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The Purpose of This Guide

Python is a wonderful programming language and we expect that readers of this book will find many oppor-
tunities to use it. That said, there are many different programming languages used by software developers.
Each language has its own strengths and weaknesses, and professionals must become accustomed to program-
ming in different languages. Fortunately, once you have a solid foundation in one language it becomes easier
to transition to another language. This guide is designed for readers choosing C++ as a second language.
C++ is among the most widely used languages in industry. As object-oriented languages, they have a great
deal in common with Python. Yet there exist significant differences between the two languages.

This transition guide is not meant to serve as a complete self-contained reference for C++. Our goal
is to provide an initial bridge, built upon the knowledge and terminology that we have gained in Python.
We begin in Section 1 by providing a high-level discussion about programming languages and the more
significant differences between Python, and C++. Section 2 provides our first direct comparison between
Python source code and C++ code. As much as possible, we rely upon earlier examples in Python and then
translate these to C++. From there we will go into specific syntax and usage of C++. In Section 3 we discuss
the major features of C++. Writing classes are discussed in Section 4 with coverage of Python and C++’s
object models and memory management in Section 5. Storage of C++ objects in containers is discussed in
Section ??. Good software practices and working with larger programs, including the Mastermind case study
is in Section ??. And writing template based classes is in Section ??. And in Section ?? we discuss how to
integrate the use of Python and C++ in a single program. The full source code for all of the programs is
contained in an appendix.

With that said, let the tour begin. . .
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1 High-Level Programming Languages

To begin, we recommend that you reread Section 1.3 of the book, where we first describe the distinction
between low-level and high-level programming languages. At its core, a computing architecture supports
an extremely limited set of data types and operations. For this reason, we describe a CPU’s machine
language as a low-level programming language. It is possible to develop software directly for that machine
language. In fact, this is often done for specialized applications where execution speed is of utmost concern.
However, it is extremely inconvenient to develop complex software systems in a low-level language. High-level
programming languages were conceived to better support a programmer’s expressiveness, thereby reducing
the development time of software systems, providing greater opportunity for code reuse, and improving the
overall reliability and maintainability of software.

1.1 Convenience versus Efficiency

In effect, high-level languages offer convenience. They support a greater range of data types and a richer
syntax for expressing a series of operations. Yet this additional support is somewhat artificial. In the end,
the software must be translated back to the CPU’s machine language in order to be executed on a computer.
For high-level languages, this translation has been automated in the form of a compiler or interpreter. As a
result, software written in a high-level language is no more powerful than equivalent software that could have
been written directly in the low-level language (given enough time and expertise). The convenience afforded
by a high-level language often comes at the expense of some slight inefficiencies in the performance of the
resulting software. The automated translation from high level to low level has been carefully optimized, but
still the generated low-level code is not always as streamlined as code crafted directly by an expert in the
field.

Yet as a society, we simply cannot afford to have each and every piece of software hand-crafted in a low-
level language. While there are slight discrepancies in efficiency, those are quickly negated by improvements
in hardware, networks, and other aspects of a computing environment. A more significant concern is the
software development time, that is, the time it takes to carry an idea from the initial inspiration to the
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final software for a consumer. The design and development of quality software applications is extremely
labor-intensive, and can take months or years depending on the project. The single biggest factor in the cost
of a software project is employing the developers. So there is great benefit in use of a high-level language
that can better support abstractions and thereby reduce the overall development cycle.

More than a thousand high-level languages have been developed over time, with perhaps a hundred that
are still actively used for program development. What makes each language unique is the way in which
concepts are abstracted and expressed. No single language is perfect, and each strikes its own balance in
trying to support the development of efficient, maintainable, and reusable software. This guide is limited
to the examination of three specific object-oriented languages, yet the object-oriented paradigm is just one
example of an abstraction for program development. Even within the object-oriented framework, there are
differences between languages. In the remainder of this section, we discuss the most significant ways in which
Python and C++ differ.

1.2 Interpreter versus Compiler

An important aspect of any high-level language is the process by which it is translated back to the low-level
machine code to be executed. Python is an example of an interpreted language. We “run” a typical Python
program by feeding its source code as input to another piece of software known as the Python interpreter.
The Python interpreter is the software that is actually executing on the CPU. It adapts its outward behavior
to match the semantics indicated by the given source code. In effect, the translation from the high-level code
to low-level operations is performed on-the-fly, each time the program is run.

In contrast, C++ is an example of a compiled language. Progressing from the original source code to a
running program is a two-step process. During the first phase (“compile-time”), the source code is fed as
input to a special piece of software known as a compiler. That compiler analyzes the source code based on the
syntax of the language. If there are syntax errors, they are reported and the compilation fails. Otherwise, the
compiler translates the high-level code into machine code for the computing system, generating another file
known as an executable. During the second phase (the “run-time”), the executable is independently started
by the user; the compiler is no longer needed unless a new executable must be generated, for example when
a change is made to the original source code.

The greatest advantage of the compilation model is execution speed. In essence, the more that can be
handled at compile-time, the less work there is to be done at run-time. By performing the full translation
to machine code in advance, the execution of the software is streamlined so as to perform only those compu-
tations that are a direct part of the software application. A second advantage is that the executable can be
distributed to customers as free-standing software. So long as it was designed for the particular machine code
of their system, it can be executed by those users without any further requirement of software installations
(e.g., an interpreter). A consequence of this model is that the machine code can be distributed by a company
without exposing the original source code that was used to generate it (although some companies choose to
“open source” their software).

In contrast, there is no distinction between compile-time and run-time for a purely interpreted program.
The interpreter bears the burden of translating the original source code as part of the run-time process.
Furthermore, distributing the source code is only useful to a customer who has a compatible interpreter
installed on his or her system. The primary advantage of an interpreted language is greater platform-
independence. The same source code can be distributed for use on different computing platforms, so long as
each platform has a valid interpreter. In contrast, a compiled executable is catered to one particular machine
language; different versions of the executable must be distributed for use on different computing platforms.

For software developers, the debugging cycle varies a great deal when working with an interpreter language
versus a compiled language. For example, we have readily used Python’s interpreter not just as a means for
running a final version of a program, but to provide useful feedback and interaction when problems arise.
The compiler can be helpful in detecting purely syntactical errors at compile-time, but it is no longer of use
when run-time errors occur.
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1.3 Dynamic versus Static Typing

For compiled languages, there is an advantage in doing as much work as possible at compile-time, so as to
streamline the run-time process. It is this fact that motivates the single greatest distinction between Python
and C++. Python is known as a dynamically typed language. Within a given scope an identifier can be
assigned to an underlying value using an assignment statement, as in

age = 38

We happen to know that age is being assigned to an integer value in this case, yet we did not make any
syntactic declaration regarding the data type. In fact, we could later reassign that same identifier to the string'Stone'. Types are not formally associated with the identifiers, but rather with the underlying objects (thus
the value 38 knows that it is an integer). When identifiers are used in expressions, the legitimacy depends
upon the type of the underlying object. The expression age + 1 will be valid when age is an integer yet
illegal if age is a string. The method call age.lower( ) will be legitimate when age is a string yet illegal when
age is an integer.

In Python, these expressions are evaluated at run-time. When encountering an expression such as
age.lower( ), the interpreter determines1 whether the object currently associated with the name age sup-
ports the syntax lower( ). If so, the expression is evaluated successfully; if not, a runtime error occurs. The
same principle of dynamic typing applies to the declaration of functions. The formal parameters in the sig-
nature serve as placeholders for the required number of actual parameters, yet there is no explicit statement
of type. The identifiers are assigned to the objects sent by the caller. The dynamic typing also applies to
the attributes within a class definition, which are generally initialized in the constructor, but never explicitly
declared.

In general, code works so long as the objects support the expected members; otherwise an exception is
raised. This flexibility allows for various forms of polymorphism. For example, the sum function accepts a
parameter that is assumed to be a sequence of numbers. It works whether that sequence is in the form of
a list, a tuple, or a set, so long as the parameter is iterable. Another form of polymorphism is a function
that displays markedly different behaviors depending upon the parameter type. For example in Section 6.2
of the book we provided a Point. mul implementation that used explicit type checking at run-time to
determine the appropriate semantics for the use of multiplication.

C++ is statically typed languages. An explicit type declaration is required for every identifier before it
can be used. The following demonstrates a type declaration followed by an assignment, as it might appear
in C++:

int age;
age = 38;

The first line is a declaration that establishes the identifier age as an integer value in the current scope.
Type declarations apply in many contexts. For example, a function signature must include explicit type
declarations for all formal parameters, as well as for the resulting return type. All data members must be
explicitly typed as part of a class definition. The reason for requiring programmers to make such declarations
is that it allows for significantly more work to be done at compile-time rather than run-time. For example
the legality of the subsequent assignment age = 38 is apparent at compile-time based upon knowledge of
the data type. In similar spirit, if a programmer attempts to send a string to a function that expected a
floating-point number as in sqrt("Hello"), this error can be detected at compile-time. In some scenarios,
type declarations can help the system in better managing the use of memory.

The choice between dynamically- versus statically-typed languages is often (though not always) paired
with the choice between interpreted and compiled languages. The primary advantage of static typing is the
earlier detection of errors, yet this early detection is more significant for a compiled language, for which there

1See Section 12.6 of the book for a much more detailed explanation of the name resolution process in Python.
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Python C++

1 def gcd(u, v):
2 # we will use Euclid's algorithm
3 # for computing the GCD
4 while v != 0:
5 r = u % v # compute remainder
6 u = v
7 v = r
8 return u

1 while (v != 0) {
2 r = u % v; // compute remainder
3 u = v;
4 v = r;
5 }
6 return u;
7 }
8
9 int main( ) {

10 int a, b;
11 cout << "Enter first number: ";

Figure 1: A function for computing the greatest common denominator, as seen in Python, and C++.

is a distinction between compile-time errors and run-time errors. Even if static typing is used in a purely
interpreted language, those errors will not arise until the program is executed. The primary advantages of
dynamic typing is the reduced syntactical burden associated with explicit declarations, together with the
simpler support for polymorphism.

1.4 Why C++

In comparison to other object-oriented languages, the greatest strength of C++ is its potential for creating
fast executables and robust libraries. This efficiency and power stems from a variety of factors. C and C++
provide great flexibility in controlling many of the underlying mechanism used by an executing program. A
programmer can control low-level aspects of how data is stored, how information is passed and how memory
is managed. When used wisely, this control can lead to a more streamlined result. Furthermore, because of
the long history of C and C++ and their widespread use, the compiler technology has been highly optimized.

The greatest weakness of C++ is its complexity. Ironically, this weakness goes hand-in-hand with the
very issues that we described as strengths of the language. As a language with decades of prominence,
its evolution has been somewhat restricted by the desire to remain backward compatible in support of the
large body of existing software. Some additional features have been retrofitted in a more awkward way
than if the language had been developed with a clean slate. As a result, parts of the syntax have grown
cryptic. More significantly, the flexibility given to a programmer for controlling low-level aspects comes with
responsibility. Rather than one way to express something, there may be five alternatives. An experienced
and knowledgeable developer can use this flexibility to pick the best alternative and improve the result. Yet
both novice and experienced programmers can easily choose the wrong alternative, leading to less-efficient,
and possibly flawed, software.

2 A First Glance at C++

To warm up, we begin with a side-by-side example of a Python code fragment and the corresponding code
in C++. In particular, Figure 1 demonstrates the code for a function that computes the greatest common
denominator of two integers using Euclid’s algorithm. The Python version is similar to the solution for
Practice 5.19, given on page 631 of the book.

Looking more carefully at Figure 1, we see that the C++ version is a bit more bulky than the Python
code. It should hopefully seem legible, yet there are definitely syntactical differences. First we draw attention
to Python’s use of whitespace versus C++’s use of punctuation for delimiting the basic syntactic structure
of the code. An individual command in Python (e.g., u = v) is followed by a newline character, officially
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designating the end of that command. In C++, each individual command must be explicitly terminated
with a semicolon. For example, we see the semicolon after the command u = v on line 7.

There is also a difference in designating a “block” of code. In Python, each block is preceded by a colon,
and then indentation is used to clearly designate the extent of the block. We see the body of a while loop
consisting of lines 5–7 of the Python code, and that loop nested within the larger body of the gcd function,
comprised of lines 2–8. In C++, these blocks of code are explicitly enclosed in curly braces { }. The body
of the while loop in the C++ version consists of everything from the opening brace at the end of line 5 until
the matching right brace on line 9. That loop is itself nested within the function body that begins with the
left brace on line 1 and concludes with the right brace on line 11.

There is a difference in punctuation, as C++ require that the boolean condition for the while loop on
line 5 be expressed within parentheses; we did not do so in Python, although parentheses could be used
optionally. We also see a difference in the punctuation usage when providing inlined comments.2 In Python,
the # character is used to designate the remainder of the line as a comment, as seen at lines 2, 3 and 5.
Two different comment styles are allowed in C++. A single-line comment is supported, though using the
// pattern, as seen at line 6. Another style is demonstrated on lines 2 and 3, starting with the /* pattern,
and ending with the */ pattern. This style is particularly convenient as it can span multiple lines of source
code.

For the most part, the use of whitespace is irrelevant in C++. Although our sample code is spaced with
one command per line, and with indentation to highlight the block structure, that is not formally part of
the language syntax. The identical function could technically be defined in a single line as follows:

int main( ) {

To the compiler, this is the same definition as our original. Of course, to a human reader, this version is
nearly incomprehensible. So as you transition from Python, we ask that you continue using whitespace to
make your source code legible.

The more significant differences between the Python and C++ versions of our example involve the
difference between dynamic and static typing, as we originally discussed in Section 1.3. Even in this simple
example, there are three distinct manifestations of static typing. The formal parameters (i.e., identifiers u and
v) are declared in the Python signature at line 1 without any explicit type designation. In the corresponding
declaration of parameters in the C++ signature, we find explicit type declaration for each parameter with
the syntax gcd(int u, int v). This information serves two purposes for the compiler. First, it allows the
compiler to check the legality of our use of u and v within the function body. Second, it allows the compiler
to enforce that integers be sent by the caller of our function.

The second manifestation of static typing is the explicit designation of the return type as part of a formal
signature in C++. In line 1 of our C++ example, the declaration int at the beginning of the line labels
this as a function that returns an integer. Again, the compiler uses this designation to check the validity of
our own code (namely that we are indeed returning the correct type of information at line 10), as well as
to check the caller’s use of our return value. For example, if the caller invokes the function as part of an
assignment g = gcd(54,42), this would be legal if variable g has been declared as an integer, yet illegal if g
has been declared as a string.

Finally, we note the declaration of variable r at line 4 of our C++ code. This designates r as a local
variable representing an integer, allowing its use at lines 6 and 7. Had we omitted the original declaration, the
compiler would report an error “cannot find symbol” regarding the later use of r (the analog of a NameError
in Python). Formally, a declared variable has scope based upon the most specific set of enclosing braces at
the point of its declaration. In our original example, the variable has scope as a local variable for the duration
of the function body (as is also the case with our Python version). Technically, since this variable’s only
purpose is for temporary storage during a single invocation of the while loop body, we could have declared
it within the more narrow scope of the loop body (Python does not support this form of a restricted scope).

You may have noticed that this first example is not at all object oriented. In fact, the C++ code fragment

2We wait until later to visit the corresponding issue of embedding official documentation.
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C++ Type Description Literals Python analog

bool logical value true bool

false

short integer (often 16 bits)

int integer (often 32 bits) 38

long integer (often 32 or 64 bits) 38L int

long

float floating-point (often 32 bits) 3.14f

double floating-point (often 64 bits) 3.14 float

char single character 'a'
stringa character sequence "Hello" str

Figure 2: Most common primitive data types in C++.
aNot technically a built-in type; included from within standard libraries.

that we give is essentially a C code fragment (the only aspect of the fragment which is not in accordance
with the C language is the // style of comment at line 6).

3 C++ Fundamentals

3.1 Data Types and Operators

Figure 2 provides a summary of primitive data types in C++, noting the correspondence to Python’s types.
The bool type is supported by both languages, although the literals true and false are uncapitalized in
C++ while capitalized in Python. C++ gives the programmer more fine-grained control in suggesting the
underlying precision of integers, supporting three different fixed-precision integer types (short, int, and long).
The precision of Python’s int class is akin to C++’s long. Python’s long type serves a completely different
purpose, representing integers with unlimited magnitude. There is no such standard type in C++ (although
some similar packages are independently available). Each of the integer types has an unsigned variant
that represents only non-negative numbers. In order of size these types are unsigned char, unsigned short,
unsigned int, and unsigned long. These should be using in situations were you know that the value will
never be negative, e.g.,a index of a list.

C++ supports two different floating-point types (float and double) with a choice of underlying precisions.
The double type in C++ is the more commonly used, and akin to what is named float in Python.

C++ also supports two different types for representing text. A char type provides a streamlined repre-
sentation of a single character of text3, while the string class serves a purpose similar to Python’s str class,
representing a sequence of characters (which may happen to be an empty string or a single-character string).
To distinguish between a char and a one-character string, a string literal, must be designated using double
quote marks (as in "a"). The use of single quotes is reserved for a char literal (as in 'a'). An attempt to
misuse the single-quote syntax, as in 'impossible', results in a compile-time error.

In contrast with Python’s immutable str class, A C++ string is mutable. A summary of the most
commonly used string operations is given in Figure 3. Notice that the expression s[index] can be used to
access a particular character, as well as to change that character to something else, when used on the left-
hand side of an assignment. Also, the syntax s+t is used to generate a third string that is a concatenation
of the others, while syntax s.append(t) mutates instance s.

3The char can also be used as an 8-bit numeric type with all of the same operations as the other integer types.
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Non-mutating Behaviors

s.size( ) or s.length( ) Either form returns the number of characters in string s.

s.empty( ) Returns true if s is an empty string, false otherwise.

s[index] Returns the character of string s at the given index
(unpredictable when index is out of range).

s.at(index) Returns the character of string s at the given index (throws
exception when index is out of range).

s == t Returns true if strings s and t have same contents, false

otherwise.

s < t Returns true if s is lexicographical less than t, false

otherwise.

s.compare(t) Returns a negative value if string s is lexicographical less
than string t, zero if equal, and a positive value if s is
greater than t.

s.find(pattern, start) Returns the least index, greater than or equal to start, at
which pattern begins; returns string::npos when not found.

s.rfind(pattern, start) Returns the greatest index, less than or equal to indicated
start, at which pattern begins; returns string::npos when not
found.

s.find first of(charset, start) Returns the least index, greater than or equal to indicated
start, at which a character of the indicated string charset is
found; returns string::npos when not found.

s.find last of(charset, start) Returns the greatest index, less than or equal to indicated
start, at which a character of the indicated string charset is
found; returns string::npos when not found.

s + t Returns a concatenation of strings s and t.

s.substr(start) Returns the substring from index start through the end.

s.substr(start, num) Returns the substring from index start, continuing num
characters.

Mutating Behaviors

s[index] = newChar Mutates string s by changing the character at the given
index to the new character (unpredictable when index is out
of range).

s.append(t) Mutates string s by appending the characters of string t.

s.insert(index, t) Inserts copy of string t into string s at the given index.

s.insert(index, t, num) Inserts num copies of t into string at the given index.

s.erase(start) Removes all characters from start index to the end.

s.erase(start, num) Removes num characters, starting at given index.

s.replace(index, num, t) Replace num characters of current string, starting at given
index, with the first num characters of t.

Figure 3: Selected behaviors supported by the string class in C++.
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Type declarations

The basic form of a type declaration was demonstrated in our first glance of Section 2:

4 int r;

It is also possible to combine a variable declaration with an initial assignment statement, as in int age=38.
However, the preferred syntax for initialization in C++ is the following:

int age(38);

Furthermore, we can declare multiple variables of the same type in a single statement (with or without initial
values), as in

int age(38), zipcode(63103); // two new variables

Immutability

Python often makes a distinction between mutable and immutable types (e.g., list vs. tuple). C++ takes a
different approach. Types are generally mutable, yet a programmer can designate an individual instance as
immutable. This is done by use of the const keyword as part of the declaration, as in

const int age(38); // immortality

This immutability is strictly enforced by the compiler, so any subsequent attempt to change that value, as
with age++, results in a compile-time error.

Operators

With a few notable discrepancies, the two languages support a very similar set of operators for the primitive
types. The same basic logical operators are supported, yet C++ uses the following symbols (borrowed from
the syntax of C):

&& for logical and

|| for logical or

! for logical not

For numeric values, Python differentiates between true division (i.e., /), integer division (i.e., //), and
modular arithmetic (i.e., %), as originally discussed in Section 2.4 of the book. C++ supports operators
/ and %, but not // (in fact we already saw this pattern used to designate inline comments in C++). The
semantics of the / operator depends upon the type of operands. When both operands are integral types,
the result is the integer quotient; if one or both of the operands are floating-point types, true division is
performed. To get true division with integral types, one of the operands must be explicitly cast to a float (a
discussion of type conversion begins on the following page).

As is the case for Python, C++ supports an operator-with-assignment shorthand for most binary oper-
ators, as with x += 5 as a shorthand for x = x + 5. Furthermore, C++ supports a ++ operator for the
common task of incrementing a number by one. In fact, there are two distinct usages known as pre-

increment (e.g., ++x) and post-increment (e.g., x++). Both of these add one to the value of x, but
they can be used differently in the context of a larger expression. For example, if indexing a sequence, the
expression groceries[i++] retrieves the entry based upon the original index i, yet subsequently increments
that index. In contrast, the syntax groceries[++i] causes the value of the index to be incremented before

accessing the associated entry of the sequence. A −− operator is similarly supported in pre-decrement and
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post-decrement form. This combination of operators can be valuable for an experience programmer, but
their use also leads to very subtle code and sometimes mistakes. We recommend that they be used sparingly
until mastered.

Converting between types

In Python, we saw several examples in which implicit type conversion is performed. For example, when
performing the addition 1.5 + 8, the second operand is coerced into a floating-point representation before
the addition is performed.

There are similar settings in which C++ implicitly casts a value to another type. Because of the static
typing, additional implicit casting may take place when assigning a value of one type to a variable of another.
Consider the following example:

int a(5);
double b;
b = a; // sets b to 5.0

The final command causes b to get an internal floating-point representation of the value 5.0 rather than the
integer representation. This is because variable b was explicitly designated as having type double. We can
also assign a double value to an int variable, but such an implicit cast may cause the lost of information. For
example, saving a floating-point value into an integer variable causes any fractional portion to be truncated.

int a;
double b(2.67);
a = b; // sets a to 2

There are many scenarios in which C++ implicitly converts between types that would not normally be
considered compatible. Some compilers will issue a warning to draw attention to such cases, but there is no
guarantee.

On a related note, there are times when we want to force a type conversion that would not otherwise
be performed, we can indicate an explicit cast. This is done using a syntax similar to Python, where the
name of the target type is used as if a function.

int a(4), b(3);
double c;
c = a/b; // sets c to 1.0
c = double(a)/b; // sets c to 1.33

The first assignment to b results in 1.0 because the coercion to a double is not performed until after the
integer division a/b is performed. In the second example, the explicit conversion of a’s value to a double

causes a true division to be performed (with b implicitly coerced). However, we cannot use such casting
to perform all such conversions. For example, we cannot safely mimic Python’s approach for converting a
number to a string, as with str(17), or to convert a string to the corresponding number, as with int('17').
Unfortunately conversions back and forth between strings require more advanced techniques, related to the
handling of input and output, which we next discuss.

3.2 Input and Output

Input and output can be associated with a variety of sources within a computer program. For example, input
can come from the user’s keyboard, can be read from a file, or transmitted through a network. In similar
regard, output can be displayed on the user’s screen, or written to a file, or transmitted through a network.
To unify the treatment of input and output, C++ relies on a framework of classes to support an abstraction

10



known as a “stream.” We can insert data into a stream to send it elsewhere, or extract data from an existing
stream. A stream that provides us with input is represented using the istream class, and a stream which
we use to send output elsewhere is represented using the ostream class. Some streams (iostream) can serve
as both input and output. Then there are more specific classes devoted to certain purposes (e.g., a file is
managed with an fstream).

Necessary libraries

Technically, the definitions that we need are not automatically available in C++. Most are defined in a stan-
dard library named iostream (short for “input/output streams”). A C++ library serves a similar purpose to
a Python module. We must formally include the definitions from the library before using them.

#include <iostream>

using namespace std;

Technically, the first of these statements imports the library, while the second brings those definitions into
our default namespace. In addition to the basic class definitions, that library defines two special instances
for handling input to and from the standard console. cout (short for “console output”) is an object used to
print messages to the user, and cin (short for “console input”) is used to get input typed by the user.

Console output

In C++ we generate console output through the cout stream from the iostream library. Streams support
the operator << to insert data into the stream, as in cout << "Hello". The << symbol was chosen to
subliminally suggest the flow of data, as we send the characters of "Hello" into the stream. As is the case
with print in Python, C++ will attempt to create a text representation for any nonstring data inserted into
the output stream. Multiple items can be inserted into the stream in a single command by repeated use of the
operator, as in cout << "Hello"<< " and "<< "Goodbye". Notice that we explicitly insert spaces when
desired, in contrast to use of Python’s print command. We must also explicitly output a newline character
when desired. Although we can directly embed the escape character, \n, within a string, C++ offers the
more portable definition of a special object endl that represents a newline character.

To demonstrate several typical usage patterns, we provide the following side-by-side examples in Python
and C++. In both cases, we assume that variables first and last have previously been defined as strings, and
that count is an integer.

Python C++

1 print "Hello"

2 print

3 print "Hello,", first
4 print first, last # automatic space
5 print count
6 print str(count) + "." # no space
7 print "Wait...", # space; no newline
8 print "Done"

1 cout << "Hello" << endl;
2 cout << endl;
3 cout << "Hello, " << first << endl;
4 cout << first << " " << last << endl;
5 cout << count << endl;
6 cout << count << "." << endl;
7 cout << "Wait... "; // no newline
8 cout << "Done" << endl;

Formatted output

In Python, we use string formatting to more conveniently generate certain output, as in the following example:

Python print '%s: ranked %d of %d teams' % (team, rank, total)
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The use of the % sign for this purpose is designed to mimic a long-standing routine named printf, which
has been part of the C programming language. Since C++ is a direct descendant of C, that function is
available through a library, but it is not usually the recommended approach for C++ (printf does not work
consistently with the C++ string class). Instead, formatted output is generated directly through the output
stream. Since data types are automatically converted to strings, the above example can be mimicked in
C++ as

cout << team << ": ranked " << rank << " of " << total << " teams" << endl;

This approach is not quite as pleasing as the previous, but in this case, it does the job. More effort is needed
to control other aspects of the formatting, such as the precision for floating-point values. In Python, the
expression 'pi is %.3f'% 3.14159265 produces the result 'pi is 3.142'. In C++, the iomanip library
provides additional mechanisms for formatting output. These manipulators are sent to the output stream
in the same way that endl is used. Common manipulators include setting the width of the next field using
setw(width) or precision of the output. For example,

cout << setw(10) << 123 << endl;

would have display the number 123 right justified using 5 spaces. Note that this has no affect on any of the
output after the number is displayed.

For floating point numbers, display can be either set to used fixed precision or scientific notation. And
the precision can be set. To have all floats displayed in a using fixed precision with 2 digits after the decimal
point try the following:

cout << fixed << setprecision(2);

And to use scientific notation use cout << scientific;. These formatting selections will stay in effect until
changed. Other manipulators allow you to change justification, set the fill character, change the base numbers
are displayed in, and control how bool’s are displayed.

Console input

Just as cout is an output stream for the console, cin is an input stream used to read from the console. Here
is a simple example of its use.

int number;
cout << "Enter a number from 1 to 10: "; // prompt without newline
cin >> number;

The >> operator extracts data out from the stream and stores it in the given variable. The static typing of
C++ actually helps us here, in comparison to Python. Since number was already clearly designated as an
integer, C++ automatically converts the input as a number. Recall that in Python, we had to get the raw
input string and explicitly convert it as in,

Python number = int(raw input('Enter a number from 1 to 10: '))
There are other differences regarding the treatment of input. In Python, the raw input command reads one
line at a time. In C++, extracting data from a stream uses up only as many characters as are necessary. For
example, here is a code fragment that asks the user to enter two numbers on the same line and computes
their sum.

12



int a, b;
cout << "Enter two integers: ";
cin >> a >> b;
cout << "Their sum is " << a+b << "." << endl;

For the sake of comparison, a Python version is given as the solution to Practice 2.31. To be fair, both of
our versions crash if a user enters characters that cannot be interpreted as integers.

When a string is requested, the stream advances to the first nonwhitespace character and goes from there
up until the next whitespace character. This is quite different than with Python. Assume that we execute
name = raw input('What is your name?), and the user responds as follows:

What is your name? John Doe

In Python, that entire line would be saved as a string 'John Doe'. If the same user interaction were given
to the following C++ code,

string name;
cout << "What is your name? ";
cin >> name;

the result would be that name is assigned "John". The other characters remain on the stream until a
subsequent extraction. If we want to read a full line at a time in C++, we can do so by using the syntax
getline(cin, name).

File streams

File streams are defined in a library named fstream. They allow reading from and writing to files in a similar
fashion to cin and cout. Everything we have discussed about input and output apply to file streams as well.
There are three types of file streams available in C++: ifstream, ofstream and fstream. The first two are used
for input only or output only, while fstream can be used for both input and output.

If the name of a file is known in advance, an associated file stream can be declared as

fstream datastream("data.txt");

If the filename is not known in advance, the stream can first be declared and then later opened, as

fstream datastream;
datastream.open("data.txt");

This syntax is typically used for opening an input file. The syntax which would correspond to Python’s 'w'
access mode is

fstream datastream("data.txt", ios::out);

Append mode can be specified by using ios::app in place of ios::out above.

String streams

A stringstream class, included from a sstream library, allows us to use our formatting tools to produce an
internal string rather than external output. In essence, such a stream serves as a buffer, allowing us to use the
stream operators to force data into the buffer, or extract data from the buffer. At the end of Section 3.1, we
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avoided the issue of how to convert an int to a string. This can be accomplished using a stringstream as follows:

stringstream temp;
temp << i; // insert the integer representation into the stream
temp >> s; // extract the resulting string out from the stream

3.3 Control Structures

We already saw an example of a while loop as part of our first example in Section 2. The basic structure
is similar, with only superficial differences in syntax. Most notably, parentheses are required around the
boolean condition in C++. In that first example, curly braces were used to delimit the commands that
comprise the body of the loop. Technically those braces are only needed when the body uses two or more
distinct statements. In the absence of braces, the next single command is assumed to be the body.

C++ also supports a do-while syntax that can be a convenient remedy to the “loop-and-a-half” problem,
as seen with while loops on page 165. Here is a similar C++ code fragment for requesting a number between
1 and 10 until receiving such a number:

int number;
do {

cout << "Enter a number from 1 to 10: ";
cin >> number;

} while (number < 1 || number > 10);

We should note that we have not properly handled the case when a noninteger is entered.

Conditionals

A basic if statement is quite similar in style, again requiring parentheses around the boolean condition and
curly braces around a compound body. As a simple example, here is a construct to change a negative number
to its absolute value.

if (x < 0)
x = −x;

Notice that we did not need braces for a body with one command. C++ does not use the keyword elif
for nesting conditionals, but it is possible to nest a new if statement within the body of an else clause.
Furthermore, a conditional construct is treated syntactically as a single command, so a typical pattern does
not require excessive braces. Our first example of a nested conditional in Python was given on page 144 of
Section 4.4.2 of the book. That code could be written in C++ to mimic Python’s indentation as follows
(assuming groceries is an adequate container4):

if (groceries.length( ) > 15)
cout << "Go to the grocery store";

else if (groceries.contains("milk"))
cout << "Go to the convenience store";

4We will discuss C++ containers in Section B.5.8.
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For loops

C++ supports a for loop, but with very different semantics that Python’s. The style dates back to its
existence in C. The original use was to provide a more legible form of the typical index-based loop pattern
described in Section 4.1.1 of the book. An example of a loop used to count downward from 10 to 1 is as follows:

for (int count = 10; count > 0; count−−)
cout << count << endl;

cout << "Blastoff!";

Within the parentheses of the for loop are three distinct components, each separated by a semicolon. The
first is an initialization step that is performed once, before the loop begins. The second portion is a loop

condition that is treated just as a loop condition for a while loop; the condition is tested before each iteration,
with the loop continuing while true. Finally we give an update statement that is performed automatically at
the end of each completed iteration. In fact, the for loop syntax is just a convenient alternative to a while
loop that better highlights the logic in some cases. The previous example is essentially identical in behavior
to the following version:

int count = 10; // initialization step
while (count > 0) { // loop condition

cout << count << endl;
count−−; // update statement

}
cout << "Blastoff!";

The for loop is far more general. For example, it is possible to express multiple initialization or update
steps in a for loop. This is done by using commas to separate the individual statements (as opposed to the
semicolon that delimits the three different components of the syntax). For example, the sum of the values
from 1 to 10 could be computed by maintaining two different variables as follows:

int count, total;
for (count = 1, total = 0; count <= 10; count++)

total += count;

3.4 Defining a Function

We already provided an example of a C++ function in our initial demonstration from Section 2. In this
section we give a few other examples.

With that first example, we emphasized the need to explicitly designate the type of each individual
parameter as well as the returned type. If the function does not provide a return value, there is a special
keyword void that designates the lack of a type. Here is such a function that prints a countdown from 10 to 1.

void countdown( ) {
for (int count = 10; count > 0; count−−)

cout << count;
}

We used an alternative version of this function in Section 5.2.2 of the book, to demonstrate the use of
optional parameters in Python. The same technique can be used in C++, with the syntax
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void countdown(int start=10, int end=1) {
for (int count = start; count >= end; count−−)

cout << count;
}

3.5 Managing a Complete Program

We need to discuss one last detail before developing a complete C++ program. What should happen when
the program is executed? Where does the flow of control begin? With Python, the flow of control begins at
the beginning of the source code. The commands are interpreted one after another, and so a trivial Python
program might appear simply as:

Python print 'Hello World.'
In C++, statements cannot generally be executed without any context. When an executable is started

by the operating system, the flow of control begins with a call to a special function named main. The above
Python code is most directly translated into C++ as the following program:

1 #include <iostream>

2 using namespace std;
3 int main( ) {
4 cout << "Hello World." << endl;
5 return 0;
6 }

The return value for main is a bit of a technicality. The signature must designate an int return type. The
actual value returned is reported back to the operating system at the conclusion of the program. It is up
to the operating system as to how to interpret that value, although zero historically indicates a successful
execution while other values are used as error codes.

To demonstrate how to compile and execute a C++ program, we introduce a second example in Figure 4.
This is a rather simple program that pulls together several earlier techniques to compute and display the
greatest common denominators of numbers entered by the user. Let’s assume that the source code is saved
in a file gcd.cpp. The most widely used compiler is from an organization known as GNU, and the compiler
is most typically installed on a system as a program named g++. The compiler can be directly invoked from
the operating system command line with the syntax,

g++ -o gcd gcd.cpp

The compiler will report any syntax errors that it finds, but if all goes well it produces a new file named gcd

that is a true executable. It can be started on the computer just as you would start any other executable
(with the Windows operating system, that executable might need to be named gcd.exe). There also exist
integrated development environments for C++ (such as Python’s IDLE). Those typically rely upon the same
underlying compiler, but provide a more interactive control for the process.

The process is more involved when the software combines source code from multiple files (as is typical
for larger applications). Our supplemental website demonstrates two such large projects, the text-based
Mastermind program from Chapter 7 of the book, and the frequency-counting case study from Section 8.5.3
of the book based on the design of the TallySheet class.
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1 #include <iostream>

2 using namespace std;
3
4 int gcd(int u, int v) {
5 int r;
6 while (v != 0) {
7 r = u % v; // compute remainder
8 u = v;
9 v = r;

10 }
11 return u;
12 }
13
14 int main( ) {
15 int a, b;
16 cout << "Enter first number: ";
17 cin >> a;
18 cout << "Enter second number: ";
19 cin >> b;
20 cout << "The gcd is " << gcd(a,b) << endl;
21 return 0;
22 }

Figure 4: A complete C++ program that computes the gcd of two numbers.

4 Classes in C++

4.1 Using Classes

4.2 Defining a Class

To demonstrate the syntax for a C++ class, we rely upon several of the examples that we first used in
Chapter 6 of the book, beginning with the simple version of the Point class as given in Figure 6.3 on
page 206. The corresponding C++ version of that class is given in Figure 5. There are several important
aspects to discuss in comparing C++’s syntax to Python’s. Please bear with us as we highlight the key
differences.

Explicit declaration of data members

The issue of static typing arises prominently in a class definition, as all data members must be explicitly
declared. Recall that in Python, attributes of a class were simply introduced by assignment statements
within the body of the constructor. In our C++ example, we explicitly declare the type of the two data
members at lines 3 and 4.

Constructor

Line 7 of our code is the constructor, although the syntax requires some explanation. The line begins with
the name of the class itself (i.e., Point) followed by parentheses. The constructor is a function, with this
particular example accepting zero parameters. However, unlike other functions, there is no designated return
value in the signature (not even void).
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1 class Point {
2 private:

3 double x;
4 double y;
5
6 public:

7 Point( ) : x(0), y(0) { }
8
9 double getX( ) const {

10 return x;
11 }
12
13 void setX(double val) {
14 x = val;
15 }
16
17 double getY( ) const {

Figure 5: Implementation of a simple Point class.

The next piece of syntax is the colon followed by x(0), y(0). This is what is known as an initializer

list in C++. It is the preferred way to establish initial values for the attributes (we are not allowed to
express initial values on lines 3 and 4). Finally, we see the syntax { }. This is technically the body of
the constructor. Some classes use the constructor body to perform more intricate initializations. In this
particular case, having already initialized the two variables, there is nothing else for us to do. But the { }
serves as a placeholder syntactically (somewhat like pass in Python).

Implicit self-reference

A careful reader will have already noticed another major distinction between the class definition in C++
and the same class in Python. The self reference does not appear as a formal parameter nor is it used when
accessing members of the instance. Remember that we have explicitly declared x and y to be attributes of
a point. Because of this, the compiler recognizes those identifiers when used within the body of our methods
(for example at line 9). For those who miss the self-reference, it is implicitly available in C++, although it is
named this. This can be useful, for example, when passing our object as a parameter to an outside function.

Access control

Another distinction is the use of the terms public and private within the class definition. These relate to
the issue of encapsulation. With Python, we addressed this issue in Section 7.6 of the book, differentiating
at the time between what we considered “public” versus “private” aspects of a class design. Public aspects
are those that we expect other programmers to rely upon, while private ones are considered to be internal
implementation details that are subject to change. Yet Python does not strictly enforce this designation.
Instead, we rely upon a naming conventions, using identifiers that start with an underscore (e.g., x) to infer
privacy.

In C++, these designators serve to declare the desired access control for the various members (both
data members and functions). The use of the term private at line 2 affects the subsequent declarations at
lines 3 and 4, while the term public at line 6 effects the subsequent declarations. The compiler enforces these
designations within the rest of the project, ensuring that the private members are not directly accessed by
any code other than our class definition.
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Designating accessors versus mutators

In Python, we used the notion of an accessor as a method that cannot alter the state of an object, and a
mutator as a method that might alter the state. This distinction is formalized in C++ by explicitly placing
the keyword const for accessors at the end of the function signature but before the body. In our example,
we see this term used in the signature of getX at line 9 and again for getY at line 13. We intentionally omit
such a declaration for the mutators setX and setY.

As with access control, these const declarations are subsequently enforced by the compiler. If we declare
a method as const yet then try to take an action that risks altering any of the attributes, this causes a
compile-time error. Furthermore, if a caller has an object that had been declared as immutable, the only
methods that can be invoked upon that object are ones that come with the const guarantee.

A robust Point class

To present some additional lessons about a class definition, we provide a more robust implementation of a
Point class, modeled upon the Python version from Figure 6.4 on page 213. Our C++ version is shown in
Figure 6.

Our first lesson involves the constructor. In Python, we declared a constructor with the signature
def init (self, initialX=0, initialY=0). This provided flexibility, allowing a caller to set initial coordinates
for the point if desired, but to use the origin as a default. The C++ version of this constructor is given at
lines 7 and 8.

Our next lesson is to re-emphasize that we can access members of the class without explicitly using a
self-reference. This was already made clear in our use of names like x rather than Python’s self. x. The
same convention is used when the body of one member function invokes another. At line 29, we see a call to
the scale method. This is implicitly invoked on the current instance. Line 27 has a similar invocation of the
distance method. Notice the use of Point( ) at line 27 to instantiate a new (default) point as a parameter to
the distance function; this style is the same as we used in Python.

Lines 32–34 are used to support the + operator, allowing for the addition of two points. This behavior is
akin to the add method in Python, although in C++ the semantics are defined using operator+ as the
“name” of a method. In the case of the syntax p + q, the point p technically serves as the implicit instance
upon which this method is invoked, while q appears as a parameter in the signature. Technically, the const

declaration that we make at line 32 designates that the state of p is unaffected by the behavior.
Lines 36–42 support two different notions of multiplication: multiplying a given point by a numeric

constant, and computing the dot product of two points. Our original Python implementation accomplished
this with a single function definition that accepted one parameter. Internally it performed dynamic type
checking of that parameter and determined the appropriate behavior depending on whether the second
operand was a point or a number. In C++, we provide two different implementations. The first accepts a
double and returns a new Point; the second accepts a Point and (coincidentally) returns a double. Providing
two separate declarations of a method is termed overloading the signature. Since all data is explicitly typed,
C++ can determine which of the two forms to invoke at compile-time, based on the actual parameters.

Technically, line 43 of Figure 6 ends our Point class declaration. However, we provide two supporting
definitions shown in Figure 7. The first of those supports use of a syntax such as 3 * p. The earlier definition
of operator* from lines 36–38 technically supports the * operator when a Point instance is the left-hand

operator (e.g., p * 3). C++ does not allow the formal class definition to affect the operator behavior in the
case where the only instance of that class is the right-hand operator. Instead, we define such a behavior
independent of the official class definition. So at lines 44–46, we provide a definition for how * should behave
when the first operator is a double and the second is a Point. Notice that both operands appear as formal
parameters in this signature since we are no longer within the context of the class definition. The body of
our method uses the same simple trick as in our Python implementation, commuting the order so that the
point becomes the left-hand operand (thereby, invoking our previously defined version).

Finally, lines 48–51 are used to produce a text representation of a point when inserted onto an output
stream. A typical syntax for such a behavior is cout << p. Again we define this behavior outside of the
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1 class Point {
2 private:

3 double x;
4 double y;
5
6 public:

7 Point(double initialX=0.0, double initialY=0.0)
8 : x(initialX), y(initialY) { }
9

10 double getX( ) const {
11 return x;
12 }
13
14 void setX(double val) {
15 x = val;
16 }
17
18 double getY( ) const {
19 return y;
20 }
21
22 void setY(double val) {
23 y = val;
24 }
25
26 void scale(double factor) {
27 x *= factor;
28 y *= factor;
29 }
30
31 double distance(Point other) const {
32 double dx = x − other. x;
33 double dy = y − other. y;
34 return sqrt(dx * dx + dy * dy); /* sqrt imported from cmath library */
35 }
36
37 void normalize( ) {
38 double mag = distance( Point( ) );
39 if (mag > 0)
40 scale(1/mag);
41 }
42
43 Point operator+(Point other) const {

Figure 6: Implementation of a robust Point class.
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44 }
45
46 Point operator*(double factor) const {
47 return Point( x * factor, y * factor);
48 }
49
50 double operator*(Point other) const {
51 return x * other. x + y * other. y;

Figure 7: Supplemental operator definitions involving Point instances.

context of the class because the point serves as the right-hand operator. Line 49 inserts our desired output
representation onto the given output stream. We use the formal parameter out rather than cout so that a
user can apply this behavior to any type of output stream. The declared return type on line 48 and the
return statement at line 50 are technically required to allow for multiple << operations to be applied on
a single line; the syntax cout << p << " is good" is evaluated as (cout << p) << " is good", with the
result of the first evaluation being an output stream used in the second operation. The use of the & symbol
twice on line 48 is another technicality, leading to our next topic of discussion.

4.3 Inheritance

In Chapter 9 of the book, we provided several examples of the use of inheritance in Python. We will show
two of those examples, translated to C++. First we define a DeluxeTV class modeled closely after the version
in Figure 9.2 that used a SortedSet. Although we omit the presumed definition for a basic Television class,
our complete code for the DeluxeTV class is given in Figure 8. The use of inheritance is originally indicated
at line 1 by following the declaration of the new class with a colon and then the expression public Television.
With that designation,5 our DeluxeTV class immediate inherits all attributes (e.g., powerOn, channel) and
all methods (e.g., setChannel) from the parent. What remains is for us to define additional attributes or to
provide new or updated implementations for methods that we want supported.

At line 3, we declare a new attribute to manage the set of favorite channel numbers. Although we used
our custom SortedSet class in our Python version, this is an excellent opportunity to make use of the C++
set container. We wish to draw particular attention to the use of the word protected at line 2. Until now, we
have used two forms of access control: public and private. Members that are public can be accessed by code
outside of the class definition, while members that are private can only be accessed from within the original
class definition. The purpose of privacy is to encapsulate internal implementation details that should not be
relied upon by others. Yet with the use of inheritance, there is need for a third level of access.

When designing a class that inherits from another, the question arises as to whether code for that new
class should be able to directly access members inherited from the parent. This is determined by the original
access control designated for those members. A child class cannot access any members from the parent that
are declared as private. However, the child is granted access to members designated as protected by the
parent. In this particular setting, the important point is not actually our use of protected at line 2. What
matters to us is how the original attributes of the Television class were defined. For our DeluxeTV code to
work, it must be that television attributes were originally declared as

protected:

bool powerOn;
int channel;
...

5For the sake of simplicity, we will not discuss the precise significance of the term public on line 1.
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1 class DeluxeTV : public Television {
2 protected:

3 set<int> favorites;
4
5 public:

6 DeluxeTV( ) :

7 Television( ), // parent constructor
8 favorites( ) // empty set by default
9 { }

10
11 void addToFavorites( ) { if ( powerOn) favorites.insert( channel); }
12
13 void removeFromFavorites( ) { if ( powerOn) favorites.erase( channel); }
14
15 int jumpToFavorite( ) {
16 if ( powerOn && favorites.size( ) > 0) {
17 set<int>::iterator result = favorites.upper bound( channel);
18 if (result == favorites.end( ))
19 result = favorites.begin( ); // wrap around to smallest channel
20 setChannel(*result);
21 }
22 return channel;
23 }
24 }; // end of DeluxeTV

Figure 8: Implementing a DeluxeTV class through inheritance.
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1 class Square : public Rectangle {
2 public:

3 Square(double size=10, Point center=Point( )) :

4 Rectangle(size, size, center) // parent constructor
5 { }
6
7 void setHeight(double h) { setSize(h); }
8 void setWidth(double w) { setSize(w); }
9

10 void setSize(double size) {
11 Rectangle::setWidth(size); // make sure to invoke PARENT version
12 Rectangle::setHeight(size); // make sure to invoke PARENT version
13 }
14
15 double getSize( ) const { return getWidth( ); }
16 }; // end of Square

Figure 9: Implementing a Square class based upon a Rectangle.

If those had been declared as private we would not have the necessary access to implement our DeluxeTV.
Of course, the original designer of the television may not have known that we would come along and want to
inherit from it. However, an experienced C++ program will consider this possibility when designing a class.
In our DeluxeTV definition, the declaration of attribute favorites as protected is not for our own benefit, but
to leave open the possibility that someone else may one day want to design a SuperDeluxeTV that improves
upon our model.

The second aspect of our example we wish to discuss is the definition of our constructor, at lines 6–
9. In our Python version, the new constructor begins with an explicit call to the parent constructor,
using the syntax, Television. init (self). That was used to establish the default settings for all of the
inherited attributes; then we take care of initializing the new favorites attribute. In C++, we can invoke
the parent constructor as part of the initializer list using the syntax Television( ) at line 7. This calls the
parent constructor without sending any explicit parameters. To be honest, in this particular example, line 7
is superfluous. If we do not explicitly call the parent constructor, C++ will do so implicitly. However,
an explicit call is necessary when parameters are to be sent to the parent constructor (as in our second
example). In a similar spirit, we choose to explicitly initialize the favorites attribute at line 8, although this
too is superfluous, since we rely upon the default form of the constructor.

The rest of our DeluxeTV code is used to provide three new behaviors. The precise details of those
methods depends greatly on our knowledge of the set class (which we admit we have not tried to explain).
Our purpose for this example is to demonstrate the use of inheritance. We draw attention to the fact that
we are able to access the inherited attributes, powerOn and channel, as well as our new attribute favorites
when implementing the methods. We also make a call to the inherited method setChannel at line 20 of our
code.

A Square class

As a second example of inheritance, Figure 9 provides a C++ rendition of our original Square class from
Section 9.4.2 of the book. The Square inherits from a presumed Rectangle class. We do not introduce any
new attributes for this class, so our only responsibility for the constructor is to ensure that the inherited
attributes are properly initialized. To do this we call to the parent constructor at line 4. In this case, we
needed to do an explicit call to pass the appropriate dimensions and center. Had we not done this explicitly,
an implicit call would have been made to the default version of the rectangle constructor, leading to incorrect
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Point

bldg pt

x = −90.233
y = 38.636

Figure 10: An example of parameter passing in Python.

semantics for our square.
The remainder of the definition is meant to provide new getSize and setSize methods, while also overriding

the existing setHeight and setWidth methods so that a change to either dimension affects both. We use the
same approach as our Python version. We override the existing methods at lines 7 and 8, changing their
behaviors to call our new setSize method. Our setSize method then relies upon the parent versions of the
overridden setWidth and setHeight methods to enact the individual changes to those values. The use of the
expression Rectangle:: before the method names at lines 11 and 12 designates our desire to use the parent
version of those behaviors, rather than the default Square versions.

5 Assignments and the Object Model

Python presents a consistent model in which all identifiers are inherently references to underlying objects.
Use of the assignment operator as in a = b causes identifier a to be reassigned to the same underlying object
referenced by identifier b. These semantics are consistently applied to all types of objects. The assignment
semantics also affect the passing of information to and from a function, as described in Section 10.3.1 of the
book. Upon invocation, the formal parameters are assigned respectively to the actual parameters indicated
by a caller. The return value is communicated in a similar fashion.

As a simple example, assume that we define the following Python function for determining whether a
given point is equivalent to the origin:

Python def isOrigin(pt):
return pt.getX( ) == 0 and pt.getY( ) == 0

Now assume that the caller invokes this function as isOrigin(bldg), where bldg is an identifier that references
a point instance. Figure 10 diagrams the underlying configuration. This scenario is the precise result of the
system performing an implicit assignment of formal parameter to actual parameter pt = bldg.

In this section, we consider the same issues in C++, namely the correspondence between an identifier
and an underlying value, the semantics of an assignment statement, and the subsequent affect on passing
information to and from a function. C++ provides more fine-tuned control than Python, allowing the
programmer a choice between three different semantic models.

Value variables

The most commonly used model in C++ is that of a value variable. A declaration such as

Point a;

causes the compiler to reserve memory for storing the state of a point. The translation from the name a to
this particular instance is handled purely at compile-time, providing greater run-time efficiency than if that
mapping were evaluated at run-time (as with Python). In the above case, the default constructor is applied,
initializing both coordinates to zero. We could otherwise use an initialize statement to parameterize the
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x = 5.0
y = 7.0

a : Point

x = 0.0
y = 0.0

b : Point

Figure 11: The declaration of two separate value variables.

x = 5.0
y = 7.0

a : Point

x = 5.0
y = 7.0

b : Point

Figure 12: The effect of an assignment a = b upon value variables.

construction of a value variable, with a syntax such as the following.

Point b(5,7);

Note that the parameters are enclosed in parentheses that follow the variable name (as opposed to the type
name). Furthermore, note that we did not use any parentheses in the earlier case, when relying on the
default constructor.

To portray the semantics of a value variable, we prefer a diagram in the style of Figure 11, without
any independent concept of a reference. The assignment semantics for a value variable is very different
from Python’s. The assignment a = b causes the Point a to take on the value of Point b, as diagrammed in
Figure 12. Notice that a and b are still names of two distinct points.

The difference between C++ and Python assignments has a notable effect on the semantics of a function.
Going back to our earlier Python example, we might implement that function in C++ as follows:

bool isOrigin(Point pt) {
return pt.getX( ) == 0 && pt.getY( ) == 0;

}

The parameter passing model in this case is based on the implicit initialization of a formal parameter to the
value of an actual parameter.

Point pt(bldg);

This initialization has very different consequences for a value variable. In this case, the formal parameter
does not become an alias for the actual parameter. It is a newly allocated Point instance with state initialized
to match that of the actual parameter. Figure 13 portrays this scenario. As a result, changes made to the
parameter from within the function body have no lasting effect on the caller’s object. This style of parameter
passing is generally termed by value, as originally discussed on page 351.

y = 38.636

bldg : Point pt : Point

x = −90.233
y = 38.636

x = −90.233

Figure 13: An example of passing by value in C++.
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y = 7.0

a : Point

x = 0.0
y = 0.0

c
b : Point

x = 5.0

Figure 14: The name c is an example of a reference variable in C++.

Reference variables

The second model for a C++ variable is commonly termed a reference variable. It is declared as

Point& c = a; // reference variable

Syntactically, the distinguishing feature is the use of the ampersand. This designates c as a new name, but
it is not a new point. Instead, it becomes an alias for the existing point, a. We choose to diagram such a
situation as in Figure 14.

This is closer to the spirit of Python’s model, but still not quite the same. A C++ reference variable
must be bound to an existing instance upon declaration. It cannot be a reference to nothing (as is possible in
Python with the None value). Furthermore, the reference variable’s binding is static in C++; once declared,
that name can no longer be reassociated with some other object. The name c becomes a true alias for the
name a. The assignment c = b does not rebind the name c; this changes the value of c (also known as a).

Reference variables are rarely used as demonstrated above, because there is little need in a local context
for a second name for the same object. Yet the reference variable semantics becomes extremely important in
the context of functions. We can use a pass-by-reference semantics by using the ampersand in the declaration
of a formal parameter, as in the following revision of the isOrigin function:

bool isOrigin(Point& pt) {
return pt.getX( ) == 0 && pt.getY( ) == 0;

}

This leads to a model similar to Python in that the formal parameter becomes an alias for the actual
parameter. There are several potential advantages of this style. For larger objects, creating a copy is
typically more expensive than creating an alias (which simply requires the communication of an underlying
memory address). In fact, some classes do not even support the notion of creating a copy. For example,
creating and manipulating a “copy” of an output stream is not allowed by the ostream class. For this reason,
we see the use of references in the signature of operator<<, looking back at Figure 7; both the parameter
stream and return value are communicated in such a way.

A second potential benefit of passing by reference is that it allows a function to intentionally manipulate
the caller’s object (in contrast to when a parameter is passed by value). In cases where a programmer wishes
to get the efficiency of passing by reference, but without the risk of allowing the object to be mutated, the
const modifier can be used in declaring a parameter, as in

bool isOrigin(const Point& pt) {
return pt.getX( ) == 0 && pt.getY( ) == 0;

}

With this signature, the point will be passed by referenced, but the function promises that it will in no way
modify that point (a promise which is enforced by the compiler).
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a : Point

x = 0.0
y = 0.0

c

0xbffff1234

b : Point

x = 5.0
y = 7.0

d : Point*
Figure 15: The variable d is an example of a pointer whose value is assigned to the address of instance b.

Pointer variables

C++ supports a third form of variable known as a pointer. This provides a semantics which is closest to
Python’s model, although the syntax is quite different. A C++ pointer variable is declared as follows:

Point *d; // d is a pointer variable

The asterisk in this context declares d not to be a Point itself, but to be a variable that can store the memory
address of a Point. This is related to a reference, but pointers are more general in that a pointer is allowed
to point to nothing (using the keyword NULL in C++). Also, the pointer can be reassigned to different
instances over time. A typical assignment statement is as follows:

d = &b;

This leads to a configuration diagrammed in Figure 15. We intentionally portray d as a separate entity
because it is itself a variable stored in memory and manipulated, whose value just happens to be a memory
address of some other object. In order to manipulate the underlying point with this variable, we must
explicitly dereference it. The expression *d is synonymous with b in this configuration. For example, we
could call the method (*d).getY( ), which returns the value 7.0 in this case. However, since this syntax is
bulky, C++ introduced a new operator in the context of pointers, allowing the syntax d−>getY( ).

Passing a pointer provides a third alternative in the context of a function.

bool isOrigin(Point *pt) {
return pt−>getX( ) == 0 && pt−>getY( ) == 0;

}

However, the only advantage to using a pointer variable rather than a reference variable is to allow for the
possibility of sending a null pointer (recall that reference variables cannot have such a value).

Dynamic memory management

With value variables, C++ handles all issues of memory management. When a declaration, as Point a, is
made, the system reserves memory for storing the state of this point. Furthermore, when that variable
declaration goes out of scope (for example, if a local variable within a function body), the system automat-
ically destroys the point and reclaims the memory for other purposes. Generally, this automatic memory
management eases the burden upon the computer.

However, there are some circumstances when a program wants to take a more active role in controlling
the underlying memory management. Pointer variables serve a valuable role in this regard. In our first
example of a pointer variable, we assigned its value to the address of an existing object. We can also use an
existing pointer to keep track of a brand new object, instantiated as follows:
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d = new Point( );

This instantiation syntax is different from that of a value variable. The use of the keyword new designates
this as what is termed a dynamic allocation. Memory will be set aside for storing and initializing this new
Point, but the object is never automatically destroyed. It is up to the programmer to explicitly throw it away
when it is no longer necessary, using a syntax delete d (just one more way that C++ allows a programmer
to fine-tune software).
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