to the newly created ListNode n25 . None of
the references to ListNode nl were changed as part of this. Inserting a node in a
linked structure only requires updating the link of the node before the one we are
inserting. Since insertion into a linked structure does not require moving any of the
existing data, it can be done very efficiently.

Note that the order in which we update the links is extremely important . If we
change our statements to insert 2 . 5 to the following, it will not work.

Incorrect version . It yon ' t york !
n25 = ListNode (2 . 5)
n2 . 1ink = n25
n25 . 1ink = n2 . 1ink

In this case, the statement n2 . link = n25 results in the reference to the ListNode
containing the 3 being overwritten. The reference count for that ListNode will
be reduced by one and if there are no other references to it , the ListNode will be
deallocated. The statement n25 . link = n2 . link sets the link instance variable
in ListNode n25 to the ListNode n25. This breaks the connections in our linked
structure; it no longer contains the ListNode for 3. It also generates a cycle in our
linked structure. If we write a loop that starts at ListNode nl and continues to

4.3 A L inked Implementation of Lists

n1

n2S = ListNode(2.S, n2.link)

self. item = item

n2 n3

n25

After self.item = item executed in _init_ method

n 1

n2S = ListNode(2.S, n2.link)

self.item = item

self. link = l ink

n25

After self. l ink = l ink executed in _init_ method

n1

n25 = ListNode(2.5, n2.link)

self.item = item

self.link = l ink

n2.link = n2S

After n2.link = n2S executed

n25

Figure 4 . 7: Inserting a node in the linked structure

121

122 Chapter 4 L i nked Structu res and Iterators

follow the link instance variables until a link with the value None is reached, we will
have an infinite loop, as the link for ListNode 2 . 5 refers to ListNode 2 . 5 itself.
We will just keep going around and around. Programming with linked structures
can get tricky, and the best way to make sure you have things correct is to trace
your code and draw the pictures.

Let 's consider what has to happen in order to delete an item from our sequence.
To delete the number 2, we need to update the link field for the ListNode object
containing 1 so that it "hops over" the node for 2. The code n1 . link = n25
accomplishes this. That's it ; deleting from the sequence is even easier than inserting.
If there are no other references to the deleted node, as usual its memory will be
automatically deallocated.

/ 4 .4 / L i n ked I m p lementat ion of a L ist ADT

Hopefully, you now have a pretty good feeling for how linked structures can be used
to represent sequences. Conceptually, the technique is relatively simple, but we have
to be careful to get the link manipulation just right so that items don't get lost or
the structure corrupted. This is a perfect place to employ the idea of an ADT.
We can encapsulate all of the details of the linked structure and manipulate that
structure through some high-level operations that insert and delete items. In this
section, we will borrow a subset of the Python list API and show how lists with
similar functionality can be built using our ListNode class.

Before starting on our list ADT, we need to finalize the details of our ListNode
class. You have certainly noticed in the examples so far that we have been showing
code that directly accesses the instance variables in ListNodes. As discussed in
subsection 2 . 2 . 3 , we generally do not want to have the clients of a class access the
instance variables. However, in the case of our ListNode class the entire purpose of
the class is to package the two values. The ListNode class is not really an ADT, but
rather an implementation technique. If we wanted to build a true ADT, we could
certainly do that by adding additional methods to the ListNode class for getting
and setting the values of the instance variables.

def get_item (self) :

" " "returns the data element stored at the node
pre : none
post : returns the data element stored at the node " " "

return self . item

4.4 L inked Implementation of a L ist ADT

def set_item(self , item) :

II II II sets the data element stored at the node
pre : none
post : sets the data element stored at the node to itemll ll ll

self . item = item

def get_link (self) :

II II II returns the next link stored at the node
pre : none
post : returns the next link stored at the node ll ll ll

return self . link

def set_link(self , link) :

II II "returns the next link stored at the node
pre : none
post : sets the next link stored at the node to link ll ll ll

self . link = link

123

Creating these set and get methods for the data items makes the class signif­
icantly longer, and we will only be using the ListNode to help us with a linked
implementation of a list ADT. That is, we are going to create an LList class that
exploits the ListNode class. The LList class will be the only class using ListNodes
so it seems more straightforward to just have the code in LList directly access the
two ListNode instance variables.

In general, Python does not enforce data protection, but instead allows program­
mers to use their judgment regarding when code should directly access instance
variables. The main reason for data hiding is to prevent clients of a class from
corrupting the data structure by directly setting an instance variable to an incorrect
value. For most classes, the client should be calling the class methods to ensure
correct manipulation of the instance variables. In our case, the client will only
call LList methods and these LList methods will update the appropriate ListNode
instance variables . In this way LList and ListNode are working together to provide
an implementation of the list ADT. Even when using languages such as C++ or
Java that provide data protection mechanisms, it 's probably not worth the clutter
of having extra set/get methods for ListNodes. It 's cleaner to just allow the LList
class to directly access the instance variables.

124 Chapter 4 L i nked Structu res and Iterators

With the ListNode in hand, we are ready to turn our attention to implementing
the LList class. This class will contain the methods that manipulate a list . Our
LList class will maintain its data as a linked sequence of ListNodes. An LList
object will need to have an instance variable that points to the first node in its
sequence. Traditionally, this variable is called head. It 's also convenient to maintain
an instance variable that keeps track of the number of items in the list . That way,
we always know the length of the list without having to traverse it and count the
nodes.

It 's useful to summarize the relationships among the various parts of an LList in
the form of a class invariant. A class invariant is a property or set of properties that
defines a consistent state for an instance of a class. The invariant must be maintained
by class methods; essentially it is an implicit set of pre- and postconditions for each
of the methods. While we are updating the instance variables in the middle of a
method, the invariant may temporarily not hold, but it must be true at the end of
the method. For our list class, we define the following invariant :

1 . self . size is the number of nodes currently in the list

2 . If self . size == 0 then self . head is None ; otherwise self . head is a refer­
ence to the first ListNode in the list .

3. The last ListNode (at position self . size - 1) in the list has its link set to
None , and all other ListNode links refer to the next ListNode in the list .

The constructor (the __ ini t __ method) must initialize all the instance variables
so that the invariant property is met. To match the Python list API, we will write
our __ ini t __ method so that it can accept a Python sequence that will be used to
initialize the items in the list . Since we also plan to implement an append method
for the class, the constructor can simply use repeated appends to get the job done.
In order to call the append method we need to provide an instance of LList to
append onto. Since it is the same instance of LList we are constructing, we need
to use self as the instance. Here's the code:

4.4 L inked Implementation of a List ADT

LList . py
from ListNode import ListNode

class LList (obj ect) :

def __ init __ (self , seq= (» :

II lI lI creates an LList
post : Creates an LList containing items in seqll ll ll

self . head = None
self . size = 0

if passed a sequence , place items in the list
for x in seq :

self . append(x)

125

It should be clear that this code establishes our class invariant. The code begins
by setting up the correct situation for an empty list (self . head is None and
self . size == 0) . Then each item in the initializing sequence (if any) is appended
to this list . Provided append obeys the invariant, everything should work.

When writing container classes in Python, it is standard practice to write a
__ len __ method. This method is called by Python when the len built-in function
is applied to a programmer-defined object , as in this example:

I a = LList O
print len (a) # outputs 0

The __ len _ _ method is a hook so that our own containers can work just like the
built-in Python containers in responding to the len function call. Of course, we
could also call this method directly by writing something like a . __ len __ () , but
that 's not the Pythonic way.

The _ _ len _ _ method is trivial to implement since the instance variable size, as
per the class invariant, always indicates the number of items in the list .

" " "post : returns number of items in the list ll ll ll

return self . size

Many of the list API methods require us to access a node at a specific location
in the list . Rather than write this code in each method, we will write one method
to access a specified node and call that method from the other methods as needed.

126 Chapter 4 L i nked Structu res and Iterators

To indicate that this method should be called only by other LList methods and is
not actually part of the API for use by clients, we will use the Python convention
of prefixing the method name with an underscore. The _find (self , position)
method returns the ListNode at the specified position. It works by starting at the
head and following the links forward the number of times necessary to reach the
specified node. As with Python lists, we will use zero-based indexing.

def _find(self , position) :

" " "private method that returns node that is at location position
in the list (0 is first item , size- 1 is last item)
pre : 0 <= position < self . size
post : returns the ListNode at the specif ied position in the

list " " "

assert 0 <= position < self . size

node = self . head
move forward until we reach the specified node
for i in range (position) :

node = node . link
return node

As you can see, the _find method is straightforward. After checking the precon­
dition with an assert , a local variable, node , is used to keep track of a current node
in the list . We start at the front (node = self . head) and then loop position times;
each pass through the loop advances node one place in the list (node = node . link) .
When the loop is done, node contains the target ListNode .

The append method is short, given the _find method. There are two cases to
consider depending on whether the list currently contains any items. In the case of
an empty list , self . head needs to be set to the newly created ListNode . For a non­
empty list , we need to find the last ListNode , which is at position self . size - 1 ,
and set its link to the newly created ListNode . In either case the size instance
variable needs to be increased by one to maintain the invariant . A key concept to
understand is that we only call the ListNode constructor when a new node is being
added to the list (using the append and insert methods) .

4.4 L i nked Implementation of a List ADT

def append(self , x) :

" " "appends x onto end of the list
post : x is appended onto the end of the list " " "

create a new node containing x
newNode = ListNode (x)

link it into the end of the list
if self . head is not None :

non-empty list
node = self . _find(self . size - 1)
node . link = newNode

else :
empty list
set self . head to new node
self . head = newNode

self . size += 1

127

Notice how this code tests for the special case when the list is empty: if self . head
is not None . Checking to see if a variable refers to None (or not) is a common idiom
in Python; it crops up often when writing code that employs linked structures.

There are a number of ways to code a test for None . They will all produce the
same result in our case, but they will cause differing methods to be invoked. One
choice is to use the is operator, as we did in our example. Recall that is performs
a check for object identity, so the expression node is None checks whether both
node and None are the same object . The Python interpreter can check this quickly
by seeing if the reference (address) of the two objects is the same. Sometimes you
will see code that uses the == operator, such as if node == None . This form will
invoke the node's __ eq __ method (if defined) . It is therefore somewhat less efficient ,
since it involves a method invocation. It can also cause problems with classes whose
__ eq _ _ methods are not expecting None as a possible parameter. A third option is
to simply write if node : . This causes the __ nonzero __ method to be called if the
class defines that method. If the __ nonzero __ method is not defined, it will call
the __ len __ method if defined. If neither method is defined, instances of a class
are interpreted as a True Boolean. In contrast , the None object as a Boolean means
False. While succinct and elegant , this approach is also less efficient due to the
method call lookup, and it can be prone to subtle errors, since objects other than
None may also evaluate to False. The bottom line is we recommend you always use
is None or is not None to check if a Python variable is None .

At this point we have an LList class that allows us to build a list and check
its length. Let's add the ability to index into the list . We can do this in our

128 Chapter 4 L i nked Structu res and Iterators

class by defining suitable __ geti tem __ (self , position) and __ seti tem __ (self ,
position , value) methods. These are more Python hooks. The former is called
when the square brackets are used to access an item in the list , and the latter is
called when the brackets are used on the left-hand side of an assignment statement.
Again, implementing these methods allows our LList objects to act just like built-in
Python list objects , so that we can write code such as this:

a = LList ((1 , 2 , 3» # call constructor with the tuple (1 , 2 , 3)
print a [O] # calls a. __ getitem __ (O)
a [O] = 4 # calls a. __ setitem __ (O , 4)

Here's the implementation of the necessary methods. Notice how simple they
are since we already have the _f ind method for locating the appropriate node.

def __ getitem __ (self , position) :

II lI lI return data item at location position
pre : 0 <= position < size
post : returns data item at the specified position ll ll ll

node = self . _find (position)
return node . item

def __ setitem __ (self , position , value) :

II lI lI set data item at location position to value
pre : 0 <= position < self . size
post : sets the data item at the specified position to value ll ll ll

node = self . _f ind(position)
node . item = value

We're just about finished with our basic container operations. We still lack any
method for deleting items from the list . For the built-in Python list there two main
ways of deleting an item. One way is to use Python's del statement, as in del a [1] .
As you should expect by now, Python provides a hook for duplicating this behavior
in our own collections. The necessary method is __ deli tem __ (self , position) .

The other frequently used technique for deleting from a Python list is to call the
list 's pop method, which deletes the item and also returns the item that was deleted.
Since both pop and __ deli tem __ remove an item from the list , we can factor out
this common functionality into a helper method, _delete, and use it for both. The
__ deli tem __ method is simple, given the _delete method.

4.4 L i nked Implementation of a List ADT

def __ delitem __ (self , position) :

" " "delete item at location position from the list
pre : 0 <= position < self . size
post : the item at the specified position is removed from
the list " " "

assert 0 <= position < self . size

self . _delete (position)

129

Actually implementing the _delete (self , position) method is more compli­
cated; performing the deletion usually requires changing the link in a ListNode .

As with append, however, we need to handle the case for removing the item at
position zero separately since that requires changing self . head. If the list is not
empty, we actually have to find and modify the node that precedes the one to be
deleted. The predecessor's link field will be set to the deleted node's link to maintain
the sequence. A final consideration is that we want to use _delete to implement
the pop method, so delete will need to return the item of the ListNode we are
deleting.

def _delete (self , position) :

private method to delete item at location position from the list
pre : 0 <= position < self . size
post : the item at the specified position is removed from the list
and the item is returned (for use with pop)

if position == 0 :
save item from the initial node
item = self . head . item

change self . head to point " over" the deleted node
self . head = self . head . link

else :
find the node immediately before the one to delete
prev_node = self . _find(position - 1)

save the item from node to delete
item = prev_node . link . item

change predecessor to pOint " over" the deleted node
prev_node . link = prev_node . link . link

self . size -= 1
return item

130 Chapter 4 L i nked Structu res and Iterators

You should trace through this code with some simple examples to convince
yourself that it works. One important subtlety is what happens to the memory that
is being used by the ListNode for the deleted item. Once the deleted node is spliced
out of the linked list , its reference count drops to zero (since nothing points to it
any more) and that memory is automatically deallocated by the Python garbage
collection process. In languages without garbage collection, more care would have
to be taken to explicitly deallocate the deleted node.

Another thing to think about is what happens when we delete an item from
the end of the list . The ListNode at the end of the list has None as its link. So
the line pre v _node . link = prey _node . link . link effectively sets the predecessor's
link to None as well. Since None is the terminator for the list , the predecessor
now becomes the final element of the list , which is just what we want . In the
special case of deleting the very last remaining item of the list , setting self . head =
self . head . link causes self . head to become None , which is the proper designation
for an empty list (as per the class invariant) . In summary, no special code is needed
to handle deleting from the back of the list ; the None reference simply gets copied
over appropriately.

With the _delete method complete, the pop method is simple. We use a
default position parameter of None to indicate that a parameter was not passed,
and therefore, the last item in the list is the one to be popped. Otherwise we
remove and return the item at the specified position. Since the _delete method
returns the item at the ListNode we are deleting, we just need to have the pop
method return that value back to the caller .

def pop (self , i=None) :
" " "returns and removes at position i from list ; the default is to
return and remove the last item

pre : self . size > 0 and (i is None or (0 <= i < self . size))

post : if i is None , the last item in the list is removed
and returned ; otherwise the item at position i is removed
and returned" " "

assert self . size > 0 and (i is None or (0 <= i < self . size))

default is to delete last item
i could be zero so need to compare to None
if i is None :

i = self . size - 1

return self . _delete(i)

4.4 Linked Implementation of a List ADT 131

Inserting items into a linked list is pretty easy. We do have to remember to
handle the special case of inserting before the first item, as we will need to update
self . head. For any other position in the list , we just find the ListNode we are
inserting after (position - 1) and create a new ListNode after it and update the
links accordingly.

def insert (self , i , x) :

" " " inserts x at position i in the list
pre : 0 <= i <= self . size
post : x is inserted into the list at position i and

old elements from position i . . oldsize-1 are at positions
i +1 . . newsize-1 " " "

assert 0 <= i <= self . size

if i == 0 :
insert before position 0 requires updating self . head
self . head = ListNode (x , self . head)

else :
find item that node is to be inserted after
prev = self . _find(i - 1)
prev . link = ListNode (x , prev . link)

self . size += 1

Notice that we have not done anything special in this code to handle insertion at
the very end of the list or insertion into an empty list . You might want to trace the
execution on those two boundary cases to see what happens.

Another method that could be useful is one for creating a copy of a list . As we
discussed in section 4 . 2 with the built-in Python list there is a distinction between
a shallow copy and a deep copy . Remember that the difference is that a shallow
copy only gets copies of the references at the top level, whereas a deep copy creates
a separate copy of every reference and mutable object in the object . Python allows
us to define our own methods that are called when the copy or deepcopy function
in the copy module is called with a user-defined class. The methods to do this are
_ _ copy _ _ (self) (for shallow copies) and _ _ deepcopy _ _ (self , visit) . We're not
going to worry about the deepcopy O method here, but let 's take a look at how we
might implement shallow copying. Providing a _ _ copy _ _ method will allow a user
of our class to make shallow copies like this :

132 Chapter 4 L i nked Structu res and Iterators

import copy
a = LList ([O , 1 , 2 , 3])
b = copy . copy (a)
del a [2]
print b [2] # outputs 2

The shallow copy created by __ copy __ will create a sequence of brand new
ListNodes for the items in the list . This shallow copy allows us to insert or remove
items from a list without affecting the copy, as illustrated in the example. One way
to implement the copy method is

def __ copy __ (self) :

" " "post : returns a new LList obj ect that is a shallow copy of self " " "

a = LList O
node = self . head
while node is not None :

a . append (node . item)
node = node . link

return a

This method begins by creating a new (empty) list object and then proceeds to
traverse the nodes of the original list and append each item to the new list . Each
call to append creates a new ListNode to contain the item. As an alternative, we
could dispense with the references to nodes and simply use the indexing operation
that we defined earlier:

def __ copy __ (self) :

a = LList O
for i in range (len (self)) :

a . append(self [i])
return a

Neither of these implementations is particularly efficient , since our append method
always starts at the beginning of the list and traverses it to get to the end where
the new node is added. The astute reader will no doubt have noticed that our
__ ini t __ 0 method is similarly inefficient when passed an initializing sequence.
Now that we have implemented enough of the Python list API to make our LList
usable, this might be a good point to step back and analyze the time complexity of
our algorithms.

At the beginning of the section, we suggested that the main advantage of a linked
implementation as opposed to an array implementation of lists is that insertion and

4.4 L inked Implementation of a List ADT 133

deletion are more efficient because we never have to shift items around to make room
or close up a gap. Of course, the disadvantage of the linked implementation is that
we lose the ability to do efficient random accessing. In order to find a particular
item in the list , we have to start at the head and traverse the links until we come
to the desired item. In our implementation, this is done by the _find (i) helper
method.

Let 's take a closer look at our algorithms to analyze the run-time efficiency of
common list operations. Starting with list creation, suppose we execute some code
such as this :

I myLList = LList (someSequence)

What is the theta analysis for this snippet? Obviously, the time to create the
LList will depend on the length of someSequence that we're using to build the
initial LList . It seems like this operation should be 8(n) where n is the length
of someSequence . But a closer inspection of the code suggests that this is too
optimistic.

The LList constructor contains a for statement that loops over the items in
someSequence , but the body of the loop uses the append operation. Remember
that append has to traverse the entire list that is being appended to in order to get
from the head to the very end where the new ListNode is inserted. That makes
append a 8(n) operation itself. If you actually count the total number of links that
have to be traversed through all executions of the main loop, you'll get a sequence
like 0 + 1 + 2 + 3 . . . + n - 1 . As we've seen several times now, a sum of this form
makes the overall operation 8(n2) . A simple way to think about it is that the 8(n)
append operation is performed n times, so we actually have a 8(n2) algorithm.

Fortunately, it 's relatively easy to modify our constructor to make it more
efficient. As we discovered, the problem is the use of append to build the list . We
know that we can add something to a linked list just by wrangling a few references,
provided we already have a handle on where the item has to be inserted. If we just
keep track of where the end of the list is, we can insert the next node in 8(1) time.
Here's a version of the constructor using this approach.

134 Chapter 4 L i nked Structu res and Iterators

def __ init __ (self , seq= (» :

" " " create an LList
post : creates a list containing items in seq" " "

if seq == 0 :
No items to put in , create an empty list
self . head = None

else :
Create a node for the first item
self . head = ListNode (seq [O] , None)

Add remaining items keeping track of last node added
last = self . head
for item in seq [l :] :

last . link = ListNode (item , None)
last = last . link

self . size = len(seq)

If you study this code, you should be able to convince yourself that our new list
creation algorithm is 8(n) . This bit of extra code seems well worth the effort . In
fact, this approach could be generalized. By making last an instance variable, an
LList would always "know" which node was at the end of the list , and append could
be written as a 8(1) operation. Of course that would introduce a new condition
into our class invariant , namely that last is None for an empty list and last is the
final ListNode in a non-empty list . All of the methods in the class would have to
respect this new invariant . Performing this optimization is left as an exercise. By
the way, when append becomes a constant time operation, you can revert _ _ init _ _

back to its simpler form.
We've seen that with a bit of tweaking, LList creation can be done in 8 (n) time

and append can be done in 8(1) time. Those are quite efficient operations. Let's
take a look at traversing the list to process the items. Suppose we want to print out
all the items in our list . Since we have implemented list indexing, we can do this.

for i in range (len(myLList » :
print myLList [i]

Again, this code seems like it should be 8(n) ; that 's what we'd have using a Python
built-in list. Unfortunately, indexing suffers the same problem that we had before
with append. Getting to the ith element in a linked list is a 8 (i) operation. Think
again about the number of ListNodes that must be traversed for each iteration

4.5 Iterators 135

of the loop. The analysis looks just like what we had for our original ini t
method. Doing list traversal this way is a 8(n2) proposition!

Unfortunately, unlike the case for append, there is nothing we can do in general
so that indexing a linked list is a constant time operation. We know that append
always operates on the last node, but the whole point of indexing is that the client
could ask for the contents of any arbitrary node. That requires counting from
the beginning (or perhaps some other fixed location) to get to the requested node.
That 's always going to be a 8(n) operation; that 's the price we pay for using a
linked list .

This lack of random access also robs us of the advantages that linked structures
have for insertion and deletion. Since we've implemented the Python list API,
insertion and deletion are specified in terms of index positions. Unfortunately,
finding the proper ListNode for performing the operation is a 8(n) operation, so
even though the actual insertion or deletion of a node can be done by twiddling a
couple references, the overall operation is 8(n) , due to the calls to _find in insert
and _delete.

So far, it looks like our linked implementation has been a complete waste of effort .
Our theta analysis tells us that none of our operations is any more efficient that those
for the Python list , and traversing the list is actually much worse. However, that 's
not too surprising, because the Python list API is designed around the operations
that are efficient for a list implemented using arrays. We wouldn't necessarily expect
the exact same API to bring out the strengths of a linked implementation.

1 4 . 5 1 I terators

In the last section we saw that traversing a linked list via indexing successive
locations is inefficient (8(n2)) . But we know it is possible to traverse down a linked
list in an efficient fashion, we just need to start at the head and follow the links.
If we had access to the internal structure of the LList, we could just write code
something like this:

node = myLList . head
while node is not None :

print node . item
node = node . link

Here the variable node simply marches down the list to print out the items.
That leaves us with an interesting dilemma for implementing containers. Travers­

ing the items is a useful operation for virtually any container, but doing so efficiently

136 Chapter 4 L i nked Structu res and Iterators

seems to require exploiting the internal structure of a container. It would be nice if
we could write generic client code for traversal that would work efficiently on any
container. In effect we would like each container to implement the traversal in the
way that is most efficient for that container.

One way of solving the generic traversal problem to use a common design pattern
known as an iterator. In a nutshell, an iterator is an object that knows how to
produce a sequence of items from a container. When we want to traverse the items
in a container, we just ask the container to give us an iterator, and we then use the
iterator to produce the items. If we make sure that all iterators obey the same API,
then we can write generic iterator code to traverse collections of any type. That
might sound complicated, but in practice it's pretty simple.

1 4 .5 . 1 1 I terators i n Python

Different designers choose slightly different APIs for iterators. Iterators have been
designed into the Python language, and the Python iterator API is one of the
simplest . Here's an example of traversing the items in a Python list using an iterator.

» > myList = [2 , 3 , 4]
» > it = iter (myList)
» > type (it)
<type ' listiterator ' >
» > it . next O
2
» > it . next 0
3
» > it . next O
4
» > it . next 0
Traceback (most recent call last) :

File II <stdin> II , line 1 , in <module>
Stoplteration

The iter function is used to "ask" a collection for an iterator object . Notice that
the resulting object , it, is of type listi terator. In Python. an iterator object has
just one method called next 0 1 that produces the next item in the sequence. As the
interaction shows, when the iterator runs out of items, it raises the Stoplteration
exception.

With this simple interface, we can write generic code to loop through the objects
in any container that supports iterators. We just need to get an iterator and

Ipython 3.0 uses a hook method, __ next __ , and a new built-in function next (iterator) calls
this hook.

4.5 Iterators 137

repeatedly call its next method until it raises Stoplteration. Here's a while
loop that does the trick.

items = iter(myContainer)
while True :

try :
item = items . next ()

except Stoplteration :
break

process item here

As you can see, this code is a little awkward because of the way we need to catch the
Stoplteration exception to detect the end of the collection and break out of the
loop. Fortunately, it is not necessary to deal with the iterators directly. A regular
f or loop uses iterators implicitly.

The Pythonic way of writing the code is simply

for item in myContainer :
process item here

Behind the scenes, this f or loop uses the iter function to ask the container for an
iterator and then calls next to get the item for each pass through the loop. When
the iterator raises Stoplteration, the loop ends. Thus, we can make any container
usable in a for loop by having the container implement a suitable iterator.

1 4 .5 .2 1 Adding an Iterator to LL ist

Adding an iterator to our LList class is straightforward. Our iterator will be an
object that keeps track of the current position in the list . Each time next is called,
we return the item at the current position and update the iterator to the following
item. For a linked list , that means our iterator just needs to keep track of which
ListNode is the current node. Initially, that node will be the head of the list . Of
course, this LListlterator is a brand new kind of object . We'll need a class to
define it .

LList . py
class LListlterator (obj ect) :

def __ init __ (self , head) :
self . currnode = head

138 Chapter 4 L i nked Structu res and Iterators

def next (self) :
if self . currnode is None :

raise Stoplteration
else :

item = self . currnode . item
self . currnode = self . currnode . link
return item

Since this is another helper class for LLists, it makes sense to place this class right
into the LList . py module file.

All that remains is updating our LList class slightly so that it returns an
appropriate instance of LListlterator when called upon. This is accomplished, as
you might guess, with another Python hook method, _ _ iter __ . When the Python
iter function is called on an object , it returns the result of the object 's __ iter __

method. Our update to the LList class looks like this:

class LList (obj ect) :

def __ iter __ (self) :
return LListlterator (self . head)

With these additions, our LList class is now efficiently traversable using a plain­
old Python for loop. Let's take it for a test spin.

» > from LList import *
» > nums = LList ([1 , 2 , 3 , 4])
» > for item in nums :

1
2
3
4

print item

As you can see, the iterator design pattern is a powerful tool for allowing access
to the items of a collection without exposing the details of how the collection is
actually implemented.

1 4 .5 . 3 1 I terati ng with a Python Generator

The key idea in implementing an iterator is that the iterator object needs to remem­
ber the current state of the traversal of a sequence of items. In our LList example
it was easy to capture this state by simple saving a reference to the current node.
In general, this idea of saving the state of a traversal or other computation is very

4 .5 Iterators 139

useful. It 's often nice to be able to "restart" a computation right where we left off.
Python supports a special structure known as generator that allows us to do just
that .

A generator definition looks very much like a regular function, but it allows us
to return a value from the computation, and when the next value is required, it
continues executing, picking up right where it left off. As a simple example, here's
a generator to produce the sequence of natural squares: 1 , 4, 9 , and so on.

def squares () :
num = 1
while True :

yield num * num
num += 1

As you can see, this looks just like a function definition, but where a function might
have return statements, a generator uses the special keyword yield. The idea here
is that we have an infinite loop (while True) and each time through the loop, we
yield the next square in the sequence.

When a generator is called, it doesn't actually execute. Instead, it hands back
a generator object that obeys the iterator API. For example, we can generate a
sequence of squares like this.

» > seq = squares 0
» > seq . next ()
1
» > seq . next ()
4
» > seq . next ()
9

Each time we call next , the generator code picks up where it left off (immediately
after the last yield) and continues running until it encounters a yield statement .
The yielded value is handed back as the result . If the generator should quit via a
return or simply "falling off the bottom, " the generator will raise a Stoplteration
exception, just as any good Python iterator should.

Since calling a generator produces an iterator object , generators are particularly
useful for making container classes iterable. Instead of writing a separate iterator
class ac;; we did before, we can just make the _ _ iter _ _ method of our class into a
generator. Here's what it looks like for the LList class.

140 Chapter 4 L i nked Structu res and Iterators

class LList (obj ect) :

def __ iter __ (self) :
node = self . head
while node is not None :

yield node . item
node = node . link

Essentially, this is our standard code for walking down a linked list . Simply by
yielding each item as we come to it , we turn the while loop into a generator that
produces the values one at a time as required. Here's the new generator-enhanced
class in action.

» > from LList import *
» > nums = LList ([1 , 2 , 3 , 4])
» > for item in nums :

1
2
3
4

print item

The generator gives us an iterable container without the muss and fuss of having
to create a separate iterator class. Generators are a very cool feature of Python and
can do much more than what we've shown here. You might what to consult the
Python documentation to find out more.

\ 4 . 6 \ A Cu rsor-based L ist AP I (Opt iona l)

We now have a usable linked list implementation of the Python list API, but we don't
have a way to leverage the real strength of the linked implementation. Remember,
the principal advantage of the linked approach is that we don't have to shift items
around when inserting or deleting, we can just adjust the appropriate references.
But our list API so far requires us to locate the point of insertion or deletion using
an index, and indexing takes 8(n) time for a linked list . Perhaps we should consider
an alternative API .

From one perspective, indexing is just a way of "pointing" to a specific location
in a list . It's natural to use numbers (indexes) if our list is array-based, because the
underlying address calculation can be done very efficiently. But with a linked list ,
it 's more natural to specify a location using a reference to a list node. In fact , the
LListIterator class we built in the last section was really just a wrapper around

4.6 A Cursor-based L ist API (Optiona l) 141

a node reference. What if we extend the API of an iterator to allow more than just
item retrieval? By adding operations that allow us to modify the list at the current
position of the iterator, we will have created a new list API that is position-based
instead of index-based. We'll call this extended kind of iterator a cursor.

1 4 .6 . 1 1 A Cursor AP I

To see how a cursor might be useful, consider the problem of filtering items out of a
list . That is, we want to delete items from our list that meet a certain criterion. As
a concrete example, consider a (somewhat silly) function to censor a list of words.
Say we want to remove all the words from a list that appear in a different list of
forbidden words. Here's a specification of a simple function.

def censor (wordList , forbiddenWords) :
" " " deletes forbidden words from wordList

post : all words in forbiddenWords have been deleted
from wordList . " " "

Before reading further, you might consider how you would solve this problem
using our current list API. One obvious algorithm is to go through the wordList
looking at each item in turn and simply delete any item that happens to appear in
forbiddenWords . Unfortunately, our current API offers no straightforward way to
implement this algorithm (at least , not efficiently) .

N ow suppose we have a way to ask a list for a cursor that starts at the beginning
of the list and allows us to advance through the list and delete items along the way.
Inventing a little cursor API allows us to express the proposed censor algorithm.

def censor (wordList , forbiddenWords) :
cursor = wordList . getCursor ()
while not cursor . done e) :

if cursor . getltem () in forbiddenWords :
cursor . deleteltem O

else :
cursor . advance ()

You should be able to look at this algorithm and have a pretty good idea what our
proposed cursor operations will do. The getCursor call hands us a cursor object
that is "pointing" at the first item in the list . We can manipulate the current item by
calling various cursor methods: getltem returns the current item, and deleteltem
deletes the current item from the list . Calling advance causes the cursor to move to
the next item in the list . A call to advance when the cursor is currently at the very

142 Chapter 4 L i nked Structu res and Iterators

last item in the list will cause cursor . done 0 to become true. Notice that we do not
need to advance the cursor when we delete an item. The deletion will automatically
set the cursor to the next item, since we can't have the cursor pointing to something
that isn't in the list anymore.

Our complete cursor API looks like this.

class Cursor (obj ect) :

def done (self) :
" " "post : True if cursor has advanced past the last item

of the sequence , false otherwise " " "

def getItem (self) :
" " " pre : not self . done ()

post : Returns the item at the current cursor position" " "

def replaceItem (self , value) :
" " " pre : not self . done 0

post : The current item in the sequence is value " " "

def deleteItem (self) :
" " " pre : not self . done ()

post : The item that cursor was pointing to is removed
and the cursor now points to the following item

note : removing last item causes self . done () to be True " " "

def insertItem (self , value) :
post : value is added to the sequence at the position of

cursor .
note : If self . done () holds before the call , value will be

added to the end of the sequence . In other cases ,
the item that was at current position becomes the
next item . " " "

def advance (self) :
" " " post : cursor has advanced to the next position in the

sequence . Advancing from the last item causes
self . done () to be True " " "

/ 4 . 6 . 2 / A Python CursorLi st

Ultimately, we would like our little censor algorithm to work for both Python-list
based and LList based wordLists. Of course, the implementation of the cursor for
a Python list will be different from the implementation of the cursor for a linked list .
The former must track the current position using an index, while the latter should

4.6 A Cursor-based List API (Optiona l) 143

probably use a ListNode reference. That 's where the getCursor operation comes
in; exploiting polymorphism, we can have each kind of list hand back a cursor that is
appropriate for that type of list . The means we not only have to create two different
kinds of cursors, we also need to invent two new kinds of lists. A PyCursorList
will be just like a regular Python list that sports a getCursor method, and a
LinkedCursorList is an LList with getCursor. It sounds like things are getting
pretty complicated!

Actually, the situation is not really as bad as it sounds. We just want to extend
our existing list classes with our new cursor API. This is a perfect place to use
inheritance. As we discussed in section 2 .3 . 4 , inheritance allows us to extend the
behavior of an existing class. In this case, a PyCursorList should look and act just
like a Python list with the additional twist of providing a cursor when asked. If we
make PyCursorList a subclass of list, then any instance of PyCursorList will
itself be a list , and we will get all of the built-in list functionality automatically.
Here's a start for our new class.

PyCursorList . py
from PyListCursor import PyListCursor

class PyCursorList (list) :

def getCursor (self) :
return PyListCursor (self)

Notice the class heading; PyCursorList is a subclass of (and therefore inherits
from) the built-in list . We have not defined any constructor for the subclass, so even
that is inherited from the built-in Python list type. Our new type will act just
like a Python list , as illustrated by this interaction.

» > 1st = PyCursorList ([1 , 2 , 3 , 4])
» > 1st
[1 , 2, 3, 4]
» > lst . append(5)
» > 1st
[1 , 2 , 3 , 4 , 5]
» > 1st [1]
2
» > type (lst)
<class ' __ main __ . PyCursorList ' >

Now we just need a suitable definition of PyListCursor. Remember, a cursor
just encapsulates the idea of a position. For a Python list , we can just keep track of

144 Chapter 4 L i nked Structu res and Iterators

the index of the current position and then use regular list methods to perform the
various cursor actions on that position. Here's the code that makes it happen.

PyListCursor . py
class PyListCursor (obj ect) :

def __ init __ (self , pylist) :
self . index = 0
self . lst = pylist

def done (self) :
return self . index

def getltem (self) :

len(self . lst)

return self . lst [self . index]

def replaceltem (self , value) :
self . lst [self . index] = value

def deleteltem (self) :
del self . lst [self . index]

def insertltem (self , value) :
self . lst . insert (self . index , value)

def advance (self) :
self . index += 1

The PyListCursor constructor just stores away the list and starts the index
at the front (position 0) . The other methods are all one-liners, as the Python list
operations do the work. Make sure you fully understand this code before moving
on to the implementation for linked lists.

Just for completeness, let 's test a portion of our new class by trying it on the
censor problem.

» > from PyCursorList import PyCursorList
» > words = PyCursorList (" Curse you and the horse you rode in on" . split O)
» > censor (words , ["Curse " , "horse " , "you"])
» > words
[, and ' , , the ' , , rode ' , ' in ' , , on ']

1 4 . 6 . 3 1 A L inked CursorLi st

We can implement a LinkedCursorList in a manner analogous to our PyCursorList .
This time, however, we inherit from the underlying linked implementation.

LinkedCursorList . py
from LList import LList

4.6 A Cursor-based List API (Optiona l)

from LListCursor import LListCursor

class LinkedCursorList (LList) :

def getCursor (self) :
return LListCursor (self)

145

That leaves us with implementing the LListCursor class. In some ways it will
be similar to the cursor for Python lists, but in other respects it is quite different.
There are a few subtleties that we need to pay attention to. First , in order to make
the cursor efficient , we will exploit the internal structure of LLists, just as we did for
the list iterator. In that sense, the LListCursor is not really a separate ADT from
LLists, but rather a mechanism for providing another API for the underlying data
structure. These two classes are closely linked, and changing one may necessitate
changing the other.

Another difference between the Python list cursor and the linked cursor is that
the latter will keep track of a current ListNode rather than keeping an index. At
first , a cursor seems just like the linked iterator; we just keep a reference to the
current node and then follow its link whenever we need to advance. But a little
further reflection suggests a problem with that approach. As you know from our
previous discussion of linked lists, in order to add or delete a node, we need to
modify the link in the previous node. So that leads to a design where we always
keep a reference to the node before the current node; let 's keep that in an instance
variable called self . prev. Of course, then we run into another issue, when the
cursor is initially created, the first node should be the current node, but the first
node has no prior node. What should be the initial value of self . prev?

One way to handle the problem of the lack of predecessor for the first node is
just to set self . prev to None as a special marker and then test for this special case
throughout our code. This is the way we handled the special cases in the original
LList code, and that approach can certainly be made to work again here. However,
it can be tedious and error prone to get the right special-case checks into all the
appropriate methods. An alternative approach is to make sure that every node of
the list has a valid predecessor. We can do that by simply making an extra node,
often called a dummy node. A dummy node placed at the front of the list is often
called a header node. We're going to implement our LListCursor using a header
node.

Here's the code for the basic operations required to implement our censor algo­
rithm.

146 Chapter 4 L i nked Structu res and Iterators

LListCursor . py
from ListNode import ListNode

class LListCursor (obj ect) :

def __ init __ (self , llist) :
self . lst = llist

create a dummy node at the front of the list
self . header = ListNode (II **DUMMY HEADER NODE** II , llist . head)

point prev to j ust before the first actual ListNode
self . prev = self . header

def done (self) :
return self . prev . link is None

def getltem (self) :
return self . prev . link . item

def advance (self) :
self . prev = self . prev . link

def deleteltem (self) :
self . prev . link = self . prev . link . link

first listnode may have changed , update list head
self . lst . head = self . header . link

As you can see, the constructor stores away the initial list , creates a header node,
and sets pre v to this artificial predecessor of the first real node. We need to save the
initial list and the header node because we will need to update the head instance
variable in llist if the cursor inserts or deletes at the front of the list . We save the
header node away, because its link always points to what the head of the list should
be. We'll return to this in just a bit .

The first three regular methods are straightforward. Remember the actual
current node is always the node after the one in self . prevo When self . prev
is the last node in the list (the one whose link is None) we know the cursor has
dropped off the end of the list . The getltem method just needs to grab the item
field from the node after self . prev, and advance just moves self . pre v to the next
node in the list .

The deleteltem method is slightly more complicated. In order to delete the
current node, we have to change the previous node's link to hop over the current
one. The line self . pre v . link = self . prev . link . link does the trick. Remember

4.7 L i nks vs. Arrays 147

self . prey . link is just the current node, so this sets prey . link to be the node after
the current node. The only possible complication here is that when self . prey is
the header node, we have just deleted the first node in the list . That means we also
need to change the head instance variable in self . lst . The last line makes sure
that the LList itself is properly updated. Of course, we only really need to do this
when self . prey is the header node, but it's just as efficient to do this assignment
every time and it doesn't hurt , even when the front of the list hasn't changed. It 's
cleaner to just leave the condition out; the header node takes care of the special
case for us.

Our LinkedCursorList is now good to go for our censor algorithm, but there
are a couple operations missing. Study this code, and you should have no trouble
filling in the missing operations.

We are now in a position to see some advantages of the linked list implemen­
tation. The insert and delete operations on the PyListCursor rely on the
underlying list operations and are therefore 8(n) operations. The corresponding
operations on the LinkedListCursor only modify a couple references, so they
are obviously 8(1) operations. We leave it to you to determine what effect these
considerations might have on our censor function.

/ 4 .7 / L i n ks vs . Arrays

We have looked in detail now at two different ways of maintaining sequence informa­
tion: arrays and links. As we have seen, linked structures provide efficient insertion
and deletion, but for that we give up random access to the items, which means we
also have to give up the possibility of performing a binary search. Another drawback
of linked implementation is memory usage. Because of the link pointer, additional
memory (four bytes on 32-bit systems) is required for every item in the list . If the
data type of the stored objects is small, this can essentially double the amount of
memory required.

The decision to use an array-based list or a linked list should be made based on
what types of operations are likely to be performed. If many items will be inserted
or deleted at known locations, then a linked implementation is appropriate. In most
situations, the built-in Python list is a better choice for simple sequences. However,
in later chapters we'll see how linked implementations used in more sophisticated
data structures can give us even better performance. While linked lists may not
be all that exciting or useful on their own, they are the simplest example of a very
powerful idea.

148 Chapter 4 L inked Structu res and Iterators

1 4 . 8 1 Chapter S ummary

This chapter introduces the concept of linked structures by introducing a linked
implementation of a list . Here's a quick synopsis of the key ideas.

• In Python, all variables contain references to (addresses of) objects . By
exploiting reference, we can make linked implementations of data structures
in Python.

• A linked structure stores a data element and a reference or multiple references
to other linked structures.

• Linked implementations of a list can provide more efficient insertion and
deletion of items than an array implementation, but they lack random access
and require more memory.

• Linked implementations are typically more difficult to write correctly than
array implementations since the programmer has to keep careful track of the
necessary references.

• The iterator design pattern allows clients to efficiently traverse a collection
without knowing the collection's underlying structure. Python generators pro­
vide an efficient and elegant way of implementing iterators for new container
classes.

• A class invariant is a set of implicit preconditions and postconditions for each
method a class implements. Stating and following a class invariant can make
it easier to be certain your class implementation maintains a consistent state
and is correctly implemented.

1 4 .9 I Exercises

True/Fa lse Questions

1. In a linked structure, nodes contain references to other nodes.

2 . A list implemented using linked structures requires more memory than a list
implemented as an array.

3. Since the Python list methods are written in compiled C code, using the
Python list to write a program will always be faster than a linked list imple­
mented in Python.

4 .9 Exercises 149

4. A class invariant is a set of properties that must be true before and after each
method of a class is executed.

5. Determining the length of an LList requires 8(n) time.

6. The worst case for the amount of time to insert at the beginning of an array­
based list is the same as the amount of time to insert at the end of an array­
based list.

7. The amount of time to insert at the beginning of a linked-based list is the
same as the amount of time to insert at the end of a linked-based list if you
have a link to the last node in the list .

8. You must write a next method to write an iterator in Python.

9. If an LList or built-in Python list contains only immutable objects, there is
never a need to create a deep copy of the list instead of a shallow copy.

10 . In Python, you must use the del statement when removing a node from a
linked structure in order to deallocate the memory used by the node.

M u lt iple Choice Questions

1. What is the worst-case running time of a method that inserts an item at the
beginning of an array-based list?

a) 8(1) c) 8(n)

2 . What is the worst-case running time of a method that inserts an item at the
beginning of a link-based list?

a) 8(1) c) 8(n)

3. What is the worst-case running time of a method that inserts an item at the
end of an array-based list?

a) 8(1) c) 8(n)

4. What is the worst-case running time of a method that inserts an item at the
end of a link-based list if you only have an instance variable that refers to the
first node in the list?

a) 8(1) c) 8(n)

150 Chapter 4 L i nked Structu res and Iterators

5. How much more memory does a simple linked implementation of a list require
compared to an array-based list?

a) they require the same amount

b) only extra memory for each instance variable such as head

c) extra memory for each instance variable plus 4 bytes on 32-bit systems for
each item in the list to hold the reference to the next node

d) twice as much memory

6. If you write a __ len __ method for a container class, how is that method called
for an instance b of the class?

a) b . lenO
b) len (b)
c) b . _ _ len _ _ 0
d) either len (b) or b . len 0

7. What is the worst-case running time of the insertltem method for the LListCursor?

a) 8(1) c) 8(n)

8. If you want to write an iterator that uses the yield statement, what methods
must you write?

a) the __ iter _ _ and the next methods
b) only the __ iter _ _ method
c) only the next method
d) you cannot write an iter at or using the yield statement

9. If you do not use the yield statement to write an iterator, what methods
must you write?

a) the _ _ iter _ _ and the next methods
b) only the _ _ iter _ _ method
c) only the next method
d) you cannot write an iterator without the yield statement

10 . Which of the following is not a method of the cursor API?

a) next
b) getltem
c) replaceltem
d) done

4.9 Exercises 151

Short-Answer Questions

1. What are the trade-offs and differences between shallow copies and deep
copies?

2. Draw a pictorial representation of the memory after the following code exe­
cutes.

import copy
b = [[1 , 2] , [3 , 4 , 5] , 6]
c = b
c [0] = 0
d = c [:]
e = copy . deepcopy (d)
c . append(7)

3. What would be the reference count of each of the four ListNode objects if the
statement n25 = ListNode (2 . 5 , n3) were executed in Figure 4 .7?

4. What would be the reference count of each of the four ListNode objects if the
statement n . link = n25 were executed in Figure 4 .7?

5. What is the worst-case run-time analysis of resizing a built-in Python list when
necessary?

6. Assuming the most efficient implementation possible, what is the worst case
running time of insert , append, _ _ geti tem _ _ , pop, remove , count , and
index for the built-in Python list?

7. What is the worst-case, run-time analysis for each of the methods listed in
question 6 for a linked-list implementation?

8. If we add a tail instance variable that refers to the last ListNode in the list ,
what is the running time of each of the list methods in question 6?

9. What is the worst-case, run-time analysis of each of the _ _ copy _ _ method
versions of our LList with the append method as it is written in this chapter?
How would you write a more efficient __ copy __ method (without modifying
append)?

10. Will the iterator pattern work in the case of nested for loops that operate on
the same LinkedCursorList object? Explain why or why not .

152 Chapter 4 L inked Structu res and Iterators

Program m ing Exercises

1 . Extend the LLi st class by implementing some of the other methods that the
built-in Python list supports: _ _ min _ _ , __ max _ _ , index, count , and remove .

2 . Perform an experimental comparison of the efficiency of inserting at the front
of a built-in Python list and of inserting at the front of an LList. Before
you start , form a hypothesis about what you expect to see. Conduct some
experiments to test your hypothesis . Write a complete lab report explaining
your findings. Be sure to include a thorough description of your hypothesis and
the experiments you ran. Make sure your discussion tells if your hypothesis
was supported.

3. Add a last instance variable to the LList class along the lines suggested in
the chapter, so that the append method can be implemented in 8(1) time.
This will require you to update a number of the methods to ensure self . last
is always a reference to the last ListNode in the linked structure.

4. Finish the implementation of the LListCursor class and provide a complete
set of unit tests for the LinkedCursorList class using the list cursor API.

5. Suppose we want our list cursors to be able to move both directions. That is,
in addition to the advance operation, we'd also like a backup operation. Add
this ability to the PyListCursor. Make sure to write complete unit tests for
your updated cursor.

6. Add the capability of the previous exercise to the LListCursor class. To do
this your cursor will have to keep track of a "trail" of previous nodes. You can
use a Python list for this purpose. The predecessor of each node is appended
to the list as the cursor advances and then is popped back off the end of the
list when the cursor backs up.

7. Modify the linked implementation of the Python list API so that it is a doubly­
linked list, that is , each ListNode has a reference to the ListNode before it
and the ListNode after it . Also add a method named reverse_iter that
iterates over the list in reverse order using the yield keyword. Modify your
unit testing code so it also checks the reverse links. Using your doubly-linked
list , modify the cursor for this new list to that it solves the previous problem
without having to mantain an internal list of predecessor nodes.

4.9 Exercises 153

8. The Sieve of Eratosthenes is a famous algorithm for finding all the prime
numbers up to a certain value. Here is an outline of the algorithm to find all
primes S n using cursors:

place the numbers 2 through n in a list
start primecursor at the front of the list
while primecursor is not done

prime = value at primecursor
create checkcursor as a copy of primecursor
advance checkcursor
while checkcursor is not done :

if item at checkcursor is divisible by prime :
delete the item from the list

else :
advance checkcursor

advance prime cursor
output values left in the list , they are prime

Write a program that implements this algorithm. Notice that you will need a
way to make a copy of a cursor. You will have to figure out how to accomplish
this task.

Chapter 5 Stacks and Q ueues

Object ives

• To understand the stack ADT and be familiar with various strategies for
building an efficient stack implementation.

• To gain familiarity with the behavior of a stack and understand and anlayze
basic stack-based algorithms.

• To understand the queue ADT and be familiar with various strategies for
building an efficient queue implementation.

• To gain familiarity with the behavior of a queue and understand and analyze
basic queue-based algorithms.

[[IJ Overview

In the past two chapters, we have looked in detail at the list data structure. As you
know, a list is a sequential structure. We have also looked at sorted lists , where the
ordering of the items in the list is dictated by the "value" of the item. Sometimes
it is useful for a sequential collection to be ordered according to the time at which
items are added, rather than what the particular item is . In this chapter, we'll take
a look at two simple examples of such structures, called stacks and queues.

1 5 . 2 1 Stacks

A stack is one of the one of the simplest container classes. As you'll see however,
despite its simplicy, a stack can be amazingly useful .

155

156 Chapter 5 Stacks and Queues

\ 5 . 2 . 1 \ The Stack ADT

Imagine a list (a sequential data structure) where you have access to the data only
at one end. That is , you can insert and remove items from one end of the list . Also,
you can look at the contents of only the single item at the end of the list (called
the top) . The rather restrictive data structure just described is called a stack. You
can think of it as modeling a real-world stack of items: you can only (safely) add
or remove an item at the top of a stack. And if things are stacked neatly, only the
top item is visible.

If you are into sweet confections, you might also think of a stack as the computer
science equivalent of a Pez candy dispenser. By convention our stacks are "spring
loaded, " and so adding an item to a stack is called pushing the item onto the stack.
Removing the top item from a stack is called popping it . Notice that the last item
pushed on a stack must always be the first item to be popped back off again. Because
of this , a stack is also referred to as a last in, first out (LIFO) data structure. You
could also call it a FILO structure, and of course a stack of filo dough makes a
delicious pastry. The specification for a typical stack ADT looks like this.

class Stack (obj ect) :

" " "post : creates an empty LIFO stack" " "

def push(self , x) :

" " "post : places x on top of the stack" " "

def pop (self) :

" " "pre : self . size O > 0
post : removes and returns the top element of

the stack" " "

def top (self) :

" " "pre : self . size O > 0
post : returns the top element of the stack without

removing it " " "

def size (self) :

" " "post : returns the number of elements in the stack" " "

5 .2 Stacks 157

1 5 .2 .2 1 S imple Stack Appl ications

Even though they are very simple, stacks can be very handy. You have, no doubt ,
already come across many uses of stacks in computing, but you may not have
recognized them. For example, you have probably used some applications that
include an "undo" feature. For example, you might be editing a document in a word
processing program and accidently delete a bunch of text; no problem, you quickly
go to the Edit menu and select the undo command and your text is "magically"
restored. Need to go back even further? Many applications allow you to keep
undoing commands to rollback to virtually any previous state. Internally, this is
accomplished using a stack. Each time an action is performed, the information
about that action is saved on a stack. When "undo" is selected, the last action is
popped off the stack and reversed. The size of the stack determines how many levels
you can undo.

Another example of the use of stacks is inside the computer itself. You know that
functions are an important aspect of programming languages, and modern systems
provide hardware features to support programs that make extensive use of functions.
When a function is called, the information about the function such as the values
of local variables and the return address (where the program left off before calling
the function) is pushed on a so-called run-time stack. The last function called is
always the first to return, so when a function ends, its information is popped off
the run-time stack and the return address is used to tell the CPU the location of
the next instruction to execute. As functions are called, the stack grows; each time
a function returns, the stack shrinks back. You may notice when you get an errror
message in Python, the interpreter prints out a traceback that shows how the error
message arose. This traceback shows the contents of the run-time stack at the time
the exception was raised.

A stack is also important for the syntactic analysis of computer programs.
Programming language structures must always be properly nested. For example,
you can have an if completely inside of a loop or you can have it outside (before or
after) the loop, but it is not correct for an if to "straddle" a loop boundary. A stack
is the proper data structure for handling nested structures. We can illustrate this
using a simpler nesting example, namely parentheses. In mathematics, expressions
are often grouped using parentheses. Here's a simple example: ((x + y) * x)/(3 * z) .

In a correct expression, the parentheses are always properly nested, or balanced.
Looking just at the parentheses, the structure of the previous expression is (0) o .
Every opening parenthesis has a matching closing one, and none of the opening­
closing pairs "interleave" with other pairs.

158 Chapter 5 Stacks and Queues

Suppose you were writing an algorithm to check that a sequence of parentheses is
properly balanced. How could that be done? Basically, we must guarantee that every
time we see a closing parenthesis, there has already been an opening parenthesis that
matches it . We can do this by checking that there is an equal number of opening
and closing parentheses and that we never have a sequence where more closings have
been seen than openings. One simple approach is to keep a "balance" of opening
parentheses and make sure that it is always non-zero as we scan the string from left
to right . Here's a simple Python function that scans a string to determine whether
the parentheses are balanced.

parensBalance1 . py
def parensBalance1 (s) :

open = 0
for ch in s :

if ch == ' (' :
open += 1

elif ch == ') ' :
open -= 1
if open < 0 :

there is no matching opener , so check fails
return False

return open == 0 # everything balances if no unmatched opens

So far, this doesn't look very stack-like. However, things get much more inter­
esting if we introduce different types of parenthesis. For example, mathematicians
(and programming language designers) often use multiple types of grouping markers,
such as parenthesis, () ; square brackets, [] ; and curly braces, {} . Suppose these
are mixed in a string such as [(x + y) * x] / (3 * z)/ [sin(x) + cos(y)] . Now our simple
counting approach doesn't work, as we have to ensure that each closing marker is
matched to the proper type of opening marker. Even though they have the same
number of opening and closing markers, an expression with the structure [0] 0 is
OK, but [(D O is not . Here is where a stack comes to the rescue.

In order to assure proper balancing and nesting with multiple grouping symbols,
we have to check that when a closing marker is found, it matches the most recent
unmatched opening marker. This is a LIFO problem that is easily solved with a
stack. We just need to scan the string from left to right. When an opening marker
is found, it is pushed onto a stack. Each time a closing marker is found, the top item
of the stack must be the matching opening marker, which is then popped. When
we get all done, the stack should be empty. Here's some code to do it :

parensBalance2 . py

from Stack import Stack

def parensBalance2 (s) :
stack = Stack 0
for ch in s :

if ch in II ([{ II :
stack . push (ch)

elif ch in II)] } II :
if stack . size 0

return False
else :

5 .2 Stacks

push an opening marker

match closing vith top of stack
< 1 : # no pending open to match it

opener = stack . pop ()
if opener+ch not in [II () II , II [] II , II {} II] :

not a matching pair
return False

return stack . size () == 0 # empty stack means everything matched up

159

Figure 5 . 1 shows the intermediate steps of tracing the execution of the algorithm
using the expression { [2 * (7 - 4) + 2] + 3} * 4. It shows five "snapshots"
with the characters processed so far and the current stack contents below them.
You should trace through the algorithm by hand to convince yourself that it works.

{ [2 *

[
{

{ [2 * (

(
[
{

{ [2 * (7 - 4)

[
{

{ [2 * (7 - 4) + 2] { [2 * (7 - 4) + 2] + 3 } * 4

{

Figure 5 . 1 : Example of tracing through parentheses matching

1 5 . 2 . 3 1 I mplementi ng Stacks

In a language like Python, the simplest way to implement a stack is to use the
built-in list . Given the flexibility of the Python list , each stack operation translates
to a single line of code.

160 Chapter 5 Stacks and Queues

Stack . py
class Stack (obj ect) :

def __ init __ (self) :
self . items = []

def push(self , item) :
self . items . append(item)

def pop (self) :
return self . items . pop ()

def top (self) :
return self . items [-l]

def size (self) :
return len(self . items)

Recalling our discussion of Python lists, each of these operations is performed in
constant time, so a stack is very efficient. Of course, insertion at the end of a list can
occasionally require extra work to create a new array and copy all the values into the
new array, but Python does this automatically. As discussed in subsection 3 . 5 . 1 ,
the average amount of time to append onto the end of a list remains constant since
the array size is increased proportionally as necessary.

If a list type were not readily available, it would also be easy to implement a stack
using an array. A stack with a fixed maximum size can be handled by allocating an
array of the required maximum size and using an instance variable to keep track of
how many "slots" in the array are actually being used. If the maximum stack size
is unknown, then the push operation will have to handle allocating a larger array
and copying items over when the stack exceeds the current array size .

Another reasonable implementation strategy for a stack is to use a singly linked
list of nodes containing the stack data. A stack object would just need an instance
variable with a reference to the first node of the linked list , which would be the top
of the stack. Again, both pushing and popping are easily accomplished in constant
time using a linked structure. As with the pure array implementation, keeping track
of the size of the stack in an instance variable is advisable so that the size operation
does not have to traverse the list to count items.

1 5 . 2 .4 1 An Appl ication : Expression M a n ipu lation

In this section, we will examine some algorithms to manipulate numerical expressions
using stacks. The most common way of representing a numerical expression uses a

5 .2 Stacks 161

notation known as infix notation. The expression (2 + 3) * 4 is an example of an
infix expression. The operators are between the numbers. Other possible represen­
tations of the expression are * + 2 3 4 and 2 3 + 4 * . The first representation is
known as prefix notation or Polish prefix notation since it was developed by a Polish
mathematician. The second representation is commonly known as reverse Polish
notation or postfix notation.

The advantage of the prefix and postfix notation is that parentheses are not
necessary to modify the order of operations. The infix expression 3 * (4 + 5)
- 2 + (3 * 6) is equivalent to the postfix expression 3 4 5 + * 2 - 3 6 * + .
The expression itself indicates the order in which operations are applied. Postfix
expressions can also be evaluated very easily using a stack. Each time a number
is encountered, it is pushed onto the stack. When an operator is encountered, two
numbers are popped off the stack, the operator is applied to those two numbers,
and the result is pushed on the stack.

3 4 5 + * 2 - 3 6 * +

5
4
3

3 4 5 + * 2 - 3 6 * +

6
3

25

3 4 5 + * 2 - 3 6 * +

9
3

3 4 5 + * 2 - 3 6 * +

1 8
25

3 4 5 + * 2 - 3 6 * +

2
27

3 4 5 + * 2 - 3 6 * +

43

Figure 5 .2 : Processing a postfix expression

162 Chapter 5 Stacks and Queues

In our example, after processing the three numbers, the stack contains <3 , 4 ,
5> (the top is on the right) . When the first plus operator is encountered, we pop
off the 5 and 4, add them, and push the answer onto the stack, giving us <3 , 9>
on the stack. To process the multiplication operator, we pop the 9 and 3, multiply
them, and push 27 onto the stack. After processing the 2, the stack is <27 , 2>. We
process the subtraction operator by popping the 2 and 27 and pushing the resulting
25 onto the stack. After processing the next two numbers, the stack is <25 , 3 ,
6>. We process the multiplication operator and the stack now contains <25 , 18>.
Finally, after processing the last plus operator, the stack contains the final result
which is 43. Figure 5 . 2 shows these steps pictorially. The underlined portion of
the expression is the input that has been processed, and the stack at that point is
shown below it .

The algorithm to evaluate a postfix expression is quite simple, but what do we
do with the more typical infix expression? One way to handle it is to first convert it
to postfix. This is also accomplished with a simple stack algorithm. To explain the
algorithm, we will assume that we have already split the expression into a sequence
of "tokens" where each token is either a number, an operator, or a parenthesis. For
simplicity, our algorithm also assumes that the expression is syntactically correct .
Here's the pseudocode for an infix-to-postfix converter:

create an empty stack
create an empty list to represent the postfix expression

for each token in the expression :
if token is a number :

append it onto the postfix expression

elif token is a left parenthesis :
push it onto the stack

elif token is an operator :
while (stack is not empty and the top stack item is an operator

with precedence greater than or equal to token) :
pop and append the operator onto the postfix expression

push the token onto the stack

else token must be a right parenthesis
while the top item on the stack is not a left parenthesis :

pop item from the stack and append it onto the postfix expression
pop the left parenthesis

while the stack is not empty
pop an item from the stack and append it onto the postf ix expression

5 .2 Stacks 163

Figure 5 . 3 demonstrates the algorithm on the expression 3 * (4 + 5) - 2 +
(3 * 6) . Each step shows the state of the process as one more token is read from
the infix expression. It is probably not obvious to the reader that the algorithm
works in all cases. A couple general observations help clarify things. First , notice
that the operands (numbers) in the prefix and postfix expression always occur in the
same order. Second, the left-to-right order of the operators in the postfix expression
corresponds to the evaluation order of the operations in the infix expression. Armed
with these observations, it 's pretty easy to decipher the algorithm.

As the numbers are processed, they are immediately appended to the postfix
expression, so we know the numbers will remain in the same order. As for the order
of operations, notice that the handling of an operator token is delayed by pushing
the operator onto the stack so that the following number can first be appended
to the output expression. So the expression 3 * 4 becomes 3 4 * . When there
are multiple operators, the ordering in the output is determined by their relative
precedence. Higher precedence operations are performed first , so they must be
appended to the output before lower precedence operators. Consider processing
3 * 4 + 5. When we get to the + token, the output contains 3 4 and the stack
contains <*>. Because * has a higher precedence, it is now popped and appended
before processing continues, so that the final result is 3 4 * 5 +. A sequence of
operators of equal precedence will get appended in a left-to-right order.

That just leaves handling parentheses. When a left parenthesis is processed, it
is pushed onto the stack. When the matching right parenthesis is reached, all of
the operands inside the parenthesized portion that have not yet been appended to
the output are popped and appended. This ensures that these operations appear
in the postfix expression before any operations that are evaluated later in the infix
expression.

That should give you a basic idea of how and why the algorithm works, but even
if you do not completely understand it , you can still implement the pseudocode
listed earlier. In general, designing the algorithms and data structures for software
systems is more difficult than implementing them.

1 5 . 2 .5 1 An Appl ication : Gra mmar Processing (Optiona l)

As the expression manipulation examples show, stacks are very useful in manipu­
lating formal languages such as computer programming languages. One of the most
common tools for expressing syntactic rules of both computer and natural languages
is a context-free grammar (CPG) . A grammar is just what you'd expect, a set of
rules that describe the legal sentences of a language. A CFG defines a language in
terms of a set of rewriting rules.

164 Chapter 5 Stacks and Queues

U lJ U lJ � �
expression 3 3 3 3 4 3 4 3 4 5

processed 3 3* 3*(3*(4 3*(4+ 3*(4+5

lJ U U
expression 3 4 5 + 3 4 5 + * 3 4 5 + * 2

processed 3*(4+5) 3*(4+5)- 3*(4+5)-2

U U U
expression 3 4 5 + * 2 - 3 4 5 + * 2 - 3 4 5 + * 2 - 3

processed 3*(4+5)-2+ 3*(4+5)-2+(3*(4+5)-2+(3

lJ lJ U
expression 3 4 5 + * 2 - 3 3 4 5 + * 2 - 3 6 3 4 5 + * 2 - 3 6 * +

processed 3*(4+5)-2+(3* 3*(4+5)-2+(3*6 3*(4+5)-2+(3*6)

Figure 5 .3 : Converting the infix expression 3 * (4 + 5) - 2 + (3 * 6) t o postfix

5 .2 Stacks 165

Let's consider a simple example. Here's a set of rules that describe a (very) small
set of English sentences.

1 : S -> NP VP
2 : NP -> ART N
3 : NP -> PN
4 : VP -> V NP
5 : V -> chased
6 : ART -> the
7 : N -> dog
8 : N -> cat
9 : PN -> Emily

Notice that each rule has a left-hand side and a right-hand side separated by
an arrow. The left-hand side is always a single symbol and the right-hand side is
a sequence of symbols. The first rule can be taken as stating that a sentence (8)
consists of a noun phrase (NP) followed by a verb phrase (Vp) . Noun phrases and
verb phrases are defined by subsequent rules. Rule 2 states that one way of forming
a noun phrase is as an article (ART) followed by a noun (N) . Rule 3 provides an
alternative way to form a noun phrase; it can consist of a single proper noun (PN) .

We can use these rules to form simple sentences. We start with the symbol 8 and
rewrite it using rule 1 to produce the sequence NP VP. We keep applying rules to the
sequence of symbols until there are no more rules that apply. The final sequence is
our generated sentence. Here is a sample derivation of the sentence "the dog chased
the cat." The numbers indicate which rule is being applied at each step.

S
=1=> NP VP
=2=> ART N VP
=6=> the N VP
=7=> the dog VP
=4=> the dog V NP
=5=> the dog chased NP
=2=> the dog chased ART N
=6=> the dog chased the
=8=> the dog chased the cat

Since none of the words in the final sequence appears as the left-hand side of
a rule in our sample grammar, there is no more rewriting to do, and the final
sequence "the dog chased the cat" is a sentence that is produced (or accepted) by
this grammar.

In more technical terms, the symbols that appear on the left-hand sides of
grammar rules are called non-terminal symbols, and those that appear only on

166 Chapter 5 Stacks and Queues

the right-hand side are terminal symbols. The rewriting continues until we get a
sequence composed entirely of terminal symbols. Thus the set of terminal symbols
(words in this case) are the tokens that can appear in sentences of the language
described by the grammar. The non-terminal symbols are not part of the language
being described, but are internal components of the grammar itself. You can think
of the non-terminals as describing phrase categories for the language. While a
natural language has categories such as noun phrase and verb phrase, a programming
language would have categories such as expression and statement.

CFGs are very closely related to the stack data structure. In fact , an interesting
result in theoretical computer science demonstrates that the set of languages that
can be described by such grammars is exactly the same set of languages that can be
recognized by a certain very simple kind of stack-based computer called a pushdown
automaton. In practice, this means that many language processing tasks such
as analyzing the syntax of computer programs or understanding natural language
utterances often employ stack-based algorithms.

To illustrate the point, we'll walk through the design for a simple grammar ADT
that will allow us to generate sentences using simple CFGs. Our grammar class will
manage a set of grammar rules using a very simple API. To create a grammar, we'll
add rules to an initially empty Grammar object . For example, here's an interactive
session that begins creating the sample grammar we looked at above:

» > gram = Grammar ()
» > gram . addRule (II S -> NP VP II)
» > gram . addRule (IINP -> ART N il)
» > gram . addRule (IINP -> PN II)

Once we've created a grammar, we want to be able to generate random phrases
and sentences from the grammar.

» > gram . generate (IIARTII)
' the '
» > gram . generate (IIN ")
' dog '
» > gram . generate (IIVp ll)
' chased the cat '
» > gram . generate (II S II)
' the cat chased the dog '

Notice that the generate method takes a non-terminal symbol from the gram­
mar as a parameter and then produces a phrase starting from that non-terminal.
To generate a complete sentence, we start with s .

5 .2 Stacks 167

Let's try our hand at designing this class. As a first cut, we can use a Python list
to store our grammar rules. While the rules are presented as strings, structurally,
they really consist of a single non-terminal on the left and a sequence of non-terminal
and terminal symbols on the right . We can represent each rule as an ordered pair
(non-terminal , expansion) where the expansion is just a list of the symbols on
the right-hand side . We can save these pairs in a list to represent all the rules of
the grammar. Here's the contructor for our class:

Grammar . py
from Stack import Stack

class Grammar (obj ect) :

def __ init __ (self) :
self . rules = []
self . nonterms = []

The nonterms list will keep track of the non-terminals in the grammar (symbols
that appear on the left-hand side of any rule) so that we can distinguish terminals
from non-terminals later on.

To add a rule to the grammar, we just need to split it into its constituent parts,
add them to rules, and if necessary, update the nonterms list .

def addRule (self , rule) :
split the rule at the arrow
lhs , rhs = rule . split (" -> ")

extract the non-terminal , ignoring spaces
nt = lhs . strip ()

split the rhs into a list of symbols and reverse it
symbols = rhs . split ()
symbols . reverse ()

pair the non-terminal with the symbol sequence and store it
self . rules . append « nt , symbols))

update the non-terminal list
if nt not in self . nonterms :

self . nonterms . append (nt)

The only quirk in this code is that the right-hand side of the rule is reversed
before being stored in the rules list . This is done to facilitate the stack-based
processing that will occur later. The sequence on the right-hand side will be pushed

168 Chapter 5 Stacks and Queues

onto a stack, and we want the left-most symbol to be the top of the stack, so the
order to push is right to left from the original rule. Doing the reversal here saves us
from having to do the reversal every time the rule is used.

Now we are ready to generate sentences. If you go back to the sample derivation
of the sentence "the dog chased the cat , " you'll notice that we always chose to
expand the left-most non-terminal in the developing sequence. That means we were
always dealing with a (possibly empty) sequence of words that starts the sentence
followed by a sequence of non-terminals that still needed to be expanded to complete
the sentence. We can use a stack to model the remaining non-terminals, where the
left-most one is at the top of the stack. From there, we just perform a loop that
pops the top thing off the stack; if it 's a terminal (a word) then we append it to the
output . In the case of a non-terminal, we choose a rule to expand it and push the
expansion (the symbols on the right-hand side of the rule) onto the stack. When the
stack is empty, we've run out of things to expand and the derivation is complete.

Here's Python code to implement this algorithm:

def generate (self , start) :
s = Stack O
s . push (start)
output = []
while s . size () > 0 :

top = s . pop O
if self . isTerminal (top) :

doesn ' t expand , it ' s part of the output
output . append(top)

else :
choose one expansion from all that might be used
cands = self . getExpansions (top)
expansion = random . choice (cands)
push the chosen expansion onto the stack
for symbol in expansion :

s . push (symbol)
return II " . j oin (output)

def isTerminal (self , term) :
return term not in self . nonterms

def getExpansions (self , nt) :
expansions = []
for (nt1 , expansion) in self . rules :

if nt 1 == nt : # this rule matches
copy = list (expansion)
expansions . append (copy)

return expansions

5.3 Queues 169

Notice that the output is built up using a list . The words in this list are then
j oined into a string to be returned as the function's result . Notice also that a couple
helper methods have been used to simplify the coding. The getExpansions method
simply looks through the set of rules to find all whose left-hand side match the
current non-terminal. It returns a list containing all the corresponding right-hand
sides. There we have it : a complete class for generating random sentences based on
a context-free grammar. You might try your hand at writing some simple grammars
and seeing what kind of sentences you come up with.

1 5 . 3 1 Queues

Another common data structure that orders items according to when they arrive is
called a queue. Whereas a stack is a last in, first out structure, the ordering of a
queue is first in, first out (FIFO) . You are undoubtedly familiar with the concept
since you often spend time in a queue yourself. When you are standing in line at a
restaurant or store, you are in a queue. In fact , British English speakers don't stand
in line, they "wait on queue."

1 5 . 3 . 1 1 A Queue ADT

Conceptually, a queue is a sequential structure that allows restricted access at both
ends. Items are added at one end and removed from the other. As usual , computer
scientists have their own terminology for these operations. Adding an item to the
back of a queue is called an enqueue, and the operation to remove an item from the
front is called dequeue. As with stacks, it is also handy to be able to peek at the
item on the front of the queue without having to remove it . This is usually called
front, but other terms are sometimes used like head or first.

Here is a specification of the Queue ADT:

class Queue (obj ect) :

" " "post : creates an empty FIFO queue " " "

def enqueue (self , x) :

" " "post : adds x at back of queue " " "

170 Chapter 5 Stacks and Queues

def dequeue (self) :

" " "pre : self . size O > 0
post : removes and returns the front item" " "

def front (self) :

" " "pre : self . size 0 > 0
postcondition : returns first item in queue" " "

def size (self) :

" " "postcondition : return number of items in queue " " "

1 5 . 3 . 2 1 S imple Queue Appl ications

Queues are commonly used in computer programming as a sort of buffer between dif­
ferent phases of a computing process. For example, when you print out a document ,
your "job request" is placed on a queue in the computer operating system, and these
jobs are generally printed in a first come, first served order. In this case, the queue
is used to coordinate action across separate processes (the application that requests
the printing and the computer operating system that actually sends information to
the printer) . Queues are also frequently used as intermediate, data way stations
within a single computer program. For example, a compiler or interpreter might
need to make a series of "passes" over a program to translate it into machine code.
Often the first pass is a so-called lexical analysis that splits the program into its
meaningful pieces, the tokens. A queue is the perfect data structure to store the
sequence of tokens for subsequent processing by the next phase, which is typically
some sort of grammar-based syntactic analysis.

As an example of using a queue for an intermediate data structure, consider the
problem of determining whether or not a phrase is a palindrome. A palindrome is a
sentence or phrase that has the same sequence of letters when read either forward or
backward. Some famous examples are "Madam, I'm Adam" or "I prefer Pl." Some
words like "racecar" are palindromes all by themselves. Let 's write a program to
analyze user input and validate it as a palindrome. The heart of the program will
be an isPalindrome function:

5 .3 Queues

def isPalindrome (phrase) :

II lI lIpre : phrase is a string
post : returns True if the alphabetic characters in phrase

form the same sequence reading either left-to-right
or right-to-left .

171

The tricky part of the isPalindrome function is that the palindromeness of
a phrase is determined only by the letters; spaces, punctuation, and capitalization
don't matter. We need to see if the sequence of letters is the same in both directions.
One way to approach this issue is to break the problem down into phases. In the
first phase we strip away the extraneous portions and boil the expression down to
its constituent letters. Then a second pass can compare the letter sequence in both
the forward and backward directions to see whether they match up. Conveniently,
a queue data structure can be used to store the characters so they can be accessed
again in the original order, and a stack can be used to store them for access in a
reversed order (remember, a stack reverses its data) .

Recasting this two-phase algorithm as a Python program, we get the following:

palindrome . py
from MyQueue import Queue
from Stack import Stack

def isPalindrome (phrase) :
forward = Queue ()
reverse = Stack ()
extractLetters (phrase , forward , reverse)
return sameSequence (forward , reverse)

Now we just need to define the functions that implement the two phases:
extractLetters and sameSequence. The former must go through the phrase and
add each letter to both the intermediate stack and queue. Here's one way to do
that .

import string
def extractLetters (phrase , q, s) :

for ch in phrase :
if ch . isalphaO :

ch = ch . lower O
q . enqueue (ch)
s . push (ch)

172 Chapter 5 Stacks and Queues

The sameSequence function needs to compare the letters on the stack and queue.
If all the letters match up, we have a palindrome. As soon as two letters fail to match,
we know that our phrase has failed the test .

def sameSequence (q , s) :
while q . size () > 0 :

chi = q . dequeue ()
ch2 = s . pop O
if chi ! = ch2 :

return False
return True

With the isPalindrome function in hand you should be able to easily complete
our palindrome checking program. Try it out on these two examples: "Able was I ,
ere I saw Elba" and "Evil was I, ere I saw Elvis" Obviously, only one of these is
really a palindrome. A quick search on the Internet will yield lots of interesting test
data. Of course, you'll need an implementation of queues to get your program up
and running; read ahead for some hints.

1 5 .4 1 Queue I m p lementat ions

Implementing a queue with Python's built-in list i s straightforward. We just need
to insert at one end of the list and remove from the other end. Since the Python
list is implemented as an array, inserting at the beginning is an inefficient operation
if the list is very long. Removing an element from the beginning of the list is also
inefficient; so neither option is ideal.

An alternative would be to use a linked implementation. The sequence of items
can be maintained as a singly linked list . The queue object itself then maintains
instance variables that point to the first and last nodes of the queue. As long as
we do insertions at the end of the linked list and removals from the front , both
of these operations can easily be done in constant (8(1)) time. Of course, the
linked implementation would be a lot trickier to code. Before pursuing this or
other options, it might be wise to consider the words of Tony Hoare, a very famous
computer scientist : "Premature optimization is the root of all evil." There are a
number of justifications for this statement . It does not make sense to worry about
optimizing code until you are certain what the bottlenecks are (i .e . , where most of
the time is being spent) . If you double the speed of code that is 5% of the execution
time of your program, your program will execute only about 3% faster. But if
you double the speed of code that is 50% of the execution time, your program will
execute about 33% faster. As we have already seen with the binary search algorithm,

5 .4 Queue Implementations 173

more efficient code is often more complex and more difficult to get correct. Before
you worry about making a specific section of code more efficient, you should make
certain that it will have a significant effect on the speed of your overall program.

In the case of implementing a queue in Python, there is the additional con­
sideration that the underlying Python list operations are coded in very efficient
C code and can take advantage of system-level calls that move blocks of memory
around very quickly. In theory, we may be able to write linked code with better
asymptotic (theta) behavior, but the queue sizes will have to be very large indeed
before our linked code overtakes the optimized Python list code. Coding a linked
implementation of a queue is a great exercise in using linked structures, but we have
yet to encounter a situation in practice when such a queue actually out-performed
one based on the built-in list .

In languages such as C/C++ and Java that support fixed-size arrays, an array
is often the appropriate structure to use to implement a queue, particularly if the
maximum queue size is known ahead of time . Instead of performing the enqueue
and dequeue operations by shifting elements in the array, we can keep track of the
indices that represent both the front/head and back/tail of the queue. As long as
the maximum number of elements in the queue at any point in time does not exceed
the size of the array, this is an excellent method for implementing queues. Each
time an item is added to the queue, the tail index is increased by one. If we add
one and use the modulus operator we can easily make the index wrap around to the
beginning of the array, simulating a circular array representation. For an array of
size 10, we'd increment the tail like this:

I tail = (tail + 1) % 10

Since the index positions start at 0, the last position is index 9. When we add
1 to 9 we get 10 and 10 modulus (remainder) 10 is O. This is a common technique
used in many computer algorithms to wrap around back to 0 after some maximum
value is reached. The same technique is used for incrementing head when an item
is dequeued. The effect is that the head index chases the tail index around and
around the array. As long as items remain in the queue, head never quite catches
tail .

In Python, the circular array technique could also be used by simply starting
with a list of the appropriate size. List repetition provides an easy way to do this.

I ���f . items = [None] * 10

There is one subtlety in the circular array/list approach to queues. We need to
think carefully about the values for head and tail that indicate when the queue

174 Chapter 5 Stacks and Queues

is full or empty. Writing an invariant for the class that relates these values is an
excellent technique to make certain we get it right . We would like the head index
to indicate where the front item in the queue is located in the array. It makes sense
for the tail index to indicate either the position of the last item in the queue or
the following location where the next item inserted into the queue would be placed.
When the queue is empty, it is not clear what the values should be for head and
tail . Since we are using a circular array it is possible that the value for tail is less
than head. And after inserting a few items and then removing those items, head
and tail are in the middle of the array jlist so we cannot use any fixed values of
head and tail to indicate an empty queue. Instead, we must rely on their relative
values.

Suppose we start with a empty queue having both head and tail set to index
O. Then clearly when head == tail the queue is empty. Suppose the size of the
circular array is n. Now consider what happens if we enqueue n items without
any dequeues. As the tail pointer is incremented n times, it will wrap around and
land back at O. Thus, for a full queue, we once again have the condition head ==
tail . That's a problem. Since both a full queue and an empty queue "look" exactly
the same, we can't tell which we have by looking at the values of head and tail.
We could rescue the situation by simply agreeing that a "full" queue contains only
n - 1 items, in effect wasting one cell. However, a simpler approach is just to use
a separate instance variable that keeps track of the number of items in the queue.
This approach leads us to the following invariant:

1 . The instance variable size indicates the number of items in the queue and °
<= size <= capacity where capacity is the fixed size of the array jlist .

2. If size > 0, the queue items are found at locations items [(head+i) %capacity] ,
for i in range (size) , where items [head] is the front of the queue and tail
== (head+size-1) %capacity.

3 . If size == 0 , head == (tail+1) %capacity .

Using this invariant , you should be able to complete a circular list implementation
of a queue without too much effort .

� An Exa m p le App l i cat ion : Queue i ng S i m u l at ions (Opt iona l)

One common use of queues is modeling the behavior of real-world queues. You can
find queues all over in the world from banks and theaters to car washes, assembly
lines, and restaurants. For our example, let 's look at a mom-and-pop retail store

5.5 An Example Appl ication : Queueing S imu lations (Optiona l) 175

that has only a single check-out register. The store has been getting busier lately,
and customers are starting to complain about the amount of time they spend waiting
in line. The owner is in a quandry over whether to upgrade the register so that a
single checker can work faster or whether she should remodel the store so that it
can have more check-out lines. Obviously, the latter approach would be much more
costly, and she doesn't know if it 's worth the money.

We can write a simulation that models the check-out line at the store in order
to try out various options and answer questions such as how long customers wait
in line on average, what is the maximum wait , and how long does the line get?
We can also parameterize our simulation so that we can experiment with different
check-out rates to see the effect that a faster register might bring. Our simulation
will illustrate a small part of an important field of applied mathematics known as
operations research.

Our simulation will be a simple model of the check-out process. Customers arrive
in the check-out line with a certain number of items and are served in the order that
they arrive. Of course, customers don't arrive at a constant rate. There is a certain
amount of randomness to their comings and goings. Similarly, the time it takes to
check customers out varies randomly according to the number and type of items
that they are purchasing. As with any simulation, we'll have to abstract away most
of the specific details so that we can model the heart of the problem.

To start with, we need some way to keep track of the passage of time. Abstractly,
it does not matter what units of times we use, we just need to choose a scale suitable
for the simulation at hand. Measuring times to process customers in terms of seconds
seems convenient , but we can keep our model more general by just talking in terms
of "clock ticks." For our simulation a tick might be one second; for a simulation of a
computer system, a tick might be one millisecond. For a climate simulation, a tick
might be a year. Our simulation will start at time 0, and we'll increment a counter
to represent the passage of time tick by tick.

Now we need to think about how to represent the customers. Ultimately, we
are interested in how much time they spend in line. If we have a time variable
that keeps track of the current time, we can look at this "clock" to see what time
it is when we process the customer's items. If we know what time they arrived in
line, then a simple subtraction will tell us how long they waited. We also need to
know how long it takes to check them out, because that much time has to pass
before we process the next customer. We can model this simply by associating a
number of items with each customer and then multiplying that by the average time
to process a single item. Ultimately then, we've decided that we need to know two

176 Chapter 5 Stacks and Queues

pieces of information about each customer: the time at which they arrive in line
(arri val Time) and the number of items they have (i temCount) .

The raw data for our simulation will be a sequence of customers that have
randomly generated arrival times and item counts. To make simulations as realistic
as possible, operations researchers rely on statisical models to produce events in a
way that models the real world. For example, if we were to look at a simple variable
like i temCount, we could analyze a sample of actual customers to find the "average"
number of items purchased on a given trip to the store. But this average does not
tell the whole story; obviously, not every customer gets exactly the average. The
actual number or items in various people's carts would be distributed around this
average. The problem is further complicated in that the distribution is probably not
symmetric, since the fewest items a customer can get is one, but there is (virtually)
no upper limit on the number of items they can have. Similar considerations apply
to the arrival times of customers. There is a certain average rate at which they
arrive, but they will not come at a constant fixed rate. Sometimes they will arrive
in bunches and other times there will be lulls.

Since this is not intended to be a book on operations research, we'll stick to some
fairly simple approaches to generate our sequence of customers. We will assume that
the number of items that customers buy is uniformly distributed between 1 and
some settable parameter MAX_ITEMS. We can just use Python's randrange function
to generate a random i temCount for each customer. We'll set the arrival time
for customers by setting an average arrival rate and then using a uniform random
generator to determine the times when customers actually arrive to satisfy that rate.
Armed with this much analysis, we're ready to write some code that can generate the
sequence of events (customer arrivals) that will serve as the input to our simulation.

We could just generate arrival events "on the fly" as we run our simulation,
just like it happens in the real world. However, there our advantages to generating
the sequence of events first and saving the information to a file. For one thing,
it allows us to try out different simulations on the exact same sequence of events.
For example, with a pregenerated sequence of events, we can run a simulation at
two different checker speeds to get a he ad-to-head comparison of the difference.
Another advantage is that it separates the simulation itself into two phases so that
we could later modify the way the input is generated, perhaps substituting different
probability distributions without having to make any changes to the simulation code.

Let 's make this more concrete by writing some code to generate our customers.
Remember, we just need to generate arrival Time and i temCount for each customer.
We'll save this information in a file where each line of the file corresponds to one

5 .5 An Example Appl ication : Queueing S imu lations (Optiona l) 177

event . Each line contains an arrival Time followed by an i temCount . Here are the
first few lines of a sample file : 1 49 39

143 20
205 26
237 44

In this data, the first customer arrived at time 49 with 39 items, then the second
customer arrived in line at time 143 with 20 items, and so on. Notice that the
arri val Times are listed in increasing order.

Here's a function to generate our simulation data.

simulation . py
from random import random , randrange

def genTestData(filename , totalTicks , maxltems , arrivallnterval) :
outfile = open(filename , "w")
step through the ticks
for t in range (1 , totalTicks) :

if random () < 1 . /arrivallnterval :
a customer arrives this tick
with a random number of items
items = randrange (1 , maxltems+1)
outfile . write ("%d %d\n" % (t , items))

outfile . close ()

In the parameter list , filename gives the name of the output file, totalTicks
is the length of time over which the simulation will be run , maxItems is an upper
limit on the number of items a customer will have, and arri val Interval indicates,
on average, the number of ticks between arrivals. Suppose the store normally
averages about 30 customers an hour. That 's a customer every two minutes. If
a tick represents one second, then we expect about 120 ticks between customers.
Notice how arrival times are handled in the code. If we expect one customer every
120 ticks, then for each tick, there's a 1 in 120 chance that a customer is arriving.
The expression random 0 < 1 . /arrivalInterval succeeds (evaluates to True) with
1/arrivalInterval probability. This gives us random arrivals that , over the long
haul , occur at the desired rate. To generate a three-hour simulation with customers
purchasing up to 50 items at an average of two-minute intervals, we would call the
function like this :

genTestData ("checkerData . txt " , 3*60*60 , 50 , 120)

178 Chapter 5 Stacks and Queues

Our simulation program will deal with customers as they arrive in line. From
the program's point of view, it doesn't matter if the customers are being read from
a file or being provided in real time by another program or some other process. In
fact , this is a perfect place to use a queue as an intermediary between whatever
process is creating the data and our simulation. First , let 's create a Customer class
to encapsulate the details about each customer.

class Customer (obj ect) :

def __ init __ (self , arrivalTime , itemCount) :
self . arrivalTime = int (arrivalTime)
self . itemCount = int (itemCount)

def __ repr __ (self) :
return (II Customer (arrivalTime=%d , itemCount=%d) " %

(self . arrivalTime , self . itemCount»

Since our customer information is just a "record" containing the arrival Time
and i temCount data, we'll just access this information directly later on when neces­
sary (e.g. , customer . i temCount) . The _ _ repr __ method provides a nice, printable
representation for customers. This is handy so that we can inspect our data structure
during testing and debugging. Now it 's a simple matter to write a function that will
input a data file and create a queue of customer events.

def createArrivalQueue (fname) :
q = Queue O
infile = open(fname)
for line in infile :

time , items = line . split ()
q . enqueue (Customer (time , items»

infile . close ()
return q

The actual simulation will be carried out in a CheckerSim object . The construc­
tor accepts a queue of events and an average item-processing time as parameters .
Here's one way of coding the CheckerSim class.

CheckerSim . py
from My Queue import Queue

class CheckerSim(obj ect) :

5.5 An Example Appl ication : Queueing S imu lations (Optiona l)

def _ _ init _ _ (self , arrivalQueue , avgTime) :
self . time = 0 # ticks so far in simulation
self . arrivals = arrivalQueue # queue of arrival events to process
self . line = Queue () # customers waiting in line
self . serviceTime 0 # time left for current customer
self . totalWait = 0 # sum of wait time for all customers
self . maxWait = 0 # longest wait of any customer
self . customerCount = 0 # number of customers processed
self . maxLength = 0 # maximum line length
self . ticksPerltem = avgTime # time to process an item

def run(self) :
while (self . arrivals . size () > 0 or

self . line . size () > 0 or
self . serviceTime > 0) :

self . clockTick O

def averageWait (self) :
return float (self . totaIWait) / self . customerCount

def maximumWait (self) :
return self . maxWait

def maximumLineLength(self) :
return self . maxLength

def clockTick (self) :
one tick of time elapses
self . time += 1
customer (s) arriving at current time enter the line
while (self . arrivals . size () > 0 and

self . arrivals . front () . arrivaITime == self . time) :
self . line . enqueue (self . arrivals . dequeue ())
self . customerCount += 1

if line has reached a new maximum , remember that
self . maxLength = max (self . maxLength , self . line . size ())
process items
if self . serviceTime > 0 :

a customer is currently being helped
self . serviceTime -= 1

elif self . line . size () > 0 :
help the next customer in line
customer = self . line . dequeue ()
#print self . t ime , customer # nice tracing pOint
compute and update statistics on this customer
self . serviceTime = customer . itemCount * self . ticksPerltem
waitTime = self . time - customer . arrivalTime
self . totalWait += waitTime
self . maxWait = max (self . maxWait , waitTime)

179

180 Chapter 5 Stacks and Queues

A simulation is executed by calling its run method. This method executes a loop
that calls clockTick until the simulation is complete. This particular approach is
an example of a time-driven simulation. We simply increment the clock one tick at a
time and do whatever has to be done in that tick. Any events in the arri val Queue
that occur at the given tick are moved into the line . If the checker is currently
helping a customer, the amount of time still needed to process the customer's items
is stored in serviceTime . We simply need to decrement this variable. If service
time is 0, then the checker can begin helping the next customer in line. If the line
is empty, the checker doesn't do anything. You should study this code carefully to
make sure you understand how it works .

For this particular problem, a time-driven solution is not necessarily the best
approach. Many of our cycles around the tick-loop will essentially be idle time.
An alternative approach is to use an event-driven simulation. The idea behind an
event-driven approach is that we don't model each tick of the clock, but simply
"jump ahead" to the next event that will have to be processed. For example , if
the next customer in line will take 50 ticks to process, we don't really need to tick
the clock 50 times , we can advance it 50 ticks in one step. Of course, that also
means we will have to add to the line all of the arrival events that occur during
that 50 tick window. A time-driven version is easy to understand, but the event­
driven approach has the advantage that we need to go around the loop only once per
customer, rather than once per clock tick. A three- hour simluation involves 10,800
ticks , but probably fewer than 100 customers, so that could be quite a savings.
Completing an event-driven version of our simulation is left as an exercise.

[[§J Chapter S ummary

This chapter has discussed two simple, but very common data structures: stack and
queue. Key ideas of these structures are

• A stack is a sequential container that only allows access to one item, called
the "top" of the stack. Items are added and removed in a last-in, first-out
(LIFO) manner. Stacks naturally reverse a sequence and support the standard
operations: push, pop, top, and size .

• Among the applications of stacks are maintaining "undo" lists, tracking func­
tion calls in a running program, and checking proper nesting of grouping
symbols.

5 .7 Exercises 181

• A stack is easily implemented using list-based, array-based, or linked-list
techniques.

• Expressions can be represented using prefix, infix, or postfix syntax. Stack­
based algorithms are useful for converting between different expression types
and evaluating expressions.

• Context-free grammars (CFGs) are a simple formalism for expressing the
syntax of a wide class of languages. CFGs are closely related to stack-based
computations.

• A queue is a sequential container object that allows restricted access to the
front and back of the sequence. Items can only be added to the back and
removed from the front . A queue is a first in, first out (FIFO) structure.
Queues support the standard operations: enqueue , dequeue , front , and size.

• Queues are widely used as a "buffer" between different computational processes
or phases of a single process.

• A queue implemented with a Python list will have 8(n) behavior for either
enqueue or dequeue, but is probably efficient enough for most applications.
A circular array implementation or a linked implementation can be used to
provide 8 (1) behavior for all operations.

• One use of queueing is in operations research simulations. Such simulations
can be either time driven or event driven. A time-driven simulation increments
a simulated clock one tick at a time and checks what events happen at each
tick. An event-driven simulation processes one event at a time and adjusts the
clock by the amount of time passed before the next event .

1 5 .7 1 Exercises

True/ Fa lse Questions

1. Items come out of a stack in the same order they go in.

2 . The operation for adding an item to a stack is called push.

3. The top operation does not modify the contents of a stack.

4. An expression has balanced parentheses if it contains an equal number of
opening and closing parentheses.

182 Chapter 5 Stacks a nd Queues

5. A Python list is not a very good choice for implementing a stack.

6. Items come out of a queue in the same order that they go in.

7. A queue allows for the inspection of items at either end.

8. The operation to remove an item from the front of a queue is called front .

9. "Racecar" is a palindrome.

10. A queue implemented using the insert and pop operations on a Python list
will have 8(1) efficiency for all operations.

M u lt ip le Choice Questions

1. By definition, a stack must be a(n)

a) FIFO structure
b) LIFO structure
c) linked structure
d) array-based structure

2. Which of the following is not a stack operation?

a) push b) unstack c) pop d) top

3 . Which of the following is not an application of a stack?

a) Keeping track of command history for an "undo" feature.
b) Keeping track of function calls in a running program.
c) Checking for proper nesting of parentheses.
d) All of the above are stack applications.

4. What is the result of evaluating the postfix expression 5 4 3 + 2 * -?

a) -2 b) 3 c) 15 d) None of these

5. What is the correct postfix form for 3 + 4 * 5?

a) 3 4 + 5 * b) 3 4 * 5 + c) 3 4 5 + *

6. By definition, a queue must be a(n)

a) FIFO structure
b) LIFO structure
c) linked structure
d) array-based structure

d) 3 4 5 * +

5 .7 Exercises 183

7. Which of the following is not an operation of the queue ADT?

a) enqueue b) dequeue c) requeue d) front

8. Which implementation of a queue cannot guarantee 8(1) behavior for all
operations:

a) a circular list/array implementation
b) a linked implementation with front and back references
c) a Python list implementation using insert and pop

d) All of the above yield 8 (1) operations.

9. The process of splitting a string up into its meaningful pieces is called

a) splitation.
b) semantic chopping.
c) syntactic chopping.
d) lexical analysis.

10. When using a linked implementation of a queue, where should insertions be
done?

a) at the front (head) of the linked list
b) at the end (tail) of the linked list
c) in the middle of the list
d) either a) or b) will work

Short-Answer Questions

1. What is the running-time analysis of each stack method using

a) a linked list implementation?
b) a Python list implementation?

2. What is the running-time analysis of the infix-to-postfix converter in terms of
the number of tokens in the expression?

3. What is the running-time analysis of each queue method using

a) a Python list (non-circular) implementation?
b) a circular list/array implementation?
c) a linked implementation with only a head reference?
d) a linked implementation with head and tail references?

184 Chapter 5 Stacks and Queues

4. Suppose you had a programming language with the only built-in container type
being a stack. Explain how each of the following ADTs could be implemented,
and give the running time for the basic operations. Try to come up with the
most efficient implementation you can. Hint : you might use more than one
stack to implement a given ADT.

a) queue
b) cursor-based List
c) index-based list (random access)

5. Experiment with different scenarios using the checker simulation. What do
you think the maximum line length will be as the average rate of arrivals
approaches the average rate of check-out? Run some simulations to test your
hypothesis.

Program mi ng Exercises

1 . Write a Stack and a Queue class with unit test code for each class. Test out
the palindrome program from the chapter using your stack and queue.

2. Implement the infix-to-postfix algorithm described in this chapter.

3. Write a function that accepts a valid postfix expression and evaluates it .

4. Suppose a queue is being used to store numbers, and we want to see if
the numbers currently in the queue are in order. Write and test a func­
tion queue InOrder (someQueue) that returns a Boolean indicating whether
someQueue is in sorted order. After calling the function, the queue should
look exactly like it did before the function call. Your function should only
make use of the available queue ADT operations; accessing the underlying
representation is not allowed.

5. Hypertext markup language (HTML) is a notation used to describe the con­
tents of web pages. The latest HTML standard is XHTML. Web browsers read
HTML/XHTML to determine how web pages should be displayed. HTML
tags are enclosed in angle brackets « and » . In XHTML, tags generally
appear in start tag, end tag combinations. A start tag has the form <name
attributes>. The matching end tag contains just the name preceeded by a
/ . For example, a paragraph of text might be formatted like this:

<p align=" center" > This is a centered paragraph </p>

5 .7 Exercises 185

XHTML also allows self-closing tags of the form <name attributes /> . In a
proper XHTML file, the tags will occur in properly nested pairs. Each start tag
is matched by a corresponding end tag, and one structure may be embedded in­
side another, but they cannot overlap. For example <p> . . . <01> . . . </ 01> . . . </p>
is OK, but <p> </p> . . . is not . A self-closing tag acts as a self­
contained start-end pair.

Write a program that checks XHTML files (web pages) to see if the embedded
XHTML tags balance properly. The program will read XHTML input from a
file and print out an analysis of the file . The sequence of tags in the file should
be echoed to the output ; any other text in the XHTML file is ignored. If there
is a tag balancing error or the program reaches the end of the file while in the
middle of a tag, the program should quit and print an error message. If the
end of the file is reached without any errors, a message to that effect should
be printed.

6. A marble clock is a novelty timepiece that shows the current time via the
configuration of marbles in its trays. Typically, such a clock has a reservoir
of marbles at the bottom that acts like a queue. That is, marbles enter the
reservoir and one end and are removed from the other. The clock keeps time
via an arm that circulates once a minute lifting a marble from the front of the
reservoir and dropping it into the top of the clock. The clock has a series of
three trays for showing the time. Marbles enter and leave the trays from one
end only (i.e . , they function as stacks) .

The top tray is the minute tray and is labeled with the numbers 1-4. The
first marble rolls into position 1 , the next into 2, and so on. The fifth marble
entering the tray overbalances it , causing it to dump out. The last marble in
then falls to the next tray, and the remaining four return to the reservoir . The
second tray in the clock has 1 1 positions, labeled 5, 10, 15, 20, . . . 55. When
a twelfth marble enters this tray, it dumps its contents, with the last marble
again dropping to the next tray, and the other 1 1 returning to the reservoir .
The third and final tray shows hours. It has one marble permanently affixed
at position 1 , and then has 1 1 spaces for hours labeled 2 , 3, 4, . . . , 12 . When
a twelfth marble drops in this tray, it tips and all 12 marbles return to the
reservoir. At that point , the clock has completed a 12-hour cycle, and there
are no (free) marbles left in any of the trays.

You are to write a program that simulates the behavior of the marble clock
to answer some questions about its behavior. As the clock runs, the marbles
in the reservoir get shuffled up. We want to know how many 12-hour cycles it

186 Chapter 5 Stacks and Queues

takes to put the marbles back in order. Your program should allow the user
to enter a number, N (>= 27) that represents the number of marbles in the
reservoir at the start . Your program should simulate the behavior of the clock
and count how many 12-hour cycles pass before the marbles are all back in
the reservoir in the original order. It should print this result.

Hints: you can use ints o . . . (N-1) to represent the marbles. You will need to
write a function (see exercise 4) that determines when the resevior is back in
order. For N = 27, the answer is 25.

7. The previous exercise, involves simulating the marble clock until the reservoir
is back in order. Another approach to this problem is to consider a single
cycle of the clock as defining a permutation. That is , we can extract the order
of the marbles from the reservoir, and it tells us exactly how the marbles are
shuffled. For example, if the first number in the queue is 8, that means that
the number that was in position 8 moved to position O.
Design a permutation class to represent a rearrangement . You need a construc­
tor and a method that applies the permutation to a list . Then redo the clock
problem by running the clock for just one cycle, extracting the permutation,
and then repeatedly applying the permutation until you get a list that is back
in order.

8. The number of times a permutation must be applied before it restores a
sequence to its original order is called the "order of the permutation." The
order of a permutation can be determined by partitioning the permutation into
its cycles and then finding the least common multiple of the cycle lengths. For
example, the permutation that turns [0, 1 , 2 , 3 , 4] into [4, 3, 0 , 1 , 2] contains
two cyles: (0, 2, 4) and (1 , 3) . The first cycle shows that the item in position
o moves to position 2, the item in position 2 moves to position 4 and the item
in position 4 moves to position O. The second cycle shows that positions 1 and
3 just swap places. This permutation has the order 3(2) = 6. So applying the
rearrangement six times puts a sequence back in order.

Extend your permutation class from the previous exercise with a method that
calculates the order of the permutation. Use your new method to solve the
marble clock problem again. Experimentally compare the efficiency of this
approach to the previous versions.

9. Write an event-driven version of the checker simulation. Make sure it produces
the same results as the time-driven simulation in the chapter.

5.7 Exercises 187

10. Suppose our retail store is going to upgrade from one to two checkers. Either
we can have a single line with the person at the front of the line going to
whichever checker is free (similar to airline check-in and some banks) or we
can have two separate lines where we assume that arriving customers will
queue up in the shortest line. Write a simulation to determine if there is any
significant advantage to one approach over the other in terms of the average
waiting time for the customers.

Chapter 6 Recursion

Object ives

• To understand the basic principles of recursion as a problem solving technqiue.

• To be able to write well-formed recursive functions.

• To be able to analyze the behavior of simple recursive functions and predict
their run-time efficiency.

• To be able to analyze the benefits and drawbacks of recursion vis-a.-vis iteration
and employ each where appropriate.

[§]J I ntrod uct ion

As you surely know by now, one of the best techniques to use when designing
programs is to break a problem down into smaller subproblems. In some situations,
you may end up with smaller versions of the same problem. For example, think
back to the basic binary search algorithm for finding an item in a sorted list ; we
covered it way back in subsection 1 . 3 . 2 . To jog your memory, here's the code that
we developed:

189

190

def search (items , target) :
low = 0
high = len (items) - 1

Chapter 6 Recursion

while low <= high : # There is still a range to search
mid = (low + high) II 2 # position of middle item
item = items [mid]
if target == item :

return mid
elif target < item :

high = mid - 1
else :

low = mid + 1
return -1

Found it ! Return the index

x is in lower half of range
move top marker down
x is in upper half
move bottom marker up
no range left to search ,
x is not there

We determined that the time complexity of this algorithm is 8 (log n) where n is
the size of the list , because each iteration through the main loop cuts the number of
items to consider in half. If you've forgotten this important algorithm, this would
be a perfect time to go back and review it .

The binary search uses a so-called "divide and conquer" approach, which often
leads to very efficient algorithms. This class of algorithms also has the interesting
feature that the original problem divides into subproblems that are actually smaller
versions of the original. In the case of binary search, the first step is to look at the
middle element of the list ; if it is not the target, we continue by performing binary
search on either the top half or the bottom half of the list. Using this insight , we
might express the binary search algorithm in a slightly different form:

Algorithm : binarySearch -- search for x in nums [low] . . . nums [high]

mid = (low + high) I 2
if low > high

x is not in nums
elif x < nums [mid]

perform binary search for x in nums [low] . . . nums [mid-1]
else

perform binary search for x in nums [mid+1] . . . nums [high]

Rather than using a loop as in the original algorithm, this definition of the binary
search seems to refer to itself. What is going on here? Can we actually make sense
of such a thing?

6 .2 Recursive Defi n itions 191

1 6 . 2 1 Recu rsive Defi n it ions

A description of something that refers to itself i s called a recursive definition. In
our last formulation, the binary search algorithm makes use of its own description.
That is , a "call" to binary search "recurs" inside of the definition-hence, the label
"recursive definition."

At first glance, you might think recursive definitions are just nonsense. Surely
you have had a teacher who insisted that you can't use a word inside its own
definition? That's called a circular definition and is usually not worth much credit
on an exam.

In mathematics, however, certain recursive definitions are used all the time. As
long as we exercise some care in the formulation and use of recursive definitions,
they can be quite handy and surprisingly powerful . The classic recursive example
in mathematics is the definition of factorial.

The factorial function is often denoted with an exclamation point (!) , and n
factorial is computed as

n! = n(n - l) (n - 2) . . . (1)

For example, we can compute

5 ! = 5(4) (3) (2) (1)

Using this definition, it is fairly easy to write a function fact en) that returns the
factorial of its parameter. You just need a for loop that accumulates the product
of all the factors from 2 up to n. We leave coding that up to you, as that 's not the
solution of interest to us here.

Looking at the calculation of 5 ! , you will notice something interesting. If we
remove the 5 from the front, what remains is a calculation of 4 1 . In general, n! =
n(n - I) ! . In fact , this relation gives us another way of expressing what is meant by
factorial in general. Here is a recursive definition:

, _ { 1 if n = 0
n. -

n(n - I) ! otherwise

This definition says that the factorial of 0 is , by definition, 1 , while the factorial of
any other number is defined to be that number times the factorial of one less than
that number.

Even though this definition is recursive, it is not circular. In fact , it provides
a very simple method of calculating the factorial of any natural number. Consider

192 Chapter 6 Recu rsion

the value of 4! . By definition we have

4! = 4(4 - I) ! = 4(3 !)

But what is 3 !? To find out, we apply the definition again.

4! = 4(3!) = 4 [(3) (3 - I) !] = 4(3) (2 !)

Now, of course, we have to expand 2 ! , which requires I ! , which requires O ! . Since O!
is simply 1 , that 's the end of it .

4! = 4(3!) = 4(3) (2 !) = 4(3) (2) (1 !) = 4(3) (2) (1) (0 !) = 4(3) (2) (1) (1) = 24

You can see that the recursive definition is not circular because each application
causes us to request the factorial of a smaller number. Eventually we get down
to 0, which doesn't require another application of the definition. This is called
a base case for the recursion. When the recursion bottoms out, we get a closed
expression that can be directly computed. All good recursive definitions have these
key characteristics:

1 . There are one or more base cases for which no recursion is required.

2. All chains of recursion eventually end up at one of the base cases.

The simplest way to guarantee that these two conditions are met is to make sure
that each recursion always occurs on a smaller version of the original problem. A
very small version of the problem that can be solved without recursion then becomes
the base case. This is exactly how the factorial definition works.

As we mentioned above, the factorial can be computed using a loop with an
accumulator. That implementation has a natural correspondence to the original
definition of factorial that we presented. Can we also implement a version of factorial
that follows the recursive definition?

If we write factorial as a function, the recursive definition translates directly into
code.

fact . py
def fact (n) :

if n == 0 :
return 1

else :
return n * fact (n- 1)

6.3 S imple Recursive Examples 193

Do you see how the definition that refers to itself turns into a function that calls
itself? This is called a recursive function. The function first checks to see if we are
at the base case n == 0 and, if so, returns 1 . If we are not yet at the base case, the
function returns the result of multiplying n by the factorial of n-1 . The latter is
calculated by a recursive call to fact (n-l) .

This is a reasonable translation of the recursive definition. The really cool part
is that it actually works! We can use this recursive function to compute factorial
values.

» > from fact import fact
» > fact (4)
24
» > fact (0)
3628800

Some programmers new to recursion are surprised by this result , but it follows
naturally from the standard semantics of function calls. Remember that each call to
a function starts that function anew. Thanks to the run-time stack, each invocation
of the function gets its very own references to any local values, including the values
of the parameters. Figure 6 . 1 shows the sequence of recursive calls that computes
5 ! . Note especially how each return value is multiplied by the value of n that is
remembered for each function invocation. The values of n are automatically stored
on the stack on the way down the chain and then popped off and used on the way
back up as the function calls return.

1 6 . 3 1 S im p le Recu rsive Exa m ples

There are many problems for which recursion can yield an elegant and efficient
solution. In this section we'll try our hand at some simple recursive problem solving.

1 6 .3 . 1 1 Example : Stri ng Reversa l

Python lists have a built-in method that can be used to reverse the list . Suppose
that you want to compute the reverse of a string. One way to handle this problem
effectively would be to convert the string into a list of characters, reverse the list ,
and turn the list back into a string. Using recursion, however, we can easily write
a function that computes the reverse directly, without having to detour through a
list representation.

The basic idea is to think of a string as a recursive object ; a large string is
composed of smaller objects, which are also strings. In fact, one very handy way

194 Chapter 6 Recursion

') def fact(n): def fact(n): def fact(n):

fact(5) return 1 \\� return 1 �� return 1 � if n == O: /, if n == O: Y, if n == O:

�20 else: 24 else: 6 else:
� return n * fact(n- l)'" return n * fact(n- l)'" return n * f ct(n- l)

n o=] n C:U n �
def fact(n): def fact(n): def fact(n):

n = 2

if ::'� :
l ,, '" / if :7:r�:

1 "", ()�/ if �e�:::\
2 else: / . 1 else: ././ else:

L..-___ ---==-�r�e�tu�rn�n_*�f�ac�t�(n�-�l).... return n * fact(n- l return n * fact(n- l)

n D:=J n CIJ n c=JLJ
Figure 6 . 1 : Recursive computation of 5 !

to divide up virtually any sequence is to think of it as a single first item that just
happens to be followed by another sequence. In the case of a string, we can divide it
up into its first character and "all the rest ." If we reverse the rest of the string and
then put the first character on the end of that , we'll have the reverse of the whole
string.

Let 's code that algorithm and see what happens.

def reverse (s) :
return reverse (s [1 :]) + s [O]

Notice how this function works. The slice 8 [1 :] gives all but the first character of
the string. We reverse the slice (recursively) and then concatenate the first character
(s [0]) onto the end of the result . It might be helpful to think in terms of a specific
example. If 8 is the string " abc " , then 8 [1 :] is the string "bc " . Reversing this
yields " cb " and tacking on 8 [0] yields " cba" . That's just what we want .

Unfortunately, this function doesn't quite work. Here's what happens when we
try it out:

6 .3 S imple Recursive Examples

» > reverse (IHello ")
Traceback (most recent call last) :

File II <stdin> II , line 1 , in ?
File " <stdin> " , line 2 , in reverse
File II <stdin> II , line 2 , in reverse

File " <stdin> " , line 2 , in reverse
RuntimeError : maximum recursion depth exceeded

195

We've shown only a portion of the output; it actually consisted of 1 ,000 lines! What 's
happened here?

Remember, to build a correct recursive function we need a base case for which
no recursion is required, otherwise the recursion is circular. In our haste to code
the function, we forgot to include a base case. What we have written is actually an
infinite recursion. Every call to reverse contains another call to reverse, so none
of them ever returns. Of course, each time a function is called it takes up some
memory (to store the parameters and local variables on the run-time stack) , so this
process can't go on forever. Python puts a stop to it after 1 ,000 calls, the default
"maximum recursion depth."

Let's go back and put in a suitable base case. When performing recursion on
sequences, the base case is often an empty sequence or a sequence containing just
one item. For our reversing problem we can use an empty string as the base case,
since an empty string is its own reverse. The recursive calls to reverse are always
on a string that is one character shorter than the original, so we'll eventually end
up at an empty string. Here's a correct version of reverse:

reverse . py
def reverse (s) :

if s == 1 1 11 :

return s
else :

return reverse (s [1 :]) + s [O]

This version works as advertised.

I » > reverse l "Hello ")
' olleH '

1 6 . 3 . 2 1 Exam ple: Anagra ms

An anagram is formed by rearranging the letters of a word. Anagrams are often used
in word games, and forming anagrams is a special case of generating the possible

196 Chapter 6 Recursion

permutations (rearrangements) of a sequence, a problem that pops up frequently in
many areas of computing and mathematics .

Let 's try our hand at writing a function that generates a list of all the possible
anagrams of a string. We'll apply the same approach that we used in the previous
example by slicing the first character off of the string. Suppose the original string is
" abc " , then the tail of the string is "be " . Generating the list of all the anagrams of
the tail gives us ["be " , " eb "] , as there are only two possible arrangements of two
characters. To add back the first letter, we need to place it in all possible positions
in each of these two smaller anagrams: ["abc " , "bae " , "bea" , "aeb " , " cab " ,
" eba"] . The first three anagrams come from placing " a" in every possible place in
"be " , and the second three come from inserting "a" into "e b" .

Just as in our previous example, we can use an empty string as the base case
for the recursion. The only possible arrangement of characters in an empty string
is the empty string itself. Here is the completed recursive function:

anagrams . py
def anagrams (s) :

if s == 11 11 :

return [s]
else :

ans = []
for w in anagrams (s [1 :]) :

for pos in range (len(w) +1) :
ans . append (w [: pos] +s [O] +w [pos :])

return ans

Notice in the else we have used a list to accumulate the final results. In the
nested for loops, the outer loop iterates through each anagram of the tail of s ,
and the inner loop goes through each position in the anagram and creates a new
string with the original first character inserted into that position. The expression
tv [: pos] +s [0] +w [pos :] looks a bit tricky, but it 's not too hard to decipher. Taking
tv [: pos] gives the portion of tv up to (but not including) pos, and tv [pos :] yields
everything from pos through the end. Sticking s [0] between these two effectively
inserts it into w at pos . The inner loop goes up to len (tv) +1 so that the new
character is also added to the very end of the anagram.

Here is our function in action:

» > anagrams ("abc ")
[' abc ' , ' bac ' , ' bca' , ' acb ' , ' cab ' , ' cba ']

We didn't use "Hello " for this example because that generates more anagrams than
we wanted to print. The number of anagrams of a word is the factorial of the length
of the word.

6.3 S imple Recu rsive Examples 197

1 6 .3 .3 1 Example : Fast Exponentiation

Another good example of recursion is a clever algorithm for raising values to an
integer power. The naive way to compute an for an integer n is simply to multiply
a by itself n times, an = a * a * a * . . . * a. We can easily implement this using a
simple accumulator loop.

power . py
def loopPower (a , n) :

ans = 1
for i in range (n) :

ans = ans * a
return ans

The strategy of divide and conquer suggests another way to perform this calcu­
lation. Suppose we want to calculate 28 . By the laws of exponents, we know that
28 = 24 (24) . So if we first calculate 24 , we can just do one more multiplication
to get 28 . To compute 24 , we can use the fact that 24 = 22 (22) . And, of course,
22 = 2(2) . Putting the calculation together we start with 2(2) = 4 and 4(4) = 16 and
16(16) = 256. We have calculated the value of 28 using just three multiplications.
The basic insight is to use the relationship an = ani /2 (an/ /2) .

In the example we gave, the exponents were all even. In order to turn this idea
into a general algorithm, we also have to handle odd values of n. This can be done
with one more multiplication. For example, 29 = 24(24) (2) . Here is the general
relationshi p:

an =
{ ani /2 (an/ /2) if n is even

an//2 (an//2) (a) if n is odd

In this formula we are exploiting integer division; if n is 9 then n/ /2 is 4.
We can use this relationship as the basis of a recursive function, we just need to

find a suitable base case. Notice that computing the nth power requires computing

two smaller powers (n/ /2) . If we keep using smaller and smaller values of n, it will
eventually get to 0 (1//2 = 0) . As you know from math class, aD = 1 for any value
of a (except 0) . There's our base case.

If you've followed all the math, the implementation of the function is straight­
forward.

198 Chapter 6 Recursion

power . py
def recPower (a , n) :

raises a to the int power n
if n == 0 :

return 1
else :

factor = recPower (a , n II 2)
if n % 2 == 0 :

return factor * factor
else :

return factor * factor * a

n is even

n is odd

One thing to notice is the use of an intermediate variable factor so that ani 12
needs to be calculated only once . This makes the function more efficient .

1 6 . 3 .4 1 Exam ple: B inary Search

Now that you know how to implement recursive functions, we are ready to go back
and look again at binary search recursively. Remember, the basic idea was to look
at the middle value and then recursively search either the lower half or the upper
half of the list .

The base cases for the recursion are the conditions when we can stop, namely,
when the target value is found or we run out of places to look. The recursive calls
will cut the size of the problem in half each time. In order to do this, we need to
specify the range of locations in the list that are still "in play" for each recursive
call . We can do this by passing the values of low and high as parameters along
with the list . Each invocation will search the list between the low and high indexes.

Here is a direct implementation of the recursive algorithm using these ideas:

bsearch . py
def recBinSearch(x , nums , low , high) :

if low > high : # No place left to look , return -1
return -1

mid = (low + high) II 2
item = nums [mid]
if item == x :

return mid
Found it ! Return the index

elif x < item : # Look in lower half
return recBinSearch (x , nums , low , mid-i)

else : # Look in upper half
return recBinSearch(x , nums , mid+1 , high)

We can then implement our original search function using a suitable call to the
recursive binary search, telling it to start the search between 0 and len (nums) - 1 .

6.4 Ana lyzi ng Recursion 199

def search(items , target) :
return recBinSearch(target , items , 0 , len(items) -l)

Of course, our original looping version is probably a bit faster than this recursive
version because calling functions is generally slower than iterating a loop. The
recursive version, however, makes the divide-and-conquer structure of binary search
much more obvious. Below we will see examples where recursive, divide-and-conquer
approaches provide a natural solution to some problems where loops are awkward.

1 6 . 4 \ Ana lyzi ng Recu rsion

By now you've certainly noticed that there are some similarities between iteration
(looping) and recursion. Recursive functions are a generalization of loops. Anything
that can be done with a loop can also be done by a simple kind of recursive function.
In fact, there are programming languages that use recursion exclusively. On the
other hand, some things that can be done very simply using recursion are quite
difficult to do with loops.

For a number of the problems we've looked at so far, we have had both iterative
and recursive solutions. In the case of factorial and binary search, the loop version
and the recursive version do basically the same calculations, and they will have
roughly the same efficiency. The looping versions are probably a bit faster because
of the function call overhead of recursion, but in a modern language the recursive
algorithms are probably fast enough.

In the case of the exponentiation algorithm, the recursive version and the looping
version actually implement very different algorithms. The loopPower function has
a simple counted loop that spins n times. Clearly this is a linear time (8 (n))
algorithm. In recPower, the number of "iterations" is determined by the number of
recursions. We have to figure out how deep the stack of nested function calls will
get . Since each successive call is made on a number that is half as large, it will only
take log2 n recursive calls to get to O. Each call does at most two multiplications, so
we have a log time (8 (10g n)) algorithm. The difference between these two is similar
to the difference between linear search and binary search, so the recursive algorithm
is clearly superior. In the next section, you'll be introduced to a recursive sorting
algorithm that is also very efficient .

As you have seen, recursion can be a very useful problem-solving technique that
can lead to efficient and effective algorithms. But you have to be careful; it 's also
possible to write some very inefficient recursive algorithms. One classic example is
calculating the nth Fibonacci number.

200 Chapter 6 Recursion

The Fibonacci sequence is the sequence of numbers 1, 1, 2, 3 , 5 , 8 , It starts
with two Is, and successive numbers are the sum of the previous two. One way to
compute the nth Fibonacci value is to use a loop that produces successive terms of
the sequence.

In order to compute the next Fibonacci number, we always need to keep track of
the previous two. We can use two variables, curr and prev, to keep track of these
values. Then we just need a loop that adds these together to get the next value. At
that point, the old value of curr becomes the new value of prevo Here is one way
to do it in Python:

fib . py
def loopFib (n) :

pre : n > 0
returns the nth Fibonacci number

curr = 1
prev = 1
for i in range (n-2) :

curr , prev = curr+prev , curr
return curr

Here simultaneous assignment is used to compute the next values of curr and
prev in a single step. Notice that the loop goes around only n - 2 times, because the
first two values have already been assigned and do not require an addition. Clearly
this is a 8(n) algorithm, where n is the input parameter.

The Fibonacci sequence also has an elegant recursive definition.

Jib(n) = { �ib(n - 1) + Jib(n - 2)
if n < 3
otherwise

We can turn this recursive definition directly into a recursive function.

fib . py
def recFib (n) :

if n < 3 :
return 1

else :
return recFib (n-l) + recFib (n-2)

This function obeys the rules that we've set out . The recursion is always on
smaller values, and we have identified some non-recursive base cases. Therefore, this
function will work, sort of. It turns out that this is a horribly inefficient algorithm.
While our looping version can easily compute results for very large values of n

6.4 Ana lyzi ng Recursion 201

(loopFib (50000) is almost instantaneous on a relatively new microcomputer) , the
recursive version is useful only up to around n = 30 or so. After that, the wait gets
too long.

The problem with this recursive formulation of the Fibonacci function is that it
performs lots of duplicate computations. Figure 6 .2 shows a diagram of the com­
putations that are performed to compute fib (6) . Notice that fib (4) is calculated
twice, fib (3) is calculated three times, fib (2) four times, etc . If you start with
a larger number, you can see how this redundancy really piles up. Notice, at the
bottom of the diagram, that each recursive chain bottoms out at a 1 . If you work
your way up the chain from a 1 , you get to the calling function that adds that 1
into the total result . As this diagram shows, computing fib (6) with this algorithm
requires Jib(6) - 1 additions! In general, this algorithm requires Jib(n) - 1 steps to
compute fib (n) . That means it 's a 8(Jib(n)) algorithm. 'fry out some numbers,
and you'll see that this function grows very rapidly. If you're curious where this fits
into our hierarchy of common run-time analyses, you should do a little research on
the Fibonacci sequence. Suffice it to say, the run-time of this function is exponential
in the value of n.

Figure 6 .2 : Computations performed for fib (6)

So what does this tell us? Recursion is just one more tool in your problem­
solving arsenal . Sometimes a recursive solution is a good one, either because it is
more elegant or more efficient than a looping version; in that case use recursion.
Often, the looping and recursive versions are quite similar; in that case, the edge
probably goes to the loop, as it will be slightly faster. Sometimes the recursive

202 Chapter 6 Recursion

version is terribly inefficient. In that case, avoid it , unless of course, you can't come
up with an iterative algorithm. As you'll see later in the chapter, sometimes there
just isn't an efficient solution.

[§}] Sort i ng
Back in Chapter 3 we discussed the selection sort algorithm for putting a list in
order. Recall that the basic selection sort algorithm puts a list in order by searching
through the list to find the smallest (or largest) element and swapping it to the
front . Then we search through the remaining items to find the next smallest and
swap it into the next spot . The process continues until every item has been placed
in the proper spot . As a refresher, here's a version of the selection sort in Python.

se1ectionSort . py
def se1ectionSort (lst) :

n = 1en(lst)
for i in range (n- 1) :

min_pos = i
for j in range (i+1 , n) :

if lst [j] < 1st [min_pos] :
min_pos = j

lst [i] , lst [min_pos] = 1st [min_pos] , lst [i]

As we discussed when this algorithm was first presented, selection sort executes
in 8(n2) time, where n is the size of the list . This is fine for small lists , but not
very efficient for large collections .

1 6 . 5 . 1 1 Recursive Design : Mergesort

As discussed earlier, one technique that often works for developing efficient algo­
rithms is the divide-and-conquer approach. Suppose you and a friend are working
together trying to put a deck of cards in order. You could divide the problem up by
splitting the deck of cards in half with one of you sorting each of the halves . Then
you just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called
merging. The basic outline of our divide-and-conquer algorithm, called mergesort
looks like this:

Algorithm : merge Sort nums

split nums into two halves
sort the first half
sort the second half

6 .5 Sorting

merge the two sorted halves back into nums

203

The first step in the algorithm is simple, we can just use list slicing to handle
that . The last step is to merge the lists together. If you think about it , merging is
not hard. Let 's go back to our card stack example to flesh out the details. Since
our two stacks are sorted, each has its smallest value on top. Whichever of the top
values is the smaller will be the first item in the merged list . Once the smaller value
is removed, we can look at the tops of the card stacks again, and whichever top card
is smaller will be the next item in the list . We just continue this process of placing
the smaller of the two top values into the big list until one of the stacks runs out .
At that point , we finish out the list with the cards from the remaining stack.

Here is a Python implementation of the merging process. In this code, 1st 1 and
lst2 are the smaller lists and lst3 is the larger list where the results are placed. In
order for the merging process to work, the length of lst3 must be equal to the sum
of the lengths of lst l and lst2. You should be able to follow this code by studying
the accompanying comments:

mergeSort . py
def merge (lst 1 , Ist2 , Ist3) : # merge sorted lists Ist1 and Ist2 into Ist3

i1 , i2 , i3 = 0 , 0, 0 # track current position in each list
n1 , n2 = len(lst 1) , len(lst2)
while i1 < n1 and i2 < n2 : # while both Ist 1 and Ist2 have more items

if Ist1 [i1] < Ist2 [i2] : # top of Ist 1 is smaller
Ist3 [i3] = Ist 1 [i1] # copy it into current spot in Ist3
i1 = it + 1

else :
Ist3 [i3] = Ist2 [i2]
i2 = i2 + 1

i3 i3 + 1

top of Ist2 is smaller
copy it into current spot in Ist3

item added to Ist3 , update position

while i1 < n1 : # Copy remaining items (if any) from Ist1
Ist3 [i3] = Ist 1 [i1]
i1 = it + 1
i3 = i3 + 1

while i2 < n2 : # Copy remaining items (if any) from Ist2
Ist3 [i3] = Ist2 [i2]
i2 i2 + 1
i3 = i3 + 1

204 Chapter 6 Recursion

OK, now we can slice a list into two, and if those lists are sorted, we know how
to merge them back into a single list . But how are we going to sort the smaller lists?
Well, let 's think about it. We are trying to sort a list , and our algorithm requires us
to sort two smaller lists. This sounds like a perfect place to use recursion. Maybe
we can use mergeSort itself to sort the two lists. Let's go back to our recursion
guidelines to develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that does not
require a recursive call, and we also have to make sure that recursive calls are always
made on smaller versions of the original problem. The recursion in our mergeSort
will always occur on a list that is about half as large as the original, so the latter
property is automatically met . Eventually, our lists will be very small, containing
only a single item. Fortunately, a list with just one item is already sorted! Voila, we
have a base case. When the length of the list is less than 2, we do nothing, leaving
the list unchanged.

Given our analysis , we can update the merge Sort algorithm to make it properly
recursive.

if len(nums) > 1 :
split nums into two halves
merge Sort the first half
mergeSort the second half
merge the two sorted halves back into nums

We can translate this algorithm directly into Python code.

mergeSort . py
def mergeSort (nums) :

Put items of nums in ascending order
n = len(nums)
Do nothing if nums contains 0 or 1 items
if n > 1 :

split into two sublists
m = n II 2
nums1 , nums2 = nums [: m] , nums [m :]
recursively sort each piece
mergeSort (nums1)
merge Sort (nums2)
merge the sorted pieces back into original list
merge (nums1 , nums2 , nums)

You might try tracing this algorithm with a small list (say eight elements) , just to
convince yourself that it really works. In general, though, tracing through recursive
algorithms can be tedious and often not very enlightening.

6.5 Sorting 205

Recursion is closely related to mathematical induction, and it requires practice
before it becomes comfortable. As long as you follow the rules and make sure that
every recursive chain of calls eventually reaches a base case, your algorithms will
work. You just have to trust and let go of the grungy details. Let Python worry
about that for you!

1 6 . 5 .2 1 Ana lyzing Mergesort

A good way get a handle on the merge sort algorithm is to run the code on a small
list and print out some of the intermediate results so you can see the code in action.
Figure 6 .3 shows a pictorial representation of calling mergeSort with a list of seven
items. The lists are split in half by the recursive calls until each sub list contains one
item. As noted before, a list of one item is sorted. As the recursive calls return, the
merge function is called and two sublists are merged together. After returns from
all the recursive calls, we have a list of seven items that is sorted.

The running time of the merge function is 8(n) , where n is the length of lst3.
The three loops eventually move each item from the two sublists of size n/ /2 to the
correct position in the list of size n. At most two items (one from each sublist) are
examined each time to determine which item to place in the new list . To calculate
the work done by the merge Sort function, we need to determine the number of steps
required to reach the base case. We have seen this pattern before with the binary
search algorithm. Since we are dividing the list in half each time, there are log2 n
steps to get to the base case. At each level, the sum of all the work done is 8(n) ,
where n is the length of the original list . After the first split , we are merging two
lists of length n/2 . After the second split , we need two merges of sublists that are
length n / 4. You can verify this by looking at the diagram; for each level, up to n
items must be copied back. Thus we have log2 n levels, each of which requires 8(n)
work, resulting in the run-time of the overall algorithm being 8(n log n) . This is
a much more efficient algorithm than selection sort , and mergesort is a very good
algorithm. In fact , it 's possible to prove that no algorithm that relies on comparing
elements to each other can sort a list in time less than 8 (n log n) . But that doesn't
mean mergesort is the best sorting algorithm.

One drawback of mergesort is the amount of memory that it requires. If you
examine our Python implementation carefully, you may be concerned that we are
creating separate sublists rather than just keeping track of the indices of the two
sublists, since creating these sublists requires 8(n) work and memory. The merge sort
algorithm does require separate lists/arrays for the sublists and the list/array used
during the merging step. The merging code cannot swap items, so it must have
a separate list/array to put the items in rather than use the same memory as the

206 Chapter 6 Recursion

Figure 6 .3 : Graphical representation of mergesort

6 .6 A "Hard" Problem : The Tower of Hanoi 207

sublists. It does not matter whether we split the list by tracking the starting and
ending indices for the list and use a separate list for the merging step or if we create
separate sublists and then use the original list during the merging step; in either case,
mergesort requires twice as much memory as the original list/array requiring 8 (n)
work at some point during the algorithm. This does not change our analysis since
that step is performed 8 (log n) times. However, there are other recursive algorithms
that can sort in 8(n log n) time and also perform the sort in place. Since they do
not require a copying step, the constant that the theta notation hides is smaller and
the algorithms are generally faster and less memory-intensive than mergesort . One
such algorithm is known as quicksort and is discussed in subsection 1 5 . 2 . 2 .

1 6 . 6 1 A " Hard" Prob lem : The Tower of H a noi

U sing our divide-and-conquer approach we were able to design efficient algorithms
for the searching, sorting, and exponentiation problems. Divide and conquer and
recursion are very powerful techniques for algorithm design. However, not all
problems have efficient solutions. One very elegant application of recursive problem
solving is the solution to a mathematical puzzle usually called the Tower of Hanoi or
Tower of Brahma. This puzzle is generally attributed to the French mathematician
Edouard Lucas, who published an article about it in 1883. The legend surrounding
the puzzle goes something like this :

Somewhere in a remote region of the world is a monastery of a very devout
religious order. The monks have been charged with a sacred task that keeps time
for the universe. At the beginning of all things, the monks were given a table that
supports three vertical posts. On one of the posts was a stack of 64 concentric,
golden disks. The disks are of varying radii and stacked in the shape of a beautiful
pyramid. The monks were charged with the task of moving the disks from the first
post to the third post . When the monks complete their task, all things will crumble
to dust and the universe will end.

Of course, if that's all there were to the problem, the universe would have ended
long ago. To maintain divine order, the monks must abide by certain rules.

1 . Only one disk may be moved at a time.

2. A disk may not be "set aside." It may only be stacked on one of the three
posts.

3. A larger disk may never be placed on top of a smaller one.

208 Chapter 6 Recursion

Versions of this puzzle were quite popular at one time, and you can still find
variations on this theme in toy and puzzle stores. Figure 6 .4 depicts a small version
containing only eight disks. The task is to move the tower from the first post to
the third post using the center post as sort of a temporary resting place during the
process. Of course, you have to follow the three sacred rules given above.

Tower of HanOi

Figure 6 .4 : Tower of Hanoi puzzle with eight disks

We want to develop an algorithm for this puzzle . You can think of our algorithm
either as a set of steps that the monks need to carry out or as a program that
generates a set of instructions. For example, if we label the three posts A, B, and
C , the instructions might start out like this :

Move disk from A to C .
Move disk from A to B .
Move disk from C to B .

This is a difficult puzzle for most people to solve. Of course, that is not surprising,
since most people are not trained in algorithm design. The solution process is
actually quite simple-if you know about recursion.

Let 's start by considering some really easy cases. Suppose we have a version of
the puzzle with only one disk. Moving a tower consisting of a single disk is simple

6.6 A "Hard" Problem : The Tower of Hanoi 209

enough; we just remove it from A and put it on C. Problem solved. OK, what if
there are two disks? Then we need to get the larger of the two disks over to post C,
but the smaller one is sitting on top of it. The solution is to move the smaller disk
out of the way, and we can do this by moving it to post B. Now the large disk on
A is clear; we can move it to C and then move the smaller disk from post B onto
post C .

Now let 's think about a tower of size three. In order to move the largest disk to
post C, we first have to move the two smaller disks out of the way. The two smaller
disks form a tower of size two. Using the process outlined above, we could move
this tower of two onto post B, and that would free up the largest disk so that it can
move to post C. Then we just have to move the tower of two disks from post B onto
post C. Solving the three disk case boils down to three steps:

1 . Move a tower of two from A to B .

2 . Move one disk from A to C .

3. Move a tower of two from B to C .

The first and third steps involve moving a tower of size two. Fortunately, we have
already figured out how to do this. It 's just like solving the puzzle with two disks,
except that we move the tower from A to B using C as the temporary resting place,
and then from B to C using A as the temporary place.

We have just developed the outline of a simple recursive algorithm for the general
process of moving a tower of any size from one post to another.

Algorithm : move n-disk tower from source to dest ination via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to destination

What is the base case for this recursive process? Notice how a move of n disks
results in two recursive moves of n - 1 disks. Since we are reducing n by one each
time, the size of the tower will eventually be 1 . A tower of size 1 can be moved
directly by just moving a single disk; we don't need any recursive calls to remove
disks above it .

Fixing up our general algorithm to include the base case gives us a working
moveTower algorithm. Let's code it in Python. Our moveTower function will need
parameters to represent the size of the tower, n; the source post , source ; the
destination post , dest ; and the temporary resting post, temp. We can use an int

210 Chapter 6 Recursion

for n and the strings " A " , li B II , and " e " to represent the posts. Here is the code for
moveTower:

hanoi . py
def moveTower (n , source , dest , temp) :

if n == 1 :
print "Move disk from" , source , "to" , dest+ " . "

else :
moveTower (n-1 , source , temp , dest)
moveTower (1 , source , dest , temp)
moveTower (n-1 , temp , dest , source)

See how easy that was? Sometimes using recursion can make otherwise difficult
problems almost trivial.

To get things started, we just need to supply values for our four parameters.
Let's write a little function that prints out instructions for moving a tower of size n
from post A to post C .

hanoi . py
def hanoi (n) :

moveTower (n, "A" , "C " , " B ")

Now we're ready to try i t out. Here are solutions to the three- and four-disk
puzzles . You might want to trace through these solutions to convince yourself that
they work.

» > hanoi (3)
Move disk from A to C .
Move disk from A to B .
Move disk from C to B .
Move disk from A to C .
Move disk from B to A .
Move disk from B to C .
Move disk from A to C .

» > hanoi (4)
Move disk from A to B .
Move disk from A to C .
Move disk from B to C .
Move disk from A to B .
Move disk from C to A .
Move disk from C to B .
Move disk from A to B .
Move disk from A to C .
Move disk from B to C .
Move disk from B to A .

Move disk from C to A .
Move disk from B t o C .
Move disk from A t o B .
Move disk from A to C .
Move disk from B to C .

6 .6 A "Hard" Problem : The Tower of Hanoi 211

So, our solution to the Tower of Hanoi is a "trivial" algorithm requiring only nine
lines of code. What is this problem doing in a section labeled "A Hard Problem"?
To answer that question, we have to look at the efficiency of our solution. In this
case, the difficulty of the problem is determined by the nurnber of disks in the tower.
The question we want to answer is how many steps does it take to move a tower of
size n?

Just looking at the structure of our algorithm, you can see that moving a tower
of size n requires us to move a tower of size n - 1 twice, once to move it off the
largest disk, and again to put it back on top. If we add another disk to the tower,
we essentially double the number of steps required to solve it . The relationship
becomes clear if you simply try out the program on increasing puzzle sizes.

N umber of Disks
1
2
3
4
5

Steps in Solution
1
3
7
15
31

In general, solving a puzzle of size n will require 2n - 1 steps.
This is clearly a 8(2n) algorithm, meaning that it requires exponential time,

since the measure of the size of the problem, n, appears in the exponent of this
formula. Exponential algorithms blow up very quickly and can be practically solved
only for relatively small sizes, even on the fastest computers. Just to illustrate the
point , if our monks really started with a tower of just 64 disks and moved one
disk every second, 24 hours a day, every day, without making a mistake, it would
still take them over 580 billion years to complete their task. Considering that the
universe is roughly 15 billion years old now, we don't need to worry about turning
to dust just yet.

Even though the algorithm for Towers of Hanoi is easy to express, it belongs to
a class known as intractable problems. These are problems that require too much
computing power (either time or memory) to be solved in practice, except for the
simplest cases. And in this sense, our toy-store puzzle does indeed represent a hard
problem.

212 Chapter 6 Recursion

1 6 . 7 1 Cha pter S u m mary

This chapter has introduced you to some important concepts in algorithm design.
Here are the key ideas:

• Binary search is an example of a divide-and-conquer approach to algorithm
development . Divide and conquer often yields efficient solutions.

• A definition or function is recursive if it refers to itself. To be well founded, a
recursive definition must meet two properties:

1 . There must be one or more base cases that require no recursion.

2. All chains of recursion must eventually reach a base case.

A simple way to guarantee these conditions is for recursive calls to always
be made on smaller versions of the problem. The base cases are then simple
versions that can be solved directly.

• Sequences can be considered recursive structures containing a first item fol­
lowed by a sequence. Recursive functions can be written following this ap­
proach.

• Mergesort is a recursive divide-and-conquer algorithm that can sort a collection
in n log n time.

• Recursion is more general than iteration. Choosing between recursion and
looping involves the considerations of efficiency and elegance.

• Problems that are solvable in theory but not in practice are called "intractable."
The solution to the famous Tower of Hanoi can be expressed as a simple
recursive algorithm, but the algorithm is intractable.

1 6 . 8 1 Exerc ises

True/Fa lse Questions

1 . Any definition that refers to itself is circular, and therefore not useful .

2 . Recursion is a more general form of iteration than looping.

3. All proper recursive functions must have exactly one base case.

6.8 Exercises 213

4. An infinite recursion in Python will "hang" the computer.

5. A sequence can be viewed as a recursive data collection.

6. A string of length n has n! anagrams.

7. Mergesort is an example of a 8(n2) algorithm.

8. A looping implementation of an algorithm is generally a bit faster than a
recursive version.

9. Recursive algorithms tend to be slow in practice.

10 . The Tower of Hanoi is an example of an intractable problem.

M u lt i ple Choice Questions

1. The non-recursive part of a recursive function is called a(n)
a) bottom case.
b) terminating case.
c) end case.
d) base case.

2. An algorithm design technique involving breaking a problem into smaller
versions of the original is called

a) top-down design.
b) test-driven development.
c) divide and conquor.
d) search and destroy.

3 . Which of the following is a correct coding of the recursive expression for
reversing a string?

a) reverse (s [1 : J) + s [OJ
b) s [0] + reverse (s [1 :])
c) s [- 1J + reverse (s [: -1J)
d) both a and c

4. How many anagrams are there for a four-letter word?

a) 4 b) 8 c) 16 d) 24

214 Chapter 6 Recursion

5. The 100pPower function shown in the chapter has what time analysis?

a) 8 (log n) b) 8 (n log n) c) 8 (n)
6. The recPower function shown in the chapter has what time analysis?

a) 8 (log n) b) 8 (n log n) c) 8 (n)
7. The mergesort algorithm has what time analysis?

a) 8 (log n) b) 8 (n log n) c) 8 (n)
8. The Tower of Hanoi algorithm has what time analysis?

a) 8 (log n) b) 8 (n log n) c) 8 (n)
9. An infinite recursion will result in

a) a program that "hangs."
b) a broken computer.
c) a reboot .
d) a run-time exception.

10. The recursive Fibonacci function is inefficient because

a) recursion is inherently inefficient compared to iteration.
b) calculating Fibonacci numbers is an intractable problem.
c) it performs many repeated calculations.
d) all of the above

Short-Answer Quest ions

1 . Must a proper recursive function always have some sort of decision structure
in it? Explain your answer.

2. In your own words, explain the two rules that a proper recursive definition
must obey.

3. What list is returned by anagramC "foo ") ?

4 . '!face recPower C 3 , 6) and figure out exactly how many multiplications it does.

5. Write pre and post conditions for 100pPower and recPower.

6 .8 Exercises 215

Programm ing Exercises

1 . Modify the recursive Fibonacci program given in the chapter so that it prints
tracing information. Specifically, have the function print a message when it is
called and when it returns. For example, the output should contain lines like
these:

Computing fib (4)

Leaving fib (4) returning 3

Use your modified version of fib to compute fib (10) and count how many
times fib (3) is computed in the process.

2. This exercise is another variation on "instrumenting" the recursive Fibonacci
program to better understand its behavior. Write a program that counts how
many times the fib function is called to compute fib (n) where n is a user
input .

Hint: to solve this problem, you need an accumulator variable whose value
"persists" between calls to fib. You can do this by making the count an
instance variable of an object . Create a FibCounter class with the following
methods:

_ _ ini t _ _ (self) Creates a new FibCounter setting its count instance vari­
able to O.

getCount (self) Returns the value of the count.

fib (self , n) Recursive function to compute the nth Fibonacci number. It
increments the count each time it is called.

resetCount (self) Set the count back to O.

3. Write a recursive function that implements the same algorithm as the looping
version of the nth Fibnonacci function. Hint : in changing the for loop into a
recursion, you will need to pass all of the variables whose values change during
the loop as parameters to the recursive function.

4. The previous problem shows that a recursive function can compute the nth
Fibonacci number as efficiently as a looping version. But with a little ingenuity,
we can do better. Another way to find the nth Fibonacci number is through
matrix operations. In order to compute the Fibonacci sequence, we have to

216 Chapter 6 Recursion

keep track of the last two values computed (curr and prey) . The next "state"
of these two values can be computed through a simple matrix multiplication:

[1 1] [curr]
=
[curr + prey]

1 0 prey curr

We can compose an entire sequence of iterations by taking advantage of matrix
exponentiation. It is then possible to replace the loop in the Fibonacci program
with this computation: [] n-2 [] [] 1 1 1 f ib (n)

1 0 1 - fib(n - 1)

Create an appropriate matrix data type using operator overloading so that
matrices can be multiplied just like numbers. Then use the fast exponentiation
algorithm presented in this chapter in a program that computes the nth
Fibonacci number. Once you have it working, do a time analysis of your
program.

5. Write a recursive function that detects whether a string is a palindrome. The
basic idea is to check that the first and last letters of the string are the same
letter ; if they are, then the entire string is a palindrome if everything between
those letters is a palindrome. There are a couple of special cases to check for.
If either the first or last character of the string is not a letter, you can check
to see if the rest of the string is a palindrome with that character removed.
Also, when you compare letters, make sure that you do it in a case-insensitive
way.

Use your function in a program that prompts a user for a phrase and then
tells whether or not it is a palindrome. Here's a classic for palindrome testing:
"A man, a plan, a canal, Panama! "

6. Write and test a recursive function max to find the largest number in a list .
The maximum is the larger of the first item and the maximum of all the other
items.

7. Computer scientists and mathematicians often use numbering systems other
than base 10. Write a program that allows a user to enter a number and a
base and then prints out the digits of the number in the new base. Use a
recursive function printDigi t s (num , base) to print the digits.

6.8 Exercises 217

Hint : consider base 10. To get the right-most digit of a base 10 number, simply
look at the remainder after dividing by 10. For example, 153%10 is 3. To get
the remaining digits, you repeat the process on 15 , which is just 153/10. This
same process works for any base. The only problem is that we get the digits
in reverse order (from right to left) .

Write a recursive function that first prints the digits of num/base and then
prints the last digit , namely num%base . You should put a space between
successive digits, since bases greater than 10 will print out with multi-character
digits. For example, printDigi ts (245 , 16) should print 15 5 .

8 . Write a recursive function to print out the digits of a number in English. For
example, if the number is 153, the output should be "One Five Three." See
the hint from the previous problem for help on how this might be done.

9. In mathematics, Ok denotes the number of different ways that k things can be
selected from among n different choices. For example, if you are choosing
among six desserts and are allowed to take two, the number of different
combinations you could choose is O� . Here's one formula to compute this
value:

on n! k =

k ! (n - k) !

This value also gives rise to an interesting recursion:

on - on-l + on-l k - k-l k

Write both an iterative and a recursive function to compute combinations and
compare the efficiency of your two solutions. Hint : when k = 1 , Ok = n, and
when n < k , Ok = o.

10. Some interesting geometric curves can be described recursively. One famous
example is the Koch curve. It is a curve that can be infinitely long in a finite
amount of space. It can also be used to generate pretty pictures.

The Koch curve is described in terms of " levels" or "degrees." The Koch curve
of degree 0 is just a straight line segment. A first degree curve is formed by
placing a "bump" in the middle of the line segment (see Figure 6 . 5) . The
original segment has been divided into four, each of which is one third of the
length of the original. The bump rises at 60 degrees, so it forms two sides of an
equilateral triangle. To get a second degree curve, you put a bump in each of
the line segments of the first degree curve. Successive curves are constructed
by placing bumps on each segment of the previous curve.

218 Chapter 6 Recursion

Degree 0

Degree 1

Degree 2

Figure 6 . 5 : Koch curves of degrees 0 to 2

You can draw interesting pictures by "Kochizing" the sides of a polygon.
Figure 6 .6 shows the result of applying a fourth degree curve to the sides
of an equilateral triangle. This is often called a "Koch snowflake." You are to
write a program to draw a snowflake.

Hint: Think of drawing a Koch curve as if you were giving instructions to a
turtle. The turtle always knows where it currently sits and what direction it
is facing. To draw a Koch curve of a given length and degree, you might use
an algorithm like this:

Algorithm Koch (Turtle , length , degree) :
if degree == 0 :

Tell the turtle to draw length steps in the current direction
else :

length1 = length/3
degree 1 = degree-1
Koch (Turtle , length1 , degree1)
Tell the turtle t o turn left 6 0 degrees
Koch (Turtle , length1 , degree 1)
Tell the turtle t o turn right 120 degrees
Koch (Turtle , length1 , degree 1)
Tell the turtle t o turn left 6 0 degrees
Koch (Turtle , length1 , degree1)

6 .8 Exercises 219

Figure 6 .6 : Koch snowflake

Implement this algorithm using a suitable graphics package. You can use
the Turtle module from the Python standard library or implement your own
turtle in another graphics package. Write a program that allows a user to
enter the degree of snowflake desired and then proceeds to draw it.

1 1 . Another interesting recursive curve (see the previous problem) is the C-curve.
It is formed similarly to the Koch curve except whereas the Koch curve breaks
a segment into four pieces of length/3, the C-curve replaces each segment with
just two segments of length/ y'2 that form a gO-degree elbow. Figure 6 . 7 shows
a degree- 12 C-curve.

Using an approach similar to the previous exercise, write a program that draws
a C-curve. Hint: your turtle will do the following:

turn left 45 degrees
draw a c-curve of size length/sqrt (2)
turn right 90 degrees
draw a c-curve of size length/sqrt (2)
turn left 45 degrees

12. Write a program that solves word jumble problems. You will need a large
file of English words. If you have a Unix or Linux system available, you can

220 Chapter 6 Recursion

Figure 6 . 7 : C-curve of degree 12

probably find a spelling dictionary in a system directory (e.g. , /usr/diet or
/usr/share/diet) . Otherwise, a quick search on the Internet should turn
up something useful. The program proceeds by having the user type in a
scrambled word. It then generates all anagrams of the word and then checks
which (if any) are in the dictionary. The anagrams appearing in the dictionary
are printed as solutions to the puzzle .

13 . Write a maze solving program. The problem of finding a path through a
maze can be cast as a recursive searching process. Suppose locations in a two­
dimensional maze are specified using (x, y) coordinates. Here is an algorithm
to find and mark a path from an arbitrary starting point to an exit . It returns
True if it is able to mark a path to an exit and False if not .

algorithm pathToExit « x , y)) :

if (x , y) is an exit :
return True

6 .8 Exercises

if (x , y) is not an open unvisited cell :
return False

Mark (x , y) as visited

Try 4 possible directions from (x , y)
if pathToExit ((x+1 , y)) :

return True
if pathToExit ((x , y+1)) :

return True
if pathToExit ((x-1 , y)) :

return True

if pathToExit ((x , y- 1)) :
return True

Cannot reach an exit from this cell
unMark (x , y) # it ' s not on a path to the exit
return False

221

You will have to design a suitable representation for mazes. One simple
approach is just to use ASCII text to represent a rectangular maze. For
example, you might use * to indicate a wall and . to indicate an open cell.
The letters S and E could be used for the start and exit. Here's a simple
example:

S **
· . * . . . *** .
* . *** . * . * .
. * .
. ******** .
. *** * .
· ** . . ** . . .
· ** . . . ****
· . ** . ** . . .
* . . * *E

Even if you want to build a nice graphical maze program, a simple text-based
representation like this is very handy for specifying mazes, since they can be
created with a basic text editor.

Chapter 7 Trees

Object ives

• To learn the terminology of tree data structures.

• To learn about different applications where a tree data structure is appropriate.

• To be able to implement tree structures using link-based and array-based
techniques and be familiar with basic, tree-based algorithms.

• To understand the binary search tree structure and the efficiency of its various
operations.

• To get more practice and develop greater comfort with recursive algorithms.

[II] Overview

So far we have dealt mostly with linear data structures, such as lists, stacks, and
queues, that represent items in a sequence. In this chapter, we are going to "branch
out" a bit and consider a non-linear data structure known as a tree. Trees represent
data in a hierarchical fashion, which makes them very handy for modeling real-world
hierarchies. You are certainly familiar with the idea of a family tree for representing
kinship information; other examples include things like taxonomies and corporate
reporting structures.

For example, we can use a tree to represent animals in the taxonomic groups
that biologists use. Animals can be subdivided into vertebrates and invertebrates;
vertebrates can be subdivided into reptiles, fish, mammals, and so on. The tree for
this would look something like Figure 7. 1 . Hierarchical relationships turn up every­
where, and trees arise as a natural representation for the data in many applications.

223

224 Chapter 7 Trees

Figure 7 . 1 : Portion of biologists' taxonomic groups

Perhaps surprisingly, it also turns out that trees are very useful in implementing
plain old sequential data. In this chapter, we'll see that certain kinds of trees called
binary search trees can be used to provide collections that allow for efficient insertion
and deletion (similar to linked lists) but also allow for efficient search (similar to an
ordered array) . Tree-based data structures and algorithms are essential for handling
large collections of data such as databases and file systems efficiently.

1 7 . 2 1 Tree Term i no logy

Computer scientists represent trees as a collection of nodes (similar to the nodes
in a linked list) that are connected with edges. Figure 7 .2 shows a tree with seven
nodes, each containing an integer. The node at the very top of the diagram is called
the root. In this tree the root contains the data value 2. A tree has exactly one
root ; notice that you can follow edges (the arrows) from the root to get to any other
node in the tree.

Each node in a tree can have children connected to it via an edge. In a general
tree, a node can have any number of children, but we'll only concern ourselves here
with binary trees. In a binary tree, each node has at most two children. As you can
see, the tree depicted in Figure 7 .2 is a binary tree. Relationships inside the tree
are described using a mixture of family and tree-like terminology. The root node
has two children: the node containing 7 is its left child, and the one containing 6 is
its right child. These two nodes are also said to be siblings. The nodes containing 8
and 4 are also siblings. The parent of node 5 is node 7. Node 3 is a descendant of
node 7 and node 7 is an ancestor of node 3 . A node that does not have any children
is a leaf node. The depth of a node indicates how many edges are between it and
the root node. The root node has a depth of zero. Nodes 7 and 6 have a depth of

7 .2 Tree Term i nology 225

one and node 3 has a depth of three. The height or depth of a tree is the maximum
depth of any node.

Figure 7 .2 : Sample binary tree

In a full binary tree each depth level has a node at every possible position. At
the bottom level , all the nodes are leaves (i .e . , all the leaves are at the same depth
and every non-leaf node has two children) . A complete binary tree has a node at
every possible position except at the deepest level, and at that level, positions are
filled from left to right. A complete binary tree can be created by starting with a
full binary tree and adding nodes at the next level from left to right or by removing
nodes at the previous level from right to left . See Figure 7 .3 for examples of both.

Each node of a tree along with its descendants can be considered a subtree. For
example, in Figure 7 . 2 the nodes 7, 5 , and 3 can be considered a subtree of the entire
tree, where node 7 is the root of the subtree. Seen in this way, a tree is naturally
viewed as a recursive structure. A binary tree is either an empty tree or it consists
of a root node and (possibly empty) left and right subtrees.

Just as with lists, one very useful operation on trees is traversal. Given a tree, we
need a way to "walk" through the tree visiting every node in a systematic fashion.
Unlike the situation with lists, there is no single, obvious way of traversing the tree.
Notice that each node in the tree consists of three parts: data, left subtree, and
right subtree. We have three different choices of traversal order depending on when
we decide to deal with the data. If we process the data at the root and then do the
left and right subtrees, we are performing a so-called preorder traversal because the

226 Chapter 7 Trees

complete binary tree fu l l binary tree

Figure 7 .3 : A complete binary tree on the left and a full binary tree on the right

data at the root is considered first . A pre-order traversal is easily expressed as a
recursive algorithm:

def traverse (tree) :
if tree is not empty :

process data at tree ' s root # pre order traversal
traverse (tree ' s left subtree)
traverse (tree ' s right subtree)

Applying this algorithm to our tree from Figure 7 . 2 processes the nodes in the order
2, 7, 5, 3, 6 , 8, 4.

Of course we can easily modify the traversal algorithm by moving where we
actually process the data. An inorder traversal considers the root data between
processing the subtrees. An in-order traversal of our sample tree yields the sequence
of nodes 7, 3, 5, 2, 8, 6, 4. As you have probably guessed by now, a postorder
traversal processes the root after the two subtrees, which gives us the ordering: 3,
5, 7, 8 , 4, 6, 2.

1 7 . 3 1 An Exa m p le App l i cat ion : Express ion Trees

One important application of trees in computer science is representing the internal
structure of programs. When an interpreter or compiler analyzes a program, it
constructs a parse tree that captures the structure of the program. For example,
consider a simple expression: (2 + 3) * 4 + 5 * 6. The form of this expression can be
represented by the tree in Figure 7 .4 . Notice how the hierarchical structure of the

7 .3 An Example Appl ication : Expression Trees 227

tree eliminates the need for the parentheses. The basic operands of the expression
end up as leaves of the tree, and the operators become internal nodes of the tree.
Lower level operations in the tree have to be performed before their results are
available for higher level expressions. It is clear that the addition of 2 + 3 must be
the first operation because it appears at the lowest level of the tree.

Figure 7 .4 : 'free representation of a mathematical expression

Given the tree structure for an expression, we can do a number of interesting
things. A compiler would traverse this structure to produce a sequence of machine
instructions that carry out the computation. An interpreter might use this structure
to evaluate the expression. Each node is evaluated by taking the values of the two
children and applying the operation. If one or both of the children is itself an
operator, it will have to be evaluated first . A simple postorder traversal of the tree
suffices to evaluate the expression.

def evaluateTree (tree) :
if tree ' s root is an operand :

return root data
else : # root contains an operator

leftValue = evaluateTree (tree ' s left subtree)
rightValue = evaluateTree (tree ' s right subtree)
result = apply operator at root to leftValue and rightValue
return result

If you think about it carefully, you'll see that this is basically a recursive al­
gorithm for evaluating the postfix version of an expression. Simply walking the
expression tree in a postorder fashion yields the expression 2 3 + 4 * 5 6 * +,
which is just the postfix form of our original expression. In Chapter 5, we used a

228 Chapter 7 Trees

stack algorithm to evaluate postfix expressions. Here, we are implicitly using the
computer's run-time stack via recursion to accomplish the same task. By the way,
you can get the prefix and infix versions of the expression by doing the appropriate
traversal. Isn't it fascinating how this all weaves together?

1 7 .4 1 Tree Representat ions

Now that you've gotten a taste of what trees can do, it's tirne to consider some
possible concrete representations for our trees. One straightforward and obvious
way to build trees is to use a linked representation. Just as we did for linked lists,
we can create a class to represent the nodes of our trees. Each node will have an
instance variable to hold a reference to the data of the node and also variables for
references to the left and right children. We'll use the None object for representing
empty subtrees. Here's a Python class:

TreeNode . py
class TreeNode (obj ect) :

def __ init __ (self , data = None , left=None , right=None) :

" ll Il creates a tree node with specified data and references to left
and right children" " "

self . item = data
self . left = left
self . right = right

U sing our TreeN ode we can easily create linked structures that directly mirror
the binary tree diagrams that you've seen so far. For example, here's some code
that builds a simple tree with three nodes:

left = TreeNode (1)
right = TreeNode (3)
root = TreeNode (2 , left , right)

We could do the same thing with a single line of code by simply composing the calls
to the TreeNode constructor.

I root = TreeNode (2 , TreeNode (1) , TreeNode (3»

We can follow this approach even farther to create arbitrarily complex tree structures
from our nodes. Here's some code that creates a structure similar to that of
Figure 7 . 2 .

7 .4 Tree Representations

root = TreeNode (2 ,
TreeNode (7 ,

None ,
TreeNode (5 ,

TreeNode (3) ,
None

TreeNode (6 ,
TreeNode (8) ,
TreeNode (4)

229

We have used indentation to help make the layout of the expression match the
structure of the tree. Notice, for example, that the root (2) has two subtrees indented
under it (7 and 6) . If you don't see it as a tree, try turning your head sideways.

Of course, we will not generally want to directly manipulate TreeNodes to build
complicated structures like this . Instead, we will create a higher level container
class that encapsulates the details of tree building and provides a convenient API
for manipulating the tree. The exact design of the container class will depend on
what we are trying to accomplish with the tree. We'll see an example of this in the
next section.

We should mention that the linked representation, while obvious, is not the only
possible implementation of a binary tree. In some cases, it is convenient to use
an array jlist-based approach. Instead of storing explicit links to children, we can
maintain the relationships implicitly through positions in the array.

In the array approach, we assume that we always have a complete tree and
pack the nodes into the array level by level. So, the first cell in the array stores
the root, the next two positions store the root 's children, the next four store the
grandchildren, and so on. Following this approach, the node at position i always
has its left child located at position 2*i +1 and its right child at position 2*i +2. The
parent of node i is in position (i-i) 112. Notice that it 's crucial for these formulas
that every node always has two children. You will need some special marker value
(e.g. , None) to indicate empty nodes. The array representation for the sample binary
tree in Figure 7 .2 is: [2 , 7 , 6 , None , 5 , 8 , 4 , None , None , 3] . If you want
to simplify the calculations a bit , you can leave the first position in the array (index
0) empty and put the root at index 1 . With this implementation, the left child is in
position 2*i and the right child is in position 2*i +1 , while the parent is found in
position i112.

230 Chapter 7 Trees

The array-based tree implementation has the advantage that it does not use
memory to store explicit child links. However, it does require us to waste cells for
empty nodes. If the tree is sparsely filled, there will be a large number of None
entries and the array llist implementation does not make efficient use of memory. In
these cases, the linked implementation is more appropriate.

1 7 . 5 1 An App l i cat ion : A B i n a ry Search Tree

In this section, we're going to exercise our tree implementation techniques by build­
ing another container class for ordered sequences. Back in section 4 . 7 we discussed
the trade-offs between linked and array-based implementations of sequences. While
linked lists offer efficient insertions and deletions (since items don't have to be shifted
around) , they don't allow for efficient searching. A sorted array allows for efficient
searching (via the binary search algorithm) but requires 8(n) time for insertions
and deletions. Using a special kind of tree , a binary search tree, we can combine
the best of both worlds.

/ 7 . 5 . 1 / The B inary Search Property

A binary search tree is just a binary tree with an extra property that holds for every
node in the tree: the values in the left subtree are less than the value at the node
and the values in the right subtree are greater than the value at the node . Figure 7 .5
shows a sample binary search tree.

It is usually very efficient to search for an item in a binary search tree. We
start at the root of the tree and examine the data value of that node. If the root
value is the one we are searching for, then we're done. If the value we are searching
for is less than the value at the root , we know that if the value is in the tree, it
must be in the left subtree . Similarly, if the value we are searching for is larger
than the value at the root, it is in the right subtree. We can continue the search
process to the appropriate subtree and apply the same rules until we find the item
or reach a node that has an empty subtree where the value would be located. If the
tree is reasonably well "balanced, " then at each node we are essentially cutting the
number of items that we have to compare against in half. That is , we are performing
a binary search, which is why this is called a binary search tree.

1 7 . 5 . 2 1 I mp lementing A B inary Search Tree

Following good design principles, we will write a BST class that encapsulates all the
details of the binary search tree and provides an easy-to-use interface. Our tree

7.5 An Appl ication : A Binary Search Tree 231

Figure 7 .5 : Sample binary search tree

will maintain a set of items and allow us to add, remove, and search for specific
values. We're going to use a linked representation for practice with references, but
you could easily convert this to the array-based implementation discussed above. A
BST object will contain a reference to a TreeNode that is the root node of a binary
search tree. Initially, the tree will be empty, so the reference will be to None . Here's
our class constructor.

BST . py
from TreeNode import TreeNode

class BST (obj ect) :

def __ init __ (self) :

" " " create empty binary search tree
post : empty tree created" " "

self . root = None

Now let 's tackle adding items to our binary search tree. It 's pretty easy to grow
a tree one leaf at a time. A key point to realize is that given an existing binary
search tree, there is only one location where a newly inserted item can go. Let 's
consider an example. Suppose we want to insert 5 into the binary search tree shown
in Figure 7 .6 . Starting at the root node 6, we see that 5 must go in the left subtree.

232 Chapter 7 Trees

The root of that tree has the value 2 so we proceed to its right subtree. The root of
that subtree has the value 4 so we would proceed to its right subtree, but the right
subtree is empty. The 5 is then inserted as a new leaf at that point .

Figure 7 .6 : Example for inserting into a binary search tree

We can implement this basic insertion algorithm using either an iterative or a
recursive approach. Either way, we start at the top of the tree and work our way
down going left or right as needed until we find the spot where the new item will go.
As is typical with algorithms on linked structures, we need to take some care with
the special case when the structure is empty, since that requires us to change the
root instance variable. Here's a version of the algorithm that uses a loop to march
down the tree.

def insert Cself , item) :

" " " insert item into binary search tree
pre : item is not in self
post : item has been added to self " " "

if self . root is None : # handle empty tree case
self . root = TreeNode Citem)

7 .5 An Appl ication : A B inary Search Tree

else :
start at root
node = self . root
loop to find the correct spot (break to exit)
while True :

if item == node . item :
raise ValueError (" Inserting duplicate item")

if item < node . item : # item goes in left subtree
if node . left is not None : # follow existing subtree

node = node . left
else :

node . left
break

empty subtree , insert here
TreeNode (item)

else : # item goes in right subtree
if node . right is not None : # follow existing subtree

node = node . right
else : # empty subtree , insert here

node . right = TreeNode (item)
break

233

This code looks rather complicated with its nested decision structures, but you
should not have too much trouble following it . Notice the precondition that the
item is not already in the tree. A plain binary search tree does not allow multiple
copies of a value, so we check for this condition and raise an exception if an equivalent
item is already in the tree. This design could easily be extended to allow multiple
values by keeping a count in each node of the number of times that value has been
added.

With the algorithm fresh in your mind, let 's also consider how we might tackle
this problem recursively. We said above that trees are a naturally recursive data
structure, but our BST class is not really recursively structured. It is the interlinked
structure of tree nodes themselves that is recursive. We can think of any node in
the tree as being the root of a subtree that itself contains two smaller subtrees. A
value of None , of course, indicates a subtree that is empty. With this insight, it's
very easy to cast our insertion algorithm as a recursive method that operates on
subtrees. We'll write this as a recursive helper method that is called to perform the
insertion. Using this design, the insert method itself is trivial.

def insert_rec (self , item) :

II II II insert item into binary search tree
pre : item is not in self
post : item has been added to self II I I I I

self . root = self . _subtreelnsert (self . root , item)

234 Chapter 7 Trees

It 's important to clearly understand what _subtreelnsert is up to. Notice that
it takes a node as the root of a subtree into which item must be inserted. Initially,
this is the entire tree structure (self . root) . The _subtreelnsert both performs
the insertion and returns the node that is the root of the resulting (sub)tree. This
approach makes sure that our insert will work even for an initially empty tree.
For that case, self . root will start out as None (indicating an empty tree) and
_subtreelnsert will return a proper TreeNode containing item that becomes the
new root of the tree.

Now let 's write the recursive helper function _subtreelnsert . The parameter
to the function gives us the root of a tree structure that the item is being inserted
into, and it must return the root of the resulting tree. The algorithm is very simple.
If this (sub)tree is empty, we just hand back a TreeNode for the item, and we're
done. If the tree is not empty, we modify it by recursively adding the item to either
the left or right subtree, as appropriate, and return the original root of the tree as
the root of the new tree (since that didn't change) . Here's the code that gets the
job done.

def _subtreelnsert (self , root , item) :

if root is None : # inserting into empty tree
return TreeNode (item) # the item becomes the new tree root

if item == root . item :
raise ValueError (" Inserting duplicate item ")

i f item < root . item : # modify left subtree
root . left = self . _subtreelnsert (root . left , item)

else : # modify right subtree
root . right = self . _subtreelnsert (root . right , item)

return root # original root is root of modif ied tree

So far we can create and add items to our BST objects, now let 's work on a method
to find items in the tree. We've already discussed the basic searching algorithm. It
is easily implemented with a loop that walks down the tree from the root until either
the item is found or we reach the bottom of the tree.

7.5 An Appl ication : A B inary Search Tree

def find(self , item) :

11 11 11 Search for item in BST
post : Returns item from BST if found , None otherwise I I II II

node = self . root
while node is not None and not (node . item == item) :

if item < node . item :
node = node . left

else :
node = node . right

if node is None :
return None

else :
return node . item

235

You might wonder why this method returns the item froIn the tree instead of just
returning a Boolean value to indicate the item was found. For simplicity, our
illustrations so far have used numbers, but we could store arbitrary objects in a
binary search tree. The only requirement is that the objects be comparable. In
general two objects might be == but not necessarily identical. Later on we'll see
how we can exploit this property to turn our BST into a dictionary-like object .

For completeness, we should also add a method to our BST class for removing
items. Removing a specific item from a binary search tree is a bit tricky. There are a
number of cases that we need to consider. Let's start with the easy one. If the node
to be deleted is a leaf, we can simply drop it off the tree by setting the reference
in its parent node to None . But what if the node to delete has children? If the
victim node has only a single child, our job is still straightforward. We can simply
set the parent reference that used to point to the victim to point to its child instead.
Figure 7 .7 illustrates the situation where the left child of the victim is promoted to
be the left child of the victim's parent. You might want to look at other single-child
cases (there are three more) to convince yourself that this always works.

That leaves us with the problem of what to do when the victim node has two
children. We can't just promote either child to take the victim's place, because that
would leave the other one hanging unconnected. The solution to this dilemma is to
simply leave the node in place, as we need it to maintain the structure of the tree.
Instead of removing the node, we can replace its contents. We just need to find
an easily deletable node whose value can be transferred into the target node while
maintaining the tree's binary search property.

Consider the tree on the left side of Figure 7 .8 . Suppose we want to delete
the 6 from this tree. What value in the tree could take its place? We could place

236 Chapter 7 Trees

Figure 7 . 7: Deleting 4 from the binary search tree

either 5 or 7 in this node and the search property would be maintained. In general,
it 's correct to replace the victim's item with either its immediate predecessor or its
immediate successor, since those values are guaranteed to stand in the same relation
to the rest of the nodes in the tree. Let's say we decide to use the predecessor. We
just place this value into the victim node and delete the predecessor node from the
tree. Doing this gives us the tree pictured on the right side of Figure 7 .8 .

You might be a little concerned at this point about how we are going to delete
the predecessor node. Couldn't this be just as hard as deleting the original victim?
Thankfully, this is not the case. The predecessor value will always be the largest
value in the victim's left subtree. Of course, to find the largest node in a binary
search tree, we just march down the tree always choosing to follow links on the right .
We stop when we run out of right links to follow. That means the predecessor node
must have an empty right subtree, and we can always delete it by simply promoting
its left subtree.

We'll again implement this algorithm using recursion on subtrees. Our top-level
method just consists of a call to the recursive helper.

def delete Cself , item) :

" " "remove item from binary search tree
post : item is removed from the tree " " "

self . root = self . _subtreeDelete Cself . root , item)

The _subtreeDelete method implements the heart of the deletion algorithm.
It must return the root node of the subtree from which the item is removed.

7 .5 An Appl ication : A B i nary Search Tree

Figure 7 .8 : Deleting 6 from the binary search tree

def _subtreeDelete (self , root , item) :
if root is None : # Empty tree , nothing to do

return None
if item < root . item : # modify left

root . left = self . _subtreeDelete (root . left , item)
elif item > root . item : # modify right

root . right = self . _subtreeDelete (root . right , item)
else :

if root . left is None :
root = root . right

elif root . right is None :
root = root . left

else :
overwrite root with max of left subtree

delete root
promote right subtree

promote left subtree

root . item , root . left = self . _subtreeDelMax (root . left)
return root

237

As you get the hang of trees as recursive structures, this code should not be too hard
to follow. If the item to delete is in the left or right subtrees, we call _subtreeDelete
recursively to produce the modified subtree. When the root is the node to be deleted,
we handle the three possible cases: promoting the right subtree, promoting the left
subtree, or replacing the item with its predecessor. That last case is actually handled
by another recursive method _subtreeDelMax. This method finds the maximum
value of a tree and also deletes the node containing that value. It looks like this.

238 Chapter 7 Trees

def _subtreeDelMax (self , root) :

if root . right is None :
return root . item , root . left

else :

root is the max
return max and promote left subtree

max is in right subtree , recursively find and delete it
maxVal , root . right = self . _subtreeDelMax (root . right)
return maxVal , root

1 7 . 5 . 3 1 Traversing a BST

At this point we have a useful abstraction of a set of items. We can add items to the
set , find them, and delete them. All that 's really missing at this point is some easy
way to iterate over the collection. Given the organization of the binary search tree,
an in-order traversal is particularly nice, as it produces the items in sorted order.
But users of our BST class should not have to know the internal details of the data
structure in order to write their own traversal algorithms. There are a number of
possible ways to accomplish this.

One approach would be to simply write a traversal algorithm that assembles the
items from the tree into some sequential form, say a list or a queue. We can easily
write a recursive in-order traversal algorithm to produce a Python list . Here's the
code to add an asList method to our BST class.

def asList (self) :

" " "gets item in in-order traversal order
post : returns list of items in tree in orders " " "

items = []
self . _subtreeAddltems (self . root , items)
return items

def _subtreeAddltems (self , root , itemList) :

if root is not None :
self . _subtreeAddltems (root . left , itemList)
itemList . append(root . item)
self . _subtreeAddltems (root . right , itemList)

Here the helper function _subtreeAddltems does a basic in-order traversal of
the tree where the processing of an item just requires appending it to i temList. You
should compare this code with the generic traversal algorithm from section 7 . 2 . Our
asList method just creates an initial list and calls _subtreeAddltems to populate

7 .5 An Appl icat ion : A Binary Search Tree 239

the list . With the addition of this method, we can easily convert a BST into a sorted
list . Of course that also means we could loop over all the items in the collection.
For example, we could print out the contents of our BST in order like this:

i for item in myBST . asList () ,
print item

The only real problem with this approach is that it produces a list that is just
as large as the original collection. If the collection is huge and we are just looking
for a way to loop over all of the items, producing another collection of the same size
is not necessarily a good idea.

Another idea is to use a design pattern sometimes called the visitor pattern. The
idea of this pattern is that the container provides a method that traverses the data
structure and performs some client-requested function on each node. In Python,
we can implement this pattern via a method that takes an arbitrary function as
a parameter and applies that function to every node in the tree. We again use a
recursive helper method to actually perform the traversal.

def visit (self , f) :

II II II perform an in-order traversal of the tree
post : calls f with each TreeNode item in an in-order traversal
order II II I I

self . _inorderVisit (self . root , f)

def _inorderVisit (self , root , f) :
if root is not None :

self . _inorderVisit (root . left , f)
f (root . item)
self . _inorderVisit (root . right , f)

Notice that throughout this code, f represents some arbitrary function that the
client wants applied to each item in the BST. The function is applied via the line
f (root . item) . Again, this is just a variation on our generic recursive-traversal
algorithm.

In order to use the visit method, we just need to construct a suitable function
to apply to each item. For example, if we want to print out the contents of the BST
in order again, we can now do it by visiting.

240 Chapter 7 Trees

def prnt (item) :
print item

myBST . visit (prnt)

The main thing to note here is that in the call to visit there are no parentheses on
prnt . We put the parentheses on when we call a function. Here we are not actually
calling the function, but rather passing the function object itself along to the visit
method that will actually do the calling.

The visitor pattern provides a nice way for clients to perform a traversal of
a container without looking through the abstraction barrier. But it is sometimes
cumbersome to code an appropriate function to do the processing, and the resulting
code is not very Pythonic. As with our other containers, the ideal solution in Python
is to define an iterator for our BST using the Python generator mechanism. The basic
idea is that we will just code a generic in-order traversal that yields the items in
the tree one at a time. By now, you should have a pretty good idea what the code
will look like.

def __ iter __ (self) :

" " " in-order iterator for binary search tree " " "

return self . _inorderGen (self . root)

def _inorderGen(self , root) :

if root is not None :
yield all the items in the left subtree
for item in self . _inorderGen(root . left) :

yield item
yield root . item
yield all the items from the right subtree
for item in self . _inorderGen(root . right) :

yield item

The only new wrinkle in this code is the form of the recursive generator function.
Remember, when you call a generator you do not get an item, rather you get an
iterator object that provides items on demand. In order to actually produce the
items from the left subtree, for example, we have to loop through the iterator
provided by self . _inorderGen Croot . left) and yield each item.

Now we have a very convenient way of iterating through our BST container. Our
code for printing the items in sorted order couldn't be simpler:

7.5 An Appl ication : A Binary Search Tree 241

I for item in myBST :

.
print item

By the way, now that we have an iterator for the BST class, we really don't need
a separate asList method. Python can produce a list of the items from a BST using
the iterator via list (myBST) . Being able to create a list of the items in a BST is
particularly handy in writing unit tests for the BST class, as it provides an easy way
to check the contents of a tree in assertions. Of course, getting a sorted list out of
the BST does not guarantee that the tree has the correct form. For that , it might
be helpful to have another traversal method (either pre- or postorder) as well. It 's
possible to deduce the true structure of a binary tree by examining two different
traversals , so if both traversals come out right, you know the tree is structured the
way you expect it to be.

1 7 . 5 .4 1 A Run-time Ana lysis of BST Algorithms

In the introduction to this section, we suggested that a binary search tree can
maintain an ordered collection quite efficiently. We've shown how a binary search
tree gives us an ordered collection, but we haven't yet examined the run-time
efficiency of the operations in any detail. Since many of the tree algorithms are
written recursively, the analysis might seem daunting, but it 's actually pretty easy
if we just consider what 's going on in the underlying structure.

Let 's start by considering the operations that traverse the tree. Since the work
we have to do at each node is constant, the time to do a traversal is just proportional
to the number of nodes in the tree, which is just the number of items in the collection.
That makes those operations 8(n) where n is the size of the collection.

For the algorithms that examine only part of the tree (e.g. , searching, inserting,
and deleting) our analysis depends on the shape of the tree. The worst case for
all of these methods requires walking a path from the root of the tree down to its
"bottom." Clearly the number of steps required to do this will be proportional to
the height of the tree. So the interesting question becomes how high is the tree? Of
course that depends on the exact shape of the tree. Consider the tree that results
from inserting a set of numbers in sorted order. The tree will end up being a linked
list as each node is added as a right child of the previous number. For this tree with
n elements, an insertion takes n steps to get to the bottom of the tree.

However, if the data in a tree is well distributed, then we expect that about half
the items in any given subtree lie to the left and about half lie to the right. We
call this a "balanced" tree. A relatively well-balanced tree will have an approximate
height of log2 n. In this case, operations that have to find a particular spot in the

242 Chapter 7 Trees

tree will have 8 (log n) behavior. Fortunately, if data is inserted into the tree in a
random fashion, then at each node an item is equally likely to go into the left or
right subtree as we work our way down from the root . On average, the result will
be a nicely balanced tree.

In practice then, a binary search tree will offer very good performance, provided
some care is taken in how the data is inserted and deleted. For the paranoid, there
are well-known techniques (covered in section 1 3 . 3) for implementing insertion and
deletion operations that guarantee the preservation of (approximately) balanced
trees.

/ 7 . 6 / I m p lementi ng a M a pp i ng with BST (Opt iona l)

The BST object outlined in the previous section implements something akin to an
ordered set . We can insert items, delete items, check membership, and get the items
out in sorted order. Often trees are used in more database-like applications where
we don't want to just ask if a particular item is in a set , but where we want to look
up an item that has some particular characteristic. As a simple example, we might
be maintaining a club membership list . Of course we need to be able to add and
delete members from the club, but we also need something more. We need a way
to bring up the record for a particular member of the club , for example to get their
telephone number.

In this section we're going to take a look at how we might extend the usefulness
of our binary search tree by using it to implement a general mapping similar to that
provided by Python dictionaries. In our membership list example, we might use a
special "key" value constructed from a member's name as a way to look up his data
record. Assuming we have an appropriate membershipList object , we might get a
phone number by doing something along these lines:

info = membershipList [IIVanRossum , Guido ll]
print info . horne_phone

Here our membershipList is an object that maps from a member's name to the
corresponding record of his information. We could just use a Python dictionary for
this task, but a dictionary is an unordered mapping, and we'd also like to be able
to efficiently output our (huge !) membership list in sorted order.

One way to approach this problem would be rework the BST class so that all the
methods take an extra parameter for the key and maintain a tree of key-value pairs.
However, that 's a lot more work than we really need to do. We can get a similar effect

7 .6 Implementing a Mapping with BST (Optiona l) 243

simply by using the existing BST implementation and building a wrapper around it
to implement a general mapping interface. That way, we can get the advantages of
a tree-based mapping object without having to modify or duplicate the BST class .
Whenever possible, it 's better to extend existing code than to duplicate or modify.

So how do we turn our BST from a set into a mapping? The key is to exploit
the existing ordering and lookup functions of the BST class. Our existing class can
be used to store any objects that are comparable. We will store items as key-value
combinations, but the trick is that these items will be ordered according to just their
keys. The first step is to create a new class to represent these key-value items. Let's
call this combination item a KeyPair . In order to make our KeyPairs comparable,
we just implement some comparison operations.

KeyPair . py
class KeyPair (obj ect) :

def __ init __ (self , key , value=None) :
self . key = key
self . value = value

def __ eq __ (self , other) :
return self . key == other . key

def __ It __ (self , other) :
return self . key < other . key

def __ gt __ (self , other) :
return self . key > other . key

We have implemented only three of the six comparison operators, because all of
the routines in BST use only these. For safety sake, we probably should implement
the other three comparisons, just in case the BST code changes in the future. We
leave this as an exercise.

Armed with this KeyPair class, we can now define a dictionary-like mapping
based on BST. Here's the constructor for our class.

TreeMap . py
from BST import BST
from KeyPair import KeyPair

class TreeMap (obj ect) :

def __ init __ (self , items= ()) :
self . items = BST ()
for key , value in items :

self . items . insert (KeyPair (key , value))

244 Chapter 7 Trees

We use the instance variable items to keep track of a BST that will store our KeyPair
items. Just as a Python dictionary can be initialized with a sequence of pairs, we
allow our TreeMap constructor to accept a sequence of pairs. We just need to loop
through the pairs and call the BST insert operation to populate our tree. Of
course, insert will keep the underlying binary search tree ordered according to the
key values, since that 's how KeyPairs compare to each other.

Once a KeyPair is in our BST we need to be able to retrieve it again by its key
value. We can do this using the find operation from BST. The parameter we supply
to the find operation will be a new KeyPair that is equivalent to (has the same key
as) the one we are looking up. A line of code like this does the trick.

result = self . items . find(KeyPair (key))

Remember that the find operation searches the binary search tree for an item that
is == to the target . In this case KeyPair (key) "matches" the pair in the BST that
has the same key, and it returns this matching KeyPair. Our partial record with
just the key filled in is sufficient to retrieve the actual record for that key.

To make our TreeMap class work like a Python dictionary, we implement the
usual Python hooks for indexing: _ _ geti tem _ _ and _ _ seti tem _ _ .

def __ getitem __ (self , key) :
result = self . items . find(KeyPair (key))
if result is None :

raise KeyError O
else :

return result . value

def __ setitem __ (self , key , item) :
partial = KeyPair (key)
actual = self . items . find(partial)
if actual is None :

no pair yet for this key , add one
actual = partial
self . items . insert (actual)

actual . value = item

Each of these methods does just a little bit of extra work to handle cases when
the given key is not yet in the dictionary. The _ _ geti tem _ _ method just raises a
KeyError exception in this case. When __ seti tem __ is passed a new key, it needs
to insert a KeyPair for it into the BST. Since we already created the new KeyPair
partial to do the initial search, it 's a simple matter to use it for the new entry.

7 .8 Exercises 245

That's enough to get our TreeMap class up and running. It 's still missing an
iterator that allows us to access the items in order (to print out a membership list ,
for example) . We leave it as an exercise to add the additional functionality.

1 7 . 7 1 Cha pter S ummary

We have covered some basic algorithms and data structures for implementing trees.
Here is a quick rundown of important highlights:

• A tree is a non-linear container class for storing hierarchical data or for
organizing linear data so it can be accessed efficiently.

• Trees are commonly stored using a linked structure but can also be stored as
an array.

• Many tree applications use binary trees, which means that each node has zero,
one, or two children, but it is also possible to implement trees with an arbitrary
number of children.

• The binary search tree property is that for every node, the value of each node
in its left subtree is less than or equal to the node's value and the value of
each node in its right subtree is greater than the node's value.

• A binary search tree can support a 8 (10g n) implementation of the search,
insertion, and deletion operations while maintaining the binary search tree
property.

• Tree algorithms are often written using recursion since the tree itself is a
recursive data structure.

• The three common binary tree traversal orders are: preorder, in-order, and
postorder. An in-order traversal of a binary search tree produces the items in
sorted order.

1 7 . 8 1 Exercises

True/Fa lse Questions

1 . Every node in a tree has at most two children.

246 Chapter 7 Trees

2 . The depth of a tree node is the number of nodes between it and the root of
the tree.

3. A tree has exactly one root node.

4. A complete binary tree is necessarily a full binary tree.

5. A full binary tree is necessarily a complete binary tree.

6. An in-order traversal of any binary tree produces the items in sorted order.

7. A postorder traversal of an expression tree yields the postfix (reverse Polish)
form of an expression.

8. The worst-case search time for a binary search tree is 8 (n) .

9 . Every subtree of a binary search tree is also a binary search tree.

10 . Since binary trees are non-linear, they cannot be easily implemented using an
array.

Mu lti p le Choice Questions

1. A tree is a natural representation of

a) arbitrarily interconnected data.
b) linear data.
c) hierarchical data.
d) sappy data.

2. Which of the following is not necessarily true of a non-empty tree?

a) it has height of at least 1
b) it has at least one leaf
c) it has at least one root
d) all of the above are true of a non-empty tree

3. In an expression tree, non-leaf nodes represent :

a) operands.
b) operators.
c) parentheses.
d) tokens.

7.8 Exercises 247

4. In what order should an expression tree be traversed to evaluate the expres­
sion?

a) preorder
b) in-order
c) postorder
d) precedence order

5. Which of these design patterns allows clients to traverse a data structure
without knowing its internal structure?

a) visitor pattern
b) iterator pattern
c) both a and b
d) none of the above

6. Which of the following orders will produce a binary search tree with the best
search tiInes?

a) inserting the items in a random order
b) inserting the items in order
c) inserting the items in reverse order
d) all will result in the same search times

7. What is the running time of the recursive tree traversals?

a) 8 (1) b) 8 (log n) c) 8 (n) d) 8 (n log n)
8. What is the maximum number of items in a binary tree with a height of 5?

a) 5 b) 15 c) 31 d) 32

9. What is the minimum height of a tree with 64 nodes?

a) 6 b) 7 c) 8 d) 64

10. What is the maximum height of a tree with 64 nodes?

a) 6 b) 7 c) 8 d) 64

Short-Answer Questions

1. What is the drawback of the array I list representation of a general binary tree?
What types of binary trees would be particularly well suited to the array llist
representation?

248 Chapter 7 Trees

2 . Consider the binary search tree from the left side of Figure 7 . 8 (before the 6
is deleted) . List the order that the nodes would be visited for each traversal
order (preorder, in-order, and postorder) .

3. Write an invariant for the BST class.

4. Write pre- and postconditions for the delete operation of the BST class.

5. A tree sort algorithm proceeds by inserting items into a binary search tree and
then reading them back out with an in-order traversal. What is the asymptotic
running time of sorting n items using a tree sort . Discuss both worst case and
expected case results.

6. Consider the mathematical expression 3 + 4 * 5. Draw two different expression
trees whose in-order traversals produce this expression. Evaluate both of
your trees using the evaluation algorithm given in section 7 .3 . Which tree
corresponds to the "usual" interpretation of this expression?

7. Using the TreeNode class, write an expression that would produce the tree
structure shown in Figure 7 .5 .

8 . In the chapter, we saw that a value in a binary search tree can be deleted by
replacing the item in its node with its in-order predecessor. As was noted, it
would also work to use the in-order successor. Suppose that instead of always
doing one or the other we implement a strategy that chooses between these
two "on the fly." Suggest a suitable criterion for selecting which one to use
and write pseudocode for an algorithm that performs the criterion test .

Progra mm ing Exercises

1 . Write unit tests for the BST class.

2. Write and test a recursive version of the find function in the BST class.

3. Write pre order and postorder traversal generators for the BST class. For
example, to generate a list for a pre-order traversal, we could write code like
this list (myBST . preorder 0) .

4. Write a __ copy __ method for the BST class.

5. Add a _ _ len _ _ operation to the BST class. Calling len (myBST) should return
the number of items in myBST.

7.8 Exercises 249

6. Implement an improved delete operation for BST along the lines suggested in
the last short-answer question above.

7. Implement and test an ordered multi-set class based on a BST. A multi-set is a
set that allows multiple occurrences of any given value. The basic idea is that
each item in the tree will consist of both a value and a count of the number of
occurrences of that value. Your MultiSet class should include operations for
insertion, deletion, counting, length, and traversal . The count (x) operation
returns the number of times x occurs in the set . Here's a short interactive
session showing its use:

» > s = MultiSet ()
» > for x in [3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 3 , 5] :

s . insert (x)

» > len(s)
1 1
» > s . delete (5)
» > len(s)
10
» > s . count (5)
2
» > s . count (8)
0
» > list (s)
[1 , 1 , 2 , 3 , 3 , 4 , 5 , 5 , 6 , 9]

Note: you can either write a new class similar to the BST class or use the
technique of section 7 . 6 to leverage the existing BST class.

8. Write a simplified version of a decompression program. The following is a
sample input file and the tree representation for its code. The first set of lines
contains the letter and its code (separated by a space) . There is a blank line
before the actual coded message. Note that the first line contains the code for
a space and that the last line is actually one long line, but it is wrapped for
display purposes on this page. This file decodes into:
the magic word is abracadabra

250 Chapter 7 Trees

0 1 1
a 00
b 1001
c 1000
d 1010
e 1 1000
g 1 1001
h 1 1010
i 1011
m 1 10 1 1
o 1 1 100
r 010
s 1 1 101
t 1 1 1 10
w 1 1 1 1 1

1 1 1 10110101 10000 1 1 1 101 100 1 10011011 10000 1 1 1 1 1 1 1 1 1 10001010100 1 1 1011 1 1 10101
100100101000100000101000100101000

o

1
� 1

Copy the TreeNode . py file from the book. Create a class named Pref ixCodeTree
in a file named Pref ixCodeTree . py. The class must have a constructor and
the following two methods:

7.8 Exercises

def add_code (self , letter , code) :

" " " add the letter and its code to the tree

pre : letter is a string , code is a string of Os and is
corresponding to the code for the letter ; code does not
contain a pref ix that has already been added
post : the tree is updated to store the code and its
corresponding letter" " "

def decipher_code (self , coded_msg) :

" " "using the tree created by the add_code calls , decipher the
coded_msg

pre : add_code has been called to create the tree
coded_msg contains valid codesfor the calls to add_code
post : returns the decode string" " "

251

Prefix codes are codes such that no code is a prefix for another code. In our
tree representation, this corresponds to the letters at leaf nodes. To decode a
message, start at the root of the tree and move down the tree based on the Os
(go left) or 1s (go right) until you reach a leaf and add that letter. Once you
reach a letter, start at the root of the tree with the next code. Normally the
codes would be stored in binary format , allowing us to represent eight Os or
1s in a single byte, making the compressed file smaller if the common letters
take less than eight Os or 1s. To make the exercise simpler, the codes in the
file are all plain text.

9. Think about a different way to solve exercise 8 using one of Python's built-in
data types instead of a binary tree. Solve the problem using that data type.

10 . Write a program to play the animal guessing game. Here's a sample output
showing how the game works. User input is shown in bold.

Welcome to the Animal Game !
You pick an animal , and I will try to guess what it is . You can help
me get better at the game by giving me more information when I make
a mistake .

The more you play , the better I get .

Think of an animal , and I ' ll try to guess what it is .
Is it green? no

252 Chapter 7 Trees

Does it purr? n
Does it have black and white stripes? y
Does it have hooves? yes
Is your animal a (n) zebra? yes
I ' m soooo smart !

Do you want to play again? y

Think of an animal , and I ' ll try to guess what it is .
Is it green? yes
Does it hop? yes
Is your animal a (n) frog? no
Rats ! I didn ' t get it . Please help me improve .

What is your animal? grasshopper
Please enter a yes/no question that would select between
a (n) grasshopper and a (n) frog :
» Does it eat leaves
What would the answer be for a (n) grasshopper? yes

Do you want to play again? yes

Think of an animal , and I ' ll try to guess what it is .
Is it green? y
Does it hop? y
Does it eat leaves? y
I s your animal a(n) grasshopper? yes
I ' m soooo smart !

Do you want to play again? n

Thanks for playing !

As you can see, this program demonstrates a simple form of machine learning.
When it fails to guess the user's animal, it asks for more information so that
it can get the animal right the next time.

You can implement this program using a kind of binary tree known as a
decision tree. The leaf nodes of the tree represent categories (animals, in this
case) , and the non-leaf nodes contain yes/no questions. A round of the game
consists of starting at the root of the tree and navigating down by asking the
question and then going left or right depending on whether the answer is yes or
no. When arriving at a leaf, the program guesses the animal at the leaf. When
the guess is incorrect , the leaf becomes an interior node with the category that
was there demoted to one child and the correct answer to the other child.

7.8 Exercises 253

Your initial tree can just consist of a single node that contains your favorite
animal; the tree can grow from there by playing the game. Of course, you will
need a way to store the tree to a file between playings so that the program
can accurIlulate experience rather than starting from scratch each time. The
easiest way to write the tree to a file is to use Python's serialization capabilities .
Take a look at the documentation for the pickle module to see how to do
this.

Chapter 8

Objectives

A C++ I ntrod u ction

for Python

Progra m mers

• To understand the C++ compilations process.

• To learn the syntax and semantics of a major subset of C++ including built-in
data types, input/output , decision statements, and looping statements.

• To learn the syntax and usage of C++ arrays.

• To learn the details of C++ functions and parameter passing mechanisms.

• To understand the scope and lifetime of C++ variables.

[[!] I ntroduct ion

The earlier chapters in this book focused on developing algorithms and data struc­
tures using the Python language. Python is a great language for beginners because
of its relatively simple syntax and powerful, built-in data structures and library
of functions. Python's usage in industry is fairly small but is continuing to grow.
However, even if Python were to become the most commonly used language, all
computer scientists should know more than one computer language. Different
languages provide different capabilities, making no single language the best choice
for every problem. Learning new languages will help expand your problem solving

255

256 Chapter 8 A C++ I ntroduction for Python Programmers

skills as their different capabilities will encourage you to think about more ways to
solve a problem.

The Python language's data structures and many of its built-in functions hide
many of the underlying implementation details from programmers. As we discussed
earlier, when using Python you do not need to worry about deallocating memory as
you do in some languages. Obviously the people developing higher level languages
and writing interpreters and run-time environments for them need to understand all
the low-level details necessary to implement them. It should be clear that Python is
generally not the best language for applications that process very large amounts of
data or require extensive computation since it uses extra memory to store a reference
count and data type for every object and its interpreter must convert the byte codes
for each Python statement to machine code each time it executes the statement .

This chapter and the next four chapters will introduce a large subset of the C++
programming language. C++ is an excellent complementary language for Python
programmers as it is a lower level language that requires you to understand many
low-level implementation details, including memory management . C++ can make
much more efficient use of the computer's memory and CPU. Having programming
abilities in both Python and C++ will allow you to choose the appropriate language
for a given problem. In fact , it is very common for a Python program to make use
of compiled C or C++ code when speed and memory usage are important .

1 8 . 2 1 C++ H istory a nd Backgrou nd

The C programming language was developed in the early 1970s as a cross-platform
systems language. In the 1960s when new computers were built , new operating
systems were written in the assembly language for each machine. Brian Kernigan
and Dennis Ritchie at AT&T Bell Labs decided to develop a high-level, cross­
platform language for systems code. They, along with Ken Thompson, developed the
Unix operating system in C, and this allowed them to easily port it to new computer
hardware. The C programming language is still widely used for applications in
which speed is crucial such as operating systems and scientific computing. In fact ,
the Python interpreter is written in C .

In the late 1970s and early 1980s, computer scientists began to realize that
object-oriented design and programming allowed them to write more maintainable
and reusable code. There were a couple existing object-oriented languages at the
time, but the C programming language was extremely popular. In the early 1980s,
Bjarne Stroustrup at AT&T decided to develop an object-oriented language that
would be relatively easy for C programmers to learn. He added explicit object-

8.2 C++ History and Background 257

oriented programming support to the C programming language and called the new
language C++. The C++ language is mostly backward compatible with the C
programming language other than the new keywords that C++ uses, making it fairly
easy for C programmers to get started with C++. The complete C++ language
is much larger and rnore complex than the C language and many programmers use
only a subset of C++ when writing C++ code.

C and C++ are lower level languages than Python. C does not provide built-in
list or dictionary types. C++ does support some higher level data structures using
a collection of classes and methods known as the Standard Template Library. C and
C++ are terser and use more special characters (e.g. , && is used for and and I I is
used for or) . Newer versions of C++ do allow and and or to be used in addition to
the special symbols.

This book covers the C++ language although most of what is included in this
chapter also applies to the C language. Some of the topics in later chapters also
apply to the C language, but we will generally not point out what does and what
does not . In general, any discussion that involves classes does not apply to the C
language.

As you read the previous paragraphs, you may be asking yourself why would
you want to learn C++ since it seems it is more difficult to write code using it .
While you will likely find it more difficult to write C++ code and your C++ source
code will almost always be longer than the corresponding Python source code that
does the same thing, Python is not the best language for all applications. Writing
code in a compiled language such as C or C++ allows you to write code that
typically executes an order of magnitude faster and uses less memory than the
corresponding interpreted Python code. There are still a number of application
areas where you want to maximize execution speed and use memory efficiently so
your code can handle large amounts of data. For example, you would not want to
write an operating system or a server such as a web server or database server in
Python. Learning C++ will also help you gain a better understanding of what is
going on inside the Python interpreter.

C and C++ source code is compiled into machine language code while Python
uses a hybrid process of compiling into byte code and then interpreting the byte
code. There are advantages and disadvantages to both methods. Compiled code
executes much faster than interpreted code, but is less flexible than interpreted code.
We will discuss some of these differences in later sections. A pictorial representation
of the process of compiling C++ code is shown in Figure 8. 1 . We will use the
following simple C++ program to describe how that compilation process works.

258 Chapter 8 A C++ I ntroduction for Python Programmers

II hello . cpp
#include <iostream>
using namespace std ;

int main e)
{

}

cout « "hello world\n" ;
return 0 ;

header file

machine code
libraries

header file

Figure 8 . 1 : Compile-and-link process for C++ code

If we tell you that cout is used to produce output , you can probably guess that
the program does the same as the Python program print "hello world" . The

8.2 C++ History and Background 259

preprocessor (commonly known as the C preprocessor) , takes the source code and
processes all the lines that start with a pound sign (#) . The #include preprocessor
directive in the sample program tells the preprocessor to copy all the code from the
iostream file into our source file . This has the same effect as if we had copied and
pasted that file into our program where the #include statement is. The iostream
file is known as a header file. Each C++ source file can include any number of
header files. We will discuss header files in more detail later in this chapter and
again in later chapters; for now what you need to know is that header files contain
information about source code that is written in other files.

The output of the preprocessor is still C++ source code that is then sent to a
C++ compiler. The compiler's job is to convert the C++ source code into machine
language code (the Os and Is that the computer's CPU can execute) for a specific
chip and a specific operating system. The first step the compiler does is check the
code for any syntax errors. Since a syntax error means the program is not correct,
the compiler cannot determine what you mean and complete its process. If your
code has syntax errors, the compiler stops and gives you an error message indicating
what it could not understand. This means you cannot try to run your program until
you fix all your syntax errors. Once your source code is syntactically correct , the
compiler will produce machine language code corresponding to your code in the
C++ source file . This machine language code is also commonly known as object
code.

Just as we split Python programs into multiple files, all but the simplest C++
programs are typically split into multiple source files. As Figure 8 . 1 shows, each
source file is compiled independently. One source file may call a function defined in
another source file. This is the main reason for header files: by including information
about the function defined in another file, the compiler can make certain that you
correctly called the function. The job of the linker is to combine the various machine
code object files into one executable program, making certain that each function
that is called exists in exactly one of the object files. Most operating systems also
support machine code libraries. In this context , a library is the object/machine code
for commonly used classes or functions. In C++, the input and output statements
are part of a library declared in the iostream header file . As Figure 8 . 1 shows,
the linker also copies the code from the libraries your program uses into the final
executable code.

Since the resulting executable program is in machine language, it can be exe­
cuted only on computers that support that machine language and that operating
system. For example, a program compiled for an Intel chip running a version of the
Windows operating system will generally run on any Intel-compatible computer (of

260 Chapter 8 A C++ I ntroduction for Python Programmers

the same generation or a newer version of the Intel chip) and that version or newer
compatible versions of the Windows operating system. A program compiled on an
Intel computer for the Linux operating system will not run on a Windows system and
vice versa. Simple C / C++ programs can be recompiled for another operating sytem
or computer chip. Porting a program refers to the process of getting it to execute on
a different chip or operating system. The real difficulty in porting code to another
operating system is that different operating systems support different libraries of
functions for input/output and graphical user interfaces (GUls) . Many operating
systems also provide additional libraries of code. Any program that uses these
operating system-specific libraries of code is more difficult to port to other operating
systems. These libraries would also need to be ported to the other operating system
or the code rewritten to avoid using the libraries.

Python code is machine independent and can be executed on any machine
containing the Python interpreter. This means that the Python interpreter itself
must be ported and compiled for that machine and operating system. If your
program uses extra Python modules that are specific to that operating system such
as a GUI toolkit that exists only on that operating system, then your Python code
will not be portable. Python programs that use only the standard Python modules
can be executed on any machine or operating system containing the interpreter
without any changes to the code. Just as the Python interpreter can be compiled
on many different systems, many of the extra modules can also be ported to other
operating systems; this of course requires more work.

The process of executing Python code is significantly different from the process of
compiling and linking C++ code. Figure 8 . 2 shows a pictorial representation of the
process. You directly execute only one Python file, but by importing other Python
files, you are effectively combining the code from multiple source files. Python
source code is first compiled into a machine-independent set of instructions known
as byte code; this process happens automatically when you run a Python program
or import a Python module. You may have noticed files with a . pyc extension on
your computer. These are the byte code files created when you import a Python
module. A single byte code instruction corresponds to code such as a function call
or adding two operands.

The Python interpreter then starts processing the byte code corresponding to
the first statement in your program. Each time a byte code statement is processed,
it is converted to machine language and executed. It is this process of interpreting
each byte code statement and converting it to machine language every time the byte
code is executed that results in Python code executing slower than compiled C++
code. The byte code can be converted to machine language faster than pure Python

8 .2 C++ History and Background 261

Figure 8 .2 : Python hybrid compilation and interpretation process

source code; that is the reason the Python source code is converted once to the byte
code instead of converting each Python statement to machine language every time
that Python statement is executed.

As the figure shows, your Python code can call compiled C or C++ code in
machine code libraries. This allows you to mix Python, C, and C++ code in your
program. Writing C or C++ code that can be called from the Python interpreter
requires following certain conventions; we will not cover the details of this in this
book. Any C or C++ code that you want to call from Python must be compiled
on the specific version of the operating system and for the chip that you will be
executing your Python program on.

The execution speed difference between Python and C / C++ becomes more
noticeable when loops are explicitly written in Python. Instead of writing a loop that
executes a large number of iterations, it is better to call a built-in Python method
or function that does the same thing (if one exists) since the Python method or
function is implemented in compiled C code. You should have noticed this in the
use of the index method compared to our hand-coded linear search function in
subsection 1 . 3 . 1 . In summary, the main trade-off between Python and C/C++ is
the speed of execution vs. the arnount of code and development time required.

The basic staternents of Python and C++ are similar; because of this, it is
relatively easy for Python programmers to learn to read C++ code. Learning to
write C++ code is more difficult because you need to learn the exact syntax details

262 Chapter 8 A C++ I ntroduction for Python Programmers

of C++. It is easier for Python programmers to learn C++ than for someone
with no programming experience. This is because programmers who know one
language already understand the common concepts such as decision statements,
loops, functions, etc. Many programming languages, including C, C++, Python,
Java, C#, and Perl, use similar statements and syntax making it fairly easy to
learn additional languages. We think that Python is an ideal language for beginners
because of its simple syntax and that C++ is a good second language because it is
similar to Python, but allows students to gain experience with the low-level details
of programming that the Python interpreter hides.

Many of the C++ concepts presented in this chapter and the next few chapters
also apply to the C language, but not all of them. Specifically, the inputjouput
mechanisms are different in C and C++, and C does not completely support classes.
This book does not cover the C language mechanisms for input j ouput or C structs,
which are a simplified version of classes. These chapters on C++ are not intended
to provide all the details of the C++ language, but rather to quickly get Python
programmers started with C++ and to help them learn about explicit memory
management . To become a C++ expert , we suggest you read a C++ reference
book such as the one authored by Bjarne Stroustrup. Since C++ is a fairly complex
language, there are a number of topics that must be covered before we can write
a complete C++ program. We will begin covering these concepts assuming a
knowledge of Python.

1 8 . 3 1 Com ments, B locks of Code , I dent if iers , a n d Keywords

C++ supports two types of comments. The equivalent to Python's # comment
marker is two forward slashes (/ I) . Anything on a line, from the two forward
slashes to the end of the line, is considered a comment and ignored by the compiler.
The C++ compiler also supports multi-line comments. This type of comment begins
with /* and ends with */ .

II this is a one-line C++ comment

1* this is a
multi-line
C++ comment *1

Python denotes blocks of code using indentation. C++ uses braces ({}) to
mark the beginning and ending of blocks. Indentation in C++ has no effect , but for
readability, programmers generally follow the same indentation rules that Python

8.4 Data Types and Varia ble Declarations 263

requires. Whitespace (spaces, tabs, and new lines) have no effect on C++ code
except within strings. Since spaces, tabs, and new lines have no effect in C++, each
C++ statement must be terminated with a semicolon. Forgetting the semicolon at
the end of a statement is a common mistake, especially for programmers familiar
with Python. Unfortunately, when you forget a semicolon, many C++ compilers
indicate there is a problem with the next line of code. When tracking down
compilation errors, it is often necessary to look at the line or lines of code just
above the line on which the compiler indicates there is an error.

The rules for legal C++ identifiers are the same as Python's rules. Identifiers
must start with a letter or an underscore. After the initial letter or underscore, the
additional characters may be letters, numbers, or underscores. Also, identifiers may
not be a C++ keyword. Figure 8 .3 lists all the C++ keywords' ! This book does
not cover the details of all the C++ keywords.

and
bool
compl
do
export
goto
namespace
or_eq
return
struct
try
using

and __ eq
break
const
double
extern
if
new
private
short
switch
typedef
virtual

asm
case
const_cast
dynamic_cast
false
inline
not
protected
signed
template
typeid
void

auto
catch
continue
else
float
int
not_eq
public
sizeof
this
typename
volatile

bit and
char
default
enum
for
long
operator
register
static
throw
union
wchar_t

Figure 8 .3 : C++ Keywords

1 8 .4 1 Data Types a nd Var ia b l e Dec la rat ions

bitor
class
delete
explicit
friend
mutable
or
reinterpret_cast
static_cast
true
unsigned
while

C++ requires that all variables be explicitly declared before they are used and
supports the following built-in data types: int , char, float , double , and bool.
Variables are declared with a specified data type and a variable can hold data values
of only that type. The int type corresponds to integers in Python and supports the

IThe list of keywords is from Bjarne Stroustrup, The C++ Programming Language, (Reading,
Massachusetts: Addison-Wesley, 1997) , 3rd ed. 794.

264 Chapter 8 A C++ I ntroduction for Python Programmers

same operations including the modulus operator (%) . Unlike Python, where integers
are automatically converted to long integers as necessary, C++ int types silently
overflow if a value is too large to store. A C++ int type must use at least 16 bits ,
which allows values i� the approximate range of +/- 32 ,000; however, most systems
use at least 32 bits, allowing numbers in the + / - 2 billion range. The char type
holds a single character. Internally it is stored as the ASCII value for the character,
so a char variable can store a value between - 128 and 127.

C++ also supports the modifiers short and long for int types. On most 32-bit
systems, a short int is 16 bits , an int is 32 bits , and a long int is also 32 bits.
The long int type is guaranteed to be at least 32 bits whereas the int is only
guaranteed to be at least 16 bits . The int and char types support the unsigned
modifier indicating that only non-negative numbers are supported and allow larger
values. A 32-bit Unsigned int supports values from 0 to approximately 4 billion
instead of +/- 2 billion. An unsigned char can store a value between 0 and 255 .

The float and double data types correspond to what mathematicians call real
numbers but on the computer they are not represented exactly. Because of how
they are represented internally using bits of Os and Is , they are more appropriately
referred to as floating point numbers. The float type uses 32 bits to represent
the number and provides 6 or 7 significant decimal digits . The double type uses
64 bits and provides 15 or 16 significant digits . Python uses the C double type
to implement floating point numbers. Because modern computers have plenty of
memory and most implement floating point arithmetic in hardware, you should use
the double type instead of the float type in almost every situation. Figure 8 .4
summarizes the details of the C++ data types.

In C++, variables can be defined anywhere and are accessible from that point
to the end of the block of code in which they are declared. For style and readability
purposes, many C++ programmers declare all variables they will need in a block of
code at the top of that block. A variable is declared by specifying the type followed
by the variable name. Multiple variables of the same type may be declared on one
line by separating the variable names by commas. The following shows a simple
program with a few variable declarations. Based on our earlier discussion that cout
is used to produce output and your knowledge of Python, you can probably guess
what this C++ program outputs.

Data type

int

unsigned int

short int

unsigned
short int

char

unsigned
char

float

double

bool

II output . cpp
#include <iostream>
using namespace std ;
int mainO
{

int i , j ;
double x , y ;

i = 2 ;
j = i + i ;
x = 3 . 5 ;
Y = x + x ;

8 .4 Data Types and Variable Declarations

Typical range of Typical #
values of bytes Comments

-2 , 147,483,648 to
2 , 147,483,647 4 integer values only
o to 4,294,967,295 4 integer values only
-32 ,768 to 32,767 2 integer values only

o to 65,535 2 integer values only
- 128 to 127 1 integer values only

o to 255 1 integer values only
approximately real numbers with 6 or
+/ - 1038 4 7 significant digits
approximately real numbers with 15
+/ _ 10308 8 or 16 significant digits

true and false are
true or false 1 constants

Figure 8 .4 : C++ built-in data types

cout « j « " \n" « y « " \n" ;
return 0 ;

}

265

You may be wondering why C++ requires you to declare variables while Python
does not . Remember that C++ code is compiled directly to machine language.
Machine language instructions are performed on specific data types. All CPUs have
instructions for adding two integers, and most modern CPU s have instructions for
adding two floating point numbers. Some older CPU s did not have direct floating

266 Chapter 8 A C++ I ntroduction for Python Programmers

point instructions, but implemented floating point calculations in software using
a number of integer instructions, making them much slower. In our preceding
example , the compiler needs to know to generate the machine instruction to add
two integers for the statement j = i + i ; and to generate the machine instruction
to add two floating point numbers for the statement y = x + x ; . The variable
declarations indicating the data types allow the compiler to determine the correct
machine instruction.

The Python interpreter converts the corresponding two Python addition state­
ments to the same byte code such as add i , i and add x , x. The same byte code
is used in both cases for the add statement. When the Python interpreter is then
executing the byte code, it determines the data type for the two operands and in the
first case generates an integer add instruction and in the second case it generates a
floating point add instruction. If the two operands were strings, it would generate
the machine instructions to concatenate two strings. Since Python does not create
the machine instructions until it is ready to execute the statement , it does not need
to know the data type when the code is written as the C++ compiler does. This
allows the code to work properly even if the data type for variables changes between
multiple executions of the statement . The following silly Python program shows an
example of this. The first time through the loop, the statement x + x is adding two
integers and the second time it is concatenating two strings. This type of code is
not possible in C++ without using separate variables for each different type.

for i in range (2) :
if i == 0 :

x = 1
else :

x = ' hi '
print x + x

The terminology for these issues is dynamic typing and static typing. Python
uses dynamic typing which means the data types for a variable or name can change,
whereas C++ uses static typing which means the data type of a specific variable
is fixed at compile time and cannot change. Another significant difference in how
Python and C++ handle variables is that C++ variables have their memory al­
located when a function is called and the same memory location is used for that
variable through the execution of the function. Technically, it is incorrect to use the
term variables in Python. The term name is correct ; a Python name refers to an
object in memory. During the execution of a Python function, the memory location
that a name refers to can change. We discussed this in section 4 . 2 . In the following
simple program, the name x refers to two different objects at two different addresses.

8 .5 I nclude Statements, Namespaces, and I nput/Output 267

I x
=

3 x
=

4

A Python name is not assigned to an address until it is used in your code and
changes each time you assign a new object to it. Again, C++ variables are allocated
a specific memory location that does not change during the execution; the same
memory location is used to store the 3 and then the 4. We will examine these issues
in more detail in section 8 . 7 and again in Chapter 1 0.

C++ also supports constants and a compile time check to make certain a
program does not attempt to change a value. A sample constant definition is const
double PI = 3 . 141592654 ; . If a program defines a constant and contains another
statement that assigns a value to the defined constant (e.g. , PI = 5) , that is a syntax
error and the program will not compile. Many programmers use the convention of
all capital letters for constants.

C++ does not provide built-in, high-level data structures such as lists, tuples,
and dictionaries as Python does. C++ supports arrays (covered in section 8 . 1 1)
that can be used to build similar data structures. As you would expect since C++
is an object-oriented language, it provides classes that allow you to encapsulate data
members and functions so you can build your own list , tuple, and dictionary classes
that provide methods for manipulating the data. We will learn about C++ classes
in section 9 . 1 .

I s . s l I nc l ude Statements, N amespaces , a nd I n put/Output

Python uses the import statement to access code written in another file . C++
uses a #include statement to copy the class and function declarations defined in
a different file into your current file so the compiler can check if you are using
the function or class correctly. The files containing these declarations are known as
header files. Header files can contain items other than class and function declarations
but we will not worry about those items now. The details of function prototypes are
discussed in section 8 . 1 2 , but the basic idea is that a function prototype specifies
the number of parameters, the data type for each parameter, and the return type
for the function. The prototype allows the compiler to create a list of functions and
classes that exist. Thus, when you attempt to call a function not defined in your file,
the compiler can determine if a function with that name has been declared elsewhere
and if you are calling the function with appropriate parameters . The same concept
applies to including the definitions of classes so that the compiler can determine if
you use a class correctly (i .e . , a class exists with that name and contains the methods
you use) . A header file typically does not contain the code for the function or class

268 Chapter 8 A C++ I ntroduction for Python Programmers

methods, just the declaration. Usually, a separate implementation file includes the
definition of the function (i .e . , the body of the function) . There are exceptions to
this that we will discuss later. The actual machine code for the functions and classes
are combined together by the linker to create the executable code (as we showed in
Figure 8 . 1) . We will cover additional details of compiling and linking later in this
chapter.

C++ supports namespaces that are similar to the namespaces created by Python
modules. Each Python file is its own module and effectively has its own namespace.
C++ does not require the use of namespaces, but some of the built-in C++ classes
and functions are defined within namespaces. We will cover the details of writing
your own namespace in the optional subsection 8 . 1 7 . 2 ; we just cover the basics of
using an existing namespace in this section. The most commonly used namespace
is the standard namespace that is abbreviated std and is part of the definition of
the C++ programming language. Since a number of C++ built-in functions and
classes are declared in the std namespace, we need to know how to use a namespace
in order to write almost every C++ program.

C++ uses a library of functions for input and output and requires a file to be
included to access this library. The simplest way to access this library is to place
the following statements at the top of your file:

#include <iostream>
using namespace std ;

As we discussed earlier, the #include statement causes the C++ compiler to
effectively copy the contents of the iostream header file into your file and then to
compile the complete file. This header file defines the various input/output functions
and classes. The input/output functions and classes are in the namespace std. The
C++ output statement uses the cout instance of the ostream class defined in the
iostream file. The using namespace std statement tells the compiler to allow
direct access to all the elements defined in the std namespace. This is similar
to the Python version of the import statement, from math import * , that allows
access to all the items defined in the math module. Without a using statement , it
must be referred to using the full name std : : cout o Another option is to write the
statement using std : : cout after the include statement. This allows us to specify
the cout instance without the std : : prefix, but does not allow us to access any other
members of the std namespace directly. This is similar to the Python statement
from math import sqrt which allows us to access the sqrt function defined in the
math module, but not any of the other items defined in the math module. The main
difference between C++ and Python namespaces (each Python file is a separate

8.5 I nclude Statements, Namespaces, and I nput/Output 269

namespace) is that items defined in a C++ namespace can always be accessed with
the full name (namespace : : item) without a using statement while you must use
an import statement to access items in a Python namespace.

The C++ cout instance works similarly to the Python print statement to
output variables, expressions, and constants. Python uses commas to separate
multiple items being output in one statement. C++ uses the symbols « to separate
multiple items to be output with one statement. C++ does not automatically
insert a space as Python does with each comma-separated item, and C++ does not
automatically output an end-of-line character as the Python print statement does.
As with Python, any items not inside of quotation marks are evaluated. C++ strings
must be denoted using the double quotation mark. In C++, a single quotation mark
is used only to denote a single character (i .e . , the built-in char data type) .

All C++ programs must have one function named main that is called when
the program is executed. The main function must return an int value. Putting
together all the concepts we have learned so far, you should now understand most
of the syntax of our "hello world" example.

II hello . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

cout « "hello world\n" ;
return 0 ;

The backslash escape characters in C++ are the same as they are in Python. The
above program uses \n to output a new line character after printing hello world.
C++ also allows the use of endl , which is declared in the std namespace (if the
using namespace std line is not specified, it must be referred to as std : : endl) .
The above cout statement could also be written as cout « "hello world" « endl .
A common style is to use \n when the output statement ends in quotation marks
and to use endl when the last item in the cout statement is not a string constant .
One difference between using " \n" and endl is that endl forces the output buffer
to be flushed. With buffered output , the operating system may wait and send the
outputted data to the screen (or a file, if you are writing to a file) at a later time for
efficiency purposes. The output buffer is flushed when your program exits normally,
but if your program crashes, you may not see some of the output that your program
actually generated. This can lead you to think that your program crashed earlier

270 Chapter 8 A C++ I ntroduction for Python Programmers

than it actually did. Because of this , you may want to use endl if you use cout
statements to help you track down where a program is crashing.

Similar to the cout instance, C++ has a cin instance of the istream class that
is part of the standard namespace and is used for input. The symbols » are used
to separate multiple input values. The cin statement uses whitespace to separate
multiple values and will skip past any whitespace (space, tab, or new line) to find the
next number, character, string, etc. The following program and sample execution
of it show a program similar to what you studied in your first programming course.
We have used the symbol u to indicate where spaces are in the source code and
in the output since cout does not automatically output spaces or new lines as the
Python print statement does.

Iluctof . cpp
#includeu<iostream>
usingunamespaceustd ;

intumain()
{
uudoubleucelsius , ufahrenheit ;

uucoutu« uIEnteruCelsiusutemperature : u" ;
uucinu» ucelsius ;
uufahrenheitu=u9 . 0u/u5 . 0u*ucelsiusu+u32 . 0 ;
uucoutu« ucelsiusu« uludegreesuCelsiusuisu" ;
uucoutu« ufahrenheitu« u"udegreesuFahrenheit\n" ;
uureturnuO ;
}

EnteruCelsiusutemperature : u22 . 5
22 . 5udegreesuCelsiusuisu72 . 5udegreesuFahrenheit

If we had declared the celsius variable as an int , then the user could type in
only integer values. This would make the program less general so when declaring
variables you should ask yourself what are the possible values for this variable. If it
could possibly be a floating point value, use the double type, but if it will always
be an integer, use the int type.

When using cin to input multiple values, the user can type in any amount of
whitespace to separate the values . The input may be entered by typing two values
separated by one or more spaces or a tab, or by pressing the Return key after each
number is entered. As with Python, the input is not processed until the Return
key is pressed. The following is a complete example showing two values being input
with the same cin statement . We leave it as an exercise to show the output for this
program for a specific input .

I I input 1 . cpp
#include <iostream>
using namespace std ;
int mainO
{

double x , y ;
cout « " enter x and y : " ;
cin » x » y ;

8.6 Compi l ing

cout « " x = " « x « " and y = " « y « endl ;
cout « " x + y = " « x + y « endl ;
return 0 ;

}

271

The fact that inputing values using cin in C++ skips whitespace can lead to
some confusion when using it to input characters. It is certainly useful that it skips
spaces when reading numbers, but since it also does this with the char data type,
there is no way for a user to enter a space that will be stored in a char when
reading the char data type using cin. For example, if the user enters XuYuZ when
the following program is executed, the program outputs xyz, not XuY as you might
expect.

II input2 . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

char a , b , c ;

cin » a » b » c ;
cout « a « b « c ;
return 0 ;

1 8 . 6 1 Comp i l i ng

We have covered enough background material that you are now ready to start
writing your own simple C++ programs. We will now briefly discuss how to compile
programs on your computer. The three major operating systems in use today are
Microsoft 's Windows, U nix/Linux, and Mac OS X. Each of these operating systems
provides its own applications for editing and compiling programs. Microsoft sells
a full-featured version of their development environment currently known as Visual
Studio. It also provides a free, but limited, version known as Visual Studio Express.

272 Chapter 8 A C++ I ntroduction for Python Programmers

If you are using Microsoft Windows, you can download it from Microsoft's web site.
Even though it does not have all the capabilities of the full system, it should work
fine for all the C++ examples and exercises in this book. Apple provides its full
featured development environment , named Xcode, for free to anyone. It may have
come preinstalled on your Mac computer or you can download it from Apple's web
site (registration is required at the time of this writing, but it is free) . Unix refers
to a number of different operating systems. We will not go into the history of Unix
in this book, but realize that different companies sell slightly different versions of
Unix. In fact , Apple's Mac OS X is built on top of a Unix operating system. The
Linux operating system is a free clone of Unix. We will use the term Unix in this
book to refer to all Unix systems including Linux.

The graphical development environments for Visual Studio and Xcode change
over time so we will not go into the details of using these applications for writing
and compiling C++ code in this book. You may be able to figure out how to use
them on your own fairly easily or with a little help from your instructor. On most
Unix systems, the GNU g++ compiler is used for compiling C++ programs. There
are also commercial C++ compilers available for various Unix systems. The Mac
Xcode application is just a graphical front for the g++ compiler so you can use g++
from the Terminal application on a Mac. Since the command line usage of g++ has
not changed in years for simple programs, we will cover the basic usage of g++ for
compiling C++ programs on Unix systems.

The file extensions .cpp, .C , and .cc are commonly used for C++ programs. We
will use the .cpp extension in our examples in this book since it can be used easily
on all three major operating systems. For a single file named program.cpp that
does not use any additional libraries, the command g++ program . cpp -0 program
creates the executable file named program from the C++ source file program.cpp
assuming your program is syntactically correct . You may recall from our discussion
of compilation at the beginning of the chapter that there are multiple steps: prepro­
cessing, compiling, and linking. The g++ command we specified performs all three
of these steps.

Depending on the version of make on your Unix system, the command make
program might produce the same result . Remember that the program.cpp file must
contain a main function, and that is where the execution of the program file will
start . To execute your code, type . /program and press the Return key. The . /
preceding the name of the executable program is the safest way to ensure that the
operating systems executes the program in your current directory. Depending on
how your Unix account is set up, you may be able to type in just program to execute

8.6 Comp i l i ng 273

it , but we recommend you get in the habit of typing in . /program since this will
always work.

Just as with Python, it is good practice to split larger programs into a number
of smaller source files that are appropriately organized. As we discussed at the
beginning of this chapter, each file is compiled separately producing the machine
language code for the C++ code in that file . Using g++, each source file ending
with a .cpp extension can be compiled into an object file with a .0 extension by
using the - c flag for the g++ command; this corresponds to the preprocessing and
compilation step. If you leave off the - c flag, the g++ command attempts to perform
the preprocessing, compilation, and linking phases which is not what you want if
you have multiple source files.

Figure 8 .5 shows an example of compiling two source files with the main function
in the test�sort .cpp file. The last line is the linking step which checks that the
test�sort.o file contains one function named main and that each function called by
all the files appears exactly once in one of the .0 files. In this example, we have also
added the -g flag to the g++ command so it includes the symbol names; this allows
debuggers to provide information about the actual names of variables and functions
instead of just the address where they are stored.

g++ -g -c test_sort . cpp
g++ -g -c sort . cpp
g++ -g test_sort . o sort . o -0 test sort

Figure 8 . 5 : Compiling multiple source files

As with most repetitive tasks this process can be automated. The Unix operating
system provides the make command for recompiling the source files that have been
modified since the corresponding object file was last created and linking all the
object files. The make command checks for a file named Makefile or makefile that
describes how to create the executable from the source files. Figure 8 . 6 shows the
contents of a Makefile for use with the sort example in Figure 8 . 5 .

This book does not cover all the details of makefiles, but the basic idea is that
the lines with colons have the name of a file before the colon and the file names
after the colon indicate the files on which that file depends (Le . , if one of the files
after the colon changes, the file before the colon needs to be regenerated) . The line
following the line with the colon specifies how to generate the file before the colon
on the above line and must start with a tab character (Le. , you cannot just use
spaces to indent the line) . When you enter just make and press the Return key,
it builds the first item listed in the makefile (in this case, it builds the executable

274 Chapter 8 A C++ I ntroduction for Python Programmers

test_sort : test_sort . o sort . o
g++ -g test_sort . o sort . o -0 test_sort

test_sort . o : test_sort . cpp
g++ -g -c test_sort . cpp

sort . o : sort . cpp
g++ -g -c sort . cpp

clean :
Ibin/rm -rf test_sort * . 0

Figure 8 .6 : Makefile for test�sort

test�sort) . You can also tell it to build other items by using the name of the
item with the make command (i .e. , you can enter make linear _sort . 0 and it will
execute the command to create the file named linear_sort .o) . A clean target that
deletes all the object and executable files is commonly added so you can type the
make clean command to delete all of them and then rebuild the entire executable
using all the source files. You can find additional details on makefiles in most
introductory Unix books or on the Internet . If you are using a non-Unix system,
your integrated development environment (IDE) most likely has a build system to
automate compiling your programs.

1 8 . 7 1 Express ions a n d Operator Precedence

Expressions in C++ are similar to those in Python, but C++ does not support
assignment of all data types and uses different Boolean operators. The C++
assignment statement 's syntax is the same as the Python assignment statement
except that the tuple assignment syntax is not supported (and the data type for
the expression on the right-hand side must be compatible with the data type of the
variable it is assigned to on the left-hand side) . The C++ language requires that only
one variable appear on the left-hand side of the assignment operator. To accomplish
the C++ equivalent of the Python statement x , y = y , x, it is necessary to use a
temporary variable. The following C++ program demonstrates this.

II swap . cpp
#include <iostream>
using namespace std ;

8.7 Expressions and Operator Precedence

int mainO
{

}

int x = 3 , Y 5 , temp ;
cout « x « " " « y « endl ;
temp = x ;
x = y ;
y = temp ;
cout « x « " " « y « endl ;
return 0 ;

The output of this program is

275

In the preceding example, note that all variables must be declared and that
variables may be assigned an initial value in the declaration statement. C++ does
support assignments such as x = y = z. As with Python, it is right associative; y

is assigned the value of z and then x is assigned the value of y.

Forgetting to assign a variable before it is used in an expression usually produces
strange results. The following program compiles and executes without error but
produces undefined results. One time it might output 134514708 and another time
it might output -3456782.

II uninit . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

int x , y ;

y = x ;
cout « y « endl ;
return 0 ;

Standard locally declared variables inside a function are known as automatic
variables. Automatic variables are assigned a memory location when the function
starts but are not initialized with a value. Until you assign a value to them, they
hold the value corresponding to whatever bits are in the memory location when the
function starts. This is why you can, but may not , get different results each time
you run the prograIll in the preceding example. This programming error does not

276 Chapter 8 A C++ I ntroduction for Python Programmers

go undetected in Python, but does in C++. In Python, a NameError exception will
be generated if the first line of code is y = x since the name x does not exist .

The supported operators in C++ are essentially the same as Python's operators
with some minor syntax differences as mentioned previously (e.g. , && for and, I I for
or, and ! for not) . The operator precedence rules are also the same although C++
has additional operators that Python does not have. Two of the additional operators
that C++ provides are the increment and decrement operators. There are both
prefix and postfix versions of these operators. The operators can be used to add one
to or subtract one from an integer variable. The increment operator that adds one
is the ++ operator and the decrement operator is the -- operator . These operators
can be used with or without an assignment statement . The following example
demonstrates the increment operator. The decrement operator works exactly the
same except that it subtracts one. Notice that the difference betwen the prefix
version and the postfix version matters when it is used as a part of an assignment
statement . Many C++ programmers avoid using the increment and decrement
operators as part of an assignment statement to make the code clearer.

II increment . cpp
#include <iostream>
using namespace std ;
int main()
{

}

int a , b , c , d ;
a = 2 ;
b = 5 ;
a++ ; I I increments a t o 3
++a ; II increments a to 4
c = ++b ; II increments b to 6 and then assigns 6 to c
d = c++ ; II assigns 6 to d and then increments c to 7
cout « a « " " « b « " " « c « " " « d « endl ;
return 0 ;

All names in Python are actually references to memory locations. Every C++
variable is associated with a memory location that holds the actual value. Unlike
Python where the assignment of one variable to another ends up with both referring
to the same location, the assignment operator in C++ copies the data from the
memory location(s) for the variable on the right side of the assignment statement
to the memory location(s) for the variable on the left side. This difference between
C++ and Python is not noticeable when only Python immutable types are used. The
corresponding C++ functionality to Python references are C++ pointer variables;
references are essentially pointers without the pointer notation. The details of the

8 .8 Decision Statements 277

memory usage and allocation for automatic variables, references, and pointers are
covered in Chapter 10 .

1 8 . 8 1 Decis ion Statements

C++ supports the same basic decision statement , namely the if statement , as
Python. There are some syntax differences but the semantics are the same. C++
uses the two words else if instead of the Python version elif . C++ also requires
that parentheses be placed around the Boolean expression whereas Python does not.
Remember that the braces {} are used to mark blocks of code and are thus used
to indicate which code should be executed when the Boolean expression of the if
statement is true. One exception in C++ is that if only one statement is to be
executed when the if statement is true, then the braces are unnecessary. This can
lead to confusing errors if a second statement is later added; many programmers
always use braces to avoid this problem. The following example demonstrates this
problem.

I I ifi . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

int x = 5 , Y = 3 ;

I I incorrect example : misleading indentation
if ex < y)

cout « "x is less " ;
cout « "than y\n" ;

cout « "the end\n" ;
return 0 ;

The output of this program is

I than y
the end

In this case, the indentation is misleading and the line cout « " than y\n" ;
is executed even if the Boolean expression is false. Remember that in C++, the
indentation does not matter. To write the above program correctly requires the use
of braces and is as follows:

218 Chapter 8 A C++ I ntroduction for Python Programmers

II if2 . cpp
#include <iostream>
using namespace std ;

int mainO
{

int x = 5 , Y 3 ;

if (x < y) {
cout « "x is less " ;
cout « "than y\n" ;

}

}
cout « "the end\n" ;
return 0 ;

The output of this program is

I the end

The location. of the beginning brace is not standardized. Some programmers
prefer to put it on the same line as the if statement and others prefer to put it on
the line below. Just about everyone agrees that the ending brace should be on its
own line and should line up with the if statement or the { if the brace is on its own
line. Even when the beginning brace for an if statement and other C++ statements
is placed on the same line as the statement , many programmers place the beginning
brace for a function on its own line as we did with the beginning brace for the main
function. Most employers pick one technique and require that their programmers
follow the style for consistency and ease of readability. Below is the same example
with the brace on its own line.

/ / if3 . cpp
#include <iostream>
using namespace std ;

int maine)
{

}

int x = 5 , Y = 3 ;

if (x < y)
{

cout « " x is less
cout « "than y\n" ;

}
cout « "the end" ;
return 0 ;

II . ,

8.8 Decision Statements 279

Even though indentation does not matter, C++ programmers generally follow
the same indentation rules as Python programmers for readability. Python allows
any amount of indentation to indicate a new block of code, but most Python
programmers use exactly four spaces per indentation level. C++ seems to be less
standardized and programmers use two, three, four, or eight spaces, although eight
spaces is often entered as a tab. The examples in this text use two spaces since the
braces provide additional visual cues to denote the blocks of code. Fewer spaces also
means that nested blocks can have longer lines without going past the 80th column
(most programmers limit the length of their lines to the 80th column) .

If the same indentation rules as Python are not followed in C++, the indentation
may be misleading with regard to the semantics of nested if/else statements. In
Python, the indentation clearly indicates which if statement an elif or else
statement matches up with. The rule for matching if and else statements in C++
is essentially the sarne; you just need to remember that the braces mark blocks of
code and th0-t a single statement after an if or else statement can be its own block
of code even if there are not braces. One way to state the rule is that the else
statement goes with the closest if statement above it that is at the same level of
braces. The following example is a code fragment; it is not a complete program
and will not compile since it does not contain a main function and all the necessary
statements for a complete program, but it demonstrates a programming concept
without all the extra code. Which if statement does each else statement match
up with?

if (x < y)
if (y < z)

Gout « " a" ;
else

Gout « "b" ;

if (x < y) {
if (y < z)
Gout « "a" ;

}
else

Gout « "b" ;

The first else statement goes with the if (y < z) statement two lines above;
note that it is the closest if statement above it at the same level of braces. The
second else statement goes with the if (x < y) statement four lines above it for
the same reason. The if (y < z) statement two lines above is at a different level of
braces. This example demonstrates another reason to always use braces: it makes
it easier to match the else and if statements.

280 Chapter 8 A C++ I ntroduction for Python Programmers

The following example shows nested if statements along with else if state­
ments. Based on your knowledge of Python and the material presented here, the
semantics of the code should be clear (and the program does what the output
indicates it does) . Note that in C++, it must be written as else if , not elif
as it is in Python.

II grades . cpp
#include <iostream>
using namespace std ;

int main e)
{

double grade ;

cout « "Enter your grade average (i . e . , 93 . 2) : I I ;

}

cin » grade ;

if (grade >= 90 . 0) {
if (grade > 92 . 0) {

cout « "Your grade
}
else {

cout « "Your grade
}

}

is

is

else if (grade >= 80 . 0) {
if (grade > 87 . 0) {

an A\n" ;

an A-\n" ;

cout « " Your grade is a B+\n" ;
}
else if (grade > 82 . 0) {

cout « "Your grade is a B\n" ;
}
else {

cout « "Your grade is a B- " ;
}

}
return 0 ;

The previous example used nested if statements although an equivalent version
could be written with an if statement followed by four else if statements that are
not nested. We chose the nested version to demonstrate both the else if statement
and nested statements.

Python uses the keywords and, or, and not as Boolean operators. C++ uses the
symbols &&, I I , and ! for and, or, and not , respectively. The C++ equivalent of the

8 . 9 Type Conversions 281

Python statement if (x < 3) and not (y > 4) is if « x < 3) && ! (y > 4)) .
More recent C++ compilers also support the use of and, or, and not in addition to
using &&, I I , and ! .

Unlike Python, C++ allows assignment statements in the test expression for
the if statement and for looping statements. This means the C++ compiler will
not mark if (x = 0) as an error even though it is probably not what you meant .
This if statement creates the side effect of assigning zero to x and then that result
is used as the Boolean expression. The result of an assignment statement is the
value that is assigned so it is equivalent to x = 0 ; if (0) . That is why assignment
statements can be chained (for example, x = y = 0) . Because of this, the test if
(x = 0) will always result in x being assigned the value of zero and the Boolean
expression evaluating to false. As Python does, C++ considers any non-zero value
to be true and zero to be false. The statement if (x = 10) will assign 10 to x
and the test will always evaluate to true. This type of mistake can be extremely
difficult to debug. When using a constant , some programmers write if (0 == x) .
When writing it this way, forgetting one of the equal signs will result in an error.
This does not help when you want to write a statement such as if (x == y) and
mistakenly write if (x = y) .

C++ also supports the switch decision statement but we do not cover it in
this section since anything that can be written with a switch statement can also
be written as if/else if statements. The switch statement is discussed in the
optional subsection 8 . 1 7 . 1 .

1 8 . 9 1 Type Convers ions

In Python, many type conversions are implicit . In the following Python code,
during the evaluation of b + c , the 3 obtained from b is implicitly converted to
the floating point value 3.0 since the operand c is a floating point value. The
value of b remains the integer 3. In the statement d = float (b) , the 3 stored in
b is explicitly converted to 3.0 and stored in d as a floating point value. Again, b
remains the integer 3. In the statement e = int (c) , the value of c (5.5) is explicitly
converted to 5 and stored in e as an integer. When a value is converted to an integer,
its decimal portion is chopped off instead of being rounded.

I
b

: 3

c = 2 . 5
c = b + c
d = float (b)
e = int (c)

282 Chapter 8 A C++ I ntroduction for Python Programmers

c++ also supports implicit type conversion within expressions and explicit
conversions. The following C++ example corresponds to the preceding Python
example. If you remove the explicit conversion for the assignment to d and write
it as d = b ; , most compilers will not produce an error, but will produce a warning
indicating the line contains a type conversion. C++ uses the same rules as Python
in that the decimal portion is chopped off when a value is converted from a floating
point type to an integer type.

int b, e ;
double c , d ;
b = 3 ;
c = 2 . 5 ;
c = b + c ; II c holds 5 . 5
d = double (b) ; II d holds 3 . 0
e = int (c) ; II e holds 5 ; this could also be written as e = (int) c ;

Although the syntax of specifying the data type name and putting the vari­
able/expression in parentheses works for type conversions in Python and C++,
newer compilers support a different syntax that is preferred for new C++ code.
The following example demonstrates this syntax with the keyword static_cast :

int b , e ;
double c , d ;
b = 3 ;
c = 2 . 5 ;
c = b + c ; II c holds 5 . 5
d = static cast <double> (b) ; II d holds 3 . 0
e = static_cast <int> (c) ; II e holds 5

1 8 . 10 I Loop i ng Statements

C++ supports three looping statements: for, while, and do while. The while
loop is basically the same as the Python while statement . The while loop is
classified as a pretest loop since the Boolean expression is tested before the loop
body. The syntax differences match the differences between the Python and C++
if statements. In a C++ while statement , parentheses must be placed around the
Boolean expression, the C++ Boolean operators && , I I , and ! are used (again, new
compilers also support and, or, and not) , and the braces, {}, are used to denote
the block of code that is to be repeated instead of indentation. As is the case with
the C++ if statement , if the loop body is only one line of code, the braces are
not necessary, but many programmers still use the braces. The following is a code

8. 10 Looping Statements 283

fragment containing a sampe C++ while statement . All the loop examples in this
section output 0 through 9.

int i = 0 ;
while (i < 10) {

cout « i « endl ;
i += 1 ;

}

C++ supports a do while statement that does not have a Python equivalent .
Unlike the while loop, the body of a do while statement is always executed at
least once. As the syntax indicates, the loop test is not done until the loop body
executes and thus the do while loop is classified as a posttest loop. The syntax for
it is

do {
II loop body

} while « Boolean-expression» ;

The do while statement does not require the braces to mark the beginning and
ending of the loop body if there is only one statement in the loop body, but does
if there is more than one statement . The semantics of the statement are that the
loop body is executed and then the Boolean expression is tested. If it is true, the
loop body is executed again, the Boolean expression tested again, and so on. The
equivalent do while statement to the above while example is

int i = 0 ;
do {

cout « i « endl ;
i += 1 ;

} while (i < 10) ;

The C++ for looping statement is significantly different from the Python for
statement . The Python for statement performs iteration over a sequence of items,
but the C++ for statement is a more generic loop statement that is effectively
equivalent to a while loop. The C++ for statement is best explained by looking
at an example that also outputs 0 through 9. Figure 8 . 7 shows a flowchart diagram
for it .

int i ;
for (i=O ; i<10 ; ++i) {

cout « i « endl ;
}

284 Chapter 8 A C++ I ntroduction for Python Programmers

�-- False loop ends

True

Figure 8 .7 : Flowchart of C++ for statement example

Inside the parentheses of the f or statement are three statements separated by
two semicolons. The first statement , i=Q ; in this case, is typically used as an
initialization statement and is only executed once by the for statement. After the
initialization statement is executed, the second statement , which is treated as a
Boolean expression, is executed. If it is true, the loop body is executed and then the
third statement , typically known as the increment or update action, is executed. In
our example, the increment statement can be either the postfix version i ++ or the
prefix version ++i ; we will use the prefix version as some uses of the C++ Standard
Template Library use the prefix version. After the increment statement is executed,
the second statement is executed again. If it is true, the loop body is executed
again, followed by the increment statement , Boolean expression, and so on.

As you should be able to tell, any for loop can be rewritten as a while loop.
Look at the flowchart diagram again and compare the while loop and for loop code
fragments in this section if you have trouble seeing the correspondence between the
location of the statements in the for loop and the while loop. C++ for statements
can be more complicated with multiple initialization statements separated by com­
mas and multiple increment statements although we will not demonstrate these in

8 . 1 1 Arrays 285

this book; some programmers think that while statements should be used for these
more complicated versions.

The C++ for loop also supports declaring the loop iteration variable inside
the statement . If you do this, the variable can be accessed only inside the loop
body. After the loop body, the variable no longer exists . The following example
demonstrates this.

for (int i=O ; i<10 ; ++i) {
cout « i « endl ;

}
II you cannot access the variable i here

If you already have a variable declared with the same name as the variable
you define as the loop iteration variable inside a for loop, the previously declared
variable is not accessible inside the loop body, but is accessible after the loop body
and retains the value it had before the loop started execution. Because this can
lead to confusion, we do not recommend you use the syntax of declaring a variable
inside the f or statement . This issue is part of topics known as scope and lifetime;
the details of the scope and lifetime of variables in C++ are covered in section 8 . 1 5 .

As with the C++ if , while, and do while statements, the braces are not
necessary if the loop body consists of only one statement, but many programmers
always use the braces. As Python does, C++ also supports the break statement that
causes a loop to terminate. Just as is suggested with Python, the break statement
should only be used when it increases readability over a loop written without a
break statement .

\ 8 . 1 1 \ Arrays

Python has lists and tuples that allow indexed access to groups of data. Python
lists also support methods for sorting, finding elements, and many other useful
algorithms. C++ arrays support indexed operation but are much lower level and
do not have all the flexibility of Python lists. C++ arrays must hold items that are
all the same type and do not support slices or using negative indices to access items
from the end of the array.

\ 8 . 1 1 . 1 \ S ingle-D imension Arrays

C++ arrays are declared with brackets and accessed using brackets . As with Python,
the first index is 0 and the last index is one less than the size. The code fragment
below declares an array and sets a value for each element in the array. The array

286 Chapter 8 A C++ Introduction for Python Programmers

is declared with a fixed size of 10, is indexed using 0 through 9, and can store only
integers.

int i , a [10] ;

for (i=O ; i<10 ; ++i) {
a [i] = i ;

}

Most recent C and C++ compilers support the use of a variable to specify the
size when defining arrays known as variable length automatic arrays (this is part of
the update to the C language made in the late 1990s known as C99) . The other
technique to delay specifying the size of an array until the program is run uses
pointers and dynamic memory; it is covered in section 10 . 3 . The following code
fragment demonstrates variable length automatic arrays.

int i , n ;

cout « "Enter size :
cin » n ;

int a [n] ;
for (i=O ; i<n ; ++i) {

a [i] = i ;
}

Unlike Python, no index range checking is done for any C++ array. If a program
attempts to access beyond the boundaries of an array, you can get undefined results ,
the program may crash, or it may appear to work correctly. We will discuss these
memory errors in more detail in Chapter 10 . On many operating systems when
a C++ program crashes, it does not show you the stack trace (the line at which
the program crashed and the sequence of function calls the program executed to
reach that point) as Python does. Most Unix systems create a core file containing
information about the execution and crash location. On Unix systems, the gdb
debugger program can display the stack trace information stored in the core file .
The command is gdb <executable-filename> core and then enter bt (short for
"backtrace") and press the Return key. Most integrated development environments
(IDEs) provide a compiler and debugging environment that provides a stack trace
when a program crashes.

C++ does support initialization of arrays in the declaration statement using
the following syntax: int a [5] = 0 , 0 , 0 , 0 , 0 ; . C++ does not support direct
assignment of array variables. To accomplish this , each individual element of the
array must be assigned as the code fragment below shows:

8 . 1 1 Arrays

int i , a [5] , b [5] ;

a [O] = 0 ; a [1] = 1 ; a [2] = 2 ; a [3] = 3 ; a [4] = 4 ;
I I b = a ; cannot be used
for (i=O ; i<5 ; ++i) {

b [i] = a [i] ;
}

1 8 . 1 1 . 2 1 Multi-D imensiona l Arrays

287

c++ supports multi-dimensional arrays with no limit on the number of dimensions
other than the amount of memory the system supports. The syntax for declaring
multi-dimensional arrays is similar to single-dimensional arrays except that addi­
tional brackets are used for each dimension. The code fragment that follows declares
a three-dimensional array that contains a total of 120 elements and initializes each
element to zero.

double a [4] [10] [3] ;
int i , j , k ;

for (i=O ; i<4 ; ++i) {

}

for (j=O ; j < 10 ; ++j) {
for (k=O ; k<3 ; ++k) {

a [i] [j] [k] = 0 . 0 ;
}

}

1 8 . 1 1 . 3 1 Arrays of Characters

Arrays of characters (the char type) can be used in C++ as they are used in the C
language to represent strings, but when programming in C++ you usually want to
use the built-in C++ string class covered in section 9 . 2 . When using raw arrays
of characters to represent a string, a trailing byte of zero is used to indicate the end
of the string, so the array size needs to be one larger than the maximum number of
characters you are storing. The byte zero is indicated by the single character ' \0 ' .
Note that the single quotation mark is used to denote a single character (which is of
the char type) while the double quotation mark is used to denote a string. Since a
few of the C++ library functions use C-style strings (arrays of characters) instead of
the C++ string class, we will cover the very basics of C-style strings. The following
shows the use of a C-style string, but it is an extremely bad example because it

288 Chapter 8 A C++ I ntroduction for Python Programmers

allows a buffer overflow exploit . It allows you to type in your name and then says
"hello" to you.

II buffer . cpp
#include <iostream>
using namespace std ;

int main()
{

}

char c [20] ;

cout « " enter your first name : " ;
II this code is a security risk
II a buffer overflow occurs if the user enters
II more than 19 characters
cin » c ;
cout « "Hello II « c « endl ;

If you enter Dave, the program stores the characters D, a, v, e , and \0 in positions
zero through four of the array. When the code outputs the variable c, it starts at the
beginning of the array and outputs characters until it reaches the \0 that indicates
the end of the string. If the user types in more than 19 characters, the data will
go past the end of the array, allowing the user to write data to memory that your
program has not allocated for data. Clever computer crackers can in some cases
use this situation to enter executable code, allowing them to steal private data that
you may have entered in the program such as passwords or financial information.
This is another reason to use the C++ string class instead of C-style strings. The
remaining details and the C functions for manipulating strings are not covered in
this text since the C++ string class is recommended.

1 8 . 12 1 Funct ion Deta i ls

Functions are used in Python to split code into smaller subproblems and to avoid
rewriting the same code multiple times. Functions are used for the same reasons in
C++, but there are more issues to be concerned with regarding functions in C++
than there are in Python. As we have already seen, all C++ executable statements
must occur inside a function and each C++ executable program must contain exactly
one function named main. We will start our discussion of functions in C++ with
the terminology that you do not have to concern yourself with in Python.

8 .12 Function Deta i ls 289

1 8 . 12 . 1 1 Declarations, Defi n it ions, a nd Prototypes

Unlike Python, all C++ code, with the exception of definitions of non-local variables
and classes and declarations of variables or functions, must occur inside a function.
To understand what this means, we need to understand the difference between
a declaration and a definition. A simple way to distinguish between the two is to
remember that a definition causes memory storage to be allocated while a declaration
tells the compiler that a name exists and what it is (a variable of a specific type,
a class, or a function with parameters) . Variables, classes, and functions can be
declared multiple times, but they must be defined exactly once. What is commonly
referred to as a variable declaration is technically a variable definition. Listing the
variables and their types at the beginning of a function is correctly called a variable
definition even though programmers commonly refer to this as variable declarations.
Definitions also serve as declarations since they tell the compiler about a name, but
declarations are not definitions.

Now that we have stated the difference between a declaration and a definition,
let 's look at a simple example of a function declaration and a function definition.

#include <iostream>
using namespace std ;

II this is a function declaration
int main 0 ;

II this is a function definition
int main O
{

}

II this is a variable definition which is also a declaration
int x ;

x = 42 ;
cout « "x = " « x « endl ;
return 0 ;

All C++ functions must have a return type (it is an int for the main function) . A
function declaration indicates the return type, the name, and any parameters inside
the parentheses after the name. A function declaration ends with a semicolon and
does not contain the body of the function. Function declarations are also referred to
as function prototypes. A function declaration/prototype tells the compiler enough
information about the function so the compiler knows it exists and can determine if
you use it correctly if you call it . A function definition contains the same information

290 Chapter 8 A C++ I ntroduction for Python Programmers

as the declaration, but instead of the terminating semicolon, the braces are used to
state the body of the function. In our earlier examples, we did not use a separate
declaration of the main function as we did in the most recent example. In those
cases, the definition of the main function also served as a declaration of it . Unless
other code calls a function, we generally do not write a separate declaration.

In addition to the data types listed in section 8 . 4 and the user-defined data
types covered in section 9 . 1 , C++ supports a void return type. This is used when
a function does not return a value. Functions with a void return type do not require
a return statement , but may include a return statement. Most C++ compilers
will produce a warning if a non-void function does not return a value , unlike Python
which returns None if your function does not explicitly return a value. As with
Python, C++ functions can have more than one return statement, and as soon as
a return statement is executed, no other code in the function is executed and control
transfers back to the statement after the point of call. Unlike with Python, only
one value can be returned by a C++ function. This is not a significant limitation
of C++ and can be solved by encapsulating the multiple values in a single class
and returning an instance of that class or by using pass by reference (covered in
subsection 8 . 1 2 . 3) .

It is often necessary to write a function prototype so that your code will compile.
Most compilers require a prototype if you want to call a function before it is declared.
The reason a prototype is required when a function that has not been declared yet is
called is that the compiler must be able to determine that the function is called with
the correct number of parameters and that the types of those parameters are correct .
Recall from your Python studies that the parameters in the function declaration or
definition are known as formal parameters and the expressions or variables used
when you call the function are known as actual parameters. The following example
shows the problem of calling a function before it has been declared or defined.

II this example will not compile
int main O
{

}

double a=2 . 5 , b=3 . 0 , c ;
I I the compiler has not yet seen the f function
II so it cannot determine if f is called correctly
c = f (a , b) ;

double f (double x , double y)
{

return x * x + 2 * x * y ;
}

8 . 1 2 Function Deta i ls 291

Most compilers will give an error for the line c = f (a , b) stating that f was
not declared. There are two ways to solve this problem. In this case, the simplest
method is to write the f function above the main function. In this case, the definition
of f also serves as its declaration. Another option is to write a prototype for the f
function above the main function as the following example shows.

double f (double x , double y) ;

II you do not need to list the formal parameter names in the prototype
II this example also shows you that you can declare a function multiple
II times even though you generally do not do this
double f (double , double) ;

int mainO
{

}

double a=2 . 5 , b=3 . 0 , c ;

I I the prototype allows the compiler t o determine
II that f is called correctly
c = f (a , b) ;

double f (double x , double y)
{

return x * x + 2 * x * y ;
}

The prototype for the function f specifies that its return type is a double value
and that it takes two parameters each of which is a double value. As the commented
lines in the example show, you do not have to specify the name of the formal
parameters but you may if you wish. Most programmers do specify the names of
the formal parameters since the names of the parameters often indicate what the
parameters represent . It is important to note that a semicolon is required after a
prototype, but when defining the function you do not put a semicolon after the
right parenthesis. Also note that the data type name must be placed in front of
each formal parameter; it is not correct to write double f (double x , y) in either
the prototype or the actual implementation of the function.

A common rnistake beginning C++ programmers make is to also declare the
formal parameters as local variables as the following code fragment does. This
is incorrect since the local variables prevent the formal parameters from being
accessible. Your C++ compiler will likely generate a warning indicating the variables
shadow a parameter. Some compilers may compile the program while others will
indicate this is an error and refuse to compile the program.

292 Chapter 8 A C++ I ntroduction for Python Programmers

II buffer . cpp
#include <iostream>
using namespace std ;

int main()
{

char c [20] ;

cout « " enter your first name : " ;
II this code is a security risk
II a buffer overflow occurs if the user enters
II more than 19 characters
cin » c ;
cout « "Hello " « c « endl ;

}

You have probably realized by now that the header files you include contain the
declarations of items your code is using. The iostream header file contains the
declarations of cout and cin. The definitions of these items are not included in
header files . In these cases, their definitions are in a library of machine code that
the linker automatically links with as it creates your executable code. We discuss
how to write your own header files in section 8 . 13 .

1 8 . 12 .2 1 Pass by Va l ue

The default mechanism for parameter passing in C++ is pass by value. Pass-by­
value causes a separate copy of the data value for each parameter to be made. Since
a completely separate copy is used, any changes to the formal parameters in the
function are not reflected in the actual parameters. This allows you to effectively
treat the formal parameters as additional local variables since changes made to them
do not directly affect other parts of the program. As with Python, it does not matter
whether the names of the formal and actual parameters match. The next example
demonstrates this .

II value . cpp
#include <iostream>
using namespace std ;

void f (int a , int b) II a and b are the formal parameters
{

cout « a « " " « b « endl ;
a += 3 ;
b += 5 ;
cout « a « " " « b « endl ;

}

int main O
{

int x = 1 , Y = 2 ;

8 . 12 Function Deta i ls

f (x , y) ; II x and y are the actual parameters
cout « x « " " « y « endl ;

}

The output of this program is

1 8 . 12 . 3 1 Pass by Reference

293

c++ also supports a second parameter passing mechanism known as pass by ref­
erence. Instead of Inaking a copy of the data value, a reference (the address in
memory) to the data is passed. Because of this , any changes made to the formal
parameters are reflected in the actual parameters. In Python if you pass a mutable
data type (a list , dictionary, or class instance) to a function and modify it inside the
function, the change is reflected in the actual parameter, but if you assign a new
instance to the formal parameter, the change is not reflected in the actual parameter.
With pass by reference in C++, any change , including assigning a new value , to the
formal parameter is reflected in the actual parameter. Pass by reference is indicated
by putting an ampersand (&) in front of the formal parameter (but not the actual
parameter) . Placing an ampersand in front of the actual parameter has a different
effect (see section 10 . 2) . The example below is similar to the previous example but
one parameter is passed by reference and results in different output .

II reference . cpp
#include <iostream>
using namespace std ;

void f eint a , int &b) II a and b are the formal parameters
{

}

cout « a « " " « b « endl ;
a += 3 ;
b += 5 ;
cout « a « " " « b « endl ;

294

int main O
{

Chapter 8 A C++ I ntroduction for Python Programmers

int x = 1 , Y = 2 ;

}

f (x , y) ; II x and y are the actual parameters
cout « x « II II « y « endl ;

The output of this program is

The corresponding actual parameter for any formal parameter that uses pass
by reference must be a variable, not an expression. In the example, we could not
write f (2 , 4) ; . Making a copy of the 2 and storing it in the location for the formal
parameter a is fine, but the problem is that if we change the formal parameter b,
we do not have a corresponding actual parameter to make the change to (since it is
a constant) .

1 8 . 12 .4 1 Passi ng Arrays as Para meters

c++ automatically passes arrays by reference for efficiency reasons; you do not use
the & to designate that the array contents are passed by reference. Instead of making
a copy of the array, a copy of the starting memory address of the array is passed.
Because of this, any changes made to the contents of the array by the function will
be reflected in the array passed to the function. This is effectively the same as
passing a Python mutable type (e.g. , a Python list) to a function. You can change
only the contents of the array, not the memory location that the array uses. When
we cover pointers and dynamic memory in Chapter 1 0 the details and ramifications
of this will be clearer.

You do not need to specify the exact size of the array in the formal parameter for
the array, but the function does need to be careful not to access beyond the array
size. A common technique is to pass an additional parameter that specifies the size
of the array. The following code example demonstrates this with an implementation
of selection sort . The square brackets after the formal parameter (int a []) indicate
a single-dimensional array without a specified size is being passed to it . You can also
specify the size if you wish but it will be ignored. The second parameter specifies
the size of that array. Since arrays are not passed by value, the modification to the
array inside the selection_sort function affects the actual parameter passed. The
output of the program (not shown) is the array in sorted order.

II selection . cpp
#include <iostream>
using namespace std ;

8 . 12 Function Deta i ls

void selection_sort (int a [] , int size)
{

}

int i , j , min_pos , temp ;

for (i=O ; i<size-l ; ++i) {
min_pos = i ;

}

for (j =i+l ; j <size ; ++j) {
if (a [j] < a [min_pos]) {

min_pos = j ;
}

}
temp = a [i] ;
a [i] = a [min_pos] ;
a [min_pos] = temp ;

int main O
{

}

int i ;
int a [5] = {7 , 6 , 4 , 2 , 3} ;
int b [10] = {3 , 0 , 5 , 7 , 4 , 6 , 8 , 1 , 9 , 2} ;

selection_sort (a , 5) ;
selection_sort (b , 10) ;
for (i=O ; i<5 ; ++i) {

cout « a [i] « " " ;
}
cout « endl ;
for (i =O ; i<10 ; ++i) {

cout « b [i] « " " ;
}
cout « endl ;
return 0 ;

295

Multi-dimensional arrays can also be passed to functions. The size of all the
dimensions except the first must be specified. In C++ , multi-dimensionsal arrays
are stored in row major order. For an array declared as int b [2] [3] , the order
the values are stored in memory is b [0] [0] , b [0] [1] , b [0] [2] , b [1] [0] , b [1] [1] ,
b [1] [2] . In order to calculate the address of a specified position in the array, we

296 Chapter 8 A C++ Introduction for Python Programmers

must know all the dimensions except the first . In the previous example, b [i] [j] is
at offset i*3*4+j *4 from the start of the array. Remember that we are assuming
that integers take four bytes. To move to row i we must move past i *3*4 bytes,
and then to the corresponding spot j in that row we must move past j *4 bytes.
The following function prototype accepts a three-dimensional array in which the size
of the last two dimensions are 10 and 20, respectively: void f (int b [] [10] [20] ,

int size) ; . Since the first dimension is not needed to calculate the address of a
position in the array, it does not need to be specified in the formal parameter array
declaration; the size parameter is used to indicate the size of the first dimension so
the code in the function knows how large the array passed as the actual parameter
I S .

1 8 . 12 .5 1 const Para meters

c++ supports marking parameters const which means that the function cannot
change the parameter. This is useful for having the compiler check if you accidently
try to change a parameter when there is no reason your code should try to change it .
If your code does change a parameter marked const , the code will not compile and
will generate an error indicating the reason. The following example demonstrates
the syntax:

void f (const int a, int b)
{

}

a = 2 ; II this will generate a compiler error
b = 2 ; II this is fine

The const designation can also be used with parameters passed by reference.
At first this might seem to be a contradiction since pass by reference is used when
we want to modify a parameter. Recall that pass by value makes a copy of the data
being passed. Making a copy of values that do not require much memory such as
an int or a double is not a problem, but copying a variable that is hundreds or
thousands of bytes takes time and requires a significant amount of extra memory.
Pass by reference passes the starting address of the variable as a reference to the
existing data without making a copy of the data; this requires only four bytes on
32-bit systems no matter what the actual size of the data value is. When you want
to pass a large data structure, but do not want a function to change it, you can pass
it by reference with the const designation. The following example assumes we have
a class named LargeType defined:

void f (const LargeType &big)
{

8 . 12 Function Deta i ls

II any changes to parameter big will generate a compiler error

}

297

This is one reason Python treats everything as a reference. Assigning, passing,
or returning any object only requires the reference (and possibly the reference count)
to be changed instead of copying the potentially large amounts of data in an object
such as a list or dictionary.

1 8 . 12 .6 1 Defau lt Parameters

c++ supports default parameters to functions similarly to the way Python does.
Default parameters allow a function or method to be called with fewer actual
parameters than formal parameters; default values defined in the function/method
declaration are substituted for the missing actual parameters. The following example
shows the use of default parameters.

void f eint a, int b , int c=2 , int d=3)
{

II do something with the parameters
}

int main O
{

}

f (O , 1) ; II equivalent to f (O , 1 , 2 , 3) ;
f (4 , 5 , 6) ; II equivalent to f (4 , 5 , 6 , 3) ;
f (4 , 5 , 6 , 7) ; II no default values used

The example has two parameters that must always be specified and two default
parameters. This allows the function to be called with two, three, or four parame­
ters . As the comments state, the default values for the parameters are used when
necessary. As with Python, the default parameters must be the last parameters so
the compiler can match up the actual and formal parameters based on the order.
Default values are specified only in the declaration of the function, not the definition
of the function. The exception is that if the definition is also the declaration, then
you need to list them as the previous example shows. The following example shows
the use of default parameters when there is both a declaration and a definition. We
will show another example of default parameters with header files in section 8 . 13 .

298 Chapter 8 A C++ I ntroduction for Python Programmers

double f (double x=O , double y=O) ;

double f (double x , double y)
{

return x * x + 2 * x * y ;
}

int mainO
{

double x=2 . 5 , y=3 . 0 , z ;

z = f (x , y) ;
}

Passing an arbitrary number of parameters as you can do in Python with *args
is possible, but is more complicated in C++ and beyond the scope of this book.

1 8 . 13 1 Header F i l es a nd I n l i ne Fu nct ions

The purpose of header files i s to declare functions, classes (classes are covered in
section 9 . 1) , and non-local variables so that they can be used in other C++ source
files . We have included the iostream header file in our examples and now we will see
how to write our own header files. We will use our sorting example to demonstrate
them. We will start with a header file declaring two different sorting functions.

II sort . h
#ifndef _ _ SORT H
#define SORT __ H

void selection_sort (int a [] , int size) ;
void merge_sort (int a [] , int size) ;

#endif

The first thing to notice is that we have added some new preprocessor commands;
recall that preprocessor commands start with a pound sign (#) . The ifndef line
checks if the symbol __ SORT __ H has been defined. If it has not , the next line defines
the symbol __ SORT __ H and then we have the function declarations. If the symbol was
already defined, none of the code between the #ifndef and #endif line is copied
when we include this file . Using these preprocessor commands is the standard
way to prevent your header file from being included twice. Including a header file
that contains only declarations does not produce errors, but will slow down the
compilation since the compiler has more lines of code to process. Including a header

8 . 13 Header F i les and I n l i ne Functions 299

file that contains definitions (as header files for classes do) will cause a problem since
we can have only one definition of a name.

While it is unlikely one file would directly include the file twice, a header file
often includes other header files. So if your header file included the file <cmath>
and an implementation file included both your header file and <cmath> then the
<cmath> file would effectively be included twice. The use of the name __ SORTS __ H

as the defined symbol does not have to follow that pattern exactly. Typically, some
combination of underscores along with the name of the file are used so that each
header file has a unique symbol associated with it .

The sort . cpp file would usually include the sort . h file although in this case it
does not need to since neither function calls the other. It would look like

II sort . cpp

#include " sort . h"

void selection_sort (int a [] , int size)
{

II code for selection_sort function
}

void merge (int a [] , int low , int mid , int high)
{

II code for merge function
}

void merge_sort (int a [] , int size)
{

II code for merge_sort function
}

A file that wants to call one or both of our sort functions needs to include the
header file sort . h and link with the sort . 0 file that the compiler generates. Note
that we did not put the merge function in the header file since it is only called by the
merge_sort function. A simple example using our sorting code is the following; these
three files could be compiled and linked on Unix systems using our g++ commands
listed in section 8 . 6 .

II test_sort . cpp
#include <iostream>
using namespace std ;
#include " sort . h"

300 Chapter 8 A C++ I ntroduction for Python Programmers

int mainO
{

int i ;
int a [10] {9 , 8 , 7 ,
int b [10] {9 , 8 , 7 ,

selection_sort (a , 10) ;
merge_sort (b , 10) ;
for (i=O ; i<10 ; ++i) {

6 , 5 , 4 , 3 , 2 , 1 ,
6 , 5 , 4 , 3 , 2 , 1 ,

cout « a [i] « " " « b [i] « endl ;
}
return 0 ;

}

O} ;
O} ;

We will look at another example of header files so that we can point out a
common mistake made when using default parameter values . We will write a couple
functions to perform temperature conversions and put them in a separate file so
many different programs can easily use them. Our header file and implementation
file are the following:

II conversions . h
#ifndef CONVERSIONS_H
#define __ CONVERSIONS_H

double f_to_c (double f=O . O) ;
double c_to_f (double c=O . O) ;

#endif

II conversions . cpp
#include " conversions . h"

II the next line is commented out since it is incorrect
II double f_to_c (double f=O . O)
double f_to_c (double f)
{

return (f - 32 . 0) * (5 . 0 I 9 . 0) ;
}
double c_to_f (double c)
{

return (9 . 0 I 5 . 0) * c + 32 . 0 ;
}

The common mistake is to cut and paste the function declarations from the
header file into the implementation file . This results in the default parameter values

8 .13 Header Fi les and I n l i ne Functions 301

being specified in the implementation file also. We have shown this in our example,
but commented out the incorrect lines and added the correct lines without the
default values. The C++ compiler will give an error message if you forget to remove
the default values from the implementation file when you cut and paste the function
prototypes from the header file.

Since the code for these functions is short, the overhead of making the function
call can take more execution time than the execution of the actual function code.
C++ provides a mechanism known as inline functions to allow for more efficient
execution. An inline function is generally written in a header file and is written
exactly the same as the function would be in the implementation file except the
keyword inline is placed before the function definition. In this case, the definition
is also a declaration. For our conversion example, the header file with inline functions
is

II conversions2 . h

#ifndef _ _ CONVERSIONS_H
#define __ CONVERSIONS_H

inline double f_to_c (double f=O . O)
{

return (f - 32 . 0) * (5 . 0 I 9 . 0) ;
}

inline double c_to_f (double c=O . O)
{

return (9 . 0 I 5 . 0) * c + 32 . 0 ;
}

#endif

When writing all the functions inline in a header file, you do not need an
implementation (conversion . cpp) file since all the information is contained in the
header file . The inline keyword prevents multiple definitions of the file from being
created when you link a number of different files that all include the conversion . h
header file.

If your inline function is relatively short , the compiler will generate the machine
code for the function body and place it right in the code instead of creating the
code to call a function. If your function is relatively long, the compiler will ignore
your inline directive; instead it will create a normal function call since copying the
machine code corresponding to a long function will make the program much larger if
that function is called from a number of different places. A general rule is to declare
functions that are less than five lines long as inline functions.

302 Chapter 8 A C++ I ntroduction for Python Programmers

The original C programming language did not include inline functions and
instead used preprocessor macros to accomplish the same result of not creating
a function call for short functions. C++ also supports macros since they are part
of the C language, but it is recommended that you use inline functions since they
enforce type checking and are safer. A sample source file that defines and uses a
macro for c_ to_f is the following.

II macro . cpp
#include <iostream>
using namespace std ;

#define c_to_f (c) (9 . 0 I 5 . 0) * c + 32 . 0

int maine)
{

int x = 10 ;
cout « c_to_f (x) « II " ;
cout « c_to_f (x + 10) « endl ;

}

The #define preprocessor command is used to define macros. The preprocessor
performs a search and replace for the item(s) inside the parentheses. Based on that,
what do you think the output of this program is?

The two lines that use the macro are expanded by the preprocessor to

cout « (9 . 0 I 5 . 0) * x + 32 . 0 « II " ;
cout « (9 . 0 I 5 . 0) * x + 10 + 32 . 0 « endl ;

Given those expansions, you should now realize why the output of the program
is 50 60. The correct value for 20 degrees Celsius is 68 degrees Fahrenheit. You
could fix this by using more parentheses in the macro, but there are still other
potential problems with macros. So when writing C++ code, you should use the
inline keyword instead of a macro to avoid the overhead of a function call.

There is an important issue regarding namespaces and header files. You should
not use the version using namespace . . . for any namespace in header files. The
reason for this is that any file that includes your header file effectively would have
that using namespace statement in it . This could cause problems if the source file
defines a name that is also defined in the specified namespace. If you need to refer
to a name defined within a namespace in a header file, always refer to it using the
namespace : : name syntax rather than including a using statement in your header
file . We will see an example of this in section 9 .4 .

8 . 14 Assert Statements and Testing 303

As Python contains a number of modules with useful functions, C++ has a
standard library of functions. We have already seen the iostream header that
the C++ language uses for input and output libraries. Many of the functions
available in C++ are part of the original C standard library, but the header files
have been updated for C++. The name of some of the C library header files are
stdio.h, stdlib.h, and math.h. To use these header files in a C++ program, the .h
extension is removed and the letter "c" is prepended, resulting in the names: cstdio,
cstdlib, and cmath. For example, to use the sqrt function that is defined in the
C math header file, you need the following statement at the top of your C++ file:
#include <cmath> . There are other standard C++ header files, some of which will
be covered later, but these along with iostream are the common ones beginning
C++ programrners need.

The standard convention is to use less-than and greater-than signs around the
names of header files that are part of the C++ library or libraries that are common
and located in standard directories . Your C++ compiler also provides a method
for specifying additional directories to search. On most systems the compiler first
searches the additional directories you specify and then a set of standard directories
containing header files. The first header file that matches the name is used. Double
quotation marks must be used around header files that are in the same directory as
the C++ source files you are compiling. For header files specified with double quota­
tion marks, the compiler first searches the current directory. If the compiler cannot
find the header file in the current directory, the compiler searches the additional
user-specified include directories and the standard directories. You cannot use the
less-than and greater-than signs around header files that are in the current directory
since it is not searched by default , but you can use double quotation marks around
standard header files since both the current directory and standard directories are
searched. Even though it is possible to always use double quotation marks, C++
programmers follow the convention of using the less-than and greater-than signs for
standard header files.

1 8 . 14 1 Assert Statements a nd Test i ng

Unlike Python which includes a unit testing framework, the C++ standard does
not include a unit testing framework. There are a number of third-party, C++ unit
testing frameworks that you can download and install. Most , if not all , of these
frameworks are similar to Python's unit testing framework as both the C++ and
Python unit testing frameworks are based on Java's unit testing framework. Instead

304 Chapter 8 A C++ I ntroduction for Python Programmers

of covering one of the C++ unit testing frameworks, we will discuss the C++ assert
statement since it allows you to easily write unit tests.

The Python unit testing framework provides a number of methods that verify
if something is true and include "assert " as part of their name (e.g. , assertEquals
and assertRaises) . These methods are based on the C++ assert statement
(technically, it is a macro that the preprocessor expands) which takes a Boolean
expression. If the Boolean expression is true, the program continues, but if it is false,
the program exits immediately and indicates the line of code at which the assert
statement fails. Unlike the Python unit testing framework which runs additional
tests even after one of the tests fails, using the C++ assert statement causes your
program to exit immediately if the assertion is not true. This means the tests
following an assert statement that fails are not executed.

We will modify our test_sort . cpp file from section 8 . 13 to use the assert
macro. The assert macro takes an expression and evaluates it . If the expression
evaluates to true, execution continues. If the expression evaluates to false, the
program immediately exits and prints an error message indicating the line of source
code containing the assertion that failed.

II test_sort2 . cpp
#include <iostream>
using namespace std ;
#include <cassert>
#include " sort . h"
int main()
{

}

int i ;
int a [iO]
int b [10]

{9 , 8, 7 , 6 , 5 , 4 , 3 , 2 , 1 , O} ;
{9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , O} ;

cout « "test select ion sort " « endl ;
selection_sort (a , 10) ;
for (i=O ; i<9 ; ++i) {

assert (a [i] <= a [i+1]) ;
}
cout « " selection sort passed" « endl ;
cout « " test merge sort " « endl ;
merge_sort (b , 10) ;
for (i=O ; i<9 ; ++i) {

assert (b [i] <= b [i+1]) ;
}
cout « "merge sort passed" « endl ;
return 0 ;

8. 15 The Scope and Lifet ime of Variables 305

In order to use the C++ assert macro, you must include the cassert header
file . Unlike Python's unit testing framework which indicates that tests pass, using
this simple strategy will not produce any output if all the tests pass. If you want
output , you can place output statements after each assert statement or after a
group of assert statements to indicate that tests pass as we did in our example.
Remember that output is buffered by the operating system and may not appear if
the program crashes before the operating system sends the buffered output to the
screen. Outputting a new line using endl forces the buffer to be flushed, so always
use an endl at the end of output statements when testing code.

For files that test a number of functions or class methods, you may want to create
a separate test function that tests each method and then have the main function
call each of the test functions. This would be similar to the Python unit testing
framework calling all the methods that start with the four characters test .

1 8 . 15 1 The Scope a nd L ifet ime of Varia b les

The scope of a variable is the section of source code where it can be accessed and
the lifetime of a variable is the execution time period starting when the memory for
the variable is allocated and ending when it is deallocated. The scope and lifetime
of variables in C++ is similar to Python. The scope of a variable in C++ is the
block of code in which it is declared. If an inner block declares a variable with the
same name as one declared in the outer block, the variable declared in the outer
block is not accessible inside that inner block. The following example (that outputs
2 1) demonstrates this, but for readability reasons, it is not recommended that you
declare two different variables with the same name in different blocks of the same
function.

II scope . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

int x = 1 ;

{

}

int x = 2 ;
cout « x « II I f .

,

cout « x « endl ;
return 0 ;

306 Chapter 8 A C++ I ntroduction for Python Programmers

Many programmers prefer to only declare variables at the top of a function and
the scope of these variables is the function body. As mentioned in section 8 . 10 ,
you can also declare the loop variable inside the f or statement and that variable is
accessible only inside the body of the loop.

The lifetime of automatic C++ variables starts when the function declaring
the variable begins execution and ends when the function completes. Each time a
function is called, memory for its automatic variables is allocated on a stack and
when the function ends, the memory is deallocated from the stack. This means that
the local automatic variables of a function are usually bound to a different memory
location each time the function is called and thus, do not remember the value they
had the previous time the function was called. If you need a function's local variable
to have a "history" and remember its value from the previous call, declare it with the
static prefix. The following example uses the local static variable count to keep
track of how many times the function is called. The lifetime of static variables is
the lifetime of the program. When the program is started , memory for the variable
count is allocated and initialized to zero based on the statement inside the function.
That same memory location is used for the variable count until the program ends;
the initialization to zero is executed only once when the memory is first allocated for
the variable, not each time the function is called. The scope of the variable count
is inside the function f , but its lifetime is from the start of program execution until
the program ends.

void f O
{

static int count = 0 ;

count++ ;
}

1 8 . 16 1 Common C++ M ista kes by Python Progra m mers

Some common mistakes that Python programmers make when learning C++ are

• forgetting the semicolon after each statement

• putting a semicolon at the end of a for statement or after the Boolean
expression for an if or while statement

• putting a colon at the end of a for statement or after the Boolean expression
for an if or while statement

8 . 17 Additiona l C++ Topics (Optiona l) 307

• forgetting the braces to mark blocks or putting a semicolon after a brace that
marks a block of code

• forgetting the parentheses around Boolean expressions in if , while, and do

while statements

• forgetting to put the data type in front of each formal parameter in a func­
tion/method; for example, writing void f (int a , b) instead of the correct
void f eint a , int b)

• putting the semicolon after the right parenthesis marking the end of a func­
tion's parameters when you are writing the code or forgetting that a semicolon
is required after the right parenthesis when defining the function prototype but
not writing the code

• attempting to directly assign one array variable to another; you must assign
each element individually, typically with a loop or nested loops in the case of
multi-dimensional arrays

1 8 . 17 1 Add it ion a l C++ Top ics (Opt iona l)

The topics covered in this section are included to provide a more detailed, but still
not complete, introduction to C++ for the interested reader. An understanding of
the topics covered in this section is not required to understand the other chapters
in this book.

1 8 . 17 . 1 1 The C++ Switch Statement

C++ supports another decision statement that Python does not have. The C++
swi tch statement is less general than the if statement . Any statement written
with a switch statement can be written using if and else if statements, but not
all if statements can be written as switch statements. The following C++ code
shows an example of a switch statement.

II switch . cpp
#include <iostream>
using namespace std ;

int main O
{

int choice ;

308 Chapter 8 A C++ I ntroduction for Python Programmers

}

cout « " enter your choice of 1 , 2 , 3 , 4 : " ;
cin » choice ;

switch (choice) {
case 1 :

cout « "you chose 1\n" ;
break ;

case 2 :
cout « "you chose 2\n" ;
break ;

case 3 :
cout « "you chose 3\n" ;
break ;

case 4 :
cout « "you chose 4\n" ;
break ;

default :
cout « "you made an invalid choice " ;

}
return 0 ;

As the example demonstrates, the keyword switch is used followed by an ex­
pression inside parentheses. The expression must be an ordinal value which for our
purposes means its type must be int , char, or bool. The expression cannot be a
floating point value or a string. The keyword case is used to list one of the possible
values for the expression. If the value of the expression (choice in our example)
matches the case value then the code under that case statement is executed. The
execution continues until a break statement is encountered or the end of the switch
statement is reached. When a break statement is reached, execution continues with
the statement after the ending brace for the switch statement (return 0 in our
example) . The keyword def aul t is used to indicate the code that is to be executed
if the expression does not match any of the case statements.

Since the break statement is required to indicate the end of the code to be
executed when a case statement matches, you can use this fact to write code such
as the following:

II switch2 . cpp
#include <iostream>
using namespace std ;

int mainO
{

int choice ;

}

8 . 17 Additiona l C++ Topics (Optiona l)

cout « "enter your choice of 1 , 2 , 3 , 4 : " ;
cin » choice ;

switch (choice) {
case 1 :
case 2 :

cout « "you chose 1 or 2\n" ;
break ;

case 3 :
case 4 :

cout « "you chose 3 or 4\n" ;
break ;

default :

}
cout « "you made an invalid choice " ;

return 0 ;

309

Since the break statement is required to change the flow of execution, forgetting
the break statement does not create a syntax error but can be a semantic error as
the following example shows:

II switch3 . cpp
#include <iostream>
using namespace std ;

int mainO
{

int choice ;
cout « "enter your choice of 1 , 2 , 3 , 4 : " ;
cin » choice ;

}

switch (choice) {
case 1 :

cout « "you chose 1\n" ;
break ;

case 2 :
cout « "you chose 2\n" ;

case 3 :
cout « "you chose 3\n" ;
break ;

case 4 :
cout « "you chose 4\n" ;
break ;

default :
cout « "you made an invalid choice " ;

}
return 0 ;

310 Chapter 8 A C++ I ntroduction for Python Programmers

If you enter 2 when running this program it outputs both you chose 2 and you

chose 3. You should be able to convert each of these switch statements to an if
statement with the same semantics . As we mentioned earlier, one specific value must
follow a case statement . You cannot write: case (choice > 0 && choice < 3) : .
The switch statement is not commonly used because of these restrictions, although
it can be used for menu choices as our examples showed. Another important point to
notice is that braces are not used to mark the blocks of code under a case statement .
This is an inconsistency with how C++ marks blocks of code.

1 8 . 17 .2 1 Creati ng C++ Namespaces

You can create your own namespace using the namespace keyword. The following
example demonstrates a namespace.

namespace searches
{

}

// function/class definitions
void binary_search()
{

// code here
}

To access the function binary_search outside of the namespace block, you have
three choices. You can refer to it using the full name searches : : binary _search
each time you want to access it . Another option is to place the statement using
namespace searches at the top of your file. This allows you to refer to all the func­
tions, classes, etc. defined in the searches namespace without prefixing them with
searches : : . This corresponds to the Python statement from searches import * .
The third option i s to put the statement using searches : : binary _search at the
top of your file. This is similar to the Python statement from searches import
binary_search. This C++ version of the using statement allows you to access the
binary _search function without the need for the searches prefix in your code, but
any other names defined in the searches namespace that you want to access would
need to be specified with the searches : : prefix.

1 8 . 17 . 3 1 G loba l Variab les

C++ also supports global variables although the use of global variables is generally
bad design. One exception to this is that constants are commonly defined as global
variables. The lifetime of any global variable is the entire execution time of the

8 . 17 Add itional C++ Topics (Optiona l) 311

program. To create a global variable, define it at the top of the file outside of any
function blocks. A global variable is accessible in any functions in that file and can
be accessed in other files if those files declare the variable with an extern prefix. If
you wish to make a variable accessible only inside the current file, define it with the
static prefix. In formal terms, the scope of global variables defined with the static
prefix is the file i t i s declared within. The memory for global and static variables is
allocated when the program is loaded into memory just before its execution starts,
and the same memory location is used for global and static variables throughout
the entire execution of the program. As you may have noticed, the keyword static
has multiple meanings depending on the context in which it i s used.

Only one file that is part of a program may define a global variable with a
specific name (just as there can be only one function with a specific name defined per
program) , but any number of files may declare that variable extern and access the
global variable. This is the issue that there can be many declarations, but only one
definition. The following example with three files demonstrates a global and a static
variable. It also denlOnstrates another use of extern to indicate that the functions
f and g with the specified prototypes exist in another file; this is not recommended
and instead you should use header files as discussed in subsection 8 . 1 2 . 1 . In either
case, you will get an error during the linking phase of building the executable code
if the functions cannot be found in one of the compiled object files or the global
variables are defined non-extern in more than one file .

I I file! . cpp
int x ; II this global variable is potentially accessible

II in any file linked with filel . o
const double PI=3 . 141592654 ; II global constant
static int y ; II this variable is only accessible in filel . cpp

extern void f 0 ;
extern void gO ;

int mainO
{

}

x = 2 ;

Y = 3 ;
f () ; I I calls f defined in another file
g () ; II calls g defined in another file
return 0 ;

312 Chapter 8 A C++ I ntroduction for Python Programmers

II f ile2 . cpp
extern int x ; II this allows access to the global variable x defined

II in another file
void f O
{

x = 3 ; II sets x declared in another file (file1 . cpp in this case)
}

II f ile3 . cpp
extern int x ;

void g O
{

x = 4 ; II sets x declared in another file
}

1 8 . 18 1 Cha pter S ummary

This chapter covers the basic syntax and semantics of much of the C++ language
assuming you understand Python. Here is a summary of some of the important
concepts.

• C++ code is compiled while Python uses a hybrid technique of compiling to
byte code and interpreting the byte code.

• C++ requires you to declare all variable names with a specified type; the
built-in types are int , char, float , double, and bool .

• C++ uses braces, {}, to mark blocks of code.

• C++ requires parentheses to be placed around the Boolean expression for the
if , while, and do while statements.

• C++ uses the two words else if instead of the elif keyword that Python
uses.

• C++ supports a basic array type for storing groups of data of the same type.
C++ arrays are similar to Python lists, but C++ arrays are not a class and
thus only support the use of brackets to access individual elements; you cannot
slice , concatenate, or assign entire arrays with one statement .

• A declaration indicates the type for an identifier name, while a definition
allocates memory (for a variable or the code for a function or method) .

8 . 19 Exercises 313

• C++ supports two parameter passing methods: pass by value which copies
the parameters and pass by reference which causes the formal parameters to
refer to the same memory locations as the actual parameters.

• C++ arrays are automatically passed by reference.

• Header files are used to declare functions and global variables; we will learn
how header files are used with classes in the next chapter.

• The scope of a variable refers to the section of code in which a variable can
be accessed; the lifetime of a variable is the time during the execution of the
program in which a specific memory location is associated (bound) to the
variable.

1 8 . 19 1 Exerc ises

True/Fa lse Questions

1. All C++ programs must have a function named main.

2. Any variable used in a C++ program must be declared with a type before it
can be used.

3. A C++ function must return a value.

4. A C++ program that compiles will output the results that you intend it to.

5 . A C++ program that does not compile can be executed.

6. If the C++ compiler outputs a warning, it will never compile the program.

7. C++ compiler warnings should be ignored .

8. If you compile a C++ program using the Linux operating system on an Intel
chip, you can execute the generated program on a computer running the
Windows operating system on the same Intel chip.

9. For simple text-based programs you can usually recompile a C++ program on
different architectures and operating systems without changing your code.

10. In general, a compiled C++ program will execute faster than a similar Python
program on the same computer.

314 Chapter 8 A C++ I ntroduction for Python Programmers

1 1 . A C++ program that solves a specific problem such as sorting numbers will
always execute faster on the same computer than a Python program that solves
the same problem.

12 . Passing an int type by reference is faster and more efficient than passing an
int type by value.

M u lti p le Choice Questions

1. Which of the following programs would you expect to be significantly faster
when written in C++ than when written in Python?

a) a program to convert miles to kilometers
b) a program with a loop that runs a million times
c) a program with a loop that runs 10 times
d) all of the above

2 . If a C++ function uses a variable that has not been declared, what happens?

a) The code will not compile.
b) When executing that function, an error message will be generated similar
to Python's NameError message.
c) The program crashes.
d) none of the above

3. Compiling a C++ file that does not contain a main function produces

a) an executable program.
b) an object file containing the machine code for that C++ file.
c) another C++ file.
d) none of the above

4. The linker

a) copies header files into a C++ file.
b) compiles a C++ file into machine code.
c) combines machine code from multiple files to produce an executable pro­
gram.
d) loads a program into memory and executes it .

5. C++ functions can return

a) at most one variable or expression.
b) multiple variables or expressions.

8. 19 Exercises 315

c) arrays.
d) C++ functions do not return a value.

6. Which of the following statements is the most similar in Python and C++?

a) the f or statement
b) a function definition
c) the if/else statement
d) the while statement

7. Which of the following is not true about the C++ pass by reference mecha­
nism?

a) All changes to the formal parameter that are made in the function affect
the actual parameter.
b) A copy of the actual parameter is made.
c) It allows you to effectively return multiple values calculated by the function.
d) It is slower than pass by value.

8 . Which of following is true about C++ arrays?

a) Arrays can be passed by value.
b) Arrays include a method to sort the values in the array.
c) The values in the array must be the same type.
d) Arrays can be returned by a function.

9. What is the main purpose of a header file?

a) to comnlent the code in a source file
b) to declare items so they can be used in C++ source files
c) to define iterns so they can be used in C++ source files
d) none of the above

10. The scope of a variable refers to

a) the different values it can hold.
b) where the variable can be accessed.
c) the time during which memory is allocated for the variable.
d) the name of the variable.

Short-Answer Questions

1. What is the exact output (indicate where there are spaces) of the program
input 1 . cpp if the user enters 3 . 5 4?

316 Chapter 8 A C++ I ntroduction for Python Programmers

2. What is the output of the following C++ program?

#include <iostream>
using namespace std ;
void f eint a , int &b)
{

}

cout « a « II II « b « endl ;
a = a + 2 ;
b = b + 3 ;
cout « a « II II « b « endl ;

int mainO
{

}

int x = 4 , Y = 5 ;
cout « x « II II « y « endl ;
f (x , y) ;
cout « x « II II « y « endl ;
return 0 ;

3. What are the five basic built-in C++ data types?

4. What are the differences between the Python conditional statement and the
corresponding C++ conditional statement?

5. What are the differences between the Python and C++ while loop state­
ments?

6. What are the differences between the Python list type and C++ arrays?

7. What is the purpose of a C++ header file?

8. What do the terms scope and lifetime mean with respect to variables?

Progra mm ing Exercises

1 . Write a C++ program that prints the multiplication table for all possible
products of the numbers 0 through 9.

2 . Write a C++ program that inputs the number of cents (an integer between 0
and 99) and outputs the number of quarters, dimes, nickels, and pennies that
add up to that amount and minimizes the number of coins needed.

8 . 19 Exercises 317

3. Write a C++ program that allows the user to enter non-negative numbers
(pressing the Return key after each number is entered) . A negative number
entered by the user indicates the end of the list of numbers. Output the total
and average of the numbers the user entered excluding the negative number.

4. Write a C++ program that asks a user to enter the coefficients a, b, and c of
a quadratic equation a * x2 + b * x + c = 0 and outputs the solution (s) . The
program should indicate if there are no real solutions.

5. Write a C++ function that determines if the int parameter it is passed is
a prime number. Use this function to write a program that outputs all the
prime numbers less than or equal to a number the user inputs.

6. Write a C++ program that inputs an annual investment amount , the interest
rate earned every year, and the number of years. The program outputs the
final value of the investment assuming the same amount is invested at the
beginning of each year and the interest is compounded annually.

7. Modify the selection_sort code in this chapter to use an inline swap function
that accepts two parameters passed by reference.

8. Write a C++ function named linear _search that accepts an integer value to
search for, an array of integers, and the number of integers in the array. Using
the linear search algorithm, the function must return the position of the first
parameter in the array. If the first parameter is not in the array, the function
returns - 1 .

9 . Write a C++ binary _search function with the same parameters as the
linear _search function described in the previous exercise. Search the list
using the binary search algorithm and return the location of the first parameter
in the array (returning -1 if the value is not found) . The array that is passed
to the binary search algorithm must be sorted.

10. Place the linear_search and binary_search functions in a file named
searches . cpp with a corresponding header file named searches . h. Create a
file named test_searches . cpp that initializes an array of one million integers
in order and tests the searches with inputs that result in both the best and
worst running time of each algorithm.

Chapter 9 c++ Classes

Object ives

• To write non-dynamic memory C++ classes.

• To learn how to use the built-in C++ string class.

• To learn how to read and write ASCII files in C++.

• To learn how to overload operators in C++ as methods and as functions.

• To learn how to write class variables and methods in C++.

[[I] Basic Syntax a nd Sema nt i cs

The reasons for and benefits of using classes in C++ are the same as they are in
Python. Classes allows us to encapsulate the data and methods for interacting
with the data into one syntactic unit . Data hiding allows programmers to use the
class without worrying about or understanding the internal implementation details .
If the programmer using the class only calls the methods for interacting with the
data and does not directly change the instance variables, we are assured that the
data integrity of our class is maintained (i .e . , assuming the class implementation is
correct , manipulating the class through the methods will not result in inconsistent
data in the class instance) . Classes also make it easier to reuse the code in more
than one application. This section covers the basic syntax and semantics of C++
classes. We will exarnine some of the more advanced class topics in later sections
and later chapters.

Before we start examining the syntax for C++ classes, we will discuss some of the
terminology differences between Python and C++. Python officially calls members

319

320 Chapter 9 C++ Classes

of a class attributes; attributes can be either variables or functions. Python has
a built-in function named getattr that stands for "get attribute" and is used to
access the attributes of a class. If we have an instance r of the Rational class
defined in section 2 . 5 , the following two statements are equivalent :

[print r . num
print getattr (r , ' num ')

Note that the getattr function takes an object and a string and returns the
attribute specified by the string for the object . The returned attribute can be either
data or a function or method. Python has a built-in function named hasattr that
also takes the same two parameter types and returns True or False indicating
whether or not the object has an attribute with that name. Python also has a
built-in function named setattr that takes three parameters: an object, a string,
and an object to assign for the attribute. An example of this is setattr (r , ' num ' ,
4) ; this is equivalent to r . num = 4.

We have also used the terms instance variables and instance methods or just
methods to discuss attributes of a Python class since they are the more commonly
used object-oriented terminology. C++ uses the terms instance variables or data
members for data and the terms instance methods or simply methods for function
members. The term members is typically used to refer to both data members and
data methods, corresponding to the Python term attributes.

C++ allows the interface of the class and the implementation of the class to
be separated to a greater degree than Python, but does not require that they be
separated. Typically the declaration of the methods and the instance variables is
placed in the header file with a . h extension and the implementation is placed in a
file with the same name except it uses a .C , .cpp, or .cc extension. We are using the
.cpp extension in our examples throughout this book.

The header file defines the class name, the methods it provides, the instance
variables, and sometimes the implementation of some of the short methods. The
implementation file uses the #include preprocessor command to include the header
file and provides the implementation for each of the methods (except the methods
whose implementations are written in the header file) . We will now examine a
simplified C++ Rational class and cover the additional details of C++ classes
starting with the header file followed by the corresponding implementation file.

#ifndef _RATIONAL_H
#define _RATIONAL_H

class Rational {

9 . 1 Basic Syntax and Semantics

public :
II constructor
Rational (int n = 0 , int d = 1) ;

II sets to n I d
bool set (int n , int d) ;

II access functions
int num() const ;
int den O const ;

II returns decimal equivalent
double decimal O const ;

private :
int num_ , den_ ; II numerator and denominator

} ;

#endif

321

After the #ifndef and #define preprocesser directives, the class definition
starts. Note that even though this header file contains only prototypes for the
methods, this is a class definition, not a class declaration. A declaration of the
Rational class is just the code class Rational ; . A class declaration only tells the
compiler a class nam.e exists, while a class definition specifies the name along with the
instance variables and methods. Because a header file contains a class definition, the
use of the #ifndef and #def ine processors is even more important than in a header
file that just contains a number of function declarations or prototypes. Without
the preprocessor directives, if the header file is included twice, you will have two
definitions of the class and that is not allowed.

As in Python, the class keyword followed by the name of the class is used to
start the class definition. C++ uses the beginning and ending braces ({ and }) to
mark the beginning and ending of the class definition. A semicolon is used after
the ending brace for a class definition. The only places a semicolon is used after an
ending brace in C++ are after class definitions, struct definitions (structs are not
covered in this book) , and statically initializing arrays. Forgetting the semicolon
after the ending brace often leads to confusing compiler errors. Most compilers will
indicate there is an error at the first line after the include statement in the file that
included this header file. Many programmers immediately type the ending brace and
semicolon after typing the beginning brace so they do not forget it and then enter
the code between the two braces to help avoid this error. In Python, you typically
specify the instance variables by initializing them in the constructor (e.g. , self . num
= 0) although other methods can create additional instance variables using the

322 Chapter 9 C++ Classes

same syntax. In C++, all the instance variables must be defined with their name
and type inside the class definition; you cannot add new instance variables in the
implementation file as you can in any Python method.

C++ supports enforced data and method protection. The keywords public ,
pri vate, and protected are used to specify the level of protection. As you can
see in the sample Rational class definition, the protection keyword is followed by
a colon and specifies the level of protection until another protection keyword is
specified. In our Rational example, all the methods are public and all the instance
variables are private. You may specify each protection level multiple times inside a
class definition if you wish, although in most cases you will only want to list each
protection level once.

Any data members or methods that are public can be accessed by any other
code; this corresponds to Python's lack of enforced protection. We discussed that the
convention when writing Python code is that only the methods should be accessed
by other code and that with a few exceptions such as our ListNode and TreeNode
classes that are used to help implement another class, the instance variables should
be accessed only by the methods of the class. Instance variables and methods that
are declared private may be accessed only by methods of the class; the compiler
will generate an error if code outside the class attempts to access a private member.
Thus, in most cases instance variables should be declared private. There are also
cases where we want some methods to be called only by other methods of the class;
we saw an example of this with our _f ind method in our linked implementation of
a list . The convention in Python is to name these private methods starting with
one or two underscores. C++ allows you to explicitly declare methods private by
listing them in a pri vate or protected section of the class definition. This is where
you declare instance variables and methods that you want to be accessed only by
the methods of this class. The compiler will generate an error if code outside of the
class attempts to access a private method.

The protected designation is similar to the private designation except that
subclasses may also access the protected members of a class. The compiler will
generate an error if any code other than the code in the class itself or a subclass
attempts to access a protected method. For now, we will use only the public and
pr·i vate designations.

The purpose of the constructor in C++ is to initialize the instance variables
just as it is in Python. A C++ constructor has the same name as the class and
does not have a return type. As with Python, you may define a constructor that
takes additional parameters, but it is a good idea to define a constructor that does
not require any parameters. A constructor that does not take any parameters is

9 . 1 Basic Syntax and Semantics 323

known as a default constructor whether you write it or the compiler automatically
generates it . We used default parameters to allow the Rational constructor to be
called with zero, one, or two parameters; because this constructor can be called
without any parameters, it is a default constructor. A C++ constructor is called
automatically when a variable of that type is defined (i .e . , Rational r1 , r2 ; would
cause the constructor to be called for r1 and for r2) . You do not need to and cannot
call a constructor directly (i .e . , after declaring r1 as a Rational type, you cannot
write r1 . Rational 0 or r1 . Rational (2 , 3)) ; instead you specify the parameters
when you define the variable (e.g. , Rational r1 (2 , 3) ;) . Unlike in Python, you
do not write code such as r1 = Rational O to call the constructor (you do write
something similar when using dynamic memory, covered in Chapter 1 0) ; instead,
you declare variables with the specified type as you do for the built-in types (e.g. ,
int i ; and Rational r ;) .

If you do not write any constructors, the C++ compiler implicitly creates a
default constructor (it does not appear in your implementation file) with an empty
body; this means the compiler does not initialize any of the instance variables. Since
the compiler defined default constructor has no code, you typically want to write
one to ensure that your instance variables are initialized. The default constructor
is also called when you declare arrays of objects . The following variable definition
causes the Rational constructor to be called 10 times, once for each item in the
array: Rational r [10] .

Some of the Rational methods (e.g. , num O , den O , and decimal O) have the
keyword const after the method declaration. This use of const indicates the
method does not change any of the instance variables of the class. I t should be
clear that a method marked const can call only other const methods (since if
it called a non-const method, that method could modify the instance variables) .
You may recall that we can also mark formal parameters with a const designation.
For example we can write a standalone function void f (const Rational r) . This
means the function f is not allowed to modify the parameter so it can only call
Rational methods that are designated as const methods.

Next , we will examine the syntax details of class implementation files using
the Rational class as an example. To reduce space, we have left out comments,
preconditions, and postconditions.

#include "Rational . h"

Rational : : Rational (int n . int d)
{

set (n. d) ;
}

324 Chapter 9 C++ Classes

bool Rational : : set (int n , int d)
{

}

if (d ! = 0) {

}

num_ = n ;
den_ = d ;
return true ;

else
return false ;

int Rational : : num() const
{

return num_ ;
}

int Rational : : den () const
{

return den_ ;
}

double Rational : : decimal () const
{

return num_ / double (den_) ;
}

The Rational implementation file includes the header file Rational.h so it has
access to the prototypes for each method and the compiler can check that the proper
type and number of parameters are used in the implementation. The syntax for
writing methods is the return type for the method, a space, the class name, two
colons, and then the method with its parameters . If the method was declared const
in the class definition, that also must be indicated in the implementation file. Again,
note that the constructor does not have a return type. The method prototypes
must exactly match the return type, parameter types, and constant designations in
the header file . If they do not , you will get a compiler error. Recall that we do
not put the default parameter values (for the constructor in this example) in the
implementation file ; they appear only in the method prototype in the header file .

The two colons separating the class name and method name are known as the
scope resolution operator. With Python, the methods are defined inside the class
and the indentation indicates that the methods are part of the class. In C++ the
implementation of the methods is written separately froIn the class definition so the
class name and two colons are used to indicate that a method is part of the specified
class. You may also write standalone functions that are not part of a class in a C++
class implementation file by not using the class name and the two colons. Writing

9 . 1 Basic Syntax and Semantics 325

a standalone function in a C++ class implementation file is typically only done if
the function is used by the class methods and not by any other code.

C++ does not use an explicit self parameter as Python does. Since the class
definition specifies the names of all the instance variables, the compiler knows the
names of the instance variables and does not need something similar to self to
indicate items that are members of the class. The same is true when calling a
method of the class. The methods can be called without a prefix as we called
the set method from the constructor. C++ does contain a pointer named this
that corresponds to Python's self ; we will discuss it in Chapter 10 after we have
discussed what a C++ pointer is.

Since an explicit indication that you are referring to instance members is not
required in C++, many programmers prefix or suffix an underscore onto the names
of instance variables. Use of the underscore makes it clear that you are referring
to an instance variable and also allows you to use a similar name for parameters
and instance variables. If a method has a formal parameter with the same name as
an instance variable, the parameter makes the instance variable inaccessible unless
you use the this pointer. If you accidently use the same name, all uses of the
identifier are the parameter instead of the instance variable inside that method so
your instance variables are not set or changed. The compiler does not generate an
error when you narne a formal parameter the same as an instance variable. This
can be a difficult error to track down and is one reason many programmers add
the underscore to instance variables . The explicit use of self in Python avoids
this error. Python programmers often rely on the explicit use of self and name
parameters and instance variables the same. Because of this , Python programmers
learning C++ often make this mistake. In C++, make certain you use names for the
formal parameters that are different than the class instance variables. The following
example shows the problem. This example also demonstrates that you can place
both the class definition and implementation code in one file; however, you do not
want to do this unless your entire program is in one file . If you want to allow your
program to be split among multiple files or your class to be reused in other programs,
you must create a separate header and implementation file for the class.

#include <iostream>
using namespace std ;

class Rational {

public :
Rational (int num_=O , int den_=1) ;

326 Chapter 9 C++ Classes

int num () const { return num_ ; }
int den () const { return den_ ; }

private :
int num_ , den_ ;

} ;

I I this i s incorrect
II do not use the same name for formal parameters and instance variables
Rational : : Rational (int num_ , int den_)
{

}

num_ = num_ ;
den_ = den_ ;
cout « num_ « II I II « den_ « endl ;

int Rational : : num () const
{

return num_ ;
}

int Rational : : den () const
{

return den_ ;
}

int mainO
{

Rational r (2 , 3) ;

cout « r . numO « II I II « r . den O « endl ;
}

The output of this program on our computer is

1 2 I 3
:-1881115708 I 0

The same problem occurs if you redeclare a local variable with the same name
as an instance variable as the following example shows:

#include <iostream>
using namespace std ;
class Rational {

public :

9 . 1 Basic Syntax and Semantics

Rational (int num=O , int den=!) ;

int numO const ;
int den 0 const ;

private :
int num_ , den_ ;

} ;

Rational : : Rational (int num , int den)
{

}

II this is incorrect
II do not declare local variables with the same name as
II instance variables
int num_ , den_ ;

num_ = num ;
den_ = den ;
cout « num_ « II I II « den_ « endl ;

int Rational : : num () const
{

return num_ ;
}
int Rational : : den() const
{

return den_ ;
}

int main O
{

Rational r (2 , 3) ;

cout « r . num O « II I II « r . den O « endl ;
}

327

The output for this example on our computer is the same as in the previous example.
The instance variables are never initialized in either case so their value is whatever
is in the memory location used for them before the program starts. In both cases,
the actual instance variables are hidden from use in the constructor. In the first
example, the formal parameters with the same name as the instance variables are the

328 Chapter 9 C++ Classes

variables accessed inside the constructor. In the second example the local variables
are accessed in the constructor instead of the instance variables. Never use the same
name for instance variables and local variables or formal parameters. The use of an
underscore for instance variables (but never local variables or formal parameters) is
a common technique to avoid this problem.

Another common beginner's mistake is to write code such as r . num O = 3 ;
where r is an instance of the Rational class. This is not correct in Python or C++.
The return value of r . num () is a number, not a variable in which a value can be
stored. This is the same issue as incorrect code such as 4 = 3 ; or sqrt (5) = x ; .
What appears on the left-hand side of the assignment statement must be a variable.
The term for this is appropriately named an l-value since it appears on the left-hand
side of the assignment statement . C++ does support a reference return type that
allows a return value of a class method to be assigned a value. The details of this
are covered in Chapter 10 .

For functions and methods that are very short (typically less than five lines
of C++ code) , the overhead of making the function call takes more time than
executing the actual code in the function. In these cases, it usually makes sense to
avoid the overhead of a function call . C++ provides a mechanism known as in lining
that allows you to write the code as if it is a function or method, but avoids the
overhead of a function call. In effect , the compiler replaces the function call with the
actual body of the function. When copying the function or method, it also properly
handles the effect of passing the parameters and returning a value. For methods of
a class there are two different ways to write them as inline methods. The following
rewrite of our Rational class demonstrates both techniques. The num O and den O
methods demonstrate the one technique and the decimal method demonstrates the
other technique.

class Rational {

public :
II constructor
Rational (int n = 0 , int d = 1) ;

II sets to n I d
boo 1 set (int n , int d) ;
II access functions
int num() const { return num_ ; }
int den() const { return den_ ; }
II returns decimal equivalent
double decimal () const ;

9 . 1 Basic Syntax and Semantics

private :
int num_ , den_ ; II numerator and denominator

} ;

inline double Rational : : decimal () const
{

return num_ I double (den_) ;
}

329

The num O and den O methods are written inline when they are declared. Im­
mediately after the method definition, a semicolon is not used and instead the code
follows inside braces. This technique is commonly used when the code fits on the
line with the method name. The decimal () method is written inline after the
class declaration. This is the same technique used for writing standalone functions
inline that we discussed in section 8 . 13 . The keyword inline is used followed by
the code just as if you were writing the method in the implementation file. This
technique is typically used when the code is a few lines long. The inline keyword
is used to prevent multiple definitions of the method when multiple files include this
header file. If you forget the inline keyword, you get a linking error indicating
multiple definitions of the function if more than one file includes the header file
with the method code. Inline methods should be written in the header file, not
the implementation file . The exception is if the inline method is called only from
one implementation file, then you could write the inline method at the top of that
implementation file .

Our Rational constructor calls the set method. Notice that the method call
looks like a normal function call, unlike in Python where we need to use self to
indicate a method is being called. The reason for adding the set method is to
prevent having two copies of code that do the same thing. It does add the overhead
of an additional function call in the constructor. To solve that problem, we could
make the constructor or the set method an inline method. It is generally a good
idea to avoid duplicate code since if you change it in one place, you need to remember
to change it in the other place(s) also.

With both techniques for writing a method inline in the header file, the compiler
can just copy the code for the method into the function or method that called it ,
avoiding the overhead of a function call. Most compilers will create a normal function
or method if the inline function or method is too long since copying the code for
large functions will increase the size of your executable program. Whether or not the
compiler actually creates an inline function is transparent to the programmer. In
both cases, the return type and parameter types are checked and the parameters are
effectively passed using the specified mechanism (either by value or by reference) .

330 Chapter 9 C++ Classes

The only reason for writing inline functions is to avoid the overhead of a function
call.

1 9 . 2 1 Stri ngs

N ow that we have learned the basics of C++ classes, we will examine the string
class that is part of the standard C++ library. C++ strings correspond to Python's
string data type and are used to represent sequences of characters that are usually
(but not always) treated as a unit. Since C++ is for the most part backward
compatible with C, it supports C-style strings and some C++ library functions
require that a C string be passed as the actual parameter, so we will briefly discuss
C-style strings. The C language uses an array of char to store string data and uses
a special character \0 to indicate the end of the string; this requires that the array
size be at least one unit larger than the string of characters you want to store. Since
C does not directly support classes, a C library provides separate functions that are
used to manipulate the arrays of characters .

C++ strings are implemented as a class that has an array of char as an instance
variable. As you should expect, the C++ string methods allow you to access and
manipulate a string without concerning yourself with the internal implementation.
The C++ string class provides a number of methods for manipulating the string
data, but does not include all the capabilities that Python strings have. In addition
to the methods the C++ string class supports, it also overloads many of the
operators so you are able to assign and compare strings. You can read and write
C++ string variables using the instances cin and cout and file classes defined
in the <iostream> header file. We will not cover all the string methods, but will
introduce the basics of the C++ string class in this section.

To use the C++ string class, you must #include <string> at the top of
your file along with any other header files you are including. The string class is
also defined within the standard namespace so you must have the statement using
namespace std at the top of your file or refer to the class as std : : string. When
a C++ executable program reads strings using the » operator, it stops processing
characters at the first whitespace (space, tab, or new line) . For example, to read in
a person's first and last name entered with a space between them, you would need
to use two strings:

string first , last ;
cout « "Enter your first and last name (separated by a space) : " ;
cin » first » last ;

9 .2 Str ings 331

You may create and output strings that contain whitespace, but when using
the » operator, you need to remember that it stops reading each time a whitespace
character is encountered. The code string name ; name = "Dave Reed" ; cout «
name « endl ; works as you would expect , outputting Dave Reed followed by a new
line. C++ provides a getline function that reads from the current input pointer
to a delimiter; the default delimiter is the \n end-of-line character. The getline

function requires two parameters: the input stream from which to read and a string
that is passed by reference and will contain the string that is read. The input
stream can be the cin instance or a file handle for reading data from a disk file .
The optional third parameter for the getline function is the character to use as a
delimiter. The getline function reads all the characters up to and including the
delimiter and returns a string containing all the characters read except the delimiter.
Using the getline function, we can input a first and last name as one string:

string name ;
cout « "Enter your first and last name : " ;
getline (cin , name) ;

You can mix the use of the getline function and the » operator with cin or a
file handle, but it requires that you carefully process the input . When you use cin
to read a variable, it skips leading whitespace, but leaves the trailing whitespace,
including the new line character in the input stream. The getline function reads
everything up to the delimiter, including the delimiter, so if a getline follows a
cin that reads everything on the line, it gets an empty string. You must make two
calls to getline in this case, and the second one will get the data on the next line.

The C++ string class supports the standard comparison operators < , <= , > , >=,

== , and ! =. The rules for comparison are the same as in Python; dictionary order is
used and lowercase letters are greater than uppercase letters since the ASCII codes
for lowercase letters are larger. Unlike Python strings, C++ strings are mutable.
You can both access individual characters and set individual characters using the
brackets operator ([]) . As you should expect, the indexing starts at zero and you
cannot use negative values since internally the string is represented as a C++ array.
There is no range checking, so you need to ensure that you do not access beyond the
end of the string. C++ strings also support the assignment operator = for assigning
a string variable or expression on the right-hand side of the assignment statement
to the string variable on the left-hand side.

The C++ string assignment operator creates a separate copy of the data, unlike
Python which would have two references to the same data. If after assigning one
C++ string variable to another, you change one of the strings, it does not change the

332 Chapter 9 C++ Classes

other. The + and += operators work the same as they do in Python. The following
example demonstrates some of these concepts .

II stringex . cpp
#include <iostream>
#include <string>
using namespace std ;

int main O
{

}

string first = IIDave ll ;
string last = IIReedll ;
string name ;

name = first + II II + last ;
cout « name « endl ;

first [3] = ' i ' ;
first += IId ll ;

name = first + II II + last ;
cout « name « endl ;
cout « name . substr (6 , 4) « endl ;
return 0 ;

The preceding example outputs Dave Reed, David Reed, and Reed on three
separate lines . Notice that the single quotation mark is used with the bracket
operator since first [3] is a single character. You cannot use Python's slicing
syntax for accessing a substring; C++ does provide a substr method. Its prototype
is string substr (int position , int length) . It returns a string starting at the
specified starting position with the specified length. This is different than Python
slicing which takes the starting and ending positions. The string class also has a
method named c_str O for returning a C array of characters . This is useful when
you need to call a function that requires a C-style string instead of a C++ string.
The f ind method takes a string to search for and optional starting position for the
search. It returns the index of the first occurrence of the search string in the string.
There are a number of additional string methods, but these are a few of the ones
that are commonly used.

9 .3 F i le I n put and Output 333

1 9 . 3 1 Fi le I n put a nd Output

File input and output often involves the use of strings although you can input ASCII
numeric data directly as numbers or read a file in a binary format corresponding
directly to how the computer represents an internal data type. We will not cover
the reading of binary files in this book. C++ uses instances of classes to perform
file input and output as it does for keyboard and monitor input and output . The
fstream header file contains the class declarations of if stream and of stream for
file input and output , respectively. These are also in the namespace std. Similarly
as in Python, you nlust associate the file variable with a filename using the open
method. The following example demonstrates file input and output in C++ by
prompting the user for a file name and writing the string David Reed to the file .
It then opens the file for reading, reads the first line in the file using the getline
function, and outputs it using the cout statement .

II getline . cpp
#include <iostream>
#include <fstream>
using namespace std ;

int mainO
{

}

string filename , name , first , last ;
of stream outfile ;
if stream infile ;

cout « "Enter filE� name : " ;
cin » filename ;
outfile . open (filename . c_str (» ;
outfile « "David" « II II « II Reed II « endl ;
outfile . close 0 ;
infile . open(filename . c_str (» ;
getline (infile , name) ;
cout « name « endl ;
infile . close 0 ;
return 0 ;

Notice that the open method requires the C version of a string which is an array
of characters, so we need to use the c_str O method of the string class when
opening the file. As with Python, you need to close the file to ensure that data
written to the file is Hushed to the disk. In this example we demonstrated the use of
the getline function although we could have followed the same pattern as we did

334 Chapter 9 C++ Classes

when writing the file and read two separate strings and combine them using the +
operator. The code fragment for this method is

infile . open (filename . c_str ()) ;
infile » f irst » last ;
infile . close 0
name = f irst + II II + last ;
cout « name « endl ;
infile . close 0 ;

You can also read numeric data from an ASCII file using a similar technique.
You open the file and then specify a numeric data variable (int , float , or double) .
Just as when reading numeric values using the keyboard, whitespace (space, tab,
or new line) is used to separate numeric values and the amount of whitespace does
not matter. Each time you attempt to read a value, it skips past any whitespace
to attempt to find a numeric value. If it encounters any non-numeric characters
immediately after any preceding whitespace while attempting to read a number, a
run-time error is generated. When reading a number with a non-numeric digit after
it , it reads the number, but not the other non-numeric digit , leaving the file pointer
at that location. The next input will start with that character. The following would
read a file named in . txt containing 10 integer values as ASCII text with each one
separated by any amount of whitespace and output each value on a line as it reads
it .

II readfile . cpp
#include <iostream>
#include <fstream>
using namespace std ;
int main O
{

}

if stream ifs ;
int i , x ;
ifs . open (" in . txt ") ;
for (i=O ; i<10 ; i++) {

ifs » x ;
cout « x « endl ;

}
return 0 ;

The open method of both the i f stream and of stream classes has a second
parameter for specifying the mode for opening the file. It should be clear from the
preceding examples that the second parameter has a default value. This book does

9.4 Operator Overload ing 335

not cover the details of the second parameter or how to read or write binary files
with C++.

1 9 .4 1 Operator Over load i ng

As you may have determined based on the discussion of strings, C++ supports user­
defined operator overloading. As with Python, the purpose of operator overloading
is to allow for more concise, readable code. Because C++ does not use references by
default , it is also necessary to use operator overloading to override the assignment
operator for classes that use dynamic memory; we will discuss this in Chapter 10 .

With C++, you may choose to make the operators methods of the class or stan­
dalone functions (a few must be standalone functions) . Some programmers prefer
the standalone functions, since the binary operator functions take two parameters
corresponding to the two instances of the class to which the operator is applied. If
you implement the operator as a method of the class, only one parameter appears in
the method prototype; the left parameter for the operator is the implicit parameter
corresponding to the instance with which the method was called. In Python both
parameters appear in the definition since the self parameter is explicit . The
drawback of using standalone functions is they cannot access the private data of
the class. Because of this, the class must provide methods to access and possibly
modify the private data. C++ also provides a friend construct for allowing certain
functions or methods from other classes to access the private data. We will examine
this technique when we learn how to overload the input and output operators.

C++ names the methods for operator overloading using the word operator
followed by the actual symbol for the operator that is being overloaded. We will
first examine the technique where the operator is not a member of the class, so we
will be writing standalone functions. The following is the complete Rational header
and implementation file for the addition operator written as a standalone function.

I I Rationalv1 . h
class Rational {

public :
II constructor
Rational (int n = 0 , int d = 1) { set (n , d) ; }
II sets to n I d
bool set (int n , int d) ;

II access functions
int num() const { return num_ ; }
int den() const { return den_ ; }

336 Chapter 9 C++ Classes

II returns decimal equivalent
double decimal () const { return num_ I double (den_) ; }

private :
int num_ , den_ ; II numerator and denominator

} ;

II prototype for operator+ standalone function
Rational operator+ (const Rational &r1 , const Rational &r2) ;

II Rationalv1 . cpp
#include "Rationalv1 . h"

bool Rational : : set (int n , int d)
{

if (d ! = 0) {
num - n ;
den - d ;
return true ;

}
else

return false ;
}

Rational operator+ (const Rational &r1 , const Rational &r2)
{

}

int num , den ;

num = r1 . num() * r2 . den () + r2 . num() * r1 . den() ;
den = r1 . den () * r2 . den () ;
return Rational (num , den) ;

Note that since the operator is a standalone function, the class name and two
colons (Rational : :) is not placed in front of the name of the function (operator+) .
A sample program that calls the operator is

II mainv1 . cpp
#include "Rationalv1 . h"
int maine)
{

}

Rational rl (2 , 3) , r2 (3 , 4) , r3 ;

r3 r1 + r2 ; II common method of calling the operator function
r3 operator+ (r1 , r2) ; II direct method of calling the function

9 .4 Operator Overload ing 337

Since the function is not a member of the class, it cannot access the private data
members directly and needs to use the public methods to access the numerator and
denominator. The function prototypes for the standalone function version of many
of the operators that can be written are summarized in the following table (this is
not a complete list) . For other classes, you obviously need to replace Rational with
the name of that class type. We pass the parameters as const reference parameters ;
this means only COllst methods of the Rational class can be called inside these
functions. This does not cause a problem since applying any of the operators should
not change the parameter(s) . Remember that the reason for passing class instances
using the const designation and by reference is that when using pass by reference,
only the address of the object is passed. This results in less data being copied than
if we used pass by value so it is faster and uses less memory. The first column in
the table shows the prototype for the function. The second column shows how the
function/operator is called for two instances of the Rational class and what result
it computes and returns.

Function Computes
Rational operator+ (const Rational&; ri , const Rational&; r2) ri + r2
Rational operator- (const Rational&; ri , const Rational&; r2) ri - r2
Rational operator* (const Rational&; ri , const Rational&; r2) ri * r2
Rational operator/ (const Rational&; ri , const Rational&; r2) ri / r2
Rational operator- (const Rational&; r1) -ri
bool operator« const Rational&; ri , const Rational&; r2) ri < r2
bool operator<= (const Rational&; ri , const Rational&; r2) ri <= r2
bool operator> (const Rational&; ri , const Rational&; r2) ri > r2
bool operator>= (const Rational&; ri , const Rational&; r2) ri >= r2
bool operator== (const Rational&; ri , const Rational&; r2) ri == r2
bool operator ! = (const Rational&; ri , const Rational&; r2) ri ! = r2

The operator overloading code can also be written as a method (Le . , a member of
the class) . Usually the operator would be written in the .cpp file and the prototype
for it would be written in the .h file . Since we are writing a member method, the
prototype needs to be declared in the public section of the class declaration. The
object the method is called with is the implicit first parameter rl that is visible in
the function version, so it is not used in the method version. The following shows
the header file and implementation file for the addition operator written as a method
of the class.

338 Chapter 9 C++ Classes

II Rationalv2 . h
class Rational {

public :
II constructor
Rational (int n = 0 , int d = 1) { set (n , d) ; }

II sets to n I d
bool set (int n , int d) ;

II access functions
int num() const { return num_ ; }
int den () const { return den_ ; }

II returns decimal equivalent
double decimal () const { return num_ I double (den_) ; }

Rational operator+ (const Rational &r2) const ;

private :
int num_ , den_ ; II numerator and denominator

} ;

II Rationalv2 . cpp
#include "Rationalv2 . h"

II code for set method is also required
II see previous example for the code

Rational Rational : : operator+ (const Rational &r2) const
{

}

Rational r ;

r . num_ = num_ * r2 . den_ + den () * r2 . num () ;
r . den_ = den_ * r2 . den_ ;
return r ;

Since the method is a member of the class, it can directly access the private
data members of any instance of the class. Also note that the first parameter is
implicit in the method prototype as it is in all C++ class methods. Because of
this, that instance's data and methods are accessed by specifying the name of the
data/method member without a variable name before it while the explicit second
parameter's (r2) data is accessed by specifying the name of that parameter followed
by a period and then the data/method member. The preceding example uses both
num_ and den 0 to demonstrate that instance variables and methods, respectively,

9 .4 Operator Overload ing 339

can be accessed directly for the implicit parameter; normally you would pick one
style and use it consistently. Some programmers prefer the non-member function so
that the function prototype is symmetric and shows both parameters. Others prefer
the class method so all the code is encapsulated within the class and the methods
can access the private data.

The common way of calling the method is using the operator notation as we did
when using the function technique for writing operators. The direct way of calling
it is the standard syntax for' calling a method (i .e . , a class instance, followed by a
period, followed by the method name) .

II mainv2 . cpp
#include IRationalv2 . h"
int main O
{

Rational r1 (2 , 3) , r2 (3 , 4) , r3 ;

r3 = r1 + r2 ; II common method of calling the operator method
r3 = r1 . operator+ (r2) ; II direct method of calling the operator

}

The following table shows the prototypes for the operators when they are mem­
bers of the class. The second column again shows how to call the methods and what
value the operator computes and returns.

Method Computes
Rational operator+ (const Rational& r2) r1 + r2
Rational operator- (const Rational& r2) r1 - r2
Rational operator* (const Rational& r2) r1 * r2
Rational operator/ (const Rational& r2) r1 I r2
Rat ional operator- C) -r1
bool operator« const Rational& r2) r1 < r2
bool operator<= (const Rational& r2) rl <= r2
bool operator> (const Rational& r2) r1 > r2
bool operator>= (const Rational& r2) r1 >= r2
bool operator== (const Rational& r2) r1 == r2
bool operator ! = (const Rational& r2) r1 ! = r2

If you wish to override the input (») and output (<<) operators, they must be
written as standalone functions. The reason for this is the first parameter of a
method must be an instance of that class. Consider the code cin » r 1 . You might
be tempted to write it as a member method, but recall that this would imply the
method would be called as cin . operator» Crl) . Since cin is not an instance of

340 Chapter 9 C++ Classes

the Rational class, the input operator cannot be a member of the Rational class
and must be written as a standalone function. This is also the case when using the
output operator « with an instance of the ostream class such as cout o A standalone
function of the output operator for our Rational class is

std : : ostream& operator« (std : : ostream los , const Rational &r)
{

}

os « r . num O « " / " « r . denO ;
return os ;

The operator needs to return the instance of the output stream variable os that
is of type ostream so that it can be chained together (e.g. , cout « r1 « r2) . In
this example, the returned result of cout « r1 needs to be the ostream instance
cout so it is now the first parameter to the call for outputting r2. The ostream
parameter os also needs to be passed by reference and returned as a reference since
outputting the variable to the stream changes the stream. We will cover returning
by reference in more detail in Chapter 10 , but for now just learn the syntax for
returning by reference which is appending an ampersand onto the return type (e.g. ,
ostream& for the output operator) .

Since the operator is a non-member function, it cannot access the private data
of the Rational class. There are times where we want to allow certain other
classes or certain functions to be able to access the private data of a class. C++
provides a mechanism for permitting this using the friend keyword. One common
example where allowing a non-member function to access the private members
directly makes sense is the input/output operator functions. Another example
would be our ListNode class. We may want to allow the LList class to access
the ListNode data members directly since those two classes are tightly coupled
together. A function or class is specified as a friend inside the class that wants to
make it a friend. The following code example demonstrates this for our Rational
class. If we wanted to make an entire class a friend, an example of the syntax is
friend class LList. If we placed that line inside our ListNode class then all the
LList methods would have access to the private data of the ListNode . We will
demonstrate a complete example of this when we examine linked structures using
C++ in Chapter 1 1 .

The following code is the header file for the complete, simplified Rational
class demonstrating operator overloading and friends. For brevity, the pre- and
postconditions and comments are not included for all the methods.

9.4 Operator Overload ing

II Rationalv3 . h
#ifndef _RATIONAL_H
#define RATIONAL_H

II needed for definition of ostream and istream classes
#include <iostream>

class Rational {

II declare input and output operators functions as friends
II to the class so they can directly access the private data
friend std : : istream& operator» (std : : istream& is , Rational &r) ;
friend std : : ostream& operator« (std : : ostream& os , const Rational &r) ;

public :
II constructor
Rational (const int n

II sets to n I d

0 , const int d

bool set (const int n , const int d) ;

II access functions
int num() const { return num_ ; }
int den() const { return den_ ; }

II returns decimal equivalent
double decimal () const ;

private :

1) { set (n , d) ; }

int num_ , den_ ; II numerator and denominator
} ;

II prototypes for operator overloading
Rational operator+ (const Rational &r1 , const Rational &r2) ;

II declare the non-member input output operator functions
std : : istream& operator» (std : : istream &is , Rational &r) ;
std : : ostream& operator« (std : : ostream &os , const Rational &r) ;

#endif

The corresponding .cpp implementation file is

II Rationalv3 . cpp
using namespace std ;
#include "Rationalv3 . h"

341

342 Chapter 9 C++ Classes

bool Rational : : set (const int n , const int d)
{

}

if (d ! = 0) {

}

num_ = n ;
den_ = d ;
return true ;

else
return false ;

Rational operator+ (const Rational &r1 , const Rational &r2)
{

}

int num , den ;

num = r1 . num() * r2 . den() + r2 . num() * r1 . den() ;
den = r1 . den() * r2 . den () ;
return Rational (num , den) ;

std : : istream& operator» (std : : istream &is , Rational &r)
{

}

char c ;

is » r . num_ » c » r . den_ ;
return is ;

std : : ostream& operator« (std : : ostream &os , const Rational &r)
{

}

os « r . numO « II / II « r . den O ;
return os ;

The Rational object passed to the input operator function must be passed by
reference since we want the value we read to be stored in the actual parameter sent
(Le. , when we execute cin » r we want the value the user enters to be stored in r) .
This is also why it cannot be passed as a const parameter. To allow us to type in a
value such as 2/3, we need to read the forward slash in the input operator function.
We declare the variable c as a char to store the slash but ignore the value after
reading it since our Rational class encapsulates the number by storing two integers.

Also notice in our example that we did not put the using namespace std line in
the header file . Instead we used the prefix syntax std : : when referring to the names
of the ostream and istream classes that are defined within the std namespace.
Remember that the reason for this is that if we had put the using namespace std

9.5 C lass Variables and Methods 343

line in the header file, any file that included our Rational.h file would effectively
have the using namespace std line in it . For this reason, you should never put
a using statement in a header file . We did put the using namespace std line in
our Rational.cpp file so that we did not need to write std : : in front of all the
names defined in the namespace; this is not a problem since you never include an
implementation (.cpp) file.

\ 9 . 5 \ Class Var ia b les a n d Methods

c++ also supports a mechanism for creating class variables. You may recall that
we discussed how to create class variables in Python in subsection 2 . 3 . 2 . With
instance variables, each instance of a class gets its own separate copy of the instance
variables. With class variables, all instances of the class share the same variable
(Le. , there is only one copy of the class variable no matter how many instances of
the class exist) . The Card class we discussed in subsection 2 . 3 . 2 is a good example
in which using class variables makes sense. We will create a similar Card class in
this section using C++ class variables.

II Card . h
#ifndef CARD_H __
#define CARD_H __
#include <string>

class Card {
public :

Card (int num=O) { number_ = num ; }
void set (int num) { number_ = num ; }
std : : string suit 0 const ;
std : : string face O const ;

private :

} ;

int number_ ;
static const std : : string suits_ [4] ;
static const std : : string faces_ [13] ;

inline std : : string Card : : suit () const
{

return suits_ [number_ I 13] ;
}
inline std : : string Card : : face () const
{

return faces_ [number_ % 13] ;
}
#endif II __ CARD_H __

344 Chapter 9 C++ C lasses

The mechanism for creating class variables is to declare them with the static
prefix. In C++, there are a number of different uses for the keyword static and
it is easy to confuse them. This use of static has a completely different meaning
than the use of static we discussed in the previous chapter to create local variables
that always use the same memory location. Declaring an instance variable static
indicates i t i s a class variable and thus there is only one copy of that variable that
all instances of the class share. U sing a class variable in our example makes sense
since we do not need a separate copy of the face and suit names for each instance of
the class. Making these instance variables would be a huge waste of memory. With
class variables, each instance of our class requires only four bytes of memory. If
the face and suit name variables were not class variables, each instance of our Card
class would require around 100 bytes to store the number and all the strings. The
following is the implementation file for the Card class.

II Card . cpp
#include " Card . h"

const std : : string Card : : suits_ [4] = {
"Hearts " , "Diamonds " , " Clubs " , " Spades " } ;

const std : : string Card : : faces_ [13] = {
"Ace " , "Two " , "Three " , "Four" , "Five " , " Six " , " Seven" , "Eight " , "Nine" ,
"Ten" , " Jack" , II Queenll , " King" } ;

Class variables are defined as if they were non-local variables (i .e . , outside of any
function) and the variables are initialized using the assignment statement once when
the program is first executed. Since there is only one copy of the class variables,
we do not want to assign the values inside the constructor. We declared the class
variables with the const prefix in the header file so once we initialize the variables
with these statements, we cannot change their values. Even if the class variables
were not declared with the const prefix, we would still need to define them once in
the implementation file (with or without providing initial values) . A class definition
does not actually cause any memory to be allocated; it is only when we create an
instance of the class that memory is allocated. This is why we must define the class
variables in an implementation file so that memory is allocated for them.

The following is a sample program that uses our Card class containing the class
variables.

II test_Card . cpp
#include <iostream>
using namespace std ;
#include IICard . h"

9 .5 C lass Variables and Methods

int mainO
{

}

Card c [52] ;
int i ;

for (i=O ; i<52 ; ++i) {
c [i] . set (i) ;

}
for (i=O ; i<52 ; ++i) {

}
cout « c [i] . fac:e O « II of II « c [i] . suit O « endl ;

return 0 ;

345

Even though there is no need to do this, what would happen if we tried to
put the statement cout « Card : : faces_ [O] « endl ; in our main function? This
does demonstrate the correct usage of accessing a class variable using the class name
followed by two colons followed by the name of the class variable. However, the class
variables were declared private so they are not accessible outside of the class even
though the variable definitions are not inside the class. If we declared the class
variables in the public section this would work.

You may be wondering why we needed to create a separate implementation file
since all the methods were defined inline in the header file. If we instead put the
class variable definitions in the header file as the following code shows, we could end
up with the sarne names being defined multiple times. Recall that each variable or
function can have only one definition.

II this code should not be used

#ifndef __ CARD_H __
#define __ CARD_H __

#include <string>

class Card {
public :

Card(int num=O) { number_ = num ; }
void set (int num) { number_ = num ; }
std : : string suit e) canst ;
std : : string face () canst ;

private :

} ;

int number_ ;
static canst std : : string suits_ [4] ;
static canst std : : string faces_ [13] ;

346 Chapter 9 C++ C lasses

const std : : string Card : : suits_ [4] = {
"Hearts " , "Diamonds" , " Clubs " , " Spades" } ;

const std : : string Card : : faces_ [13] = {
"Ace " , "Two " , "Three " , "Four" , "Five " , " Six" , "Seven" , "Eight " , "Nine " ,
"Ten" , " Jack" , " Queen" , "King" } ;

//--

inline std : : string Card : : suit () const
{

return suits_ [number_ / 13] ;
}

inline std : : string Card : : face () const
{

return faces_ [number_ % 13] ;
}

//--

This header file works correctly if only one file includes it since that creates
one definition of the class variables suits and faces_. However, if multiple
implementation files that are used to create one executable program include this
header file, then we have multiple definitions of the class variables and we get a
linker error indicating multiple definitions of the symbols. For this reason, class
variables should always be defined in an implementation file as our original example
did.

In our example the class variables were declared const since it does not make
sense to change them. But in some cases you may want class variables that are not
const . One possible use of a non-const class variable is to keep track of the number
of instances of the class that are created. To do this, we create a class that has the
constructor increment the class variable. The value of this class variable tells us the
total number of instances of the class that have been created. To do this , we add a
class variable to the class using the following line inside the class definition in the
header file: static int count_ ; . We then add the line int Card : : count_ = 0 ;
to the implementation file. If we declare the class variable in the public section
of the header file, then we can access it directly. This would allow us to put the
following line in our main function: cout « Card : : count_ « endl ; . Of course,
normally you do not want to declare data members of a class in the public section.
Someone could put the line Card : : count_ = 100 ; in their code and destroy the

9.6 Chapter Summary 347

integrity of the value count_ storing the number of instances of the Card class that
have been created.

Classes can also have class methods that are called without an instance of the
class. Using a class 1nethod to access the class variable count_ is the proper way to
ensure the integrity of the data. We need to add a class method that returns the
value of the class variable. Class methods are also declared with the static prefix.
The declaration and definition of the method is static int count 0 { return
count_ ; } . We call the method using the code cout « Card : : count 0 « endl .
You should realize that class methods can access class variables, but they cannot
access instance variables. The reason for this is that when calling a class method,
you are not specifying an instance of the class as we do when we call an instance
method (e.g. , Card : : count 0 vs . c . face O) . A class method cannot know which
instance data to use since an instance is not specified when the method is called.

You may have noticed that our sample code to count the number of cards never
decreases the class variable storing the number. This means the class variable will
store the number of instances that have been created even though some of them
may not exist . To make the class variable indicate the number of instances of
the class that currently exist as the program is executing, we need to decrease
the value of the class variable when the lifetime of a Card instance ends. We will
learn in Chapter ref C++ dynamic memory about destructors; they could be used
to accomplish this task.

1 9 . 6 1 Chapter S umma ry

This chapters covers the syntax and concepts for writing and using C++ classes.
The following is a SUlnmary of some of the important concepts .

• C++ classes are usually written in two parts that are in separate files : the class
definition in a header file and the code for the methods in an implementation
file.

• A semicolon must be placed after the ending brace of a class definition.

• C++ constructors have the same name as the class and are called automati­
cally when a variable of that type is defined.

• Programmers commonly prefix or suffix an underscore onto instance variables
so they do not accidently use the same identifier name for instance variables
as they do for formal parameters and local variables.

348 Chapter 9 C++ Classes

• C++ provides a built-in string class that can be used with the standard
input / output techniques. The C++ string class also implements the common
operators ([] , +, and +=) which work the same as the operators in Python.

• The built-in types and string class can also be read from and written to files
using the same syntax for standard input and output.

• C++ allows programmers to overload operators for their own classes; most
of the operators can be written as standalone functions or as members of the
class. The names of these functions/methods is operator followed by the
actual operator symbol(s) .

• Class variables should be used when only one copy of the data is needed for
all instances of the class. Class methods can only access class data. In C++,
class variables and methods are designated using the static keyword.

1 9 . 7 1 Exercises

True/ Fa lse Questions

1. C++ classes have a constructor that has the same name as the class.

2. C++ constructors are called automatically.

3. You must write code for the C++ constructor of every class you write.

4. Methods of a C++ class can create or add additional instance variables to the
class.

5. Methods may be declared in the private section of the class definition.

6. Instance variables must be declared in the private section of the class defini­
tion.

7. A compiler error is generated if a method has a variable with the same name
as an instance variable.

8 . Methods may be written inline in the header file.

9. The string class is defined within the std namespace.

10. The default input operator for a string reads one line of text just as the Python
raw_input function does.

9.7 Exercises 349

1 1 . The string class has a method named getline .

12 . When using getline , the new line character is removed from the input stream.

13. C++ uses class instances to read from and write to both files and the keyboard
or screen.

14. When overloading C++ operators, you can write most methods as either a
function or a rnethod.

15. A class method can access instance variables.

16 . A method can access both class variables and instance variables.

M u lt i ple Choice Quest ions

1. In C++, instance variables may be declared

a) private only.
b) public only.
c) protected only.
d) public, private, or protected.

2. In C++, instance methods may be declared

a) private only ..
b) public only.
c) protected only.
d) public, private, or protected.

3. Members of a class that are declared private may be accessed

a) only by methods of the class.
b) only by methods of the class or friends of the class.
c) only by methods of the class, subclasses of the class, or friends of the class.
d) by any code .

4. Members of a class that are declared protected may be accessed

a) only by methods of the class.
b) only by methods of the class or friends of the class.
c) only by methods of the class, subclasses of the class, or friends of the class.
d) by any code.

350 Chapter 9 C++ Classes

5. Members of a class that are declared public may be accessed

a) only by methods of the class.
b) only by methods of the class or friends of the class.
c) only by methods of the class, subclass, or friends of the class.
d) by any code.

6. Methods that are declared const

a) declare constants within the method.
b) cannot modify any of the instance variables .
c) must have parameters that are all const.
d) must return a constant.

7. If you are examining a C++ class that someone else wrote, how do you
determine if a variable is a local variable or an instance variable?

a) The same variable name is used in more than one method.
b) The variable is used in the constructor.
c) Instance variables are always preceded by an underscore.
d) Instance variables are declared within the class definition, not in one of the
methods.

8. How can C++ operators be written?

a) They can only be written as members of a class.
b) They can only be written as functions.
c) They can be written as either members of a class or functions.
d) Some can only be written as functions while many can be written as
functions or methods.

9. Where are C++ class variables accessible?

a) Their access depends on whether they are declared private, protected, or
public .
b) They are accessible only by the methods in the class.
c) They are accessible only by class methods.
d) They are accessible anywhere.

10 . C++ class variables are declared by

a) using the keyword class before the variable type.
b) using the keyword static before the variable type.
c) putting them in the header file, but after the ending brace for the class.
d) declaring them inside the constructor.

9.7 Exercises 351

Short-Answer Questions

1. What is a COIIlmon convention used to indicate instance variables so they are
not confused with local variables in a method, since C++ does not require
syntax similar to the use of self in Python?

2. What does the const specification for a method mean?

3. What can go wrong if you write a method in a header file but do not specify
it as an inline method.

4. What is the exact output of the following program:

#include <iostream>
#include <fstream>
#include <string>

using namespace std ;

int main O
{

ifstream ifs ;
string first , last , name 1 , name2 , name3 ;

}

ifs . open ("getline . txt ") ;
ifs » first » last ;
getline (ifs , name1) ;
getline (ifs , name2) ;
getline (ifs , name3) ;

cout « f irst « «
cout « name1 « endl ;
cout « name2 « endl ;
cout « name3 « endl ;

last « endl ;

if the input file getline . txt contains the following:

Dave Reed
John Zelle
Jane Doe
John Doe

5. What operators must be written as functions and cannot be written as mem­
bers of a class and why is this?

352 Chapter 9 C++ C lasses

6. Why can class methods not access instance variables of the class?

7. What is the difference between a class variable and an instance variable?

Programm ing Exercises

1 . Write a class to represent a deck of playing cards and use the class to play a
game of blackjack. You may also want to use another class to represent the
blackjack gamc.

2. Write the Markov gibberish generator from Chapter 3 using a C++ class.
Extend it to allow the size of prefix to be determined when the model is
created. The constructor will take a parameter specifying the length of the
prefix.

3. Add four basic mathematical operators +, - , *, and / , the six comparison
operators <, <=, >, >=, ==, and ! =, and the input and output operators to
the Rational class. Write the mathematical and comparison operators as
methods. Store the numerator and denominator in reduced form.

4. Add the operators listed in the previous exercise to the Rational class as
functions.

5. Write a Longlnt class that stores numbers as an array of single digits (i .e . ,
each entry in the array is a number between 0 and 9) . Your class should
support numbers up to 100 digits. Using operator overloading have your class
support addition, subtraction, and multiplication. Write a set method that
allows you to pass a string of digits and sets the number based on the string.
Each char element in the string can be treated as a number between 0 and
127; subtracting 48 , which is the ASCII value for 0, will allow you to convert
the char to a number between 0 and 9 . Also, provide a method for outputting
the number. Write a program that tests your Longlnt class.

6. Write a class to represent a polynomial. The class should store an array of the
coefficients and the degree of the polynomial. You may assume a maximum
degree of 100 for the polynomial. Write the methods for the addition, subtrac­
tion, and multiplication operators and write the input and output operators
for the class. Also provide a method for evaluating the polynomial at a specific
value. Write a program that tests your Polynomial class.

7. Write a class to represent a Set . Include the methods addElement ,
removeElement , removeAll, union, intersect , and isSubset .

Chapter 10

Object ives

c++ Dynamic

Memory

• To understand the similarities and differences between C++ pointers and
Python references.

• To learn how to use the C++ operators that access memory addresses and
dereference pointers.

• To understand how to dynamically allocate and deallocate memory in C++.

• To learn how to write classes in C++ that allocate and deallocate dynamic
memory.

1 10 . 1 1 I ntroduct ion

As we briefly discussed in earlier chapters, the internal mechanisms that Python
and C++ use for storing data in variables and names are different. In this chapter
we will discuss these differences in detail. C++'s default mechanism for storing
variables is different than Python's, but C++ does support pointer variables that
are similar to Python references. C++ programmers can choose which mechanism
to use depending on the efficiency and capabilities they need. C++ pointers give
us the flexibility to delay memory allocation decisions until run-time. This makes it
possible to change the size of arrays at run-time and create linked structures in C++.
Using C++ pointers does require much more care than using Python references; it
is easy to make mistakes with pointers and create a program that gives unexpected

353

354 Chapter 10 C++ Dynamic Memory

results or crashes. This chapter and the next chapter will cover the use of dynamic
memory and pointers. We will begin by reviewing the basic memory models of
Python and C++.

Python names are a reference to a memory location where the actual data
is stored along with type information and a reference count ; different names can
refer to the same data object and assignment statements make the name refer to a
different data object . C++ associates (binds) a memory location with each variable
and the same memory location is used for that variable throughout the lifetime of
the variable. Each assignment statement causes different data to be stored in the
memory location bound to the variable. Here is a C++ example:

II memory . cpp
#include <iostream>
using namespace std ;

int mainO
{

int x , y , z ;
x = 3 ;
Y = 4 ;
z = x ;
x = y ;
cout « x « II I I « y « I I I I « z « endl ;
return 0 ;

}

The following table shows a representation of memory while this program is
executing. When the main function begins execution, four bytes are allocated for
each of the three integers. We have started our table at the memory location 1000 ,
but the specific memory address used is not important and can vary each time the
program is run. The key point to notice is that the memory location used for each
variable does not change; the data stored at the memory location does change as
different values are assigned to the variable. As you would expect , the program
outputs 4 4 3 .

Memory address Variable name Data value
1000 x 3 then 4
1004 Y 4
1008 z 3

The Python version of this program is the following:

memory . py
x = 3

Y = 4
z = x
x = y
print x , y , z

10. 1 I ntroduction 355

z x y

Figure 1 0. 1 : Picture of Python memory references

The end result of executing comparable code for C++ variables and Python
references to immutable types is the same even though the internal representations
are different. The Python program also outputs 4 4 3. Figure 10 . 1 shows a pictorial
representation of the memory for this Python code. The key point to notice here is
that there is one copy of the 3 object and one copy of the 4 object at fixed memory
locations; the names refer to these objects and as the code executes , the memory
location that x refers to changes from 1000 to 1012 . At the end, we have multiple
names referring to the same memory location. We have not shown the reference
count and type infonnation for the object, but each Python integer object requires
12 bytes on 32-bit systems.

The important differences between Python and C++ are

• Each C++ variable corresponds to a fixed memory location where data is
stored; each time a value is assigned to that variable, the same memory location
is used to store the data .

• A Python name refers to an object in memory. Python objects must also store
information about their type and a reference count, so storing data in Python
requires more space than storing the same data in C++.

356 Chapter 10 C++ Dynamic Memory

• Assigning a Python name to an object changes the reference so that it refers
to a different object (i .e. , the memory address the name refers to changes) .

• It is possible to have multiple names refer to the same object in Python.
Modifying a mutable object via one name affects the other name. In C++,
each variable gets its own fixed address so changing one variable does not affect
other variables.

• C++ does support references, but they are not commonly used. C++ also
supports pointers, which are commonly used and allow us to perform similar
types of operations that Python references support.

The differences between using references in Python and storing the actual data
in variables in C++ become apparent when you modify a mutable type instead of
assigning a variable to a new or different object . We will use our Rational class
presented in earlier chapters to demonstrate this . The corresponding Python and
C++ code fragments we will examine are

Python code
r1 = Rational 0
r1 . set (2 , 3)
r2 = r1
r1 . set (1 , 3)
print r1
print r2
II C++ code
Rational r1 , r2 ;
r1 . set (2 , 3) ;
r2 = r1 ;
r1 . set (1 , 3) ;
cout « r1 « endl ;
cout « r2 « endl ;

These assume we have defined the appropriate methods for our classes. The set
method in Python and C++ is

Python code
def set (self , num , den) :

self . num = num
self . den = den

II C++ code
void Rational : : set (int n, int d)
{

}

num_ = n ;
den_ = d ;

10. 1 I ntroduction 357

In Python, both r1 and r2 refer to the same object that we will assume is
stored at memory location 1000, as the following table shows. Additional memory
is required in Python to store information about the data type for the object and
the reference count for the object , but we will not include that here. Since we
are creating a Rat ional object that has the instance variables num and den, we
have named the variable name column based on the instance variable names of the
Rational object .

Memory address Variable name Data value

1000 . num reference to 2 , then 1
1004 . den reference to 3

If you recall our discussions from section 4 . 2 , you will understand that the sample
Python code will change the one Rational object to which both names refer.

The corresponding C++ declaration of r1 and r2 results in two Rational objects
being created, requiring a total of 16 bytes of memory being allocated as the following
table shows. Each Rational object requires eight bytes since it has two int instance
variables that each require four bytes. No additional memory is needed in C++ since
the C++ run-time environment does not need to keep track of the data type or the
reference count .

Memory address Variable name Data value

1000 r1 . num ?
1004 r1 . den ?
1008 r2 . num ?
1012 r2 . den ?

After the statement r1 . set (2 , 3) , the memory now holds

Memory address Variable name Data value
1000 r1 . num 2
1004 r1 . den 3
1008 r2 . num ?
1012 r2 . den ?

Unless we have defined our own operator= (we will discuss this in subsec­
tion 10 .4 . 3) for the C++ Rational class, the execution of r2 = r1 effectively causes
the two statements r2 . num = r1 . num and r2 . den = r1 . den to be executed. We
cannot explicitly write those two statements ourselves since the instance variables are

358 Chapter 10 C++ Dynamic Memory

private, but the compiler generates the code that performs those two assignments.
This causes the data stored at memory location 1000 to be copied to memory location
1008 and the data stored at memory location 1004 to be copied to memory location
1012. The following table shows the memory representation after the assignment
statement .

Memory address Variable name Data value

1000 r1 . num 2
1004 r1 . den 3

1008 r2 . num 2
1012 r2 . den 3

After the statement r1 . set (1 , 3) , the memory now holds

Memory address Variable name Data value

1000 r1 . num 1
1004 r1 . den 3

1008 r2 . num 2
1012 r2 . den 3

Unlike in the Python version, r1 and r2 now hold different values so the output
for r1 is 1/3 and the output for r2 is 2/3. If we had instead executed the statement
r2 . set (1 , 3) , the output for r1 would be 2/3 and the output for r2 would be 1/3 .
The difference between Python and C++ is that each declared C++ variable gets
its own memory location to store the instance variables and assigning one variable
to another copies the data, but assigning one Python name to another results in
both names referring to the same object .

These different mechanisms for managing memory have trade-offs. Python's
mechanism allows dynamic typing and supports linked structures. However, overall
Python uses more memory since we have to store the identifier name in a dictionary,
the references, and the actual data with type information and a reference count . It
also requires two memory accesses to get the data for a given Python name. C++ 's
mechanism uses less memory, and is almost always faster. One case where Python
is faster is assignment of two names that are a class with a large amount of data.
C++ effectively gives a deep copy while Python makes a reference to the same
data. So assignment is faster in Python for class objects, but is not performing an
equivalent operation. This is the reason variables that are instances of a class are
typically passed by reference in C++ even when we do not want to change the data
for the variable. As we discussed, the const designation is used when we do not

10. 1 I ntroduction 359

want to change the data so the compiler will make certain our code does not change
it. Computer scientists use the term reference semantics to describe how Python's
assignment statement works, since it creates another reference, and use the term
value semantics to describe how C++'s assignment statement works, since it copies
the value of the variable.

Python's memory management mechanism is known as implicit heap dynamic.
The Python interpreter automatically allocates and deallocates memory as needed.
A section of memory known as a dynamic memory heap (sometimes referred to
simply as a heap) is used for these allocations and deallocations. The default C++
memory management mechanism is known as stack dynamic. When a function is
called, the amount of space needed for the variables is allocated on a stack. Since in
most cases we can determine at compile time how much memory is needed for all the
local variables, one Inachine language instruction can be used to allocate the space
on the stack. When the function ends, the stack shrinks back to the space it was
before the function call, effectively deallocating the memory for the local variables.

One drawback of the stack dynamic technique is that it does not directly support
linked structures. Another issue is that we cannot change the amount of memory
allocated for a variable after its first allocation. In most cases, the exact amount
of memory that is allocated for a variable is determined at compile time; the one
exception we saw was the variable length arrays discussed in section 8 . 1 1 . In this
case, the amount of memory to be allocated is not determined at compile time,
but once it is allocated, we cannot make the array larger using the same variable.
This makes it impossible to make a stack-dynamic-based data structure similar to
Python's built-in list that can grow in size as needed.

As you might have figured out by now, C++ must support another mechanism
for allocating memory for variables since the Python interpreter is written in C .
C++'s other technique i s known as explicit heap dynamic. Like Python, a section
of memory known as the dynamic memory heap (or just heap) is used for these
allocations and deallocations. However, as the term explicit heap dynamic implies,
in C++ your program code must include instructions that directly allocate and
deallocate the memory. C++ uses pointer variables to support this dynamic memory
allocation and deallocation. With C++ pointers we can write code that allows us
to determine and change the amount of memory allocated at run-time (rather than
setting the amount at compile time) . We can write data structures that can grow
in size as needed and write linked structures using C++ pointers. This chapter will
discuss how to use C++ pointers, how they are similar to Python references, and
how to write C++ classes that use dynamic memory. We will learn how to write
linked structures in C++ in Chapter 1 1 .

360 Chapter 10 C++ Dynamic Memory

\ 10 . 2 1 C++ Poi nters

In C++, a pointer variable stores a memory address. C++ requires that a pointer be
defined with a specific type. The type indicates how the data at the memory address
should be interpreted. Remember that internally, the computer's memory stores Is
and Os and the type of a C++ variable tells the compiler how the code it generates
should interpret those bits. Since pointer variables store an address, all pointer
variables require the same amount of space (four bytes on 32-bit systems) . This
should remind you of Python references. A C++ pointer is a concept similar to a
Python reference. The difference is that with a C++ pointer, you have access to both
the address and the data that the pointer points to (Le. , the data at that address) ,
while a Python reference gives you access only to the data that the reference points
to.

C++ pointers are declared using the asterisk (*) as a prefix to the variable
name. This indicates the variable will hold the address of a memory location where
a data value of the specified type is stored. A common mistake is to forget the
asterisk before each variable name when you want to declare multiple pointers in
one definition statement . In the following example, b and c are declared as pointers
to an int and d is declared as an int o The second line is also legal, although we
recommend you do not use this style. Placing the asterisk immediately after the
word int makes it appear that all variables in that statement are to be pointers to
an int , but only e is a pointer and f is an int o This example allocates 20 bytes
since both int types and pointer types require four bytes.

int *b , *c , d ; II b and c are pointers to an int , d is an int
int* e , f ; II only e is a pointer to an int , f is an int

The next question you should be asking yourself is how do we store an address
in a pointer variable. We have no idea which memory addresses our program is
allowed to use so we have to request a valid address . One way is to use the address
of an existing variable. The following example demonstrates this and also shows us
how to access the data that a pointer variable points to.

I I pi . cpp
#include <iostream>
using namespace std ;

10.2 C++ Pointers

int mainO
{

}

int *b , *c , x , y ;
x = 3 ;
Y = 5 ;
b = &x ;
c = &y ;
*b = 4 ;
* c = *b + *c ;
cout « x « " " « y « " " « *b « " " « *c « " " ;
c = b ;
*c = 2 ;
cout « x « " " « y « " " « *b « " " « * c « endl ;
return 0 ;

361

The unary ampersand operator computes the address of its operand. Thus,
the statement b = &x causes the program to store the memory address of x in the
memory for the variable b. The following table indicates that the computer used
memory addresses 1000 through 1015 to store our variables and shows the value
of each variable after the statement c = &y is executed. The computer does not
necessarily use the address starting at 1000, but we commonly use that address in
our examples in this book.

Memory address Variable name Data value

1000 b 1008
1004 c 1012
1008 x 3

1012 Y 5

The unary asterisk operator is used to dereference a pointer. Dereferencing a
pointer means to access the data at the address the pointer holds. The statement *b
= 4 causes the program to store the data value 4 at memory address 1008 (since b
currently holds 1008) . Based on this knowledge, see if you can determine the output
of the sample program before reading the next paragraph.

The statement *c = *b + *c determines the integer values at memory address
1008 (the address b points to) and memory address 1012 (the address c points to)
and adds the 4 and 5 together. The result, 9, is stored at memory address 1012 (the
address that c points to) . The statement c = b copies the data value for b, which is
the address 1008, to the memory for c (Le. , 1008 is now stored at memory location
1004) . You should note that assigning pointer variables is essentially the same as
assigning two names in Python; both b and c now refer to the same data. Based on

362 Chapter 10 C++ Dynamic Memory

the information in the preceding paragraphs, you should be able to determine that
the output of the program is 4 9 4 9 2 9 2 2. After the statement *c = 2, the
memory representation is

Memory address Variable name Data value

1000 b 1008
1004 c 1008
1008 x 2
1012 Y 9

You may have already realized this, but another important concept to under­
stand is that a pointer to an int and an int are not the same type. Using the
variable declarations in the previous example, the statements b = x and x = b are
not legal. The variable b is a pointer so it must be assigned an address whereas x
is an int so it must be assigned an integer. This is more obvious if we declare the
pointer variables with another type such as double since on 32-bit systems they do
not use the same amount of storage. No matter what the type, a pointer to that
type and the actual type are not compatible data types.

We will now write a more practical example demonstrating the address and
dereferencing operators. The C programming language does not support pass by
reference as C++ does, so the only way to effectively change the actual parameters
using the C language is to use pointers. The necessary technique is to pass the
address of the actual parameter and then have the function or method dereference
the pointer so it changes the value at the address corresponding to the formal
parameter. You can do this in C++ also, but programmers typically use pass
by reference to accomplish this . The following example shows a swap function that
swaps two integer variables.

II swap . cpp
#include <iostream>
using namespace std ;

void swap (int *b , int *c)
{

}

int temp = *b ;
*b = * c ;
* c = temp ;

int main O
{

}

int x = 3 , Y = 5 ;
swap (&x , &y) ;
cout « x « " " « y « endl ;
return 0 ;

10.2 C++ Pointers 363

The formal parameters b and c are given the values of the addresses of x and
y respectively. Thus, the assignment statement *b = *c is equivalent to writing
x = y in the main function. You should note the similarity between this and pass
by reference. What happens if we add the line b = &temp to the end of the swap

function; does it change x? The statement would have no effect on x. The variable
b changes to hold the address of temp, but this does not change x or the value at
the memory address corresponding to x.

In our examples so far, we used the unary ampersand operator to assign a valid
address to a pointer variable. The other way to set a pointer to a valid address is
the new statement . The C++ new statement is used to allocate dynamic memory
from the heap and it returns the starting address of the memory that was allocated.
When you use the ne"w statement , you must indicate the data type for the object that
you want to allocate; the specified data type is used to determine how much memory
to allocate. When you explicitly allocate memory in C++, you must also deallocate
the memory when it is no longer needed. The delete statement is used to deallocate
memory that was dynamically allocated. The following example shows the explicit
heap dynamic version of our Python and C++ program written in section 10 . 1 .

II p2 . cpp
#include <iostream>
using namespace std ;

int mainO
{

}

int *x , *y , *z ;
x = new int ;
*x = 3 ;
y = new int ;
*y = 4 ;
z = x ;
x = y ;
cout « *x « " " « * y « " " « *z « endl ;
delete z ;
delete y ;
return 0 ;

364 Chapter 10 C++ Dynamic Memory

The pointer variables x, y, and z are stack dynamic variables and the 12 bytes
required for them are automatically allocated when the function begins and deallo­
cated when the function ends. In the following table, we have used the memory
locations 1000-10 1 1 for them. The new statement allocates memory from the
dynamic memory heap that we have started at memory location 2000. Notice that
we have two new statements so we must have two delete statements. We did not
use the same variable names with the new and delete statements, but the memory
allocated by the x = new int statement is deallocated by the delete z statement
since z holds the address that was allocated by that new statement. The delete
y statement deallocates the memory allocated by the y = new int statement . We
could have used delete x instead of delete y since the statement x = y causes
both x and y to hold the same address. The key point to remember is that each new
statement that is executed must eventually have a corresponding delete statement
that is executed to deallocate the memory that the new statement allocated. If you
forget a delete statement, your program will have a memory leak. Even though a
program with a memory leak may not crash, the code is not considered correct .

Memory address Variable name Data value

1000 x 2000 then 2004
1 004 y 2004

1 008 z 2000

2000 3
2004 4

Normally you would write this program as we did in section 1 0 . 1 since that
is more efficient. This pointer version requires more memory, and dereferencing a
pointer requires the computer to access two memory locations (cout « *x requires
accessing memory location 1 000 followed by memory location 2004) . The C++
version in this section is similar to the Python version as far as how the memory is
allocated. Compare the table for this version to the memory picture in Figure 1 0 . 1 .
This demonstrates how Python references and C++ pointers are essentially the
same concept with different syntaxes.

Since Python only uses references, it does not need the extra syntax that C++
pointers do for dereferencing a pointer. When you assign one C++ pointer variable
to another, the result is they both point to the same object or value. Using pointers,
we can implement the same Rational example we did earlier in the chapter so that
the C++ version allocates memory similarly to the Python version.

10.2 C++ Pointers 365

One issue when using pointers to access members of a class instance is that the
dot operator (the period) has a higher precedence than the asterisk (the unary *)
for dereferencing a pointer. This means that if we have a Rational instance r, we
cannot write *r1 . sE�t (2 , 3) ; we need to write (*r1) . set (2 , 3) . C++ provides
an additional operator so we can deference a pointer and access a member without
the parentheses; the notation for this is -> (the minus sign followed by a greater­
than sign) so (*r1) . set (2 , 3) can be written as r1->set (2 , 3) . The form using
-> is more commonly used than the parentheses version.

The C++ code using C++ pointers that corresponds to the same Python Rational
example earlier in the chapter is the following

Rational *r1 , *r2 ; II constructors not called

r1 = new Rational ; II constructor is called
r1->set (2 , 3) ;
r2 = r1 ;
r1->set (1 , 3) ;

cout « *r1 « endl ;
cout « *r2 « endl ;
delete r1 ;

This example outputs 1/3 for r1 and 1/3 for r2 since r1 and r2 are pointers to the
same memory locations. The memory table for this code fragment is:

Memory address Variable name Data value

1000 r1 ? then 2000
1004 r2 ? then 2000
2000 2 then 1
2004 3

The declarations of r1 and r2 result in four bytes being allocated for each one
since pointers require four bytes. The Rational constructor is not called when
you declare a pointer since we are creating a pointer, not a Rational object . The
statement r1 = new Rational results in eight bytes being allocated since the two
integer instance variables num_ and den_ require a total of eight bytes. The r1
= new Rational statement also causes 2000 to be stored in the memory location
for variable r1 . The constructor is called by r1 = new Rational since it creates
a Rational object . The r1->set (2 , 3) statement results in 2 being stored at
memory location 2000 and 3 being stored at memory location 2004.

366 Chapter 10 C++ Dynamic Memory

The statement r2 = r1 results in 2000 being stored in memory location 1004

since the value of r1 is 2000. We now effectively have the same memory struc­
ture as our Python example with both r1 and r2 referring to the same Rational
object . When we execute r1->set (1 , 2) statement we are not changing r1 but
are changing the object stored at the memory location that r1 points to. Since r2
points to the same object as r1 we get the same results as we do in Python. When
the function containing our C++ code fragment ends, the memory locations for the
declared variables (1000-1007) is automatically deallocated as we discussed earlier,
but we need the delete r 1 statement to deallocate the memory at locations 2000-
2007 which we explicitly allocated with the new Rational statement . We could
have written delete r2 instead since both pointers refer to the same locations, but
we cannot write delete r1 ; delete r2 since each new statement must have one
and only one corresponding delete statement. Trying to delete the same memory
locations a second time may corrupt the dynamic memory heap, resulting in a crash.

U sing pointers with dynamic memory in C++ gives you the flexibility of Python
references, but because you are in charge of explicitly handling the allocation and
deallocation, it is much more difficult to get correct than Python versions of the
same code. If you are not careful when using dynamic memory, your program can
produce different results each time you run it or may crash. We will discuss these
issues for explicit heap dynamic memory throughout this chapter.

1 1 0 . 3 1 Dynam ic Arrays

The built-in array data structure with a fixed size was discussed in section 8 . 1 l .
In many cases, we do not know the size of the array at compile time or we want
to change the size of the array as the program is running, so we need a mechanism

for allocating an array of a specified size at run-time. As we saw in the previous
section, C++ pointers can be used to dynamically allocate memory. This means
that the memory is allocated as the program is running and the amount of memory
allocated may be determined at run-time instead of being set at compile time. The
following code fragment demonstrates dynamic memory allocation and deallocation
for arrays:

int i , n ;
double *d ;

cout « "Enter array size : " ;
cin » n ;

d = new double [n] ;
for (i=O ; i<n ; ++i) {

}

cout « "Enter number " « i «
cin » d [i] ;

delete [] d ;

10.3 Dynam ic Arrays

II . II

367

The example allows the user to specify the array size at run-time. The new
command allocates the specified amount of memory and returns the starting address
of the allocated mernory. When the brackets ([]) are used after the data type in
the new statement , the amount of memory necessary to store the number of items
specified inside the brackets is allocated and the starting address is returned. In this
case, n*8 consecutive bytes would be allocated on machines that use eight bytes to
store a double value. The expression inside the brackets indicates how many values
of the type double to allocate; an array of size n was allocated so the valid index
values are 0 through n-l . After the dynamic memory has been allocated, it can
be accessed using the array bracket notation. The same index array calculations
discussed in section 8 . 1 1 can be used since the pointer variable holds the starting
address of a contiguous section of memory.

Whenever you allocate memory dynamically, you must also deallocate the mem­
ory with a statement that executes later in your program. Since we allocated an
array, we must tell the delete statement to deallocate an array instead of the
memory that holds a single value. The square brackets are used with both the
new statement and the delete statement when allocating and deallocating arrays.
You do not indicate the size of the array when deallocating a dynamic array; the
C++ run-time environment knows how much memory to deallocate. Repeatedly
allocating memory and forgetting to deallocate memory in a C++ program will
eventually result in your program using up a large percentage of the computer's
memory, causing the computer to slow as it uses the hard disk for extra memory.
This is why it is important to deallocate memory when it is no longer needed.

The main reason for using dynamic arrays is that you do not need to know
the size of the array at compile time. In many cases, you still may not know the
size needed when the array is first allocated. The Python built-in list allows you
to append as many items as you want so there is no need to determine how much
memory to allocate the first time you allocate memory; it would be impossible to
anticipate how much memory to allocate ahead of time since different uses of the
list will require different sizes. Once the array fills up, we may need to make the
array larger. Because the memory immediately following the dynamic array may
already be in use (remember that array elements must be in consecutive memory
locations) , we cannot make the array larger. The solution is to allocate a new larger

368 Chapter 10 C++ Dynamic Memory

array, copy the values from the original array to the new array, and then delete the
original array. The following code fragment demonstrates this:

int *data , *temp ;
int i ;

II create original array
data = new int [5] ;
for (i=O ; i<5 ; ++i) {

data [i] = i ;
}
II create new larger array
temp = new int [10] ;
II copy from original array to larger array
for (i=O ; i<5 ; ++i) {

temp [i] = data [i] ;
}
II deallocate original array
delete [] data;
II make data point to new larger array
data = temp ;
II now we can access positions 0-9
for (i=5 ; i<10 ; ++i) {

data [i] = i ;
}
II deallocate last allocation
delete [] data ;

The memory table for this code after the first new statement and f or loop are
executed is below. We will assume the memory addresses used for the local variables
start at memory location 1000 and that the dynamically allocated memory is the
block of memory from 2000 through 2019 (four bytes for each of the five integers) .

Memory address Variable name Data value
1000 data ? then 2000
1004 temp ?
1008 i . 5

2000 0
2004 1
2008 2
2012 3
2016 4

10 .3 Dynamic Arrays 369

After the memory is allocated for the temp pointer, the values are copied from
the original array, and the values 5 through 9 are stored in the larger array, the
memory table is the following assuming the memory starting at location 3000 is
used for the temp pointer.

Memory address Variable name Data value

1000 data 2000
1004 temp 3000
1008 i 10
2000 0
2004 1
2008 2
2012 3
2016 4
3000 0
3004 1
3008 2
3012 3
3016 4
3020 5
3024 6
3028 7
3032 8
3036 9

After the first dE�lete [] data statement, the memory at locations 2000-2019
is deallocated and returned to the dynamic memory heap so i t can be used again.
The statement data. = temp stores 3000 at memory location 1000 (i .e . , data now
points to the second larger allocated array) . At this point, both data and temp
point to the same dynamically allocated array. This is the same concept as having
two references to the same data in Python. After that assignment statement , the
next loop fills in the values 5 through 9 in memory locations 3020 through 3039. The
final delete [] data statement then deallocates the memory locations 3000-3039
so they can be used again.

Figure 10. 2 shows a pictorial representation of this. The top part of the figure
shows the representation after we have created the new larger array and copied the
values from the first array. The middle part of the figure shows the state after the

370 Chapter 10 C++ Dynamic Memory

first delete data statement. The bottom part of the figure shows the state just
before the final delete [] data statement.

data

temp

data -+

temp

data

Figure 10 . 2 : Pictorial representation of resizing a dynamic array

If we then fill up this new array and need a larger array, we allocate a larger array,
copy the values from the previously allocated array, and then delete the previous
array. Each resizing operation results in the previous array being deleted so that
we do not have a memory leak if we perform this resizing operation multiple times.
In our example, data points to the last array that was allocated (once we execute
the data = temp statement) . This pattern of allocating a new section of dynamic
memory using a different pointer variable, copying the values from the old section to
the new section, deallocating the old section, and setting the original pointer variable
to the new section is a common pattern in C++ dynamic memory, so make certain
you fully understand how it works and why the order of the steps is important . In
the next section, we will examine this pattern using a class.

10.4 Dynamic Memory Classes 371

1 1 0 .4 1 Dynam ic Memory C lasses

When you write a class that dynamically allocates memory for pointer instance vari­
ables, you need to make certain that the memory is properly deallocated. There are
three additional C++ methods that dynamic memory classes must use to properly
allocate and deallocate memory. These three methods are the destructor, copy
constructor, and assignment operator (operator=) . If your class does not use
dynamic memory, you do not need to write any of these methods. Classes that
use dynamic memory must write a destructor that deallocates the memory. The
other two methods rnay be implemented or declared in the private section but not
implemented. Declaring them in the private section but not implementing them
prevents them from being called. We will discuss the details of when these methods
are called and what they must do in this section. Implementing them correctly will
prevent your class from having memory leaks or other memory errors .

1 10 .4 . 1 1 Destructor

As discussed in the previous sections, in C++ you must explicitly deallocate any
memory that you explicitly allocate with the new command. C++ classes have a
special method known as a destructor that is used for deallocating memory. The
destructor method has the same name as the class, with a tilde (-) in front of it .
Just as constructors do not have a return type, the destructor also does not have a
return type. The purpose of the destructor is to deallocate any dynamic memory
the class has allocated that has not yet been deallocated. You never directly call
the destructor using the name of the method; it is called automatically when an
instance of the class goes out of scope or when you use the delete operator on a
pointer to an instance of the class. If your class uses dynamic memory and does not
have a destructor, your code will in most cases have a memory leak.

We will start with a simple dynamic array class that we will extend throughout
this chapter to demonstrate how to correctly write dynamic memory classes. In
this first version of the class, we will write all the methods inline in the header file.
We have added a few output statements so you can see that the constructor and
destructor are called. This List class uses three instance variables. The instance
variable data_ is used to hold the starting address of the dynamic array containing
the list 's values. The size_ instance variable indicates how many items are currently
in the list . The capacity_ instance variable indicates how large the dynamic array
is (i .e . , how many items the list can hold before the dynamic array needs to be
resized) .

372

II List 1 . h
#ifndef LIST_H __
#define __ LIST_H __

#include <iostream>

class List {

public :
List (int capacity=10) ;

Chapter 10 C++ Dynamic Memory

-List 0 { delete [] data_ ; std : : cout « "destructor\n" ; }

private :

} ;

int size_ ;
int capacity_ ;
int *data_ ;

inline List : : List (int capacity)
{

std : : cout « " constructor\n" ;
data_ = new int [capacity] ;
size_ = 0 ;
capacity_ = capacity ;

}

We did not put the using namespace std statement in the header file since
any file that included the header file would have this statement . Also note that we
put the default value for the parameter size only in the declaration of the List
constructor and not in the implementation of the constructor. Here is a simple
program that uses our class:

II test_List1 . cpp
#include <iostream>
using namespace std ;

#include "List 1 . h"

int mainO
{

}

List b ;
return 0 ;

When this program is compiled and executed, it outputs

constructor
destructor

10.4 Dynamic Memory C lasses 373

The declaration List b causes the constructor to be called and it allocates
dynamic memory. At the end of the main function, the variable b goes out of scope
so the destructor rrlethod is automatically called and it deallocates the dynamic
memory. This is why the program outputs the two lines. The following program
also causes the same output .

II test_Listp . cpp
#include <iostream>
using namespace std ;;

#include "Listl .h "

int main O
{

}

List *b ; II const]�ctor is not called here

b = new List (20) ; II constructor is called here
delete b ; II destructor is called here

The comments indicate when the constructor and destructor are called. Re­
member the declaration List *b causes four bytes that can store an address to
be allocated. The new statement causes a List object to be created by calling
the constructor with the specified size. The delete statement causes the List's
destructor to be caned and the dynamic memory the constructor allocated is deal­
located. When the variable b goes out of scope at the end of the main function, the
four bytes for the pointer are automatically deallocated just as the memory for any
variables are when they go out of scope. This is the reason you only need to write
a destructor when your class allocates dynamic memory.

1 10 .4 .2 1 Copy Constructor

As the name implies, the purpose of a copy constructor is to create a new object
by copying an existing object . In C++, the copy constructor for a class is called
when you pass an instance of a class by value to a function or method. Remember
that pass by value requires that a separate copy of the actual parameter be created.
You can also call a copy constructor directly when declaring a variable as we will
demonstrate later in this section.

Unless you write a copy constructor for a class, the C++ compiler generates a
default copy constructor for you. The default copy constructor it creates effectively

374 Chapter 10 C++ Dynamic Memory

assigns each instance variable of the existing object to the corresponding instance
variable in the newly created object . For a class that does not use dynamic memory
and pointers, this is exactly what you want. Consider our Rational class we have
been discussing. To create an exact copy of a Rational object , we want to assign its
numerator and denominator instance variables and this is exactly what the default
copy constructor does.

For classes that use dynamic memory, the default copy constructor will create a
shallow copy of the dynamically allocated data; the pointer variable in both instances
will refer to the same section of dynamically allocated memory. This will cause
problems. When the destructor for one of the objects is called, it will deallocate the
dynamic memory that is shared by both objects . The other object can no longer
legally access that data and when the destructor is called for it , it will attempt to
deallocate the same memory a second time. The second deallocation is illegal and
will lead to memory corruption errors that can cause your program to give incorrect
results or crash. As we discussed earlier, each memory section that is dynamically
allocated must be deallocated exactly once.

We will continue extending our dynamic array example by adding the copy
constructor to it . Since it is a constructor, it has the same name as the class and
since it is to copy an instance of the class, we must pass that instance as a parameter.
Remember that the copy constructor is called when we pass an instance of the class
by value. If the copy constructor parameter was passed by value, it would need to
call itself to make a copy, leading to an infinite number of calls. The copy constructor
parameter must be passed by reference to avoid this . Remember that to pass an
object by reference, all that needs to be done is pass the address of the object . We
showed the equivalence of this with the swap function we wrote in section 1 0 . 2 .
Here is the updated header file for the dynamic array class with a copy constructor
added.

II List2 . h
#ifndef LIST_H __
#define __ LIST_H __

#include <iostream>

class List {

public :
List (int capacity=10) ;
List (const List &source) ;
-List O { delete [] data_ ; std : : cout « "destructor\n" ; }

10.4 Dynamic Memory Classes

private :

} ;

int size_ ;
int capacity_ ;
int *data_ ;

inline List : : List (int capacity)
{

}

std : : cout « " constructor\n" ;
data_ = ney int [capacity] ;
size_ = 0 ;
capacity_ = capacity ;

inline List : : List (const List &source)
{

}

int i ;

std : : cout « " copy constructor\n" ;
size_ = source . size_ ;
capacity_ = source " capacity_ ;
data_ = ney int [capacity_] ;
for (i=O ; i<size_ ; ++i) {

data_ [i] = SOUrCE! . data_ [i] ;
}

375

As the code shows, the copy constructor parameter is passed by reference and
with the const designation so that the method does not need to call itself and
does not change the existing data. You can use any name you want for the formal
parameter, but one common convention is to name it source to indicate this is
the source instance of the class that you are copying. When we refer to size_,
that is the instance variable for the new object we are creating. When we refer to
source . size_, that is referring to the instance variable of the object we are copying.
You may be surprised that we can refer to the other object's instance variables using
the code such as size_ = source . size_ since the instance variables are private;
however , we are writing a method of the class so it is allowed to access the private
data of any instance of the class, not just the instance with which it is called .

For the instance variables that are not pointers, we want to assign each one of
them so the newly created object has the same values for the size and capacity. We
then need to allocate a new array with the same capacity and copy the elements
from the source object's array into it . This will create a deep copy. Notice that

376 Chapter 10 C++ Dynamic Memory

we only copied up to the value of size_ since the values past that are not relevant
to the object . At this point we do not have any way of putting elements in our
simplified class to cause size_ to be more than zero, but our final version will. The
following example using this class allows us to see when the copy constructor is
called.

II test_List2 . cpp
#include <iostream>
using namespace std ;
#include I List2 .h "

void f (List c)
{

}

cout « " start f\n" ;
cout « " end f\n" ;

void g (List &d)
{

}

cout « " start g\n" ;
cout « " end g\n" ;

int mainO
{

}

List b ;
f eb) ;
g (b) ;

List e (b) ;
return 0 ;

The output of the program is the following. The comments in parentheses are
obviously not part of the output , but explain what caused each of the methods to
be called.

constructor (create b in main function)
copy constructor (create the copy c from b in f function)
start f
end f
destructor (destructor for c when function f completes)
start g
end g
copy constructor (create e in main function)
destructor (destructor for e or b)
destructor (destructor for e or b)

10.4 Dynamic Memory C lasses 377

The first issue to note is the implicit call of the copy constructor when the
function f is called. The copy constructor executes before the function begins
execution to make a copy of the parameter. After the function completes, the
destructor is automatically called to deallocate the memory dynamically allocated
by the copy constructor. Since the function g passes the parameter by reference,
the copy constructor is not called. Also, the destructor is not called for d when
the function g completes; if it were, we would be deallocating the dynamic memory
for the variable b in the main function. The statement List e (b) explicitly causes
the copy constructor to be called to create e from the existing object b. When the
main function completes, both e and b are destructed to deallocate their dynamic
memory. You should not rely on the order that the destructor is called for e and
b. All you need to care about is that both objects will be properly destructed when
the main function completes. As this example demonstrates, if you correctly write
each method, the rules for when the constructor, copy constructor, and destructor
are called will correctly allocate and deallocate memory.

As we mentioned earlier, you can declare the copy constructor private and
not implement it. This prevents code that uses your class from causing the copy
constructor to be called; the code would not be able to pass an instance of your class
by value to a function or method or explicitly call the copy constructor. Code that
attempts to perform. either of those actions will generate a compiler error. If your
class uses a large arrlOunt of memory, you may want to do this to prevent a user of
your class from making a copy of it . The following header file demonstrates this.

II List3 . h
#ifndef __ LIST_H __
#define __ LIST_H __

#include <iostream>

class List {
public :

List (int capacity=10) ;
-List O { delete [] data_ ; std : : cout « "destructor\n" ; }

private :

} ;

List (const List &source) ;
int size_ ;
int capacity_ ;
int *data_ ;

378 Chapter 10 C++ Dynamic Memory

inline List : : List (int capacity)
{

}

std : : cout « II constructor\nll ;
data_ = new int [capacity] ;
size_ = 0 ;
capacity_ = capacity ;

1 10 .4 .3 1 Assignment Operator

The other method you must write or declare private when using dynamic memory
is the operator= method. This method is called when you assign an instance of
your class to another instance of the class (e .g. , b = c) . This is a very similar
operation to the copy constructor except that the instance on the left-hand side (b
in the example) already exists so it already has dynamic memory allocated for it .
When the copy constructor is called, the object has not yet been allocated, but for
the assignment operator, the constructor was previously called with the object so it
likely has dynamic memory already allocated for it .

Similarly to the copy constructor, the compiler will write a default assignment
operator for your class if you do not write one. It will do what you expect and
assign each instance variable individually. If your class does not use dynamic
memory, this is exactly what you want. For the same reasons discussed for the copy
constructor, you do not want this for classes that use dynamic memory; it will result
in two instances of the object sharing the same dynamically allocated memory. The
following header file demonstrates the three methods you need to write. We have
written these examples with inline methods in the header file to keep the examples
shorter, but we could have written them with a separate implementation file. We
have removed the output statements now that we know when each method is called.

II List4 . h
#ifndef __ LIST_H __
#define LIST_H __

class List {

public :
List (int capacity=10) ;
List (const List &source) ;
-List () { delete [] data_ ; }
void operator= (const List &source) ;

10.4 Dynamic Memory Classes

private :

} ;

int size_ ;
int capacity_ ;
int *data_ ;

inline List : : List (int capacity)
{

}

data_ = new int [ca.pacity] ;
size_ = 0 ;
capacity_ = capacity ;

inline List : : List (const List &source)
{

}

int i ;

size_ = source . siz9_ ;
capacity_ = source . capacity_ ;
data_ = new int [capacity_] ;
for (i=O ; i<size_ ; ++i) {

data_ [i] = SOurCE� . data_ [i] ;
}

inline void List : : OpE!rator= (const List &source)
{

}

int i ;

if (this ! = &soUrC€i) {

}

delete [] data_ ;
size_ = source . size_ ;
capacity_ = source . capacity_ ;
data_ = new int [capacity_] ;
for (i=O ; i<size_ ; ++i) {

data_ [i] = source . data_ [i] ;
}

379

Since the object has already been created, the assignment operator is a little
more complicated than the copy constructor. We must properly deallocate memory
that has already been allocated and ensure that the class is not accidently assigning
the object to itself or we will deallocate the only copy of the data. In C++ classes,
the identifier this is an implicit pointer to the object with which the method is

380 Chapter 10 C++ Dynamic Memory

explicitly called. For example, if we have two List objects b and c and write b =
c, this is equivalent to writing b . operator= (c) ; review section 9 .4 if you need a
refresher on operator overloading. The assignment operator must be written as a
member of the class; it cannot be written as a standalone function as many of the
other operators can. For the assignment statement b = c, the this pointer will
hold the address of b. The this pointer is equivalent to the explicit self reference
that all Python methods have. We could use the this pointer to explicitly refer to
all instance variables and methods such as this->size_ instead of just size_ if we
wanted to, but most C++ programmers do not use this style.

The if statement in the method checks if the method on the left-hand side of
the assignment statement (b in our example) is the object at the same address as
the object on the right-hand side of the assignment statement (c in our example) .
If they are the same object , we do not want to do anything. Deleting the dynamic
memory would delete the one copy of dynamic memory. You may have noticed that
the copy constructor and assignment operator share most of the code; because of
this, it is common to write the shared code in a private method that both the copy
constructor and assignment operator call . We will demonstrate this in our final
version of the dynamic array class later in this section.

You might be wondering how a programmer could end up assigning an object to
itself. Certainly, no programmer would write b = b ; in their code and it would be
possible to write a compiler to catch this mistake. You need to remember that since
we can use pointers, we can end up with two pointers with different names referring
to the same object . The following example is still contrived, but you can imagine a
function that would return a pointer to a List object and the programmer would
not have any idea what other List pointer variables also point to it .

#include "List3 . h"

int mainO
{

}

List *b , *c , d ;
b = Bcd ;
c = b ;

*b = *c ; II causes operator= t o be called
return 0 ;

In the example, both b and c refer t o the List object that is the variable d so
the statement *b = *c causes the List : : operator= method to be called. Notice
that the statement b = c does not call the List : : operator= method to be called.

10.4 Dynamic Memory C lasses 381

The variables b and c are pointers so this is the assignment of two pointers, causing
them both to store the same address.

1 10 .4 .4 1 A Complete Dynamic Array Class

We will now write a realistic version of the List class, adding a few more new
concepts to the ones we discussed earlier. Without the use of dynamic memory,
we could not write a List class in C++ that could grow beyond the initial size of
the array. The following example shows all the methods necessary to correctly
implement a realistic use of dynamic memory (a copy constructor, assignment
operator, and destructor) . In the following example we use the data type size _ t ,
which is a synonyrIl for an unsigned int (i .e. , a non-negative integer) , for the
instance variables and parameters that specify a position in the array since an
array cannot have a negative size. There are some potential pitfalls with using
an unsigned int that we will discuss later in the section.

II List . h
#ifndef _LIST_H_
#define _LIST_H_

#include <cstdlib>
class List {
public :

List (size_t capacity=10) ; II constructor - allocates dynamic array
List (const List &a) ; II copy constructor
-List () ; II destructor

int& operator [] (size_t pos) ; II bracket operator
List& operator= (const List &a) ; II assignment operator
List& operator+= (const List &a) ; II += operator
void append (int item) ;
size_t size () const { return size_ ; }

private :

} ;

void copy (const List &a) ;
void resize (size_t new_size) ; II allocate new larger array
int *data_ ; II dynamic array
size_t size_ ; II size of dynamic array
size_t capacity_ ; II capacity of dynamic array

inline int& List : : operator [] (size_t pos)
{

return data_ [pos] ;
}
#endif II _LIST_H_

382 Chapter 10 C++ Dynamic Memory

The bracket operator (operator []) provides the same functionality as the Python
__ geti tem __ and __ seti tem __ methods. It is declared inline after the class defini­
tion and demonstrates a reference return type. The ampersand after the type name
indicates that a reference to an integer is returned, meaning it effectively returns
the address of the position in the array. This allows the operator to be used on the
left-hand side of an assignment statement as b [0] = 5 where b is an instance of our
List class. It can also be used on the right-hand side of an assignment statement
or as part of an expression just as a non-reference return type can. Without the
reference return type, the operator could only be used on the right-hand side of
an assignment statement (corresponding to only the Python __ getitem __ method) .
Returning a reference only makes sense if it is a reference to an instance variable or
dynamically allocated memory. We will discuss this later in the chapter.

The List class provides an array of integers whose initial size is specified when
the constructor is called. The constructor allocates a dynamic array with the
specified capacity and initializes the size_ instance variable to indicate the list
is empty. If we did not allocate the memory in the constructor, but instead deferred
it to another method (such as the first time the append method is called) , we would
initialize the pointer variables to NULL. The NULL constant is defined in the cstdlib
header file . The value NULL is defined to be zero which is never a valid address for
memory that has been dynamically allocated. The use of NULL in C++ to indicate
an invalid pointer is similar to the use of None in Python to indicate a reference
that is not initialized to an object of a specific type.

The class makes use of a private method named copy to implement the code that
is needed in both the copy constructor and assignment operator. The assignment
operator needs extra code to deallocate the existing dynamic array before allocating
a new dynamic array of the appropriate size and copying the data. Remember
that a copy constructor is creating a new object , so no memory has been previously
allocated for the object when the copy constructor is called. However, the variable on
the left-hand side of an assignment statement has already had its constructor called
and memory allocated, so that needs to be deallocated. The code for the destructor
follows the copy constructor. The destructor simply deallocates the dynamic array
and is called automatically when a non-pointer instance of List goes out of scope.
Note that it does not deallocate the non-pointer instance variables since the memory
for those is automatically deallocated. In this example, we are using a separate
implementation file unlike the earlier simplified examples in which the entire class
was written in the header file.

II List . cpp
#include "List . h"

List : : List (size_t capacity)
{

}

data_ = new int [capacity] ;
capacity_ = capacity ;
size_ = 0 ;

List : : List (const List &list)
{

copy (list) ;
}

List : : -List 0
{

delete [] data_ ;
}

10.4 Dynamic Memory Classes 383

We have written the operator= method slightly differently so that we can use
it in a chained assignment statement. The method returns a reference to a List
object . By returning *this , we are returning the List object that we just assigned.
This allows us to write the chained form of the assignment statement (e.g. , b = c
= d. Remember that the assignment operator is right to left so it is equivalent to c
= d ; b = c . By returning a reference to the left-hand parameter, the result of c =
d is the object c that we then use as the right-hand parameter when assigning b.

The copy method that is used by both the operator= and the copy constructor
allocates an array of the same size as the List object that is passed to it and copies
all the data from the parameter object 's array into the newly allocated array. We
have also added the operator+= method so we can demonstrate another potential
pitfall.

void List : : copy (const List &list)
{

}

size_t i ;
s ize_ = list . size_ ;
capacity_ = list . capacity_ ;
data_ = new int [list . capacity_] ;
for (i=O ; i<list . capacity_ ; ++i) {

data_ [i] = list . data_ [i] ;
}

384 Chapter 10 C++ Dynamic Memory

List& List : : operator= (const List &list)
{

}

if (&list ! = this) {

}

II deallocate existing dynamic array
delete [] data_ ;
II copy the data
copy (list) ;

return *this ;

List& List : : operator+= (const List &list)
{

}

size_t i ;
size_t pos size_ ;
if « size + list . size_) > capacity_) {

resize (size_ + list . size_) ;
}

for (i=O ; i<list . size_ ; ++i) {
data_ [pos++] = list . data_ [i] ;

}
size_ += list . size_ ;
return *this ;

The operator+= appears straightforward, but if you are not careful , subtle errors
can be introduced. If we replace the last few lines with the following code so that it
increments the size_ variable as it adds the items onto the array, it will work fine
in most cases.

II this version is incorrect
for (i=O ; i<list . size_ ; ++i) {

data_ [size_++] = list . data_ [i] ;
}

What happens if we have a List instance b and execute b += b? In this case,
size_ and list . size_ are two names for the same memory location (i .e . , they
are both bound to the same address) . Since we are incrementing size _ each time
through the loop, the for loop will never end because i will always be less than
list . size_ . These types of subtle errors can be extremely difficult to track down
so always consider these special cases when writing your own code and test for them.

The append method is straightforward except that we may need to allocate a
larger array if we have already filled the existing array. We have written a separate
resize method that the append method calls when necessary to perform the steps

10.4 Dynamic Memory C lasses 385

of allocating a new larger array, copying the data to it, updating the pointer, and
then deallocating the old smaller array, as we discussed in section 10 . 3 .

void List : : append (int item)
{

}

if (size_ == capacity_) {
resize (2 * capac:ity_) ;

}
data_ [size_++] = item ;

II should this method have a precondition? see end of chapter exercises
void List : : resize (size_t new_size)
{

}

int *temp ;
size_t i ;

capacity_ = new_size ;
temp = new int [capacity_] ;
for (i=O ; i<size_ ; ++i) {

temp [i] = data_ [i] ;
}
delete [] data_ ;
data_ = temp ;

We leave it as an exercise to add the other methods in the built-in Python list 's
API to this C++ dynamic memory list . As we mentioned earlier, you do need
to be careful when using unsigned int or the equivalent size_ t data type. As
we listed in Figure 8 .4 , the range of the int type on 32-bit systems is usually from
about negative two billion to about positive two billion while the unsigned int type
ranges from zero to about four billion. With the unsigned int data type, there is
no bit representation that corresponds to a negative number. So the question is ,
what happens when an operation would result in a negative number?

II unsigned . cpp
#include <iostream>
using namespace std ;
int main O
{

unsigned int x = 0 ;
x-- '

,

cout « x « endl ;
return 0 ;

}

386 Chapter 10 C++ Dynamic Memory

The output of this operation in a program compiled for 32-bit systems is
4294967295 . This is the largest possible integer that can be represented with 32
bits (the bit representation is 32 Is) . We have overflowed the bit representation.
This is like going beyond the number of digits in a car odometer. Think about
what would happen if you were able to run a car odometer backwards past zero;
you would get the largest value the odometer can hold. This is essentially the same
thing that happens when you overflow integer values on the computer. C++ does
not automatically indicate when overflow occurs. There are ways to detect it , but
we will not cover these details in this book. When writing your code, you must
ensure that you do not accidently overflow the range of values the data type you
are using can store or you will get unexpected or incorrect results. The next code
fragment demonstrates an error caused by overflow.

unsigned int i ;
unsigned int pos=O ;
for (i=5 ; i>=pos ; --i) {

cout « i « endl ;
}

If you create a program with this loop and run it , you probably expect the loop
to execute six times (the expression i >= pos should be true when i is five, four,
three, two, one, and zero) . The problem is that after setting i to zero, the next
value for i will be 4294967295 and that is obviously also greater than or equal to
zero so this produces an infinite loop. If pos were any positive value, this would not
occur. It is always a good idea to test your code with these boundary conditions to
ensure it works in all cases.

1 10 .4 .5 1 Reference Return Types

As we mentioned earlier, you should not return a reference to a local variable. The
reason for this is that a reference effectively returns the memory location where the
variable is stored, not a value. The problem with this is local variables in a function
are automatically deallocated when the function ends. Using formal terminology,
the lifetime of local variables is the time while the function is being executed. Once
the function ends, the memory locations used for local variables are reclaimed and
are no longer bound to those local variables. You can only return by reference
a variable whose lifetirne does not end when the function or method ends. The
following example shows an example that returns a reference to a local variable and
is incorrect; most compilers will generate a warning.

II this is incorrect
int& f O
{

}

int x ;
return x ;

int main O
{

f O = 5 ;
}

10.4 Dynamic Memory C lasses 387

In our section on the List class, we discussed that since the operator [] returned
a reference, we can write b [0] = 5 where b is an instance of our List class. On
the left-hand side of the assignment statement, we are calling the operator and it
returns a reference to the memory location. That memory location is then used to
store the value 5. In the previous example, the statement f 0 = 5 is attempting to
do the same thing; the memory location for the variable x returned by the function
f is being used to store the value 5. The problem is that the memory location is no
longer being used for the local variable x after the function ends.

As our List code shows, it is correct to return a reference to an instance variable
of a class instance. An object 's instance variables have the same lifetime as the
instance of the class. The statement b [0] = 5 where b is an instance of our List
class is equivalent to b . data_ [0] = 5 , but this is not allowed since data_ is a
private member of the class. The bracket operator is a public method and returns a
reference to the private data, allowing us to legally access the private data directly.
In many cases this is bad programming style, but for a class that encapsulates a
dynamic array, one could argue it makes sense.

A precondition for the operator [] method is that the specified index is between
o and size_ - 1 . To prevent a user of the class from crashing the program by passing
an index outside of the list size, we could check that the specified index is between
o and size_ - 1 before attempting to access that position in the dynamic array.
This extra overhead is not necessary if the code that uses the class always meets the
precondition. A com:mon technique is to include code that checks the precondition
while testing and debugging your program, but once you are convinced your program
is correct , you can remove the code that checks the precondition to get a small
performance boost .

388 Chapter 10 C++ Dynamic Memory

1 10 . 5 1 Dynam i c Memory Errors

Using pointers in C++ gives your programs more flexibility and capabilities , but is
also more error prone. Pointers to data objects also require extra memory since you
need to store both the pointer and the data while the C++ default stack dynamic
variables only need memory to store the data. Dynamic memory errors are the
source of a large percentage of errors in most large programs. Because of these
reasons, you should use dynamic memory only when you need the extra capabilities
it gives you.

Dynamic memory errors are often difficult to track down and correct since
sometimes your program may run fine, other times it may run but give incorrect
results, and other times it may crash. We suggest you learn how to use the debugger
that your programming environment supports to help you track down these memory
errors . You can try to find the errors by putting output statements throughout
your code, but learning how to use your debugger will save you a lot of time and
frustration in the long run. Adding to the difficulty of tracking down these errors is
that often the statement that causes the program to crash is not the statement that
is incorrect so it is also important to proofread your dynamic memory code. In this
section, we will discuss the different types of errors that can occur with dynamic
memory.

1 10 . 5 . 1 1 Memory Leaks

We have already briefly mentioned one type of error known as a memory leak. A
memory leak occurs when you allocate memory but never deallocate it . If your
program repeatedly calls a function or method that leaks memory, your program
will eventually require more memory than the computer has. This will lead the
operating system to use the disk as extra memory. Since the disk is much slower than
memory, your computer will slow down. Fortunately, when a program completes,
the operating system reclaims any memory the program was using so a memory leak
should not crash your program. If the operating system itself has a memory leak, it
will eventually run out of memory. This is the reason some people recommend you
reboot your computer occasionally.

The code examples with errors in this section are short examples that you would
not normally write, but show the errors that can occur as part of larger sections of
code. This first example executes two new statements, but executes only one delete
statement .

II this code is incorrect
void f O
{

}

int *x ;
x = new int ;
*x = 3 ;
x = new int ;
*x = 4 ;
delete x ;

10.5 Dynamic Memory Errors 389

Figure 10 .3 shows a pictorial representation of the memory leak code. The
left part shows the result after the line *x = 3 is executed; four bytes have been
dynamically allocated with x holding the address and the value 3 is stored at that
address. The middle part of the figure shows the result after the second x = new
int statement is executed. We no longer have any way to access the dynamic
memory that was originally allocated by the first x = new int statement . The
right part of the figure shows the result after the delete x statement is executed;
the variable x points to a memory location that can no longer be used and the
memory location containing the 3 still exists and cannot be deallocated since we do
not have a variable holding its address . This is the memory leak. To fix it , we would
need another delete! x statement before the second x = new int statement .

x - x

Figure 10 .3 : Pictorial representation of a memory leak

In many cases, the delete statement that deallocates the memory allocated by
a new statement is not in the same function or method. This makes it more difficult
to detect memory leaks. If you refer back to the resize method in our List class,
you will notice that the delete statement in it is not deallocating the memory that
was allocated by the new statement that executed earlier during the function call.
The first time the resize method is called the delete statement is deallocating the

390 Chapter 10 C++ Dynamic Memory

memory allocated by a constructor. Each subsequent time the resize method is
called, it is deallocating the memory allocated by the previous call to the resize
method. This may make you think that we have a memory leak, but remember that
the destructor will deallocate the memory that was allocated by the last call to the
resize method or the memory allocated by the constructor if the resize method
was never called.

In fact , in most cases the corresponding new and delete statements are not in
the same function or method, making it difficult to be certain your code does not
have any memory leaks. We will see another example of this with linked structures
in Chapter 1 1 . Proofreading and checking your code carefully is important to help
prevent these errors. Some development environments provide tools to track the
memory usage as your program executes so that you can watch for unexpected
growth in memory usage. You may think memory leaks are not an issue to be
concerned with since the operating system will reclaim any memory your program
used when the program exits, but many programs run for long periods of time. A
web server for a commercial site might be expected to run for months at a time
without being restarted. If you do not reboot your computer regularly (letting it go
into sleep or hibernate mode is not equivalent to rebooting it) and leave programs
such as your email or web browser programs running all the time, you do not want
these programs to have memory leaks. If these programs you leave running (or
the operating system itself) have memory leaks, your computer will slow down over
time until you reboot it as it starts using the disk as extra memory. Thus, it is
important to get in the habit of writing code without memory leaks. The key point
to remember is that each new statement that is executed must have a corresponding
delete statement that is executed after your program is done using the memory
allocated by the new statement .

1 10 .5 .2 1 Accessing I nva l id Memory

Modern computer hardware provides checks to make certain that one program does
not access memory that is used by another program. This prevents a number of
problems such as one program causing another program to give incorrect data or
crash. If one program could access the memory used by another program such as a
web browser, it would be possible for the program to access the passwords and other
sensitive information you type into a web browser. Computer hardware splits the
memory into sections that are known as pages. On most modern computers a page
is either 4KB or 8KB in size . As the amount of memory in computers continue to
grow, it is likely that the page size will increase. The hardware provides protection
at the page level. If a program attempts to access memory that is not in one of the

10 .5 Dynamic Memory Errors 391

pages your program is using, a hardware exception is generated and the program
crashes.

Since the hardware detects errors only when a program attempts to access
memory that is not one of the pages the operating system allocated for the pro­
gram, a program m.ay access memory that is one of its pages but is not a valid
memory address that it should be using. In this case, your program will not crash
immediately, but it can have different results each time it runs or it can crash at a
later point in time.

We will start with a simple example that does not use dynamic memory, but
could give unexpected results. See if you can find the error in this program before
reading the paragraph after the code.

II this program is incorrect
#include <iostream>
using namespace std ;;

int mainO
{

}

int x [10] ;
int y = 0 ;
int i ;

for (i=O ; i<=10 ; ++i) {
x [i] = i ;

}
cout « "y= " « y « endl ;
return 0 ;

Unlike Python, C++ does not do any index checking when you attempt t o access
an element in an array (Python does check when you attempt to access an element
in a list) . The problem with this example is the array can be indexed using the
values 0 through 9, but the for loop sets x [10] . Depending on how the memory is
allocated for the local variables, this could result in the program outputting 10 for
y even though we set y to zero. If the memory location used for the variable y is
immediately after the memory location for the array, then x [10] and y correspond
to the same memory address. If the memory for the variables is not allocated in
this order then the program produces the expected output of o .

Remember that pointers hold an address and dereferencing a pointer attempts
to read or store data at that address. This is what can lead you to access memory
you should not be using. The following simple program is almost guaranteed to
crash on any computer.

392 Chapter 10 C++ Dynamic Memory

II this program is incorrect
int main O
{

}

int *p ;
p = (int*) 8 ;
*p = 1 ;
return 0 ;

This program sets the pointer variable to the memory address 8 ; we had to use
a cast for the compiler to accept it since you should not set pointers directly to
integer values (you should use the unary ampersand operator or new statement to
set a pointer variable to a valid address) . Executing the statement p = (int *) 8
does not crash the program, but that is the incorrect line. The statement *P = 1
attempts to store the value 1 at memory address 8 which is not part of the memory
used for dynamic memory. The hardware detects this error and the program crashes.
Again, you would not do this as part of a normal program, but this should show
you that if you accidently set a pointer variable to an address that your program
is no longer using and then later try to dereference that pointer, your program will
crash. A more realistic example of the same problem is the following program.

II this program is incorrect
int maine)
{

}

int *x ;
*x = 5 ;
return 0 ;

In this example, x is never initialized t o hold a valid address so whatever address
is already in the memory used for the variable x is the address in which the program
will attempt to store the value 5. If that address happens to be in one of the pages
the operating system gave our program, the program will not crash. This is unlikely.
It is more likely that the address stored in the variable for x is not a valid address
so attempting to store a 5 there will cause the hardware to generate an exception
and our program will crash. Here is another example that could cause the same
problem.

int maine) II this program is incorrect
{

}

int *Y = new int ;
delete y ;
*y = 3 ;
return 0 ;

10.5 Dynamic Memory Errors 393

In this example, we attempted to dereference the pointer y and store the value
3 at that address after we have deallocated the memory location that y points to.
This again could cause our program to crash or it could run to completion. You
should be starting to see why these types of errors can be difficult to track down in
larger programs.

We will examine one more program with errors in this chapter, but there are
lots of different ways you can have these problems. This program has two errors.

II this program is incorrect
int mainO
{

int *x , *y ;
x = new int ;
y = new int ;
*x = 3 ;
Y = x ;
* y = 3 ;
delete y ;
delete x ;

The first problern is that this program has a memory leak. The memory for two
integers is allocated , but then the statement y = x causes both pointers to refer to
the same memory location. This results in the memory allocated by the statement
y = new int being leaked since there is no way to access it and delete it . The
delete y statement deletes the memory allocated by the x = new int statement .
Since x also pointed to that memory location, the statement delete x attempts to
deallocate the same block of memory a second time. This will likely corrupt the
dynamic memory heap. This can also cause your program to crash immediately, or
at a later time, or never.

1 10 . 5 . 3 1 Memory Error Summary

Some C++ run-tinle environments do not show you the exact line where your
program crashed or a stack trace showing the function or method calls that re­
sulted in the program crashing at that line. Most IDEs (integrated development
environments) will show you the execution traceback similar to Python indicating
at what line the program crashed and the functions or methods that were called to
get to that point . This information is important for determining why your program
crashed. Unfortunately, as we have discussed, the line your program crashed at is
not necessarily the line that is incorrect . If the line it crashes at is dereferencing a
pointer, the problenl is that either you forgot to give that pointer a valid address or

394 Chapter 10 C++ Dynamic Memory

somehow it ended up pointing to memory that is no longer valid for your program
to use (for example, you already called delete on that memory block or it got set
to a value that does not correspond to a valid address) . The traceback tells you the
order the functions or methods were called to the point of the crashing. This helps
you determine the code that caused the problem.

Also, as we mentioned earlier, sometimes you can corrupt the dynamic heap by
accessing incorrect memory locations or calling delete twice for the same block of
memory. This will typically not result in a crash until you try to allocate memory
again. These types of errors can be extremely difficult and frustrating to track
down. Fortunately, while you are developing your code, you can use an IDE that
provides a debugger to help track down these errors. Debuggers provide a number of
features to help you find errors in your programs. Most allow you to stop execution
at specific source code lines within your program, examine the values of variables
at that point , and execute one line or one function at a time while you watch the
values of the variables. Debuggers typically provide additional capabilities beyond
the ones we listed here.

When running your program within a debugger and your program crashes, the
debugger will typically show you similar information to the Python traceback. It is
fairly easy to develop Python code without a debugger, but when writing dynamic
memory code in C++, a debugger and good IDE will help you track down memory
errors more quickly and with less frustration. Sometimes proofreading the code
around the crash (or for the entire class if the crash is in a method) is the most
effective way to solve the problem.

It is always a good idea to find the smallest sample input that causes your
program to crash or to work incorrectly. This is especially important when dealing
with dynamic memory errors. If we determined that our List class did not work
correctly and crashed in the append method, we should first check if it can happen
when appending fewer items than cause the resize method to be called. If this is
the case and we have only called the append method and the constructor, we know
that the problem is with the constructor or append method. If it crashes in the
append method only after the resize method has been called, then the problem
could be in the constructor, append, or resize, but in this case we recommend
checking the resize method first . Try to minimize the amount of code that is
executed but still causes the problem. Limiting the amount of code you have to
check will enable you to .find the problem faster and with less frustration.

10.7 Exercises 395

1 1 0 . 6 1 Chapter S ummary

This chapter covers the issues for using pointers and dynamic memory in C++. We
summarize some of the important issues here.

• Python references and C++ pointers work similarly and essentially are the
same concepts with different syntaxes.

• C++ pointers allow you to delay determining the amount of memory that is
allocated until run-time when you use the new and delete statements.

• C++ pointers allow you to write classes such as a List that can grow in size
over time; they also allow you to write linked structures as we will discuss in
Chapter 1 1 .

• Each new statement must have a corresponding delete statement that deal­
locates the memory allocated by the new statement when the program is done
using that memory.

• Classes that use dynamic memory must implement a destructor that deallo­
cates any dynamic memory a class instance is still using when the instance
goes out of scope. Dynamic memory classes also must either write a copy
constructor and operator= that make a deep copy of the dynamic memory or
declare these lTIethods private so they cannot be called.

• Using dynamic memory gives you flexibility and power, but is also error prone.
Only use dynamic memory when you need its capabilities.

• Dynamic menlory errors are the source of errors in many programs and can
be difficult to track down and fix.

/ 1 0 . 7 1 Exercises

True/Fa lse Questions

1. All C++ arrays should be created using dynamic memory.

2. Dynamic menlory errors are a common source of errors in programs and are
often difficult to track down.

3. Never deallocating dynamic memory will never cause problems since all the
memory a program uses is reclaimed when the program ends.

396 Chapter 10 C++ Dynamic Memory

4. U sing dynamic memory requires more memory than using standard automatic
variables.

5. Having a function return the address of a local stack dynamic variable will
work correctly.

6. Functions can return the address of memory dynamically allocated within the
function.

7. A method of a class can return the address of an instance variable of that
class.

8. A C++ program that uses dynamic memory and runs once without crashing
will never crash.

9. A C++ method that allocates dynamic memory must deallocate it before the
method completes.

10. A C++ class that allocates dynamic memory does not need to have a copy
constructor and operator=.

1 1 . A C++ class that allocates dynamic memory for an instance variable does not
need to have a destructor.

12 . The following code has a memory leak.

int* f O
{

}

int *x = new int ;
*x = 3 ;
return x ;

int mainO
{

}

int *y = f O ;
int z = *y ;
delete y ;
return 0 ;

10.7 Exercises 397

Mu lt ip le Choice Quest ions

1. Which of the following work the most similarly between Python and C++

a) Python nanles and C++ stack dynamic variables
b) Python names and C++ pointers
c) C++'s pass by value and Python's parameter passing mechanism
d) C++'s pass by reference and Python's parameter passing mechanism

2. What , if anything, is wrong with the following C++ code fragment?

int x , *y ;
y = &x ;
delete y ;

a) The code fragment is correct .
b) The code fragment has a memory leak.
c) The assignuaent y = &x is incorrect .
d) The statement delete y i s incorrect since the address i t points to was not
allocated with the new operator.

3. What, if anything, is wrong with the following C++ code fragment?

int *b , *c ;
b = new int ;
*b = 3 ;
c = b ;
delete c ;
delete b ;

a) The code fragment is correct .
b) The code fragment has a memory leak.
c) The statement delete b deletes the same memory location that was already
deallocated by the statement delete c .
d) The first statement must be delete b since the memory was allocated for
the variable b.

4. What, if anything, is wrong with the following C++ code fragment?

int *b , *c ;
b = new int ;
*b = 3 ;
c = b ;
delete c ;

398 Chapter 10 C++ Dynam ic Memory

a) The code fragment is correct .
b) The code fragment has a memory leak.
c) The delete statement must be delete b since the memory was allocated
for the variable b.
d) The statement c = b must be *c = *b.

5 . A C++ program that has pointer variables but never calls new or delete

a) will never crash.
b) will not have memory leaks.
c) will have memory leaks.
d) will never attempt to access a memory location it is not allowed to access.

6. What is the output of the following C++ code fragment using the Rational
class from the previous chapter?

Rational r1 , *r2 ;
r1 . set (1 , 2) ;
r2 = &r1 ;
r2->set (3 , 4) ;
cout « r1 « II II « r2 ;

a) 1/2 1/2
b) 1/2 3/4
c) 3/4 1/2
d) 3/4 3/4

7. If you are writing a class that uses dynamic memory, which of the methods
must you declare within the class definition?

a) destructor
b) copy constructor
c) assignment operator
d) all of the above

8. What will happen if you have a class that uses dynamic memory and assign
one instance of it to another instance of the class?

a) You will have a memory leak.
b) You will create a deep copy.
c) You will create a shallow copy leading to the dynamic memory being
deallocated twice.
d) Everything will work properly.

10 .7 Exercises 399

9. Which of the following are true of the this pointer in C++ classes?

a) You must declare the this pointer as a parameter for methods that want
to access it .
b) You can use the this pointer in static/class methods.
c) The this pointer stores the address of the instance of the class with which
the method was called
d) You must always use the this pointer to access private data.

10. What will happen if your dynamic memory code is not quite correct?

a) Your program may run correctly each time you run it .
b) Your program may run correctly some times and give incorrect results other
times.
c) Your program may run correctly some times and crash other times.
d) All of the above are possible.

Short-Answer Questions

1. Is there a potential problem with the resize method for the List class? If
so, what precondition would solve the problem? Could a user of our List
class have a problem because of this issue given that the method is declared
private?

2 . What are the benefits of using dynamic memory?

3. What are the drawbacks of using dynamic memory?

4. When should you use dynamic memory?

5. Write a C++ code fragment that has a memory leak.

6. Write a C++ code fragment that accesses memory it should not .

7. Do any of the potential, subtle issues we discussed regarding the operator+=
method apply to writing an operator+ method? Why or why not?

8. Why is it not legal for a function or method to return a reference to a local
stack-dynamic variable?

9. When is it legal to return a reference to a variable?

400 Chapter 10 C++ Dynam ic Memory

10. How many memory accesses are required to access the data (do not count the
memory access necessary to access the program instructions themselves) in
the following code fragment? Explain how you arrived at your answer.

int *b , *c , x , y ;
x = 3 ;
Y = 4 ;
b = &x ;
c = b ;
* c = 2 ;
cout « *b « " " « *d « " II « x « II " « y « endl ;

Programm ing Exercises

1 . Complete the C++ List class with the same semantics and API as Python's
built-in list using a dynamically allocated array (add the extend, index,
insert , pop, and remove methods) . Also add a method named len that
returns the number of items in the list and an operator+ method or function.
Whenever you need to make the array larger, double its current capacity.
Include append, the copy constructor, operator=, operator+=, operator [] ,
and the destructor. Also write a program to test your list that checks all the
methods including boundary cases such as insertion at the beginning or end
of the list .

2 . Write a C++ Longlnt class that allows integers to be arbitrarily large. Im­
plement it by storing an array with each element in the array being a single
digit (0-9) that makes up the number (for example, the number 678 would
have 8 in position 0 of the array, 7 in position 1 of the array, and 6 in position
2 of the array) . Use a dynamic array of unsigned char to implement this
since only a single byte is necessary to hold the numbers zero through nine.
Overload the appropriate operators so you can add, subtract, multiply, assign,
and input/output instances of your class. Also write a program to test your
class .

3. Implement a polynomial class where each element in a dynamic array of
doubles stores the coefficients for the polynomial. Overload the appropri­
ate operators so you can add, subtract , multiply, assign, and input/output
instances of your class . Also write a program to test your class.

4. Write your own implementation of a string class by using a dynamic array
of characters. Overload the appropriate operators so you can concatenate two

10.7 Exercises 401

strings, access the element at a specific position, and input/output instances
of your string class. Also add some of the methods that the Python or
C++ string class support such as slicing/substrings, searching for an element ,
reversing a string, and so on. Name your class MyString to avoid confusion
with the name of the existing string class.

5. Research how to dynamically allocate and deallocate multi-dimensional arrays
(it is not covered in this book) . Write a program that dynamically allocates a
two-dimensional array of a size input by the user, fills it with entries, outputs
the contents, and then deallocates it .

Chapter 1 1

Object ives

• To learn how to write linked structures in C++.

c++ Linked

Stru ctures

• To reinforce C++ dynamic memory concepts and how to write dynamic mem­
ory classes.

[ill] I ntrod uct ion

As with Python, linked structures can be used to implement a number of data
structures in C++ including lists and tree structures. We learned in section 10 . 2
that Python references and C++ pointers are essentially the same concept so to
implement a linked structure in C++ you need to use dynamic memory and pointers.
The main differences between writing Python and C++ linked structure classes is
the need to write a destructor, copy constructor, and assignment operator for the
class (or as we discussed in section 10 .4 , you may declare the copy constructor and
assignment operator private, but not implement them) . Your C++ class must also
explicitly deallocate memory which is not required in Python. You will need to fully
understand the low-level details of C++ memory allocation and deallocation that
we discussed in the previous chapters; we will reinforce the dynamic memory topics
in this chapter.

As you may have discovered when working with linked structures in Python,
Python does not prevent you from making semantic errors such as setting a reference
to the wrong linked object (for example, when inserting a node you might mix up the
link that points to the next node so that you skip a node or end up with a circular

403

404 Chapter 11 C++ L inked Structu res

linked structure such as a node's link pointing to itself or an earlier node) . The
C++ environment also does not automatically catch these types of semantic errors.
The best method for finding these types of errors is to test your code extensively.
Python does catch an error that the C++ compiler and run-time environment may
not always catch. Python does not let you use a name to access data at a reference
that does not point to a valid object (for example, a name that has not been defined
or is the value None) . If the name node refers to None and you attempt to execute
node . link or node . i tern, the Python interpreter will always catch this problem
and generate an exception and traceback if you do not catch the exception. In
C++ if you try to dereference an uninitialized pointer or a pointer that refers to an
object that has been deallocated, the run-time environment will attempt to access
the memory location, resulting in garbage data or a memory fault that crashes your
program as we discussed in the previous chapter.

C++ does not allow you to directly assign a pointer of one type to a pointer of a
different type (for example, if x is a pointer to an int and y is a pointer to a double ,

you cannot write y = x) . I t i s possible to cast a pointer of one type to another
type using reinterpret_cast (the syntax is similar to static_cast discussed in
section 8 . 9) , but it is not intended for this type of use nor is reinterpret_cast
commonly used. The C++ compiler checks that the data types match, but the
C++ run-time environment does not check that the pointer actually points to a
valid memory location that holds a value of that type. When you dereference a
pointer that does not point to a valid memory location, sometimes your program
will crash and other times it will continue running even though your program is not
correct , as we discussed in section 10 . 5 .

As you will see later in this chapter, the code for a linked structure in C++
is not much longer than the Python version and you can generally make a line by
line translation of Python linked structure code to C++ code. However, writing
C++ dynamic memory and linked structure code from scratch is more difficult than
writing Python linked structures because Python prevents you from making some
types of errors and makes it easier to find and fix other types of errors. After we
discuss a few additional issues with linked structures in C++, we will translate one
of our Python linked structure examples to C++.

1 1 1 . 2 1 A C++ L i n ked Struct u re C lass

In Python, we used a ListNode class that contained two data elements: the data
value and a reference to the next ListNode in our linked list . We can use the same
technique in C++ with a class to hold the data element and a pointer to the next

11 .2 A C++ L inked Structure C lass 405

node in the list . A significant difference between the C++ version and the Python
version is that our C++ ListNode can only hold an item of one type (an int in our
examples) since all C++ variables must have a specific type. We will learn about
templates in Chapter 1 2 and they will allow us to write one ListNode class that
can hold any type. The following is a simple version of a C++ ListNode class that
we will expand later in this section.

class ListNode {
public :

} ;

int item_ ;
ListNode *link_ ;

An easy typographical error for beginners to make is to forget the asterisk for the
pointer in front of the link_ instance variable. Your C++ compiler will not allow
this because you are including a ListNode in your definition of the ListNode . This
is essentially infinite recursion that would require the ListNode to use an infinite
amount of memory since each ListNode would contain a ListNode as one of its data
members. A pointer to any data type requires four bytes on 32-bit systems since it
is to hold the address where an object of that type is stored, not the actual object .
Thus, the ListNode requires four bytes in addition to the memory for the data type
you want to store.

Usually we do not make instance variables public in C++ classes, but as we
discussed when presenting the Python ListNode classes, allowing direct access to
these instance variables makes sense since the ListNode class is only used directly
by one other class that needs to access the data element and link (the LList class
in our Python example) . Another option is to make the LList class a friend of the
ListNode class. We looked at declaring functions as friends when writing the input
and output operators for our Rational class in section 9 . 4 . As we mentioned in
that section, you can also declare a class to be a friend. Our next version of the
ListNode class demonstrates this and also contains a constructor so we can use it
just as we used our Python ListNode class.

#ifndef _LISTNODE_H
#define _LISTNODE_H

#include <cstdlib>

class ListNode {
friend class LList ;

406 Chapter 11 C++ L inked Structu res

public :
ListNode (int item=O , ListNode* link=NULL) ;

private :

} ;

int item_ ;
ListNode *link_ ;

inline ListNode : : ListNode (int item , ListNode *link)
{

}

item_ = item ;
link_ = link ;

#endif II _LISTNODE_H

The ListNode constructor allows us to call the constructor with zero, one, or
two parameters. We have used the default value zero for the int so that we have a
default constructor that does not require any parameters. The default value for the
link parameter is NULL. Just as the Python None value evaluates to false, the NULL
value (which is zero) evaluates to false and is used to indicate an uninitialized or
invalid pointer. We can write code such as if (node ! = NULL) or the shorthand
version if (node) to check for a valid pointer since NULL is false and any valid
pointer address evaluates to true. We discussed in the Python chapter covering
linked structures that using the is operator in code such as if node is not None
is the best way to do this in Python. C++ does not have an is operator so we
use either if (node) or if (node ! = NULL) . It does not make any difference as far
as performance in C++. For readability, some programmers prefer if (node ! =
NULL) , although many programmers use the shorthand if (node) .

Since the constructor is only two lines long, we have defined it inline to avoid the
overhead of a function call. Note that we are following the convention of using an
underscore after the names of the instance variables . This allows us to use the same
name for the instance variables and the formal parameters except for the addition
of the underscore.

Since C++ provides explicit protection for instance members, we use that in our
ListNode class. We have declared i tem_ and link_ as private instance variables,
but made the LList class a friend of our ListNode class. At this point , the compiler
does not know that there is a LList class since it is not referenced in this file. We
cannot include the LList .h file in this header file because the LList .h file needs to
include this header file (otherwise we have a circular reference) . To indicate that
there will be a class named LList, we can put the line class LList ; before the
class ListNode { line. This is known as a forward declaration, but most , if not all ,

11 .3 A C++ L inked L ist 407

compilers do not require the forward declaration when declaring a friend. Our other
option is to declare the instance variables in the public section as we did initially,
but then any class could access them as is possible in Python.

Recall from our Rational example in section 1 0 . 2 that we cannot dereference a
pointer and use the dot operator without parentheses because of a precedence issue.
Recall that the comlllon usage is to use the ->. But as the following example shows,
there are two correct ways to do it .

ListNode *node ;
node = new ListNode (2) ; II item parameter is required
node->item_ = 3 ; II this is correct
*node . item_ = 3 ; II this is not correct
(*node) . item_ = 3 ; II this is correct

1 1 1 . 3 1 A C++ L i n ked L ist

Using our C++ ListNode class we can create a linked implementation of a list just
as we did in Python in Chapter 4. Recall that we wrote a linked implementation of
a list with the same API as the built-in Python list . In this section, we will write a
C++ version of a linked implementation of a list that again matches the API of the
built-in Python list . The syntax will be different , but the only semantic difference
we need to make is that we need to explicitly deallocate ListNode instances when
they are removed from the list ; Python handles this automatically via its reference
counting mechanism. As we did with the dynamic memory classes in the previous
chapter, we must write a destructor to do the final memory deallocation. You also
need to write a copy constructor and assignment operator (operator=) or prevent
them from being called as you need to do for any class that allocates dynamic
memory using its instance variables. You can prevent the copy constructor and
assignment operator from being used by declaring them in a private section; when
you declare the methods private, you do not need to provide an implementation
for them. If there is not an implementation of a private method, the compiler will
generate an error if the method is called. The following LList .h header file shows
the interface for the LList class we are implementing.

#ifndef _LLIST_H
#define _LLIST_H

#include "ListNode . h"

class LList {

408 Chapter 11 C++ L inked Structu res

public :
LList O ;
LList (const LList& source) ;
-LList O ;

LList& operator= (const LList& source) ;
int size () { return size_ ; }
void append(const ItemType &x) ;
void insert (int i , const ItemType &x) ;
ItemType pop (int i=-1) ;
ItemType& operator [] (int position) ;

private :

} ;

II methods
void copy (const LList &source) ;
void dealloc 0 ;
ListNode* _find (int position) ;
ItemType _delete (int position) ;

II data elements
ListNode *head_ ;
int size_ ;

As you may have noticed, we have more methods than our Python imple­
mentation of the LList class; this is because we need to properly allocate and
deallocate memory. Since the copy constructor and assignment operator share some
functionality, we have declared a private copy method that both methods will use.
The destructor and assignment operator also share some functionality so we have
declared a dealloc method that both methods will use.

A drawback of our ListNode and List classes are that they can contain only
one data type (integers in our examples) . For now, we will make an incremental
improvement and use the C/C++ keyword typedef which allows us to define a new
type name. In the following example, we have created the type name ItemType that
is now a synonym for int o We can now update both our ListNode and List classes
to use the type ItemType instead of int in the places that correspond to the value
stored in the list . Note that we did not change all occurrences of int to ItemType ;
the size of an LList of any data type is still an integer. Now if we want to make an
LList of a different type such as double or Rational , all we need to do is change
the one typedef line in the ListNode.h file (and include the appropriate header file
if it is not a built-in type) .

11 .3 A C++ L inked List 409

The typedef statement does not allow us to store different types in the same
program. Every ListNode in a single program will have to use whatever type we
specify with the typedef command. A single program can only have a LList for
one type since there can only be one class named LList and one named ListNode
in a program. We could copy the code and create a ListNodelnt/LListlnt and
ListNodeDouble/LListDouble and change the typedef line in each file so it is not
too difficult to reuse the code for different types in one program. In Chapter 1 2 ,
we will discuss templates which will allow us to have lists of different types in
one program without having to copy the class files for each type. The use of the
typedef statement now will make it easier to convert our program to a template­
based version. The following is the typedef version of our ListNode and LList
class header files.

II ListNode .h
#ifndef LISTNODE_H
#define _LISTNODE_H

#include <cstdlib>
typedef int ItemType ;

class ListNode {
friend class LList ;

public :
ListNode (ItemType item , ListNode* link=NULL) ;

private :

} ;

ItemType item_ ;
ListNode *link_ ;

inline ListNode : : ListNode (ItemType item , ListNode *link)
{

}

item_ = item ;
link_ = link ;

#endif II _LISTNODE_H

II LList . h
#ifndef _LLIST_H
#define _LLIST_H

#include "ListNode . h"

class LList {
public :

410 Chapter 11 C++ L inked Structu res

LList O ;
LList (const LList& source) ;
-LList O ;

LList& operator= (const LList& source) ;
int size () { return size_ ; }
void append(ItemType x) ;
void insert (size_t i , ItemType x) ;
ItemType pop (int i=-1) ;
ItemType& operator [] (size_t position) ;

private :

} ;

II methods
void copy (const LList &source) ;
void dealloc 0 ;
ListNode* _find(size_t position) ;
ItemType _delete (size_t position) ;

II data elements
ListNode *head_ ;
int size_ ;

We will now look at the C++ implementation file for our LList class. We will
start with the methods that are similar to their Python versions. After examining
these methods, we will look at the extra methods for properly handling memory. Our
LList .cpp file needs to include the LList .h header file containing the class definition.
The LList methods are the same as their corresponding Python methods except for
the need to declare variables, the use of pointers, the need to deallocate nodes when
they are removed from the list , and the other syntax differences between Python
and C++. We include the Python version followed by the corresponding C++
version for the constructor, _f ind, _delete , insert , and pop so you can compare
them. We have removed some of the assert statements, documentation strings,
and comments from the Python version to keep the code shorter.

The purpose of the constructor is to initialize the instance variables. We will
use the NULL value for a pointer variable to indicate that it does not point to a valid
node. The default constructor is simple since we have only two instance variables
to initialize.

def __ init __ (self) :
self . head None
self . size = 0

II LList . cpp
#include ILList .h"

LList : : LList 0
{

}

head NULL ;
size 0 ;

1 1 . 3 A C++ L inked L ist 411

The _find method is essentially the same other than the obvious syntax differ­
ences.

def _find (self , position) :

node = self .head
for i in range (position) :

node = node . link
return node

ListNode* LList : : _find(size_t position)
{

}

ListNode *node = head_ ;
size_t i ;

for (i=O ; i<position ; i++) {
node = node->link_ ;

}
return node ;

The _delete method has some differences since we are removing an item from
the list . In the C++ version, it is necessary to use the delete statement to deallocate
the memory for the ListNode being removed.

def _delete(self , position) :
if position == 0 :

item = self . head . item
self . head = self . head . link

else :
node = self . _find(position - 1)
item = node . link . item
node . link = node . link . link

self . size -= 1
return item

412 Chapter 11 C++ L inked Structu res

ItemType LList : : _delete (size_t position)
{

}

ListNode *node , *dnode ;
ItemType item ;

if (position == 0) {
dnode = head_ ;

}

head_ = head_->link_ ;
item = dnode->item_ ;
delete dnode ;

else {

}

node = _find(position - 1) ;
if (node ! = NULL) {

}

dnode = node->link_ ;
node->link_ = dnode->link_ ;
item = dnode->item_ ;
delete dnode ;

size -= 1 ;
return item ;

Python does have a del statement that removes the name from the current
namespace by deleting the identifier from the dictionary of accessible names (see
section 4 . 2 if you need a brief refresher on Python's dictionary of names) . As you
should expect , when you remove a name, the object that the name referred to has
its reference count decremented by one. When the reference count of an object is
decreased to zero, Python deallocates the memory for the object . The following
Python version shows the use of the del statement .

def _delete (self , position) :
if position == 0 :

dnode = self . head
self . head = self . head . link
x = dnode . item
del dnode # not necessary in Python

else :
node = self . _f ind(position - 1)
i f node i s not None :

dnode = node . link
node . link = dnode . link
x = dnode . item
del dnode # not necessary in Python

self . size -= 1
return x

11 .3 A C++ L inked List 413

As the comments indicate, the del statement is unnecessary; however, it will
not cause any problems. The name dnode is likely the only name that refers to the
object unless another Python name in a different function that is in the call chain
of functions/methods that called the _delete method refers to it . Unless another
name does refer to the object , the del statement will reduce the ListNode object's
reference count to zero and Python will deallocate it . If no other names refer to
the object, the reference count will change to zero when the function ends and the
dnode name is removed from the dictionary of local names. In our original Python
version, the reference count for the ListNode object being removed is decreased
by the statement self . head = self . head . link or the statement node . link =
node . link . link so both the original version and this new version with the del
statement have the same end result .

Even though the Python del and C++ delete keywords look similar and work
similarly in this example, they do not perform the same operation. The Python
del statement removes a name from the current namespace and the C++ delete
statement always deallocates memory. The C++ delete statement is required in
this example or your code will have a memory leak. A key concept to make note of
is that the delete statement deallocates the memory for the object whether or not
other pointer variables point to the same object . If any other pointers do point to
it , dereferencing those pointers after the delete statement executes is an error. We
discussed this in subsection 1 0 . 5 . 3 .

A common mistake Python programmers make when learning C++ is forget­
ting to use the neTJ keyword when they want to allocate a node (i.e. , they write
node-> link_ = ListNode (x)) . The compiler will generate an error if you forget
the neTJ statement . You only use the neTJ statement when you want to allocate a
node and only use the delete statement when you want to deallocate a node. The
allocation issue is the same in Python: you only call the constructor (e.g. , node =
ListNode (x)) when you want to allocate a node. The append and insert methods
are essentially the same in both Python and C++.

def append (self , x) :

newNode = ListNode (x) ;
if self . head is not None :

node = self . _find(self . size - 1)
node . link = newNode

else :
self . head = newNode

self . size += 1

414 Chapter 11 C++ L inked Structu res

void LList : : append(ItemType x)
{

}

ListNode *node , *newNode = new ListNode (x) ;

if (head_ ! = NULL) {

}

node = _find(size_ - 1) ;
node->link_ = newNode ;

else {
head_ = newNode ;

}
size_ += 1 ;

def insert (self , i , x) :

if i == 0 :
self . head = ListNode (x , self . head)

else :
node = self . _find(i - 1)
node . link = ListNode (x , node . link)

self . size += 1

void LList : : insert (size_t i , ItemType x)
{

ListNode *node ;

if (i == 0) {
head_ = new ListNode (x , head_) ;

}
else {

node = _find (i - 1) ;
node->link_ = new ListNode (x , node->link_) ;

}
size_ += 1 ;

}

The pop method is a little different because in Python we used the default
parameter value None to indicate we wanted to remove the last item in the list .
Since C++ does not have dynamic typing or a special value None , we must use
a specific integer to indicate the default value. We have chosen the value -1 to
indicate we want to remove the last item. Other than that , the pop method is the
same except that again we did not test that the parameter i holds a valid value
between 0 and size_ - 1 .

def pop(self , i=None) :

if i is None :
i = self . size - 1

return self . _delete (i)

ItemType LList : : pop (int i)
{

if (i == -1) {
i = size_ - 1 ;

}
return _delete(i) ;

}

11 .3 A C++ L inked List 415

To allow access to the list elements using the square brackets as we can with
Python sequences and C++ arrays, we use operator overloading. This example
also shows the use of reference return types in C++. This allows us to write the
equivalent of the Python __ geti tem __ and __ seti tem __ in one method. We have
only included the Python __ geti tem __ here for comparison.

def __ getitem __ (self , position) :

node = self . _find (position)
return node . item

ItemType& LList : : operator [] (size_t position)
{

}

ListNode *node ;

node = _find (position) ;
return node->item_ ;

The next example shows usage of the method. The statement x = a [1] would
work if the return type was not a reference, but the statement a [2] = 40 would not
work if the method did not return a reference. Just as with Python, the element
on the left-hand side of an assignment statement must be a location where a value
can be stored. The technical term used for this in computer science is an l-value.
The element on the right-hand side of an assignment statement can be a variable,
a constant , or an expression . By returning a reference we are essentially returning
the memory location that is the i tem_ at the second ListNode . When a reference
return type is used on the left side of the assignment operator, the result of the
assignment statement (the value of the expression on the right-hand side of the

416 Chapter 11 C++ L inked Structu res

statement) is stored in the memory location for the variable returned by the function
or method. When a reference return type is used on the right-hand side or as part
of an expression, the actual data value is used instead of the address of the returned
variable. We also covered the issues of returning a reference in subsection 10 .4 . 5 .

#include "LList . h"

int mainO
{

}

LList a ;
int x ;

a . append (10) ;
a . append (20) ;
a . append (30) ;

II both of these methods cause the operator [] method to be called
x = a [1] ; II returns 20 which is stored in x
a [2] = 40 ; II changes the 30 at the last ListNode ' s item to 40

return 0 ;

We will now look at the additional methods for properly handling the dynamic
memory for the linked list . Since Python handles memory deallocation automati­
cally, there is no corresponding Python code to compare to these methods. The copy
constructor makes a deep copy of an LList object ; it needs to create a new ListNode
for each existing ListNode in the original source LList it is copying. Remember
that the copy constructor is called when we pass an object of this type by value.
Since we will need to copy a list in the assignment operator, we are writing a copy
method that both methods will call . We create the deep copy by iterating over the
ListNode objects in the source list , create the new ListNode objects for the new
list inside this loop, and connect the link_ links appropriately. We could write the
copy method more simply by iterating over the items and using the append method
to add them to the new LList object , but that would be inefficient without a tail_
instance variable.

Remember, we do not write an assignment operator in Python because assign­
ment in Python only binds another name to the same object (Le . , makes the name
a reference to the same object) . The C++ assignrnent operator first needs to
deallocate the existing ListNode objects storing its items or we will have a memory
leak. We call the dealloc method, which we will look at next, to deallocate the
existing ListNode objects.

11 .3 A C++ L inked List

LList : : LList (const LList& source)
{

copy (source) ;
}

void LList : : copy (const LList &source)
{

}

ListNode *snode , *node ;

snode = source . head_ ;
if (snode) {

}

node = head_ = new ListNode (snode->item_) ;
snode = snode->link_ ;

while (snode) {

}

node->link_ = new ListNode (snode->item_) ;
node = node->link_ ;
snode = snode->link_ ;

size_ = source . size_ ;

LList& LList : : operator= (const LList& source)
{

}

dealloc () ;
copy (source) ;

417

The class destructor needs to deallocate every ListNode currently in the list
since these are the ListNode instances that have not been deallocated yet . This
ensures that any dynamically allocated memory is deallocated whenever a LList
object is deallocated. As a reminder, the destructor is called automatically when
a non-pointer instance goes out of scope or when the delete statement is used
with a pointer to an LList object . Since our assignment operator also needs to
deallocate the ListNode instances, we write that code once in a dealloc method
and have both the assignment operator and destructor call it . We could write the
code for our dealloc method using the pop method or using the _delete method
by repeatedly calling one of the methods to remove one item at a time from the list .
But for efficiency reasons, we will implement it directly. The code traverses each
ListNode and deallocates the memory for it using the delete statement . Notice
that we have to advance to the next ListNode before we deallocate the current
ListNode . Once we deallocate a ListNode we cannot access it so we would not
have any way to get to the next node. Keeping track of two pointers, one for the
current node and one for the previous node, is is a common technique used in single

418 Chapter 11 C++ L inked Structu res

linked structures since we often need access to both the current node and the node
before it for the list operations.

LList : : -LList 0
{

dealloc () ;
}

void LList : : dealloc ()
{

}

ListNode *node , *dnode ;

node = head_ ;
while (node) {

dnode = node ;

}

node = node->link_ ;
delete dnode ;

As you looked at the code for the methods, you may have wondered how we
can be certain that each new statement has a corresponding delete statement
that deallocates the ListNode object the new statement allocated. We will use
the following simple program to discuss it . See if you can determine how many new
and delete statements are executed by this code and when they are are executed
before reading the paragraph after the code.

#include ILList .h "

int maine)
{

}

LList b , c ;
int x ;

b . append (1) ;
b . append (2) ;
b . append (3) ;
c . append(4) ;
c . append (5) ;
c = b ;
x = b . pop O ;

The constructor is called once for each variable, but that does not cause any new
or delete statements to be executed. The five calls to the append method cause five

1 1 .3 A C++ L inked List 419

new statements to be executed. The c = b statement causes two delete statements
to be executed since operator= calls the dealloc method with the instance c that
deletes the ListNode objects containing 4 and 5. It then calls the copy method
causing three new statements to be executed so we now have a total of six ListNode
objects. The variable b has three ListNode objects containing the numbers one, two,
and three and the variable c has three ListNode objects containing 1 , 2, and 3. The
statement x = b . pop 0 executes a delete statement to deallocate the ListNode
containing the 3 in the b LList. When the function ends, the LList destructor
is automatically called twice: once for the variable b and once for the variable c .
When the destructor for b i s called, i t calls the dealloc method which deletes the
ListNode objects containing 1 and 2. When the destructor for c is called, it deletes
the three ListNode objects containing 1 , 2, and 3.

before b = a

1 000 a.head 2000
1 004 a.size 3

1 008 b.head 21 00
1 01 2 b.size 2

after x = a.popO item link_ item - l ink_

1 000 a.head 2000
1 004 a.size 2
1 008 b.head 2200
1 01 2 b.size 3 item l ink_ item - l ink_ item - l ink_

Figure 1 1 . 1 : Pictorial representation of LList example

Figure] 1 . 1 shows a pictorial representation of the execution at two points in
time. The top part shows a representation before the statement c = b and the
bottom part shows a representation at the end of the statements. We chose to use
the memory addresses starting at 1000 for the stack dynamic variables, and the

420 Chapter 11 C++ L inked Structu res

dynamic heap starts at 2000. The memory addresses we used could be anywhere in
memory. In our example, we reused some of the addresses after they were deallocated
by the call to dealloc in the operator= method. Again, the actual addresses used
would vary and the addresses may or may not be reused immediately after they are
deallocated.

The methods that add elements to the list allocate ListNode objects, and the
methods that remove elements from the list deallocate ListNode objects. As long
as all the methods are implemented correctly, the ListNode objects will remain
linked together. When the variable for the LList instance goes out of scope, any
remaining ListNode objects in the LList are deallocated. The assignment operator,
copy constructor, and destructor must all be implemented correctly to ensure that all
ListNode objects are properly allocated and deallocated when we use these methods.
The other option is to declare the assignment operator and copy constructor as
private methods without implementing them. This will prevent the compiler from
generating any code for them and if other code attempts to call them, the compiler
will generate a syntax error.

As a reminder about when destructors are called with pointers, we will show an
example and discuss when the destructor is called.

LList* f O
{

}

LList b ;
LList * c ;

b . append (1) ;
c = new LList ;
c->append(2) ;
return c ; II the function returns a pointer to an LList instance
II destructor is automatically called for b when the function ends

int mainO
{

}

LList *p ;

p = f O ;
p->append(3) ;
delete p ; II delete statement causes destructor to be called

The destructor is called for the variable b at the end of the function f since b is
a local variable whose lifetime ends when the function completes execution. This
causes the ListNode containing the value 1 to be deallocated. The variable c goes

11 .4 C++ L inked Dynamic Memory Errors 421

out of scope at the end of function f, but since it is a pointer variable, only the four
bytes storing the address of the LList object are deallocated. The LList object with
its ListNode containing the value 2 continues to exist. The destructor is not called
for the variable c when the function ends; if we wanted the destructor to be called in
the function f , we would need to add the statement delete c to the function code.
The function f returns the LList object created by the c = new LList statement.
The main function then appends the integer 3 onto the list . When the delete p
statement is executed, the LList destructor is called. This deallocates the LList
object created by the c = new LList statement in the function f. The destructor
deletes the two ListNode objects it contained. The four bytes for the pointer p are
automatically deallocated when the function completes, as are the bytes for all local
stack dynamic variables.

1 1 1 .4 1 C++ L i n ked Dyna m ic Memory Errors

The same dynamic memory issues we discussed in section 1 0 . 5 apply to linked
structures using dynamic memory so reviewing that section is a good idea. If you
have a ListNode variable *node , it is important to remember that node->i tem_
and node->link_ are both dereferencing the pointer. So if node does not hold a
valid address of a ListNode , those statements are incorrect and will likely cause
a crash or incorrect results. If we incorrectly update the link_ instance variables
when connecting ListNode instances we could end up losing access to a portion of
a list . One example of this is changing our insert method to

II this code is incorrect
void LList : : insert (size_t i , ItemType x)
{

ListNode *node ;

if (i == 0) {
head_ = new ListNode (x , head_) ;

}
else {

node = _find(i - 1) ;
node->link_ = new ListNode (x) ; II incorrect

}
size_ += 1 ;

}

In this case, the link_ instance variable of the newly created ListNode instance
is set to NULL since that is the default value for the second parameter. This

422 Chapter 11 C++ L inked Structu res

disconnects our list since we no longer have any way to access the items after the
newly inserted node. In C++ we both lose access to a portion of the list and cause
a memory leak, so it is extremely important to fully test your C++ code to make
certain you do not have memory errors. In Python, the comparable code would
disconnect our list , but would not have a memory leak since Python does its own
memory deallocation using reference counting.

1 1 1 . 5 1 Cha pter Su m mary

This chapter covers the issues for using pointers and dynamic memory to implement
linked structures in C++. We summarize some of the important issues here.

• Since Python references and C++ pointers are essentially the same, the code
for linked structures is similar in Python and C++. In C++ you must
explicitly deallocate the link nodes when they are no longer needed.

• A linked structure class contains a pointer of its type (for example, our ListNode

class contains an instance variable that is a ListNode pointer) .

• The linked structure class typically declares the class that is going to use the
linked structure as a friend so it can directly access the data and link in the
structure.

• Classes that use dynamic memory must implement a destructor that deallo­
cates any dynamic memory a class instance is still using when the instance
goes out of scope. Dynamic memory classes also must either write a copy
constructor and operator= that make a deep copy of the dynamic memory or
declare these methods private so they cannot be called.

[]}]] Exerc ises

True/Fa lse Questions

1. If you declare a pointer to a ListNode , you must use the new operator to give
the pointer a valid address.

2. If class A declares that class B is its friend, methods of class B can access class
A's private methods and data.

3. If class A declares that class B is its friend, methods of class A can access class
B's private methods and data.

11 . 6 Exercises 423

4. To create a copy of an LList , we must create separate copies of each ListNode
it contains.

5. The i tem_ instance variable of a ListNode can be a pointer.

M u lt ip le Choice Questions

1. A linked implementation of a list

a) will always require more memory than an array version of the same list.
b) will always require less memory than an array version of the same list .
c) may require less memory than an array version of the list depending on the
data type (both store the same data type) .
d) may require more memory than an array version of the list depending on
the data type (both store the same data type) .

2. The running time of our copy method for the LList class is

a) 8(1) .
b) 8(log2n) .
c) 8(n) .
d) 8(n2) .

3 . The most efficient possible running time of a copy method for the LList class
would be

a) 8(1) .
b) 8(log2n) .
c) 8(n) .
d) 8(n2) .

4 . The running time of the destructor for our LList class is

a) 8(1) .
b) 8(log2n) .
c) 8(n) .
d) 8(n2) .

5 . The most efficient possible running time of a destructor for the LList class
would be

a) 8(1) .
b) 8(log2n) .
c) 8(n) .
d) 8(n2) .

424 Chapter 11 C++ L in ked Structu res

Short-Answer Questions

1. How much total memory does the dynamic array List class in the previous
chapter require for a list of n integers?

2. How much total memory does the LList class in this chapter require for a list
of n integers?

3. How should you decide whether your program should use the dynamic array
List class or the linked implementation LList class if you need to store a list
of integers?

4. What potential issues are there if the i tem_ instance variable of the ListNode
is a pointer to dynamically allocated memory?

5. Why is it legal for a class to contain a pointer to an instance of the same
class, but not an instance of the same class (for example, why can a ListNode

contain a pointer to a ListNode , but not a ListNode)?

Programm ing Exercises

1 . Complete the linked implementation by adding a tail_ instance variable and
an external iterator class. Also write code to test all your list methods. There
is no automatic iteration so you will need to write the external iterator so that
it can be called using code such as

LList 1 ;
LListlterator Ii ;
int x ;

Ii . ini t (1) ;
while (li . next (x)) {

cout « x « endl ;
}

2 . Write a linked implementation of a list where each list node element contains
pointers to both the previous and next element in the list .

3. C++ also supports inheritance. The basic syntax for inheritance is

I
::ass CursorLList , public LList {

1 1 .6 Exercises 425

There are a number of issues you will want to learn if you are going to use
inheritance in C++, but for this exercise you only need to know that the
constructor for the base class is called automatically before the derived class'
constructor and the destructor for the base class is called automatically when
the destructor for the derived class completes . Create a C++ derived cursor
list and the cursor class as described in subsection 4 . 6 . 2 .

4 . Implement a node-based binary search tree in C++. Include a copy construc­
tor, assignment operator, and destructor.

Chapter 12 c++ Tem plates

Object ives

• To understand why compiled code generally needs to know the data type for
the variables it manipulates.

• To learn how to write functions using templates.

• To briefly introduce the C++ Standard Template Library (STL) .

• To learn how to write classes using templates.

\ 12 . 1 \ I ntroduct ion

We have learned that C++ variables must be defined with a fixed type so that the
compiler can generate the specific machine instructions needed to manipulate the
variables. Dynamic typing is possible in Python because the interpreter waits until
it is ready to execute a Python statement before converting it to machine language.
This allows us to write generic functions and classes in Python that work for any
type. As long as an object has the attribute you are trying to use, the code will
work. Some programmers refer to this as duck typing (i .e. , if it walks like a duck
and quacks like a duck, it is a duck) . In this chapter, we will learn a new C++
mechanism known as templates that allow us to write functions and classes in C++
that will give us sinlilar functionality to Python's duck typing.

In Python, we can write our own maximum function (although there is no need
to since Python has built-in max and min functions) that works for all data types
that support the greater-than operator (Le. , the built-in types and any classes that
implement _ _ gt __) .

427

428

def maximum (a , b) :
if a > b :

return a
else :

return b

Chapter 12 C++ Templates

In C++, all parameters and variables have a fixed type that cannot change
during the lifetime of the variable (except when using inheritance) . This means we
would have to write a separate maximum function for each type that we want to use
with our maximum function as the following example shows.

int maximum_int (int a , int b)
{

}

if (a > b) {
return a ;

}
else {

return b ;
}

double maximum_double (double a , double b)
{

}

if (a > b) {
return a ;

}
else {

return b ;
}

The bodies of the two C++ functions are identical, as you should expect based
on the Python code that works for any types supporting the greater-than operator.
We saw the use of the typedef statement in Chapter 1 1 to make it easier to write
code for multiple types; however, that doesn't allow the same code to be used for
multiple types since the machine language code generated must be specific for the
type. C++ templates allow us to write one version of the code, and the compiler
automatically generates different versions of the code for each data type as needed.
Templates allow us to write one maximum function that will work for all types that
support the greater-than operator and allow us to write container classes such as
lists, stacks, and queues that can hold any type. We will examine the syntax for
templates and the issues involved with them in the remaining sections of this chapter.

12 .2 Template Functions 429

1 12 . 2 1 Tem plate Fu nct ions

The syntax for template functions is the keyword template followed by <typename
Item> in front of the name of the function. You may use any legal identifier instead
of Item, but C++ programmers commonly use Item or Type . The Item name
is a placeholder for any valid type. You may use the keyword class instead of
the keyword typename (template <class Item» . There is no semantic difference
between the two although the use of class may make someone think it works only
with class objects and not built-in primitive data types even though that is not the
case. No matter which version you use, the actual data type that is used when the
template function is called does not need to be a class; the type can be a built-in
type, an array, or a class. The next example demonstrates a template version of our
maximum function.

/ / maximum . cpp
#include <iostream>
using namespace std ;

template <typename Item>
Item maximum(Item a , Item b)
{

}

if (a > b) {
return a;

}
else {

return b ;
}

int main O
{

}

int a=3 , b=4 ;
double x=5 . 5 , y=2 . 0 ;

cout « maximum (a , b) « endl ;
cout « maximum(x , y) « endl ;
return 0 ;

In this case, the C++ compiler generates two versions of our maximum function.
One is for the int type and is used when the call maximum (a , b) is made; the
other is for the double type and is used when the call maximum (x , y) is made. The
different versions are needed since the machine language instruction for comparing
two integers and two double-precision floating point numbers are not the same.

430 Chapter 12 C++ Temp lates

We could also use this template function with our Rational class that overloaded
the greater-than operator. Clearly the code that compares two integers and two
Rational objects is not the same. Comparing two integers is one machine language
instruction while comparing two Rational objects requires executing the machine
code for the Rational class' operator> .

The C++ compiler does not generate any code if you do not call a template
function. Depending on your compiler, it may or may not catch syntax errors in
template functions that are not called. Because of this , it is important that you
test all your template functions. The term instantiate is used to indicate that
the compiler generates the code for a specific type. In our previous example, the
compiler instantiates an int version and a double version of our maximum function.

Since the compiler does not generate the code for a template function with a
specific type until it encounters code that calls the template function with that type,
the compiler needs access to the source code of the template function when compiling
the file that calls the function. The reason for this is that the compiler does not know
the data type it will need to generate the machine language instructions for until
it encounters the call to the function. Thus, once we have the type, we also need
the source code for the template function to generate the corresponding machine
instructions for that data type. This is not a problem if everything is in one file
as in the preceding example. If you want a template function to be accessible in
multiple C++ source files, you will need to write it in a header file that each source
file includes.

The Type template parameter can be any data type, but cannot be two different
types in the same instantiation of the function code. Using our previous example, we
could not call our function as maximum (x , b) because x is a double and b is an int o
C++ does support multiple template types. It does not make sense to write our
maximum function for multiple types, but the next example shows the syntax for a
function with multiple template parameter types. It uses two template parameters,
but there is not a specific limit on the number of template parameters you can use.

template <typename Tl , typename T2>
Tl maximum (Tl a, T2 b)
{

}

if (a > b) {
return a ;

}
else {

return b ;
}

12 .3 Template C lasses 431

If we call the function as maximum (x , b) , our C++ compiler (g++ version 4)
compiles the code without any warnings or errors. The parameter Ti is double and
T2 is an int so the return type is a double. The compiler silently casts an int to
a double if necessary. If we call the function as maximum (b , x) , most compilers
will generate a warning, but still will produce the executable machine code . The
following shows the warning generated by the g++ compiler. As usual , you should
not ignore compiler warnings even though the compiler still produces an executable
program.

maximum . cpp : In function ' T1 maximum (T1 , T2) [with T1 = int , T2 = double] ' :
maximum . cpp : 35 : instantiated from here
maximum . cpp : 23 : warning : converting to ' int ' from ' double '

As we have discussed, the compiler creates separate copies of the template
functions for each data type that is used when calling the function. So in effect, the
compiler is doing the work of writing each of the multiple versions of the functions
instead of the programmer having to write each version. As the previous example
shows, you will still get warnings or errors as if you had written the same code that
the compiler generates based on your template.

1 12 . 3 1 Templ ate C l asses

As we stated earlier, you can also write classes using templates so that you can write
a container class that can hold any C++ built-in data type or user-defined class.
C++ also provides a library known as the Standard Template Library (commonly
abbreviated STL) that provides template classes for a number of common data
structures and algorithms for manipulating those data structures. The Standard
Template Library is fairly complex and entire books have been written on it so we
will only cover one of the classes in the STL and some simple examples of its use.
We will then show you how to write your own template classes.

1 12 . 3 . 1 1 The Standard Tem plate L ibrary vector Class

One of the simpler STL classes is the vector class. It provides functionality similar
to the dynamic array classes we developed earlier in the book. Internally the vector
class is implemented as a dynamic array, so its use and efficiency are similar to the
C++ dynamic array class we developed and the built-in Python list . The vector
class is defined in the <vector> header file and is within the std namespace so we
will need to specify it as std : : vector or write either using std : : vector or using

432 Chapter 12 C++ Templates

namespace std in our files. If you are defining your own class that uses a vector
or are writing a function that returns or has a vector as a parameter, do not put
a using namespace std or using std : : vector statement in your header file (see
section 8 . 13 if you need a refresher on why) . Instead, refer to it using its full name
std : : vector in your header file. You may then put the using namespace std
statement in your implementation file as we have done in our examples.

When you declare an instance of the vector class, you must specify the data
type that the vector will contain in its dynamic array. An example of this is
std : : vector<int> iv ; . You can declare vectors with two different types in the
same file, as the following example shows:

/ / veei . cpp
#include <iostream>
#include <vector>
using namespace std ;

int maine)
{

}

veetor<int> iv ;
vector<double> dv ;
int i ;

for (i=O ; i<10 ; ++i) {
iv . push_back (i) ;
dv . push_back(i + 0 . 5) ;

}
for (i=O ; i< 10 ; ++i) {

}
eout « iv [i] « II I I « dv [i] « endl ;

return 0 ;

This example also shows that the vector class supports a method named
push_back (similar to the Python list append method) . The push_back method
takes one parameter that matches the type with which the vector is instantiated.
The vector class also overloads the bracket operator so that the individual items
in the vector can be accessed using the square bracket array notation.

The vector class supports a default constructor, as the previous example shows,
and also has a constructor that takes one or two default parameters. The default
constructor produces a vector with no items in it . When you specify one parameter,
it is an integer specifying the size of the initial dynamic array to create. The second
default parameter is the default value to use to initialize each of the elements in the

12.3 Template Classes 433

dynamic array, so its type is the type that you are storing in the vector. The next
example demonstrates this.

II vec2 . cpp
#include <iostream>
#include <vector>
using namespace std ;

int main e)
{

}

II creates a vector with 5 int elements , each set to 3
vector<int> iv (5 , 3) ;
II creates a vector with 5 double elements , each set to 0 . 0
vector<double> dv (5) ;
int i ;

for (i=O ; i<5 ; ++i) {

}
cout « i v [i] « II II « dv [i] « end 1 ;

If we specify the size but do not specify a second parameter, the default con­
structor (for the class being stored in the vector) is called for each element in the
vector; this is yet another reason you should always provide a default constructor
for classes you write. For numeric types, the items in the vector will default to
zero as the comment in the example indicates.

The prototypes for some, but not all , of the methods the vector class provides
are listed in the next code example. We use the name Item to specify the data type
the vector instance contains. C++ defines the typedef size_type which is the
same as an unsigned int (i.e . , a non-negative integer) .

II allocates the dynamic array so the capacity of the array is n elements
void reserve (size_type n) ;

II appends x onto the end of the vector
void push_back (Item x) ;

II removes and returns the last element in the vector
Item pop_back O ;

II returns True if the vector has no items in it , False otherwise
bool empty () const ;

434 Chapter 12 C++ Templates

II returns the number of items in the vector
size_type size () const ;

II returns the largest possible size for the vector
size_type max_size () const ;

II returns the size of the dynamic array (i . e . , the largest number of
II elements that can be stored in the vector without resizing it)
size_type capacity () const

The vector class also overloads the assignment operator. When you assign one
vector variable to another, each of the individual elements in the vector instance
on the right-hand side of the assignment operator is assigned to the corresponding
position in the vector instance on the left-hand side of the assignment operator.
The vector instance on the left-hand side will be resized if necessary so it can hold
all the elements from the right-hand side instance.

Many of the STL classes also provide support for iteration. We will show a
simple example, but not cover all the details. STL classes that support iterators
include the methods begin 0 and end 0 which return an i terator object . Some
classes also support methods for iterating through the container in reverse order
using the methods rbegin () and rend () . The following example shows the use of
an iterator with the vector class.

II vec3 . cpp
#include <iostream>
#include <vector>
using namespace std ;

int main O
{

}

vector<int> iv ;
vector<int> : : iterator iter ;
int i ;

for (i=O ; i<10 ; ++i) {
iv . push_back (i) ;

}

for (iter=iv . begin () ; iter ! = iv . end () ; ++iter) {
cout « *iter « endl ;

}
return 0 ;

12 .3 Template Classes 435

The output of the example is the numbers 0 through 9. The example shows the
declaration of an iterator variable named iter that can be used to iterate through
a vector containing integers. The begin () method of the vector class is used to
initialize the iterator. The for loop uses the end O method to determine if the
iterator has processed all the items, and the prefix increment operator (++i ter) is
used to move the iterator to the next item; this is the reason we used the prefix
version of the increment operator in all our for loop examples. Inside the loop, each
item can be accessed using the pointer deference notation (*iter) .

In addition to the vector template class, the Standard Template Library also
provides template class implementations of a queue, list , set , and hash table along
with algorithms and iterators for use with a number of the classes. If you are
interested in learning more about the STL, you can find complete books dedicated
to discussing the details of the STL.

1 12 .3 .2 1 User-defi ned Template C lasses

If the STL does not define the data structure you need to use or you are using an
old compiler that does not fully support the STL, you can write your own template
classes. As is common with non-template classes, template classes are typically
split into two files: a header file and an implementation file. As we discussed earlier,
a template function does not actually cause any code to be generated unless it is
used. The same is true of template classes and the methods they define. As we
also explained, the compiler needs to have access to the template function/method
code when compiling the file that calls that template function/method. Some
programmers place the entire code for all the functions and methods in the header
file . You cannot do this for non-template functions and classes since it will produce
multiple definitions of the functions and classes. Since template declarations do not
actually produce any code, having them included in multiple files is not a problem.

Some programmers place the function or method code in a file with the suffix
.template and then have the header file include the .template file at the bottom of
the header file. This has the same effect of placing all the code in the header file,
but allows a programmer using our class to see only the interface for the template
functions and classes in the header file without seeing the details of the implemen­
tation of the functions and methods. Of course, we cannot completely hide the
implementation from users since their compiler needs access to the implementation
file. We will use this technique of a separate . template file in our examples.

When writing template classes, both the class definition and the implementation
of each method must indicate that it is a template. The syntax for template methods

436 Chapter 12 C++ Templates

is the same as it is for template functions. We will demonstrate the syntax for
template classes with a template implementation of a stack class.

II Stack . h
#ifndef STACK __ H __
#define __ STACK __ H __
#include <cstdlib> II for NULL

template <typename Item>
class Stack {

public :
Stack O ;
-Stack O ;

II const member functions
int size () const { return size_ ; }
bool top (Item &item) const ;

II modification member functions
bool push (const Item &item) ;
bool pop (Item &item) ;

private :

} ;

II prevent these methods from being called
Stack(const Stack &s) ;
void operator= (const Stack &s) ;

void resize 0 ;
Item *s_ ;
int size_ ;
int capacity_ ;

#include "Stack . template"

The extra syntax is to put template <typename Item> before the class decla­
ration. As with functions, you can use any identifier in place of Item. This Stack
class uses a dynamic array to store the elements on the stack. The declaration Item
*s_ declares the pointer to the dynamic array for the data. Since we used template
<typename Item> before the class declaration, we need to use Item as the data type
here so that it matches. As indicated earlier, we can either include a Stack.template
file containing the implementation or put the template method implementations at

12 .3 Template Classes 437

the bottom of the header file. In our example, we declared the copy constructor and
assignment operator private but did not provide the code for them in the following
. template file. This means that these methods cannot be called as we discussed in
subsection 10 .4 . 2 .

I I Stack . template
template <typename Item>
Stack<Item> : : Stack ()
{

}

s_ = NULL ;
size_ = 0 ;
capacity_ = 0 ;

template <typename Item>
Stack<Item> : : -Stack ()
{

}

template <typename Item>
bool Stack<Item> : : top (Item &item) const
{

}

if (size_ > 0) {
item = s_ [size_-l] ;
return true ;

}
else

return false ;

template <typename Item>
bool Stack<Item> : : push (const Item &item)
{

}

if (size_ == capacity_) {
resize O ;

}
if (size ! = capacity_) {

s_ [size_] = item ;
size_++ ;
return true ;

}
else

return false ;

438 Chapter 12 C++ Templates

template <typename Item>
boo I Stack<Item> : : pop (Item litem)
{

}

if (size_ > 0) {
size_-- ;

}

item = s_ [size_] ;
return true ;

else
return false ;

template <typename Item>
void Stack<Item> : : resize ()
{

}

Item *temp ;
int i ;

if (capacity_ == 0) {
capacity_ = 4 ;

}
else {

capacity_ = 2 * capacity_ ;
}
temp = new Item [capacity_] ;
for (i=O ; i<size_ ; i++) {

temp [i] = s_ [i] ;
}
delete [] s_ ;
s_ = temp ;

In this Stack implementation we have returned a Boolean value for many of the
methods, indicating whether or not each method succeeds. Since we can return only
one value in C++, we used pass by reference to send the data back from the top and
pop methods. Note that we also passed the value to the push method as a const
reference parameter since we do not know whether the value will be a small data
type such as an int or a class containing many data members. We also used if
statements in the methods that allocate dynamic memory to be certain they succeed
(e.g. , the push method makes certain there is room in the array and returns false if
allocating a larger array when necessary failed) . These extra checks will result in the
implementation being slightly slower than it would be without the if statements. In
most cases, you could write the code without these tests as the allocation will always
succeed unless you are dealing with stacks that approach the size of the memory
your computer can access (at least two gigabytes on most modern architectures) .

12.3 Template Classes 439

To declare an instance of the template class, we specify the data type the stack
will hold with the declaration just as we did with the STL vector class. The
following code fragnlent demonstrates the syntax. To stay short, the example does
not test all the stack methods, but remember that you need to test all the methods
of a template class since some compilers do not check the syntax of methods that
are not instantiated.

II test_Stack . cpp
#include "Stack .h "

int main O
{

}

Stack<int> int_stack ;
Stack<double> double_stack ;

int_stack . push(3) ;
double_stack . push (4 . 5) ;
return 0 ;

In this short example, we ignored the return value from the push method. To be
safe and check to be certain all the allocations succeed, we could write it as

if (l int_stack . push (3)) {
cerr « " stack . push failed\n" ;

}
if (l double_stack . push (4 . 5)) {

cerr « "stack . push failed\n" ;
}

Writing all these tests is tedious and probably unnecessary for a small program
that only pushes a few items onto the stack since that should never result in a
memory allocation failing. For a larger, mission critical program, these values should
be tested. In Python, we would likely handle these issues using exception handling.
C++ also supports exception handling, but it is not as commonly used as it is in
Python. When using exception handling in C++, you need to be very careful when
using it with dynamic memory allocation. If an exception is generated during a
sequence of instructions that may have allocated memory, you need to be certain
that memory is properly deallocated. You also need to be aware if the memory
allocation did not happen before the exception was generated so that you do not
later try to deallocate memory that was never allocated . We do not cover the details
of writing C++ exception handling code in this book.

440 Chapter 12 C++ Templates

1 1 2 .4 1 Chapter S u m mary

This chapter covers the basics of using C++ template functions and classes and how
to write your own template functions and classes.

• Templates allow you to write functions and classes that can work with more
than one type. The compiler generates separate versions of the machine code
for each different type that is used.

• The compiler does not generate code unless a function or method is actually
used; this means the compiler may not check the template code for syntax
errors unless a function or class is used. You should fully test all template
functions and classes you write to make certain they do not contain errors.

• C++ provides the Standard Template Library (STL) containing a number of
classes and algorithms.

1 12 . 5 1 Exercises

True/Fa lse Questions

1. Templates allow you to write code once and reuse it with multiple types.

2. The compiler will always catch syntax mistakes in your C++ template func­
tions and methods.

3. For each data type a template function is called with, the compiler generates
a separate copy of the machine language instructions for the function.

4. You can place template function or method implementations in an implemen­
tation file (. cpp) and the linker will correctly link the code so it can be called
from other implementation files .

5. Templates give you the same flexibility that Python's dynamic typing does.

M u lt ip le Choice Questions

1. When you write a template function,

a) the compiler generates one set of machine language instructions for all types.
b) the compiler generates a separate set of machine language instructions for
each type that you call the template function with.

12 .5 Exercises 441

c) the compiler generates a separate set of machine language instructions for
every built-in type and every class your program uses whether or not the
template function is called with each type.
d) the C++ run-time environment generates the machine language instruc­
tions as needed when the function is called with different types.

2. What is/are the advantages of using templates instead of a typedef statement
and cutting and pasting the code?

a) The resulting executable program requires less memory.
b) The resulting executable program will run faster.
c) You do not have to write as much code or risk making errors when copying
the code.
d) all of the above

3. Which of the following are techniques for writing C++ template classes?

a) You may write a class header file as you usually do and at the bottom of the
file, include the file containing the implementation of the template methods.
b) You may write a class header as you usually do and write the implementa­
tion of the methods with the inline keyword.
c) You may write a class header as you usually do and write the implementation
of the methods without the inline keyword.
d) a and b

4. Using a template class even when your program only creates an instance of
the class with one data type

a) requires less memory than not using templates if you call all the methods.
b) requires more memory than not using templates if you call all the methods.
c) requires the same amount of memory than not using templates if you call
all the methods.
d) will execute more slowly than not using templates.

5. Based on the example using the vector class, what does the iter variable
correspond to?

a) the address of the i v variable
b) the address of the current element in the array
c) the value of the current element in the array
d) none of the above

442 Chapter 12 C++ Templates

Short-Answer Questions

1. Without operator overloading, would it be possible to create a template-based
version of our maximum function? If not, explain why not or if so, explain
how you would do it .

2. Could a template-based version of our LList from the previous chapter contain
multiple types in one list? Explain why or why not.

3 . How do you determine if a template class needs to write a destructor, copy
constructor, and assignment operator?

4. Do the functions and methods generated from templates execute more slowly,
more quickly, or the same as the same code written without templates? Why?

5 . Is it possible to write template code without allowing the person using your
template code to see the source code of your template code? (With non­
template code, the user only needs to see the header file and the implementa­
tion can be a compiled object file or library.) Why or why not?

Programm ing Exercises

1 . Write a template version of the mergesort algorithm and test it with multiple
types.

2. Implement a queue using templates along with code to test it .

3. Implement our List dynamic array using templates along with code to test
it .

4. Implement our LList linked implementation using templates along with code
to test it .

5. Implement a binary search tree using templates along with code to test it .

Chapter 13

Objectives

Heaps , Balanced

Trees , and Hash

Tables

• To understand the binary heap data structure and how to implement it .

• To understand the AVL balanced tree data structure and how to implement
it .

• To understand the hash table data structure and the basics of its implemen­
tation options.

1 13 . 1 1 I ntroduct ion

Now that we have covered a number of basic data structures and introduced the
C++ programming language, which required us to have a better understanding
of the low-level details of memory allocation and deallocation, we will examine !i
number of more advanced data structures and algorithms in the remainder of this
book. We will discuss implementation issues for Python and C++. In most cases,
we will present a Python implementation and have you implement it in C++ so you
can continue to develop your C++ skills.

The data structures we have covered so far are all container objects allowing us
to store and retrieve information. List objects allow us to store data in an order
defined by the user. The array-based list supports efficient access by position, but
does not provide efficient searching for a specific item unless we keep the list in

443

444 Chapter 13 Heaps, Balanced Trees, and Hash Tables

sorted order. Inserting to and deleting from an array-based list are not efficient .
We also examined a linked implementation of a list that supports efficient insertion
and deletion, but requires more memory and does not support efficient access by
position. Stacks and queues are also container objects , but they are not as generic
as lists; they only support accessing the data in a certain order and are not intended
to be used for random searching or access. Trees are useful for storing hierarchical
data or for storing information so it can potentially be searched more efficiently as
is the case with a binary search tree.

In this chapter, we will examine additional container data structures. Priority
queues and heaps are useful for storing data and then accessing it in a sorted order
efficiently. Balanced trees are an extension of the basic binary search tree that
maintains a balanced structure for the tree no matter what order the elements are
inserted. This ensures that searching for an item is always a 8(lgn) operation.
Hash tables are a data structure that provide very efficient inserting, deleting, and
searching operations. You are already familiar with hash tables since that is what a
Python dictionary is. We will examine the implementation details of heaps, priority
queues, balanced trees, and hash tables in this chapter.

1 13 . 2 1 Priority Queues a nd Hea ps

In section 5 . 3 , we studied first in, first-out queues. In some cases, we may want
to prioritize the order items are processed. For example, you prioritize the order
that you perform tasks. A common priority is when they are due. You likely give a
higher priority to a task that is due in two days than a task that is due in a week,
even if the task that is due in two days was assigned later than the task that is
due in a week. If you put the tasks in a queue when they were assigned, the one
that is due later would be dequeued before the one that is due earlier. Another
common example is that hospital emergency rooms prioritize the order they treat
patients based on the severity of the injuries or illnesses. Your computer's operating
system prioritizes its execution of programs so that crucial operating system tasks
and interactive programs get more frequent access to the CPU. The data structure
for handling these types of situations is known as a priority queue. Each item in
a priority queue must be assigned a priority value and these values are used to
determine the highest priority item that should be dequeued next . A specification
for a priority queue using Python syntax is

13.2 Priority Queues and Heaps 445

class PQueue (obj ect) :

def enqueue (self , item , priority) :
" ' post : item is inserted with specified priority in the PQ ' "

def first (self) :
" ' post : returns but does not remove highest priority item from the PQ ' "

def dequeue (self) :
" ' post : removes and returns the highest priority item from the PQ ' "

def size (self) :
" 'post : returns the number of items in the PQ ' "

There are a number of possible implementations of a priority queue. One is
to maintain a sorted list of the items by priority order and enqueue the items in
the appropriate position. As we discuss the run-time analysis, we will always state
the worst-case running time unless we explicitly state we are specifying the best or
average case. The enqueue operation would require 8(n) time. If we are using an
array, we can use a binary search and find the correct spot in 8(lgn) time, but then
we have to shift the items in the array to insert the new item. The worst case would
be shifting all the items to insert at the beginning of the array, which requires 8(n)
time. If we use a linked list , it requires 8(n) time to find the correct location for
insertion and then the insertion can be performed in 8 (1) time. Another option is
to append items onto the end of a list for the enqueue and search for the highest
priority item during the dequeue; in this case, the dequeue requires 8(n) time.

Using the data structures with which we are already familiar, either the enqueue
or dequeue operation for a priority queue requires 8(n) time. To improve on this,
we will learn a new data structure known as a binary heap. The term heap is used to
describe several different data structures in computer science. Computer scientists
refer to the memory pool from which dynamic memory is allocated and deallocated
as a heap. In this chapter, we will use the term heap to refer to the binary heap we
are discussing here. A binary heap is a complete tree with the additional property
that for every node, the item at that node is not less than the items in its children's
nodes. You can also reverse this property so that the item at each node is not
greater than the items at the node's children if you want to extract items in the
reverse order. Remember that a complete tree means that at every depth level except
the last level, each level has the maximum number of nodes and at the last level,
the nodes are filled from the left . Figure 13 . 1 shows examples of complete trees that
are and are not binary heaps; the tree on the right is not a heap. In these examples,
we are showing only the one value that is required to indicate the position in the

446 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

heap; this value corresponds to the priority for a priority queue. To actually create
a priority queue, we would need to store both the priority value and the data you
want to store in the priority queue.

heap not a heap

Figure 13 . 1 : Two complete trees with only the left one satisfying the heap property

In order to make the binary heap practical for a priority queue, we must find
algorithms to insert and remove an item from the binary heap in less than 8(n)
time. Given our definition of the binary heap, the highest priority item is at the
root of the tree so it is easy to find and return it in 8(1) time. Once we have done
that , we need to update the heap so that the next highest priority item is at the
root of the tree. Because of the heap property, the next highest priority item is one
of the two children of the original root node. We could move to the root and repeat
the process by moving the higher priority of its two children up to the spot in the
second level. We could continue this process until we reach the bottom of the tree.
The problem is that we may end up with a non-complete tree because the item we
moved up from the bottom row may not have been the right-most node in the row.
To prevent this from happening we can follow a slightly different process. We can
temporarily move the right-most item in the bottom level of the tree to the root
node and then move it down the tree by swapping it with the higher priority child.
We repeat this process of moving the item down the tree until the item we originally
moved to the root has moved down the tree to a location where the heap property
is satisfied. Since we moved the item at the right-most spot in the bottom row, the
tree will remain a complete tree.

Figure 13 . 2 shows the process of shifting the last item down the tree. In this
example, the highest priority item 9 is removed from the heap and the last item in
the heap (4) is temporarily moved to the root of the tree. We move 4 down the tree

13 .2 Priority Queues and Heaps 447

until the heap property is satisfied. We check the root 's two children and find the
higher priority item is 8 and that is larger than 4 so we swap the two items. Now we
check the two children of the current location where 4 is and find the higher priority
item is 7. We swap 7 and 4 since 7 has a higher priority. Now we check the 4 node's
two children and find that both have a lower priority (2 and 0) so we are done. In
practice we do not swap items; instead, we keep track of the item that was last in
the tree and move the items up the tree until we find the spot the last item needs
to be placed and then move it there. In this exanlple, we would move 8 to the root ,
move 7 to where 8 was and then place 4 where 7 was since that is the location that
satisfies the heap property.

Figure 13 . 2 : Removing 9 and reorganizing the heap

We can use a similar process for inserting an item into the heap. We place the
new item at the last spot in the bottom row of the tree and then move it up the
tree by swapping it with its parent until the heap property is satisfied. This will
also ensure that the tree remains a complete tree. Figure 1 3. 3 shows an example of
this process. The value 8 is added to the end of the heap and then swapped with 4
and then swapped with 7 . At this point, 8 is less than its parent (9) and the heap
property is again satisfied. As with removing an item, in practice, we do not swap
the items; instead we would move 4 to its new location, move 6 to its new location,
and then place 8 in the correct location.

448 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

Figure 13 . 3 : Inserting the 8 and reorganizing the heap

We indicated that to make the binary heap a better implementation for a priority
queue, the enqueue and dequeue operations needed to be more efficient than 8(n) .
For both the insertion and deletion operations of the binary heap, the maximum
number of items moved is the height of the tree. Since the tree is complete, this is
8(lgn) so both the enqueue and dequeue operations of the priority queue can be
performed in 8(lgn) time if we use a binary heap to implement the queue. This
meets our goal of being better than 8(n) .

When we originally discussed binary trees, we indicated that an array imple­
mentation is appropriate when the tree is complete, so we use an array or list
to implement the heap instead of linked nodes. As we demonstrated, the basic
algorithms used in the heap are moving items up and down the tree. We will make
use of the code to move items down the tree for two different heap methods, so we will
write a method that performs this operation and call it from those two methods.
The following Python code shows this method, commonly known as heapify or
percolate_down, along with the constructor and a method to return the number of
elements in the heap. These methods create a heap that is implemented as an array
using an instance variable named heap with the root node at position one in the
list . The instance variable heap_size indicates the number of items in the heap.
Starting the tree at position one of the array results in simpler calculations for the

13.2 Priority Queues and Heaps 449

parent, the left child, and right child than storing the root at position zero. With
the root node at position one, the left child of the element at position i is 2*i , the
right child is 2*i +1 , and the parent is i/2 using integer division (5 / / 2 is 2) .

Heap . py
class Heap (obj ect) :

def __ init __ (self , items=None) :

" 'post : a heap is created with specified items ' "

self . heap = [None]
if items is None :

self . heap_size = 0
else :

self . heap += items
self . heap_size = len(items)
self . _build_heap ()

def size (self) :

" ' post : returns number of items in the heap ' "

return self . heap_size

def _heapify (self , position) :

" ' pre : items from 0 to position - 1 satisfy the heap property
post : heap property is satisfied for the entire heap ' "

item = self . heap [position]
while position * 2 <= self . heap_size :

child = position * 2
if right child , determine maximum of two children
if (child ! = self . heap_size and

self . heap [child+l] > self . heap [child]) :
child += 1

if self . heap [child] > item :
self . heap [position] = self . heap [child]
position = child

else :
break

self . heap [position] = item

The delete_max method returns the element at the root node of the tree and
uses the _heapify method to update the heap so the heap property is maintained
as we discussed. We also include the insert method here.

450 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

def delete_max (self) :

" ' pre : heap property is sat isfied
post : maximum element in heap is removed and returned ' "

if self . heap_size > 0 :
max_item = self . heap [1]
self . heap [1] = self . heap [self . heap_size]
self . heap_size -= 1
self . heap . pop 0
if self . heap_size > 0 :

self . _heapify (1)
return max_item

def insert (self , item) :

" ' pre : heap property is satisf ied
post : item is inserted in proper location in heap ' "

self . heap_size += 1
extend the length of the list
self . heap . append (None)
position = self . heap_size
parent = position II 2
while parent > 0 and self . heap [parent] < item :

move item down
self . heap [position] = self . heap [parent]
position = parent
parent = position II 2

put new item in correct spot
self . heap [position] = item

In some cases we may have a list of values that we want to turn into a heap. We
could accomplish this by inserting the items one at a time into the heap. There is a
more efficient method we can use that manipulates the existing array in place using
the same technique of shifting items down the tree that we used in the _heapify
method. Leaf items in the complete tree cannot have children that violate the heap
property and also cannot be moved down since there is no child to swap the item
with. This tells us that we can start at the middle of the array since any items
beyond that do not have children. We can then update the tree in a bottom-up
manner so the heap property eventually holds for the entire tree. This is done by
calling our _heapify method for each non-leaf node in the tree starting at the last
node that has a child (which is the middle element in the array) . The Python code
for this is

13 .2 Priority Queues and Heaps

" ' pre : self . heap has values in 1 to self . heap_size
post : heap property is satisf ied for entire heap ' "

1 through self . heap_size
for i in range (self . heap_size II 2 , 0 , - 1) : # stops at 1

self . _heapify(i)

451

We know that the worst-case running time of _heapify is 8(lgn) so the running
time for the _build_heap method is no more than 8(n * 19n) . We notice that the
_heapify method is called first with nodes at the next to last level of the tree and
then with nodes closer to the root. Since we are calling it for each of these nodes,
the total number of comparisons or moves performed by all the calls to _heapify
is the sum of the heights of each of the tree nodes. For a full tree with n nodes and
height h = 19n, there is one node with height h, two nodes with height h - 1 , four
nodes with height h - 2, and so on up to 2h-1 nodes with height 1. We will not go
through the mathematical details, but the sum of this is 8(n) . This means that our
_build_heap method is 8(n) .

We have written the binary heap so that we can easily extract the maximum
value. We could just as easily make it so that we can efficiently extract the minimum
element. For this case the heap property is that for each node, its child nodes are
greater than the node. With this change, we would write a delete_min method
instead of a delete _max method.

1 13 .2 . 1 1 Heapsort

We can use the _heapify and remove methods to sort items in 8(n * 19n) time.
This algorithm is appropriately known as heapsort. Your first thought might be to
modify the code to remove the minimum from the heap each time. You could then
repeatedly call the delete_min method and append the items onto the end of an
array or list. The drawback of this technique is that it requires a separate array
or list , doubling the amount of memory required. Since the heap size decreases
each time we remove an item, we can use the space at the end of the array for the
removed items. To use this technique, we organize the heap so that the maximum
element is removed from the heap. Each time we remove an item, we can place it
at the last spot in the heap before the item was removed. After we have removed
all the items except one, the resulting array will be sorted. After this process, the
heap property will not be satisfied so we can no longer use it as a heap; the heap
property will actually be reversed since the items are now sorted from minimum to
maximum. The following Python code implements the heapsort algorithm.

452 Chapter 13 Heaps, Balanced Trees, and Hash Tables

def heapsort (self) :

" ' pre : heap property is satisfied
post : items are sorted in self . heap [1 : self . sorted_size] ' "

sorted_size = self . heap_size
for i in range (O , sorted_size - 1) :

Since delete_max calls pop to remove an item , we need
to append a dummy value to avoid an illegal index .
self . heap . append(None)
item = self . delete_max ()
self . heap [sorted_size - i] = item

The heapsort algorithm can be used on an existing heap or we can first call
_build_heap on an unorganized array. Since the _build_heap method is 8(n) and
each delete_max call is no worse than 8(lgn) , the overall running time for the
heapsort is 8(n * 19n) . Also note that we need to call delete_max only n - 1 times
since after the last call , the final remaining element in the heap is the minimum
item which is at the root of the tree (the first position of the array) . After these
n - 1 calls, the array is sorted.

1 13 .2 .2 1 Notes on Heap and Priority Queue I mplementations

As mentioned earlier, since the heap is a complete tree, it makes sense to implement
it as an array. This provides the efficient access to both the parent and the children
that is needed for moving items up and down the tree. The formulas for accessing
the parent and children are simpler if the root is at position one in the array instead
of position zero. This means the array size must be one larger than the number
of items in the tree. In Python you must explicitly store a value in position zero
of the list ; it is common to store None as the placeholder. In languages where you
explicitly allocate space in the array, you will need to resize the array in the insert
method if the array is already full. This means you need an instance variable to
indicate the number of items in the tree and the maximum size of the array. It is
common to double the size of the array when resizing it . This means that no more
than 50% of memory is wasted and that the amortized cost of the resizing operation
is 8 (1) per insertion.

As we discussed at the beginning of this chapter , if you have a binary heap
then it is easy to implement a priority queue. A priority queue class is typically
implemented with a binary heap as an instance variable. The enqueue and dequeue
methods of the priority queue call the insert and delete methods using the binary
heap instance variable. The priority is typically an integer value while the item

13.3 Ba lanced Trees 453

can be of any data type. In C++ we will want to use templates to implement
both the binary heap and priority queue classes. In languages that provide operator
overloading, the data type you insert into the binary heap needs to support the
comparison operators. In Python you can simply store the items in the queue as a
tuple of the form (priority , item) since the tuples will be compared first by the
priority part of the tuple. In C++, you can create a class containing two instance
variables: the integer priority and the data element being inserted in the heap and
priority queue. You will need to write the comparison operators for this class so
that elements are compared by the integer priority and the other data element is
ignored.

1 13 . 3 1 Ba l anced Trees

Earlier we studied binary search trees and noticed that the worst case search time
was the height of the tree. Ordinary binary search trees can have height n for n
items in the tree. Consider what happens if you insert the items in sorted order;
each node has only a right child, making the height n. If the tree is approximately
balanced then the height of the tree is closer to 19n than n. This means that if the
tree is balanced, both insertions and searches run in 8(lgn) time. A straightforward
method for maintaining a balanced tree is to update the tree structure as needed as
we insert the items. To make this a good solution, the balancing operation must be
able to be performed efficiently.

The first issue we need to discuss is what we mean by the tree being balanced.
A perfectly balanced tree is a full tree. That is obviously not possible unless the
number of items in the tree is exactly one less than a power of two (1 , 3, 7, 15 ,
31 , 63 , and so on) . A complete tree would have the same worst-case search time
of 8(lgn) as a full tree since the height of a complete tree is 19n. The problem is
that it would be computationally expensive to rearrange the tree at each insertion
to maintain a complete tree. To convince yourself of this, think about what you
would do to maintain a complete tree if the elements were inserted in order.

We need to be less restrictive on the balancing requirement at the expense of
the tree having more levels . We could start with requiring the height of the left and
right subtrees of the root node to be the same. As Figure 1 3 .4 shows, this is not
sufficient . The height of the tree is n/2, and thus the search time would be 8(n) .

This should lead you to realize that we need to enforce the balancing at every
node but cannot require exact balancing or we would have a full tree. A reasonable
solution is to require that the heights of the left and right subtrees of each and every
node differ by at most one. This is the solution developed by G. M. Adelson-Velskii

454 Chapter 13 Heaps, Balanced Trees, and Hash Tables

Figure 13 .4 : Only requiring root node to have subtrees of same height allows for
trees of height n / 2

and E. M. Landis in the 1960s and is known as an AVL tree. Figure 13 . 5 shows an
example of an AVL tree and a non-AVL tree. The tree on the right is not an AVL
tree because the height of the 5 node's left subtree is one and the height of its right
subtree is three. The height of the root node's subtrees also differ by more than
one.

The next question you should be asking yourself is what is the worst-case height
of an AVL tree? Your intuition might make you think that the height can be no
worse than twice that of a full tree with the same number of nodes since at every
node the height of the subtrees differ by at most one. This tells us that at most
half the spots in a full tree could be empty while still maintaining the balancing
property. If the height is at most twice that of the best possible case (which is
19n) , the height of an AVL tree is at most 2 * 19n. This tells us that the worst-case
search time is 8(lgn) and this is what we want . To convince us that this intuition is
correct , let 's look at some examples. Figure 13 .6 shows the worst possible cases for
AVL trees (Le. , the configuration that achieves the maximum height for a specified
number of nodes) . As it turns out the worst case is closer to 1 .44 * 19n, but this
improvement over 2 * 19n does not affect our calculation of the worst-case running
time of the search function.

Now that we have convinced ourselves that AVL trees will provide the 8(lgn)
search time we want , we need to determine an efficient algorithm that maintains the
balancing property as we insert items into the binary search tree. Adelson-Velskii

13.3 Balanced Trees

Figure 13 .5 : An AVL tree on the left and a non-AVL tree on the right

o

1 node;
height 1

1 2 nodes ;
height 4

/
2 nodes ;
height 2 4 nodes ;

height 3

20 nodes ;
height 5

Figure 1 3.6 : Worst-case height AVL trees

7 nodes ;
height 3

455

456 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

and Landis developed these algorithms for rebalancing the tree that we will look at
next.

In order for the balancing property to be violated, we must be inserting a node
into an existing leaf node (if a node already has one child, adding a second child does
not violate the balancing property for any node in the tree) . As you might suspect ,
there will be some symmetries in the cases depending on whether we are inserting
a new node in a left or right subtree of the node whose balancing property will be
violated. For the AVL property to be violated at a node, that node must have a
subtree with a depth of at least two since the height of the node's two subtrees must
differ by two and the newly inserted node must be at least two levels deeper in the
tree than the node at which the AVL tree property is violated. Since each node has
at most two children, this gives us four cases.

Figure 13 . 7 shows two of the symmetric cases. In the first case, the value 3 was
just inserted. We know this because that is the node that causes the AVL property
to be violated. The left subtree of the 8 node has a height of three and its right
subtree has a height of one. This is an insertion into the left subtree of the left
child of the 8 node. We rearrange the tree by shifting the 5 node to the root and
making the original root node the right child of the 5 node. We then need to figure
out where to place the 7 node. We know that the original root node containing the
8 will not have a left child after the rotation since its left child before the rotation
(5) moved up a level. We can place the 7 node as the left child of the 8 node. It
is important to note that the binary search tree ordering is maintained by these
changes made to the tree structure.

The second example in Figure 13 . 7 shows the mirror image of the first case. In
this case it is an insertion into the right subtree of the right child of the node at
which the AVL tree property is violated. The right subtree of the 3 node has a
height of three and the left subtree has a height of one so we know that the 8 node
was just inserted. We shift the 6 node up to the root and move 5 to the right child
of 3. Again, we know the 3 node will not have a right child after the rotation since
its right child before the rotation (6) moved up a level.

In the rotation examples we just discussed, we replaced the root node in both
cases. In many cases, the root node will not be the deepest node at which the AVL
property of the tree is violated and the root will not change. The rotation will always
occur at the deepest node at which the AVL property is violated. Figure 1 3 .8 shows
an example similar to the first single rotation we discussed. In this case the subtree
rooted at the 8 node is the left child of a root node with a right subtree. When we
insert the 3 node, the AVL property is violated at the 8 node and we make the same
changes as before (not shown in Figure 13 .8) . The key point to realize is that the

13.3 Balanced Trees 457

Figure 13 . 7: Two mirror image AVL single rotations

Figure 13 .8 : A case where the AVL single rotation does not replace the root node

458 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

subtree with the root 8 has the same height before the insertion of the 3 as it does
after the insertion and rotation fix. Since this is true, if the AVL tree property held
at the root node 10 before the insertion, it will still hold after the insertion and the
rotation that rearranges the root's left subtree. The height of the left subtree does
not change so it will still differ by at most one from the height of the right subtree.
This tells us that at most one rotation is needed to return the tree to a balanced
state no matter where the rotation occurs.

In the examples so far, the newly inserted node is three levels below the node
that is at the root of the rotation. If we insert the numbers 3, 2, and 1 then the
3 is the root of the rotation and the 2 is the new root after the rotation. In that
case, the newly inserted node is two levels below the root . It is also possible that
the newly inserted node is four or more levels below the node that is at the root of
the rotation. Figure 13 . 9 shows an example of this.

Figure 13 . 9 : AVL single rotation in which the newly inserted node is four levels
below the root of the rotation

In this example, the 13 node is the newly inserted node. The AVL property
holds at each node except the root node (4) so the rotation happens at that level. If

13.3 Ba lanced Trees 459

you are thinking about the implementation of the insertion and rotation, this may
cause you to realize that an iterative solution will be difficult since once we find the
location to insert at the bottom of the tree , we may need to move all the way back
up the tree to find the node for which the AVL tree property is violated. Since most
tree implementations do not have a pointer to the parent we do not have an easy
way to do this. A recursive solution will make this much simpler. As it returns from
each level of recursion, it is essentially moving back up the tree. We will discuss the
implementation details later in this section.

We have examined two cases in which the AVL property is violated for a specific
node: inserting into the left subtree of the left child of the node and inserting into
the right subtree of the right child. The other two cases are inserting into the right
subtree of the left child and inserting into left subtree of the right child. A single
rotation cannot update the tree so that the AVL property is maintained for these
two cases. Fortunately, in these cases, two rotations will update the tree so the AVL
property is maintained.

Figure 13 . 1 0 shows an AVL tree that just had the value 4 inserted into the tree.
The A VL property no longer holds for the root node since the height of its left
subtree is now three and the height of its right subtree is one. This figure shows the
case of inserting into the right subtree of the left child. None of the single rotations
we examined earlier will fix this case; however , performing two single rotations will .
Figure 13. 1 1 shows the intermediate result after the first rotation on the left and
then the final result on the right after the second rotation. After the two rotations,
the tree again meets the AVL property. We will leave drawing the case of inserting
into the left subtree of the right child as an exercise. As is the case with single
rotations, the node at which the property is violated after an insertion does not
have to be the root node. The root node 6 in Figure 13 . 1 0 could be part of a left or
right subtree with a tree of an appropriate height on the other side of the tree that
maintains the AVL property.

In order to implement an AVL tree we must keep track of a node's height which
is defined as the ma.ximum of the height of its two subtrees plus one. This means
our TreeNode class rnust contain an additional instance variable to store this. We
also need an algorithm to compute the height of a node. Since the height of a node
is defined in terms of the heights of its subtrees, we will need to compute the heights
starting at the bottom of the tree as we insert new items and update the heights as
we move up the tree. The height of a node will be one plus the maximum of the
heights of its left subtree and its right subtree. We will use the following TreeNode
class and get_height function in our sample tree node.

460 Chapter 13 Heaps, Balanced Trees, and Hash Tables

Figure 13 . 10 : Insertion of the value 4 into an AVL tree

Figure 13 . 1 1 : Result after the first rotation and result after the second rotation

13.3 Ba lanced Trees 461

TreeNode . py
class TreeNode (obj ect) :

def __ init __ (self , data=None , left=None , right=None , height=O) :

" 'post : TreeNode with specif ied data and left/right subtrees is created ' "

self . item = data
self . left = left
self . right = right
self . height = height

def get_height (t) :

" ' post : returns height of a subtree at node t , empty tree has height - 1 ' "

if t is None :
return -1

else :
return t . height

It is important to note that TreeNode has an instance variable named height
and that the get_height function is not a method of the class; it is a standalone
function. We can determine this by the fact that get_height is not indented as
the TreeNode method is . The get_height function allows us to easily determine
the height of a node's two subtrees. If we use it to determine the height of the left
subtree of the node and that node does not have a left subtree (i .e . , its left instance
variable is None) , it will return -1 . This will result in a leaf node having a height
of zero since the height of each of its two subtrees is -1 and we add 1 to that . We
cannot make the get_height function a method in the TreeNode class and still be
able to call it with a non-existent node (None) as we can with get_height being a
standalone function. This is necessary when we want to determine the height of the
left or right subtree of a node that may be empty (the left or right child is None) .

The following code fragment contains a partial Python implementation of an
AVL tree. The tree has one instance variable containing the root node. The value
None for root indicates an empty tree . A recursive implementation of the insert
method is much simpler than an iterative method since we need to move back up the
tree and adjust the heights and possibly perform a single or double rotation at one
of the ancestors of the newly inserted node. The recursive calls to insert the node
in a left or right subtree of a node return and move back up the tree, allowing us to
make the appropriate updates after the recursive call. To allow a programmer using
our tree to call the insert method without specifying the root instance variable in
the call , we use the technique of having the insert method call a helper method

462 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

that does all the work with the root instance variable as a parameter. The code
fragment includes the calls for inserting into the left subtree; the similar code for
the right subtree is left as an exercise.

AVLTree . py
from TreeNode import *

class AVLTree (obj ect) :

" ' post : creates empty AVL tree ' "

self . root = None

def insert (self , value) :

" ' post : insert value into proper location in AVL tree ' "

self . root = self . _insert_help (self . root , value)

def _insert_help (self , t , value) :

" ' private helper method to insert value into AVL (sub) tree with
root node t ' "

if t is None :
t = TreeNode (value)

elif value < t . item :
t . left = self . _insert_help (t . left , value)
left subtree height may be now larger than right subtree
if get_height (t . left) - get_height (t . right) == 2 :

else :

determine which subtree the new value was inserted
if value < t . left . item :

insertion into left subtree of left child
t = self . _left_single_rotate (t)

else :
insertion into right subtree of left child
t = self . _right_left_rotate (t)

exercise for reader

update height of tree rooted at t
t . height = max (get_height (t . left) , get_height (t . right» + 1
return t

13.3 Balanced Trees 463

The insert method passes root as the parameter to the _ insert_help function.
When the tree is empty, the root must be changed to the newly created node, thus
the _insert_help method needs to change the parameter that is passed to it . When
the tree is not empty, the _insert_help method makes recursive calls with t . left
or t . right as the parameter. When we get to the bottom of the tree where the new
node will be created, the value of the parameter that is passed to _insert_help is
None . When the new node is created, we need to change the left or right instance
variable of the node that is above it in the tree. That is the node whose left

or right instance variable is the parameter that is passed to the _insert_help
function so you might think this does what we want. The key point to remember
is that the formal parameter t is being set to a new object so that does not change
the actual parameter (t . left or t . right) that was passed. To solve this issue in
Python, we must pass the parameter and return the new value of the parameter
(i .e . , we must call it as t = self . _insert_help Ct . left) and the _insert_help
method needs to end with a return t statement) . The same issue occurs with the
rotation methods so those methods need to be called in a similar manner. In C++,
we may use pass by reference to accomplish this . We will discuss it at the end of
this section.

As each recursive call to _insert_help returns, the code checks the heights of
the left and right subtrees. Thus, the code will check the heights of the subtrees
at each node along the path from the inserted node to the root. If the heights of
the subtrees of any node differ by two, the code performs the appropriate single
or double rotation. The following code is the single and double rotations that are
used by the _insert_help fragment . The mirror image rotations are needed by
the section of _insert_help that you are to write. The _left_single_rotate
implements the first case in Figure 13 . 7.

" ' private rotation method for inserting into right subtree of
left child of t ' "

t . left = self . _right_single_rotate (t . left)
t = self . _left_single_rotate (t)
return t

464 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

" ' private rotation method for inserting into left subtree of
left child of t ' "

grandparent = t
parent = t . left

grandparent . left = parent . right
parent . right = grandparent
t = parent

grandparent . height = max (get_height (grandparent . left) ,
get_height (grandparent . right)) + 1

parent . height = max (get_height (parent . left) ,
get_height (parent . right)) + 1

return t

Although it is not clear from the _insert_help code, at most one single rotation
or one double rotation fixes the AVL balancing property when a new item is inserted
in the tree. The reason for this is the height of each subtree is the same after the
insertion and rotation as before the insertion. The height of the tree only increases
when we insert an item that does not require a rotation. As the recursive calls
return, at most one rotation fix will occur. The rotation code executes in 8(1)
time since it is updating a few references or pointers. Because the height of the
tree is 8(lgn) , the insertion process will require at most 8(lgn) steps to find the
correct spot , 8(lgn) steps to recurse back up the tree, and a constant number of
steps for the zero, one, or two rotations. This makes the running time for the overall
algorithm of inserting and maintaining the AVL property 8(lgn) . Implementing a
search method will also be 8(lgn) since the height of the tree is 8(lgn) .

Maintaining the balancing property when deleting an arbitrary node from an
AVL tree is much more complicated and we will not look at the details of an
algorithm for it in this book. If deletion is required, possible solutions are to
mark nodes as inactive and periodically build a new tree without these items if
the tree becomes unbalanced. For a theoretical computer scientist, this is not an
ideal solution, but in practice it might be better than developing and debugging a
complicated algorithm that will not result in significant computation time savings.
Since developer time is relatively expensive and computational time is relatively
cheap, the choice of a simpler, but less efficient , algorithm is sometimes made. This
does not mean that we should not study the best algorithms and data structures
since we may need them at times, but it does mean there are cases where it is not
worth the effort to implement more complicated algorithms and data structures. The

13.5 Hash Tables 465

best possible case is having a well-designed, tested library of efficiently implemented
data structures and algorithms that you can reuse for many applications.

We noted that the _insert_help method of the AVLTree needs to change the
parameter that is passed to it . In Python when we want to change a parameter,
we need to write code such as x = f (x) and have the function return the formal
parameter that corresponds to the actual parameter x. In C++, we can accomplish
this using pass by reference as we discussed in subsection 8 . 1 2 .3 . Using our same
example, the prototype would be void f (int &x) and we could call it as f (x)
without needing the function to return x.

In a C++ implelnentation of the AVLTree class, the parameter that is passed to
the _insert_help and rotation methods is a pointer to a TreeNode . This may be
the first time you have attempted to pass a pointer by reference in C++. The syntax
for this is to place the ampersand after the asterisk that indicates we are passing
a pointer. For exanlple, a prototype for the _insert_help function when we are
storing int variables in the tree is void _insert_help (BinaryTreeNode *&node ,

int item) . A way to remember the order of the asterisk and the ampersand is
to recall the statement : passing a pointer by reference. The pointer symbol (the
asterisk) is placed before the reference symbol (the ampersand) .

1 13 .4 1 Other Tree Structu res

There are a number of additional tree data structures such as other implementations
of balanced binary trees and non-binary trees. We will not discuss the details of
these data structures in this book. Some of these other tree structures are used
in the implementations of databases. If you are interested in learning more about
these topics, search for information on red black trees, B-trees, and splay trees.

1 13 . 5 1 H ash Ta b les
With our balanced binary tree implementation, the worst-case running time to find
or insert an item is 8 (logn) time. Hash tables are a data structure that improve
the lookup time to 8(1) in most cases, although the worst case can be 8(n) . As
mentioned in the introductory section of this chapter, Python's built-in dictionary
data type is implemented as a hash table . Hash tables are also known as dictionaries
or as associative arrays. As the "associative array" name implies , a hash table
associates a key with a value as Python's dictionary does. The standard array data
structure allows us to look up a value based on the position in the array while
associative arrays allow us to look up a value based on a key. The goal of a hash

466 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

table implementation is to provide efficient methods for inserting, deleting, and
searching; we want the typical case for each of these methods to be 8(1) .

We will begin our explanation o f the implementation o f hash tables by looking
at a simplified example in which the set of all possible keys is small and known in
advance. The set of capital letters A through Z meets that requirement . Hash tables
use an array to store the data. This means we can quickly look up an element by
position. What we want to do is look up the key based on its value, so we need a
function to map the key to a position in the array storing the key and value. In our
example we need to be able to map each letter to a corresponding position in the
array. The term for this mapping is a hash function or hashing function. In our
example we know that the array size needs to be 26 and that a simple hash function
would map the letter A to position 0 and the letter Z to position 25. The following
Python function is an implementation of such a hash function.

def hash_letter (c) :
" ' pre : c is a one character string of a capital letter A-Z ' "
return ord(c) - ord (' A ')

The hash_letter function uses the Python ord function to convert a letter to
its ASCII code and then subtracts the ASCII code for the letter A to give us a value
between 0 and 25. We could use this function with an array or list of size 26. The
hash function maps a key to the corresponding position in the array or list where
the key's value is stored. If a key is not in the hash table, we must use a special
value to indicate that position is not in use; in Python, we could use the value None ,
assuming that is not a valid value to be stored in the hash table. We do not need to
store the key in the array since there is only one key that can map to each location
in the array or list . The following is a complete Python implementation of a hash
table (without using the built-in Python dictionary) that only allows capital letters
as the keys; the running time for each method is 8(1) .

HashLetter . py
class HashLetter (obj ect) :

def __ init __ (self) :
" ' post : initializes simplified hash table ' "

self . table = 26 * [None ,]

13 .5 Hash Tables

def __ getitem __ (self , key) :
" ' post : returns value for specif ied key ' "

assert ' A ' <= key <= ' z '
pos = ord (key) - ord(' A ')
if self . table [pos] == None :

raise KeyError (key)
else :

return self . table [pos]

def __ setitem __ (self , key , value) :
" 'post : value for specified key is inserted into hash table ' "

assert ' A ' <= key <= ' z '
pos = ord (key) - ord (' A ')
self . table [pos] = value

def __ delitem __ (self , key) :
" ' specified key is removed from hash table ' "

assert ' A ' <= key <= ' z '
pos = ord (key) - ord (' A ')
self . table [pos] = None

467

The HashLetter class contains a single instance variable that is a list with 26
items. We store the value None in each position to indicate that the hash table
does not contain a value at that location. We add a key/value pair to the hash
table by mapping the letter key to the corresponding position in the list using the
hash function and then store the value at that position in the list . Hash tables do
not support storing multiple values for the same key (attempting to store a second
value for a key overwrites the first value) . When we attempt to look up a letter
key, we use the hash function to map to a position in the Python list . If the value
at that position in the list is None , that letter key is not in the hash table and the
code raises a KeyError as the built-in Python dictionary does. If the value at the
position in the list is not None , that is the value associated with the letter key and
it is returned.

Since we have overloaded the various bracket operators, we can use the HashLetter
class just as we would a Python dictionary for the key values A-Z. The follow­
ing example using the interactive Python interpreter shows a sample use of our
HashLetter class.

468 Chapter 13 Heaps, Balanced Trees, and Hash Tables

» > d = HashLetter ()
» > d [' a '] = 4
Traceback (most recent call last) :

File "<stdin> " , line 1 , in ?
File IHashLetter . py" , line 19 , in setitem __

assert ' A ' <= key <= ' z '
AssertionError
» > d [' A '] 4
» > d [' B '] = 5
» > d [' A ']
4
» > d [' C ']
Traceback (most recent call last) :

File " <stdin> " , line 1 , in ?
File IHashLetter . py" , line 13 , in __ getitem __

raise KeyError , key
KeyError : ' c '
» > d [' A ']
4
» > d [' B ']
5
» > del d [' B ']
» > d [' B ']
Traceback (most recent call last) :

File "<stdin>" , line 1 , in ?
File IHashLetter . py " , line 13 , in __ getitem __

raise KeyError , key
KeyError : ' B '
» > d [' A ']
4

The strategy used in our simple example works fine when we know the possible
key values in advance, but that is typically not the case. It also does not work well
when the set of possible key values is large, but many of the key values will not be
used. If our set of possible key values was all the integers from 0 to 2 billion, our
array would need to be huge and take up more memory than a typical computer has.
What if the possible key values were English words? What hash function should we
use and how big should our array be? What do we do if two keys hash to the same
position in the array? These are the implementation issues we will discuss in the
remainder of this section.

The first step is to convert a key to a number so that we can then apply a
mathematical function to map it to a position in the array. Hash tables are not
limited to using numbers and strings as keys; we can take any data, whether it is a
number, string, or class with various data members and use the data values to map
to a number. In our simple example, we used the ord function to map the letter

13 .5 Hash Tables 469

to a number based on its ASCII value. In the case of words, we could use some or
all of the characters. We could pick the first two characters and add their ASCII
values together or apply a function that multiplies each of them by a constant and
adds the results together. Unfortunately, certain sequences of two characters occur
often in the English language so a number of words would hash to the same position
in the array. This problem is known as a collision. We can make this less likely to
happen by using more letters and using a multiple based on the position; but we
cannot prevent the problem from happening in some cases. We could generate a
unique hash value for four unique letters using the following Python function for a
string w .

def hash (w , array_size) :

" ' pre : w is an ASCII string
post : returns a value between 0 and array_size - 1 ' "

v = 0
for i in range (min (len(w) , 4» :

v = 128 * v + ord (w [i])
return v % array_size

Before we apply the modulus operation, this hash function produces a unique
number for all the unique sequences of four letters since the ASCII code for char­
acters is less than 128 . Obviously words that start out with the same first four
letters (e.g. , friend and friendship) will still produce the same value. The hash
value may be a fairly large number, so to make certain the hash value is within
the array size we compute the hash value modulus the array size. This produces a
value between ° and one less than the size of the array. Once we apply the modulus
function, different four-letter words in our example may map to the same position
if the size of the array is less than 1284 • We could use more than four letters, but
that will take longer to compute the hash function, and once we apply the modulus
operation to make certain we do not map beyond the end of our list , we can still
end up with multiple words mapping to the same position in the list .

In our simple example, the letters map to the array in order (A mapped to
position 0, B mapped to position 1 , and so on) , but it is not important that the
mapping is in order. When the set of possible keys is larger than the typical number
of keys that will be in the hash table (as is the case with storing a number of English
words) , you typically will not want the words to map in order; all that matters is
that the hash function is a fast calculation that maps to the position where we
expect to find the key and its value. With our hash function for words, the items
certainly do not map in order unless the array size is very large.

470 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

As mentioned before, no matter what hash function we use, we can end up with
multiple key values mapping to the same array position, and this is known as a
collision. In fact, if we know the hash function, we can usually determine many keys
that map to the same position. There are two common solutions to the collision
problem, known as chaining and open addressing. With chaining, each array position
stores a list of the key and item values whose keys map to that position. In the worst
case all the keys we are storing would be in one position. With open addressing, if
a key maps to a position that already has a key/value, we repeatedly apply another
function until we find the key or find an empty position in the array. Using either
method, we will have to store both the key and the value in the array so we can
determine if we have found an existing key in the array. We did not need to do
this with our simple HashLetter example because each key could map to only one
location in the array.

The simplest form of open addressing is known as linear probing. In this case,
our new hash function is f (key, i) = (hash(key) + i) mod size for each i from 0 to
size - 1 where size is the size of the array for the hash table. What this effectively
says is if the key is not found in hash(key) with i = 0 then we start with i = 1 and
see if the next position in the array has the key or is empty. We keep looking at the
next position in the array, wrapping around from the end to the beginning, until
we find either the key or an empty spot or get back to the original hash location.
Obviously, if we find the key, we have found its key/value. If we reach an empty
position in the array before finding the key, we know the key is not in the hash
table. We should not get back to the original spot unless the hash table is full; for
any practical hash table, it is necessary to resize the array before it gets full to make
the hash table useful.

There are more complex open addressing functions than linear probing. One
is known as quadratic probing. It uses the hash function f(key, i) = (hash(key) +
a * i2 + b * i) mod size where a and b are integer constants and i plays the same
role as it does in linear probing. Instead of looking in consecutive locations , this
function will jump ahead a number of positions each time it finds a location that is
not empty and does not match the key. This produces less clustering of key/value
pairs in consecutive locations, but two keys with the same result for the hash(key)
function will search the same set of positions.

Another approach is known as double hashing. It uses two hash functions hl and
h2. If the first hash function hl does not map to the key or an empty location, we
repeatedly compute hl (key) + i * h2 (key) mod size with the values 0 to size - 1 for i
until we find the key or an empty position. For any of the open addressing methods,
the worst case requires that every array position be examined. For double hashing

13.5 Hash Tab les 471

to work well (i .e . , the entire hash table is not examined) , the value produced by
h2(key) must be relatively prime (i .e. , it cannot share any prime factors) with the
size of the array. This can easily be done by having the size of the hash table be a
power of 2 and having h2(key) produce an odd number. In practice double hashing
works better than linear probing or quadratic probing.

The following Python code example demonstrates a hash table using chaining.
The constructor creates a list of the specified size . Each position in the list is
initialized to an empty list . As items are added to the hash table, they will be
appended to the inner list at the appropriate position in the outer list . The _hash
function is not necessarily a good hash function, but it does incorporate the size of
the array into the calculation, allowing it to continue working after we resize the
array. The list self . coef is used to hold a multiplier to apply to each letter in the
string. For example, with the list [1 1 , 2 , 5] and the word "cat " , we calculate 1 1
* ord (' c ') + 2 * ord (' a ') + 5 * ord (' t ') and then take that result modulus
the array size . If your hash table becomes nearly full and you resize the list , you will
want to use larger values for the self . coef list of coefficients. Each of the other
methods uses the hash function to map the key to a position in the array. We have
included a str method so we can view the details of the internal data members
of the hash table.

HashTable . py
class HashTable (obj ect) :

def __ init __ (self , size=11) :
self . array_size = size
self . table = []
for i in range (self . array_size) :

self . table . append([])
self . size = 0
self . coef = [self . array_size , 2 , 3 , 7 , 5 , 13]

def _hash (self , key) :
pos = 0
for i in range (min (len (key) , 6)) :

pos += self . coef [i] * ord (key [i])
return pos % self . array_size

def __ setitem __ (self , key , value) :
pos = self . _hash(key)
for i , (k , v) in enumerate (self . table [pos]) :

if key == k :
self . table [pos] [i] = (key , value)
return

self . table [pos] . append ((key , value))
self . size += 1

472 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

def __ getitem __ (self , key) :

pos = self . _hash (key)
for k , v in self . table [pos] :

if key == k :
return v

raise KeyError (key)

def __ delitem __ (self , key) :

pos = self . _hash(key)
for i , (k , v) in enumerate (self . table [pos]) :

if key == k :
del self . table [pos] [i]
self . size -= 1
return

raise KeyError (key)

s = []
for line in self . table :

s . append (' , + str (line))
return , [\n ' + ' \n ' . j oin(s) + ' \n] '

We will use the following code fragment to demonstrate our hash table. It uses
words as the keys and the numbers as the values they map to (for example, the key
"quick" has value 1) .

test_HashTable . py
from HashTable import HashTable
h = HashTable 0
i = 0
for s in ' the quick brown fox jumps over the lazy dog ' . split () :

h [s] i
i += 1

print h
print h . size
print h [' jumps ']
del h E ' jumps ']
print h
print h . size

try :
print h E ' jumps ']

except KeyError :

13.5 Hash Tables

print 'key error raised as expected '
else :

print 'key error should have been raised '

473

The output of this example using our chaining hash table is the following. Make
certain you understand where each key mapped to and when collisions occurred.

[
[]
[]
[]
[(' dog ' , 8)]
[]
[(, the ' , 6)]
[(' quick ' , 1) , (' jumps ' , 4) , (' over ' , 5)]
[]
[(' brown' , 2)]
[]
[(' fox ' , 3) , (' lazy ' , 7)]

]
8
4
[

[]
[]
[]

[(' dog ' , 8)]
[]
[(, the ' , 6)]
[(' quick ' , 1) , (' over ' , 5)]
[]
[(, brown ' , 2)]
[]
[(' fox ' , 3) , (' lazy ' , 7)]

]
7
key error raised as expected

The following Python code example demonstrates a hash table using open ad­
dressing with linear probing. This code will not work if you try to insert more
key /value pairs than the array holds. One of the exercises asks you to extend this
code to solve that problem. The constructor creates a list of the specified size and

474 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

initializes each position to None . We use the same hash function as before. The
methods to get , set , and delete a key must search for the specified key starting at
the position returned by the hash function. When searching, we must continue until
we find the key or find None . We use the modulus function when incrementing pos
so it wraps from the end of the list to position O.

HashTable2 . py
class HashTable (obj ect) :

def __ init __ (self , size=1 1) :
self . array_size = size
self . table = self . array_size * [None]
self . size 0
self . coef = [self . array_size , 2 , 3 , 7 , 5 , 13]

def _hash (self , key) :

pos = 0
for i in range (min(len (key) , 6)) :

pos += self . coef [i] * ord (key [i])
return pos % self . array_size

def __ setitem __ (self , key , value) :
pos = self . _hash(key)
while True :

if self . table [pos] is not None :
if self . table [pos] [0] == key :

self . table [pos] (key , value)
return

else :
self . table [pos]
self . size += 1
return

(key , value)

pos = (pos + 1) % self . array_size

def __ getitem __ (self , key) :
pos = self . _hash (key)
start = pos
while True :

if self . table [pos] is not None :
if self . table [pos] [0] == key :

return self . table [pos] [1]
pos = (pos + 1) % self . array_size
if pos == start :

raise KeyError (key)

13 .5 Hash Tab les

def __ delitem __ (self , key) :

this method is incorrect , see the Exercises
pos = self . _hash (key)
start = pos
while True :

if self . table [pos] is not None :
if self . table [pos] [0] == key :

self . table [pos] None
self . size -= 1
return

pos = (pos + 1) % self . array_size
if pos == start :

raise KeyError (key)

475

We will demonstrate our open addressing hash table using a similar example:

test_HashTable2 . py
from HashTable2 import HashTable

h = HashTable 0
i = 0
for s in ' the quick brown fox jumps over the lazy dog ' . split () :

h [s] i
i += 1

print ' [,
for item in h . table :

print str (item)
print ,] ,

print h . size
print h [' lazy ']
del h [' lazy ']
print ' [,
for item in h . table :

print str (item)
print '] '
print h . size
try :

print h [' lazy ']
except KeyError :

print ' key error raised as expected '
else :

print ' key error should have been raised '

The output of this example using our open addressing with linear probing hash table
is the following.

476

(' lazy ' , 7)
None
None
(' dog ' , 8)
None
(' the ' , 6)
(' quick ' , 1)
(' jumps ' , 4)
(' brown ' , 2)
(' over ' , 5)
(' fox ' , 3)
]
8
7
[
None
None
None
(' dog ' , 8)
None
(' the ' , 6)
(' quick ' , 1)
(' jumps ' , 4)
(' brown ' , 2)
(' over ' , 5)
(' fox ' , 3)
]
7

Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

key error raised as expected

Since we used the same hash function as our chaining example, we know that
quick, j umps , and over all hash to the same position in the list as do fox and lazy.
From the output , you can see that the open addressing stored them at the first open
position in the list and wrapped around to the beginning of the list for lazy as it
needed to.

It should be clear that for a hash table implementation to work well, the hash
function must not generate collisions often. To prevent collisions, we need to make
certain that the array has a reasonable number of empty positions at all times and
the hash function must distribute the possible keys across all the array positions
fairly evenly (Le. , we do not want many of the possible keys mapping to a small
number of array positions) . Designing such a hash function without prior knowledge
of the keys is not an easy task.

13.5 Hash Tables 477

When the hash table array becomes nearly full, we need to make a larger array to
maintain good performance. The steps for doing this are create a new larger array,
create a new hash function that maps the keys to the larger array, and then remap
each key/value in the old array to the new larger array. Creating a new hash function
is not as simple as modifying the modulus value (although that is one modification
that needs to be made) for the new array size, since the hash values may always be
less than the new larger array size using the current hash function. We may need
to modify the hash function so it produces larger values. In our example the hash
function for a word used four letters; we could use more letters to result in a larger
value. Another option is to use larger coefficients. With the new hash function, the
keys should map to different positions in the new array and some should map to
index locations that are higher than the length of the original smaller array; if they
do not , we have not solved our problem of reducing collisions. Just as we discussed
when resizing a dynamic array in Chapter 10 , the resizing operation is expensive;
the running time of resizing our hash table is 8(n) . If we make the array twice as
large so that we do not need to do another resizing until we insert n more items,
we can amortize the cost of the resizing over n inserts, resulting in only a constant
amount of time being added to the cost of each insert.

As we mentioned, the worst case is when all keys map to the same array position
resulting in 8(n) time for each of the methods the hash table supports (insert ,
search, and delete) . It does not matter whether we use chaining or open addressing
in this case; the result is still 8(n) . In practice, if we keep the number of elements
in the hash table proportional to the size of the array (for example, we could make
certain that the array size is always 50% larger than the number of items in the
hash table) and use a good hash function, the number of items in each chain or
the number of items before an empty position when using open addressing will be
a relatively small constant . When this is true, each of the methods will be 8(1) in
most cases.

As we mentioned before, creating a good hash function is the key to making the
hash table efficient . Randomly picking the coefficients as we did in this chapter will
generally not work well. If your language provides a built-in hash table (as Python
does with its dictionary) , you should likely use it , as the developers of the language
have spent considerable time developing a good implementation. If you must write
your own hash table, we recommend you research hash tables in more detail before
attempting to implement one for use in a real-world application.

478 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

1 13 . 6 1 Chapter S ummary

This chapter introduces three advanced data structures and discusses the algorithms
for implementing them efficiently. The following is a summary of the concepts
discussed in this chapter.

• A binary heap is a complete tree with the property that at each node in the
tree, its children are not less than it . This makes it efficient to remove items
from smallest to largest. The property can be reversed if you want larger items
to be removed first .

• Priority queues allows items to be removed by highest priority instead of first
in, first out. A binary heap is typically used to efficiently implement a priority
queue.

• A binary heap can also be used to sort a list in 8(n * 19n) time, but in practice
other sorting algorithms are typically used.

• By updating the tree structure as elements are inserted into a binary search
tree, we can ensure that the tree remains approximately balanced. With an ap­
proximately balanced tree, the insert and search operations can be performed
in 8(lgn) time. The AVL tree is one implementation of a balanced tree.

• Hash tables are a data structure that maps keys to a value. They typically
provide 8(1) running time for insert , delete, and lookup operations although
the worst case can be 8(n) . Python's built-in dictionary is implemented using
a hash table.

• A collision happens when two keys in a hash table map to the same location in
the list or array that stores the key/value pairs. The solutions to collisions are
chaining and open addressing. When writing a hash function, it is important
to try to minimize the number of collisions that will likely occur.

1 13 . 7 1 Exercises

True/ Fa lse Questions

1. A binary heap always stores the elements as an array in sorted order.

2. The _build_heap method for our heap implementation places the elements in
an array in sorted order.

13 .7 Exercises 479

3. An AVL tree is always a complete tree.

4. An AVL tree Inay be a complete tree.

5. The running time of the insert method for the AVL tree will always be
8(lo92n) .

6. The insert method for the AVL tree may require more than one single or one
double rotation to maintain the AVL property.

7. Inserting an element into a hash table may require 8(1) time.

8. Inserting an element into a hash table may require 8(n) time.

9. Inserting an element into a hash table may require 8(n2) time.

10. A hash table could be implemented using an AVL tree.

M ult ip le Choice Quest ions

1. Assuming a binary heap is arranged for efficient removal of the largest item,
what is the running time to find the largest element but not remove it (like
the stack method top) ?

a) 8(1)
b) 8(lo92n)
c) 8(n)
d) 8(n2)

2 . Assuming a binary heap is arranged for efficient removal of the maximum item,
what is the running time to remove the maximum element and maintain the
heap property?

a) 8(1)
b) 8(lo92n)
c) 8(n)
d) 8(n2)

3. If you have an implementation of a binary heap, how should you implement a
priority queue?

a) Copy the sections of code from the heap implementation into the priority
queue implementation.
b) In the priority queue, create an instance of a binary heap.

480 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

c) Have the priority queue be a subclass of the binary heap class.
d) none of the above

4. When implemented using a binary heap, the running time of a priority queue's
enqueue method is

a) 8(1) .
b) 8(lo92n) .
c) 8(n) .
d) 8(n2) .

5 . When implemented using a binary heap, the running time of a priority queue's
dequeue method is

a) 8(1) .
b) 8(lo92n) .
c) 8(n) .
d) 8(n2) .

6 . The worst-case height of a binary search tree is

a) 8(1) .
b) 8(lo92n) .
c) 8(n) .
d) 8(n2) .

7 . The worst-case height of an AVL tree is

a) 8(1) .
b) 8(lo92n) .
c) 8(n) .
d) 8(n2) .

8 . The worst-case running time of inserting an element into a hash table is

a) 8(1) .
b) 8(lo92n) .
c) 8(n) .
d) 8(n2) .

9 . The best-case running time of inserting an element into a hash table is

a) 8(1) .
b) 8(lo92n) .

13.7 Exercises 481

c) 8(n) .
d) 8(n2) .

10. If your application needs to repeatedly insert data elements into a data struc­
ture and occasionally (intermixed with the insert operations) output the
elements in sorted order, which data structure should you use?

a) binary heap
b) priority queue
c) AVL tree
d) hash table

Short-Answer Questions

1. Given the following array representation of a binary heap (where we want to be
able to efficiently extract the smallest element) , draw the tree representation
and also draw the resulting tree after one elment is removed from the heap.

5 , 21 , 8 , 27 , 22 , 10 , 12 , 28

2. Draw the tree representation of a binary heap (where we want to be able to
efficiently extract the largest element) after inserting each of the following
numbers in this order (i.e. , draw eight trees) .

2 , 43 , 25 , 10 , 6 , 12 , 55 , 4

3. Draw an AVL tree where an item was just inserted into the left subtree of a
right child that causes the AVL tree property to now be violated.

4. For the following AVL tree, which node was just inserted?

482 Chapter 13 Heaps, Ba lanced Trees, and Hash Tables

5. For the AVL tree in question 4, which of the four rotation methods (left_single_rotate,
right_single_rotate, right_left_rotate, and left_right_rotate) must
be called to maintain the AVL tree property?

6. For the AVL tree in question 4, which tree node is passed as the parameter to
the rotation method?

7. For the AVL tree in question 4, draw the tree after the rotation(s) .

8. For the following AVL tree, which node was just inserted?

9. For the AVL tree in question 8, which of the four rotation methods (left_single_rotate,
right_single_rotate, right_left_rotate, and left_right_rotate) must
be called to maintain the AVL tree property?

10. For the AVL tree in question 8, which tree node is passed as the parameter to
the rotation method?

1 1 . For the AVL tree in question 8, draw the tree after the rotation(s) .

12 . What Python class is implemented as a hash table?

13 . What is the best-case lookup (in 8 notation) for a hash table with n items?

14. What is the worst-case lookup (in 8 notation) for a hash table with n items?

15 . What is wrong with setting the array element to None in the __ deli tern __
method of the open addressing version of the HashTable class? How could we
solve this problem?

13.7 Exercises 483

16. What would happen if you attempted to insert another key/value pair into
the open addressing hash table example when the number of items in the hash
table matches the capacity of the list?

17. What are the drawbacks of using an AVL tree to implement a hash table and
what would the worst-case running time of each method be?

18. Describe how you could use a hash table to efficiently implement an algorithm
that would remove duplicate elements (or create a new list without the dupli­
cates) from a list without changing the order of the elements in the list . What
would the running time of your algorithm be? Why?

Programm ing Exercises

1 . Write a priority queue class in Python using a binary heap.

2. Write a binary heap class in C++.

3 . Write a priority queue class in C++ using a binary heap.

4. Complete the AVL tree class using Python.

5. Write an AVL tree class using C++.

6. Modify the Python chaining example so it doubles the size of the array when­
ever the number of items in the hash table reaches 70% of the array size.

7. Modify the Python open addressing example so that it doubles the size of the
array whenever the number of items in the hash table reaches 70% of the array
size.

8 . Implement a hash table class in C++ using chaining.

9. Implement a hash table in C++ using open addressing.

Chapter 14 Grap hs

Object ives

• To understand the matrix and adjacency list graph data structures and the
trade-offs between them.

• To implement the adjacency list graph data structure.

• To implement various graph algorithms including breadth-first and depth-first
searches and understand how these fundamental graph traversals can be used
to solve a number of graph problems.

• To understand the minimum spanning tree problem and two algorithms to
solve it .

• To understand how to analyze the efficiency of various graph algorithms.

1 14 . 1 1 I ntrod uct ion

Graphs are used to model a wide variety of problems in many different application
areas. A graph is a set of vertices and the set of edges that connect the vertices. A
simple example of a graph is our system of roads; the roads are edges and the inter­
sections are vertices. We may want to classify the edges as directed or undirected.
A directed edge is a one-way street and an undirected edge is a bidirectional street.
In addition to naming the vertices and edges, we may want to assign attributes to
the edges and vertices such as a weight to an edge. In our road example, the weight
could be the length of the road.

We will refer to a graph G as the set V of vertices and the set E of edges. Formally,
mathematicians use the cardinality notation (for example, I V I) to indicate the

485

486 Chapter 14 Graphs

number of elements in the set . In most cases it is clear when we are referring
to the number of vertices instead of the set of vertices and we will just use V to
indicate the number of vertices and E to indicate the number of edges. The term
degree refers to the number of edges connected to a vertex. For a directed graph, a
vertex has both an in-degree and an out-degree referring to the number of incoming
edges and outgoing edges, respectively. Many problems and questions related to
graphs require finding paths between vertices. A path from one vertex to another is
a sequence of vertices such that there is an edge between each pair of consecutive
vertices in the sequence. In our road example, we can ask questions such as is there
a path from one intersection to another, what is the shortest number of edges to
traverse from one intersection to another, and what is the shortest weighted path.

Most graphs with V vertices have at least V-I edges or the graph is not connected.
Formally, a graph is connected if for every pair of vertices, there is a path between
those two vertices. The maximum number of edges in a graph is 8(V2) when there
is an edge between every pair of vertices . There can be more than 8(V2) edges
if you allow multiple edges between two vertices; this is an uncommon situation
since there is generally no reason to have two edges between the same vertices, but
it is possible in a weighted graph where the different edges between the same two
vertices could have different weights. A graph with edges between every pair of
vertices is known as a complete graph. For many applications, the number of edges
is usually much smaller than the maximum and is typically a fairly small multiple
of the number of vertices.

Another property of a graph that is often useful to know is whether or not it has
a cycle. A cycle is a path with a length of at least one that starts and ends at the
same vertex. In many cases it only makes sense to discuss cycles in directed graphs
since by definition an undirected edge between two vertices forms a cycle. The term
acyclic refers to a graph without any cycles. The acronym DAG is commonly used
to refer to a directed acyclic graph.

We will start by covering the two common data structures for representing
graphs. We will then cover the fundamental graph algorithms used in many ap­
plications. We cannot cover all the the graph algorithms or all the applications of
these algorithms in one chapter as entire books are written on the subject . We will
focus on the two fundamental graph algorithms known as the breadth-first search
and depth-first search and their uses in common graph problems. As we always do,
we will examine the efficiency of the algorithms.

14.2 Graph Data Structures 487

1 14 . 2 1 Gra ph Data Structu res

The two different data structures commonly used to represent graphs are an ad­
jacency matrix and an adjacency list. In general, the matrix representation is
appropriate when there are edges between many pairs of vertices; this is referred
to as a dense graph. For most applications the graph is sparse (i.e. , the number of
edges is much smaller than the maximum number of possible edges) ; in these cases
the adjacency list representation is usually more appropriate. The efficiency of many
of the graph algorithms is affected by the data structure you use to represent the
graph.

B D

A

c E

Figure 14 . 1 : Sample directed graph

We will use the graph in Figure 14 . 1 to describe the two different graph rep­
resentations. The adjacency matrix representation of a graph is a square matrix
of the size V by V. Each row and column corresponds to a vertex. The entries
in a row indicate the vertices that have an edge originating from the vertex that
corresponds to the row. A 1 in the matrix indicates there is an edge from the vertex
corresponding to the row to the vertex corresponding to the column. For our sample
graph, the matrix representation is the following assuming the rows and columns
correspond to the vertices in alphabetical order.

o 1 0 0 0
0 0 1 1 0
1 0 0 1 0
o 0 0 0 1
o 0 0 0 0

We will follow the convention that matrix entries are referred to first by row and
then by column and that we number the rows and columns starting at zero. Using

488 Chapter 14 Graphs

the letter g to denote our matrix representation of the graph, the entry g [0] [0] is
the upper left entry and the remaining elements in the row are g [0] [1] , g [0] [2] ,
g [0] [3] , and g [0] [4] . Using alphabetical order for the vertices, the entry g [2] [3]
corresponds to the edge from vertex C to vertex D. If you need to store additional
information about an edge (such as a weight or a name) , you could store that as the
matrix entry with a special value indicating that there is not an edge (such as None
or 0) . You could also use a separate data structure to represent this information
since the basic matrix of Is and Os supports a useful property. If the matrix uses a
1 to indicate an edge between two vertices and a 0 to indicate the lack of an edge
between two vertices, the result of multiplying the matrix by itself results in another
matrix of size V by V and the entry at row i , column j in this product corresponds to
the number of paths of length 2 from vertex i to vertex j . Matrix multiplication is
not performed by multiplying the corresponding entries in the two matrices; instead
the value for the product g * g at row i, column j is the dot product or row i of
g with column j of g. We will not cover the additional details of this, but if you
are familiar with matrix multiplication, you should be able to determine why the
product indicates paths of length 2. Calculating g * g * g will tell you the number
of paths of length 3 for the same reason.

If the graph edges are not directed then the matrix will be symmetric. In a
symmetric matrix, the entry at row i , column j is the same as the entry at row j ,
column i for every position in the matrix; this means we only need to represent half
the matrix (using the diagonal to split it) . As you may have figured out for yourself,
a matrix is easily represented by a two-dimensional array in C++. In Python, you
could use nested lists, but to use matrices in Python, we recommend you download
and install the numarray module for Python. It provides many matrix operations
via a module implemented in the C programming language, but accessible from
Python. This is equivalent to the Python interpreter supporting matrix operations
directly since the Python interpreter is implemented in C .

The adjacency list representation i s more commonly used since most graphs in
real-world applications are sparse. For the matrix representation this means we
have lots of Os . In the adjacency list representation we do not explicitly indicate
the lack of an edge, only where there is an edge. This makes the representation
more compact for sparse graphs and also means the graph processing algorithms do
not have to examine entries where there are not edges as they would in the matrix
representation. Using the matrix representation to find all the edges from a vertex,
you have to examine V entries, but in the adjacency list representation, you examine
only the actual edges originating from the vertex. A pictorial representation of
the adjacency list data structure for our sample graph in Figure 14 . 1 is shown in

14.2 Graph Data Structu res 489

Figure 14 .2 . As the figure shows, we have a list of the five vertices and each vertex
has a list of the vertices adjacent to it . In addition to the name of the adjacent
vertex, we could stored additional information such as a label or weight for the
edge. Based on this , you should be able to determine that examining all the edges
in a graph using the adjacency matrix representation requires V2 operations, but
only V + E operations are required to examine all the edges in a graph using the
adjacency list representation. This observation will be useful when we examine the
efficiency of many of the graph algorithms.

A

B

c

o

E

Figure 14 .2 : Adjacency list representation for sample directed graph

Using the built-in list data type, the following example shows a possible Python
representation of the graph using a weight of one for each edge. The example also
shows how to access the vertices and edges.

» > g =

» > g [O]

[' A ' , [(' B ' , 1)]] .
[' B ' , [(' C ' , 1) , (' 0 ' , 1)]] ,
[' C ' , [(' A ' , 1) , (' 0 ' , 1)]] ,
[' 0 ' , [(' E ' , 1)]] ,
[' E ' , []]]

[' A ' , [(' B ' , 1)]]
» > g [O] [0]
' A '
» > g [0] [1]
[(' B ' , 1)]
» > g [1] [1]
[(' C ' , 1) , (' 0 ' , 1)]

490 Chapter 14 Graphs

As we discussed earlier in this book, Python's built-in dictionary is highly
optimized and is generally a good choice to use for implementing your own data
structures. The common way to implement a graph using a dictionary is to use
the vertices as keys with each vertex key mapping to another dictionary that has
the adjacent vertices as its keys. In the nested dictionary, each adjacent vertex key
maps to the information about the edge (e.g. , we could store the weight or a name
for the edge as the value) . For our sample graph, the dictionary representation and
the results of accessing some of the items is the following:

» > g = {
' A ' :
' B ' :
' c ' :
' D ' :
' E ' :

» > g [' A ']
{ ' B ' : n
» > g [' B ']

{ ' B ' :
{ ' C ' :
{ ' A ' :
{ ' E ' :
{}}

{ ' C ' : 1 , ' D ' : n
» > g [' B '] [' D ']
1

n ,
1 , ' D ' : 1} ,
1 , ' D ' : 1} ,
1} ,

The Python dictionary implementation also makes it easy to iterate over the
vertices and over the adjacent vertices for a given vertex as the following code
fragment shows.

for each vertex
for v in g :

print ' vertex ' , v
for each vertex adj acent to v
for adj in g [v] :

print adj , g [v] [adj]

The output of the code fragment is

vertex A
B 1
vertex C
A 1
D 1
vertex B
C 1
D 1
vertex E
vertex D
E 1

14.3 Shortest Path Algorithms 491

In C++, the adjacency list representation is commonly implemented as a list
of lists. If the number of edges and vertices is known ahead of time, arrays or
dynamic arrays can be used, but often a linked iInplementation of a list is used. As
you will see when we examine a number of graph algorithms later in this chapter,
the common operations needed for a graph data structure are the ability to iterate
over the vertices and to iterate over the adjacent vertices for a given vertex as we
demonstrated with our Python dictionary code fragment.

1 14 . 3 1 Shortest Path Algorith ms

Determining the shortest path between two vertices is a very common problem for
many applications. As we mentioned in the introductory section for this chapter,
maps of roads can easily be represented using a graph. You may have used a web
site to find directions for a trip. These driving direction web sites represent roads
and intersections as a graph and use shortest path algorithms to find the directions
for your query. For some shortest path applications, we may only care about the
number of edges traversed while for other applications with weighted graphs, we
may care about the sum of the weights for the edges traversed. We will refer to
the problem in which we care only about the number of edges as the unweighted
shortest path problem and the problem in which we want to minimize the sum of
the edges' weights as the weighted shortest path problem. The unweighted shortest
path problem is a simplified case of the weighted shortest path problem in which
all the edges have the same weight . This means we could use the same algorithm
to solve both problems, but the simplified case allows us to use a simpler and more
efficient algorithm for unweighted graphs.

If you have used a web site to find driving directions, you may remember that
they typically find the quickest route, which is not necessarily the shortest route.
For longer trips, the quickest route is often not the shortest route since highways
typically provide the fastest routes even though they may not be the shortest routes.
Some of these web sites also provide an option to find the shortest path and in this
case the length of the roads can be used as the weight for the edges. To find the
quickest route, the weights must be a function of the length and the average speed
at which the roads can be traversed.

As you can imagine, determining the shortest or fastest route is a problem that
must be solved every day by shipping and delivery companies. In addition to driving
directions, determining the shortest path is also useful for routing traffic on the
Internet and for determining how to connect traditional circuit switched phone calls.
Because of the many applications of shortest path algorithms, they are some of the

492 Chapter 14 Graphs

most common and widely studied graph algorithms. We will examine algorithms
for both the unweighted and weighted shortest path problems.

1 14 . 3 . 1 1 The U nweighted Shortest Path

We will use the graph in Figure 14 .3 to develop the unweighted shortest path
algorithm. This graph is undirected , although the algorithm we are developing
works on both directed and undirected graphs. When using the adjacency list
representation with undirected graphs, each edge must appear in two lists. For
our sample graph, the adjacency list for vertex A must indicate there is an edge to
vertex B and the adjacency list for vertex B must indicate there is an edge to vertex
A. Since the adjacency matrix for an undirected graph is symmetric , we only need
to store each edge once in the matrix (i.e. , we can store half the matrix split on the
diagonal) .

F
B __

--------------------� �

s D G

Figure 14 .3 : Sample graph for unweighted shortest path problem

One of the nice properties of the algorithm we are developing is that it is just as
easy to find the shortest path from one vertex to another as it is to find the shortest
path from one vertex to all the other vertices. We will use the vertex labeled S in
Figure 14 .3 as the starting vertex from which we find the shortest path to all the
other vertices . As you may have determined by now, in order to find the shortest
path we must follow edges starting at the specified starting vertex. From vertex S
we can move to vertex A and indicate that the distance to it is one; we also could
have started by moving to vertex B or vertex C. Since we are now at vertex A, we
have two choices; we could return to vertex S or we could move to vertex B. There
is no reason to return to vertex S since we have already been there. If we move
to vertex B then we are effectively indicating the shortest path from vertex S is to
move to vertex A and then to vertex B . This is a path of length two. As you can

14.3 Shortest Path Algorithms 493

see from the graph there is a path directly from vertex S to vertex B with a length
one. This tells us that we cannot just move frorn the starting vertex along a path
and expect to find the shortest path to each vertex.

One key point to realize is that a shortest path from one vertex to another
contains a shortest path to each of the vertices along the path between the original
two vertices. Using our sample graph, if the shortest path from vertex S to vertex
G includes the edge from vertex D to vertex G then the path it uses from vertex S to
vertex D must be a shortest path from vertex S to vertex D; otherwise, we could find
a shorter path from vertex S to vertex G by following a shorter path from vertex S to
vertex D and then traversing the edge from vertex D to vertex G. What this tells us
is that we must move outward from the starting vertex following the shortest paths.
This corresponds to moving from the starting vertex to all the vertices that have an
edge from the starting vertex. Once we have discovered all vertices of distance one
from the starting vertex, we can then follow the edges from each of those vertices
to find all vertices that have distance two from the starting vertex. This order of
processing the vertices is known as breadth first. The algorithm is referred to as a
breadth first search and abbreviated BFS. As we move outwards we do not want to
revisit vertices that we have already discovered. It may be easier to visualize this if
we redraw the same graph using concentric circles to indicate the distance from the
starting vertex S. Figure 14 .4 shows the graph in this form.

/
,

, ,
, ,,, '"

,

- - - - - -

I
I

I
,

I
,
I
I
I
\
\
\

,
,

,
,

, " " ' ' - - - _ ...

.... , , E "

/
,

I
I

,

" ,
", ,,, '

,
\
\
I
I
I
,

I
,

I

G

Figure 14 .4 : Graph frorn Figure 14 .3 drawn with vertices on concentric circles
showing the distance from vertex S

494 Chapter 14 Graphs

From the starting vertex S , we first want to discover the vertices that are directly
connected to S (vertices A, B, and C) and thus have distance one. Once we have
discovered those, we want to examine the vertices that are adjacent to A, B, and C
that we have not already found (D and F) as these are the vertices with distance two,
and so on. The key point is that each time we first visit a vertex, we are finding
the shortest path to it since we are moving outwards from the starting vertex one
level at a time from the concentric circle point of view. In order to be able to list
the shortest path to any given vertex, we must keep track of the previous vertex
used to reach each vertex; this is commonly referred to as the parent vertex. To
find the shortest path from our source vertex to any given vertex, we start at the
specified vertex and move backward by following the parent vertices until we reach
the source vertex. This gives us a list of the vertices on the shortest path from the
source vertex to the specified vertex.

Once we have convinced ourselves that these ideas will work, we need to deter­
mine how to convert these ideas to a precise, detailed algorithm. The part you may
have difficulty with is figuring out how to move outwards in concentric circles. Once
we have moved out one step from the source vertex along each of its edges, we need
to figure out how to move outwards one step from each of those vertices. It may
seem difficult to keep track of the order we need to process the vertices and their
edges, but if you try it out with some simple graphs you may see that processing the
vertices in the order they are discovered will work. We already have learned about
a simple data structure that allows us to process items in order: a queue. Each time
we come across a vertex that we have not already seen, we can insert it into the
queue and keep track of the vertex used to find it (its parent) . The pseudocode for
our algorithm is the following:

set parent of each vertex to a default value such as None/NULL
set distance for source vertex to 0
insert source vertex into queue
vhile queue is not empty

remove a vertex v from queue
for each vertex v adjacent to v

if v ' s parent is None/NULL
set v ' s parent to v
set v ' s distance to 1 + v ' s distance
insert vertex v into queue

We will show how the preceding pseudocode works using our sample graph in
Figure 14 .3 . A view of the parent and distance for each vertex is shown in the
following table:

14.3 Shortest Path Algorithms 495

S A B C D E F G
parent - None None None None None None None
distance 0

We insert vertex S into the queue and start the while loop. The for loop
will process the three adjacent vertices, A, B, and C. The actual order they are
processed will not affect the correctness of the algorithm as far as finding the shortest
path for each vertex, but the algorithm may find a different path with the same
length depending on the order the vertices are processed. For this example, we
will always process the adjacent vertices in alphabetical order. After processing the
three adjacent vertices, the queue contains the three vertices, A, B, and C. The table
is :

S A B C D E F G
parent - S S S None None None None
distance 0 1 1 1

The while loop executes again and we remove A from the queue and process its
adj acent vertices B and S. Since both of those already have a parent vertex, we do
not add them to the queue or change their distance. The while loop executes again
and we remove B from the queue. We process its adjacent vertices A and F. Since A
already has a parent , we move on to F. We set F's parent to B , set its distance to 2,
and insert it into the queue. The queue now contains C and F and the table is

S A B C D E F G
parent - S S S None None B None
distance 0 1 1 1 2

Next we remove C from the queue and process the adjacent vertices which sets
D's parent to C, sets D's distance to 2, and inserts D into the queue so it now contains
F and D. When we remove F from the queue, we set E's and G's distances to 3 and
their parents to F. The queue then contains D, E, and G and the table is

S A B C D E F G
parent - S S S C F B F
distance 0 1 1 1 2 3 2 3

The while loop still needs to run three more times to remove D, E, and G from
the queue, but since all the vertices now have their parent and distance set , the if

496 Chapter 14 Graphs

statement will be false each time we process the adjacent vertices. As we indicated
earlier, the order we process adjacent vertices may affect the parents of each vertex
(and thus the path) , but not the shortest distance. If we had processed C before B
when examining the vertices adjacent to S then D would have appeared in the queue
before F. Thus E's parent would be D instead of F, but in either case E's distance is
3.

The table contains all the information necessary to find the shortest path from
the vertex S to any of the other vertices. The parent information for each vertex
provides a shortest path from that vertex back to the source vertex S. For example,
to find the shortest path to vertex E, we start at E and its parent is F. The parent of
F is B and B's parent is S. This tells us a shortest path from S to E is S , B , F , E.

As always, we should determine how efficient our algorithm is . We have two
nested loops, but the number of times the inner for loop runs is not the same for
each iteration of the while loop if we use the adjacency list representation, so the
analysis is not simply a matter of multiplying the number of times the two loops
run. If you review the previous paragraphs describing the steps of the algorithm
on our sample graph, you notice that each vertex is inserted into the queue exactly
once and each time through the while loop, one vertex is removed from the queue.
This tells us that the outer loop runs V times (where V is the number of vertices) .
The number of times the inner loop runs varies depending on how many adjacent
vertices each vertex has.

The analysis technique we can use here is to determine the total number of
times the inner loop executes during all the executions of the outer loop. This is
actually fairly simple since each edge is processed twice (once for each direction of
the bidirectional edge) during the entire execution of the loop. If the edges are
directed, each edge is processed exactly once. Since the other steps all required a
constant amount of time, the running time of the algorithm is e (V + E) . This is a
common pattern for graph algorithms; any algorithm that processes each edge and
each vertex a constant number of times with all other operations being constant will
have this run-time.

1 14 .3 .2 1 The Weighted Shortest Path

Our unweighted shortest path algorithm is fairly simple and efficient. The question
is will it also work if the graph is weighted? Unfortunately, the answer is no in most
cases. Figure 14 .5 shows a graph in which the unweighted shortest path algorithm
will not produce the correct results. The reason our algorithm works correctly on
unweighted graphs is that we have always found the shortest path to a vertex before
we start examining the vertices adjacent to it . The problem with our unweighted

14.3 Shortest Path Algorithms 497

algorithm when using it on the graph in Figure 14 .5 starting at vertex S is that we
first discover vertex A with the distance 3 and vertex B with the distance 1 placing
them in the queue. When we remove A from the queue, we set C's distance to 5.
The problem is there is a shorter path to A by moving from S to B and then to A.
Our unweighted shortest path algorithm does not provide a mechanism for finding
this improved path to A and then adjusting the path to C .

B
c

s 3 A

Figure 14 .5 : Weighted graph

If a graph has negative weights then we cannot always find a shortest path. If
there is a cycle whose weights add up to a value less than zero, we could repeatedly
take that cycle to produce shorter paths. The algorithm we will discuss in this
section will only work on graphs with non-negative weights; for most practical
applications the weights will always be positive. The key concept needed to create
a correct algorithm for the non-negative weighted shortest path is to always move
outwards along shortest paths. In other words, we must always look at the edges off
of a discovered vertex with the shortest distance of all the discovered vertices. When
we do this, we may find a shorter path to a vertex that we have already discovered.
Fortunately, we will not have examined the edges off this already discovered vertex
since it had a larger distance than the vertex used to find the new shorter distance
to this vertex. The result is we may need to adjust the distance to an already
discovered vertex; however we have not yet examined its edges so we will not have
to adjust any additional vertex distances because of the new shorter path found
to this vertex. This algorithm was initially developed by Edgar Dijkstra and is
appropriately named Dijkstra 's algorithm.

We will examine how this algorithm works on the graph in Figure 14 .6 before
developing pseudocode for our algorithm and discussing the necessary data struc­
tures. The graph is directed and we will start at vertex S. As with the unweighted

498 Chapter 14 Graphs

algorithm, the process described here will work on both directed and undirected
graphs as long as the graph data structure properly indicates the type of edges.

A 1 B 1 c ----------��--------��
2

s

E

F

Figure 14 .6 : Graph for demonstrating Dijkstra's algorithm

We start with vertex S and examine its adjacent vertices, after which the table
of parent and distance values is

S A B C D E F
parent - S S S
distance 0 1 4 1

We are done processing the vertex S and need to process a vertex with the
smallest distance value. We can choose either A or F since both have a distance of
one. If we choose the vertex A and process its adjacent vertices, the table is

S A B C D E F
parent - S A S S
distance 0 1 2 4 1

N ow we are done processing the vertices S and A and need to choose a vertex
with the smallest distance from the remaining vertices. This means we must choose
the vertex F. After processing the vertices adjacent to F, the table is

14.3 Shortest Path Algorithms 499

S A B C D E F
parent - S A S F S
distance 0 1 2 4 6 1

We have now processed the vertices S, A, and F and must choose vertex B as it is
the remaining vertex with the smallest distance. When we examine the edge from B
to D, we notice that D already has a parent, but this new path to D using the vertex
B is smaller than the previously discovered path so we need to change the parent
and the distance for the vertex D. The table is now

S A B C D E F
parent - S A B B F S
distance 0 1 2 3 3 6 1

After processing the vertices S , A , F , and B, we can choose either vertex C or D
since both have a distance of three. If we choose the vertex C, we will change the
parent and distance for the vertex E since reaching the vertex E from the vertex C
is better than the previous path from the vertex D . The table is now

S A B C D E F
parent - S A B B C S
distance 0 1 2 3 3 5 1

We now choose the smaller distance from the two remaining vertices D and E,
and that is D. When we examine the edge from D to E, we find that path is worse
than the previously discovered path so we do not update the parent or distance for
the vertex E. Finally, we examine the vertex E and it does not have any edges to
process so we are done and the table is

S A B C D E F
parent - S A B B C S
distance 0 1 2 3 3 5 1

This algorithm is similar to the unweighted shortest path algorithm, but the
weights do add some complications . The main differences are that we need a priority
queue to process the vertices in distance order. As we process the adjacent vertices,
we also may need to update a vertex's parent and distance if this new path is shorter,
as we saw in our exanlple. The following pseudocode matches the steps we used in
our example.

500 Chapter 14 Graphs

set parent of each vertex to a default value such as None/NULL
set distance of each vertex to inf inity
set distance for source vertex to 0
insert all vertices into a priority queue (distance is priority)
while priority queue is not empty

remove vertex v with smallest distance from priority queue
for each vertex w adjacent to v

if w ' s distance > (v ' s distance + weight of edge v to w)
set w ' s parent to v
set w ' s distance to v ' s distance + weight of edge v to w

This does not seem too difficult , but the priority queue described in section 1 3 . 2
using a binary heap will not work. The problem is that since the distance for a
vertex may change after it is inserted into the priority queue, we may need to adjust
its position in the heap. With the binary heap we described, there is no efficient
way to find a given vertex in the binary heap. Once we do find it , we can use the
same technique of moving it up or down the tree until we find a position where it
can be placed without violating the heap property. One solution is to use a hash
table to map the vertex to its position in the binary heap array llist allowing us to
quickly find it, move the item up or down the tree, and then update the hash table
to indicate the new position in the heap.

Analyzing the efficiency of Dijkstra's algorithm is a little more difficult . Each
vertex is removed once from the priority queue and each edge is processed once dur­
ing the entire execution of the algorithm, so this part is the same as the unweighted
shortest path algorithm. What is different here is that we must extract the vertices
from the priority queue and the priorities will change after the vertices are inserted
into the priority queue. If we use a standard list for the priority queue and search
for the smallest item each time we remove an item from the priority queue, it will
require V steps. If we use a linked list , after we find the vertex we can then remove
it in 8(1) time. But if we are using an array-based list, we should just mark it as
removed since the removal requires shifting the elements. If we mark it as removed,
the while loop requires V*V steps plus the E total steps the for loop executes. Even
if we use a linked implementation of a list and remove the vertex, the worst-case
number of steps is V* (V-l) /2 so the overall algorithm is 8(V2 + E) .

If we use the binary heap implementation along with a hash table to track where
each item is located in the heap, the amount of time required to remove each item
from the priority queue and readjust the binary heap is 8(lgV) . As each edge is
processed, the vertex it leads to may have its distance adjusted, requiring that it
be moved up or down the binary heap. Since the binary heap is a complete tree,
8(lgV) steps may be required to move the vertex up or down the tree. This gives
us an overall running time of 8((V + E)lgV) . There is a data structure known as

14.4 Depth Fi rst Algorithms 501

a Fibonacci heap that can be used to implement a priority queue that supports a
method for changing the priority of an item more efficiently, but we will not cover
the details of its implementation in this book.

1 14 .4 1 Depth Fi rst Algorith ms

In the previous section we examined the breadth first search algorithm that moves
out in concentric circles frmll the starting vertex. Now, we will examine the depth
first search (DFS) algorithm and look at several graph problems it can be used to
solve. As you may be able to determine from the name, the depth first search moves
along one path as far as possible before backtracking and examining other paths off
the earlier discovered vertices.

During the depth first search execution , each vertex goes through three phases.
In the first phase the vertex has not yet been discovered. In the second phase the
vertex has been discovered, but the algorithm has not completed processing all the
undiscovered vertices that are reachable from this vertex. In the third phase we are
done processing the vertex and all the vertices that are reachable from the vertex.
One technique used to keep track of these phases is to assign each vertex a starting
time when the vertex is first discovered and an ending time when the vertex and
all its reachable vertices have been completely processed. Each time we assign a
number to a vertex we increase the number by one so if we start with the number
one, we use the numbers from 1 to 2*V since each vertex has a starting and ending
time. A vertex that does not have a starting or ending time is in the first phase.
A vertex that has a starting time but not an ending time is in the second phase.
A vertex with both a starting and ending time is in the third phase . As with the
breadth first algorithm, we will assign each vertex a parent indicating the vertex
that was used to discover this vertex.

We will use the graph in Figure 14 . 7 to demonstrate the depth first search. As
in our previous examples, we will start at the vertex S and always choose vertices
in alphabetical order when we have a choice between two or more vertices . Starting
at the vertex S, we assign 1 as its starting time and move to the vertex A and assign
2 as its starting time and S as its parent . Next we move to the vertex C and set its
starting time to 3 and A as its parent. There are no outgoing edges from the vertex
C so we set its ending time to 4 and backtrack to the vertex A . The vertex A does not
have any more outgoing edges to undiscovered vertices so we set its ending time to
5 and backtrack to the vertex S. At this point our table of information for the DFS is

502 Chapter 14 Graphs

A B G

s

E F

Figure 14 . 7 : Graph for depth first search example

S A B C D E F G
parent - S A
start time 1 2 3
end time 5 4

The vertex S still has additional edges to undiscovered vertices so we move to
the vertex E and set its starting time to 6 and its parent to S. Next we move to the
vertex F and assign 7 as its starting time and E as its parent. The vertex F does
not have any outgoing edges to undiscovered vertices so we set its ending time to 8
and backtrack to the vertex E. The vertex E does not have any outgoing edges to
undiscovered vertices so we backtrack to the vertex E setting its ending time to 9
and then backtrack to the vertex S and set its ending time to 10 . Our table is now

S A B C D E F G
parent - S A S E
start time 1 2 3 6 7
end time 10 5 4 9 8

At this point we have visited every vertex that is reachable from the vertex S so
if we still have undiscovered vertices, we need to start our algorithm from another
vertex. We will pick the vertex B and set its starting time to 1 1 . It does not have any
outgoing edges to undiscovered vertices so we set its ending time to 12 . The next

14.4 Depth Fi rst Algorithms 503

undiscovered vertex is D so we set its starting time to 13. We examine its outgoing
edges and find C which has already been discovered and F which has already been
discovered. Next we find G which has not been discovered so we set the starting
time for G to 14 and its parent to D. G does not have any outgoing edges so we set its
ending time to 15 and backtrack to D. D does not have any other outgoing vertices
so we set its ending time to 16. At this point , there are no undiscovered vertices so
we are done and our final table of information is

S A B C D E F G
parent - S - A - S E D
start time 1 2 1 1 3 13 6 7 14
end time 10 5 12 4 16 9 8 15

The DFS process should remind you of the binary tree traversals, specifically
the preorder traversal. The differences are that with graphs, each vertex can have
any number of children and because there can be multiple paths to a vertex and
cycles, we need to determine if we have already visited a vertex. We can use the
starting time to determine whether or not a vertex has already been visited. Based
on the similarity to the tree traversal algorithms, you should realize that a recursive
algorithm will be useful to support the backtracking. Our pseudocode will use two
functions. The first function is not recursive and makes certain that we eventually
process all the vertices and calls the recursive function for each undiscovered vertex.

dfs (g)
for each vertex v in graph g :

set v ' s starting time t o 0
t = 0
for each vertex v in g :

if v ' s start time i s 0 :
dfs_traverse (g , v)

dfs_traverse (g , v)
t += 1
set v ' s start time to t
for each vertex u adj acent to v :

if u ' s start time i s 0 :

t += 1

set u ' s parent to v
dfs_traverse (g , u)

set v ' s end time to t

The variable t needs to have its old value remelnbered each time the dfs_traverse
function is called. There are a number of ways to achieve this. One is to make

504 Chapter 14 Graphs

t a local variable in dfs and pass it by reference to dfs_ traverse and have
dfs_ traverse also pass it to itself during each recursive call. Another option is
to make it a global variable and not pass it as a parameter. A common technique
used to solve this in object-oriented programming is to make the variable t an
instance variable in a class and define dfs and dfs_ traverse as methods of the
class. You could also make the parent , start , and end information for the vertices
members of the class (e .g. , in Python, you could use dictionaries that map a vertex
to its parent , starting time, and ending time) .

The run-time analysis for the depth first search is similar to the breadth first
search. The df s function processes each vertex a constant number of times, and the
df s _ traverse function processes each edge once and performs a constant number
of operations as it processes each edge, so the overall run-time is 8 (V + E) .

As we mentioned earlier, the DFS algorithm is similar to tree traversals. We can
view each call from dfs to dfs_traverse as producing a separate tree. Figure 14 .8
shows the trees produced when we execute the DFS algorithm on our sample graph.
This graph produced three trees, one of which is the single vertex B. If you examine
the starting and ending times, you will notice that the time intervals for each tree do
not overlap. This tree representation only includes edges that were used to discover
a vertex.

s B D
.

! A
E

G

c F

Figure 14 .8 : Graph for depth first search example

Now we examine a graph problem known as topological sort and see how it can
be solved using a depth first search. A topological sort is an ordering of the vertices
such that if there is an edge from the vertex u to the vertex v, then u appears
before v in the ordering. As the definition implies, the topological sort can only be
performed on directed graphs and there cannot be any cycles in the graph. Since an

14.4 Depth Fi rst Algorithms 505

undirected edge between two vertices u and v is equivalent to a directed edge from
u to v and a directed edge from v to u, it is impossible to order the vertices u and v
so that the topological sort definition is satisfied. A cycle causes the same problem
since for any two vertices u and v that are part of the cycle, there is a path from u
to v and a path from v to u.

A topological sort can be used to find an ordering for a set of tasks in which
some tasks must be completed before other tasks can be performed. The process
for generating the graph is straightforward. Each task corresponds to a vertex in
the graph and a directed edge from u to v indicates that the task corresponding to
u must be performed before the task corresponding to v. In order for there to be a
solution, the resulting graph must be a directed acyclic graph.

A simple example of a problem that can be solved with a topological sort is the
order in which you can take college courses. A course may have prerequisites that
must be taken before you can take that course. You can create a graph in which each
course is a vertex and directed edges are drawn to courses from their prerequisites .
A topological sort of this graph will give you an order in which you can take courses
that satisfies the prerequisites . As is the case in many topological sort problems,
there is likely more than one order in which you can take courses.

Figure 14 .9 : Graph showing course prerequisites

Figure 14 .9 shows a graph of course prerequisites . The only courses we can take
first are those with no prerequisites , corresponding to vertices with no incoming
edges. In the sample graph, we can start with either CS160 or CS170. Once we
take CS160, we can then take any course for which it is a prerequisite . Another
way to look at this is that once we take a course, we can remove all the outgoing
edges from that course. This idea should lead you to a simple algorithm for solving
the topological sort problem. As we just mentioned, you must start with a vertex

506 Chapter 14 Graphs

that has no incoming edges. We then remove the outgoing edges for that vertex,
indicating that we have met that prerequisite. We can now again look for a vertex
with in-degree zero. These steps can be repeated until we have processed each
vertex. The question is how efficient is this algorithm?

If we use the adjacency matrix representation, finding a vertex with in-degree
zero can take V steps. Removing the outgoing edges will then take another V steps.
We have to do this V times, resulting in an algorithm of 8(V3) . This is not a
particularly efficient algorithm, but it always a good idea to check the possibilities
for both the matrix and adjacency list before implementing an algorithm so you can
pick the data structure that is more efficient for the algorithm.

Our adjacency list representation does not make it easy to find a vertex with
in-degree zero, but as we remove the outgoing edges, we are decreasing the in-degree
of the vertices to which they connect . So a way to solve this more efficiently is to
calculate and store the initial in-degree of each vertex and place the vertices that
initially have in-degree zero in a queue. As we process a vertex from the queue, we
can decrease the in-degree count of its adjacent vertices and if a vertex's in-degree
reaches zero, insert it into the queue. The efficiency analysis is not too difficult .
We need to calculate the in-degree of each vertex which we can do by using the
common nested loops that process each vertex and then each edge/adjacent vertex.
As we execute these loops, we build up a count of the in-degree for each vertex. This
requires 8 (V + E) time. We then process each vertex and the edges again which is
also 8 (V + E) and thus the overall run-time.

As we mentioned at the beginning of the section, the DFS algorithm can also
be used to solve the topological sort problem. Before reading the rest of the section
that describes how, go back and look at our DFS sample graph (it is a DAG) and
the table of parents, starting times, and ending times and try to determine how to
use the DFS algorithm to solve the topological sort problem. A hint is to look at
the ending times.

As you may have discovered on your own, if you order the vertices by decreasing
the ending time, you get a valid topological sort order. This can easily be done by
inserting the vertices at the beginning of a list as we set their ending time. If we
use a linked list , each of these inserts can be performed in 8 (1) time so the running
time of DFS, 8(V + E) , is the running time of this topological sort algorithm. The
question is why does this work. They key point to remember is that there cannot
be a path from u to v if v comes before u in the topological sort . Based on how the
ending times are computed, we know that if there is a path from u to v, then u has
a higher ending time and thus would appear earlier in our topological sort .

14.5 Min imum Spann ing Trees 507

To convince ourselves that this is correct , there are three possible situations we
need to look at . One is that we discovered v on a path from u. In this case, v's
starting and ending times are between u's starting and ending times and thus v's
ending time is less than u's ending time. This is the case with the vertices S and F in
our DFS example. Another possibility is that we first discovered v on a path from
another vertex that does not reach u and then we later found the already discovered
v from another path that includes u. In this case there is a path from u to v, but
u will have a higher ending time and thus appear before v in the topological sort .
An example of this from our graph is vertex C and vertex D. The vertex C was first
discovered on a path from the vertex S and then later found on a path starting at
the vertex D; thus D has a higher ending time than C. The third possibility is that
there is no path between two vertices and thus the relative order of the two vertices
in the topological sort does not matter.

1 14 .5 1 M i n i m u m Spa n n i ng Trees

The minimum spanning tree problem is to find a subset of edges in a weighted
undirected graph (in which all the weights are non-negative) that connects all the
vertices and minimizes the sum of the weights of the chosen edges. The subset
of edges is a tree since there cannot be a cycle in the set of edges that minimizes
the weights. The reason there cannot be a cycle is that removing an edge that is
part of the cycle would reduce the sum of the weights and the graph would still be
connected; thus, we know there cannot be a cycle in a minimum spanning tree. A
minimum spanning tree for a graph with V vertices must have V-1 edges. This is easy
to see if you consider a straight line of vertices and how many edges it would take
to connect them. It does not make sense to add additional edges since this would
increase the weight and form a cycle. We will now discuss two different algorithms
for finding a minimum spanning tree of a graph.

1 14 .5 . 1 1 Kruska l 's Algorithm

Combining the ideas of wanting to minimize weights and not having a cycle should
lead you to a possible algorithm. We want to repeatedly add the edge with the
minimum weight as long as adding that edge does not form a cycle until we have
V-1 edges. This algorithm does work and is known as Kruskal 's algorithm after the
person who first discovered it .

Figure 14 . 1 0 shows a graph that we will use to discuss the minimum spanning
tree problem. The first step in Kruskal's algorithm is to sort the edges by weight

508 Chapter 14 Graphs

B 2 c

E

A

F 6 H

Figure 14 . 1 0 : Minimum spanning tree graph

since we need to process the edges by weight . In the figure, the first edge we should
add is AB since it has the minimum weight. Next we can attempt to add any of the
edges with weight 2. For this example, we will pick edge BC. Adding it does not form
a cycle. We continue with one of the other edges with weight 2 and pick edge CD.
Adding it does not form a cycle. The last edge with weight 2 is edge BG and adding
it does not form a cycle. There are three edges with weight 3. If we pick edge AF
first , adding it does not form a cycle. Attempting to add edge FG would form a cycle
so we cannot add it . Adding edge DH does not form a cycle so we include it . The
next lowest weight is edge GH, but adding it would form a cycle. We then examine
edge CH which also would form a cycle so we cannot add it . Next we look at edge
FH which also would form a cycle. The last edge in sorted order is DE and adding it
does not form a cycle so it is included; it is needed to connect vertex E.

This gives us the set of edges (AB, BC, CD, BG, AF, DH, DE) . Our guidelines state
that there must be V-l edges and our set fits since there are eight vertices and seven
edges. As we can determine from this example, there is not necessarily a unique
solution to the minimum spanning tree problem. In our example, we can include
either AF or GF; both of these edges allow us to connect to the vertex F and have
the same weight.

The difficult step to implement in the algorithm is determining if adding an edge
forms a cycle. We can use the DFS algorithm to determine if an undirected graph
has a cycle (we leave that as an exercise) , but we will examine a data structure
known as a disjoint set that you can use to easily determine if adding a single edge
to a set of edges results in a cycle. Once you have a disjoint set , implementing
Kruskal's algorithm is fairly easy.

14.5 Min imum Spann ing Trees 509

1 14 .5 .2 1 The Disjoi nt Set Data Structure

A disjoint set data structure is a group of sets that do not contain any elements
in common. The common operations that it supports are make_set (x) , f ind (x) ,
and union (x , y) . The make _set (x) method adds a new set to the group of sets
with the single element x; none of the other methods in the set may contain the
element x. The find (x) method returns an identifier that indicates the set that
contains x. The COIIlmon technique is to have the find (x) method return a specific
item in the set . The key point that must be true is that if you call find (x) and
find (y) and they are in the same set , then both must return the same identifier.
The union (x , y) method joins the set that contains x with the set that contains
y; the precondition for the union method is that the two parameters are not in the
same set . The union method decreases the number of sets in the group by one. The
following is a Python implementation of a Disj ointSet class.

Disj ointSet . py
class Disj ointSet (obj ect) :

def __ init __ (self) :

self . sets = {}

def make_set (self , x) :
" ' post : adds a set to the group of sets for the single element x
raises KeyError if already a set containing x ' "

check if set for this item already exists
if x in self . sets :

raise KeyError , ' %s already in Disj ointSet ' % str (x)
map element to the set/list containing it
self . sets [x] = [x]

def find(self , x) :
" ' post : returns set/list containing x
raises KeyError if there is not a set containing x ;
for efficiency use the " is " operator t o determine i f two
elements are in the same set by making two calls to f ind
(e . g . , if dj . find(x) is dj . find(y) :) ' "

return self . sets [x]

510 Chapter 14 Graphs

def union(self , x, y) :
" ' post : the sets containing x and y are merged/j oined
raises KeyError if the two sets are already the same ' "

if self . sets [x] is self . sets [y] :
raise KeyError , ' %s and %s are in the same set ' % (
str (x) , str ey))

determine smaller list so we are adding fewer items to the
existing list
if len(self . sets [x]) > len(self . sets [y]) :

save list of elements in smaller set
temp = self . sets [y]
for each element in smaller set , map it to the larger list
for k in self . sets [y] :

self . sets [k] = self . sets [x]
add all elements in smaller set/list to larger set/list
self . sets [x] . extend (temp)

else :
save elements in smaller set
temp = self . sets [x]
for each element in smaller set , map it to the larger list
for k in self . sets [x] :

self . sets [k] = self . sets [y]
add all elements in smaller set/list to larger set/list
self . sets [y] . extend (temp)

This Python implementation of a disjoint set works by using a dictionary to
map each element to the list containing all the elements that are in the set . The
make_set (x) method checks that x is not already in one of the sets and then creates
a list containing x and maps x to that list . The find method returns the list
containing the set . Since Python uses references and all the elements in the set refer
to the same list, we can use the is operator to determine if the two sets are the
same. By checking if f ind (x) is f ind (y) we check if the dictionary maps x and
y to the same list in memory. This can be performed in 8(1) time since it only
needs to check if the two addresses are the same. Note that this is not the same as
using the == operator; it checks to see if the two lists contain the same elements and
would require 8(n) time to determine if two lists of length n are the same.

The union (x , y) method works by saving a reference to the shorter list . It
then goes through each element in the shorter list and maps them to the longer list .
Finally, we add each method in the shorter list onto the end of the longer list using
the extend method of the built-in list . Assuming that each dictionary mapping can
be performed in 8(1) time and the extend method requires an average 8(1) per

14.5 Min imum Spann ing Trees 511

each element added, each union call requires on average 8(min(m, n)) where m and
n are the lengths of the two lists being joined.

If you are implementing a disjoint set in C++, it can be implemented using a
modified linked list . Each make_set method creates a separate linked list . Each
node in the list needs both a pointer to the next element in the linked list and to
the first element in the list . The union method then needs to set the next link of
the last element in the longer list to the first node in the shorter list and then run
through the nodes that were in the shorter list and set their pointer to the first
node to the first node of the new combined list . The analysis for this is the same as
our Python union method. The f ind method can then use the pointer to the first
node to return the first element as the identifier . Using an array or list of linked
lists still requires our find method to search through all the elements to find the
list containing the element . You could also use the hash table technique used in our
Python implementation. There are other techniques for implementing disjoint sets,
but we will not cover them in this book.

The disjoint set class can be used in Kruskal 's algorithm to help us determine
if adding an edge forms a cycle. The first step is to form a set for each vertex (the
disjoint set contains V sets, each with one element) . When we check if we should add
an edge, we check if the two edges are in the same set . If they are not , we add the
edge and join the two sets. As we do this , each set corresponds to the vertices that
are connected by the edges we have added. If we attempt to add an edge whose two
vertices are in the same set , we know there is already a path between those edges
and adding this new edge would create a cycle.

Using the disjoint set in Kruskal's algorithnl requires performing V-I union

operations. The worst case is that we are joining sets of equal size since we then
have to update the most pointers or entries in the hash table. One way to analyze
this is to compare it to the merge steps of the nlergesort algorithm. We start by
rnerging/joining V sets with one element into V /2 sets with two elements. Next we
join those into V / 4 sets with four elements. We continue this until we have one
set with V elements. The total number of steps required for this is 8(VlgV) . The
overall running time of Kruskal's algorithm is then dominated by the sorting of the
E edges that requires 8(ElgE) time.

1 14 .5 .3 1 Prim 's Algorithm

Kruskal's algorithm creates a set of trees that eventually are connected together.
In this section we will describe another algorithrn that was developed by Robert
Prim for solving the minimum spanning tree problem that repeatedly adds edges

512 Chapter 14 Graphs

to one connected tree until V-I edges have been added. Using this algorithm, one
connected tree is maintained during the algorithm.

The basic idea is to pick a starting vertex and add the adjacent edge with the
smallest weight. These two vertices are now part of the tree. We continue by
choosing the edge with the smallest weight such that of one of its vertices is in the
tree and one is not . Since we are always choosing an edge with one endpoint in the
tree we have formed so far, we will never have multiple trees as Kruskal's algorithm
may during its intermediate steps. Using the graph in Figure 14 . 1 0 and starting
at the vertex A, the following is one possible ordering of the addition of the edges
using Prim's algorithm: AB, BC, CD, BG, AF, DH, DE. The algorithm is very similar
to Dijkstra's algorithm for the weighted shortest path problem. We leave the exact
algorithm and the analysis of it as an exercise.

\ 14 . 6 1 Chapter S ummary

This chapter only scratches the surface of the many graph problems and applications.
If you are interested in learning more about graph problems, we suggest you search
for information on strongly connected components, Euler tours, Hamiltonian cycles,
all pairs shortest paths, and network flow problems. The following is a summary of
the topics discussed in this chapter.

• A graph is a set of vertices and the edges that connect the vertices.

• Graph edges may be directed (one-way) or undirected (two-ways) .

• The two common data structures for a graph are an adjacency matrix that has
the size V by V and an adjacency list . An adjacency list has a list of V vertices
and each vertex contains a list of the adjacent vertices, including information
about the edge.

• The running time of graph algorithms is given in terms of the number of
vertices (V) and the number of edges (E) .

• When using Python, a dictionary of dictionaries is the common method for
representing a graph in adjacency list form.

• Many graph algorithms use either a breadth first search or a depth first search.

• A minimum spanning tree is a set of edges with the minimum weight sum that
completely connects the vertices. An MST has V-I edges.

14.7 Exercises 513

1 14 . 7 1 Exercises

True/ Fa lse Questions

1. A matrix representation of a graph always requires more memory than an
adjacency list for the same graph.

2 . The weighted shortest path algorithm can be used on a graph that does not
have weights .

3. The unweighted shortest path algorithm will work on a directed graph that
has a cycle.

4. The weighted shortest path algorithm will never work on a directed graph that
has a negative weight and a cycle.

5. The breadth first algorithm is commonly implemented using recursion.

6. The depth first algorithm is commonly implemented using recursion.

7. If each vertex is reachable from a starting vertex in a graph that does not have
any cycles, the starting vertex will have the largest ending time for the depth
first search.

8. If a graph has cycles, the starting vertex will never have the largest ending
time for the depth first search.

9. Only a graph without cycles can be topologically sorted.

10 . The number of edges in a minimum spanning tree for a graph may vary
depending on which edges are chosen.

Mu lt ip le Choice Quest ions

1. If you calculate M20 where M is the adjacency matrix representing a connected
graph with 10 vertices, which of the following statements is true.

a) There will be at least one 0 in M20 .
b) There will not be any Os in M20 .
c) The entries will all be 1 in M20.
d) none of the above

514 Chapter 14 Graphs

2 . If you calculate M20 where M is the adjacency matrix representing an uncon­
nected graph with 10 vertices, which of the following statements is true.

a) There will be at least one 0 in M20 .
b) There will not be any Os in M20 .
c) The entries will all be 1 in M20 .
d) none of the above

3 . If a graph has 2 * V edges, what is the running time of the unweighted shortest
path algorithm if you use an adjacency matrix?

a) 8(V)
b) 8(V + E)
c) 8(V2)
d) none of the above

4. If a graph has 2 * V edges, what is the running time of the unweighted shortest
path algorithm if you use an adjacency list?

a) 8 (V)
b) 8(V + E)
c) 8(V2)
d) none of the above

5. If a graph has 0.5 * V2 edges, what is the running time of the unweighted
shortest path algorithm if you use an adjacency matrix?

a) 8 (V)
b) 8 (V + E)
c) 8(E)
d) none of the above

6. If a graph has 0.5 * V2 edges, what is the running time of the unweighted
shortest path algorithm if you use an adjacency list?

a) 8 (V)
b) 8 (V + E)
c) 8(V2)
d) b or c are equivalent

7. When running the depth first search, which of the following are possible for
the ending time of the starting vertex:

a) It may have the smallest ending time.
b) It may have the largest ending time.

14.7 Exercises 515

c) neither a or b
d) both a and b

8. When running the depth first search on a connected graph, which of the
following are possible for the ending time of the starting vertex:

a) It may have the smallest ending time.
b) It will have the largest ending time.
c) neither a or b
d) both a and b

9. The number of edges in a minimum spanning tree for a graph with V vertices
and E edges is

a) V-I .
b) V.
c) E-1 .
d) E.

10. Which of the following are a possible number of topological sort orderings for
a directed acyclic graph with five vertices?

a) 0
b) 1
c) 120
d) b and c
e) all of the above

Short-Answer Questions

1. Exactly how many edges are in a complete graph with V vertices?

2. Write the matrix representation for the graph in Figure 14 .3 .

3. Draw the adjacency list representation for the graph in Figure 14 .3 .

4 . Write the Python dictionary representation of the graph in Figure 14 .6 .

5. What is the run-time of the unweighted shortest path algorithm if an adjacency
matrix is used instead of an adjacency list to represent the graph?

6. Does removing the corresponding row and column from the adjacency matrix
as we find a vertex with incoming degree zero improve the asymptotic efficiency
of our first topological sort algorithm?

516 Chapter 14 Graphs

7. What is the asymptotic efficiency of the second topological sort algorithm
presented in this chapter that tracks the in-degree of each vertex?

8. Describe how to use the DFS algorithm to determine if a graph has a cycle.

9. Write an exact set of steps (pseudocode) for Prim's algorithm. What is the
running time of your steps?

Programming Exercises

1 . Implement the unweighted shortest path algorithm in Python.

2. Use the unweighted shortest path algorithm to write a program that solves
the Kevin Bacon game.

3. Implement a priority queue that supports changing the priority of items al­
ready in the priority queue.

4. Using your priority queue from the previous question, implement Dijkstra's
algorithm for finding the weighted shortest path.

5 . Implement the topological sort algorithm that keeps track of the current in­
degree of each vertex and adjusts it as we process a vertex.

6. Implement a disjoint set class in C++ using linked lists.

7. Implement Kruskal's algorithm using a disjoint set class.

8. Use the DFS algorithm to determine if an undirected graph has a cycle in
8(V) time.

9. Implement Prim's algorithm.

Chapter 15 Algorith m Techniq ues

Object ives

• To understand, implement , and analyze the efficiency of the quicksort algo­
rithm.

• To review divide-and-conquer algorithms and learn a technique for analyzing
the efficiency of recursive algorithms.

• To understand the greedy algorithm and dynamic programming techniques
and when they can be used.

• To understand the implementation of the Huffman compression algorithm and
the longest common subsequence algorithrn.

• To introduce the topic of NP-complete problems.

1 15 . 1 1 I ntrod uct ion

Most of this book has focused on data structures and algorithms for manipulating
those data structures. In this chapter we will not learn new data structures, but
instead we will focus on learning a few algorithm techniques that can be applied
to many different problems. You have already used some of these techniques, but
in this chapter we will categorize them. This will help you tackle new problems by
thinking about which categories of techniques can be applied to new problems you
encounter. As you have likely noticed by now, your programming skills improve by
using the knowledge and experience you have gained from solving problems in the
past. This chapter will add new tools to your toolbox of knowledge.

517

518 Chapter 15 Algorithm Techniques

1 15 . 2 1 Divide a n d Conquer

Divide and conquer i s the name given to the strategy we have seen the most often in
this book. The mergesort algorithm we examined is a classic example of divide and
conquer. As the name implies, the basic idea of divide-and-conquer algorithms is to
split a problem into smaller subproblems. As we saw with the merge sort algorithm
in subsection 6 . 5 . 1 , divide-and-conquer algorithms commonly have a step where the
solutions to the smaller problems are combined to form the solution to the original
problem. Many of the algorithms for processing trees can be viewed as divide-and­
conquer algorithms since they process subtrees. The binary search algorithm for
finding an item in a sorted list is also a divide-and-conquer algorithm since we keep
dividing the list in half to find the item for which we are searching. The binary
search algorithm does not need a step to combine the solutions to the subproblems
as most of the other divide-and-conquer algorithms do.

Many divide-and conquer algorithms are written as recursive functions and each
recursive call is made with a smaller subproblem. However, divide-and-conquer
algorithms do not have to be written as recursive functions. The binary search
algorithm can be written recursively or iteratively. As we discussed in Chapter 6 ,
iteration i s typically better than recursion i f the iterative algorithm is simple since
the function call overhead of recursion makes it less efficient than an iterative
algorithm with the same asymptotic running time. Analyzing the running time of
recursive functions is often more difficult than analyzing iterative solutions. Since
many of the divide-and-conquer algorithms are recursive, we will discuss techniques
for analyzing the running time of recursive functions before examining another
divide-and-conquer algorithm.

1 15 . 2 . 1 1 Ana lyzing Recursive Functions

You may recall that when analyzing the merge sort algorithm, we graphically looked
at the steps of the recursive calls and how much work was done at each level. When
analyzing the tree algorithms, we discussed how many times each tree node was
traversed and how much work was required per node to determine the running time.
Drawing pictures of what happens as each recursive call is made is a common method
for determining the amount of work the algorithm performs. We also used this
technique to help analyze the running time of the recursive Fibonacci function; we
can determine from Figure 6 .2 in Chapter 6 that the amount of work to calculate the
nth recursive Fibonacci number is almost twice as much work as the work required
to find the n-lst Fibonacci number. The diagrams can provide some intuition, but
it is easy to make mistakes when using the diagrams since they are not a formal

15 .2 Divide and Conquer 519

mathematical method. As you can see, analyzing recursive functions is more difficult
than analyzing iterative code.

In some limited cases of recursive functions, we can use a simple equation or
algorithm to determine the running time of the code. The main restrictions required
to use this algorithmic formula are that the code makes the same fixed number of
recursive calls each time the function is called and each call is made with the same
fixed fraction of the problem. To understand these restrictions we will discuss the
topic of recurrence relations. A recurrence relation is an equation that is defined
recursively. You may have seen a form of recurrence relations known as difference
equations in your math studies.

An example of a recurrence relation is T(n) = T(n/2) + c. This recurrence
relation states that the time to solve a problern of size n is the time to solve a
problem of size n/2 plus some fixed constant c. The running time of the binary
search algorithm can be written as that recurrence relation. Solving a recurrence
relation means finding a closed form solution without the recursive reference. This
can be difficult , but most recurrence relations that meet the criteria discussed in the
previous paragraph can be solved fairly easily. We already know that the solution
to the recurrence relation T(n) = T(n/2) + c is 8(lgn) since that is the running
time of the binary search algorithm. The recurrence relation that corresponds to
the mergesort algorithm is T(n) = 2T(n/2) + c * n since the algorithm makes two
recursive calls, each with a list half the size of the original list , and then has a loop
that runs n times where n is the size of the list made for that recursive call. We
know the answer to this recurrence relation is 8(n * 19n) .

There is an algorithmic formula commonly referred to as the master theorem for
solving most, but not quite all , recurrence relations that are of the form T(n) =
a * T (n / b) + f (n) . This corresponds to our restrictions of the fixed number of
recursive calls (a times in this formula) and the fixed fraction (nib) of the problem.
We can use the master theorem to find the asymptotic running time of recursive
algorithms that have recurrence relations that fit this form. 1 The master theorem
has three cases:

1 . if f(n) = O(nI09ba-e) for a constant e > 0 then T(n) = 8(nlo9ba)

2 . if f(n) = 8(nlo9ba) then T(n) = 8(nlo9ba * log2n)

3. if f(n) = f2 (nI09ba+e) for a constant e > 0 and if a * f (n/b) <= c * f (n) for a
constant c < 1 and all n >= no for a constant no > 0 then T(n) = 8(f (n))

1 For the full details of the theorem and a proof of the theorem, see Thomas Cormen,
Charles Leiserson, Ronald Rivest, and Clifford Stein, Introduction to Algorithms, (Cambridge,
Massachusetts: McGraw-Hill Book Company, 2001) , 2nd ed. 76-84.

520 Chapter 15 Algorithm Techn iques

We defined the difference between big 0 and theta notation earlier, but have not
seen the omega (0) notation before. Recall that big 0 means "less than or equal to"
and that theta means "equal to." As you may be able to guess, the omega notation
means greater than or equal to. As the three cases in the formula indicate, we need
to compare nlogba and f (n) for the recurrence relation T(n) = a * T(n/b) + f (n) .
If f (n) < nlogba , then the solution is 8(nlogba) . If f (n) = nlogba then the solution
is 8(nlogba * log2n) . And if f (n) > nlogba then the solution is 8(f(n)) if the extra
condition is also met . This extra condition means the formula cannot be applied to
all recurrence relations of the form T(n) = a * T(n/b) + f(n) , but it does work for
most of them. In summary, the answer is the larger of nlogba and f (n) (assuming
the extra condition is met when f (n) is larger) . If they are the same, you multiply
them by log2n to get the solution.

We will now look at a couple examples. The mergesort algorithm has the
recurrence relation: T(n) = 2T(n/2) + n. We first need to calculate logba which is 1
since both a and b are 2. So we now compare n1 to n and they are the same so that
tells us we need to use the second case of the formula and the answer is 8(n * log2n) .
The binary search algorithm has the recurrence relation: T(n) = T(n/2) + 1 . We
calculate logba which is O. We now compare nO and 1 which are the same so we
again use the second case of the theorem and the answer is 8(log2n) .

We will now examine simple, but useless, Python functions to see examples of
the other two cases of the formula. The first one is

recursive . py
def f 1 (n) :

if n > 1 :
a = f 1 (n / / 3)
b = f 1 (n / / 3)
c = a + b

else :
c = 0

for i in range (n) :
c += i

return c

print f 1 (20)

The function f1 has the recurrence relation T(n) = 2T(n/3) + n. We calculate log32
which is less than one so we know nlogba is less than n1 so this is case three of the
formula. We also need to show that 2 * n/3 <= c * n for some positive constant and
large values of n. We can easily pick c = 1 and no = 2 to meet the requirement .
Thus, the answer is 8(n) .

Our second exaruple is

recursive . py
def f2 (n) :

if n > 1 :
a = f2 (n II 3)
b = f2 (n II 3)
return a+b

else :
return 1

print f2 (20)

15.2 Divide a nd Conquer 521

The function f2 has the recurrence relation T(n) = 2T(n/3) + 1. We calculate l0932
which is less than one so we know nl09ba is greater than nO so this is case one of
the formula and the answer is 8(nlo932) ; this is 8(nO.631) , accurate to three decimal
places.

Unfortunately, the formula cannot be applied to all recursive functions; we can
apply it only to those whose recurrence relation fits the pattern T(n) = aT(n/b) +
f (n) . The recurrence relation for the recursive Fibonacci function is T(n) = T(n -
1) + T(n - 2) so we cannot use the formula. If we change our sample function f 1 so
one, but not both, of the recursive calls is f 1 (n/2) , the formula cannot be applied.
In these cases, you must use other techniques to find the run-time analysis as we
discussed earlier in this section.

1 15 . 2 . 2 1 Quicksort

Since we have examined a number of divide-and-conquer algorithms (binary search,
mergesort, tree algorithms) , we will examine only one more divide-and-conquer
algorithm in this chapter. The quicksort algorithm is a divide-and-conquer algorithm
for sorting and is appropriately named as it is typically the fastest general purpose
sorting algorithm even though its worst-case running time can be 8(n2) . The basic
idea of the quicksort algorithm is straightforward, but creating an algorithm that is
correct in all cases and efficient in most cases requires skill and attention to special
cases.

A drawback of the mergesort algorithm is that it requires an extra temporary
array that is the same size as the array you are sorting. The quicksort algorithm
has the advantage that it sorts the algorithm in place (i .e . , it does not require a
second array) . The basic idea of quicksort is similar to mergesort : split the list
into two parts and recursively sort each part , but the details of how this is done
are different . The quicksort algorithm starts by picking an element known as the

522 Chapter 15 Algorithm Techniques

pivot from the list . It then moves the elements less than the pivot to the left side
of the list and elements greater than the pivot to the right side of the list . The
pivot element is then placed between the two lists; this is the correct position for
the pivot when the entire list is sorted. The next step is to recursively sort the two
smaller arrays on either side of the pivot . When the recursive call has an array of
size 0 or 1 , the recursion ends. It should be clear that a merge step is not needed
since the partitioning step of moving small elements to the left and large elements
to the right with the pivot in the middle places the elements in sorted order.

Before we try to write code to implement the algorithm, we will look at an
example of how the algorithm works using the array 7 , 6 , 1 , 3 , 2 , 5 , 4. If we
pick the last element (4) as the pivot and follow the algorithm of moving small
elements to the left and large elements to the right and placing the pivot in the
middle, one possible result is 1 , 3 , 2 followed by the pivot 4 followed by 7 , 6 ,
5 . Note that 4 is now in the correct location for the final sorted array. We now
recursively sort the left array. If we again pick the last element (2) as the pivot
and move small elements to the left and large elements to the right , we now have
the sorted section 1 , 2 , 3 . Even if we still make recursive calls with the left array
1 and the right array 3, the calls would immediately return since the arrays have
length one. It could be the case where one side has length one and the other side
may have more, so the code will be simpler if we make the recursive calls. We now
recursively sort the right array 7 , 6 , 5 of the original problem. If we again pick
the last element as the pivot (5) , we could end up with 5 , 7 , 6. In this case there
are no smaller elements so the pivot is moved to the left . Again, note that the pivot
is in the correct location as it will always be after placing the elements less than it
to the left and elements greater than it to the right . We now recursively sort the
array 6 , 7 and pick 7 as the pivot . This small array is now sorted and the entire
original array is also sorted.

The implementation details we have not discussed yet are how to effectively
pick the pivot so the algorithm is efficient and how to move small elements to
the left and large elements to the right. We will now look at our first , but not
final, implementation of the quicksort algorithm which shows how to move smaller
elements to the left and larger elements to the right .

qswrong . py
this has a subtle bug
it will not work if all the elements are equal

def quicksort (a , left , right) :
if left < right :

pivot = a [right]
i = left
j = right - 1
while True :

15 .2 Divide and Conquer

while a [i] < pivot :
i += 1 ;

while pivot < a [j] :
j = j - 1

if i < j :
swap
a [i] , a [j] = a [j] , a [i]

else :
break

swap
a [i] , a [right] = a [right] , a [i]
quicksort (a, left , i-i)
quicksort (a , i+1 , right)

a = range (15 , - 1 , - 1)
quicksort (a , 0 , len (a) -1)
print a

523

Assuming the list size is greater than one, this implementation picks the last
element in the list as the pivot. It then starts at the left and moves forward in the
list until it finds an element larger than the pivot. Once it does, it starts at the
right end of the array, just to the left of the last element which is the pivot , and
moves backwards until it finds an element smaller than the pivot . Once it does,
it then swaps the two elements it found so the element smaller than the pivot is
moved to the left and the larger element is moved to the right . I t then continues
the process starting again where it left off on the left side moving forward in the list
until it finds an element larger than the pivot and then repeats the process moving
backwards from where it left off on the right side. Once those two inner while loops
meet , the outer while loop stops. Thus, the code in the while True loop will run
n - 1 times since it examines each element except the pivot once while the index
variables i and j move towards each other. When the two indices cross, the pivot
is placed at that location which is the correct location in the final sorted list . The
code then recursively sorts the section of the list to the left of the pivot and the
section of the list to the right of the pivot . Note that at no point is an extra copy
of the list created; the elements are swapped within the original list .

Our question, of course, is how efficient is this algorithm. The analysis is not as
easy as mergesort since the size of the two lists with which the recursive calls are

524 Chapter 15 Algorithm Techniques

made will vary depending on the input and which element is picked as the pivot .
The experience you have developed should lead you to know that we want the two
lists to be of equal size. This will give us the recurrence relation T(n) = 2T(n/2) +n
since we make two recursive calls with lists half the size and the steps to move the
smaller elements to the left and larger elements to the right require 8(n) time. This
is the common recurrence relation for many divide-and-conquer algorithms and the
answer is 8(n * l092n) . This matches the mergesort algorithm, but the constants
that the 8 notation hides are smaller for the quicksort algorithm since we are not
copying the elements to and from a second list . This is a significant benefit for large
lists; with mergesort , recall that we need an extra array that is the same size as the
array we are sorting. Thus, in practice, the quicksort will be faster than mergesort
if we can split the list in two approximately equal halves.

Unfortunately, the quicksort algorithm may not necessarily split the list in half
each time. What happens with our first implementation if the list is already sorted?
In this case, the pivot will be the largest element in the list section we are sorting
each time it makes a recursive call and we will be splitting the list into two lists, one
of zero elements and one with only one element less than the original list , since the
pivot element is not included in the recursive call. A similar partition into zero and
n - 1 elements will happen if the list is in reverse order. These cases correspond to
the recurrence relation T(n) = T(n - 1) + n. This does not meet the pattern that
can be solved with the master theorem, so we must try a different technique. One
way to look at this is to keep expanding the recurrence relation.

T (n) = n + T (n-i)
= n + (n-i) + T (n-2)
= n + (n-i) + (n-2) + T (n-3)
= n + (n-i) + (n-2) + (n-3) + T (n-4)

= n + (n- i) + (n-2) + (n-3) + . . . + i

As we just showed, this will result in the sum of the first n integers and we
know that is 8(n2) . Thus, the worst case for quicksort is worse than mergesort and
equivalent to the original iterative sorting algorithms we examined in Chapter 3 .

Unfortunately, in addition to being inefficient for these two cases, this imple­
mentation is not quite correct . If all the elements in the list are the same, the code
will not work correctly. We leave it as an exercise to determine what happens and
how to fix it . This is an example of how difficult it is to get the implementation of
the quicksort algorithm correct .

Based on what we learned in the previous paragraphs, it should be clear that the
choice of pivot is crucial to the performance of the algorithm. One possible choice to

15.2 Divide and Conquer 525

avoid the worst-case behavior when the list is already sorted is to randomly choose
the pivot. This would mean that no specific input would be more likely to produce
the worst-case running time . Another common option is to examine three elements
and pick the median of those three as the pivot ; this increases the likelihood that
the pivot will be closer to the median element of the list .2 We will now look at the
quicksort algorithm implemented using this as the pivot strategy. This algorithm is
also correct for all input cases, unlike our first algorithm.

quicksort .py

def quicksort (a , left , right) :

" ' post : sorts a [left : right+i] (i . e . , a [left] through a [right]) ' "

if left < right-i :
pivot = median3 (a , left , right)
i = left
j = right - 1

while True :
i += 1
while a [i] < pivot :

i += 1
j -= 1
while a [j] > pivot :

j -= 1
if i < j :

swap
a [i] , a [j]

else :
break

swap

a [j] , a [i]

a [i] , a [right-i] = a [right-i] , a [i]
quicksort (a , left , i-i)
quicksort (a , i+i , right)

elif left < right :
if a [left] > a [right] :

a [left] , a [right] = a [right] , a [left]

2 An exercise in Thomas Cormen, Charles Leiserson, Ronald Rivest , and Clifford Stein,
Introduction to Algorithms, (Cambridge, Massachusetts: McGraw-Hill Book Company, 2001) , 2nd
ed. discusses this approach.

526 Chapter 15 Algorithm Techn iques

def median3 (a , left , right) :

center = (left + right) II 2
if a [center] < a [left] :

a [left] , a [center] = a [center] , a [left]
if a [right] < a [left] :

a [left] , a [right] = a [right] , a [left]
if a [right] < a [center] :

a [center] , a [right] = a [right] , a [center]
a [center] , a [right-1] = a [right-1] , a [center]
return a [right-1]

If there are at least three elements in the list , the quicksort function uses the
median3 function to pick the pivot element . It examines the first , middle, and last
elements and places the smallest element in the first position, the largest element in
the last position, and the pivot in the next to last position. The quicksort function
then works basically the same as our original algorithm. Note that we can start the
index i at the second element in the section of the list since we know the element
the median3 function placed in the first position is less than or equal to the pivot.
Similarly, we can start the index j to the left of where we placed the pivot since we
know the pivot and the element in the last position are greater than or equal to the
pivot. Other than these minor changes, the code inside the while True loop works
exactly the same as our original implementation. The last else statement handles
the case where we have fewer than three elements in the section of the list we are
sorting.

To further improve the speed of the implementation, we could write the original
if statement as if (right - left < 10) and then have the else case use the
selection sort or insertion sort algorithm to handle small lists. These iterative
algorithms will be faster than a recursive algorithm for small lists. Since the recursive
calls will eventually be sorting small lists, this change can increase the speed a
significant amount .

In practice this improved implementation of the quicksort algorithm will have
an average running time of 8(n * 19n) and be faster than mergesort and other
8(n * 19n) sorting algorithms even though the worst case running time of the
quicksort algorithm is 8(n2) . Note that using the median3 function, the algorithm
will partition a sorted list or a list in reverse order into equal halves and thus will
have a run-time of 8(n * 19n) with this improved implementation. As long as the
algorithm does not repeatedly split the list into two sections that are very uneven,
quicksort will be faster than mergesort . In fact, if the algorithm splits the list into
sizes that are fixed percentages such as 1/4 and 3/4, the 8(n * 19n) running time
will still be achieved. Proving this is beyond the scope of this book. Even though

15 .3 Greedy Algorithms 527

we typically analyze the worst-case running time, studying the quicksort algorithm
has shown us that sometimes the average case analysis is more important (but also
more difficult to do) .

/ 15 . 3 1 Greedy Algorithms

The greedy algorithm strategy, like most computer science terminology, i s appropri­
ately named. The common pattern in algorithms classified as greedy is that when
making a choice, they always pick the choice that looks best at the moment. The
greedy strategy is typically applied to optimization problems. Optimization prob­
lems usually contain one of these phrases: what is the best , what is the minimum,
or what is the maximum. An example of an optimization problem is what is the
minimum number of coins needed to total 42 cents? In the United States, you would
choose one quarter worth 25 cents, one dime worth 10 cents, one nickel worth 5 cents,
and two pennies worth 2 cents. This is a problem in which the greedy strategy can
be applied. The greedy choice is to always choose the largest coin possible. Starting
at 42 cents, we choose a quarter leaving us with 17 more cents. The largest possible
coin we can use now is a dime leaving us with 7 cents. The largest possible coin we
can use now is a nickel leaving us with 2 cents that we form using two pennies.

U sing a greedy strategy involves two main steps. The first is to determine how
a greedy choice can be applied to the problem. In the case of our coin problem the
greedy choice we determined is to always use the largest possible coin. The second
step is to prove that the greedy choice will in fact lead to the optimal solution. In
our example of United States coins , the greedy choice works because all the coins
are multiples of five. These coin values make it easy to determine that the greedy
algorithm will work for all possible totals .

Unfortunately, the greedy strategy cannot be applied to all optimization prob­
lems. Consider the widely studied problem known as the traveling salesman problem.
Given a group of cities with straight line distances between them, determine the
order to visit all the cities that minimizes the total distance traveled. A greedy
choice could be to choose the closest city from your current location, then choose
the closest city to it that has not been visited, and so on until all the cities have
been visited. This strategy will not result in the shortest path being found in all
cases. We will discuss this problem again in section 1 5 . 5 .

Greedy algorithrns can be used in compression algorithms. The basic idea of
compression is to reduce the amount of storage needed for data. There are two
categories of compression: lossy and loss less. As the name implies, when you use
lossy compression , you lose some of the data and cannot reproduce the original data

528 Chapter 15 Algorithm Techniques

exactly; lossless compression allows you to uncompress the data and get back the
exact original data. You have likely used compressed data whether you realize it
or not . Most audio formats, such as MP3 and AAC, use compression to reduce
the amount of data required to store and play audio files. Similarly, most video
is stored and transmitted in compressed format. Digital television is broadcast
in a lossy compression format (typically the MPEG-2 compression format) ; other
common video compression formats you may have heard of are MPEG-4 and H.264,
which is a specific form of MPEG-4. Lossy compression is acceptable for audio and
video applications since the exact original data is not needed. There is a trade-off
between the amount of compression and the quality of the audio or video. As long
as enough bits are used in the compressed version, when the data is uncompressed,
the audio or video will sound or look "good enough" for most people. In the United
States, different networks use different amounts of compression and in some cases,
the loss of quality is noticeable in fast moving scenes such as those in sports.

For other applications, lossy compression will not work. If you compress your
source code or a research paper, you need to get the original version back when
you uncompress it. In this section, we will look at one of the simpler compression
algorithms known as Huffman codes that uses a greedy strategy; it was developed
by David Huffman in the 1950s. In this section, we will discuss the algorithm using
examples with plain ASCII text , but the algorithm can be applied to any data that
is represented using bits.

Uncompressed ASCII files use eight bits to store each letter; unicode uses 16 bits
for each character. The basic idea of Huffman codes is to use fewer bits for letters
that occur more frequently in the text you are compressing and more bits for letters
that occur less often. We may end up using two or three bits for letters that occur
frequently in our text such as a, e , and s. and more than eight bits for letters
that occur less frequently such as z or q. For most files with more than a few
hundred letters, the total number of bits needed when using this mixture of short
and long codes will be less than the original uncompressed file . We also need to
store information about the bit code for each letter so we can uncompress the file .
Attempting to compress a very small file will result in a larger file because of the
overhead of storing the decoding information. Of course, if the file is small, there is
no need to compress it .

The technique Huffman codes use to create the compressed file generate what
are known as prefix codes or more accurately, prefix-free codes; you will find both
terms are used interchangeably. For codes to be considered prefix-free, no code can
be a prefix of another code. The codes 10, OI l , 010, and 1 10 form a prefix-free
code set . If we assign these codes in order to the letters, a, b, c , d and have the

15.3 Greedy Algorithms 529

bit sequenceO l l l l0l00l0l0, we can easily decode the sequence by processing each
bit one at a time until we find a letter that matches. In this example, we find the
first three bits correspond to the letter b. We continue processing bits and find
the next three bits correspond to the letter d. The next two bits then correspond
to the letter a, followed by three bits for the letter c , followed by two bits for the
letter a. Since no code is a prefix for any other code, this is the only way to decode
the message and we can stop processing bits and output a letter as soon as the bit
sequence matches one of the letters.

An easy way to visualize this and to process it is to make a tree using the codes.
The bit ° corresponds to moving left in the tree and the bit 1 corresponds to moving
right in the tree. Figure 1 5 . 1 shows the codes in this example. This allows you to
start at the root of the tree and move down the tree as you process each bit . When
you reach a leaf node with a letter, you output that letter and start the process
again at the root of the tree. As the tree representation makes it easy to see, the
letters will always be at leaf nodes. If a letter was not at a leaf node, the code
would not be a prefix-free code and would be ambiguous when we tried to process
it a bit at a time. Consider the codes 0 , 1 1 , and 1 10 that are not a prefix-free code
corresponding to the letters a, b, and c . If we attempt to decode 1 10 , is it the letter
c or the two-character sequence ba? With prefix-free codes, we do not have this
problem.

o

1

n w
o 1 o

Figure 1 5 . 1 : Prefix codes represented as a tree

Of course, the problem is how to form the tree that will result in the most
compression. As we stated earlier, we want the more frequent letters to have shorter

530 Chapter 15 Algorithm Techniques

codes and the less frequent letters to have longer codes. That means frequent letters
need to be near the root of the tree and less frequent letters need to be farther down
the tree. Because of this, our first step is to process the input file, determine the
frequency of each letter, and sort the letters by frequency. To demonstrate the
algorithm, we will use a common palindrome "a man a plan a canal panama" since
it has only a few unique letters keeping our tree fairly small. The following table
shows the letter frequencies for this phrase:

Letter Frequency

c 1
m 2
I 2
p 2
n 4
space 6
a 10

Remembering the two requirements that all characters must be at leaf nodes and
we want less frequently occurring letters near the bottom of the tree, we will create
tree nodes for each character and build up the tree starting at the bottom of the
tree. We show this pictorially in Figure 1 5 . 2 with each node showing the character
followed by its frequency. We have ordered them by increasing frequency.

p :2 n :4

Figure 15 . 2 : Starting trees for Huffman codes

The algorithm Huffman developed works by combining the two trees that are
currently the smallest into one tree. The first step for our example selects the
characters c and m and combines them into one rooted tree with a total frequency
of three (the sum of the two individual frequencies) . This is shown in Figure 1 5 .3 .

N ext we select the characters 1 and p since they have the two smallest frequencies
and create a new combined tree with them as shown in Figure 1 5 .4 . The two smallest
frequencies now total 3 and 4 so we combine them as shown in Figure 1 5 .5 . We
continue the process and combine the two trees with frequency totals 4 and 6 as

15 .3 Greedy Algorithms 531

Figure 1 5 .3 : Combining the first two trees

shown in Figure 1 5 .6 . The next step combines the two trees with frequency totals
7 and 10 . Finally, we combine the two remaining trees and obtain the final result
shown in Figure 1 5 . 7.

Figure 1 5 .4 : Combining the second two trees

The table after the figures shows the characters, their original frequency, their
bit code, and the total number of bits required to store that letter using the bit code
(the frequency multiplied by the length of the bit code) . For the example string "a
man a plan a canal panama, " 76 bits are required. As mentioned earlier, we also
have to store the letter and its code so that we can decode it . In this case, the short
length of the string will likely result in the compressed file being larger because of
the overhead of storing the code for each letter.

532 Chapter 15 Algorithm Techn iques

Figure 15 . 5 : Combining the third two tress

Figure 15 . 6 : Combining the fourth two trees

Figure 1 5 .7 : Final tree for Huffman codes

15.3 Greedy Algorithms 533

Letter Frequency Code Total hits

c 1 1000 4
m 2 1001 8
1 2 1010 8
p 4 101 1 16
n 4 1 10 12
space 6 1 1 1 18
a 10 0 10

76

Notice that more than one tree can be formed if there are ties in the frequencies
as we combine the trees. To show this, we change the last two steps to pick the
tree with frequency 7 and the tree containing the letter a that has frequency 10
instead of the tree containing the characters n and the space as we originally did.
This results in the final tree shown in Figure 1 5 .8 . You can also arbitrarily choose
which tree is the left child and which is the right child any time you combine two
trees, which results in slightly different codes.

t:::l ,� O 1

� .. cj0

1 . , 0 t:iJ I�� I
o 1

Figure 1 5 .8 : Another possible Huffman code

The following table shows the characters, their original frequency, the bit code
for the tree in Figure 15 . 8 , and the total number of bits required. Notice that the
total number of bits required to represent the string is again 76 bits. This should not

534 Chapter 15 Algorithm Techniques

surprise you since we are replacing one node whose subtree has a frequency total of
10 with another subtree whose frequency has a total of 10 . In either case the same
number of total bits are required to represent that subtree.

Letter Frequency Code Total hits
c 1 0000 4
m 2 0001 8
1 2 0010 8
p 4 001 1 16
n 4 10 8
space 6 1 1 12
a 10 01 20

76

Two remaInIng questions are how do we implement this algorithm and how
efficient is it . The first step is to read the file that we want to compress and compute
the frequency total. In Python, we can use a dictionary with the characters as keys
mapping to their frequency. In C++, unless you already have a hash table, you
could use an array to store the frequencies since as we read each byte of the file,
we know there are at most 256 possible values (or 128 if the file is entirely ASCII) .
Thus, we can use an array of length 256 with each value initialized to zero and add
one to the appropriate array location each time we read a byte from the file. This
algorithm is 8(n) where n corresponds to the number of bytes in the file. The next
step is to sort the frequencies. Since there are at most 256 items to sort , this can
be considered 8(1) . Next we want to create a tree node for each frequency and
store them in order. A binary heap or priority queue is the exact data structure we
need to efficiently implement the algorithm demonstrated in the earlier figures. We
remove the two lowest frequency elements from the heap and insert the tree formed
by combining the two removed elements. Again, the amount of work is constant
since a fixed number of items are being inserted and removed from the heap. Even
if we do not consider these numbers constants, the sorting takes 8(n * Zgn) time
as does inserting and removing the n items from the heap where n is the unique
number of different characters in the file .

We can now use the tree to determine the bit code for each character based on its
location in the tree. A postorder traversal in which we update an extra parameter
that is a list corresponding to the bits can be used to efficiently determine the code
for each character. Each time a left path is followed, we append a zero onto the list
and each time a right path is followed, we append a one onto the list . Each time

15 .3 Greedy Algorithms 535

a recursive call returns, we remove the last elenlent in the list . The running time
for this is linear in terms of the number of nodes in the tree. Again, this can be
considered a constant since there are at most 512 nodes in the tree. The next step
is to store each unique letter and its code in a new file followed by the code for each
letter in the order they appear in the original file. As you can see, for large files
the running time is dominated by reading and writing the characters and is linearly
related to the number of bytes in the file .

To decompress the file, we need to read the header information containing the
bit code for each character in the file . You could then form the tree or create a hash
table matching each code to its letter. As you then read the file a bit at a time, you
use the tree to decode it as we discussed at the beginning of this section or keep
building up the code until you get a code that is a key in the hash table. The time
required for this is again linearly related to the number of bytes in the file .

To actually compress the file, we need to do bit-level manipulation. Most
programming languages, but not all , provide operators for performing bit-level
manipulation. In Python and C++, the « and » operators can be used to shift
bits and the binary & and I operators can be used to perform bit-level and and or
operations. The following shows an example of this using the interactive Python
interpreter.

» > x = 1
» > x = (x « 1) I 1
» > x
3
» > x = (x « 1) I 0
» > x
6

The statement x«1 shifts the bits left one position, resulting in x being 2
assuming it was initially 1 . After using the I operator to do a bitwise "or" operation,
x is now 3. Shifting the value 3, which is represented as 1 1 in base 2, left one position
gives us 1 10. The bitwise "or" with zero does not change it , so x is now 6. This
type of bit-level operations can be used in the Huffman compression algorithm to
build up the bit codes for sequences of characters . Each time you reach a certain
number of bits, such as 8 or 32, you can write that value out to the file and start
the process again.

The final question is how good is the compression using this greedy choice. The
answer is it is optimal for prefix-codes since we are using the shortest number of
bits for the most frequent letters. However, if you implement the algorithm and
compare the compression to compression programs such as gzip, bzip2, or zip,

536 Chapter 15 Algorithm Techn iques

you will likely find they compress the files more than your Huffman compression
program. The reason they work better is they often group multiple letters together
and form codes for those. For example, the two-character sequences sh, th, and
ch occur frequently in English words. If we use short bit codes for these multiple
character sequences, we usually achieve more compression than compressing each
single character with a bit code.

1 15 .4 1 Dynam ic Progra m m i ng

Dynamic programming is another technique that is often applied to optimization
problems and is similar to the divide-and-conquer strategy. The basic divide-and­
conquer strategy works well when each subproblem appears only once as we split
the problem into subproblems. Recall that the recursive Fibonacci algorithm in
Chapter 6 is inefficient because it required that we recompute the same subproblems
multiple times. Dynamic programming solves this problem by storing the answer
to each subproblem and reusing the stored value instead of recalculating it . Our
iterative Fibonacci solution can be classified as a dynamic programming algorithm.
As a reminder, here is the iterative Fibonacci function from Chapter 6 that has a
running time of 8 (n) .

def loopfib (n) :
pre : n > 0
returns the nth Fibonacci number

curr = 1
prev = 1
for i in range (n-2) :

curr , prev = curr+prev , curr
return curr

This is one of the simpler dynamic programming examples since we only need to
store the answer to the two most recent subproblems and it is easy to combine the
answers to the subproblems to find the answer to the current problem. As with the
divide-and-conquer strategy, one key concept for dynamic programming algorithms
is to determine how to combine the solution to the subproblems into the solution to
the original problem. In some cases, we need to examine only one or two subproblems
to solve the original problem. In other cases, we need to look at a number of
subproblems. In cases that require examining a number of subproblems, dynamic
programming is very common since we will often be examining the same subproblem
multiple times while solving the original problem. This concept is typically referred
to as overlapping subproblems.

15.4 Dynamic Programming 537

Having overlapping subproblems is not the only criterion that is required to
apply the dynamic programming technique. The other important criterion that an
optimization problem must meet is that the solution to the original problem must
contain optimal solutions to the subproblems. Determining how to combine the
optimal solutions to subproblems to determine the optimal solution to the original
problem is typically the most difficult task when designing a dynamic programming
algorithm.

While divide-and-conquer algorithms are typically implemented recursively, dy­
namic programming algorithms typically start with the base case problem and use
it to determine the solution to the larger problems until the solution to the original
problem is reached. Because of this, dynamic programming algorithms are typically
not implemented using recursion. Instead, the typical method uses an iterative
solution that stores the solutions to the subproblems in a table and fills in the table
with the answers to larger problems as it works to compute the answer to the original
problem. We will now examine one problem in detail that dynamic programming
can be applied to and give the basic algorithm for another problem that dynamic
programming should be used to solve.

1 15 .4 . 1 1 Longest Common Subsequence

The longest common subsequence problem is a fairly simple problem to understand,
which makes it a nice first example for dynamic programming. For this problem,
we define a sequence as a finite, ordered list of items. A Python tuple, list , or
string qualifies as a sequence. A subsequence is an ordered subset of the original
sequence; in other words, you may remove some (possibly none) of the items from the
original sequence, but not change the order of the sequence. The longest common
subsequence problem is, given two sequences, what is the maximum length sequence
that is a subsequence of the two sequences. For example, consider the two words
abracadabra and batter as sequences of letters; a longest common subsequence for
these two sequences is bar. There may be more than one common sequence with
the same maximum length, but in this case, bar is the only subsequence of length
three.

A brute force algorithm is to determine all the subsequences for one of the
sequences and then check if it is a subsequence of the other sequence and keep
track of the longest subsequence found. For a sequence of length n, the number of
subsequences is 2n . This is easy to picture by viewing each item in the sequence as
an item that can be selected or not selected. This allows us to count the number of
subsequences by treating the sequence as n binary digits. Given n bits, the number
of items that can be represented is 2n so this results in an algorithm that is 8(2n)

538 Chapter 15 Algorithm Techn iques

just to compute all the subsequences. We then need to find the longest subsequence
that is a subsequence of the other sequence.

It is likely not intuitively obvious to you that dynamic programming can be
applied to this problem. This is why we study examples of the various algorithm
techniques. The experience of seeing techniques for solving various problems can
help you determine when these techniques might be applied to new problems. To
use dynamic programming for this problem, we need to determine how we can find
the optimal solution to larger problems given the solution to smaller problems. This
is where intuition and experience will help you.

Our first step is to examine small problems, so we will start with sequences
of length one (i .e . , the base case for the problem) . If the two sequences contain
the same element, the common subsequence length is one, otherwise it is zero. A
possible next step is to see what happens if we add a letter to two sequences for
which we know the longest common subsequence. If we have two sequences and add
the same character to each sequence, the length of the longest common subsequence
between the two longer sequences is one more than the longest common subsequence
of the two original sequences. For example, consider the sequences abed and eabe ;
the longest common subsequence of these two sequences is abo If we add the letter
f onto the end of each sequence, the longest common subsequence is abf .

Now that we have some initial ideas, let 's draw a table t o see if that can help
us determine a complete set of steps for the problem. Since we have two sequences,
we will make a two-dimensional table using our first sample sequences. We will let
the entry [i , j] in the table refer to the length of the longest common subsequence
for the sequence of letters 1 through i of the one sequence and 1 through j of the
other sequence. We have filled in the first row and column in the following table.

a b r a c a d a b r a
b 0 1 1 1 1 1 1 1 1 1 1
a 1
t 1
t 1
e 1
r 1

The upper left zero corresponds to the longest common subsequence between
the letter a in abraeadbra and the letter b in batter. The one in the next position
to the right corresponds to the longest common subsequence between the sequence
ab of abraeadbra and the letter b of batter. Once you have a one in the first row,

15.4 Dynamic Programming 539

the rest of the entries in the first row must be a one based on how the entries in the
table are defined. The first column is filled out in exactly the same manner. Once
the first row and first column in the table have been calculated and stored, the rows
or columns can be computed in order. We have filled out the second row of numbers
in the next updated copy of the table.

a b r a c a d a b r a
b 0 1 1 1 1 1 1 1 1 1 1
a 1 1 1 2 2 2 2 2 2 2 2
t 1
t 1
e 1
r 1

If we now think about what each table entry means, we can determine how to
compute each entry based on the entries above it , to the left of it , and diagonally
up and to the left . As discussed earlier when developing some intuition for the
algorithm, if the element at position i in the one sequence matches the element at
position j in the other sequence, we can add one to the longest common subsequence
between the first i - I entries of the one sequence and the first j - 1 entries in the
other sequence. An example of this is the first two in the second row of numbers.
This corresponds to the longest common subsequence of abra and ba. We have
already determined that the length of the longest common subsequence between
abr and b is one. When we add the letter a to each of those two sequences, we
can add one to the length of the common subsequence, giving us two. In our table,
this corresponds to adding one to the entry diagonally above it to the left when the
elements match.

We also have to determine what to do if the letters do not match. An example
of this is adding the letter c to abrac . We want to know the length of the longest
common subsequence between it and ba. Since the letter c does not match the
last letter of ba we cannot increase the length of the longest common subsequence.
Instead, the longest common subsequence of abrac and ba must be the maximum
of the longest common subsequence of abrac and b and the longest common sub­
sequence of abra and ba. This corresponds to the maximum of the entries in the
table above and to the left of the entry we are computing. The final table for the
example is the following.

540 Chapter 15 Algorithm Techniques

a b r a c a d a b r a
b 0 1D 1L 1L 1L 1L 1L 1L 1L 1L 1L
a 1D 1L 1L 2D 2L 2L 2L 2L 2L 2L 2L
t 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L
t 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L
e 1U 1L 1L 2U 2L 2L 2L 2L 2L 2L 2L
r 1U 1L 2D 2L 2L 2L 2L 2L 2L 3D 3L

Given this table, we likely also want to determine what the longest common
subsequence is . The key point to realize is that when we added one to the diagonal
entry, we were adding a letter to the common subsequence. By keeping track of
which entry we used to compute an entry, we can determine the actual common
subsequence. We can picture an arrow in addition to the number indicating which
entry we used to determine the value for each entry. For our table we have used the
letter D to indicate a diagonal entry, the letter L to indicate a left arrow, and the letter
U to indicate an up arrow. Starting at the lower right corner of the table, we chose
the three to the left when picking the maximum of the left and above entries. From
there we chose the diagonal entry so the last letter in our common subsequence is r.
We continue following the arrows, inserting letters at the beginning of our common
subsequence when we follow a diagonal arrow. When an arrow moves us out of the
numeric entries, we are done and have determined the longest common subsequence.

Continuing our example, we will insert the letter a when we reach the entry in
the table corresponding to abra and ba. We finally insert the letter b when we reach
the entry in the table corresponding to ab and b. That diagonal entry moves us off
the table, indicating that our common subsequence is bar. In our example, we broke
all ties when choosing the maximum of the left and above entries by choosing the
left entry. Choosing the above entry could result in a different common subsequence
with the same maximum length.

The run-time analysis of this algorithm is fairly simple. We have to fill in the
table. Computing each entry requires a constant amount of time. Given sequences of
length m and n, the running time is 8(m * n) . The running time for our brute force
algorithm of creating all subsequences of the shorter sequence and then checking if
they are subsequences of the other sequence is at least 8 (2n) where n is the length
of the shorter sequence. Clearly, the dynamic programming algorithm is much more
efficient.

One drawback to our algorithm is that it requires 8 (m * n) space to compute
the result . A common application for the longest common subsequence problem
is DNA matching, which uses long strings of letters. Fortunately Dan Hirschberg,

15 .4 Dynamic Programming 541

a computer science professor, developed an algorithm that requires only a linear
amount of space, making it much more efficient for long sequences.

1 15 .4 .2 1 Memoization

As we mentioned before, the iterative approach of storing and computing table
entries in fixed order is the common technique used to implement dynamic pro­
gramming algorithms; however, it is possible to implement them using recursion.
The term memoization refers to using the recursive formula for the divide-and­
conquer strategy, but storing results as they are calculated so that we do not need
to calculate them multiple times. Before a recursive call is made to compute an entry,
the code first checks to see if that result has already been computed and stored. If
so there is no need to make the recursive call to compute it and we can simply use
the stored value. This gives us a running time equivalent to our iterative solution,
but retains the recursive form of divide and conquer. One possible method to store
the calculated values in a hash table. This is easy to implement in Python using
its dictionary. An array or list could also be used to store the previously computed
values. A memoized implementation of the Fibonacci function is the following:

fibm . py
def f ibm (n , d=None) :

if n < 2 :
return n

if d is None :
d = {o : i , i : 1}

if n-i not in d :
d [n-i] = f ibm (n- i , d)

if n-2 not in d :
d [n-2] = fibm (n-2 , d)

return d [n-i] + d [n-2]

If you execute it , you will find its actual running time is similar to the iterative
Fibonacci function whereas the pure recursive Fibonacci function is much slower for
values greater than 25. Generally the iterative inlplementation will be slightly faster
than a memoized recursive implementation due to the overhead of the numerous
function calls made in a recursive algorithm.

1 15 .4 .3 1 Matrix Cha i n Mu lt ip l ication

Determining the nlost efficient way to multiply a number of matrices together
is another problem that dynamic programming can be used to solve. We will
first provide some brief background on matrices before discussing how dynamic

542 Chapter 15 Algorithm Techn iques

programming relates to the problem. A matrix is a two-dimensional array of
numbers. In order to multiply two matrices together, the number of columns in
the first matrix must match the number of rows in the second matrix. For example,
a 6 by 8 matrix can be multiplied by an 8 by 4 matrix, but the 8 by 4 matrix cannot
be multiplied by a 6 by 8 matrix. The size of the resulting matrix is the number of
rows in the first matrix by the number of columns in the second matrix; the result
of multiplying the 6 by 8 matrix by the 8 by 4 matrix is a 6 by 4 matrix. The
amount of work required to perform the calculation is the product of the number
of rows in the first matrix, the number of columns in the first matrix (which is the
same as the number of rows in the second matrix) , and the number of columns in
the second matrix. To multiply the 6 by 8 matrix by the 8 by 4 matrix requires
6*8*4=192 steps. If you are not familiar with how to multiply two matrices, do a
quick Internet search or ask your instructor.

Matrix multiplication is not commutative even when the sizes of the matrices
allow the order of the two operands to be reversed. However, matrix multiplication
is associative. Consider the amount of work to multiply three matrices A, B, and C
with the sizes 2 by 10, 10 by 4, and 4 by 3, respectively. If we calculate (AB) C, by
first multiplying the 2 by 10 and 10 by 4 matrices together, we get a 2 by 4 matrix
that requires 80 steps. Multiplying the resulting 2 by 4 matrix by the 4 by 3 matrix
requires 24 steps for a total of 104 steps to calculate the final 2 by 3 matrix. If
we instead calculate A (BC) by first multiplying the 10 by 4 matrix with the 4 by 3
matrix, we get a 10 by 3 matrix that requires 120 steps. We then multiply the 2 by
10 matrix by the 10 by 3 matrix to obtain the same 2 by 3 matrix, but this requires
60 more steps for a total of 180 steps. This means we want to parenthesize the
matrices as (AB) C instead of A (BC) to produce the result with fewer calculations.

For three matrices, there are only two choices on how to parenthesize the calcu­
lation as we showed in the previous paragraph. If we have four matrices ABCD, our
choices are A ((BC) D) , A (B (CD)) , (AB) (CD) , « AB) C) D , and (A (BC)) D. The question
is how can we apply dynamic programming to this problem. The key point to realize
is that if the optimal way to parenthesize the product is to multiply ABC together and
then multiply that by the matrix D , then we will need the optimal way to multiply
ABC which is either (AB) C or A (BC) . This is what allows dynamic programming to
be applied to this problem; the optimal solution to the original problem contains
optimal solutions to the subproblems. If we have five matrices, ABCDE, the optimal
way to multiply them together might be (ABC) (DE) . If it is, we will want the optimal
way to multiply ABC together.

If we have a large number of matrices to multiply together, the different parenthe­
sizations can result in widely different amounts of required calculations. Determining

15.5 NP-Complete Problems 543

the optimal order is commonly known as the matrix chain multiplication problem.
We saw the number was significantly different with just three matrices in our initial
example. With more matrices, the differences can be even more dramatic, so if you
have a large number of matrices to multiply together, it is likely worth it to first
determine the optimal parenthesization.

The dynamic programming solution to this problem starts with calculating the
optimal way to multiply each group of three consecutive matrices together. The
next step is to determine the optimal way to multiply each group of four consecutive
matrices together, and so on. This will require an n-by-n table if we have n matrices
labeled Ao , AI , . . . , An-I to multiply together. The entry in the table at the position
[i] [j] indicates the optimal number of steps for multiplying matrices Ai through Aj .
We only need to compute half the table since it is symmetric (Le. , entry [i] [j] will
be the same as [j] [iD . Unlike the longest common subsequence problem where a
constant amount of work is required to compute each table entry, the amount of
work to compute this table is the difference between i and j . We will leave the
remaining details of this algorithm as an exercise.

Some dynamic programming algorithms require a one-dimensional table, while
others require a two-dimensional table as we have seen in our examples here. It
is possible that some problems could require even higher dimension tables. Some
algorithms will require a constant amount of steps to compute each entry in the
table and others require more calculations to compute an entry in the table. As an
algorithm designer, your job is to determine if dynamic programming can be applied
to the problem, and if so, what is the least amount of work required to calculate the
final result .

1 15 . 5 1 N P-Complete P rob lems

Since this i s an introductory book, we will cover only the basic details of NP-complete
problems. "NP" stands for "non-deterministic polynomial" time. NP problems have
the property that you can verify a solution in polynomial time; we will discuss what
this means shortly. The category P of problems corresponds to all problems that can
be solved in polynomial time . Thus, P is a subset of NP. The open question is does
P equal NP or is P a proper subset of NP. NP-complete problems are a category
of problems for which no polynomial time algorithms are known. The interesting
point is that if one NP-complete problem could be solved in polynomial time, then
all NP-complete problems could be solved in polynomial time.

The traveling salesman problem mentioned earlier in this chapter is an NP­
complete problem. The only known algorithm to solve the traveling salesman

544 Chapter 15 Algorithm Techn iq ues

problem exactly is to measure all the possible paths and pick the shortest . Un­
fortunately, there are 2n possible paths if you have n cities so this algorithm is
extremely inefficient. If someone tells you that a certain path has a length of 1 ,000,
we can verify in polynomial time (linear time in fact) that the path has a length of
1 ,000. Because of this, the problem qualifies as an NP problem. And since there is
no known polynomial time algorithm to solve it , it is NP-complete.

Graduate computer science students typically study how to prove that a problem
is NP-complete. The process of proving a problem is NP-complete is known as
reducing or reduction. The basic idea is to create a transformation between the
problems that can be performed in polynomial time. Thus, if we could solve our
problem in polynomial time, we could apply the polynomial transformation and
solve the known NP-complete problem in polynomial time. This is why if we could
solve one NP-complete problem in polynomial time, we could solve all of them in
polynomial time.

It is important to know if a problem you are attempting to solve is NP-complete
since that means no polynomial time algorithm is known to solve it . This can
prevent you from wasting time trying to find an efficient algorithm. Of course, if
your problem is NP-complete and you find a polynomial algorithm then you have
just solved one of the open problems in computer science. Knowing that your
problem is NP-complete also tells you that if you have a large problem to solve,
you will unlikely be able to solve it in a reasonable amount of time. Instead, you
might search for algorithms that approximate an optimal solution. In some cases
you might be able to show that your approximation algorithm produces a solution
that is within a certain percentage of the optimal solution. For example, we might
be able to find an algorithm that produces a path for the traveling salesman problem
that is no worse than twice the length of the optimal solution.

As we mentioned, proving an algorithm is NP-complete is an advanced topic and
we will not cover it in any detail in this book. Fortunately, other mathematicians and
computer scientists have proven a number of problems are NP-complete. An entire
book3 was written categorizing a number of NP-complete problems and how they
can be reduced. If you are struggling with coming up with an efficient algorithm for
your problem, a first step would be to check a list of known NP-complete problems
to see if your problem is already known to be NP-complete.

3Michael Garey and David Johnson, Computers and Intractability: A Guide to the Theory of
NP- Completeness, (New York: Freeman, 1979) .

15.6 Chapter Summary 545

1 15 . 6 1 Cha pter S ummary

This chapter formalizes a categorization of some of the algorithm strategies we have
used throughout this book and when each strategy can be applied. Understanding
these techniques and when to apply them will help you develop algorithms to
solve new problems you encounter. The following summarizes the specific concepts
presented in this chapter.

• Divide-and-conquer algorithms break problems into subproblems and then
combine the solutions to the subproblems to solve the original problem.

• Divide-and-conquer algorithms typically are written using recursion; the mas­
ter theorem can be used to analyze the running time of many recursive algo­
rithms.

• The quicksort algorithm is commonly used for sorting. In practice, a good
implementation of it is fast , but it can be slow depending on the initial order
of elements to be sorted and the choice of the pivot element.

• Greedy algorithms are typically applied to optimization problems and work
correctly when making the choice that looks best at the moment leads to the
optimal solution to the original problem. Prefix codes for compression are an
example of a greedy algorithm.

• Dynamic programming is an algorithm strategy similar to divide and conquer.
It is often applied to optimization problems. It should be used when a divide­
and-conquer strategy would attempt to solve the same subproblem multiple
times. Instead of resolving the subproblems each time, we solve it once and
store the answer so it can be used the next time that subproblem would be
solved.

• There are a number of problems for which no known polynomial time algorithm
exists. The category of NP-complete problems is a subset of these problems
with the interesting property that if one NP-complete problem could be solved
in polynomial time then all the NP-complete problems could be solved in
polynomial time.

546 Chapter 15 Algorithm Techniques

\ 15 . 7 \ Exercises

True/Fa lse Questions

1. Quicksort is always the most efficient algorithm for sorting.

2. Quicksort is a divide-and-conquer algorithm.

3 . The quicksort algorithm requires less memory than the mergesort algorithm.

4. The choice of the pivot element affects the running time of the quicksort
algorithm.

5. All recurrence relations can be solved using the master theorem.

6. Greedy algorithms will work correctly for all optimization problems.

7. Dynamic programming should be used for all divide-and-conquer problems.

8. Dynamic programming algorithms store the results of the subproblem solu­
tions so they can be reused without recalculating them.

9 . There is always a unique answer to the longest common subsequence problem.

10 . Any dynamic programming algorithm can be implemented recursively using
memoization.

1 1 . If we could solve one NP-complete problem in polynomial time, we could solve
all NP-complete problems in polynomial time.

M u lti p le Choice Questions

1. Using the master theorem, what is the answer to the recurrence relation
T(n) = 3T(n/2) + n?

a) 8(n)
b) 8(nlog23)
c) 8(nlog23 * l092n)
d) It cannot be solved with the master theorem.

2. Using the master theorem, what is the answer to the recurrence relation
T(n) = 4T(n/2) + n2?

a) 8(n)
b) 8(n2)

15 .7 Exercises 547

c) 8(n2 * log2n)
d) It cannot be solved with the master theorem.

3. Using the master theorem, what is the answer to the recurrence relation
T(n) = 2T(n/3) + 2T(n/4) + n?

a) 8(nlog;J2)
b) 8(nO.5)
c) 8(nO.5 * log2n)
d) It cannot be solved with the master theorem.

4. When is it acceptable to use lossy compression instead of lossless compression?

a) in all cases
b) to compress the source code for your programs
c) to compress an executable program
d) when you do not need to reproduce the exact original version

5. When should dynamic programming be used with a divide-and-conquer algo­
rithm?

a) for all divide-and-conquer problems
b) when the divide-and-conquer algorithm's running time is not 8(n * log2n)
c) when there are overlapping subproblems
d) only for optimization problems

Short-Answer Questions

1. What happens with our original quicksort implementation if all the elements
in the list are the same? How could we correct the code?

2. Give the denomination of three coins and a total value for which using the
greedy strategy does not result in the minimum number of coins being used.

3 . Show your work and the final prefix codes using the Huffman coding algorithm
for the following letters and their frequencies: {a: 2, b: 3, c: 6, d: 12, e: 24,
f: 9} .

4. What is the total number of different parenthesizations for a product of five
matrices?

5. What is the running time of the matrix chain dynamic programming algorithm
for n matrices (for determining the optinlal order, but not computing the
matrix products)?

548 Chapter 15 Algorithm Techn iques

Program m i ng Exercises

1 . Search for a divide-and-conquer algorithm that finds the two closest points in
a plane. Implement this algorithm.

2 . Using Huffman codes, write programs to compress and uncompress a file.

3. Implement the longest common subsequence algorithm described in this chap­
ter .

4. Search for Dan Hirschberg's algorithm and use it to solve the longest common
subsequence problem.

5. Implement the matrix chain multiplication problem using dynamic program­
ming.

Glossary

abstract data type A description of a data type that is independent of any particular
implementation.

abstraction The purposeful hiding or ignoring of some details in order to concentrate
on those that are relevant .

actual parameter An argument that appears in the call to a function.

acyclic graph A graph that does not contain any cycles.

adjacency list A technique for implementing graphs. It is a list of nodes that are
connected to a given node via an edge.

adjacency matrix A technique for implementing graphs. It is a matrix where each
entry (r ,c) represents information about the edge (or lack thereof) from node
r to node c .

algorithm analysis Using mathematical techniques to determine the computing re­
sources (e.g. , time and space) required by an algorithm.

aliasing Describes the situation where there are multiple live references to the same
data. Changes to the data through one reference will be visible to the other
references as well.

API Application programming interface.

application programming interface The set of values, operations, and objects pro­
vided by a code library or framework.

array A collection implemented as a sequence of identical "cells" in a contiguous
block of memory.

549

550 Glossary

ASCII American Standard Code for Information Interchange. A standard for en­
coding text where each character is represented by a number 0-127.

assembly code A low-level programming language whose structures have a direct
correspondence to the underlying machine language of a particular computer
archi tecture.

associative array A container type that implements a mapping from keys to values.

asymptotic notation Big-O notation. A way of describing an upper bound on the
resources required by an algorithm for an input of a given size.

attribute A component of an object . Sometimes it is used to mean the data in an
object , as opposed to its operations.

AVL tree A technique for maintaining a binary search tree in a (nearly) balanced
fashion for efficient lookup.

balanced tree A tree where the all the nodes at each level have (nearly) the same
number of descendants.

base case In recursive functions or problem-solving, this is a small version of the
problem that does not require recursive decomposition .

big-O notation A way of describing an upper bound on the resources required by
an algorithm for an input of a given size.

binary heap A heap data structure implemented as a binary tree.

binary search A very efficient searching algorithm for finding items in a sorted
collection. Requires time proportional to log2 n where n is the size of the
collection.

binary search tree A binary tree with the binary search property. For every node,
the data in its left subtree is smaller than the data and the node, and the data
in its right subtree is larger.

binary tree A tree in which each node has at most two children. The two children
are traditionally named "left" and "right."

binding A binding is an association between two things. A variable is a binding of
an identifier (name) with a memory location.

Glossary 551

bit Binary digit , fundamental unit of information. It is usually represented using 0
and 1 .

breadth first traversal An algorithm that explores a tree or graph in a fashion that
guarantees that every node's immediate children are examined before its other
descendants.

byte A group of eight bits. It is the smallest addressable unit of storage on most
modern computers.

byte code An intermediate form between high-level source code and machine lan­
guage. Byte code can execute on a virtual machine interpreter or be further
compiled to machine code.

chaining A technique for maintaining multiple items in a single "slot" of some
container structure. A chain of items is typically maintained as a linked list .

class A class describes a set of related objects . In object-oriented languages, the
class mechanism is used as a "factory" to produce objects .

class variable A variable that " lives" in a class and whose value is shared by all
instances of the class.

client In programming, a module that uses another component is called a client for
the component .

collision Occurs when two or more distinct iteIns hash to the same location in a
hash table.

compiler A program that translates a program written in a high-level language into
the machine language that can be executed by a particular computer.

complete graph A graph in which every pair of nodes is connected by an edge.

complete tree A tree where every node except at the deepest level has the maximum
possible number of children.

connected graph A graph in which there is a path from every node to every other
node.

const method In C++, a method declared with the const designation cannot change
any of the instance variables.

constructor The method that creates a new instance of a class.

552 Glossary

container class A class of objects whose primary function is to store a collection of
objects.

copy constructor A C++ constructor that takes an object of the type being con­
structed as a parameter and creates a new copy of it .

cycle A path in a graph that starts and ends on the same node.

data compression A technique for representing information more compactly (using
fewer bits) for the purpose of storage or transmission.

data structure A way of storing data so that it can be effectively used for some
application.

data type A particular way of representing data. The data type of an item deter­
mines what values it can have and what operations it supports.

debugging The process of finding and eliminating errors in a program.

decision statement A control structure that allows different parts of a program to
execute depending on the exact situation. Usually decisions are controlled by
Boolean expressions.

declaration A statement that states properties of a variable or function (such as its
type) to the underlying compiler or interpreter.

deep copy A complete copy of some data such that no mutable structure is shared
between the two copies.

definition A statement that provides the implementation of a variable or function.

degree In an undirected graph, it is the number of edges incident to a particular
node.

depth first traversal An algorithm that explores a tree or graph by following a single
path of descendants to the maximum depth before backing up and considering
alternative paths.

dequeue The operation that removes an item from a FIFO queue.

dereference The process of retrieving the item that is referred to by a pointer (an
address) .

Glossary 553

destructor The method that is called to "clean-up" an object that is no longer
needed. In C++, for example, a destructor is used to deallocate dynamic
memory.

dictionary A mapping from keys to values, also called an associative array.

Dijkstra's algorithm An efficient algorithm for finding the shortest paths in a graph.

directed acyclic graph A graph having directed (one-way) edges and no cycles when
paths are followed in the directed fashion.

directed graph A graph in which edges have a distinguished direction. Each edge
has a from-node and a to-node.

disjoint set structure A data structure for keeping track of the partitioning of a set
into disjoint subsets.

disjoint sets Sets that have no elements in common.

divide-and-conquer algorithm An algorithm design technique that breaks a problem
into smaller versions of the original.

duck typing Refers to the method of type equivalence used in dynamic programming
languages. Any type object can be passed to a function or method provided the
object implements all of the operations that the function or method requires.
The name refers to the quip "If it quacks like a duck and waddles like a duck,
then it 's a duck."

dummy node A special node at the front or rear of a linked list that is used as a
marker rather than to contain data.

dynamic memory Memory that is allocated and deallocated to a program at run­
time.

dynamic programming A technique for developing efficient algorithms involving
problems that can be decomposed into a series of overlapping subproblems.

dynamic typing A programming language mechanism where data types are attached
to values rather than variables, and the actual data type stored in a particular
variable can change over time.

encapsulation Hiding the details of something. Usually this is the term used to
describe the distinction between the implementation and use of an object or
function . Details are encapsulated in the definition.

554 Glossary

event-driven simulation A technique for programming simulations that relies on
probabilistic generation of events and adjusts a global "clock" to when the
next even happens. Compare to time-driven simulation.

explicit heap dynamic The situation in C++ where memory can be allocated and
deallocated at run-time directly under programmer control.

exponential algorithm An algorithm with resource requirements that grow as an
exponential function of the size of the input.

formal parameter A parameter that appears in a function definition (as opposed to
a function call) .

forward declaration A partial description of some program element that is used
to inform the compiler of something that will be completely defined later in
the program. In statically typed languages, it is often necessary for defining
recursive data structures.

full tree A tree where every non-leaf node has the maximum possible number of
children.

global variable A variable that is accessible to all parts of a program.

graph An abstract data type comprising a set of nodes and a set of edges that relate
pairs of nodes.

greedy algorithm An algorithm design technique wherein each step of a multi-step
strategy is chosen to make the maximum possible immediate progress toward
the final goal.

hash function An operation for turning some data into a relatively small integer,
often for the purpose of locating that data in an array.

hash table A container data structure that implements a mapping and uses hashing
(mapping keys into numbers) to support efficient insertion and retrieval.

head The traditional name for the first node in a linked list .

header node A dummy node at the front of a linked list .

heap (data structure) An ordered container data structure that supports efficient
insertion of items and removal of a minimum (or maximum) item.

Glossary 555

heap (memory allocation) The area of memory from which objects can be dynami­
cally allocated at run-time.

heap sort An n log n sorting algorithm that relies on the heap data structure.

Huffman coding A data compression algorithm based on a tree data structure.

implementation independence The ability to change the implementation of a service
without affecting the clients of the service .

implicit heap dynamic Allocation of memory for objects at run-time that is man­
aged automatically by the run-time system of the programming language.
Garbage-collected languages such as Python provide implicit heap dynamic
storage.

in-degree For a directed graph node, it is the count of incoming edges.

inheritance Defining a new class as a specialization of another class.

inline function/method A mechanism to tell a compiler that the body of a func­
tion/method should be directly inserted at each point in the program where
the function/method is called, thus avoiding the run-time overhead of the
function/method call.

instance variable A piece of data stored inside an object .

instantiation In C++, the process of creating a specific instance of a templated
function or class .

interface The connection between two components. For a function or method, the
interface consists of the name of the function or method, its parameters, and
its return values. For an object , it is the set of methods (and their interfaces)
that are used to manipulate the object . The term "user interface" is used to
describe how a person interacts with a computer application.

interpreter A computer program that simulates the behavior of a computer that
understands a high-level language. It executes the lines of source code one by
one and carries out the operations.

invariant A precondition and postcondition for a function, method, loop, or class.
For a class , an invariant is a precondition and postcondition for each method.
For a loop, an invariant is a value that is true before each iteration and true
when the loop completes.

556 Glossary

iterator An object that encapsulates the position of a traversal through a collec­
tion. An iterator is used to loop through a collection in an implementation
independent fashion.

Kruskal's algorithm An algorithm to find a minimal spanning tree of a weighted
graph.

I-value The "meaning" of an identifier when it appears on the left-hand side of an
assignment statement .

library A collection of useful functions or classes that can be imported and used in
a program.

lifetime (of a variable) The time during execution of a program when a variable is
bound to a storage location.

linear algorithm An algorithm with running time that is directly proportional to
the size of the input .

linker A program that assembles separately compiled program units into an exe­
cutable whole.

list A general Python data type for representing sequential collections. Lists are
heterogeneous and can grow and shrink as needed. Items are accessed through
subscripting.

literal A way of writing a specific value in a programming language. For example,
3 is an int literal and "Hello " is a string literal.

local variable A variable inside a function or method whose scope is limited to that
function or method.

lossless compression Any compression technique in which all information is pre­
served, thus guaranteeing accurate reconstruction of the original data.

lossy compression Any compression technique in which some information may be
lost, thus leading to imperfect reconstruction of the original data.

machine code A program in the machine language of a specific computer.

macro In C++, it is analogous to a function definition, but when "called" it results
in a textual expansion by the C++ preprocessor prior to compilation of the
program.

Glossary 557

memoization An algorithmic technique for automatically "caching" previously com­
puted results so that they can be returned without requiring additional com­
putation when needed again later.

memory leak A program error in which memory is allocated but not deallocated
when it is no longer in use.

method A function that lives inside an object . Objects are manipulated by calling
their methods.

minimum spanning tree A subgraph that is a tree connecting all the nodes of a
graph and having the least total cost as measured by the sum of the weights
of the included edges.

mutable Changeable . An object whose state can be changed is said to be mutable.
For example, Python ints and strings are not mutable, but lists are.

mutator method A method that changes the state of an object (i .e . , modifies one
or more of the instance variables) .

namespace The set of identifiers that are defined in a given scope. Python uses an
inspect able dictionary to represent namespaces.

non-local variable A variable that is accessible in, but not defined within, some
given scope. Global variables are non-local .

NP The class of problems that is solvable by non-deterministic polynomial time
algorithms. Intuitively, these are problems whose solutions can be checked for
correctness in polynomial time, but the generation of the solution is done in
exponential time.

NP-complete A problem known to be as hard as any problem in NP. Every NP
problem can be reduced to it.

object A program entity that has some data and a set of operations to manipulate
that data.

object-based Describes design and programming that use objects as the principle
form of abstraction.

object-oriented Describes object-based design or programming that includes char­
acteristics of polymorphism and inheritance.

558 Glossary

open addressing The process of finding an alternative slot in a hash table to avoid
a collision. Compare it to chaining.

operator overloading Attaching more than one method or function to a particular
syntactic operator.

out-degree In a directed graph, the count of the number of edges leaving a node.

overflow Occurs when the number of bits required to store a value exceeds the
number of bits allocated for it .

P The class of problems that can be solved deterministically in polynomial time.

parameter A special variable in a function that is initialized at the time of call with
information passed from the caller.

pass by reference A parameter passing technique used in some computer languages
that allows the value of a variable used as an actual parameter to be changed
by the called function.

pass by value A parameter passing technique in which the formal parameters are
assigned the values from the actual parameters. The function cannot change
which object an actual parameter variable refers to.

path In a graph, a sequence of nodes such that there are edges connecting successive
nodes in the sequence.

pointer A value that is the address in memory of some data.

polymorphism Literally "many forms." In object-oriented programming, the ability
for a particular line of code to be implemented by different methods depending
on the data type of the object involved.

prefix code An encoding scheme in which no code word is a prefix of any other code
word.

prefix-free code A prefix code.

Prim's algorithm An algorithm to find a minimum cost spanning tree of a graph.

priority queue A container abstract data type that includes operations for inserting
items and removing the maximum (or minimum) item.

Glossary 559

pseudocode The writing of algorithms using precise natural language, instead of
computer language .

quadratic algorithm An algorithm whose resource needs vary with the square of the
size of the input .

queue A container abstract data type with first in, first out access.

quicksort An n log n average case sorting algorithm.

r-value The meaning of an identifier when it appears on the right-hand side of an
assignment statement .

recurrence relation An equation that defines the terms of a sequence using opera­
tions on previous terms in the sequence.

recursion A technique of defining something in terms of itself.

reference count A field associated with an object that counts how many variables
refer to it . Python does automatic reference counting and performs garbage
collection when the reference count goes to o.

reference semantics When the variables of a language always store references to
heap-allocated data objects rather than storing the objects themselves.

regression testing Running a set of previously passed tests over again when a pro­
gram has been changed.

reserved word An identifier that is part of the built-in syntax of a language.

row-major order Storing a multi-dimensional array linearly into memory one row
after the next .

scope The textual area of a program where a particular variable may be referenced.

semantics The meaning of a construct .

shallow copy A copy of a data structure where only the upper level of references are
duplicated and the copy shares lower-level structures with the original.

short-circuit evaluation An evaluation process that returns an answer as soon as the
result is known, without necessarily evaluating all of its subexpressions. In the
expression (True or isover O) the isover O function will not be called.

560 Glossary

signature Another term for the interface of a function. The signature includes the
name, parameter(s) , and return value(s) .

simulation A program designed to abstractly mimic some real-world process.

specification A precise description of what some component does, as opposed to
how it works.

stack dynamic A term to describe variables that are allocated on the run-time
stack. When a function or method begins, stack-dynamic variables are given
memory on the run-time stack. When a function or method ends, the run-time
stack shrinks, effectively deallocating the memory used for the stack-dynamic
variables.

static typing A programming language technique in which data types are attached
to variables and variables may only be assigned values having the declared
type.

static variable In C++ a static variable is a local variable that maintains its value
from one function invocation to the next .

symmetric matrix A square matrix that is the same as its transposition.

syntax The form of a language.

template A C++ mechanism for writing generic functions or classes that are pa­
rameterized by data types and automatically specialized (instantiated) by the
compiler.

test-driven development A method for incremental program development where
each new component of functionality is identified by writing an automated
test before writing production code that passes the test .

theta notation An algorithm analysis that provides a tight bound on the resources
needed as a function of input size .

topological sort A total linear ordering of the nodes in a directed acyclic graph such
that no node appears after one of its descendants.

traversal The process of sequentially visiting each item in a data structure.

tree A hierarchical data structure consisting of a root node and its descendants.

tuple A Python sequence type that acts like an immutable list .

Glossary 561

undirected graph A graph in which an edge represents a symmetric pairing of nodes.

unit testing 'frying out a component of a program independent of other pieces.

value semantics In an assignment statement , the value of an expression is actually
copied into the variable. Compare it to reference semantics in which the
variable would store another reference to the same value.

variable In programming languages, an abstraction of a named storage location.

weighted graph A graph in which the edges have associated numeric values.

abstract data type (ADT) , 40
abstraction, 5
actual parameter, 1 14, 290, 292 , 293,

362
algorithm

exponential tirne, 2 1 1
intractable, 2 1 1
linear time, 23
log time, 24

algorithm analysis, 1 7, 25
aliasing, 1 1 1
anagram, 195
anagrams.py, 196
application programming interface

(API) , 3
array, 87, 285
arrays

as parameters, 294
multi-dimensional, 287
resizing, 368, 385

assert
C++, 304
Python, 12

assertion, 8
assignment operator, 371
associative array, 465
asymptotic notation, 25
attribute, 320, 427
automatic variable, 275

563

AVL tree, 453-65
AVLTree.py, 463

base conversion, 216
big 0 notation, 25, 26
binary heap, 445-53, 534
binary search, 21
binary search tree, 230
bit operations, 535
block of code, 262
breadth first , 493
break, 285, 308
Brooks, Fred, 56
bsearch. py, 198
BST.py, 231-40
byte code, 260

C preprocessor, 259
C++, 256
C-Curve, 219
Card.cpp, 344
Card.py, 48
cardADT. py, 43
case, 308
chaining, 470
CheckerSim. py, 178
cin, 270
circular array, 1 73
class declaration, 321
class definition, 321

I ndex

564

class invariant, 124
class method, 347
class variable, 49, 50, 343-47
collision, 469, 470
combinations, 217
comments, 262
compile, 257, 271
cornplete tree, 445
compression, 527
concrete representation, 43
const method, 323
const parameter, 296
constructor, 322
container class, 75
context-free grammar, 163
copy constructor, 371 , 373
cout , 269

data abstraction, 39
data member, 320
data type, 40
data types

C++ built-in, 263
Dataset .py, 57
Deck.py, 78
declaration, 289
decrement operator, 276
deep copy, 1 12, 131 , 358, 375, 416
default constructor, 323
default parameter, 297
definition, 289
delete , 363
dereference, 361
design by contract , 8 , 9
destructor, 347, 371
dictionary, 90
Dijkstra's algorithm, 497
Dijkstra, Edgar, 497
disjoint set , 508, 509

Index

DisjointSet .py, 509
divide and conquer, 190, 202, 518 , 536
docstring, 9
double hashing, 470
duck typing, 427
dynamic memory heap, 359
dynamic programming, 536
dynamic typing, 1 1 1 , 266
dynamically allocate, 366

encapsulation, 52
event-driven simulation, 180
exception handling, 1 1 , 439
explicit heap dynamic, 359
exponential time, 2 1 1
expressions, 274
extern, 31 1
extern variable declaration, 311

fact .py, 192
factorial, 191
fib.py, 200
fibm.py, 541
Fibonacci heap, 501
Fibonacci numbers, 215
Fibonacci sequence, 200, 536
FIFO, 169
file I/O, 333
formal parameter, 1 16, 290, 292, 293,

362
forward declaration, 406
friend, 335, 340
fstream, 333
function prototype, 267, 289, 291
function signature, 6
functions, 288

g++ compiler, 272
garbage collection, 1 10

generator, 139
getline , 331 , 333
global variable, 310
Grammar.py, 167
graph

acyclic , 486
adjacency list , 488
adjacency lllatrix, 487
breadth first search, 493
complete graph, 486
connected, 486
cycle, 486
degree , 486
dense, 487
depth first search, 501
Dijkstra's algorithm, 497
directed, 485
directed acyclic, 486, 505
in-degree, 486
Kruskal's algorithm, 507
minimum spanning tree, 507
out-degree, 486
path, 486

.

Prim's algorithm, 511
sparse, 487
topological sort , 504
undirected, 485
unweighted shortest path, 491
weighted, 485
weighted shortest path, 491

greedy algorithm, 527

Hand.py, 81
hanoLpy, 210
hash table, 435 , 465-77

chaining, 470
collision, 469
double hashing, 470
linear probing, 470

Index

open addressing, 470
quadratic probing, 470

hashing function, 93, 466
HashLetter.py, 467
HashTable.py, 471
HashTable2.py, 475
header file, 259, 267, 298, 303
heap sort , 451
Heap.py, 449
Hirschberg, Dan, 540
Huffman codes, 528
Huffman, David, 528

id O , 109
identifiers , 263
if else, 277
if stream, 333

565

implementation independence 7 21 , ,
implicit heap dynamic, 359
increment operator, 276
infinite recursion, 195
infix notation, 161
inheritance, 53, 65

C++, 424
inline function, 301
inline methods, 328
inlining, 328
instance method, 320
instance variable, 50 , 55, 320
instantiate, 430
interface, 6, 56
intractable problems, 2 1 1
iterator, 136

Kernigan, Brian, 256
KeyPair.py, 243
keywords, 263
Koch curve, 217

I-value, 328, 415

566

lexical analysis, 170
lifetime, 386
LIFO, 156
linear search, 19
linear probing, 470
linear time, 23
Linked Cursor List . py, 144
linker, 259, 268
List .cpp, 383�85
List .h, 381
List l .h, 371
List2.h, 375
List3.h, 378
List4.h, 378
ListN ode.h, 409
ListNode.py, 1 19
LList .cpp, 410� 18
LList .h, 407, 410
LList .py, 124�34
LListCursor.py, 145
LListIterator. py, 137
local variable, 50
locals O , 109
log time, 24
longest common subsequence, 537
loopfib, 200
loopPower, 197
loops

do while, 282
for, 282, 283
post test , 283
pretest , 282
while, 282

Lucas, Edouard, 207

make, 272
Makefile, 273
Markov.py, 95
master theorem, 519

Index

matrix chain multiplication, 543
maximum.cpp, 429
memoization, 541
memory leak, 364, 388
merge sort , 202 , 204, 518
mergeSort .py, 203, 204

namespace, 108, 268, 310, 342
new, 363
non-terminal, 165
NP-complete, 543
NULL, 406

object code, 259
object-oriented design (OOD) , 55
of stream, 333
open addressing, 470
operator overloading, 60

C++, 335, 337, 339
Python, 61

operator=, 371 , 378
operator [] , 382
optimization problem, 527, 537
overflow, 386

pages of memory, 390
palindrome, 1 70, 216
palindrome. py, 1 71
parensBalance1 .py, 158
parensBalance2 .py, 159
pass by reference, 293, 363

pointer, 465
pass by value, 292
pointer, 360
polymorphism, 52
porting, 260
postcondition, 8
postfix notation, 161
power. py, 197

precondition, 8
prefix codes, 528
prefix notation, 161
Prim's algorithm, 511
priority queue, 444 , 452 , 534
private , 322
protected, 322
public , 322
pushdown automaton, 166
PyCursorList .py, 143
PyListCursor.py, 144

quadratic probing, 470
queue, 169, 435

priority, 444, 452, 534
quicksort, 521

Rational.cpp, 336
Rational. py, 62
recBinSearch, 198
recPower, 197
recurrence relation, 519
recursion, 191

anagram, 196
base case, 192
binary search, 198
factorial, 191
Fibonacci, 200
infinite, 195
master theorem, 519
merge sort , 204
recPower, 197
reverse, 195

recursive function, 193
reference, 109

returning, 328, 386, 415
reference count , 1 10
reference semantics, 359
regression testing, 67

Index 561

reinterpret_cast , 404
resizing an array, 89, 368, 385
returning a reference, 328 , 386, 415
reverse Polish notation, 161
reverse.py, 195
Ritchie, Dennis, 256
row major, 295

scope, 305
scope resolution operator, 324
searching, 17

binary search, 2 1 , 198
linear search, 19

selection sort, 202
selectionSort.py, 202
set , 435
shallow copy, 1 12
shallow copy, 131 , 374
side effect , 16
signature, 6
simulation.py, 177
sorting, 81

heap sort , 451
merge sort , 204
quicksort , 521
selection sort , 202

specification, 6
stack, 156
stack dynamic, 359
stack trace, 286, 393
Stack.py, 160
Stack. template, 436
Standard Template Library (STL) ,

431 , 435
static, 306, 311 , 344, 347
static variable declaration, 31 1
statistics, 14
string, 330
Stroustrup, Bjarne, 256

568

subclass, 54, 65
superclass, 54, 65
switch, 307
symmetric matrix, 488

template classes, 435
template functions, 429
terminal, 166
test-driven development , 67
theta notation, 30
this , 325, 379
Thompson, Ken, 256
time-driven simulation, 180
top-down design, 55
top-down design, 13
Tower of Hanoi (Brahma) , 207

recursive solution, 210
traveling salesman problem, 527, 543
tree, 224

ancestor, 224
AVL, 453-65
binary search, 230
binary tree, 224
children, 224
complete binary, 225, 445
depth, 224
descendant, 224
full binary, 225

Index

height , 225
in-order traversal, 238
inorder traversal, 226
leaf, 224
parent, 224
postorder traversal, 226, 534
preorder traversal, 225
root, 224
siblings, 224
subtree, 225
traversal, 225

TreeMap. py, 243
TreeNode.py, 228, 461
Turing, Alan, 1
type conversion, 281
typedef , 408

unit testing, 63, 303

value semantics , 359
vec1 .cpp, 432
vec2 .cpp, 433
vec3.cpp, 434
vector , 431
visitor pattern, 239

word jumble, 219

yield, 139

	Scan 1
	Scan 2
	Scan 3
	Scan 4

