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NETWORK INDUCED LARGE COVARIANCE MATRIX
ESTIMATION

By Shuo Chen∗ , Yishi Xing , and Donald Milton

University of Maryland, College Park

In this paper, we consider to estimate network/community in-
duced large covariance matrices. The massive biomedical data (e.g.
gene expression or neuroimaging data) often include networks where
features are correlated with each other, and thus the covariance ma-
trix in a complex yet organized topology. Although, current large
covariance matrix and precision matrix estimation methods using
thresholding or shrinkage strategies could provide satisfactory over-
all covariance/precision matrix estimation, they are limited for au-
tomatic network/topology detection and network induced covariance
matrix estimation. To fill the gap, we propose a new network in-
duced covariance estimation method (NICE) to simultaneously de-
tect highly correlated networks and estimate the covariance matrix
by leveraging an adaptive and graph topology oriented threshold-
ing strategy. The novel thresholding strategy can reduce both false
positive and false negative discovery rates by using the whole graph
topological information which allows edges to borrow with each other.
Moreover, we propose a novel ‘quality and quantity’ objective func-
tion to shrink the covariance matrix towards a parsimonious model
while retaining most of the information. Simulation study results
show that our method outperform the competing thresholding and
shrinkage methods. We further illustrate the application of our new
method by analysis of a serum mass spectrometry proteomics data
set.

1. Introduction. We consider a large data set Xn×p with the sample
size n and the feature dimensionality of p. The estimation of the covariance
matrix (Σ) is fundamental to understand the inter-relationship between vari-
ables of the large data set Xn×p (Fan et al , 2015).

When the dimensionality is high (p is large), the estimation by using
sample covariance is known to have poor performance and regularization is
needed. Therefore, `1 regularized sparse inverse covariance selection methods
(e.g. graphical lasso) have been developed to estimate the precision matrix
Σ−1 assuming that Xn×p follows a multivariate normal distribution and the
inverse covariance matrix Ω = Σ−1 is sparse (Friedman et al , 2008; Banerjee
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2 S. CHEN ET AL.

et al , 2008; Yuan and Lin, 2007; Lam and Fan, 2009; Yuan, 2010; Cai et al ,
2011). In addition, the covariance matrix thresholding methods have been
developed to directly regularize the sample covariance matrix (Bickel and
Levina, 08; Rothman et al , 2009; Cai and Liu, 2011; Fan et al , 2013; Liu
et al , 2014). Mazumder and Hastie (2012) and Witten et al (2011) find the
two sets of methods are naturally linked regarding vertex-partition of the
whole graph.

The regularization strategies including both covariance matrix threshold-
ing and inverse covariance matrix shrinkage methods are often implemented
on individual edges rather than considering the interaction between edges
and the whole graph topology. Hence, a universal thresholding value or reg-
ularization standard is applied to to all edges without accounting for the
dependency between edges. Cai and Liu (2011) propose adaptive threshold-
ing methods by considering the column-wise marginal standard deviations,
yet such thresholding strategy still applies the same decision rule to each
column independently without accounting for the whole graph topology.

Notations: Graph theory notations and definitions are often used to delin-
eate the relationship between the p variables of Xn×p (Yuan and Lin, 2007;
Mazumder and Hastie, 2012). A finite undirected graph G = {V,E} consists
two sets, where the vertex set V represents the variables X = (X1, · · · , Xp)
with |V | = p and the edge set E denote relationships between the vertices.
In practice, the edge set E (our main interest) is represented by a symmet-
ric 0 and 1 adjacency matrix. Two nodes i and j are directly connected if
Eij = 1, otherwise unconnected. Under the sparsity assumption, the reg-
ularization algorithms assign most edges as 0s, and G is decomposed to a
set of maximal connected subgraphs G = ∪Kk=1Gk and ∩Kk=1Gk = ø with
Gk = {Vk, Ek} (Witten et al , 2011; Mazumder and Hastie, 2012).

It has been widely recognized that the interactions between genes and
neural processing units exhibit organized network graph topological prop-
erties (i.e. non Erdös-Rényi random graph), and it is crucial to recognize
the topological patterns in a data-driven fashion. In this paper, we assume
that subsets of variables of Xn×p display community/network structures,
and variables are more correlated with variables within the same network
than the others. Therefore, the truly correlated edges (i.e. Eij = 1 for thoses
edges should not be regularized) in the covariance matrix are G not ran-
domly distributed rather in an (latent) organized fashion, for instance in
several latent subgraphs and in each subgraph {

∑
ekij∈Ek

I(ekij = 1)}/|Ek| is

high. Such model structure is naturally linked to the stochastic block model
(SBM, Bickel and Chen, 2009; Karrer and Newman, 2011; Zhao et al , 2011;
Choi et al , 2012; Nadakuditi and Newman, 2012; Lei and Rinaldo, 2014).
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NETWORK INDUCED COVARIANCE ESTIMATION 3

Conventionally, we apply SBM to binary graph data sets (e.g. social net-
work data) to detect communities by using algorithms based on profile like-
lihood, spectral graph, and modularity maximization (Karrer and Newman,
2011; Zhao et al , 2011; Nadakuditi and Newman, 2012). However, the high-
dimensional biomedical data tend to be different from the SBM model be-
cause it is likely that not all features belong to communities. Therefore, we
consider a model structure that G = G1 ∪G0 where subgraph G1 follows a
SBM and G0 is a Erdös-Rényi random graph. Hence, we are not only inter-
ested in community detection but also learning the whole graph topological
structure which we rely on for the following adaptive regularization towards
the network induced covariance matrix. We propose a new Network Induced
Covariance Estimation (NICE) method to detect the graph topology (in-
cluding latent community detection) and estimate for network induced co-
variance via graph topology oriented regularization.

We implement the NICE model in three steps by jointly using several
advanced statistical techniques. In step 2 (see section 2.2 for details), we
propose a novel statistical strategy/concept of graph topology based regu-
larization, which is distinct from the current popular methods (e.g. `1 or `2
penalty terms). The new strategy aims to capture most informative edges
in minimal communities, and naturally incorporates automatic selection of
the optimal number of communities with regularization level selection in a
data driven fashion. In addition, we introduce permutation test based infer-
ence framework to identify the true communities. All these new techniques
in turn could be good additions to the SBM (and community detection)
methods and theories.

The paper is organized as follows. Section 2 describes the NICE algorithm,
followed by the simulation studies and model evaluation/comparison in Sec-
tion 3. In Section 4, we apply our method to mass spectrometry proteomics
data data, concluding remarks are summarized in Section 5.

2. Methods. We propose a new network induced covariance matrix es-
timation method to 1) detect the maximal connected subgraphsG = ∪Kk=1Gk

as networks of interest, and 2) to estimate Σ. We consider the sample co-
variance S and the correlation matrix R=diag(S)−1/2 S diag(S)−1/2 as our
input data (Qi and Sun, 2006; Liu et al , 2014; Fan et al , 2015). Directly
regularizing the correlation matrix R could provide estimation of the bi-
nary edge E matrix by using Êij = I(RTij > 0), and Ê determines the set

of maximal connected components G = ∪Kk=1Ĝk (Ĝk could be a singleton).
However, applying a universal regularization/thresholding rule to each el-
ement (or column) would introduce false positives and false negatives for
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4 S. CHEN ET AL.

(a) The truth: two networks (b) Shuffling the order of nodes

(c) The input data for NICE (d) Network detection results

Fig 1: An example of a network induced covariance matrix: |V |=100 nodes
and |E|=4950 edges, there are two networks (a) and in practice they are
implicit (b) especially hard to recognize when looking at the sample co-
variance matrix (c); however, with the knowledge/estimation of topological
network structures detected by NICE (d) the regularization strategy should
take them into account.

Ê and lead to failure to detect networks of interest. Therefore, we propose
the NICE method with a heuristic to taking the topological structures into
account regarding regularization. Figure 1 illustrates an example synthetic
data and some results of our new method.

The NICE method consists three steps: i) calculate the posterior proba-
bility weight matrix W = g(R) with Wij = Prob(Eij = 1|R) as a fuzzy
logic metric; ii) detect the maximal connected components G = ∪Kk=1Ĝk by
using a ‘quality and quantity rule’; iii) applying the adaptive threholding
rules to the edges within outside networks. To illustrate our goal, we use
a synthetic example: suppose there are two networks of interest where all
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NETWORK INDUCED COVARIANCE ESTIMATION 5

nodes are highly correlated, yet the networks are implicit : the nodes in the
networks are not originally adjacent but randomly distributed.

2.1. Calculate posterior probability based fuzzy logic weight matrix W.
Rather than directly thresholding/binarizing the sample correlation matrix
R, we calculate a fuzzy logic metric Wij = Prob(Eij = 1|R) (Chen et al ,
2015a). The fuzzy logic metric avoids arbitrary choice of the cut-off threshold
value and provides a more appropriate scale for maximal connected compo-
nent detection. Let zij be equal to the Fisher’s Z transformed correlation
coefficient Rij for example (Kendall’s Tau or other pairwise relationship
metrics could also be applied), and zij follows two distinct distributions de-
pendent on Eij that zij |(Eij = 0) ∼ f0(zij) and zij |(Eij = 1) ∼ f1(zij). The
f1 represents the distribution of correlations corresponding to connected
edges, and f0 for the unconnected edges. In practice, the label Eij is not
available, and thus the sample correlations follow a mixture distribution
zij ∼ p0f0(zij) + p1f0(zij) with p0 + p1 = 1. We adopt the empirical Bayes

method to obtain p̂0, p̂1, f̂0, f̂1, and we would refer the readers for the details
to the original works (Efron, 2004; Wu et al , 2006; Efron, 2007). The Bayes
posterior probability that a case belongs to the connected edge set given zij ,
by definition, is:

E(Wij) ≡ Prob{Eij = 1} = p1f1(zij)/f(z)

= (f(z)− p1f1(zij))/f(z)

= 1− fdr(zij)

(2.1)

In practice, we calculate the fuzzy logic metric Wij = 1 − f̂dr(zij) based

on the estimated f̂dr by using the existing statistical package e.g. ‘lcfdr ’ in
the R software.

Therefore, the Bayes posterior probability based fuzzy logic metric pro-
vides a non-parametric transformation to map the original correlation metric
value of zij to a probability based 0 to 1 scale (the probability of Eij = 1
and should not be thresholded). The distribution of Wij often shows a large
proportion of edges with the fuzzy logic values close to zero, and a small pro-
portion greater than zero and close to one, which clearly improves the signal
to noise ratio and greatly enhances the following graph topology structure
detection. Furthermore, the fuzzy logic metric avoids to binarize the edges
and instead passes the posterior belief of each edge being connected to the
following analysis without information loss.
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6 S. CHEN ET AL.

2.2. Graph topological structure detection. In step 2, we seek to estimate
the maximal connected components {Ĝk} that ∪Kk=1Ĝk = G based on the
input fuzzy logic metric weight matrix W, which is equivalent to a gener-
alized clustering problem (SBM G1 and random graph G0 separation and
then community detection). Under the assumption that the G include in-
duced complete subgraphs (networks) as shown in 1a, the edges within the
networks are 1 and outside the network are 0 and thus the fuzzy logic metrics
Wij |(Eij = 1) are distributed in the same pattern. However, the networks
are often implicitly embedded in G and the sample correlation or covariance
matrix has no explicit network structure (1c). Thus, step 2 aims to auto-
matically recognize such graph topological structures (from 1c to 1d). One
straightforward pathway to achieve this goal is to 1) first shuffle the nodes
by allocating the connected ones to be adjacent to each other in order, and
2) identify each network by cutting the edges connecting the network with
the rest of the graph. In fact, to perform 2) would automatically implement
1) above because only connected nodes could be adjacent in order. Then, our
goal turns out to be a edge cutting problem, likely in glasso and adaptive
thresholding we also need to determine which edge to threshold or set to
zero. The ideal edge cutting results will provide both community detection
results and G1 and G0 separation because nodes in G0 could be cut out as
singletons and edges connecting nodes in G1 and elsewhere will be cut as
well.

One naive strategy is to cut edge by applying a threshold for the contin-
uous fuzzy logic metric and wish that the topological structure will show
itself. However, it is well known that the sample correlation/covariance ma-
trix could include a large proportion of false positive and negative noises even
after the transformation by step 1. In practice, the conditional fuzzy logic
metric Wij |(Eij = 0) values could be false positively high and Wij |(Eij = 1)
could be false positively low because of the noises. Such noises will make
the graph topology detection more complex and difficult. When applying
covariance matrix thresholding rules (e.g. Bickel and Levina, 08; Friedman
et al , 2008; and Cai and Liu, 2011), and the thresholding results could mis-
lead the detection of the true topological structures because such noises. For
a toy example, suppose Gk1 and Gk2 are the only two separate networks in
G, and Eij = 1|(Eij ∈ Gk1 or Eij ∈ Gk2) and Eij = 0 otherwise. Due to the
noises, some values of Wij (i ∈ VK1 and j ∈ VK2) could be false positively
high, and thus it is possible the individual edge/column based decision rules
would produce a few false positive result of Êij = 1|Wij . Let |V1| = |V2| = 20
and there are 400 edges between the two networks, and we assume the false
positive discovery rate is 1% (very low), then the probability of failure to
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NETWORK INDUCED COVARIANCE ESTIMATION 7

separate the two networks is equal to 1 − (1 − 0.99)400 = 0.982 (assuming
that the edges are independent). In addition, the other nodes (not in G1 and
G2) could be falsely connected to the networks Gk1 and Gk2, and thus the
accurate network detection could become a formidable task. Therefore it is
almost impossible for the graph topological structures to show themselves
by direct thresholding even the universal thresholding tuning parameter (λ)
is optimal. Therefore, we need to take the whole graph topological structure
into consideration for edge-cutting and develop an algorithm robust to the
substantial amount of false positive and false negative noises.

2.2.1. Spectral clustering for edge cutting. Spectral clustering algorithms
have been applied to optimize the edge cutting problem for example using
Ratio-Cut and Normalized Cut algorithms (von Luxburg, 2007; Nadakuditi
and Newman, 2012). Given an appropriate number of clusters K, the spec-
tral clustering methods provide a promising solution to cut edges and detect
networks. However, different from the traditional goal of spectral clustering
that allocates all nodes into K classes, we try to detect a graph G that could
only include a handful of networks (G1) and the rest of G can be consid-
ered as a Erdös-Rényi random graph (G0). To detect such graph topological
structure, we not only need to cut the edges between communities but also
most edges in G0 and between G0 and G1 because highly correlated edges in
the random graph are distributed randomly (with no community structure)
and thus G can be considered as a set of singletons. To cut edges of G with
the above topological structure, the NormalizedCut algorithm seems not to
work because it may fail to detect many singletons of the the Erdös-Rényi
random graph (von Luxburg, 2007). We construct the objective function
based on the RatioCut algorithm. The edge cutting objective function is to
minimize:

argmin{Gk}Kk=1

K∑
k=1

∑
i∈Gk,j 6∈Gk

Wij

|Vk|
,(2.2)

It minimizes the fuzzy logic metric values of the edges (Wij) between net-
works (including network of size one). The denominator |Vk| prevents to
generate with one major community and K − 1 singletons. Thus, the spec-
tral clustering based decision rule is to cut those between network edges
whose sum of fuzzy logic metric values is minimum. The network detection
and edge cutting are obtained simultaneously when implementing minimiza-
tion of 2.2. It is NP complex to implement the optimization of 2.2, and
fortunately computational algorithms have been successfully developed for
solutions (Shi and Malik, 2000; Chen et al , 2015b). It has been established
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8 S. CHEN ET AL.

(Chung, 1997) that the 2.1 is equivalent to

argmin
K∑
k=1

hiLhi = Tr(H ′LH),(2.3)

where Hp×K is indicator matrix and a column hk of H is a binary p × 1
vector (elements with entry value 1 indicate that they belong to the kth
network). Estimating Hp×K provides the network detection results. L is the
Laplacian matrix, which is defined by:

L = D −W,(2.4)

where D=diag(
∑n

j Wij) and i = 1, · · · , p. We implement the optimization
of 2.4 to estimate Hp×K by using unnormalized spectral clustering (von
Luxburg, 2007) and details are provided in the algorithm table. Furthermore,
Lei and Rinaldo (2014) provides proof of consistency with regard to spectral
clustering for SBM. Thus, the estimated Ĝ is consistent to G, and when K
is appropriately selected both communities and singletons can be detected.

2.2.2. K selection and regularization: a quantity and quality criterion.
It is crucial to select the number of K, because it not only influences the
allocation of nodes but also the number of edges to cut. Cutting an edge
highly increases the chance to perform hard thrsholding on that edge, and
thus K determines the regularization stringent level naturally (with similar
function to the parameter λ of glasso). For example, if K = |V | then all edge
will be cut in G (then G is an Erdös-Rényi random graph) while if K=1
then no edge will be cut. Thus, it is important to select K wisely because it
is the key to reveal the true graph topological structure and perform graph
topology oriented regularization. Our heuristic to choose K is to maximally
include informative edges (Wij with larger values) into community networks
(the quantity criterion) when ensuring that the detected networks has a high
proportion of informative edges (the quality criterion). We consider Wij with
larger values as informative edges because the edges with higher Wij values
are more rare and more likely for Eij to be one (generally Prob(Eij = 1) >
Prob(Ei′j′ = 1) if Wij > Wi′j′). Therefore, the quantity and quality criterion
could help to select the K that is able to capture the graph topological
structure if informative edges are non-randomly distributed. To implement
the quantity and quality criterion, we define an objective function for K
selection:
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NETWORK INDUCED COVARIANCE ESTIMATION 9

∑K
k=1

∑
i∈Gk,j∈Gk

Wij∑
i<j Wij

·
∑K

k=1

∑
i∈Gk,j∈Gk

Wij∑K
k=1

∑
i∈Gk,j∈Gk

1
.(2.5)

The first term (the proportion of informative edges included in the network
with contrast to the informative edges in the whole graph) reflects the quan-
tity criterion and the second term for the quality criterion (the proportion
of informative edges in the networks with contrast to the total number of
edges in those networks). The quantity criterion ensure to detect the net-
works when informative edges are in organized structures (power), and the
quality criterion ensure the selected networks with all nodes well connected
(to reduce false positive network detection). In practice, if the dimension p
is massive Wij could be replaced by I(Wij > p0) (e.g. p0 = 0.05) to avoid
the accumulation of noises (e.g. false positive errors). In addition, since we
apply different regularization rules for correlation metrics inside and out-
side networks (details in the following subsection), thus the regularization
is closely linked to the selection of K. We implement K optimization by
grid searching because K can only be integers from two to n. Therefore,
the NICE algorithm selects K objectively, and the regularization stringent
level is based on the optimized K because our following regularization rule
is guided by the detected topological structures.

After performing the edge cutting step using spectral clustering algo-
rithm with optimized K, we obtain the estimated clusters as ∪Kk=1Ĝk = G

(where many Ĝk could be singletons). We could further examine the de-
tected community networks with size greater than two are true networks by
using permutation tests (see details in the algorithm table). The underlying
heuristic is that if the detected network is a true community, then there are
higher proportion of edges with Eij = 1 within the detected network and∑

i,j∈Gk
Wij is larger than the whole graph average level. We consider a de-

tected network is a true community structure when the permutation p value
is less than α/Ks where α is significance level (e.g. 0.05) and Ks is number
of non-singleton clusters. Since the number of edges is at the power order
of number of nodes, the true communities tend to have very small p-values
and even the stringent Bonferroni correction (for multiple network testing
adjustment) has very slight impact on the results. When p is large, there
could be many natural large blocks in G (Witten et al , 2011), and we could
apply our graph topological structure detection method to each large block.

2.3. Graph topology oriented threshohlding: a empirical Bayesian model
with informative priors. The graph topological structure detection results

imsart-aoas ver. 2014/10/16 file: NICE_arXiv.tex date: January 5, 2016



10 S. CHEN ET AL.

could provide us prior knowledge which edges in G are connected. The prior
probability follow:

Prob(Eij=1|(i ∈ Gk, j ∈ Gk) = 1,

where Gk is the detected community network with significant permutation
test p value. The prior probability for the rest of edges Prob(Eij=1) = 0.
Based on the prior knowledge from the graph topology structure detection,
we could estimate the probability distributions of Fisher’s Z transformed
correlations inside and outside the networks as f̂in(zij) and f̂out(zij), and
the proportions of edges inside and outside of the communities p̂in and p̂out.
This procedure is more straightforward than the mixture model estimation
in lcfdr because the labels of edges are given based on the graph topolog-
ical structure. Thus, our thresholding rule with accounting for the induced
network topological structure is:

If i ∈ Gk and j ∈ Gk,

ρ̂ij =

{
Rij if f̂in(zij) ≥ f̂out(zij);
0 otherwise.

else if i 6∈ Gk or j 6∈ Gk,

ρ̂ij =

{
Rij if p̂inf̂in(zij) ≥ qp̂outf̂out(zij);
0 otherwise.

In general, the peaks of f̂in(zij) and f̂out(zij) are apart and the first is much
larger than the latter. The inside-network edges with smaller zij (at the left

tail of f̂in(zij)) are thresholded as 0s, and the outside-network edges with

larger zij (at the right tail of f̂out(zij)) are unchanged. Therefore, we apply
a graph topology oriented adaptive hard-thresholding strategy (Donoho et
al , 1995; Bickel and Levina, 08; Cai and Liu, 2011). For the outside net-
work edges, the decision rule is similar to the hard-thresholding, but with a
different thresholding value is used. The thresholding value is closely linked
to the local fdr (Efron, 2007), yet fortunately our network detection step
provides explicit labels for all edges and thus the null component and the
non-null component are pre-determined. The constant q is related to the
local fdr threshold value, and if the local fdr threshold is 0.2 (suggested
by Efron, 2007), then q=4. For the inside network edges, we use a different
thresholding rule which is less stringent (than outside network), because we
have a stronger prior belief that for inside network edges Eij = 1. The prior
belief is based on the previous network detection step, and it has verified by
statistical tests that the graph topology of these networks are non-random
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NETWORK INDUCED COVARIANCE ESTIMATION 11

but organized. Therefore, the graph topology information is used for thresh-
olding and both false positive and false negative discovery rates, as the
thresholding is not performed on a individual edge but based on the whole
graph topology structure.

We determine both inside and outside network edge threshold values by
using Bayes factor (BF, Kass and Raftery, 1995). The posterior probability
distribution of all edges are p̂inf̂in(zij) + p̂outf̂out(zij). For outside edges, the

BF threshold is f̂in(zij)/f̂out(zij) ≥ p̂out/p̂in × q; but for the side edges, the

BF threshold is f̂in(zij)/f̂out(zij) ≥ 1. The difference reflects the prior belief
odds ratio:

Prob(Einside = 1)/Prob(Einside = 0)

Prob(Eoutside = 1)/Prob(Eoutside = 0)
= p̂out/p̂in × q,

where the only tuning parameter is q (4 is recommended by Efron, 2007).
The prior information incorporates the network allocation (i.e. topological
structure information) and influences the final thresholding and regulariza-
tion via a Bayesian framework.

Remarks: the statistical inferences on large covariance matrices involve
multiple aspects such as topological structures and covariance matrix esti-
mation. It is limited to simply apply a one (or two) step universal decision
rule for knowledge/data mining. Recognizing the networks provides a funda-
mental understanding of the interactive relationships between multivariate
variables. In return the topological structure could become prior knowledge
to lead topological structure assisted large covariance matrix regularization
and estimation.

3. Simulation Studies. We conduct numerical studies to evaluate the
performance of NICE algorithm for detecting the correlated networks and
estimating covariance matrix, and compare it with the other popular large
covariance matrix shrinkage and thresholding method.

3.1. Simuluation datasets. We simulate a data set with p = 100 vari-
ables, and thus |V | = 100 and |E| =

(
100
2

)
= 4950. We assume that the

covriance matrix includes two induced correlated networks, and the first in-
clude 15 nodes and the second 10 nodes. The induced networks are complete
subgraphs that all edges are connected within these two networks and no
other edges are connected outside the two networks (Fig 1a). Next, we per-
mute the order of the nodes to mimic the practical data sets that the network
structures are implicit (Fig 1b), which represents the true edge set E. Let
Xp follow a multivariate normal distribution, with zero mean and covariance
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12 S. CHEN ET AL.

Algorithm 1 NICE algorithm

1: procedure NICE–Algorithm
2: Obtain the empirical Bayes fuzzy logic matrix W=g(R)
3: Calculate the Laplacian matrix L=D-W
4: for cluster number K = 2 : |V | − 1 do
5: Compute the first K eigenvectors [u1, · · · , uK ] of L, with eigenvalues ranked

from the smallest.
6: Let U = [uT

1 , · · · , uT
K ] be a |V | ×K matrix containing all K eigenvectors.

7: Perform K-means clustering algorithm on U with K to cluster |V | nodes into
K networks

8: Calculate the quality and quantity criterion for each K.
9: end for

10: Adopt the clustering results using the K of the maximum score of the quality and
quantity criterion.

11: Identify the networks with significantly high proportion of larger W values by
permutation test: for each network

12: i) calculate the T 0 =
∑

i,j∈Gk
Wij ;

13: ii) permute the labels of the nodes in the detected network for M (e.g. 10,000) times
and calculate Tm for each iteration;

14: iii) calculate the percentile of T 0 in {Tm}, if it is less than the α level the network is
considered as true community network

15: Implement the topological structure oriented thresholding strategies for covariance
entries inside and outside networks (see details in 2.3)

16: end procedure

matrix Σp×p, and the sample size is N . σij is an entry at the ith row and
jth column of Σ, σij = 1 if i = j, and σij = ρ|Eij = 1 for edges within the
networks and σij = 0|Eij = 0 for edges outside the networks. We simulate
100 data sets at different signal to noise (SNR) levels by using sample sizes
N and different values of ρ (Fig 1c) as a) a larger sample size reduces the
asymptotic variance of σ̂ij and thus the noise level is lower (for larger N);
b) a higher absolute value of ρ represents higher signal level. We compare
our method with glasso, CLIME, and adaptive thresholding by comparing
the false positive and negative rates of Êij with contrast to the ground truth
regarding the network detection and edge set E estimation. We assess the
performance of each method by estimating the number of false positive (FP)
edges Êij = 1|Êij = 0 and false negative (FN) edges Êij = 0|Êij = 1. In our
simulated data sets, 150 edges are connected Eij = 1 and 4800 edges are un-
connected Eij = 0. For inverse covariance matrix shrinkage and covariance
matrix thresholding methods we treat the the non-zero entry as Êij = 1
and then summarize the FP and FN edges because they provide the same
estimate of E (Mazumder and Hastie, 2012).
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Table 1
Median and quantiles of FP and FN

Parameters σ = 0.5 sample size = 25 σ = 0.5 sample size = 50 σ = 0.7 sample size = 25
FP FN FP FN FP FN

glasso0.1 1673(1648,1702) 59(55,64) 1621(1591.5,1640) 44(40,46) 1581.5(1557,1606) 45.5(42,48)
glasso0.2 1008.5(989,1025) 59(53.5,64.5) 630(610,644) 38(33.5,43) 932.5(920,955.5) 36(32,40)
glasso0.3 546(529.5,560) 56(48,63.5) 151(141,162.5) 38(30.5,43) 500.5(490,516) 28(23.5,33)
glasso0.4 211.5(200.5,222.5) 60(50.5,72) 19(16,21) 48.5(38,58) 194(186,204.5) 24.5(20,29)
glasso0.5 51(46,59) 80.5(66,96) 1(0,2) 82.5(67,96.5) 47(41.5,54) 28(22.5,35)
glasso0.6 7(5,10) 112.5(97,125.5) 0(0,0) 130(118.5,137) 6(5,8.5) 41(31,51)
glasso0.7 0(0,1) 140(131.5,146) 0(0,0) 149(147,150) 0(0,1) 75(61.5,89)
glasso0.8 0(0,0) 149(148,150) 0(0,0) 150(150,150) 0(0,0) 127(119.5,135)
glasso0.9 0(0,0) 150(150,150) 0(0,0) 150(150,150) 0(0,0) 149(149,150)
glasso1 0(0,0) 150(150,150) 0(0,0) 150(150,150) 0(0,0) 150(150,150)

CLIME0.1 1082.5(1047.5,1108) 56(48,64.5) 993.5(981,1024) 39(32,45.5) 1054(1021,1079) 48.5(40,56)
CLIME0.2 353(339.5,367.5) 79.5(69,87.5) 241.5(231.5,251.5) 61(54,67.5) 345(328,359) 70(59,78)
CLIME0.3 63(57,69) 110(98.5,115) 25(22,29) 92(84.5,100) 64(59,68) 98(87,103)
CLIME0.4 0(0,1) 140(135,144) 0(0,0) 130(124,135) 0(0,1) 134(129,139)
CLIME0.5 0(0,0) 150(150,150) 0(0,0) 150(150,150) 0(0,0) 150(150,150)
Thres0.1 2017.5(1963.5,2067.5) 0(0,2) 1978.5(1944.5,2021.5) 0(0,0) 2021.5(1968.5,2061) 0(0,1)
Thres0.3 1292.50(1252,1331) 2(0,5) 1249.5(1220.5,1288.5) 0(0,0) 1293.5(1251,1341.5) 1(0,3)
Thres0.5 721.5(699,752) 5(1,12) 689(673.5,721) 0(0,1) 722(693,756) 3(1,10.5)
Thres0.7 344.5(325,360) 14(7,26.5) 328.5(311.5,349.5) 1(0,2) 342.5(324,363) 10(3,21.5)
Thres0.9 132(121,143.5) 30(18,45) 129.5(121,142) 3(1,7) 133(123.5,146) 24(12,39.5)
Thres1.1 41.5(35,46) 55.5(40,78.5) 40.5(36.5,47.5) 10(4.5,17) 40(35.5,46.5) 49.5(28,63)
Thres1.3 9(6,10) 92(74,112) 10(8,12) 25(13,37) 9(6,11) 78(54.5,89)
Thres1.5 1(0,2) 126(112.5,137) 2(1,3) 50.5(32.5,68) 1(0,2) 106(92.5,114)
Thres1.7 0(0,0) 145(138.5,148) 0(0,0) 85.5(67,102.5) 0(0,0) 132.5(120.5,138.5)
Thres1.9 0(0,0) 150(149,150) 0(0,0) 120.5(105,130) 0(0,0) 147(144,149)
AThres0.3 2593(2566.5,2627.5) 2(0,5) 2538.5(2509.5,2571) 0(0,0) 2594(2563,2619) 1(0,3)
AThres0.5 1460(1421.5,1486) 5(1,12) 1412.5(1379.5,1440) 0(0,1) 1453(1419.5,1491) 3(1,10.5)
AThres0.7 691.5(667,717) 14(7,26.5) 668.5(646,697) 1(0,2) 695.5(665.5,720) 10(3,21.5)
AThres0.9 271.5(258,291.5) 30(18,45) 265(252,283.5) 3(1,7) 270.5(255.5,288) 24(12,39.5)
AThres1.1 83(75,95) 55.5(40,78.5) 85(75.5,95.5) 10(4.5,17) 82(74,89.5) 49.5(28,63)
AThres1.3 18(15,21) 92(74,112) 22(18.5,25.5) 25(13,37) 18(14.5,22) 78(54.5,89)
AThres1.5 2(1,4) 126(112.5,137) 4(3,6) 50.5(32.5,68) 3(1,3) 106(92.5,114)
AThres1.7 0(0,0) 145(138.5,148) 0(0,1) 85.5(67,102.5) 0(0,0) 132.5(120.5,138.5)
AThres1.9 0(0,1) 150(149,150) 0(0,0) 120.5(105,130) 0(0,0) 147(144,149)
NICE 44(15,98) 3(0,27) 11(1,30) 0(0,4) 32.5(13.5,71) 14(4,38.5)

3.2. Numerical Results. The simulation results are summarized in Ta-
ble 1. Rather than selecting a single tuning parameter λ for glasso by cross-
validation, we explore all possible choices in the reasonable range. We utilize
25%, 50%, and 75% of the FP and FN edges of the 100 simulation data sets
to evaluate the performance of the methods. The results show the NICE
algorithm outperform the other methods even when comparing with the
optimal tuning parameters. One possible reason could be the NICE algo-
rithm thresholds the covariance matrix based on the topological structure
rather than the a universal shrinkage or thresholding strategy. More impor-
tantly, our NICE method is the only method can automatically detect the
underlying network structures. The NICE method also outperform the other
models. Thus, the numerical results demonstrate that our new method not
only provides more accurate estimation of the covariance matrix and the
edge set E than the competing method, but also automatically detects the
networks where high connectivity edges distribute in an organized fashion.

4. Data example. We further apply our method to a publicly available
mass spectrometry proteomics data set (Yildiz et al , 2007). The study col-
lected matrix-assisted laser desorption ionization mass spectrometry (MALDI
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MS) data sets to obtain the most abundant peptides in the serum that may
distinguish lung cancer cases from matched controls. The study included
182 subjects in the training data set and 106 in the testing data set. The
raw data were 288 mass spectra for all subjects, and each raw spectrum
consists roughly 70,000 data points. After preprocessing steps including MS
registration, wavelets denoising, alignment, peak detection, quantification,
and normalization (Chen et al , 2009), 184 features are considered to rep-
resent the most abundant protein and peptide features in the serum. Each
feature is located at a distinct m/z value that could be linked to a specific
peptide or protein with some ion charges (feature id label). The original
paper intended to utilize the proteomics data to enhance disease diagnosis
and prediction. In this paper, we estimate the covariance/correlation matrix
to investigate the relationship between these features. We use the training
data set to calculate the sample correlation matrix as our input data Xn×p.

Next, we apply our NICE method to estimate the covariance matrix and
to detect the correlated peptide/protein networks based on the (Fisher’s Z
transformed) sample correlation matrix (2a). Next, we calculate the fuzzy
logic weight matrix as shown in 2b. The quality and quantity criterion is
implemented and K=39 is selected, and the procedure is demonstrated in 2c.
The network detection is performed to cut edges, allocate correlated features
to each other 2d. Based on the permutation test, 8 networks are detected.
Furthermore, inside and outside network edges show distinct distributions
of Fisher’s Z transformed correlations 2e. We apply the topology/network
oriented adaptive decision/thresholding rules to estimate Ê and the covari-
ance/correlation matrix 2f. Note that 2e only identify two components of
positively correlated edges and the null, without the negatively correlated
edge component. As a result, the negative edges are thresholded. Since the
null distribution in 2e seems to be symmetric, based on the Bayes factor
decision rule we are confident that edges with high negative correlations are
false positive. The network detection results could provide informative in-
ferences about the between feature relationship. In this example data set,
each network represents a group of related protein and peptides that could
be confirmed by proteomics mass spectrometry literature. For example, the
most correlated network 4 consists a list of proteins of normal and variant
hemoglobins with one and two charges (Lee et al , 2011) including normal
hemoglobins α and β with one charge and two charges (at m/z 15127, 15868,
7564, and 7934). The highly correlated networks of biomedical features could
potentially provide a set of biomarkers for future research that allow to bor-
row power between each other.
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(a) Sample correlation (b) Fuzzy logic weight matrix

(c) K selection (d) Network detection: redordered W .

(e) Edges inside and outside networks (f) Estimated edge set Ê

Fig 2: Application of the NICE to the example data set.
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5. Discussion and Conclusion. The large covariance/correlation ma-
trix of data sets from high-throughput biomedical assays often demonstrate
complex, yet highly organized, topology of the underlying physiological and
biological machinery. There have been unmet needs of statistical method-
ologies to simultaneously estimate the covariance matrix and reveal the un-
derlying topological structure. The regularization methods (e.g. shrinkage or
thresholding) are exploited to estimate the covariance matrix. On the hand,
the community detection algorithms (e.g. profile likelihood and modularity
maximization based on SBM) are employed to explore the graph topologi-
cal structures, and the results heavily depend on two factors: the similarity
metrics and number of clusters. We develop a novel strategy to bridge the
covariance estimation and graph topological structure for network induced
covariance matrix estimation.

The NICE framework at least makes three novel contributions. First, the
fuzzy logic metric provides a sensitive and robust scale to detect the networks
because the accuracy of clustering findings primarily depends the similarity
metrics. Second, the quality and quantity criterion is a efficient and data-
driven heuristic not only to objectively select optimal tuning parameter (i.e.
K), but also to guide regularization with graph topology oriented adaptive
thresholding stringent levels. A larger K will cut more edges and keep less
edges within the networks, and the edges outside and inside of the networks
are subject to more stringent thresholding levels because 1) the number of
inside of edges are less; and 2) the mean of two distributions are more sepa-
rate (see 2e). Note that different from all community detection algorithms,
our selected tuning parameter K (by the quantity and quality criterion)
does not determine the final number of detected networks and a network
must pass the permutation test significance level. For example, our example
set has K=39 but only 8 networks are detected. Therefore, the quality and
quantity criterion is a new regularization computational strategy which is
distinct from the lasso type `1 and `2 shrinkage (e.g. glasso) and adaptive
thresholding algorithms because it implement the regularization based on
the topology structure constraint and select optimal tuning parameter ob-
jectively (less ad-hoc). Last, our covariance matrix estimation (thresholding
strategy) could reduce both false positive and false negative discovery rate
by leveraging the graph topological structures. The adaptive thresholding
rules depends on the inherent topology of G, for example, if the graph is to-
tally random our strategy would be similar to hard thresholding (Bickel and
Levina, 08). In this case, the univariate correlation thresholding method
seems to provide satisfactory performance (Friedman et al , 2010). In our
applications, only positive (correlation) edges are organized in graph topol-
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ogy and the negative (correlation) edges are randomly distributed. Based
on the Bayes factor decision rule, none of negative (correlation) edges are
suprathrhold. In the future, we will examine whether the graph topology
structures could include organized negative (correlation) edges, and nega-
tive (correlation) edges and positive (correlation) edges could jointly com-
prise organized topology structures.

The simulation studies and example data set application have demon-
strated excellent performance of the NICE algorithm. The computational
cost of NICE algorithm is low (for our simulation example the algorithm
only takes 40 seconds using i7 CPU and 24G memory), and thus it is ready
to scale up for larger data sets. In addition, the NICE algorithm is not re-
stricted for multivariate Gaussian distributed data and it is straightforward
to extend the sample correlation matrix to other sample metrics, for exam-
ple maximal information coefficients (?) for continuous data and polychoric
correlation coefficient for categorical data (?) because both fuzzy logic met-
ric and graph topology oriented thresholding are based on the empirical
distribution of the coefficients.
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