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Abstract

The Standard Model (SM) prediction for the ratio ε′/ε appears to be significantly
below the experimental data. Also εK in the SM tends to be below the data. Any
new physics (NP) removing these anomalies will first of all have impact on flavour
observables in the K meson system, in particular on rare decays K+ → π+νν̄,
KL → π0νν̄, KL → µ+µ− and KL → π0`+`− and ∆MK . Restricting the operators
contributing to ε′/ε to the SM ones and to the corresponding primed operators,
NP contributions to ε′/ε are quite generally dominated either by QCD penguin
(QCDP) operators Q6(Q′6) or electroweak penguin (EWP) operators Q8(Q′8) with
rather different implications for other flavour observables. Our presentation includes
general models with tree-level Z and Z ′ flavour violating exchanges for which we
summarize known results and add several new ones. We also briefly discuss few
specific models. The correlations of ε′/ε with other flavour observables listed above
allow to differentiate between models in which ε′/ε can be enhanced. Various DNA-
tables are helpful in this respect. We find that simultaneous enhancements of ε′/ε,
εK , B(KL → π0νν̄) and B(K+ → π+νν̄) in Z scenarios are only possible in the
presence of both left-handed and right-handed flavour-violating couplings. In Z ′

scenarios this is not required but the size of NP effects and the correlation between
B(KL → π0νν̄) and B(K+ → π+νν̄) depends strongly on whether QCDP or EWP
dominate NP contributions to ε′/ε. In the QCDP case possible enhancements of
both branching ratios are much larger than for EWP scenario and take place only
on the branch parallel to the Grossman-Nir bound, which is in the case of EWP
dominance only possible in the absence of NP in εK . We point out that QCDP and
EWP scenarios of NP in ε′/ε can also be uniquely distinguished by the size and the
sign of NP contribution to ∆MK , elevating the importance of the precise calculation
of ∆MK in the SM. We emphasize the importance of the theoretical improvements
not only on ε′/ε, εK and ∆MK but also on KL → µ+µ−, KL → π0`+`−, and the
K → ππ isospin amplitudes ReA0 and ReA2 which would in the future enrich our
analysis.
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1 Introduction

The ratio ε′/ε measures the size of the direct CP violation in KL → ππ decays relative
to the indirect CP violation described by εK and is rather sensitive to new physics (NP).
In the Standard Model (SM) ε′ is governed by QCD penguins (QCDP) but receives also
an important destructively interfering contribution from electroweak penguins (EWP).
Beyond the SM the structure of NP contributions to ε′/ε is in general different as often
only the EWP operators contribute in a significant manner. But, one can also construct
scenarios in which NP contributions from QCDP dominate. This is for instance the case
of certain Z ′ models which we will present in detail below. Moreover, there exist models
in which NP contributions to ε′/ε can be dominated by new operators which can be
neglected within the SM. A prominent example is the chromomagnetic penguin operator
in supersymmetric models.

The present status of ε′/ε in the SM has been reviewed recently in [1, 2], where ref-
erences to rich literature can be found. After the new results for the hadronic matrix
elements of QCDP and EWP (V − A) ⊗ (V + A) operators from RBC-UKQCD lattice
collaboration [3–5] and the extraction of the corresponding matrix elements of penguin
(V − A)⊗ (V − A) operators from the CP-conserving K → ππ amplitudes one finds [1]

ε′/ε = (1.9± 4.5)× 10−4 . (1)

This result differs with 2.9σ significance from the experimental world average from NA48
[6] and KTeV [7,8] collaborations,

(ε′/ε)exp = (16.6± 2.3)× 10−4 , (2)

suggesting evidence for NP in K decays.
But even not taking the lattice results into account and using instead newly derived

upper bounds on the matrix elements of the dominant penguin operators from the large
N approach [9], one finds at most [1]

(ε′/ε)SM = (8.6± 3.2)× 10−4 , (3)

still 2 σ below the experimental data.
While, the improvement on the estimate of isospin corrections, final state interactions

and the inclusion of NNLO QCD corrections could increase ε′/ε with respect to the one
in (1), it is rather unlikely that values of ε′/ε violating the upper bound in (3) will be
found within the SM. After all, until now, lattice QCD confirmed most of earlier results
on K meson flavour physics obtained in the large N approach (see [2, 10]) and in fact
this time this approach gives a strong support to the recent results of RBC-UKQCD
collaboration [3–5]. It appears then that the SM has significant difficulties in explaining
the experimental value of ε′/ε. This implies that NP models in which this ratio can be
enhanced with respect to its SM value are presently favoured.

Now, the renormalization group effects play a very important role in the analysis of
ε′/ε. They have been known already for more than twenty years at the NLO level [11–16]
and present technology could extend them to the NNLO level if necessary. First steps in
this direction have been taken in [17–19]. The situation with hadronic matrix elements
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is another story and even if significant progress on their evaluation has been made over
the last 25 years, the present status is clearly not satisfactory. Still, both the large
N approach and lattice QCD show that hadronic matrix elements of QCD and EWP
(V −A)⊗ (V +A) operators, Q6 and Q8 respectively, are by far the largest among those
of contributing operators with the relevant matrix element 〈Q8〉2 being larger than 〈Q6〉0
in magnitude by roughly a factor of two.

With the Wilson coefficient y6 of Q6 being roughly by a factor of 90 larger than y8

of Q8 (see [1]) one would expect the Q6 operator to be by far the dominant one in ε′/ε.
That this does not happen is due to the factor

ReA2

ReA0

=
1

22.4
(4)

which in the basic formula for ε′/ε in (5) suppresses the Q6 contribution relative to the
Q8 one. As a result strong cancellation between these two dominant contributions to ε′/ε
in the SM takes place so that contributions of other less important (V − A) ⊗ (V − A)
operators matter. A detailed anatomy of such contributions has been presented in [1].

Beyond the SM quite often the Wilson coefficients of Q6 and Q8 and of the primed
operators Q′6 and Q′8 in the NP contribution to ε′/ε are of the same order and then
operators Q8 and/or Q′8 win easily this competition because of the suppression of the Q6

and Q′6 contributions by the factor in (4) and the fact that their hadronic matrix elements
are smaller than the ones of Q8 and Q′8. Therefore retaining only the latter contributions
in the NP part is a reasonable approximation if one wants to make a rough estimate of
ε′/ε with the accuracy of 10%. Only in the presence of a flavour symmetry which assures
the flavour universality of diagonal quark couplings, Q6 and/or Q′6 win this competition
because the contribution of Q8(Q′8) is then either negligible or absent. In such cases Q6

and/or Q′6 are by far the dominant contributions to ε′/ε.
This simplification in the renormalization group analysis, pointed out in [20], and

present in many extensions of the SM, allows for a quick rough estimate of the size
of NP contributions to ε′/ε in a given model. Moreover, the absence of cancellations
between QCD and electroweak penguin contributions in the NP part makes it subject to
much smaller theoretical uncertainties than it is the case within the SM. Then leading
order renormalization group analysis is sufficient, in particular, for finding the sign of NP
contribution as a function of model parameters, generally couplings of NP to quarks. This
sign is in most cases not unique because of the presence of free parameters represented by
new couplings in a given model. But requiring that NP enhances ε′/ε relative to its SM
value, determines the signs of these couplings with implications for other observables in the
K meson system. As ε′/ε is only sensitive to imaginary couplings, we will simultaneously
assume that there is a modest anomaly in εK , which together with ε′/ε will allow us
to determine both imaginary and real flavour violating couplings of Z and Z ′ implied by
these anomalies. This in turn will give us predictions for NP contributions to KL → π0νν̄,
K+ → π+νν̄, KL → µ+µ− and ∆MK implied by these anomalies. In certain models the
enhancement of ε′/ε implies uniquely enhancement or suppression of other observables or
even eliminates significant NP contributions from them. In this manner even patterns of
deviations from SM predictions can identify the favoured NP models.

This strategy of identifying NP through quark flavour violating processes has been
proposed in [21] and graphically represented in terms of DNA-charts. But the case of ε′/ε
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has not been discused there in this manner and we would like to do it here in the form of
DNA-tables, see Tables 3 and 4, concentrating fully on the K meson system. But as we
will see this system by itself can already give us a valuable insight into physics beyond the
SM. The implications for other meson systems require more assumptions on the flavour
structure of NP and will be considered elsewhere. A recent study of the impact of K
physics observables on the determination of the Unitarity triangle can be found in [22].

Our paper is organized as follows. In Section 2 we recall the basic formula for ε′/ε
that is valid in all extensions of the SM and recall the relevant hadronic matrix elements
of the operators Q6(Q′6) and Q8(Q′8). In Section 3 we present our strategy for addressing
the sizable ε′/ε anomaly and a modest εK anomaly with the hope that it will make our
paper more transparent. In Section 4 we discuss models in which NP contributions to
ε′/ε come dominantly from tree-level Z exchanges and identify a number of scenarios for
flavour-violating Z couplings that could provide the required enhancement of ε′/ε with
concrete implications for other flavour observables listed above. In Section 5 we generalize
this discussion to models with tree-level Z ′ exchanges and discuss briefly the effects of
Z−Z ′ mixing. We also consider there the case of G′, a colour octet of heavy gauge bosons.
In both sections we demonstrate how these different models can be differentiated with the
help of other observables. Of particular interest is the case of MZ′ outside the reach of the
LHC if the flavour structure of a given model is such that the suppression by Z ′ propagator
is compensated by the increase of flavour-violating couplings. We also stress that for
MZ′ ≥ 10 TeV renormalization group effects imply additional significant enhancements
of both QCDP and EWP contributions to ε′/ε. In Section 6 we briefly discuss scenarios
in which contributions of both Z and Z ′ are present even in the absence of significant
Z − Z ′ mixing. This is the case of models in which in addition to Z ′ also new heavy
fermions, like vector-like quarks, are present implying through the mixing with SM quarks
flavour-violating Z couplings. While our discussion is rather general, in Section 7 we give
examples of specific Z and Z ′ models, in which one can reach clear cut conclusions and
briefly summarize more complicated models. In Section 8 we discuss possible implications
of NP in the K → ππ isospin amplitudes ReA0 and ReA2 and in Section 9 we contemplate
on the implications of the possible discovery of NP in K+ → π+νν̄ by NA62 experiment
in 2018 in the presence of ε′/ε anomaly, dependently on whether NP in εK is present
or absent. Finally in Section 10 we summarize most important findings and give a brief
outlook for the coming years and summarize most important open questions. Several
appendices contain a collection of useful formulae.

Our paper differs from other papers on flavour physics in K meson system in that we
do not obtain the results for ε′/ε and εK as output of a complicated analysis but treat
them as input parametrizing the size of NP contributions to them by two parameters of
O(1): κε′ and κε. See Section 3 for the explicit formulation of this strategy.

Our paper differs also from many papers on rare processes present in the literature in
that it does not contain a single plot coming from a sophisticated numerical analysis. The
uncertainty in the QCDP contribution to ε′/ε in the SM leaves still a very large room
for NP in ε′/ε and a detailed numerical analysis would only wash out the pattern of NP
required to enhance ε′/ε. The absence of sophisticated plots is compensated by numerous
simple analytic formulae and DNA-tables that should allow model builders to estimate
quickly the pattern of NP in the K meson system in her or his favourite model. Our goal
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is to present the material in such a manner that potential readers can follow all steps in
detail.

Finally, our paper differs also from the recent literature on flavour physics which is
dominated by the anomalies in most recent data for B → K(K∗)`+`− and B → D(D∗)τντ
reported by LHCb, BaBar and Belle. The case of ε′/ε is different as the data is roughly
fifteen years old and the progress is presently done by theorists, not experimentalists.
But as the recent papers [1,3,4,9] show, ε′/ε after rather silent ten years is striking back,
in particular in correlation with K+ → π+νν̄ and KL → π0νν̄ [23, 24] on which the
data [25–27] will improve significantly in the coming years. Moreover,as we will see in the
context of our presentation, theoretical improvements not only on ε′/ε but also on εK ,
∆MK , KL → µ+µ−, KL → π0`+`−, and the K → ππ isospin amplitudes ReA0 and ReA2

will give us new insights in NP at short distance scales.

2 Basic formula for ε′/ε

The basic formula for ε′/ε reads [1]

ε′

ε
= − ω+√

2 |εK |

[
ImA0

ReA0

(1− Ω̂eff)− 1

a

ImA2

ReA2

]
, (5)

with (ω+, a) and Ω̂eff given as follows

ω+ = a
ReA2

ReA0

= (4.53± 0.02)× 10−2, a = 1.017, Ω̂eff = (14.8± 8.0)× 10−2 . (6)

Here a and Ω̂eff summarize isospin breaking corrections and include strong isospin vio-
lation (mu 6= md), the correction to the isospin limit coming from ∆I = 5/2 transitions
and electromagnetic corrections [28–30]. Ω̂eff differs from Ωeff in [28, 29] which includes
contributions of EWP. Here they are present in ImA0 and of course in ImA2. Strictly
speaking ε′/ε is a complex quantity and the expression in (5) applies to its real part but
its phase is so small that we can drop the symbol “Re” in all expressions below in order
to simplify the notation.

The amplitudes ReA0,2 are then extracted from the branching ratios on K → ππ
decays in the isospin limit. Their values are given by

ReA0 = 33.22(1)× 10−8 GeV , ReA2 = 1.479(3)× 10−8 GeV . (7)

For the analysis of NP contributions in our paper the only relevant operators are the
following QCDP and EWP (V − A)⊗ (V + A) operators

QCD–Penguins:

Q5 = (s̄d)V−A
∑

q=u,d,s,c,b,t

(q̄q)V+A Q6 = (s̄αdβ)V−A
∑

q=u,d,s,c,b,t

(q̄βqα)V+A (8)

Electroweak Penguins:

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s,c,b,t

eq (q̄q)V+A Q8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s,c,b,t

eq (q̄βqα)V+A . (9)
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GF 1.16637(1)× 10−5 GeV−2 MW 80.385 GeV

sin2 θW 0.23116(13) MZ 91.1876 GeV

|εK | 2.228(11)× 10−3 [33] mK 0.4976 GeV

∆MK 3.483× 10−15 GeV [33] B̂K 0.750(15) [10,32]

λ = |Vus| 0.2252(9) [34] B
(1/2)
6 0.70

αs(MZ) 0.1185(6) [33] B
(3/2)
8 0.76

κ̃ε 0.94± 0.02 [35,36] η2 0.5765(65) [37]

r̃(MZ) 1.068 Reλt −3.0 · 10−4

r̃(3 TeV) 0.95 Imλt 1.4 · 10−4

Table 1: Values of theoretical and experimental quantities used as input parameters. See
also (12) and (13).

The primed operators Q′i are obtained from Qi through the interchange of V −A and
V + A. Summation over colour indices α and β is understood. In the case of Z models
top quark contribution should be omitted.

Eventually, if we are only interested in signs of NP contributions to ε′/ε and approx-
imate estimates of their magnitudes, only Q6(Q′6) will be relevant for ImA0 and only
contribution of Q8(Q′8) for ImA2. Thus we only need two hadronic matrix elements:

〈Q6(mc)〉0 = − 4

√
3

2

[
m2

K

ms(mc) +md(mc)

]2

(FK − Fπ)B
(1/2)
6 = −0.58B

(1/2)
6 GeV3(10)

〈Q8(mc)〉2 =
√

2

√
3

2

[
m2

K

ms(mc) +md(mc)

]2

Fπ B
(3/2)
8 = 1.06B

(3/2)
8 GeV3. (11)

This approximate treatment would not be justified within the SM because of strong can-
cellations between QCDP and EWP contributions. But as we explained above such can-
cellations are absent in many extensions of the SM and for sure in the models considered
by us.

The choice of the scale µ = mc is convenient as it is used in analytic formulae for ε′/ε
in [1]. But otherwise the precise value of µ is not relevant as the dominant µ dependence
of the Wilson coefficients and of the matrix elements of Q6 and Q8 operators has a simple
structure being dominantly governed by the µ dependence of involved quark masses. As
a result of this the µ dependence of the parameters B

(1/2)
6 and B

(3/2)
8 is negligible for

µ ≥ 1 GeV [15]. The matrix elements of primed operators differ only by sign from the
ones given above. The numerical values in (10) and (11) are given for the central values
of [31, 32]

mK = 497.614 MeV, Fπ = 130.41(20) MeV,
FK
Fπ

= 1.194(5) , (12)

ms(mc) = 109.1(2.8) MeV, md(mc) = 5.44(19) MeV . (13)

The values of other parameters are collected in Table 1.
Recently significant progress on the values of B

(1/2)
6 and B

(3/2)
8 has been made by the

RBC-UKQCD collaboration, who presented new results on the relevant hadronic matrix
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elements of the operators Q6 [4] and Q8 [3]. These results imply the following values for

B
(1/2)
6 and B

(3/2)
8 [1, 38]

B
(1/2)
6 = 0.57± 0.19 , B

(3/2)
8 = 0.76± 0.05 , (RBC-UKQCD) (14)

to be compared with their values in the strict large N limit of QCD [39–41]

B
(1/2)
6 = B

(3/2)
8 = 1, (large N Limit) . (15)

But, in this analytic, dual approach to QCD, one can demonstrate explicitly the
suppression of both B

(1/2)
6 and B

(3/2)
8 below their large-N limit and derive conservative

upper bounds on both B
(1/2)
6 and B

(3/2)
8 which read [9]

B
(1/2)
6 ≤ B

(3/2)
8 < 1 (large-N). (16)

While this approach gives B
(3/2)
8 (mc) = 0.80 ± 0.10, the result for B

(1/2)
6 is less precise

but there is a strong indication that B
(1/2)
6 < B

(3/2)
8 in agreement with (14)1. For further

details, see [9].
This information is sufficient for our analysis which as the main goal has the identifi-

cation of NP patterns in flavour observables in a number of models implied by the desire
to enhance ε′/ε over its SM value in a significant manner. In particular those models are
of interest which can provide a positive shift in ε′/ε by at least 5× 10−4.

It is probably useful to recall at this stage that the recent finding of ε′/ε in the SM
being below its experimental value has been signalled already by early analyses, among
them in [47–49], which used B

(1/2)
6 = B

(3/2)
8 = 1. See [50] for an early review. The new

result in (16) tells us that this is an upper bound on these two parameters and the recent
lattice and large N calculations show that these parameters are significantly below this
bound making ε′/ε in the SM even smaller than previously expected.

3 Strategy

In our paper the central role will be played by ε′/ε and εK for which in the presence of
NP contributions we have

ε′

ε
=

(
ε′

ε

)SM

+

(
ε′

ε

)NP

, εK ≡ eiϕε
[
εSM
K + εNP

K

]
. (17)

In view of uncertainties present in the SM estimates of ε′/ε and to a lesser extent in εK
we will fully concentrate on NP contributions. Therefore in order to identify the pattern
of NP contributions to flavour observables implied by the ε′/ε anomaly in a transparent
manner, we will proceed in a given model as follows:

Step 1: We assume that NP provides a positive shift in ε′/ε:(
ε′

ε

)NP

= κε′ · 10−3, 0.5 ≤ κε′ ≤ 1.5, (18)

1On the other hand a number of other large N approaches [42–46] violates strongly the bounds in

(16) with B
(1/2)
6 in the ballpark of 3 and B

(3/2)
8 > 1 in striking disagreement with lattice results.
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with the range for κε′ indicating the required size of this contribution. But in the formulae
below, κε′ will be a free parameter. This step will determine the imaginary parts of
flavour-violating Z and Z ′ couplings to quarks as functions of κε′ .

Step 2: In order to determine the relevant real parts of the couplings involved, in the
presence of the imaginary part determined from ε′/ε, we will assume that in addition to
the ε′/ε anomaly, NP can also affect the parameter εK . We will describe this effect by the
parameter κε so that now in addition to (18) we will study the implications of the shift
in εK due to NP

(εK)NP = κε · 10−3, 0.1 ≤ κε ≤ 0.4 . (19)

The positive sign of κε is motivated by the fact that if εK is predicted in the SM using
CKM parameters extracted from B system observables, its value is found typically below
the data as first emphasized in [35,51]. See also [52,53]. But it should be stressed that this
depends on whether inclusive or exclusive determinations of |Vub| and |Vcb| are used and
with the inclusive ones SM value of εK agrees well with the data. See recent discussions
in [20,54,55]

While this possible “ anomaly” is certainly not as pronounced as the ε′/ε one, it is
instructive to assume that it is present at the level indicated in (19), that is at most 20%.

Step 3: In view of the uncertainty in κε′ we set several parameters to their central
values. In particular for the SM contributions to rare decays we set the CKM factors to

Reλt = −3.0 · 10−4, Imλt = 1.4 · 10−4 (20)

which are in the ballpark of present estimates obtained by UTfit [52] and CKMfitter [53]
collaborations. For this choice of CKM parameters the central value of the resulting εSM

K

is 1.96 · 10−3. With the experimental value of εK in Table 1 this implies κε = 0.26. But
we will still vary κε while keeping the values in (20) as NP contributions do not depend
on them but are sensitive functions of κε.

Step 4: Having fixed the flavour violating couplings of Z or Z ′ in this manner, we
will express NP contributions to the branching ratios for K+ → π+νν̄, KL → π0νν̄ and
KL → µ+µ and to ∆MK in terms of κε′ and κε. This will allow us to study directly
the impact of ε′/ε and εK anomalies in Z and Z ′ scenarios on these four observables. In
Table 2 we indicate the dependence of a given observable on the real and/or the imaginary
Z or Z ′ flavour violating coupling to quarks. In our strategy imaginary parts depend only
ob κε′ , while the real parts on both κε′ and κε. The pattern of flavour violation depends
in a given NP scenario on the relative size of real and imaginary parts of couplings and
we will see this explicitly later on.

In the context of our presentation we will see that in Z scenarios with only left-handed
or right-handed flavour violating couplings the most important constraint on the real parts
of new couplings comes not from εK or ∆MK but from KL → µ+µ. On the other hand,
in all Z ′ scenarios and in the case of Z scenarios with left-right operators contributing to
εK , these are always εK and ∆MK and not KL → µ+µ− that are most important for the
determination of the real parts of the new couplings after the ε′/ε constraint has been
imposed.
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ε′/ε εK KL → π0νν̄ K+ → π+νν̄ KL → µ+µ− ∆MK

Im∆ ∗ ∗ ∗ ∗ ∗
Re∆ ∗ ∗ ∗ ∗

Table 2: The dependence of various observables on the imaginary and/or real parts of Z
and Z ′ flavour-violating couplings.

4 Z Models

4.1 Preliminaries

The most recent analyses of ε′/ε in these models can be found in [20,23] and some results
presented below are based on these papers. In particular, the relevant renormalization
group analysis in the spirit of the present paper has been performed in [20]. We summarize
and slightly extend it in Appendix A.

It is straightforward to calculate the values of the Wilson coefficients entering NP part
of the K → ππ Hamiltonian in these models. We define these coefficients by

Heff(K → ππ)(Z) =
10∑
i=3

(Ci(µ)Qi + C ′i(µ)Q′i), (21)

where the primed operators Q′i are obtained from Qi by interchanging V −A and V +A.
The operators Qi are the ones entering the SM contribution [15]

Heff(K → ππ)(SM) =
GF√

2
VudV

∗
us

10∑
i=1

(zSM
i (µ) + τySM

i (µ))Qi, τ = − VtdV
∗
ts

VudV ∗us
. (22)

Explicit expressions for some of them have been given above and the remaining ones can
be found in [15]. Q1,2 are current-current operators, Q3 − Q6 are QCDP operators and
Q7−Q10 EWP operators. Note that whereas zi and yi are dimensionless, the coefficients
in (21) carry dimension as seen explicitly below.

Considering the simple Z exchange with flavour violating couplings ∆sd
L,R(Z), the non-

vanishing Wilson coefficients at µ = MZ are then given at the LO as follows [20]

C3(MZ) = −
[
g2

6cW

]
∆sd
L (Z)

4M2
Z

, C ′5(MZ) = −
[
g2

6cW

]
∆sd
R (Z)

4M2
Z

, (23)

C7(MZ) = −
[

4g2s
2
W

6cW

]
∆sd
L (Z)

4M2
Z

, C ′9(MZ) = −
[

4g2s
2
W

6cW

]
∆sd
R (Z)

4M2
Z

, (24)

C9(MZ) =

[
4g2c

2
W

6cW

]
∆sd
L (Z)

4M2
Z

, C ′7(MZ) =

[
4g2c

2
W

6cW

]
∆sd
R (Z)

4M2
Z

. (25)

We have used the known flavour conserving couplings of Z to quarks which are collected
in the same notation in an appendix in [56]. Our conventions for the couplings ∆sd

L,R(Z)
are defined there and in particular in [57]. The SU(2)L gauge coupling constant g2(MZ) =
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0.652. We note that the values of the coefficients in front of ∆L,R are in the case of C9

and C ′7 by a factor of c2
W/s

2
W ≈ 3.33 larger than for the remaining coefficients. It should

also be stressed that these formulae are also valid for new Z penguins which provide one
loop contributions to the couplings ∆sd

L,R(Z).
We also notice that in contrast to the SM the contributions of current-current operators

Q1,2 are absent and they cannot be generated through renormalization group effects from
penguin operators2. Moreover, whereas the QCDP operator coefficients in the SM are
enhanced by more than an order of magnitude over the EWP coefficients due to the
factor αs/αem, this enhancement is absent here.

In Appendix A we demonstrate that after performing the renormalization group evo-
lution from MZ down to mc and considering the size of hadronic matrix elements it is
sufficient to keep only contributions of Q6 and Q′6 generated from Q5 and Q′5 or contri-
butions of Q8 and Q′8, generated from Q7 and Q′7, if we want to identify the sign of NP
contribution to ε′/ε and do not aim for high precision. But, in Z scenarios, the known
structure of flavour diagonal Z couplings to quarks implies that only EWP Q8 and Q′8
matter.

4.2 Left-handed Scenario (LHS)

4.2.1 ε′/ε

In this scenario only LH flavour-violating couplings are non-vanishing and the pair (Q7, Q8)
has to be considered. Even if at µ = MZ the Wilson coefficient of the EWP operator
Q8 vanishes in the leading order, its large mixing with Q7 operator, its large anomalous
dimension and enhanced hadronic K → ππ matrix elements make it the dominant EWP
operator in ε′/ε. It leaves behind the Q7 operator whose Wilson coefficient, as seen in
(24), does not vanish at µ = MZ . We find then [20](

ε′

ε

)L
Z

=
1

a

ω+

|εK |
√

2

Im[ANP
2 ]L

ReA2

= 0.96× 109

[
Im[ANP

2 ]L

GeV

]
(26)

with
Im[ANP

2 ]L = ImC8(mc)〈Q8(mc)〉2 (27)

and

C8(mc) = 0.76C7(MZ) = −0.76

[
4g2s

2
W

6cW

]
∆sd
L (Z)

4M2
Z

= −2.62× 10−6

[
∆sd
L (Z)

GeV2

]
. (28)

Here g2 = g2(MZ) = 0.652 is the SU(2)L gauge coupling and the factor 0.76 is the outcome
of the RG evolution summarized in Appendix A. For our purposes most important is the
sign in this result and that the RG factor is O(1). 〈Q8(mc)〉2 is given in (11).

2If new heavy charged gauge bosons are present in a given model new contributions to Wilson co-
efficients of current-current operators would be generated and in turn also the coefficients of penguin
operators would be modified through renormalization group effects. But these effects are expected to be
significantly smaller than the ones considered here.
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Collecting all these results we find(
ε′

ε

)L
Z

= −2.64× 103B
(3/2)
8 Im∆sd

L (Z) . (29)

While for our purposes this result is sufficient, in this scenario, in which the RG running
starts at the electroweak scale, it is straightforward to proceed in a different manner by
including NP effects through particular shifts in the functions X, Y and Z entering the
analytic formula for ε′/ε in [1]. These shifts read [20]

∆X = ∆Y = ∆Z = cW
8π2

g3
2

Im∆sd
L (Z)

Imλt
= 1.78× 106

[
1.4 · 10−4

Imλt

]
Im∆sd

L (Z) . (30)

In doing this we include in fact NLO QCD corrections and all operators whose Wilson
coefficients are affected by NP and this allows us to confirm that only the modification
in the contribution of the operator Q8 really matters if we do not aim for high precision.
Indeed, inserting these shifts into the analytic formula for ε′/ε in [1] we reproduce the
result in (29) within roughly 10% and similar accuracy is expected for other estimates of
NP contributions to ε′/ε below. Compared to the present uncertainty in the SM prediction
for ε′/ε, this accuracy is certainly sufficient, but can be increased in the future if necessary.

The final formula for ε′/ε in LHS scenario is then given by(
ε′

ε

)
LHS

=

(
ε′

ε

)
SM

+

(
ε′

ε

)L
Z

(31)

where the second term stands for the contribution in (29) and if one aims for higher
accuracy it originates in the modification related to the shifts in (30).

In order to see the implications of the ε′/ε anomaly in this NP scenario we assume
that NP provides a positive shift in ε′/ε, as defined in (18), keeping κε′ as a free positive
definite parameter. In accordance with our strategy we set other parameters to their
central values. In particular for the SM contributions to rare decays we set the CKM
factors to the values in (20).

From (29) and (18) we find first

Im∆sd
L (Z) = −5.0κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (32)

The sign is fixed through the requirement of the enhancement of ε′/ε. In order to simplify

the formulae below we set B
(3/2)
8 = 0.76 but having (32) it is straightforward to find out

what happens for or other values of B
(3/2)
8 . Moreover, as seen in (14), B

(3/2)
8 is already

rather precisely known.

4.2.2 εK, ∆MK and KL → µ+µ−

For K+ → π+νν̄ we will also need Re∆sd
L (Z). To this end using the formulae of Ap-

pendix B we find the shifts in εK and ∆MK to be

(εK)ZVLL = −4.26× 107 Im∆sd
L (Z)Re∆sd

L (Z) (33)
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and
(∆MK)ZVLL

(∆MK)exp

= 6.43× 107 [(Re∆sd
L (Z))2 − (Im∆sd

L (Z))2] . (34)

From (19), (32) and (33) we determine Re∆sd
L (Z) to be

Re∆sd
L (Z) = 4.7

[
κε
κε′

][
B

(3/2)
8

0.76

]
· 10−5 . (35)

However, the strongest constraint for Re∆sd
L (Z) in this scenario comes from the KL →

µ+µ− bound in (189) which implies the allowed range

− 1.19 · 10−6 ≤ Re∆sd
L (Z) ≤ 3.96 · 10−6 (36)

and consequently using (35)

κε ≤ 0.084κε′

[
0.76

B
(3/2)
8

]
. (37)

Inserting the values of the couplings in (32) and (36) into (33) and (34) we find that
the shift in εK is very small, at the level of 4% at most

− 2.7κε′ · 10−5 ≤ (εK)ZVLL ≤ 8.4κε′ · 10−5 (38)

with the sign following the one of Re∆sd
L (Z). The shift in ∆MK is fully negligible.

Thus in this NP scenario SM must describe well the data on εK and ∆MK unless NP
generating flavour-violating Z couplings can provide significant one-loop contributions to
εK and ∆MK . Such a possibility is encountered in models with heavy vector-like quarks
in [58], provided their masses are above 5 TeV.

4.2.3 K+ → π+νν̄ and KL → π0νν̄

All formulae for these decays that are relevant for us have been collected in Appendix C.
In the case of KL → π0νν̄ we get a unique prediction:

Rνν̄
0 ≡

B(KL → π0νν̄)

B(KL → π0νν̄)SM

= (1− 0.6κε′)
2 (39)

which for κε′ = 1.0 amounts to a suppression of the SM prediction by a factor of 6.3.
The corresponding branching ratio for K+ → π+νν̄ is suppressed through the suppres-

sion of ImXeff governing KL → π0νν̄ and also through suppression of ReXeff for positive
values of Re∆sd

L (Z). But for sufficiently negative values of Re∆sd
L (Z) in (36) it can be

enhanced. Using the formulae in Appendix C we find then

Rνν̄
+ ≡

B(K+ → π+νν̄)

B(K+ → π+νν̄)SM

≤ 1.94 . (40)

This upper limit practically does not depend on κε′ as the NP contribution to the dominant
part of Rνν̄

+ coming from the modification of ReXeff is independent of κε′ and is directly
bounded by KL → µ+µ− and not by the combination of ε′/ε and εK .
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In Fig. 1 we show Rνν̄
0 as a function of κε′ . For the chosen values of the CKM param-

eters in (20) one has

B(K+ → π+νν̄)SM = 7.7 · 10−11 , B(KL → π0νν̄)SM = 2.8 · 10−11 (41)

to be compared with the present SM estimates that include uncertainties in the tree-level
determinations of CKM parameters [38]

B(K+ → π+νν̄)SM = (8.4±1.0) ·10−11 , B(KL → π0νν̄)SM = (3.4±0.6) ·10−11 . (42)

We will use the values in (41) in all formulae below.

4.3 Right-handed Scenario (RHS)

4.3.1 ε′/ε

In this case the operator Q′8 dominates. But its mixing with Q′7 is the same as the one
between Q8 and Q7. Only the value of C ′7(MZ) is different and the matrix element of Q′8
differs from the one of Q8 only by sign. Using (25) we then find(

ε′

ε

)R
Z

=
1

a

ω+

|εK |
√

2

Im[ANP
2 ]R

ReA2

= 0.96× 109

[
Im[ANP

2 ]R

GeV

]
(43)

with

Im[ANP
2 ]R = ImC ′8(mc)〈Q′8(mc)〉2 , 〈Q′8(mc)〉2 = −〈Q8(mc)〉2 , where (44)

C ′8(mc) = 0.76C ′7(MZ) = 0.76

[
4g2c

2
W

6cW

]
∆sd
R (Z)

4M2
Z

= 8.71× 10−6

[
∆sd
R (Z)

GeV2

]
. (45)

Collecting all these results we find now(
ε′

ε

)R
Z

= −8.79× 103B
(3/2)
8 Im∆sd

R (Z) (46)

and note that the numerical factor on the r.h.s is by a factor c2
W/s

2
W = 3.33 larger than

in (29) but the sign is the same.
Thus (

ε′

ε

)
RHS

=

(
ε′

ε

)
SM

+

(
ε′

ε

)R
Z

(47)

with the last term given in (46).
From (46) and (18) we find now

Im∆sd
R (Z) = −1.50κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (48)

The sign is fixed through the requirement of the enhancement of ε′/ε. For a given κε′
the magnitude of the required coupling can be smaller than in LHS because the relevant
Wilson coefficient contains the additional factor 3.33. This also means that it is easier to
enhance ε′/ε in this scenario while satisfying other constraints. This difference relative to
LHS changes the implications for other observables.
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Figure 1: Rνν̄
0 as a function of κε′ for LHS and RHS Z scenarios.

4.3.2 εK, ∆MK and KL → µ+µ−

The strongest constraint for Re∆sd
L (Z) in this scenario comes again from the KL → µ+µ−

bound in (189) which implies this time the allowed range

− 3.96 · 10−6 ≤ Re∆sd
R (Z) ≤ 1.19 · 10−6 , (49)

simply the flip of the sign due to the flip of the sign in (192).
Using the formulae of Appendix B we find the shifts in εK and ∆MK to be even

smaller than in LHS. Thus also in this NP scenario SM must describe the data on εK and
∆MK well unless loop contributions could be significant. On the other hand the results
for K+ → π+νν̄ and KL → π0νν̄ are more interesting.

4.3.3 K+ → π+νν̄ and KL → π0νν̄

We again obtain a unique prediction:

Rνν̄
0 = (1− 0.18κε′)

2, (50)

but this time the suppression of Rνν̄
0 is smaller. For κε′ = 1.0 it amounts to a suppression

by a factor of 1.5. In Fig. 1 we show Rνν̄
0 as a function of κε′ in this scenario.

The corresponding branching ratio for K+ → π+νν̄ is suppressed through the sup-
pression of ImXeff and also through suppression of ReXeff for positive values of Re∆sd

R (Z).
But for sufficiently negative values of Re∆sd

R (Z) in (49) it can be enhanced. As the allowed
magnitude in the latter case is larger than in LHS, the upper bound on the branching
ratio is weaker. The dependence of this upper bound on κε′ is even weaker than in LHS
as ReXeff , which is independent of it, is dominantly responsible for the modification of
the K+ → π+νν̄ rate. We find

Rνν̄
+ ≤ 5.7 . (51)
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Certainly such a large enhancement is very unlikely but it shows that in this scenario
large enhancements of B(K+ → π+νν̄) are possible. The fact that in RHS the bound on
K+ → π+νν̄ from KL → µ+µ− is much weaker than in LHS has been pointed out in the
context of the analysis of the Randall-Sundrum model with custodial protection, where
rare decays are governed by tree-level Z exchanges with RH flavour violating couplings
[59].

4.4 General Z Scenarios

4.4.1 ε′/ε

When both ∆sd
L (Z) and ∆sd

R (Z) are present the general formula for ε′/ε is given as follows(
ε′

ε

)
Z

=

(
ε′

ε

)
SM

+

(
ε′

ε

)L
Z

+

(
ε′

ε

)R
Z

(52)

with the last two terms representing LHS and RHS contributions discussed above. As
the operators Qi and Q′i do not mix under renormalization we can just add these two
contributions to the SM part independently of each other.

The ε′/ε constraint now reads

Im∆sd
L (Z) + 3.33 Im∆sd

R (Z) = −5.0κε′

[
0.76

B
(3/2)
8

]
· 10−7 . (53)

The presence of two couplings allows now for more possibilities as we will see soon. We
set B

(3/2)
8 = 0.76 in what follows.

4.4.2 εK, ∆MK and KL → µ+µ−

This time also LR operators contribute to εK and ∆MK and quite generally constitute by
far the dominant contributions to these quantities so that we can approximate the shifts
in εK and ∆MK by keeping only LR contributions

(εK)Z ≈ 2.07 · 109[(Im∆sd
L (Z)Re∆sd

R (Z) + Im∆sd
R (Z)Re∆sd

L (Z)] (54)

and

RZ
∆M ≡

(∆MK)Z

(∆MK)exp

≈ −6.21 · 109[(Re∆sd
L (Z)Re∆sd

R (Z)− Im∆sd
L (Z)Im∆sd

R (Z)]. (55)

The large size of LR contribution with respect to VLL and VRR contributions is not only
related to enhanced hadronic matrix elements of LR operators but also to larger Wilson
coefficients at µ = mc that are enhanced through renormalization group effects [60]. The
ones of VLL and VRR operators are suppressed slightly by these effects.

The presence of LR operators has a very important consequence. While in LHS and
RHS the KL → µ+µ− bound provided by far the strongest constraint on Re∆sd

L,R(Z),
now also εK plays a role and κε will enter the game. However, as we will see in the first
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example below, for κε ≥ 0.3 and κε′ ≤ 0.6 the KL → µ+µ− will again bound the rate for
K+ → π+νν̄.

In this context it should be remarked that in principle it is possible to eliminate LR
contributions by choosing properly the real and imaginary parts of LH and RH couplings.
It is also possible to use LR contributions to ∆MK or εK to eliminate completely NP
contributions to them by cancelling the contributions from VLL and VRR operators
[20, 61]. This is only possible in the presence of suitable hierarchy between LH and RH
couplings. In what follows we will assume that such fine-tuned situations do not take
place.

While, the presence of LR operators is regarded often as a problem, it should be
realized that in the case of possible anomalies in εK and ∆MK they could be welcome
in the Z case, where in LHS and RHS NP contributions to εK and ∆MK turned out to
be small. In order to illustrate this we will assume, as announced in Section 3, that in
addition to the ε′/ε anomaly, the data show also εK anomaly parametrized by κε in (19).

4.4.3 K+ → π+νν̄ and KL → π0νν̄

For K+ → π+νν̄ and KL → π0νν̄ the relevant expressions are collected in Appendix C.
In particular (182) implies that in KL → π0νν̄ the enhancement of its branching ratio
requires the sum of the imaginary parts of the couplings to be positive. This enhances
also K+ → π+νν̄ but as seen in (181) could be compensated by the decrease of ReXeff

unless the sum of the corresponding real parts is negative. For KL → µ+µ− the relevant
expressions are given in Appendix D. In particular in (192).

It is clear that with more parameters involved there are many possibilities in this
NP scenario and which one is realized in nature will be only known through precise
confrontation of the SM predictions for ε′/ε, B(K+ → π+νν̄), B(KL → π0νν̄), εK and
∆MK with future data. Indeed, presently it is not excluded that NP contributes to all of
these quantities so that some enhancements and suppressions will be required.

Now among the five quantities in question only ε′/ε and to a lesser extent εK exhibit
some anomaly and NP models providing enhancements to both of them appear to be
favoured. How much enhancement is needed in ε′/ε will strongly depend on the future

value of B
(1/2)
6 . In the case of εK this depends on the values of the CKM parameters, in

particular on the value of |Vcb|.
It would also be favourable, in particular for experimentalists, if the nature required

the enhancements of both B(K+ → π+νν̄) and B(KL → π0νν̄) relative to SM predictions,
simply, because then these branching ratios would be easier to measure and one could
achieve a higher experimental precision on them. But, we have seen in LHS and RHS
that enhancement of ε′/ε implied automatically suppression of B(KL → π0νν̄), while
B(K+ → π+νν̄) could be both enhanced and suppressed. NP contributions to εK and
∆MK were found at the level of a few percent at most after the ε′/ε and KL → µ+µ−

constraints have been imposed. Therefore these scenarios while being in principle able
to remove ε′/ε anomaly, cannot simultaneously solve possible εK anomaly. In fact, as
already observed in [20], in these scenarios a 10− 20% NP contribution to εK would give
significantly larger shift in ε′/ε than it is allowed by the data.

The question then arises whether it is possible in a general Z scenario to remove the
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ε′/ε anomaly through the shift in (18), enhance εK by a shift in (19) and simultaneously
enhance B(KL → π0νν̄) and B(K+ → π+νν̄) while satisfying the KL → µ+µ− and ∆MK

constraints. The inspection of the formulae in Appendices B–D shows that this is indeed
possible.

4.4.4 Phenomenology

In order to exhibit this possibility in explicit terms and investigate the interplay between
various quantities we introduce two real parameters r1 and r2 through

Im∆sd
L (Z) = −r1 Im∆sd

R (Z), Re∆sd
L (Z) = r2 Re∆sd

R (Z) . (56)

Using (54) we find then

(εK)Z ≈ 2.07 · 109 (r2 − r1)Im∆sd
R (Z)Re∆sd

R (Z) . (57)

Imposing the shifts in (18) and (19) we can determine:

Im∆sd
R (Z) =

5.0

(r1 − 3.33)
κε′ · 10−7, Re∆sd

R (Z) = 0.966
(r1 − 3.33)

(r2 − r1)

κε
κε′
· 10−6 . (58)

Formulae (56) and (58) inserted in the expressions in Appendices B–D allow to express
the branching ratios for K+ → π+νν̄, KL → π0νν̄ and KL → µ+µ− and ∆MK in terms
of κε′ , κε, r1 and r2.

In particular in order to see the signs of NP effects we find first

ReXeff(Z) = −4.44 · 10−4 + 2.51 · 102 (1 + r2) Re∆sd
R (Z) , (59)

ImXeff(Z) = 2.07 · 10−4 + 2.51 · 102 (1− r1) Im∆sd
R (Z) , (60)

ReYeff(Z) = −2.83 · 10−4 + 2.51 · 102 (r2 − 1) Re∆sd
R (Z) (61)

and
RZ

∆M ≈ −6.21 · 109
[
r2 (Re∆sd

R (Z))2 + r1 (Im∆sd
R (Z))2

]
. (62)

With κε′ being positive we find then that ε′/ε and B(KL → π0νν̄), with the latter
governed by ImXeff(Z), can be simultaneously enhanced provided

Im∆sd
R (Z) < 0 , 1.0 < r1 < 3.33 . (63)

If in addition εK and B(K+ → π+νν̄) should be enhanced r2 has to satisfy3

r2 > r1 , Re∆sd
R (Z) < 0 or r2 < −1 , Re∆sd

R (Z) > 0 . (64)

We illustrate the implications of these findings with two examples:
Example: 1 We fix r1 = 2 and r2 = 3 to get

Im∆sd
R (Z) = −3.76κε′ · 10−7, Re∆sd

R (Z) = −1.33
κε
κε′
· 10−6 . (65)

3We assume here the enhancement of the magnitude of ReXeff.
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Figure 2: Rνν̄
0 and Rνν̄

+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.4 for the example 1.
The horizontal black line corresponds to the upper bound in (66). The experimental 1σ
range for Rνν̄

+ in (176) is displayed by the grey band.

This is in fact the case considered already in [23] but here we present it in more explicit
terms. In particular we include K+ → π+νν̄ and KL → µ+µ− in this discussion and not
only KL → π0νν̄ as done in that paper. The inspection of formulae for ReXeff(Z) and
ReYeff(Z) above accompanied by numerical analysis show that in this example

Rνν̄
+ ≈ Rµµ̄

L =
B(KL → µ+µ−)

B(KL → µ+µ−)SM

≤ 3.5 (66)

with the latter bound resulting from the bound in (189). On the other hand ∆MK does
not play any essential role with |RZ

∆M | ≤ 0.04.
In Fig. 2 we show Rνν̄

0 and Rνν̄
+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.44 repre-

sented in the case of Rνν̄
+ by different colours

κε = 0.1 (green), κε = 0.2 (red), κε = 0.3 (cyan), κε = 0.4 (yellow) . (67)

Rνν̄
0 is given by blue line and the upper bound in (66) is indicated by a black horizontal

line.
We observe that with increasing κε′ the enhancement of Rνν̄

0 slowly increases. On the
other hand for a given κε the ratio Rνν̄

+ decreases with increasing κε′ . Both properties can
easily be understood from the formulae in (59), (60) and (65). We note that for a given
κε′ the upper bound in (66) implies and upper bound on κε which becomes weaker with
increasing κε′ . Most interesting appear the values κε′ ≥ 1.0 and κε ≈ 0.25 for which both
ε′/ε and εK anomalies can be solved in agreement with the KL → µ+µ− bound and both
K+ → π+νν̄ and KL → π0νν̄ are significantly enhanced over their SM values.

4In principle while varying κε we should also modify our CKM parameters as they correspond to
κε = 0.26. But the dominant dependence on CKM parameters cancels in the ratios considered and
keeping CKM fixed exposes better the dependence on κε in the plots.
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Figure 3: Rνν̄
0 and Rνν̄

+ , as functions of κε′ for the example 2. Rνν̄
0 is independent of

κε and the dependence of Rνν̄
+ on κε is negligible. The experimental 1σ range for Rνν̄

+ in
(176) is displayed by the grey band.

Example: 2 We fix r1 = 3 and r2 = −2 to get

Im∆sd
R (Z) = −1.52κε′ · 10−6, Re∆sd

R (Z) = 6.6
κε
κε′
· 10−8 . (68)

Note that now imaginary parts of the couplings are larger than the real parts with in-
teresting consequences. In Fig. 3 we show for this case Rνν̄

0 and Rνν̄
+ , as functions of κε′

again for κε = 0.1, 0.2, 0.3, 0.4. Now the relation (66) is no longer valid and the bound
from KL → µ+µ− is irrelevant because the real parts of the couplings are much smaller
than in the previous example. We observe basically no dependence of Rνν̄

+ on κε as this
parameter affects only the real parts of the couplings which are small in this example.
Again ∆MK does not play any essenial role with |RZ

∆M | ≤ 0.05.
We observe a very strong enhancement of both branching ratios which increases with

increasing κε′ . This should be contrasted with the previous example in which for a given
κε the two branching ratios were anticorrelated. This is best seen in Fig. 4 where we show
in the left panel Rνν̄

0 vs Rνν̄
+ for the example 1 and in the right panel the corresponding plot

for the example 2. A given line in the left panel, on which the ratios are anticorrelated,
corresponds to a fixed value of κε and the range on each line results from the variation of
κε′ in the range 0.5 ≤ κε′ ≤ 1.5. We impose the constraint from B(KL → µ+µ−). In the
right panel the value of κε does not matter and the range for the values of both branching
ratios corresponds to 0.5 ≤ κε′ ≤ 1.5 with largest enhancements for largest κε′ . Moreover,
the two ratios increase in a correlated manner on the line parallel to the GN bound in
(175) which expressed through the ratios Rνν̄

0 and Rνν̄
+ reads

Rνν̄
0 ≤ 11.85Rνν̄

+ . (69)

We indicate this bound by a black line. Such a correlation between K+ → π+νν̄ and
KL → π0νν̄ is characteristic for cases in which only imaginary parts in the new couplings
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Figure 4: Rνν̄
0 vs Rνν̄

+ for κε = 0.1, 0.2, 0.3, 0.4 for the example 1 (left panel) and
the example 2 (right panel) varying 0.5 ≤ κε′ ≤ 1.5. The vertical black line in the left
panel corresponds to the upper bound in (66). The dependence on κε in the right panel is
negligible and the black line represents the GN bound in (69). The experimental 1σ range
for Rνν̄

+ in (176) is displayed by the grey band.

matter and both branching ratios are affected only by the modification of ImXeff . For a
general discussion see [62].

4.5 Summary of NP Patterns in Z Scenarios

The lessons from these four exercises are as follows:

• In the LHS , a given request for the enhancement of ε′/ε determines the coupling
Im∆sd

L (Z).

• This result has direct unique implications on KL → π0νν̄: suppression of B(KL →
π0νν̄). This property is known from NP scenarios in which NP to KL → π0νν̄ and
ε′/ε enters dominantly through the modification of Z-penguins.

• The imposition of the KL → µ+µ− constraint determines the range for Re∆sd
L (Z)

which with the already fixed Im∆sd
L (Z) allows to calculate the shifts in εK and ∆MK .

These shifts turn out to be very small for εK and negligible for ∆MK . Therefore
unless loop contributions from physics generating ∆sd

L (Z) play significant role in
both quantities, the SM predictions for εK and ∆MK must agree well with data for
this NP scenario to survive.

• Finally, with fixed Im∆sd
L (Z) and the allowed range for Re∆sd

L (Z), the range for
B(K+ → π+νν̄) can be obtained. But in view of uncertainties in the KL → µ+µ−

constraint both enhancement and suppressions of B(K+ → π+νν̄) are possible and
no specific pattern of correlation between B(KL → π0νν̄) and B(K+ → π+νν̄) is
found. In the absence of a relevant εK constraint this is consistent with the general
analysis in [62]. B(K+ → π+νν̄) can be enhanced by a factor of 2 at most.
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• Analogous pattern is found in RHS, although the numerics is different. First due
the modification of the initial conditions for the Wilson coefficients the suppression
of B(KL → π0νν̄) for a given κε′ is smaller. Moreover, the flip of the sign in NP
contribution to KL → µ+µ− allows for larger enhancement of B(K+ → π+νν̄), a
property known from our previous analyses. An enhancement of B(K+ → π+νν̄)
up to a factor of 5.7 is possible.

• In a general Z scenario the pattern of NP effects changes because of the appearance
of LR operators dominating NP contributions to εK and ∆MK . Consequently for
large range of parameters these two quantities, in particular εK , provide stronger
constraint on Re∆sd

L,R(Z) than KL → µ+µ−. But the main virtue of the general
scenario is the possibility of enhancing simultaneously ε′/ε, εK , B(K+ → π+νν̄)
and B(KL → π0νν̄) which is not possible in LHS and RHS. Thus the presence of
both LH and RH flavour-violating currents is essential for obtaining simultaneously
the enhancements in question.

• We have illustrated this on two examples with the results shown in Figs. 2–4 for
which as seen in Fig. 4 the correlation between branching ratios for K+ → π+νν̄ and
KL → π0νν̄ are strikingly different. In particular in the second example in which
the imaginary parts in the couplings dominate the correlation takes place along the
line parallel to the line representing GN bound.

We will now turn our attention to Z ′ models which, as we will see, exhibit quite
different pattern of NP effects in the K meson system than the LH and RH Z scenarios. In
particular we will find that at the qualitative level Z ′ models with only LH or RH flavour-
violating couplings can generate very naturally the patterns found in the two examples in
Figs. 2–4 that in Z scenario required the presence of both LH and RH couplings. In fact
the pattern of correlation between K+ → π+νν̄ and KL → π0νν̄ found in the example
1 will also be found in Z ′ scenario in which NP in ε′/ε is dominated by EWP operator
Q8. On the other hand QCDP operator Q6 generated by Z ′ exchange implies a pattern
of correlation between KL → π0νν̄ and K+ → π+νν̄ found in the example 2. But the
implication for NP effects in ∆MK will turn out to be more interesting than found in the
latter example.

5 Z′ Models

5.1 Preliminaries

Also in this case the operators Q8 and Q′8 dominate NP contribution to ε′/ε in several
models and we will recall some of them below. However, this time flavour diagonal Z ′

couplings to quarks are model dependent, which allows to construct models in which
the QCDP operator Q6 or the operator Q′6 dominates NP contribution to ε′/ε. As this
case cannot be realized in Z scenarios it is instructive to discuss this scenario first. In
particular it will turn out that in this case it is much easier to reach our goal of enhancing
simultaneously ε′/ε, εK , K+ → π+νν̄ and KL → π0νν̄. Moreover, the presence of flavour-
violating right-handed currents is not required.
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In order for Q6 or Q′6 to dominate the scene the diagonal RH or LH quark couplings
must be flavour universal which with the normalization of Wilson coefficients in (21)
implies [20]

C3(MZ′) =
∆sd
L (Z ′)∆qq

L (Z ′)

4M2
Z′

, C ′3(MZ′) =
∆sd
R (Z ′)∆qq

R (Z ′)

4M2
Z′

, (70)

C5(MZ′) =
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

, C ′5(MZ′) =
∆sd
R (Z ′)∆qq

L (Z ′)

4M2
Z′

. (71)

Here ∆qq
L,R(Z ′) are flavour universal quark couplings which are assumed to be real.

It should be noted that EWP are absent here. Moreover, they cannot be generated
from QCDP through QCD renormalization group effects so that their contributions can
be neglected. This should be contrasted with the SM, where they are generated by
electroweak interactions from the mixing with current-current operators that have much
larger Wilson coefficients than QCDP.

Now as briefly discussed in Section 7 there exist models in which only LH or RH
couplings are present. In that case the Wilson coefficients C5(MZ′) and C ′5(MZ′) vanish
in the leading order. Non-vanishing contribution of Q6 and Q′6 can still be generated
through their mixing with (V ∓A)× (V ∓A) operators Q3 and Q′3, respectively. But this
mixing is significantly smaller than between Q6 and Q5 and between Q′6 and Q′5 leading
to much smaller Wilson coefficients of Q6 and Q′6 at µ = mc than it is possible when
the Wilson coefficients C5(MZ′) and C ′5(MZ′) do not vanish. We will therefore consider
only the latter case but the former case of only LH or RH couplings implies similar
phenomenology to the one presented below except that NP effects in ε′/ε are significantly
smaller than the ones discussed by us.

In this context we also note that without a specific model there is a considerable
freedom in the values of the diagonal quark and lepton couplings of Z ′, although one
must make sure that they are consistent with LEP II and LHC bounds. Concerning LHC
bounds, the study in [63] implies∣∣∆qq̄

R (Z ′)
∣∣ ≤ 1.0

[
MZ′

3 TeV

][
1 +

(
1.3 TeV

MZ′

)2
]
. (72)

On the other hand bounds on the leptonic Z ′ couplings can be extracted from the final
analysis of the LEP-II data [64], although there is still a considerable freedom as the
bounds are for products of electron and other lepton couplings. Therefore the allowed
coupling ∆νν̄

L (Z ′) can be increased by lowering ∆eē
L (Z ′) coupling.

As an example for our nominal value MZ′ = 3 TeV the choices

∆qq̄
R (Z ′) = 1, ∆qq̄

L (Z ′) = −1, ∆νν̄
L (Z ′) = ∆µµ̄

L (Z ′) = 0.5 (73)

are consistent with these bounds5. Yet, it should be kept in mind that these couplings
can in principle be larger or smaller. For larger (smaller) ∆νν̄

L (Z ′) NP contributions to
the branching ratios for K+ → π+νν̄ and KL → π0νν̄ will be larger (smaller), but in a
correlated manner. The implications of the change of the couplings ∆qq̄

L,R(Z ′) are more
profound as we will see in the context of our presentation. But, for the time being we will
assume that ∆qq̄

L,R(Z ′) are O(1).

5The relation between leptonic couplings follows from SU(2)L gauge invariance
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5.2 Z′ with QCD Penguin Dominance (LHS)

5.2.1 ε′/ε

We begin with NP scenario with purely LH flavour-violating quark couplings and flavour
universal RH flavour diagonal couplings. In this case the operator Q6 is dominant. It
mixes with the operator Q5 and the LO RG analysis gives [20] (see Appendix A)

C6(mc) = 1.13
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

= 3.14× 10−8

[
∆sd
L (Z ′)∆qq

R (Z ′)

GeV2

] [
3 TeV

MZ′

]2

(74)

with 1.13 resulting from RG evolution from MZ′ = 3 TeV down to µ = mc. With increas-
ing MZ′ this factor increases logarithmically but C6(mc) decreases much faster because
of the last factor. Still as we will discuss later if the flavour structure of a given model
is such that the suppression by Z ′ propagator is compensated by the increase of flavour-
violating couplings, for MZ′ ≥ 10 TeV the RG effects above MZ′ = 3 TeV begin to play
some role implying additional enhancements of both QCDP and EWP contributions to
ε′/ε. The contribution of Q5 can be neglected because of its strongly colour suppressed
matrix element. Moreover, relative importance of Q5 decreases with increasing MZ′ again
due to RG effects. See Appendix A for details.

We then find(
ε′

ε

)L
Z′

= −Im[ANP
0 ]L

ReA0

[
ω+

|εK |
√

2

]
(1− Ω̂eff) = −3.687× 107

[
Im[ANP

0 ]L

GeV

]
(75)

where we set all relevant quantities at their central values and

[ANP
0 ]L = C6(mc)〈Q6(mc)〉0 (76)

with 〈Q6(µ)〉0 given in (10).
Collecting all these results we find(

ε′

ε

)L
Z′

= 0.67B
(1/2)
6

[
3 TeV

MZ′

]2

Im(∆sd
L (Z ′))∆qq

R (Z ′) . (77)

It should be noted that due to a large value of MZ′ and the suppression factors of the
Q6 contribution to ε′/ε mentioned before, the overall numerical factor in this result is for
∆qq̄
R (Z ′) = O(1) by more than three orders of magnitude smaller than in the case of the

corresponding Z scenario. See (29).
We next request the enhancement of ε′/ε as given in (18) and set the values of CKM

factors to the ones in (20). Setting B
(1/2)
6 = 0.7, a typical value consistent with lattice

and large N results, we find from (77) and (18)

Im∆sd
L (Z ′) = 2.1

[
κε′

∆qq̄
R (Z ′)

][
0.70

B
(1/2)
6

] [
MZ′

3 TeV

]2

· 10−3 . (78)

The sign is fixed through the requirement of the enhancement of ε′/ε in (18) and the sign
of ∆qq̄

R (Z ′) in (73). The large difference between the values in (32) and (78) is striking.
The strong suppression of NP contribution to ε′/ε by a large Z ′ mass, suppressed matrix
element of Q6 relative to the one of Q8 and the inverse “∆I = 1/2” factor in (4) have to
be compensated by increasing Im∆sd

L (Z ′). This will have interesting consequences.
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5.2.2 εK, ∆MK and KL → µ+µ−

Because of the increased value of Im∆sd
L (Z ′), not KL → µ+µ− bound (189), as in the

corresponding Z scenario, but εK and ∆MK put the strongest constraints on Re∆sd
L (Z ′).

Using the instructions at the end of Appendix B we find

(εK)Z
′

VLL = −3.51× 104

[
3 TeV

MZ′

]2

Im∆sd
L (Z ′)Re∆sd

L (Z ′) (79)

and

RZ′

∆M =
(∆MK)Z

′
VLL

(∆MK)exp

= 5.29× 104

[
3 TeV

MZ′

]2

[(Re∆sd
L (Z ′))2 − (Im∆sd

L (Z ′))2] (80)

Requiring the enhancement of εK as in (19) and using (78) we find

Re∆sd
L (Z ′) = −1.4κε

[
∆qq̄
R (Z ′)

κε′

] [
B

(1/2)
6

0.70

]
· 10−5 . (81)

It should be noted that this result is independent of the value of MZ′ . Moreover, there
is again a striking difference from the Z case as now Re∆sd

L (Z ′) is much smaller than
Im∆sd

L (Z ′) making the coupling ∆sd
L (Z ′) to an excellent approximation imaginary with

two first interesting consequences:

• The KL → µ+µ− constraint is easily satisfied.

• ∆MK is uniquely suppressed with the suppression increasing with increasing κε′ and
MZ′ :

RZ′

∆M(QCDP) ≡ (∆MK)Z
′

VLL

(∆MK)exp

= −0.23

[
κε′

∆qq̄
R (Z ′)

]2 [
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2

. (82)

Whether this suppression is consistent with the data cannot be answered at present be-
cause of large uncertainties in the evaluation of ∆MK within the SM.

Indeed the present SM estimate without the inclusion of long distance effects reads [65]

RSM
∆M = 0.89± 0.34 . (83)

Large N approach [10] indicates that long distance contributions enhance this ratio by
roughly 20%. First lattice calculations [66] are still subject to large uncertainties and also
the large error in (83) precludes any definite conclusions at present whether NP should
enhance or suppress this ratio.

5.2.3 K+ → π+νν̄ and KL → π0νν̄

But the most interesting implications of the ε′/ε anomaly in this scenario are the ones
for K+ → π+νν̄ and KL → π0νν̄. Inserting the couplings in (78) and (81) into (184)
and (185)we find that the branching ratios B(KL → π0νν̄) and B(K+ → π+νν̄) are to an
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Figure 5: Rνν̄
+ and Rνν̄

0 , as functions of κε′ for ∆νν̄
L (Z ′) = 0.3, 0.4, 0.5 for QCDP scenario.

MZ′ = 3 TeV. The dependence on κε is negligible. The upper black line in the lower left
panel is the GN bound. In the fourth panel correlation of RZ′

∆M with Rνν̄
+ is given. The

experimental 1σ range for Rνν̄
+ in (176) is displayed by the grey band.

excellent approximation affected only through the shift in ImXeff . Therefore, there is a
strict correlation between B(KL → π0νν̄) and B(K+ → π+νν̄) which in the plane of these
two branching ratios takes place on the branch parallel to the Grossman-Nir bound [67]
in (69). This is a very striking difference from Z scenarios LHS and RHS which to our
knowledge has not been noticed before. On the other hand there are some similarities to
the example 2 in the general Z scenario in which the imaginary parts of the couplings
dominate and the value of the parameter κε does not play any role for K+ → π+νν̄ and
KL → π0νν̄.

In Fig. 5 we show Rνν̄
0 and Rνν̄

+ as functions of κε′ and different values of ∆νν̄
L (Z ′) with

the colour coding:

∆νν̄
L (Z ′) = 0.3 (red), ∆νν̄

L (Z ′) = 0.4 (green), ∆νν̄
L (Z ′) = 0.5 (blue) . (84)

We keep the diagonal quark coupling ∆qq̄
R (Z ′) = 1 but as seen in (78) the results depend

only on the ratio κε′/∆
qq̄
R (Z ′) and it is straightforward to find out what happens for other

values of ∆qq̄
R (Z ′). As the real parts of flavour violating couplings are small the parameter

κε has no impact on this plot. In the third panel we show Rνν̄
0 vs Rνν̄

+ with the lower
straight line representing the strict correlation between both ratios mentioned before and
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the upper line is the GN upper bound. In the fourth panel we show the correlation of
RZ′

∆M with Rνν̄
+ for different values of ∆νν̄

L (Z ′).
We observe that for ∆νν̄

L (Z ′) = 0.5 and κε′ = 1.0 the branching ratio B(KL → π0νν̄) is
enhanced by a factor of 17.6 and B(K+ → π+νν̄) by a factor of 2.4 with respect to the SM
values. Moreover ∆MK is suppressed by roughly 25%. These results are for MZ′ = 3 TeV.
Larger values of MZ′ will be considered in Section 5.8.

The NP effects for largest κε′ are spectacular but probably unrealistic. There are
various means to decrease them as can be deduced from the plots in Fig. 5. We give two
examples

• κε′ in (18) could turn out to be moderate, say κε′ = 0.5, so that Im∆sd
L (Z ′) is smaller

by a factor of two relative to the κε′ = 1.0 case. The enhancements of B(KL → π0νν̄)
and B(K+ → π+νν̄) will then decrease approximately to 6.8 and 1.5, respectively.
Moreover the suppression of ∆MK will only be by 6%. The enhancement of εK in
(19) can still be kept by increasing Re∆sd

L (Z ′) by a factor of 2 without any visible
consequences for other observables.

• The enhancements of B(KL → π0νν̄) and B(K+ → π+νν̄) can be decreased by
making ∆νν̄

L (Z ′) smaller. In fact this will be the only option if κε′ will be required
to be close to unity. Note, however, that modifying ∆νν̄

L (Z ′) will affect the two
branching ratios in a correlated manner.

It should also be kept in mind that an increase of ∆qq̄
R (Z ′) to obtain larger enhancement

of ε′/ε and smaller Im∆sd
L (Z ′) is bounded by the LHC data in (72).

Clearly, the result that the branching ratios B(KL → π0νν̄) and B(K+ → π+νν̄)
are enhanced because ε′/ε is enhanced is related to the choice of the signs of flavour
diagonal quark and neutrino couplings in (73). If the sign of one of these couplings is
reversed but still the enhancement of ε′/ε is required, both branching ratios are suppressed
along the branch parallel to the GN bound. But ∆MK being governed by the square of
the imaginary couplings is always suppressed. We summarize all cases in Table 3. It
should also be noticed that this pattern would not change if it turned out that εK should
be suppressed (κε < 0), which would reverse the sign of Re∆sd

L (Z ′). Simply, because
Re∆sd

L (Z ′) is so much smaller than Im∆sd
L (Z ′) that its sign does not matter.

∆qq̄
R (Z ′) ∆νν̄

L (Z ′) ε′/ε B(KL → π0νν̄) B(K+ → π+νν̄) ∆MK

+ + + + + −
− + + − − −
+ − + − − −
− − + + + −

Table 3: Pattern of correlated enhancements (+) and suppressions (−) in Z ′ scenarios in
which NP in ε′/ε is dominated by QCDP operator Q6.

In summary the two striking predictions of this scenario is the simultaneous en-
hancement or simultaneous suppression of the branching ratios for K+ → π+νν̄ and
KL → π0νν̄ accompanied always by the suppression of ∆MK . Finding the enhancement
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of K+ → π+νν̄ and suppression of KL → π0νν̄ or vice versa at NA62 and KOPIO exper-
iments and/or the need for an enhancement of ∆MK by NP would rule out this scenario
independently of what will happen with εK .

5.3 Z′ with QCD Penguin Dominance (RHS)

In the case of LHS the flavour symmetry on all diagonal RH quark couplings has to be
imposed. But in the RHS the flavour diagonal couplings are left-handed and the ones in
an SU(2)L doublet must be equal to each other due to SU(2)L gauge symmetry which is
still unbroken for Z ′ masses larger than few TeV. Thus it is more natural in this case to
generate only QCDP operators than in LHS.

We find this time

C ′6(mc) = 1.13
∆sd
R (Z ′)∆qq

L (Z ′)

4M2
Z′

= 3.14× 10−8

[
∆sd
R (Z ′)∆qq

L (Z ′)

GeV2

] [
3 TeV

MZ′

]2

(85)

ε′/ε is again given by (75) but this time

[ANP
0 ]R = C ′6(µ)〈Q′6(µ)〉0, 〈Q′6(µ)〉0 = −〈Q6(µ)〉0 (86)

Collecting all these results we find(
ε′

ε

)R
Z′

= −0.67B
(1/2)
6

[
3 TeV

MZ′

]2

Im(∆sd
R (Z ′))∆qq

L (Z ′) . (87)

The difference in sign from (87) is only relevant in a model in which the flavour diagonal
couplings are known or can be measured somewhere. With the choice of the quark flavour
diagonal couplings in (73) there is no change in the values of flavour violating couplings
except that now these are right-handed couplings instead of left-handed ones. Even if NP
contribution to KL → µ+µ− changes sign, this change is too small to be relevant because
the real parts of NP couplings are small. For other choices of signs of flavour diagonal
couplings a DNA-Table analogous to Table 3 can be constructed by just reversing the
signs of ∆qq̄

R (Z ′) and replacing it by ∆qq̄
L (Z ′).

5.4 Z′ with QCD Penguin Dominance (General)

5.4.1 ε′/ε

We will next consider scenario in which both LH and RH flavour violating Z ′ couplings
are present. From (77) and (87) we find(

ε′

ε

)
Z′

= 0.67B
(1/2)
6

[
3 TeV

MZ′

]2 [
Im(∆sd

L (Z ′))∆qq
R (Z ′)− Im(∆sd

R (Z ′))∆qq
L (Z ′)

]
. (88)

This result is interesting in itself. If Z ′ couplings to quarks are left-right symmetric there
is, similar to KL → µ+µ−, no NP contribution to ε′/ε. In view of strong indication for
κε′ 6= 0 left-right symmetry in the Z ′ couplings to quarks has to be broken.
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But there is still another reason that such a situation cannot be realized as either
the coupling ∆qq

L (Z ′) or the coupling ∆qq
R (Z ′) can be flavour universal. They cannot be

both flavour universal as then it would not be possible to generate large flavour violating
couplings in the mass eigenstate basis for any of the terms in (88). But one could consider
e.g. ∆qq

R (Z ′) to be flavour universal to a high degree still allowing for a strongly suppressed
but non-vanishing coupling ∆sd

R (Z ′). In any case for these reasons only one term in (88)
will be important allowing in principle the solution to the ε′/ε anomaly. But the presence
of both LH and RH flavour-violting couplings, even if one is much smaller than the other,
changes the εK and ∆MK constraints through LR operators, as we have seen in the
general Z case. While in the latter scenario this allowed us to obtain interesting results
for rare decays, in Z ′ scenarios the requirement of much larger couplings than in the Z
case for solving the ε′/ε anomaly makes the εK and ∆MK constraints problematic as we
will discuss briefly now.

5.4.2 εK and ∆MK

We have now
(εK)NP = (εK)Z

′

VLL + (εK)Z
′

VRR + (εK)Z
′

LR (89)

where

(εK)Z
′

LR = −3.39× 106

[
3 TeV

MZ′

]2

Im
[
∆sd
L (Z ′)∆sd

R (Z ′)
]∗

(90)

and

RZ′

∆M =
(∆MK)Z

′
VLL

(∆MK)exp

+
(∆MK)Z

′
VRR

(∆MK)exp

+
(∆MK)Z

′
LR

(∆MK)exp

(91)

with
(∆MK)Z

′
LR

(∆MK)exp

= −1.02× 107

[
3 TeV

MZ′

]2

Re
[
∆sd
L (Z ′)∆sd

R (Z ′)
]∗
. (92)

5.4.3 Implications

In view of the large coupling Im∆sd
L (Z ′) or Im∆sd

R (Z ′) required to solve the ε′/ε anomaly,
NP contributions to εK and ∆MK in the presence of both LH and RH currents are very
large. The only solution would be a very fine-tuned scenario in which the four couplings
Im∆sd

L,R(Z ′) and Re∆sd
L,R(Z ′) take very particular values. But eventually in order to get

significant shift in ε′/ε and satisfy ∆MK and εK constraints either RH or LH couplings
would have to be very small bringing us back to the LHS or RHS scenario, respectively.

We conclude therefore that the solution to the ε′/ε anomaly in Z ′ scenarios through the
QCDP is only possible in the LHS or RHS if one wants to avoid fine-tuning of couplings.
Then also the branching ratios for K+ → π+νν̄ and KL → π0νν̄ can be enhanced in a
correlated manner and εK enhanced as favoured by the data.

This is different from the Z case, where the four enhancements in question could only
be simultaneously obtained in the presence of LH and RH couplings without fine-tuning
of parameters.
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5.5 A heavy G′

We have just seen that the removal of ε′/ε anomaly in Q6 scenario implies for ∆νν̄
L (Z ′) =

O(1) large NP effects in K+ → π+νν̄ and KL → π0νν̄. It is possible that the ε′/ε anomaly
will remain but no NP will be found in K+ → π+νν̄ and KL → π0νν̄. The simplest
solution would be to set ∆νν̄

L (Z ′) = 0. But another possibility would be the presence of
a heavy G′ which does not couple to neutrinos. One of the prominent examples of this
type are Kaluza-Klein gluons in Randal-Sundrum scenarios that belong to the adjoint
representation of the colour SU(3)c. But here we want to consider a simplified scenario
that has been considered in the context of NP contribution to the ∆I = 1/2 rule in [20]
and some of the results obtained there can be used in the case of ε′/ε here.

Following [20] we will then assume that these gauge bosons carry a common mass MG′

and being in the octet representation of SU(3)c couple to fermions in the same manner
as gluons do. However, we will allow for different values of their left-handed and right-
handed couplings. Therefore up to the colour matrix ta, the couplings to quarks will be
again parametrized by:

∆sd
L (G′), ∆sd

R (G′), ∆qq
L (G′), ∆qq

R (G′) . (93)

As G′ carries colour, the RG analysis is modified through the change of the initial
conditions at µ = MG′ that read now [20]

C3(MG′) =

[
−1

6

]
∆sd
L (G′)∆qq

L (G′)

4M2
G′

, C ′3(MG′) =

[
−1

6

]
∆sd
R (G′)∆qq

R (G′)

4M2
G′

, (94)

C4(MG′) =

[
1

2

]
∆sd
L (G′)∆qq

L (G′)

4M2
G′

, C ′4(MG′) =

[
1

2

]
∆sd
R (G′)∆qq

R (G′)

4M2
G′

, (95)

C5(MG′) =

[
−1

6

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

, C ′5(MG′) =

[
−1

6

]
∆sd
R (G′)∆qq

L (G′)

4M2
G′

, (96)

C6(MG′) =

[
1

2

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

, C ′6(MG′) =

[
1

2

]
∆sd
R (G′)∆qq

L (G′)

4M2
G′

. (97)

In the LHS scenario the contributions of primed operators are absent. Moreover, due
the non-vanishing value of C6(MG′) the dominance of the operator Q6 is this time even
more pronounced than in the case of a colourless Z ′. See Appendix A. One finds then in
the LHS [20]

C6(mc) = 1.61
∆sd
L (G′)∆qq

R (G′)

4M2
G′

(98)

with 1.61 resulting from RG evolution from MG′ = 3.0 TeV down to mc.
We find then (

ε′

ε

)L
G′

= 0.70B
(1/2)
6

[
3.5 TeV

MG′

]2

Im(∆sd
L (G′))∆qq

R (G′) , (99)

where the difference in the RG factor for MG′ = 3.0 TeV and MG′ = 3.5 TeV can be
neglected.
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Now the upper bound on ∆qq
R (G′) from LHC reads [63]∣∣∆qq̄

R (G′)
∣∣ ≤ 2.0

[
MG′

3.5 TeV

][
1 +

(
1.4 TeV

MG′

)2
]
. (100)

Taking B
(1/2)
6 = 0.7, ∆qq

R (G′) = 2.0 and MG′ = 3.5 TeV we find then(
ε′

ε

)L
G′

= 0.98 Im∆sd
L (G′) (101)

and consequently the removal of ε′/ε anomaly requires now

Im∆sd
L (G′) = 1.02κε′

[
2.0

∆qq̄
R (G′)

]
10−3, (102)

which is by a factor of two lower than in the case of Z ′.
As shown in [20] NP contributions to εK and ∆MK are for MG′ = MZ′ suppressed

by a colour factor of three relative to Z ′ case, but also in this case the removal of the
εK tension together with (102) implies that the coupling ∆sd

L (G′) is nearly imaginary.
Therefore, also in this case the unique prediction is the suppression of ∆MK below it SM
value. Yet, this suppression is smaller relative to Z ′ case by roughly a factor of 17 due
to smaller value of Im∆sd

L (G′), the colour factor 1/3 in NP contribution to ∆MK and the
higher mass of G′. Thus in contrast to the Z ′ case, NP effects in ∆MK are fully negligible
in this scenario.

While, this scenario of NP is not very exciting, we cannot exclude it at present. It
should also be remarked that NP contributions to ∆MK could be obtained also with G′

by making ∆sd
R (G′) non-vanishing.

5.6 Z′ with Electroweak Penguin Dominance

5.6.1 The case of ∆qq
R (Z′) = O(1)

We will next consider the case of a Z ′ model of the LHS type in which NP contribution
to ε′/ε is governed by the Q8 operator. The 331 models discussed briefly in Section 7.5
are specific models belonging to this class of models. It should be noted that as far as
K+ → π+νν̄, KL → π0νν̄, εK , ∆MK and KL → µ+µ− are concerned the formulae of the
LH scenario in which Q6 dominated NP in ε′/ε remain unchanged. On the other hand
the formula for ε′/ε is modified in a very significant matter which will imply striking
differences from QCDP scenario.

Generalizing the analysis of 331 models in [68] to a Z ′ model with arbitrary diagonal
couplings we find

C8(mc) = 1.35C7(MZ′) = 1.35
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

(103)

with 1.35 resulting from RG evolution from MZ′ = 3.0 TeV down to mc. Here, in order
to simplify the notation we denoted the RH flavour diagonal quark coupling simply by
∆qq̄
R (Z ′)6.

6In reality it is a proper linear combination of diagonal up-quark and down-quark couplings that enters
the Q7 and Q8 penguin operators. We denote this combination simply by ∆qq̄

R (Z ′).
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Figure 6: Rνν̄
0 and Rνν̄

+ , as functions of κε′ for κε = 0.1, 0.2, 0.3, 0.4 for EWP scenario.

Proceeding as in LHS Z scenario in Section 4.2 and replacing C8(mc) in (28) by (103)
we find instead of (77)(

ε′

ε

)L
Z′

= 38.0B
(3/2)
8

[
3 TeV

MZ′

]2

Im(∆sd
L (Z ′))∆qq̄

R (Z ′) . (104)

Compared to (77) the larger overall coefficient implies a smaller Im∆sd
L (Z ′) required

to solve the ε′/ε anomaly. On the other hand compared to (29) in the LHS Z scenario,
the sign of the model dependent ∆qq

R (Z ′) can be chosen in such a manner that one can
enhance simultaneously ε′/ε and B(KL → π0νν̄). This was not possible in the LH Z
scenario in which the diagonal quark couplings were fixed.

Setting B
(3/2)
8 = 0.76 we find the required couplings for the solution of ε′/ε and εK

anomalies through the shifts in (18) and (19) to be:

Im∆sd
L (Z ′) = 3.5

[
κε′

∆qq̄
R (Z ′)

][
0.76

B
(3/2)
8

] [
MZ′

3 TeV

]2

· 10−5 , (105)

Re∆sd
L (Z ′) = −8.2κε

[
∆qq̄
R (Z ′)

κε′

][
B

(3/2)
8

0.76

]
· 10−4 (106)

which in view of a large MZ′ can be made consistent with the KL → µ+µ− bound for
∆µµ̄
A (Z ′) = O(1). Note that Re∆sd

L (Z ′) is independent of MZ′ .
We observe that the signs in (105) and (106) are the same as in (78) and (81), respec-

tively implying that also now B(KL → π0νν̄) and B(K+ → π+νν̄) will be enhanced over
their SM values but the correlation between these enhancements is different due to the
fact that the real part is larger than the imaginary part. Moreover NP effects implied in
these decays by the ε′/ε and εK anomalies turn out to be significantly smaller than in the
QCDP scenario.

In the first panel in Fig. 6 we show Rνν̄
0 and Rνν̄

+ as functions of κε′ and different
values of κε with the colour coding in (67). Rνν̄

0 is given by the blue line. Due to smaller
values of imaginary parts required for a given κε′ to fit the data on ε′/ε the implied NP
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effects in both ratios are smaller than in the QCDP case and therefore we set this time
∆νν̄
L (Z ′) = 0.5. On the other hand in contrast to QCDP case, where there is no dependence

on κε, the enhancement of B(K+ → π+νν̄) in EWP scenario strongly depends on the ratio
κε/κε′ . This is also seen in the second panel in which we present the results of the first
panel as Rνν̄

0 vs Rνν̄
+ . This result has a pattern similar to the first Z example in Fig. 4

but NP effects are now much smaller.

∆qq̄
R (Z ′) ∆νν̄

L (Z ′) ε′/ε |εK | B(KL → π0νν̄) B(K+ → π+νν̄) ∆MK

+ + + + + + +
+ + + − + − +
− + + + − − +
− + + − − + +
+ − + + − − +
+ − + − − + +
− − + + + + +
− − + − + − +

Table 4: Pattern of correlated enhancements (+) and suppressions (−) in Z ′ scenarios in
which NP in ε′/ε is dominated by EWP operator Q8.

Interestingly, we find that ∆MK is exclusively enhanced as opposed to its suppression
in QCDP scenario as seen in (82). This time we have

RZ′

∆M(EWP) ≡ (∆MK)Z
′

VLL

(∆MK)exp

= 3.6 · 10−2 κ2
ε

[
∆qq̄
R (Z ′)

κε′

]2
[

0.76

B
(3/2)
8

]2 [
3 TeV

MZ′

]2

. (107)

We note that dependence on κε′ and ∆qq̄
R (Z ′) is different than in (82) and the enhance-

ment depends on κε. But the striking difference is in the size of the effect and its MZ′

dependence. NP contribution to ∆MK is now in the ballpark of few percent only and
decreases with increasing MZ′ as opposed to the QCD penguin case, where it is sizable
and increases with increasing MZ′ thereby significantly suppressing ∆MK . See Fig. 5.

Clearly, similar to the case of the Q6 dominance, the result that the branching ratios
B(KL → π0νν̄) and B(K+ → π+νν̄) are enhanced because ε′/ε is enhanced is related to
the choice of the signs of flavour diagonal quark and neutrino couplings in (73). If the sign
of one of these couplings is reversed but still the enhancement of ε′/ε is required, both
branching ratios are suppressed. But if in addition we require that εK is suppressed then
K+ → π+νν̄ is enhanced again but KL → π0νν̄ suppressed. We show various possibilities
in Table 4. This table differs from Table 3 because the flip of the sign of Re∆sd

L (Z ′), caused
by the flip of the sign of NP contribution to εK , now matters as Re∆sd

L (Z ′) is much larger
than in the Q6 case. This has no impact on KL → π0νν̄ but changes enhancement of
K+ → π+νν̄ into its suppression and vice versa. On the other hand ∆MK being governed
this time by the square of the real couplings is always enhanced as opposed to the QCDP
case.

The striking prediction of this scenario is also the prediction that in the case of a
negative shift of εK by NP one of the branching ratios must be enhanced with respect to
the SM and the other suppressed, a feature which is not possible in the QCDP scenario.
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In view of these rather different results it should be possible to distinguish the QCDP
and EWP mechanisms in Z ′ scenarios when the situation with ε′/ε and εK anomalies will
be clarified and the data on B(KL → π0νν̄) and B(K+ → π+νν̄) will be available. The
improved knowledge of ∆MK will be important in this distinction due to the different
signs and sizes of NP contributions to ∆MK in these two scenarios.

5.6.2 The case of ∆qq
R (Z′)� 1

The pattern just discussed is modified if ∆qq
R (Z ′) is strongly suppressed for some dynamical

reason. For instance choosing ∆qq
R (Z ′) = 0.01 we find

Im∆sd
L (Z ′) = 3.5κε′ 10−3 , Re∆sd

L (Z ′) = −8.2
κε
κε′

10−6 (108)

which as seen in (78 ) and (81) is rather similar to the case of the QCDP so that enhance-
ments of K+ → π+νν̄ and KL → π0νν̄ are correlated on a branch parallel to the GN
bound. Yet, it should be emphasized that in the EWP case this can only be obtained by
choosing the coupling ∆qq

R (Z ′) to be very small, while in the case of QCDP one obtains
this result automatically as in order to satisfy all flavour bounds while solving the ε′/ε
anomaly ∆qq

R (Z ′) must be O(1).
We will not consider the cases of RHS and of a general scenario. Due to the arbitrary

values of diagonal couplings not much new can be learned relative to the cases already
considered. But such scenarios could be of interest in specific models.

5.7 The Impact of Z − Z′ mixing

Generally, in a Z ′ scenario, the Z −Z ′ mixing will generate in the process of electroweak
symmetry breaking flavour-violating tree-level Z contributions. As an example a non-
vanishing coupling

∆sd
L (Z) = sin ξ∆sd

L (Z ′) (109)

will be generated with ξ being the mixing angle. This mixing is bounded by LEP data to
be O(10−3) and has the structure

sin ξ = cmix
M2

Z

M2
Z′

(110)

with cmix being a model dependent factor. Inserting (109) into (24) and performing RG
evolution from MZ to mc we find the Z contribution to C8 generated by this mixing:

C8(mc) = −0.76 cmix

[
4g2s

2
W

6cW

]
∆sd
L (Z ′)

4M2
Z′

. (111)

Comparing with (103) we observe that Z contribution has eventually the same depen-
dence on MZ′ as Z ′ contribution. Which of these contributions is larger depends on the
model dependent values of cmix and ∆qq̄

R which govern Z ′ contribution to ε′/ε.
A simple class of models that illustrates these effects are 331 models in which cmix and

∆qq̄
R are given in terms of fundamental parameters of these models. A detailed analysis of
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the impact of Z − Z ′ mixing on flavour observables in 331 models, including ε′/ε, can be
found in [68] and in a recent update in [69]. One finds after taking electroweak precision
constraints into account, that in most of these models for a large range of parameters Z ′

contributions dominate but if one aims for precision the effects of Z contributions cannot
be neglected. A brief summary of the analysis in [69] is given in Section 7.5.

5.8 Z′ Outside the Reach of the LHC

5.8.1 QCD Penguin Dominance

Our discussion in Section 5.2 has revealed interesting MZ′ dependence of flavour observ-
ables when the ε′/ε and εK constraints in (18) and (19) are imposed. They originate in
the fact that these constraints taken together require the following MZ′ dependence of
the Z ′ couplings

• Im∆sd
L (Z ′) must increase as M2

Z′ ,

• Re∆sd
L (Z ′) must be independent of MZ′ .

Therefore the increase of MZ′ assures the dominance of imaginary couplings. This should
be no surprise as both quantities are CP-violating and the imaginary couplings have to
be larger in order to explain the anomalies in ε′/ε and εK at larger MZ′ .

As a consequence of this MZ′ dependence

• B(KL → π0νν̄) is independent of MZ′ because ImXeff is independent of it. The
suppression by 1/M2

Z′ is cancelled by the increase of Im∆sd
L (Z ′).

• But ReXeff decreases with increasing MZ′ and consequently in principle B(K+ →
π+νν̄) will decrease. But this effect is so small in QCDP scenario that similar
to B(KL → π0νν̄) also this branching ratio will be independent of MZ′ with NP
contributing only through ImXeff.

• On the other hand the branching ratio for KL → µ+µ− decreases with increasing
MZ′ as it depends only on real parts of the couplings.

As a result of this pattern the correlation between B(KL → π0νν̄) and B(K+ → π+νν̄)
will be confined to the line parallel to the GN bound. But what is interesting is that this
correlation will depend only on κε′ and is independent of MZ′ . Comparing (78) with (81)
we find that the real parts are comparable with imaginary ones only for MZ′ < 500 GeV
which is clearly excluded by the LHC. Therefore, for fixed κε′ and κε nothing will change
as far as K+ → π+νν̄ and KL → π0νν̄ are concerned when MZ′ is increased but the
constraint from KL → µ+µ− will be weaker.

Yet, these scaling laws cannot be true forever as for sufficiently large MZ′ the couplings
will enter non-perturbative regime and our calculations will no longer apply. Moreover,
these scaling laws did not yet take into account the bound on NP contributions to ∆MK .
Indeed as seen in (82) this contribution increases in QCDP scenario with increasing MZ′

and suppresses ∆MK that is positive in the SM. At some value of MZ′ this NP effect
will be too large for the theory to agree with experiment. The rescue could come from
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increased value of ∆qq̄
R (Z ′) or decreased value of κε′ . This simply means that when ∆MK

constraint is taken into account there is an upper bound on κε′ which becomes stronger
with increasing MZ′ . Or in other words at sufficiently high values of MZ′ it will not be
possible to explain the anomalies in question and with further increase of MZ′ NP will
decouple.

At this stage one should emphasize that for more precise calculations, when going
to much higher values of MZ′ , well above the LHC scales, RG effects represented by
numerical factors like 1.13, 1.61 and 1.35 for QCDP, G′ and EWP contributions to ε′/ε
valid for MZ′ = 3 TeV have to be modified as collected in Table 5 in Appendix A. For
MZ′ = 100 TeV they are increased typically by a factor of 1.3−1.5 relative to MZ′ = 3 TeV.

Formula (82) generalized to include RG corrections for MZ′ ≥ 3 TeV reads

RZ′

∆M(QCDP) = −0.23

[
1.13

r65(MZ′)

]2 [
κε′

∆qq̄
R (Z ′)

]2 [
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2

, (112)

with r65(MZ′) given in Table 5. In Fig 7 we show RZ′
∆M(QCDP) as a function of MZ′ for

different values of the ratio
κ̄ε′ ≡

κε′

∆qq̄
R (Z ′)

. (113)

We observe that already for MZ′ = 6 TeV the shift in ∆MK is large unless κε′ is at most
0.5 or ∆qq̄

R (Z ′) > 1.0. As seen in (72) for MZ′ = 6 TeV the choice ∆qq̄
R (Z ′) = 2.0 is still

consistent with LHC bounds.
The bound on ∆MK in question can be avoided to some extent by going to the general

Z ′ scenario which contains also ∆sd
R (Z ′). This allows, as suggested in [20], to weaken with

some fine-tuning ∆MK constraint while solving ε′/ε anomaly. But, in order to perform
a meaningful analysis the value of ∆MK in the SM must be known significantly better
than it is the case now. In particular if suppressions of ∆MK are not allowed one will
have to abandon this scenario. Then, as we will discuss soon, the EWP scenario would
be favoured.

It should also be emphasized that in a concrete model additional constraints could
come from other observables, in particular from observables like the B0

s,d − B̄0
s,d mass

differences ∆Ms,d and CP asymmetries SψKS and Sψφ which could further change the
scaling laws. We refer to [69] for scaling laws found in the context of 331 models.

5.8.2 Electroweak Penguin Dominance

The main difference in this scenario is the finding that for ∆qq̄
R = O(1) and MZ′ = 3 TeV

Re∆sd
R (Z ′)� Im∆sd

R (Z ′) . (114)

With increasing MZ′ this hierarchy becomes for fixed (κε′ , κε) smaller as Im∆sd
R (Z ′) in-

creases with MZ′ and Re∆sd
R (Z ′) is independent of it. By comparing (105) and (106) we

learn that the magnitudes of both couplings are equal for

MZ′ = 14.5
√
κε

[
∆qq
R

κε′

]
TeV (115)

But even for these values of MZ′
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Figure 7: RZ′
∆M(QCDP) as a function of MZ′ for different values of κ̄ε′.

• The correlation between K+ → π+νν̄ and KL → π0νν̄ is away from the branch
parallel to the GN bound.

• NP contribution to ∆MK has opposite sign to the one in QCDP scenario and ∆MK is
enhanced and not suppressed relative to its SM value. Moreover this enhancement is
at the level of a few percent only and decreases with increasing MZ′ so that possible
problems with ∆MK constraint encountered in QCDP scenario are absent here
unless future precise estimates of ∆MK in the SM will require sizable contribution
from NP.

Clearly a precise value of ∆MK in the SM will be crucial in order to see whether
the enhancement of ∆MK predicted here is consistent with the data. In particular if
enhancement of ∆MK is not allowed, one will have to abandon this scenario.

5.9 Summary of NP Patterns in Z′ Scenarios

The striking difference from Z scenarios, known already from our previous studies, is the
increased importance of the constraints from ∆F = 2 observables. This has two virtues
in the presence of the ε′/ε constraint:

• The real parts of the couplings are determined for not too a large κε from the εK
constraint, which is theoretically cleaner than the KL → µ+µ− constraint that was
more important in LHS and RHS Z scenarios.

• There is a large hierarchy between real and imaginary parts of the flavour violating
couplings implied by anomalies in both Q6 and Q8 scenarios. But as seen in (78)
and (81) in the case of Q6 and in (105) and (106) in the case of Q8 this hierarchy is
different unless the εK anomaly is absent.
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Because of a significant difference in the manner QCDP and electroweak penguins
enter ε′/ε, there are striking differences in the implications for the correlation between
K+ → π+νν̄ and KL → π0νν̄ in these two NP scenarios if significant NP contributions
to ε′/ε are required:

• In the case of QCDP scenario the correlation between B(KL → π0νν̄) and B(K+ →
π+νν̄) takes place along the branch parallel to the GN bound. Moreover, this feature
is independent of MZ′ .

• In the EWP scenario this correlation proceeds away from this branch for diagonal
couplings O(1) if NP in εK is present with the departure from this branch increasing
with the increased NP effect in εK . But with increasing MZ′ this branch will be
approached although it is reached for MZ′ well beyond the LHC scales unless κε is
very small. See (115).

• For fixed values of the neutrino and diagonal quark couplings the predicted enhance-
ments of B(KL → π0νν̄) and B(K+ → π+νν̄) are much larger when NP in QCDP is
required to remove the ε′/ε anomaly. This is simply related to the fact that QCDP
operators are less effective in enhancing ε′/ε than EWP operators and consequently
the imaginary parts of the flavour violating couplings are required to be larger.

• Finally, a striking difference is the manner in which NP affects ∆MK in these two
scenarios. In QCDP scenario ∆MK is suppressed and this effect increases with
increasing MZ′ whereas in the EWP scenario ∆MK is enhanced and this effect
decreases with increasing MZ′ as long as real couplings dominate. Already on the
basis of this property one could differentiate between these two scenarios when the
SM prediction for ∆MK improves.

The plots in Figs. 5 and 6 show clearly the differences between QCDP and EWP
scenarios.

6 Hybrid Scenarios: Z and Z′

Similar to flavour non-universal Z ′ couplings to quarks in the flavour basis, leading to
flavour-violating Z ′ couplings to quarks in the mass eigenstate basis, also flavour-violating
Z couplings can be generated. As an example in Randall-Sundrum scenario such couplings
result from the breakdown of flavour universality of Z couplings to quarks in the flavour
basis. But such couplings are also generated in the presence of new heavy fermions with
different transformation properties under the SM gauge group than the ordinary quarks
and leptons. The mixing of these new fermions with the ordinary fermions generates
flavour-violating Z couplings in the mass eigenstate basis. In order to avoid anomalies
the most natural here are vector-like fermions.

In the presence of both Z and Z ′ contributions, independently of the dynamics behind
their origin, the formulae for all observables discussed by us can be straightforwardly
generalized using the formulae of previous sections. We find then(

ε′

ε

)
NP

=

(
ε′

ε

)
Z

+

(
ε′

ε

)
Z′
. (116)
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Z contribution is given in the case of the LHS in (29). Z ′ contribution in the QCDP
scenario is given in (77) and the one for EWP in (104).

Similar we have
(εK)NP

VLL = (εK)ZVLL + (εK)Z
′

VLL (117)

with the two contributions given in (33) and (79), respectively. Next

(∆MK)NP
VLL

(∆MK)exp

=
(∆MK)ZVLL

(∆MK)exp

+
(∆MK)Z

′
VLL

(∆MK)exp

(118)

with Z and Z ′ contributions given in (34) and (80), respectively.
In the case of K+ → π+νν̄ and KL → π0νν̄ we simply have

ReXNP
eff = ReXeff(Z) + ReXeff(Z ′) (119)

and
ImXNP

eff = ImXeff(Z) + ImXeff(Z ′) , (120)

where different contributions can be found in (181), (182), (184) and (185).
In order to get a rough idea about the relative size of Z and Z ′ contributions to

different observables we assume first that their contributions to ε′/ε and εK are related
as follows (

ε′

ε

)
Z

= a

(
ε′

ε

)
Z′
, (εK)ZVLL = b (εK)Z

′

VLL (121)

with a and b being real, positive and O(1).
Proceeding as in the previous sections we find for Z couplings now

Im∆sd
L (Z) = −5.0

a

(1 + a)
κε′

[
0.76

B
(3/2)
8

]
· 10−7 (122)

and

Re∆sd
L (Z) = 4.7

b(1 + a)

a(1 + b)

[
κε
κε′

] [
B

(3/2)
8

0.76

]
· 10−5 , (123)

which for a� 1 and b� 1 reduce to (32) and (35), respectively.
For Z ′ scenario with QCDP dominance in ε′/ε we find

Im∆sd
L (Z ′) =

2.1

(1 + a)

[
κε′

∆qq̄
R (Z ′)

] [
0.70

B
(1/2)
6

][
MZ′

3 TeV

]2

· 10−3 (124)

and

Re∆sd
L (Z ′) = −1.4

(1 + a)

(1 + b)
κε

[
∆qq̄
R (Z ′)

κε′

][
B

(1/2)
6

0.70

]
· 10−5 , (125)

which for a = b = 0 reduce to (78) and (81), respectively.
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Correspondingly for Z ′ scenario with EWP dominance in ε′/ε we find

Im∆sd
L (Z ′) =

3.5

(1 + a)

[
κε′

∆qq̄
R (Z ′)

][
0.76

B
(3/2)
8

][
MZ′

3 TeV

]2

· 10−5 , (126)

Re∆sd
L (Z ′) = −8.2

(1 + a)

(1 + b)
κε

[
∆qq̄
R (Z ′)

κε′

][
B

(3/2)
8

0.76

]
· 10−4 , (127)

which reduce for a = b = 0 to (105) and (127), respectively.
The comparison of (123) with (36) tells us that b cannot be O(1) but rather b ≤ 0.05.

We conclude therefore that

• Z ′ dominates the contribution of NP to εK which is consistent with previous general
analysis [57].

On the other hand assuming that a = O(1) the inspection of the formulae for the
quantities in (118)-(120) implies the following pattern of Z and Z ′ contributions.

In the QCDP scenario:

• NP contribution to ∆MK is dominated by Z ′.

• ReXNP
eff is dominated by Z

• ImXNP
eff is dominated by Z ′.

In the EWP scenario:

• Z and Z ′ contributions to ∆MK are of the same order.

• Contributions from Z and Z ′ to ReXNP
eff are of the same order but as they have

opposite signs for ∆qq̄
R (Z ′)∆νν̄

L (Z ′) > 0 the branching ratio for K+ → π+νν̄ can
be enhanced or suppressed if necessary, dependently on the values of parameters
involved.

• ImXNP
eff is dominated by Z.

Now, in many model constructions the full Z ′ and Z flavour-violating couplings, both
real and imaginary parts, are related by a common real factor so that the ratio of real
couplings of Z ′ and Z equals the ratio of imaginary ones. Imposing this on the couplings
obtained above we find the relations between the parameters a and b and knowing already
that b� 1 we can find out the size of a in different scenarios. In the case of QCDP scenario
we obtain

a2 = b
1.4

(∆qq̄
R (Z ′))2

· 104

[
MZ′

3 TeV

]2
[

0.70

B
(1/2)
6

]2 [
B

(3/2)
8

0.76

]2

, (QCDP) (128)

and for EWP one

a2 = b
4.0

(∆qq̄
R (Z ′))2

[
MZ′

3 TeV

]2

. (EWP) (129)
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For b ≤ 0.05 one has then in the QCDP scenario for Z ′

a ≤ 26.5

∆qq̄
R (Z ′)

[
MZ′

3 TeV

]
, (QCDP) , (130)

where we neglected the difference between B
(1/2)
6 and B

(3/2)
8 . Evidently, unless the con-

tribution of Z to εK is totally negligible, Z generally dominates NP contribution to ε′/ε
and therefore Q8 operator wins over Q6 as expected already from arguments given at the
beginning of our paper. This also implies that now, as opposed to the case of a = O(1)
discussed above, contributions from Z and Z ′ to ImXNP

eff can be for sufficiently large a of
the same order. But, as they have opposite signs for ∆νν̄

L (Z ′) > 0, the branching ratio
for KL → π0νν̄ can be enhanced or suppressed if necessary, dependently on the values of
parameters involved.

On the other hand in EWP scenario both contributions are dominated by Q8 operator.
We find then

a ≤ 0.45

∆qq̄
R (Z ′)

[
MZ′

3 TeV

]
, (EWP) , (131)

so that in this case a = O(1) and Z contribution to ε′/ε can be comparable to the Z ′

one. Consequently the pattern of NP effects listed for EWP above applies. Only for
very suppressed ∆qq̄

R (Z ′) and large MZ′ the contribution from Z can again dominate as in
QCDP scenario.

Without a specific model it is not possible to make more concrete predictions but it is
clear that the structure of NP contributions is more involved than in previous scenarios.
One should also keep in mind that in certain models contributions from loop diagrams
could play some role, in particular in models in which vector-like quarks and new heavy
scalars are present.

7 Selected Models

7.1 Preliminaries

Here we will briefly describe results in specific models as presented already in the liter-
ature. Some of these analyses have to be updated but the pattern of NP effects in the
described NP scenarios is known and consistent with pattern found in previous sections.

7.2 Models with Minimal Flavour Violation

The recent analysis of simplified models, in particular those with minimal flavour violation
and those with U(2)3 symmetry shows that one should not expect a solution to ε′/ε
anomaly from such models [23]. This is also the case of the MSSM with MFV as already
analyzed in [70] and NP effects in this scenario must be presently even smaller due to the
increase of the supersymmetry scale.
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7.3 A Model with a Universal Extra Dimension

In this model NP contribution to ε′/ε depends on only one new parameter: the com-
pactification radius. One finds ε′/ε to be smaller than its SM value independently of the
compactification radius [71]. Consequently this model is disfavoured by ε′/ε and there is
no need to discuss its implications for other observables.

7.4 Littlest Higgs Model with T-Parity

In this model NP contributions to K+ → π+νν̄, KL → π0νν̄ and ε′/ε are governed by
EWP and in particular the ones in ε′/ε by the operator Q8. The model has the same
operator structure as the SM and FCNC processes appear first at one loop level. But
effectively for these three observables the model has the structure of Z LH scenario with
the coupling ∆sd

L (Z) resulting from one-loop contributions involving new fermions and
gauge bosons. Moreover NP contributions to εK are governed by new box diagrams.
Consequently the correlation with between K+ → π+νν̄, KL → π0νν̄, ε′/ε is more in-
volved than in simple models discussed by us. But the anticorrelation between ε′/ε and
KL → π0νν̄ is also valid here.

The most recent analysis in [24] shows that

• The LHT model agrees well with the data on ∆F = 2 observables and is capable
of removing some slight tensions between the SM predictions and the data. In
particular εK can be enhanced.

• If ε′/ε constraint is ignored the most interesting departures from SM predictions
can be found for K+ → π+νν̄ and KL → π0νν̄ decays. An enhancement of the
branching ratio for K+ → π+νν̄ by a factor of two relative to the SM prediction
is still possible. An even larger enhancement in the case of KL → π0νν̄ is allowed.
But as expected from the properties of Z LH scenario of Section 4.2, when the
ε′/ε constraint is taken into account the necessary enhancement of ε′/ε requires
rather strong suppression of KL → π0νν̄. On the other hand significant shifts of
K+ → π+νν̄ with respect to SM are then no longer allowed. Figs. 6 and 7 in [24]
show this behaviour in a spectacular manner.

7.5 331 Models

The 331 models are based on the gauge group SU(3)C × SU(3)L × U(1)X . In these
models new contributions to ε′/ε and other flavour observables are dominated by tree-
level exchanges of a Z ′ with non-negligible contributions from tree-level Z exchanges
generated through the Z − Z ′ mixing. The size of these NP effects depends not only on
MZ′ but in particular on a parameter β, which distinguishes between various 331 models,
on fermion representations under the gauge group and a parameter tan β̄ present in the
Z−Z ′ mixing [68]. The ranges of these parameters are restricted by electroweak precision
tests and flavour data, in particular from B physics. A recent updated analysis has been
presented in [69].

The model belongs to the class of Z ′ models with LH flavour-violating couplings with
only a small effect from Z−Z ′ mixing in ε′/ε that is dominated by the operator Q8. But,
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in contrast to the general case analyzed in Section 5.6, the diagonal couplings are known
in a given 331 model as functions of β. The new analysis in [69] shows that the impact
of a required enhancement of ε′/ε on other flavour observables is significant. The main
findings of [69] for MZ′ = 3 TeV are as follows:

• Among seven 331 models singled out in [68] through electroweak precision study
only three can provide significant shift of ε′/ε but for MZ′ = 3 TeV not larger than
6× 10−4, that is κε′ ≤ 0.6.

• Two of them can simultaneously suppress Bs → µ+µ− but do not offer the explana-
tion of the suppression of the Wilson coefficient C9 in B → K∗µ+µ− (the so-called
LHCb anomaly).

• On the contrary the third model offers partial explanation of this anomaly simul-
taneously enhancing ε′/ε but does not provide suppression of Bs → µ+µ− which
could be required when the data improves and the inclusive value of |Vcb| will be
favoured.

• NP effects in K+ → π+νν̄, KL → π0νν̄ and B → K(K∗)νν̄ are found to be small.
This could be challenged by NA62, KOPIO and Belle II experiments in this decade

Interestingly, the special flavour structure of 331 models implies that even for MZ′ =
30 TeV a shift of ε′/ε up to 8× 10−4 and a significant shift in εK can be obtained, while
the effects in other flavour observables are small. This makes these models appealing
in view of the possibility of accessing masses of MZ′ far beyond the LHC reach. The
increase in the maximal shift in ε′/ε is caused by RG effects summarized in Table 5. But
for MZ′ > 30 TeV the ∆MK constraint becomes important and NP effects in ε′/ε decrease
as 1/MZ′ .

7.6 More Complicated Models

Clearly there are other possibilities involving new operators. In particular it has been
pointed out that in general supersymmetric models ε′/ε can receive important contribu-
tions from chromomagnetic penguin operators [72, 73]. In fact in 1999 this contribution
could alone be responsible for experimental value of ε′/ε subject to very large uncertainties
of the relevant hadronic matrix element. This assumed the masses of squarks and gluinos
in the ballpark of 500 GeV. With the present lower bounds on these masses in the ballpark
of few TeV, it is unlikely that these operators can still provide a significant contribution to
ε′/ε when all constraints from other observables are taken into account. Similar comments
apply to other models like the one in [74], Randall-Sundrum models [75] and left-right
symmetric models [76], where in the past ε′/ε could receive important contributions from
chromomagnetic penguins. It would be interesting to update such analyses, in particular
when the value of B

(1/2)
6 and of hadronic matrix elements of chromomagnetic penguins

will be better known.
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8 New Physics in ReA0 and ReA2

The calculations of K → ππ isospin amplitudes ReA0 and ReA2 within the SM, related
to the ∆I = 1/2 rule in (4) have been the subject of many efforts in the last 40 years.
Some aspects of these efforts have been recalled in [10]. Here we only note that both the
dual approach to QCD [10] and lattice approach [3] obtain satisfactory results for the
amplitude ReA2 within the SM leaving there only small room for NP contributions.

On the other hand, whereas in the large N approach one finds [10](
ReA0

ReA2

)
dual QCD

= 16.0± 1.5 , (132)

the most recent result from the RBC-UKQCD collaboration reads [4](
ReA0

ReA2

)
lattice QCD

= 31.0± 6.6 . (133)

Due to large error in the lattice result, both results are compatible with each other and
both signal that this rule follows dominantly from the QCD dynamics related to current-
current operators. In addition both leave room for sizable NP contributions. But, from
the present perspective only lattice simulations can provide precise value of ReA0 one day,
so that we will know whether some part of this rule at the level of (20−30)%, as signalled
by the result in (132), originates in NP contributions.

This issue has been addressed in [20], where it has been demonstrated that a QCDP
generated by a heavy Z ′ and in particular a heavy G′ in the reach of the LHC could be
responsible for the missing piece in ReA0 in (132) but this requires a very large fine-tuning
of parameters in order to satisfy the experimental bounds from ∆MK and εK even in the
absence of the ε′/ε anomaly, which was unknown at the time of the publication in [20].

The point is that a sizable contribution of Q6 operator to ReA0 requires Re∆sd
L (Z ′) =

O(1) which as stressed in [20] violates ∆MK by many orders of magnitude if only LH
flavour-violating currents are considered. In the presence of ε′/ε anomaly, which requires
Im∆sd

L (Z ′) = O(10−3) the results of previous sections show that also εK constraint is then
violated by several orders of magnitude.

The only possible solution is the introduction of both LH and RH flavour violating
currents with real and imaginary parts of both currents properly chosen so that both
∆MK and εK constraints are satisfied and significant contribution to ReA0 is obtained.
The ε′/ε anomaly provides additional constraint but as seen in Fig. 4 of [20] in the case of
Z ′ scenario and in Section 6 of that paper in the case of G′ scenario, satisfactory results
for ReA0, ε′/ε, εK and ∆MK can be obtained. But it should be kept in mind that such
a solution requires very high fine-tuning of parameters and on the basis of the analysis
in [20] the central value of lattice result in (133) is too far away from the data that one
could attribute this difference to any NP.

In summary, the future precise lattice calculations will hopefully tell us whether there
is some NP contributing significantly to ReA0. This would enrich the present analysis as
one would have, together with ReA2, two additional constraints. But on the basis of [20]
it is rather unlikely that this NP is represented by heavy Z ′ or G′ unless the nature allows
for very high fine-tunings.
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9 2018 Visions

With all these results at hand we can dream about the discovery of NP in K+ → π+νν̄
by the NA62 experiment:

B(K+ → π+νν̄) = (18.0± 2.0) · 10−11, (NA62, 2018) . (134)

Indeed, looking at the grey bands in several figures presented by us, such a result would
be truly tantalizing with a big impact on our field.

We will next assume that the lattice values of B
(1/2)
6 and B

(3/2)
8 will be close to our

central values
B

(1/2)
6 ≈ 0.70, B

(3/2)
8 ≈ 0.76, (135)

and that the CKM parameters are such that κε′ ≈ 1.0 will be required.
Concerning εK we will consider two scenarios, one with κε = 0.4 and the other with

κε = 0, that is no εK anomaly.

9.1 κε′ = 1.0 and κε = 0.4

Inspecting the results of previous sections, we conclude the following

• Z scenarios with only LH and RH couplings will be ruled out as they cannot accom-
modate εK anomaly with κε = 0.4 unless at one loop level in the presence of new
heavy fermions or scalars significant contributions to εK would be generated. Then
in principle the rates for K+ → π+νν̄ in LHS and RHS could be made consistent
with the result in (134).

• It is clearly much easier to reproduce the data in the general Z scenario. In fact
as seen in Fig. 4 both examples presented by us could accommodate the result in
(134), explain simultaneously ε′/ε and εK anomalies and predict an enhancement
of B(KL → π0νν̄) by a factor of two to three in the first example and by an order
of magnitude in the second example.

• As seen in Fig. 5 the QCDP generated by Z ′ can reproduce the result in (134) for
∆νν̄
L (Z ′) = 0.5 and κε′ = 1.0. This then implies the enhancement of the rate for

KL → π0νν̄ by a factor of 15 − 20: good news for KOPIO. Moreover, εK can be
made consistent with the data independently of κε′ .

• Interestingly, as seen in Fig. 6, EWP generated by Z ′ will not be able to explain the
result in (134) unless the coupling ∆qq̄

R (Z ′) is very strongly suppressed below unity.
Also NP effects in KL → π0νν̄ are predicted to be small.

9.2 κε′ = 1.0 and κε = 0.0

If εK can be explained within the SM the main modification relative to the case of κε 6= 0
is that in all scenarios the correlation between KL → π0νν̄ and K+ → π+νν̄ takes place
on the branch parallel to GN bound in strict correlation with ε′/ε or equivalently κε′ .
Yet, there are differences between various scenarios:
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• Z scenarios with only LH or RH currents and EWP(Z ′) scenario with ∆qq̄
R = O(1)

imply SM-like values for B(K+ → π+νν̄), far below the result in (134).

• For QCDP(Z ′) nothing changes relative to the previous case and interesting results
for both rare decay branching ratios can be obtained. Also the general Z case can
work in view of sufficient number of free parameters. EWP scenario can also work
provided ∆qq̄

R (Z ′) is very strongly suppressed below unity.

In summary we observe that a NA62 measurement of B(K+ → π+νν̄) in the ballpark
of the result in (134) will be able to make reduction of possibilities with the simplest
scenario being QCDP generated through a tree-level Z ′ exchange. But then the crucial
question will be what is the value of ∆MK in the SM.

10 Outlook and Open Questions

Our general analysis of ε′/ε and εK in models with tree-level flavour-violating Z and Z ′

exchanges shows that such dynamics could be responsible for the observed ε′/ε anomaly
with interesting implications for other flavour observables in the K meson system. In
particular it could shed some light on NP in εK and ∆MK . Our results are summarized
in numerous plots and two tables which show that the inclusion of other observables can
clearly distinguish between various possibilities.

Except for the case of Z scenarios with only left-handed (LHS) and right-handed
(RHS) flavour violating currents, where KL → µ+µ− bound was the most important
constraint on the real parts of flavour violating couplings, in the remaining scenarios the
pattern of flavour violation was governed in the large part of the parameter space entirely
by CP-violating quantities: ε′/ε and εK . NP effects in them where described by two
parameters κε′ and κε as defined in (18) and (19).

In LH and RH Z ′ scenarios the role of ε′/ε was to determine imaginary parts of flavour
violating Z ′ couplings. Having them, the role of εK was to determine the real parts of
these couplings. These then had clear implications for other observables, in particular for
the branching ratios for K+ → π+νν̄ and KL → π0νν̄ and for ∆MK . The case of general
scenarios with LH and RH couplings is more involved but also here we could get a picture
what is going on.

From our point of view the most interesting results of this work are as follows:

• In LH and RH Z scenarios the enhancement of ε′/ε implies uniquely suppression of
KL → π0νν̄. Moreover, NP effects in εK and ∆MK are very small.

• Simultaneous enhancements of ε′/ε, εK and of the branching ratios for K+ → π+νν̄
and KL → π0νν̄ in Z scenarios are only possible in the presence of both LH and
RH flavour violating couplings. As far as ε′/ε and KL → π0νν̄ are concerned
this finding has already been reported in [23] but our new analysis summarized in
Figs. 2-4 extended this case significantly.

• If the enhancement of ε′/ε in Z ′ scenarios is governed by QCDP operator Q6, the
branching ratios for KL → π0νν̄ and K+ → π+νν̄ are strictly correlated, as seen
in Fig. 5, along the branch parallel to the GN bound. They can be both enhanced
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or suppressed dependently on the signs of diagonal quark and neutrino couplings
that are relevant for ε′/ε and these rare decays, respectively. Various possibilities
are summarized in Table 3. There we see that in these scenarios ∆MK is uniquely
suppressed relative to its SM value. This is directly related to the dominance of
imaginary parts of flavour violating couplings necessary to provide sufficient en-
hancement of ε′/ε. The suppression of ∆MK could turn out to be a challenge for
this scenario implying possibly an upper bound on κε′ as we stressed in Section 5.8
and illustrated in Fig. 5.8. On the other hand the role of εK is smaller, even if
solution to possible tensions there are offered.

• But two messages on QCDP scenario from our analysis are clear. If B(K+ → π+νν̄)
will turn out one day to be enhanced by NP relative to the SM prediction and
B(KL → π0νν̄) suppressed or vice versa, the QCDP scenario will not be able to
describe it. This is also the case when ∆MK in the SM will be found below its
experimental value.

• Rather different pattern of the implications of the ε′/ε anomaly are found in Z ′

scenarios in which the enhancement of ε′/ε is governed by EWP operator Q8. In
particular the correlation between K+ → π+νν̄ and KL → π0νν̄ depends on the size
and the sign of NP contribution to εK which was not the case of QCDP scenario.
Moreover, as seen in Fig. 6, the structure of this correlation is very different from
the one in Fig. 5, although also in this case, for κε > 0, both branching ratios are
enhanced with respect their SM values. They can also be simultaneously suppressed
for different signs of diagonal quark and neutrino couplings. Various possibilities
are summarized in Table 4.

• But as we emphasized and shown in this table, for κε < 0 in the EWP scenario, the
enhancement of K+ → π+νν̄ implies simultaneous suppression of KL → π0νν̄ or
vice versa which is not possible in the QCDP scenario. Moreover, in this scenario
∆MK is uniquely enhanced relative to its SM value. This is directly related to the
dominance of the real of flavour violating couplings necessary to provide sufficient
contribution to εK in the presence of an enhancement of ε′/ε. But, as opposed to
the QCDP case, this NP effect is small.

These results show that a good knowledge of ∆MK within the SM would help a lot in
distinguishing between QCDP and EWP scenarios. Presently the uncertainties in ∆MK

from both perturbative contributions [65] and long distance calculations both within large
N approach [10] and lattice simulations [66] are too large to be able to conclude whether
positive or negative shift, if any, in ∆MK from NP is favoured.

The dominant part of our Z ′ study concerned MZ′ in the reach of the LHC but as
we demonstrated in Section 5.8, ε′/ε will give us an insight into short distance dynamics
even if Z ′ cannot be seen by ATLAS and CMS experiments. We also restricted our study
to the K meson system. In concrete models there are correlations between observables in
K meson system and other meson systems. An example are models with minimal flavour
violation. But as shown in [23], in such models NP effects in ε′/ε, εK , K+ → π+νν̄ and
KL → π0νν̄ are small. Larger effects can be obtained in LHT and 331 models for which
the most recent analyses can be found in [24] and [69], respectively.
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There is no doubt that in the coming years K meson physics will strike back, in
particular through improved estimates of SM predictions for ε′/ε, εK , ∆MK and KL →
µ+µ− and through crucial measurements of the branching ratios for K+ → π+νν̄ and
KL → π0νν̄. Correlations with other meson systems, lepton flavour physics, electric
dipole moments and other rare processes should allow us to identify NP at very short
distance scales [21] and we should hope that this physics will also be directly seen at the
LHC.

Let us then end our paper by listing most pressing questions for the coming years. On
the theoretical side we have:

• What is the value of κε′? Here the answer will come not only from lattice QCD
but also through improved values of the CKM parameters, NNLO QCD corrections
and an improved understanding of final state interactions and isospin breaking ef-
fects.

• What is the value of κε? Here the reduction of CKM uncertainties is most
important.

• What is the value of ∆MK in the SM? Here lattice QCD should provide useful
answers.

• What are the precise values of ReA2 and ReA0? Again lattice QCD will play
the crucial role here.

On the experimental side we have:

• What is B(K+ → π+νν̄) from NA62? We should know it in 2018.

• What is B(KL → π0νν̄) from KOPIO? We should know it around the year 2020.

• Do Z ′, G′ or other new particles with masses in the reach of the LHC
exist? We could know it already this year.

Definitely there are exciting times ahead of us!
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A More Information on Renormalization Group Evo-

lution

A.1 QCD Penguins

We follow here [20] and consider first the case of Z ′ with flavour universal diagonal quark
couplings. In this case the QCDP Q5 and Q6 have to be considered. The mixing with
other operators is neglected and we work in LO approximation.

Denoting then by ~C(MZ′) the column vector with components given by the Wilson
coefficients C5 and C6 at µ = MZ′ we find their values at µ = mc by means of

~C(mc) = Û(mc,MZ′)~C(MZ′) (136)

where
Û(mc,MZ′) = Û (f=4)(mc,mb)Û

(f=5)(mb,mt)Û
(f=6)(mt,MZ′) (137)

and [77]

Û (f)(µ1, µ2) = V̂

[αs(µ2)

αs(µ1)

]~γ(0)
2β0


D

V̂ −1. (138)

The relevant 2× 2 one-loop anomalous dimension matrix in the basis (Q5, Q6) can be
extracted from the known 6× 6 matrix [78] and is given as follows

γ̂s(αs) = γ̂(0)
s

αs
4π
, γ̂(0)

s =

(
2 −6

− f 2
9
−16 + f 2

3

)
(139)

with f being the number of quark flavours.
The matrix V̂ diagonalizes γ̂(0)T

γ̂
(0)
D = V̂ −1γ̂(0)T V̂ , (140)

~γ(0) is the vector containing the diagonal elements of the diagonal matrix :

γ̂
(0)
D =

(
γ

(0)
+ 0

0 γ
(0)
−

)
(141)

and

β0 =
33− 2f

3
. (142)

For αs(MZ) = 0.1185, mc = 1.3 GeV and MZ′ = 3 TeV we have[
C5(mc)
C6(mc)

]
=

[
0.86 0.19
1.13 3.60

] [
1
0

]
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

. (143)

Consequently

C5(mc) = 0.86
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

C6(mc) = 1.13
∆sd
L (Z ′)∆qq

R (Z ′)

4M2
Z′

. (144)
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Due to the large element (1, 2) in the matrix (139) and the large anomalous dimension
of the Q6 operator represented by the (2, 2) element of this matrix, C6(mc) is by a factor
of 1.3 larger than C5(mc) even if C6(MZ′) vanishes at LO. Moreover the matrix element
〈Q5〉0 is strongly colour suppressed [9] which is not the case of 〈Q6〉0 and within a good
approximation we can neglect the contribution of Q5. In the case of (Q′5, Q

′
6) the formulae

remain unchanged except that the value of C ′5(MZ′) differs from C5(MZ′).
In the case of G′ the initial conditions for the Wilson coefficients C5 and C6 at µ = MG′

are modified and given in (96) and (97). One finds then[
C5(mc)
C6(mc)

]
=

[
0.86 0.19
1.13 3.60

] [
−1/6
1/2

]
∆sd
L (G′)∆qq

R (G′)

4M2
G′

. (145)

Consequently instead of (144) one has

C5(mc) = −0.05
∆sd
L (G′)∆qq

R (G′)

4M2
G′

C6(mc) = 1.61
∆sd
L (G′)∆qq

R (G′)

4M2
G′

(146)

so that now Q6 operator is even more dominant over Q5 than in the Z ′ scenario.

A.2 Electroweak Penguins

The basic equation for the RG evolution can also be used for Z models except that

~C(mc) = Û(mc,MZ)~C(MZ) (147)

where
Û(mc,MZ) = Û (f=4)(mc,mb)Û

(f=5)(mb,MZ) (148)

and the relevant one-loop anomalous dimension matrix in the (Q7, Q8) basis is very similar
to the one in (139)

γ̂(0)
s =

(
2 −6

0 −16

)
. (149)

Performing the renormalization group evolution from MZ to mc = 1.3 GeV we find [20]

C7(mc) = 0.87C7(MZ) C8(mc) = 0.76C7(MZ). (150)

Due to the large element (1, 2) in the matrix (149) and the large anomalous dimension
of the Q8 operator represented by the (2, 2) element in (149), the two coefficients are
comparable in size. But the matrix element 〈Q7〉2 is colour suppressed which is not the
case of 〈Q8〉2 and within a good approximation we can neglect the contributions of Q7.
In the case of (Q′7, Q

′
8) the formulae remain unchanged except that the value of C ′7(MZ)

differs from C7(MZ).
If a Z ′ model has such flavour diagonal couplings that at the end only the operators

(Q7, Q8) or (Q′7, Q
′
8) have to be considered, additional evolution from MZ to MZ′ has to

be performed as in (137) but the anomalous dimension matrix is as given in (149). One
finds then for αs(MZ) = 0.1185, mc = 1.3 GeV and MZ′ = 3 TeV [68]

C8(mc) = 1.35C7(MZ′) (151)

with 1.35 being RG factor. The longer RG evolution than in the case of Z made this
factor larger.
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A.3 Beyond the LHC Scales

In the case of Z ′ we define for arbitrary MZ′ the factors r65 and r87 by

C6(mc) = r65C5(MZ′), C8(mc) = r87C7(MZ′). (152)

In the case of G′ we define the corresponding factor through

C6(mc) = rG′
∆sd
L (G′)∆qq

R (G′)

4M2
G′

. (153)

All these factors increase with increasing MZ′ . We show this dependence in Table 57.

MZ′ 3 TeV 6 TeV 10 TeV 20 TeV 50 TeV 100 TeV
r65 1.13 1.22 1.28 1.37 1.48 1.56
r87 1.35 1.48 1.56 1.69 1.85 1.97
rG′ 1.61 1.70 1.77 1.85 1.96 2.05

Table 5: The MZ′(MG′) dependence of the RG factors r65, r87 and rG′ at LO with two-loop
running of αs.

B εK and ∆MK

B.1 General Formulae

For the CP-violating parameter εK and ∆MK we have respectively

εK =
κ̃εe

iϕε

√
2(∆MK)exp

[
Im
(
MK

12

)]
≡ eiϕε

[
εSM
K + εNP

K

]
, (154)

∆MK = 2Re
(
MK

12

)
= (∆MK)SM + (∆MK)NP (155)

where ϕε = (43.51±0.05)◦ and κ̃ε = 0.94±0.02 [35,36] takes into account that ϕε 6= π
4

and
includes long distance effects in Im(Γ12) and Im(M12). We have separated the overall phase
factor so that εSM

K and εNP
K are real quantities with εNP

K representing NP contributions.
Generally we can write

MK
12 = [MK

12 ]SM + [MK
12 ]NP , (156)

where the first term is the SM contribution for which the explicit expression can be found
e.g. in [21]. We decompose the NP part as follows

[MK
12 ]NP = [MK

12 ]VLL + [MK
12 ]VRR + [MK

12 ]LR. (157)

The first two contributions come from the operators

QVLL
1 = (s̄γµPLd) (s̄γµPLd) , QVRR

1 = (s̄γµPRd) (s̄γµPRd) (158)

and the last one from

QLR
1 = (s̄γµPLd) (s̄γµPRd) , QLR

2 = (s̄PLd) (s̄PRd) . (159)

7We thank Christoph Bobeth for checking this table.
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B.2 Z and Z′ Cases

Using formulae in [57] we find then in the case of tree-level Z contribution

[MK
12 ]∗VLL =

1

6
F 2
KB̂KmKη2r̃

[
∆sd
L (Z)

MZ

]2

(160)

where
η2 = 0.576, r̃ ≈ 1.068, B̂K ≈ 0.75 . (161)

For VRR one should just replace L by R. We emphasize the complex conjugation in this
formula.

For the LR contribution we simply have

[MK
12 ]∗LR =

∆sd
L (Z)∆sd

R (Z)

M2
Z

〈Q̂LR
1 (MZ)〉sd (162)

where using the technology of [60, 79] we have expressed the amplitude in terms of the
renormalisation scheme independent matrix element

〈Q̂LR
1 (MZ)〉sd = 〈QLR

1 (MZ)〉sd
(

1− 1

6

αs(MZ)

4π

)
− αs(MZ)

4π
〈QLR

2 (MZ)〉sd . (163)

On the basis of [80–82] one finds for MZ and MZ′ = 3 TeV

〈Q̂LR
1 (MZ)〉sd ≈ −0.09 GeV3 , 〈Q̂LR

1 (MZ′)〉sd ≈ −0.16 GeV3 . (164)

This matrix element increases with increasing MZ′ . See Table 5 in [61].
For εK and ∆MK , inserting relevant contributions to M12 into (154) and (155), we get

then in the case of Z

εNP
K = −4.26 · 107

[
Im∆sd

L (Z)Re∆sd
L (Z) + Im∆sd

R (Z)Re∆sd
R (Z)

]
+ (εK)ZLR (165)

with
(εK)ZLR = 2.07 · 109

[
Im∆sd

L (Z)Re∆sd
R (Z) + Im∆sd

R (Z)Re∆sd
L (Z)

]
(166)

and

(∆MK)NP

(∆MK)exp

= 6.43 · 107
∑
P=L,R

[
(Re∆sd

P (Z))2 − (Im∆sd
P (Z))2

]
+

(∆MK)ZLR

(∆MK)exp

(167)

with

(∆MK)ZLR

(∆MK)exp

= −6.21 · 109
[
Re∆sd

L (Z)Re∆sd
R (Z)− Im∆sd

L (Z)Im∆sd
R (Z)

]
. (168)

The fact that the LR contributions in these expressions have opposite sign to the ones
from VLL and VRR operators is related to the opposite signs in the relevant hadronic
matrix elements.

For the Z ′ tree-level exchanges, MZ should be replaced by MZ′ , in VLL and VRR
contributions r̃ = 0.95 should used and in LR contribution the value of the matrix element
〈Q̂LR

1 〉 in (164). See Section 5 for explicit formulae.
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C K+ → π+νν̄ and KL → π0νν̄

C.1 General Formulae

The branching ratios for K+ → π+νν̄ and KL → π0νν̄ in any extension of the SM in
which light neutrinos couple only to left-handed currents are given as follows

B(K+ → π+νν̄) = κ+ ·

[(
ImXeff

λ5

)2

+

(
Reλc
λ

Pc(X) +
ReXeff

λ5

)2
]
, (169)

B(KL → π0νν̄) = κL ·
(

ImXeff

λ5

)2

, (170)

where λ = |Vus| and [83]

κ+ = (5.173± 0.025) · 10−11

[
λ

0.225

]8

, κL = (2.231± 0.013) · 10−10

[
λ

0.225

]8

. (171)

For the charm contribution, represented by Pc(X), the calculations in [83–87] imply [38]

Pc(X) = 0.404± 0.024, (172)

where the error is dominated by the long distance uncertainty estimated in [87]. Next

Xeff = V ∗tsVtd [XL +XR] , (173)

where the functions XL and XR summarise the contributions from left-handed and right-
handed quark currents, respectively. λi = V ∗isVid are the CKM factors. In what follows
we will set these factors to

Reλt = −3.0 · 10−4, Imλt = 1.4 · 10−4 (174)

which are in the ballpark of present best estimates [52, 53]. The Grossman-Nir (GN)
bound on B(KL → π0νν̄) reads [67]

B(KL → π0νν̄) ≤ κL
κ+

B(K+ → π+νν̄) = 4.31B(K+ → π+νν̄), (175)

where we have shown only the central value as it is never reached in the models considered
by us. See Figs. 4 and 5.

Experimentally we have [88]

B(K+ → π+νν̄)exp = (17.3+11.5
−10.5) · 10−11 , (176)

and the 90% C.L. upper bound [89]

B(KL → π0νν̄)exp ≤ 2.6 · 10−8 . (177)
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C.2 Z and Z′ Cases

In what follows we will give the expressions for Xeff in Z and Z ′ models which inserted
into (169) and (170) give the branching ratios for K+ → π+νν̄ and KL → π0νν̄. It should
be noted that the particular values of the CKM factors in (174) enter only in the SM
contributions and in their interferences with NP contributions.

In the case of tree-level Z exchanges we have [57]

XL = XSM
L +

∆νν̄
L (Z)

g2
SMM

2
Z

∆sd
L (Z)

V ∗tsVtd
, XR =

∆νν̄
L (Z)

g2
SMM

2
Z

∆sd
R (Z)

V ∗tsVtd
(178)

where

g2
SM = 4

M2
WG

2
F

2π2
= 1.78137× 10−7 GeV−2 . (179)

In the SM only XL is non-vanishing and is given by [90–93]

XSM
L = 1.481± 0.009 (180)

as extracted in [38] from original papers. With the known coupling ∆νν̄
L (Z) = 0.372 and

the CKM factors in (174) we have then

ReXeff(Z) = −4.44 · 10−4 + 2.51 · 102[Re∆sd
L (Z) + Re∆sd

R (Z)] , (181)

ImXeff(Z) = 2.07 · 10−4 + 2.51 · 102[Im∆sd
L (Z) + Im∆sd

R (Z)] , (182)

where the first terms on the r.h.s are SM contributions for CKM factors in (174). Note
that in KL → π0νν̄ the enhancement of its branching ratio requires the sum of the
imaginary parts of the couplings to be positive. This enhances also K+ → π+νν̄ but
could be compensated by the decrease of ReXeff unless the sum of the corresponding real
parts is negative.

In the case of tree-level Z ′ exchanges one should just replace everywhere the index Z
by Z ′, in particular MZ by MZ′ , and use ∆νν̄

L (Z ′).
The numerical factors in the NP parts in (181) and (182) above should then be mul-

tiplied by

R =

[
MZ

MZ′

]2
∆νν̄
L (Z ′)

0.372
= 2.48× 10−3

[
3 TeV

MZ′

]2

∆νν̄
L (Z ′) . (183)

Thus we get

ReXeff(Z ′) = −4.44 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Re∆sd
L (Z ′) + Re∆sd

R (Z ′)]∆νν̄
L (Z ′) , (184)

ImXeff(Z ′) = 2.07 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Im∆sd
L (Z ′) + Im∆sd

R (Z ′)]∆νν̄
L (Z ′) . (185)
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D KL → µ+µ−

D.1 General Formulae

Only the so-called short distance (SD) part of a dispersive contribution to KL → µ+µ−

can be reliably calculated. It is given generally as follows (λ = 0.2252)

B(KL → µ+µ−)SD = 2.01 · 10−9

(
ReYeff

λ5
+

Reλc
λ

Pc(Y )

)2

, (186)

where at NNLO [94]

Pc(Y ) = 0.115± 0.017. (187)

The short distance contributions are described by

Yeff = V ∗tsVtd [YL(K)− YR(K)] , (188)

where the functions YL and YR summarise the contributions from left-handed and right-
handed quark currents, respectively. Notice the minus sign in front of YR, as opposed
to XR in (173), that results from the fact that only the axial-vector current contributes.
This difference allows to be sensitive to right-handed couplings, which is not possible in
the case of K → πνν̄ decays.

The extraction of the short distance part from the data is subject to considerable
uncertainties. The most recent estimate gives [95]

B(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (189)

to be compared with (0.8 ± 0.1) · 10−9 in the SM. With our choice of CKM parameters
we find 0.72 · 10−9. It is important to improve this estimate as this would further increase
the role of this decay in bounding NP contributions not only in Z scenarios.

D.2 Z and Z′ Cases

In the case of tree-level Z exchanges we have [57]

YL(K) = Y SM
L (K) +

∆µµ̄
A (Z)

g2
SMM

2
Z

∆sd
L (Z)

V ∗tsVtd
, YR(K) =

∆µµ̄
A (Z)

g2
SMM

2
Z

∆sd
R (Z)

V ∗tsVtd
, (190)

where [96]
Y SM
L (K) = 0.942 . (191)

With the known coupling ∆µµ̄
A (Z) = 0.372 and the CKM factors in (174) we have then

ReYeff(Z) = −2.83 · 10−4 + 2.51 · 102[Re∆sd
L (Z)− Re∆sd

R (Z)] . (192)

In the case of tree-level Z ′ exchanges one should just replace everywhere the index Z
by Z ′, in particular MZ by MZ′ , and use ∆µµ̄

A (Z ′). As ∆µµ̄
A (Z) = ∆νν̄

L (Z) also the same
numerical factor in (183) should multiply NP part in (192). Thus we have

ReYeff(Z ′) = −2.83 · 10−4 + 0.62

[
3 TeV

MZ′

]2

[Re∆sd
L (Z ′)− Re∆sd

R (Z ′)]∆µµ̄
A (Z ′) . (193)
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E KL → π0`+`−

The rare decays KL → π0e+e− and KL → π0µ+µ− are dominated by CP-violating contri-
butions. The indirect CP-violating contributions are determined by the measured decays
KS → π0`+`− and the parameter εK in a model independent manner. It is the dominant
contribution within the SM with both branching being O(10−11) [97] and by one order of
magnitude smaller than the present experimental bounds

B(KL → π0e+e−)exp < 28 · 10−11 [98] , B(KL → π0µ+µ−)exp < 38 · 10−11 [99] ,
(194)

leaving thereby large room for NP contributions. In the models analyzed by us these
bounds have no impact on K+ → π+νν̄ and KL → π0νν̄ decays but the present data on
K+ → π+νν̄ do not allow to reach the above bounds in the Z ′(Z) scenarios considered.

To our knowledge, there are no definite plans to measure these decays in the near
future and we will not analyze them here. They are similar to B → K`+`− decays
except that the dipole operator contributions turn out to be small in the SM and in many
NP scenarios. NP contributions shift the values of the coefficients C9 and C10 which
are sensitive to ∆µµ̄

V (Z ′) and ∆µµ̄
A (Z ′), respectively. Similar for Z. In the presence of

right-handed flavour violating currents also C ′9 and C ′10 are generated. This is the case
of RS scenario with custodial protection [59]. There are also recent efforts to improve
SM prediction by means of lattice QCD [100]. The importance of testing NP scenarios,
in particular those involving right-handed currents, by means of these decays has been
stressed in [97], but from present perspective such tests will eventually become realistic
only in the next decade. References to reach literature can be found in [97] and the
analysis of these decays within general Z and Z ′ models can be found in [57].

In Z scenarios due to the smallness of ∆µµ̄
V (Z) NP enters these decays predominantly

through C10 and C ′10. More interesting is the NP pattern in Z ′ scenarios due to the
SU(2)L relation

∆νν̄
L (Z ′) =

∆µµ̄
V (Z ′)−∆µµ̄

A (Z ′)

2
. (195)

This relation implies correlations between Z ′ contributions to K+ → π+νν̄, KL → π0νν̄,
KL → µ+µ− and KL → π0`+`− analogous to the ones between B → K(K∗)νν̄, Bd →
K(K∗)µ+µ− and Bs → µ+µ− that have been analyzed in detail in [101]. In order for such
relations to become vital in the K-meson system theoretical uncertainties in KL → µ+µ−

and KL → π0`+`− have to be decreased by much.
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