CPSC 490 Graph Theory: Shortest Path

The shortest path problem

Consider the problem of finding the shortest path between nodes s and t in a graph (directed or
undirected). We already know an algorithm that will solve it for unweighted graphs - BFS. Now, what
if the egdes have weights? Consider the dist[] array that we used in BFS to store the current shortest
known distance from the source to all other vertices. BFS can be thought of as repeatedly taking the
closest known vertex, u, and applying the following procedure to all of its neighbours, v.

bool relax(int u, int v) {
if(dist[v] <= dist[u] + 1) return false;
dist[v] = dist[u] + 1;

return true;

}

The procedure relax() returns true if we can improve our current best known shortest path from s to v
by using the edge (u, v). In that case, BFS also updates dist[v] and adds v to the back of the queue.

Imagine colouring all vertices white before running BFS. Then all the vertices on the queue can be
considered gray, and all the vertices that have been processed and removed from the queue are black.
We can prove that BFS works by demonstrating the following invariant: at the beginning of each
iteration, dist[v] is equal to the shortest path distance from s to v for all black vertices, v. At the
beginning, the invariant is true because we have no black vertices. During each iteration of BFS, we
pick the closest known vertex, u, (one of them, if there are several) and execute relax(u, v) on all of its
neighbours, v. Finally, we colour u black (pop it from the queue). Since u was the the closest vertex
(to the source), any other path to u that we might discover during subsequent iterations must be
longer than dist[u]. Hence, the invariant holds for u - the only new black vertex that we get during one
iteration. Eventually, when BFS terminates, dist[v] will be set to the length of the shortest path for all
black (visited) vertices, v. All other vertices will have dist[] set to infinity - "unreachable".

Dijkstra's algorithm

The reason why BFS does not work for weighted graphs is very simple - we can no longer guarantee
that the vertex at the front of the queue is the vertex closest to s. It is certainly the closest in terms of
the number of edges used to reach it, but not in terms of the sum of edge weights. But we can fix this
easily. Instead of using a plain queue, we can use a priority queue in which vertices are sorted by their
increasing dist[] value. Then at each iteration, we will pick the vertex, u, with smallest dist[u] value
and call relax(u, v) on all of its neighbours, v. The only difference is that now we add the weight of the
edge (u, v) to our distance instead of just adding 1.

bool relax(int u, int v) {
int newDist = dist[u] + weight[u][V];
if(dist[v] <= newDist) return false;
dist[v] = newDist;
return true;

}

The proof of correctness is exactly the same as for BFS - the same loop invariant holds. However, the
algorithm only works as long as we do not have edges with negative weights. Otherwise, there is no
guarantee that when we pick u as the closest vertex, dist[v] for some other vertex v will not become
smaller than dist[u] at some time in the future.

CPSC 490 Graph Theory: Shortest Path

There are several ways to implement Dijkstra' algorithm. The main challenge is maintaining a priority
queue of vertices that provides 3 operations — inserting new vertices to the queue, removing the vertex
with smallest dist[], and decreasing the dist[] value of some vertex during relaxation. We can use a set
to represent the queue. This way, the implementation looks remarkably similar to BFS. In the
following example, assume that graph[i][j] contains the weight of the edge (i, j).

Example 1: O (n*+(m+n)log(n)) Dijkstra's
int graph[128][128]; // -1 means "no edge"
int n; // number of vertices (at most 128)
int dist[128];

// Compares 2 vertices first by distance and then by vertex number
struct 1ltDist {
bool operator()(int u, int v) const {
return make pair(dist[u], u) < make_pair(dist[v], v);
}
}

void dijkstra(int s) {
for(int i = 0; i < n; i++) dist[i] = INT_ MAX;
dist[s] = 0;

set< int, 1ltDist > q;
g.insert(s);
while(!q.empty()) {

int u = *q.begin(); // like u = g.front()
g.erase(g.begin()); // like qg.pop()
for(int v = 0; v < n; v++) if(graph[u][v] != -1) {
int newDist = dist[u] + graph[u][V];
if(newDist < dist[v]) // relaxation
{
if(g.count(v)) g.erase(vV);
dist[v] = newDist;
g.insert(v);
}

First, we define a comparator that compares vertices by their dist[] value. Note that we can't simply do
"return dist[u] < dist[v];" because a set keeps only one copy of each unique element, and so using this
simpler comparison would disallow vertices with the same dist[] value. Instead, we exploit the built-in
lexicographic comparison for pairs.

The dijkstra() function takes a source vertex and fills in the dist[] array with shortest path distances
from s. First, all distances are initialized to infinity, except for dist[s], which is set to 0. Then s is
added to the queue and we proceed like in BFS: remove the first vertex, u, and scan all of its
neighbours, v. Compute the new distance to v, and if it' detter than our current known distance,
update it. The order of the 3 lines inside the innermost ' fistatement is crucial. Note that the set q is
sorted by dist[] values, so we can't simply change dist[v] to a new value - what if v is in q? This is why
we first need to remove v from the set, then change dist[v] and after that add it.

CPSC 490 Graph Theory: Shortest Path

The running time is n*log(n) for removing n vertices from the queue, plus m*log(n) for inserting into
and updating the queue for each edge, plus n*n for running the 'for(v)' loop for each vertex u. We can
avoid the quadratic cost by using an adjacency list, for a total of O((m+n)log(n)).

Another way to implement the priority queue is to scan the dist[] array every time to find the closest
vertex, U.

Example 2: O(n " 2) Dijkstra's
int graph[128]1[128], n; // -1 means "no edge"
int dist[128];
bool done[128];

void dijkstra(int s) {
for(int 1 = 0; i < n; i++) {
dist[i] = INT MAX;
done[i] = false;

}
dist[s] = 0;

while(true) {
// find the vertex with the smallest dist[] value
int u = -1, bestDist = INT MAX;
for(int 1 = 0; i < n; i++) if(!done[i] && dist[i] < bestDist) {
u = 1i;
bestDist = dist[i];

}
if(bestDist == INT MAX) break;

// relax neighbouring edges
for(int v = 0; v < n; v++) if(!done[v] && graph[u][Vv] != -1) {
if(dist[v] > dist[u] + graph[u][V])
dist[v] = dist[u] + graph[u][V];
}

done[u] = true;
}

We have to introduce a new array, done[]. We could also call it "black[]" because it is true for those
vertices that have left the queue. First, we initialize done[] to false and dist[] to infinity. Inside the
main loop, we scan the dist[] array to find the vertex, u, with minimal dist[] value that is not black
yet. If we can't find one, we break from the loop. Otherwise, we relax all of u's neighbouring edges.

This seemingly low-tech method is actually pretty clever in terms of running time. The main while()
loop executes at most n times because at the end we always set done[u] to true for some u, and we
can only do that n times before they are all true. Inside the loop, we do O(n) work in two simple
loops. The total is (O (n”) , which is faster than the first implementation as long as the graph is fairly
dense (m>n?/ log(n)). This is if we do use an adjacency list in the first implementation; otherwise,
the second one will almost always be faster).

Dijkstra's algorithm is very fast, but it suffers from its inability to deal with negative edge weights.
Having negative edges in a graph may also introduce negative weight cycles that make us re-think the
very definition of "shortest path". Fortunately, there is an algorithm that is more tolerant to having
negative edges — the Bellman-Ford algorithm.

CPSC 490 Graph Theory: Shortest Path

The Bellman-Ford algorithm

Dijkstra's algorithm is a generalization of the BFS algorithm — meaning that Dijkstra's is itself a graph
search algorithm. A search algorithm can be thought of as starting at some source vertex in a graph,
and "search" the graph by walking along the edges and marking the vertices. These search algorithms
do not make use of the fact that we already know before-hand the entire structure of the graph. This
explains why Dijkstra's algorithm cannot handle negative weights — it can only search from what we
have seen so far, and does not expect new "discoveries" at some later stage would affect what we have
already processed.

The Bellman-Ford algorithm is a Dynamic Programming algorithm that solves the shortest path
problem. It looks at the structure of the graph, and iteratively generates a better solution from a
previous one, until it reaches the best solution. Bellman-Ford can handle negative weights readily,
because it uses the entire graph to improve a solution.

The idea is to start with a base case solution S, a set containing the shortest distances from s to all
vertices, using no edge at all. In the base case, d[s] = 0, and d[v] = co for all other vertices v. We
then proceed to relax every edge once, building the set S;. This new set is an improvement over S,
because it contains all the shortest distances using one edge — ie. d[v] is minimal in S; if the shortest
path from s to v uses one edge. Now, we repeat this process iteratively, building S, from S;, then S3
from S,, and so on... Each set Sk contains all the shortest distances from s using k edges — ie. d[v] is
minimal in Sy if the shortest path from s to v uses at most k edges.

Example 3: Bellman-Ford algorithm
vector< pair<int,int> > EdgeList; // A list of directed edges (u,v)
int graph[128][128]; // Gives the weight
int n, dist[128];

void bellman-ford(int s) {
// Initialize our solution to the BASE CASE S,

for(int 1 = 0; i < n; i++)
dist[i] = INT MAX;
dist[s] = 0;

for(int k 0; k < n-1; k++) { // n-1 iterations
// Builds a better solution S,,; from S,
for(int j = 0; j < EdgeList.size(); Jj++) { // Try for every edge
int u = Edgelist[j].first, v = EdgeList[j].second;
if(dist[u] < INT_MAX && dist[v] > dist[u] + graph[u][v]) // relax
dist[v] = dist[u] + graph[u][V];

}

// ... Now we have the best solution after n-1 iterations

The algorithm above basically implements this idea. We start with a base case So, and repeatedly relax
every edge to generate Si.1 from Si. Note that in the relaxation step, we don' telax an edge if dist[u]
is infinity, or otherwise we may get overflow in the addition (conceptually we never want to relax such
an edge anyway). Also note that the order of using the edges can affect the intermediate sets Sy,
because we may first relax an edge (u,v), then relax another edge (v,w) in the same step, while
choosing the reverse order of these two edges may not relax them both. However, we now show that
Sn.1 is unique, and contains the shortest distance possible from s to any vertex v.

CPSC 490 Graph Theory: Shortest Path

Proposition 4: (Correctness of Bellman-Ford) Let Sy denote the set of distances from s such that
d[v] is minimal in Sy if the shortest path from s to v uses at most k edges. Then the Bellman-Ford
algorithm builds So, Sy, ..., Ss.1 iteratively. Also, S, is the best solution, and it is unique.

Proof. We have already establish that the Bellman-Ford algorithm generates Sy, Si, ..., Sn1 iteratively
in the above paragraphs. Now, assuming that negative weight cycles reachable from the source do not
exist in the graph, S,.1 will contain the shortest possible distances from s to any other vertices. This is
because any walk in the graph will go into a cycle if we use more than n-1 edges, and since negative
cycles do not exist, we never want to use these positive weight cycles as part of a shortest path. And,
because S,.; contains the best distances, it is unique. QED.

So, the Bellman-Ford algorithm is correct, but does it always terminate? It does, as we only have two
loops, one running n-1 iterations, and the other going through all edges. Hence, the algorithm always
terminates, and has a run time of O(n*m).

While the Bellman-Ford algorithm can handle negative weight edges readily, the correctness of the
algorithm breaks down when negative weight cycles exist that is reachable from s. However, the
nature of the algorithm allows us to detect these negative weight cycles. The idea is that, if a negative
weight cycle exist, then S,.; will be the same as Sy, Sn+1, Sn+2, ... If we run the iteration step more than
n-1 times, we will not be changing the answer. On the other hand, if a negative weight cycle exist,
then one of its edges must have negative weight, and any such edge can be relaxed further even after
n-1 iterations, decreasing some of the distances.

Hence, to detect negative weight cycles, we just need to run the Bellman-Ford algorithm, and when it
terminates, check whether we can relax any edges. If we can, then that edge is reachable from a
negative weight cycle, and the cycle is also reachable from the source.

Example 5: Detecting negative weight cycles in a graph
vector< pair<int,int> > EdgeList; // A list of directed edges (u,v)
int graph[128][128]; // Gives the weight
int n, dist[128];

int main() {
// ... Set up the graph
bellman-ford(0); // Run bellman-ford on s=0

// Check for negative weight cycles reachable from s
for(int j = 0; j < EdgeList.size(); j++) { // Try for every edge
int u = EdgelList[j].first, v = EdgelList[]j].second;

if(dist[u] < INT MAX && dist[v] > dist[u] + graph[u][v]) // can relax
cout << "Negative cycle reachable from s exists." << endl;
return 1;

}
¥

cout << "No negative cycle detected, shortest distances found." << endl;
return 0;

Bellman-Ford is slower than Dijkstra's, but with this added functionality of handling negative weights
and detecting negative cycles easily, it can be more useful in some cases. In particular, in a directed
acyclic graph (one with no cycles), we can use Bellman-Ford to find the longest path from s to any
vertices v, by simply changing all the positive weights to negative, and vice versa. Note that finding
the longest path in a general graph is NP-hard.

