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ABSTRACT

Context. In the current concordance cosmology small halos are expected to be completely dark and can significantly perturb low-
mass galaxies during minor merger interactions. These interactions may well contribute to the diversity of the dwarf galaxy population.
Dwarf galaxies in the field are often observed to have peculiarities in their structure, morphology, and kinematics as well as strong
bursts of star formation without apparent cause.
Aims. We aim to characterize the signatures of minor mergers of dwarf galaxies with dark satellites to aid their observational identi-
fication.
Methods. We explore and quantify a variety of structural, morphological, and kinematic indicators of merging dwarf galaxies and
their remnants using a suite of hydrodynamical simulations.
Results. The most sensitive indicators of mergers with dark satellites are large asymmetries in the gaseous and stellar distributions,
enhanced central surface brightness and starbursts, and velocity offsets and misalignments between the cold gas and stellar compo-
nents. In general merging systems span a wide range of values of the most commonly used indicators, while isolated objects tend to
have more confined values. Interestingly, we find in our simulations that a significantly off-centered burst of star formation can pin-
point the location of the dark satellite. Observational systems with such characteristics are perhaps the most promising for unveiling
the presence of the hitherto, missing satellites.

Key words. Galaxies: dwarf – Galaxies: evolution – Galaxies: interactions – Galaxies: irregular – Galaxies: starburst – (Cosmology:)
dark matter

1. Introduction

In a Lambda cold dark matter (ΛCDM) universe the halo mass
function is scale-free: independently of their mass, halos have
their own system of substructures (van den Bosch et al. 2005;
van den Bosch & Jiang 2014). Below a halo mass of ∼ 109.5 M�
however star formation is expected to be largely inhibited due
to reionization, photo-ionization of the gas, and possibly feed-
back (Gnedin 2000; Hoeft et al. 2006; Kaufmann et al. 2007;
Okamoto et al. 2008; Gnedin et al. 2009; Li et al. 2010; Sawala
et al. 2013). The galaxy mass function is thus not scale-free,
while the stellar mass-halo mass function is predicted to steepen
toward lower halo masses (Behroozi et al. 2013; Moster et al.
2013; Kormendy & Freeman 2014; Garrison-Kimmel et al.
2014; Sawala et al. 2015). Therefore, dwarf galaxy halos have
significantly lower baryon fractions and their satellites are ex-
pected to be predominantly completely star-less, or dark (Helmi
et al. 2012).

Although the Hubble sequence (Hubble 1926) generally de-
scribes well the properties of large galaxies, on the scale of
dwarfs no clear classification scheme exists. The simplest sep-
aration is given by the fact that star forming dwarfs often show
irregular morphologies, while those quiescent have generally a
spheroidal appearence. It is still not well understood how these
classes of objects are related (see e.g. Mateo 1998; Tolstoy et al.
2009). Furthermore, blue compact dwarfs (BCDs), and more
generally starbursting dwarf galaxies, have central regions that
are very blue reflecting a centrally concentrated young stellar

population so bright that an underlying older, population is not
readily apparent (e.g., Gil de Paz et al. 2003; Paudel et al. 2015).
Just like dwarf irregulars, BCDs can furthermore depict irreg-
ular morphologies and kinematics, with star formation regions
far from the center (Taylor et al. 1995; Ekta & Chengalur 2010;
López-Sánchez 2010; Holwerda et al. 2013; Lelli et al. 2014;
Knapen & Cisternas 2015). Off-center bursts of star formation
have also been observed in a number of extremely metal-poor
galaxies as well as large differences in the average line-of-sight
velocities between the HI gas and the stellar component (Filho
et al. 2013, 2015). As galaxy mass lowers, it appears as if a
higher fraction of the systems are peculiar.

We have recently postulated that this may be partly explained
by dwarf galaxies experiencing minor mergers with dark com-
panions (Helmi et al. 2012). In Starkenburg & Helmi (2015) and
Starkenburg et al. (2015), we have shown that such minor merg-
ers can significantly alter the morphological properties of dwarf
galaxies. The disturbances induced by dark objects are much
more dramatic on this scale because of the lower galaxy forma-
tion efficiency (i.e. lower baryon fractions) in dwarfs compared
to giant galaxies. One of the most direct imprints in gas-rich
dwarfs is a vast increase in star formation: both in short bursts
(during close passages of the satellite) as well as sustained high
star formation rates lasting several Gyrs. In Starkenburg et al.
(2015) we have shown that the general properties of our sim-
ulated dwarf systems compare very well to a large sample of
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dwarf irregular galaxies and blue compact dwarfs from the liter-
ature.

In this paper we provide a quantitative characterization of
the morphological and kinematic properties of the dwarf sys-
tems during the minor merger events and thereby facilitate a
more detailed comparison to observations. For the analysis we
use morphological descriptions that have been applied to char-
acterize where galaxies lie along the Hubble sequence, to dis-
entangle interacting from isolated systems, and to describe the
stellar distributions in major mergers of ∼ L? or larger spi-
ral galaxies, such as the CAS (Concentration, Asymmetry and
Smoothness) and GM (Gini coefficient and M20) indicators (see
e.g. Conselice et al. 2000; Conselice 2003; Abraham et al. 2003;
Lotz et al. 2004, and references therein). These have also been
applied to describe the stellar components of isolated irregular
dwarf galaxy samples (Conselice 2003; Lotz et al. 2004), to char-
acterise the gas distribution in starbursting dwarf galaxies (Lelli
et al. 2014) and in simulations of major mergers (Holwerda et al.
2011a) as well as a variety of observational samples (Holwerda
et al. 2011b,c,d,e, 2012, 2013, 2014).

This paper is organised as follows. The hydrodynamical sim-
ulations are described concisely in Sect. 2, while in Sect. 3 we
focus on one specific simulated system and highlight key tidal
features as the merger takes place. In Sect. 4 we introduce the
morphological and kinematic indicators used and compare the
results to some observational samples. We present a brief com-
parison to two dwarf galaxies with peculiar properties, namely
IC10 and NGC6822 in Sect. 5. The summary and conclusions
are given in Section 6.

2. Method

We analyze the structural properties of dwarf galaxies during
minor mergers with dark satellites for a suite of hydrodynami-
cal simulations recently presented in Starkenburg et al. (2015).
The simulations span a range of initial conditions for the dwarf
galaxy, its satellite and a variety of orbital configurations for
the interaction. They were performed using the OWLS (Schaye
et al. 2010) version of Gadget-3 (based on Springel et al. 2001;
Springel 2005) with implementations for star formation and
feedback as described in Schaye & Dalla Vecchia (2008); Dalla
Vecchia & Schaye (2008).

The host dwarf galaxy consists of a dark matter halo, a stellar
disk and a (generally more radially extended) gaseous disk. Both
the stellar and gaseous disks follow an exponential surface den-
sity profile with radius, while the vertical distribution of the gas
is determined by requiring hydrostatic equilibrium, and assum-
ing an effective equation of state of the multiphase ISM model by
Schaye & Dalla Vecchia (2008); Dalla Vecchia & Schaye (2008).
Star formation occurs when the density of the gas is above a
threshold of 0.1 cm−3, while at lower densities the gas follows
an isothermal equation of state. Feedback and stellar winds are
included such that the systems, when evolved in isolation, are
self-regulating over the timescale of the simulations.

The satellite is a dark subhalo (no baryons) that follows an
NFW-profile with two different concentrations (c = 15, c = 25).
In most of the simulations, it has an initial mass of 20% of that of
the dwarf galaxy’s halo, but we also consider 5% and 10% mass
ratios. The satellite is typically placed on a fairly radial orbit with
different inclinations and is launched close to its apocenter near
the virial radius of the host.

For the numerical parameters, we use 1×106 particles for the
dwarf’s dark matter halo, a softening length εhalo = 0.025 kpc,
2×105 particles in baryonic mass, divided among the stellar and

gas disks according to the gas fraction fg = Mgas/(Mgas + M?),
with softening length εbar = 0.008 kpc. The satellite is mod-
eled with 1 × 105 particles that have a softening length εsat =
0.016 kpc.

We will focus mostly on one of the simulated dwarfs, which
we refer to as model-A (Starkenburg et al. 2015), and which has
Mvir = 5.6 × 1010 M�, a concentration c = 9, and M? = Mgas =

1.4×108 M� ( fg = 0.5). The stellar disk has a radial scale-length
Rd = 0.93 kpc and vertical scale-height z0 = 0.1Rd. We will
also report results for smaller mass systems in the range Mvir =
9.7×109–2.2×1010 M�, and M? = 4.4×106–2.7×107 M�, with
gas fractions of fg = 0.75–0.9, and a range of disk thickness and
halo concentrations (models B, C, and D in Starkenburg et al.
2015).

3. Tidal effects

As an example, we present in Fig. 1 the evolution of the model-
A dwarf as it experiences a 20% minor merger. In this example
the dwarf has initially a very extended gas disk, with scale length
Rg = 4Rd. This set-up is motivated by observations showing that
gas may spread out much farther than the stars (see e.g. Begum
et al. 2008; Filho et al. 2015, and references theirin).

The satellite in Figure 1 has a high concentration (c = 25)
and is launched from apocenter at a distance of ∼ 51 kpc on a
fairly radial orbit with tangential velocity vt = 0.5vvir. During
close passages to the disk the satellite (marked with a cross) in-
duces large tidal tails in both the gas and stars, as shown in the
second column of this figure.

During the second pericentric passage (third column of Fig.
1), the satellite meets up with a gaseous tidal tail and causes a
local overdensity where star formation takes place (as can be
seen from e.g. the newly born stars plotted in blue in the middle
panel). The star formation rate density in this tidal structure is
higher than in the center so that the brightest star forming core
at this point in time is actually located more than 7 kpc from the
center. Intriguingly, such features are also found in XMP galax-
ies (Filho et al. 2013).

Fig. 2 zooms into the gas column densities in the inner parts
of the dwarf galaxy around this time. Note again the high gas
densities in the tidal tails and how they correlate with the posi-
tion of the satellite. Also, and as expected, the young star parti-
cles trace the motion of the satellite through the disturbed dwarf
galaxy (see the blue points in the middle row of Fig. 1). Since
these dominate the light, the associated local star-forming re-
gions may well be the analogues of what is seen in XMP galaxies
(Filho et al. 2013, 2015).

Figure 3 shows the star formation rate (SFR) during the en-
counter. The blue curve shows that the total SFR has pronounced
peaks during the pericentric passages of the satellite. Interest-
ingly, during the later passages, up to 75% (4 × 10−3 M� yr−1)
of the total star formation takes place in the tidal tail at the loca-
tion of the satellite (red curve). Subsequently the total SFR in-
creases, due to the gas that is channeled to the center, and reaches
a plateau around a value that is at least a factor 10 higher than
for the equivalent dwarf in isolation.

In summary, besides the characteristic starburst, signatures
of the merger can be found in the morphology of the old stel-
lar disk, the distribution and morphology of the young stellar
population that is formed during the encounter, and in the mor-
phology and kinematics of the gas. The gaseous and stellar disks
show distinguishable effects both in the outskirts and in the in-
ner parts. Interestingly, in the simulated system shown here star
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Fig. 1. Evolution of the model-A dwarf galaxy with Rg = 4Rd, merging with a 20% mass ratio dark satellite with c = 25 on a co-planar relatively
radial orbit. All figures show an inclined view of the disk, 60 deg from face-on. The top row shows the cold gas in the disk (contours at 0.4, 1,
4, and 10 × 1020 N cm−2) with the star-forming gas highlighted in green (see colorbar for SFR values). The central row panels show the old stars
in red, and those newly formed in blue, along with two surface brightness contours of 25 mag/arcsec2 and 28 mag/arcsec2, obtained assuming an
M/L = 0.5 for all stellar particles. The bottom panels show the gas contours with the gas velocity maps. In all panels the satellite is shown in grey
(5% of the particles are plotted), with the purple cross denoting its center of mass. The insets indicate the values of asymmetry, concentration and
difference in average velocity between stars and gas computed as described in Sec. 4.

forming regions outside the center pinpoint the location of the
merging dark satellite.

4. Quantitative measures of structural properties

Although clear effects can be seen in the simulated dwarf galaxy
which are due to the minor merger, it is important to quantify
these in order to make comparisons to observations. A variety of
quantitative structural descriptions of the morphology and kine-
matics of galaxies have been put forward in the literature. Mor-
phologically the structure is often characterized by the CAS (con-
centration, asymmetry, and smoothness; Conselice 2003) and
GM (Gini and M20; Lotz et al. 2004) indicators. Additionally
for dwarf irregulars and BCDs, the difference in central surface
brightness obtained by fitting the inner and outer regions is also
used (Hunter & Elmegreen 2006; Papaderos et al. 2008). For
XMP galaxies, the often used indicators include differences in
the average velocity, and in the position angles of the HI gas
and stellar components (Filho et al. 2015, 2013). We apply the
morphological indicators to our simulations and present the re-

sults in Sect. 4.1, while we focus on the results of the kinematic
indicators of the stellar and gas disks in Sect. 4.2.

4.1. Morphological parameters

We estimate the morphological CAS and GM parameters, includ-
ing modifications by Lelli et al. (2014); Holwerda et al. (2011d),
on a grid with initial size of 20 by 20 kpc which is cropped to
the regions above a fixed threshold, and a default bin size of 0.2
kpc. The thresholds adopted are close to those reported for ob-
servational studies in the literature, NHI > 4 × 1019 cm2 for the
surface density of neutral gas and µV < 28 mag/arcsec2 for the
V-band magnitude, respectively. This means that in practice each
bin holds at least 12 gas particles. For the stars, assuming an av-
erage M/L = 0.5, appropriate for the V-band, each bin holds at
least 4 stellar particles. The calculations are done on the stellar
densities though (in M�/kpc2).

For many of the indicators it is necessary to define the cen-
ter of the system. This is done by fitting a 2-dimensional Gaus-
sian to the projected density (although our results are robust
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Fig. 2. Evolution of the inner parts of the dwarf galaxy shown in Fig. 1 around the time the satellite merges with the host. The threshold is
0.4 × 1020 N cm−2 and the contours indicate 1, 4, and 10 × 1020 N cm−2; see colorbar for the relative values.

Fig. 3. The blue curve shows the evolution of the star formation rate
of the dwarf galaxy shown in Figures 1 and 2, while the black curve
is for the same model-A dwarf run in isolation. The star formation rate
in the tidal tail within 1 kpc of the position of the satellite is shown
with the red dashed curve, and makes up to 75% of the total SFR in
the system around the time of the merger. The satellite is completely
disrupted after 2.5 Gyr, but its effects on the SFR are longlasting. The
pericenter passages of the satellite are indicated by the black arrows.

to the centering method used), with the threshold values de-
scribed above. We have tested the effect of different thresholds
(NHI > 1019 cm2, NHI > 1020 cm2, µV < 26 mag/arcsec2, and
µV < 30 mag/arcsec2), and assumptions regarding the mass-to-
light ratios for the newly formed and original stellar populations,
and found that when a sufficient area of the system is visible (as
smaller systems can mostly disappear below the thresholds) the
numerical values for the morphological parameters can change
but the trends stay intact.

4.1.1. Definitions

We now describe in detail the different morphological indicators
we use in our analysis.

– Concentration
This describes the distribution of light over the image:

C = 5log (r80/r20) (1)

where r80 and r20 are the radii which contain 80% and
20% of the total light (Conselice 2003), where for a purely
exponential profile C = 2.7, and for a de Vaucouleurs profile
C = 5.2. Note that since the projected surface brightness and
gas column densities are computed on a grid, we determine
a slightly coarse value of C.

– Asymmetry
This describes the relative difference in intensity when the
image is rotated 180 degrees:

A =

∑
i, j |I(i, j) − I180(i, j)|∑

i, j I(i, j)
(2)

where I(i, j) is the intensity of the pixel (i, j) (Conselice
2003). Note that with this definition, 0 < A < 2.

– Outer Asymmetry
To give more weight to the outer parts, Lelli et al. (2014)
have defined an outer asymmetry parameter as:

OA =
1
N

∑
i, j

|I(i, j) − I180(i, j)|
|I(i, j) + I180(i, j)|

(3)

(Lelli et al. 2014), where we define N as the number of the
pixels with |I(i, j) + I180(i, j)| > 0. Note this outer asymmetry
(OA) indicator is more susceptible to noise.
Both for the A and OA parameters the detectability of
asymmetries in the outskirts depend greatly on the surface

Article number, page 4 of 9



T. K. Starkenburg et al.: Structural properties of dwarf galaxy minor merger remnants

brightness or column density thresholds, especially for low
mass and low surface brightness galaxies.

– M20
This parameter is a relative second order moment of the 20%
brightest pixels and was originally introduced as an alterna-
tive to the concentration parameter:

M20 = log
∑k

i Mi

Mtot

 (4)

where
∑k

i Ii < 0.2Itot and Mi = Ii[(xi− xc)2 + (yi−yc)2] (Lotz
et al. 2004). Its advantage compared to the concentration is
that there is no assumption of circular symmetry and that it
is more sensitive to phenomena like multiple nuclei that are
thought to be common in merging, or post-merging, systems.

– Gini coefficient
This statistic originally used in economics to describe the
distribution of wealth within a society, was adapted to galaxy
morphology by Abraham et al. (2003). It correlates with con-
centration but does not assume circular symmetry. We use
the Gini coefficient based on the second intensity moment
weighted by position:

G(M) =
1

2M̄N(N − 1)

∑
i, j

|Mi − M j| (5)

where again Mi = Ii[(xi − xc)2 + (yi − yc)2], and M̄ denotes
the mean of Mi over all N pixels (Lotz et al. 2004; Holwerda
et al. 2011d). G(M) is larger when the brightest pixels are
farther from the center. We only consider the pixels above
the threshold in this calculation, which tends to lower the
values of G(M) compared to including the background
pixels.

– Excess central surface brightness: |µ0,HS B − µ0,LS B|

We compute this by taking the difference in the central bin’s
surface brightness obtained from exponential fits to the inner
and outer parts of the system.

4.1.2. Results

Fig. 4 shows the evolution of three morphological indicators:
asymmetry, concentration and M20, for the gas distributions in
the system shown in Fig. 1, for five different random inclina-
tions. This figure evidences that the indicators have a strong
time dependence as the merger occurs, and that each evolves
quite differently with time. For example, the asymmetry (in red)
increases with time reaching a peak value when the satellite
fully merges, as a consequence of the extended tidal tails clearly
seen in Fig. 1, and decreases strongly afterwards. The concentra-
tion (in blue) also increases significantly around the time of the
merger but it remains high afterwards, as a result of the strong
central influx of gas. On the other hand, the M20 (in green) de-
picts an oscillatory behaviour with peaks that roughtly coincide
with each pericenter passage of the satellite. Because M20 is
negative, and in this figure it has been normalised to the initial
value, these peaks actually imply that the 20% brightest pixels
are more centrally concentrated, with the dips indicating high
gas densities at larger radii, suggesting that star formation oc-
curs at larger distances. The plateau value at late times reflects
the strong centrally concentrated sustained enhancement in gas

Fig. 4. The distribution of the asymmetry A (red), concentration C
(blue), and M20 (green) values for the gaseous disk for 5 random in-
clinations in time intervals of 0.1 Gyr for the model-A dwarf during the
minor merger shown in Fig. 1. These quantities have been normalised to
their median (over all inclinations) initial value. The pericenter passages
of the satellite are indicated by the black arrows.

density. The parameters describing the stellar distribution follow
similar trends.

Fig. 5 shows the distribution of photometric indicators for
all the merger simulations we have carried out with the model-A
dwarf. These simulations include a range of different orbits (or-
bital inclinations and eccentricities), concentrations and masses
for the satellite, and varying extents of the gaseous disk. For each
simulation the parameters are calculated initially (i.e. in isola-
tion) and at 1, 2, 3, and 4 Gyr and at five random inclination
angles for each point in time.

This figure shows that isolated systems (blue for gas, and
green for stars) tend to occupy small regions of parameter space,
whereas for mergers (red for gas and black for stars) a broad
range of parameter values appears to be plausible. At face value,
there is no parameter (combination) for which mergers and iso-
lated systems can be fully separated. This might not be unex-
pected given the time variability of the parameters. Furthermore,
cases in which the effects of the merger on the gas and stellar
disks are small (e.g. if the satellite sinks in very slowly or has
too low mass, or for specific viewing angles), will be hard to
disentangle from systems in isolation.

Most isolated systems have low values for concentration,
asymmetry, outer asymmetry, and G(M). On the other hand, for
the mergers, the asymmetry parameters for both the gas and the
stars spread over a much larger range. Also the outliers in M20
correspond to merging systems. The difference in central surface
brightness can reach up to to 3 magnitudes/arcsec2 for merging
systems, but is smaller than 1 magnitude/arcsec2 for all isolated
cases.

It is therefore easier to demark regions populated by isolated
systems in the parameter subspaces plotted in Fig. 5. For exam-
ple A < 0.38 for the gas, A < 0.3 for the stars, OA < 0.4 for gas
and stars, G(M) < 0.4 for the gas, and a relation C / 2M20 + 7
for the gas and C / 2M20 + 8 for the stars. These regions
are indicated by grey lines in the figure. Interestingly we find
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Fig. 5. The concentration C, asymmetry A, outer asymmetry OA, M20, Gini(M), and excess central surface brightness |µ0,HS B − µ0,LS B|, for the
gas in merger simulations (red) and in isolation (blue), and for the stars in merger simulations (black) and in isolation (green). The simulations
shown correspond to the model-A dwarf, and encompass 14 different runs with varying satellite masses, halo concentrations, orbits, and radial
extend of the gas disks with respect of the stellar disks (with Rg = Rd, 2Rd, or 4Rd) as described in Sect. 2. For more details on the simulations,
see Starkenburg et al. (2015). The dotted, dashed and solid lines indicate regions where the isolated and merger systems are well separated for the
stars, for the gas or for both, respectively.

G(M) > 0.4 for the HI component of merging systems, while
G(M) > 0.6 has been put forward by Holwerda et al. (2011d),
and A > 0.4 has been used for the stellar component in major
mergers (Conselice 2003).

In Fig. 5 we have focused on the model-A dwarf, a rela-
tively massive system with M? = 1.4 × 108M�, and demon-
strated that it may be possible to disentangle partly mergers from
isolated systems. However, for lower mass dwarfs, with initial
M? = 4.4 − 27 × 106M�, the morphological parameters of ei-
ther isolated and merging systems strongly overlap. Although a
20% merger can cause irregular features in the gas and stellar
distributions (ideally resulting in higher asymmetry and outer
asymmetry values), often these features are not strong enough
(given reasonable thresholds) to be clearly identified by the CAS
or GM indicators as being different from irregular gas densities
and patchy star formation that may happen in isolation as well.

Therefore, such morphological indicators are not useful to iden-
tify merger candidates in the case of low mass dwarfs.

4.1.3. Comparison to observations

Lotz et al. (2004) have estimated the asymmetry, concentration,
and M20 parameters for 22 systems from a sample of isolated
dwarf irregular galaxies observed in the B-band by van Zee
(2000, 2001). Many of these systems are brighter than those
in our simulations and seem to be more clumpy. Although the
range of concentrations is similar (2.39 < C < 4.17), the val-
ues for M20 are higher (−1.79 < M20 < −0.70) than we find for
the stellar components even in isolation. This implies a smoother
distribution in the simulations, and this could be the result of an
initial smooth set up as well as to the absence of H2 or metal-
line cooling in the simulations which could induce a patchier
star formation. On the other hand, the asymmetry values are in
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Fig. 6. Average velocity differences between the gas and the stellar disk normalized to the average observed rotational velocity of the gas,
difference in position angle between the projected distributions of the gaseous and stellar disks, and between the projected stellar disk and the
kinematic axis of the gas, for merger simulations (black) and for systems in isolation (red). The different rows correspond to different ranges of
viewing angles. In this figure we have included the model-A dwarf with M? = 1.4 × 108 M� (solid circles), as well as values for systems with
M? = 4.4 × 106 M� (dashes) and with M? = 1.1 − 2.7 × 107 M� (diamonds).

the range of 0.01 < A < 0.45 (Conselice 2003) and are con-
sistent with what we find for the stellar components of isolated
systems.

Lelli et al. (2014) have described the gas outer asymmetry
for 18 starburst dwarf galaxies and for a control sample of 17
dwarf irregular galaxies from the VLA-ANGST survey (Ott et al.
2012). The outer asymmetry values of the observed starburst sys-
tems are in the range OA = 0.42 − 0.77, with a median value
of ∼ 0.6, i.e. similar to the values we find in our merger sim-
ulations. On the other hand, all the simulated dwarf galaxies in
isolation have outer asymmetries lower than 0.4, and hence are
more comparable to those in the dwarf irregular sample, which
typically have OA ∼ 0.3 − 0.5.

From these comparisons, we may conclude that both the stel-
lar and gas components of dwarf irregular galaxies have similar
parameter distributions to the simulated dwarfs in isolation. Fur-
thermore, the outer asymmetries seen in the gas in observations
of starburst dwarf galaxies agree with those of interacting simu-
lated dwarfs.

4.2. Kinematic parameters

Besides morphology, kinematics can also encode information
about past merger events. For example, in our merger simula-
tions the 3-dimensional direction of the total angular momentum
vectors of the cold gas and of the stars can differ significantly,
and up to 60 degrees, while for the isolated simulated dwarfs the
difference is < 5 degrees. However, angular momenta cannot be
directly measured from observations and so we discuss below
some of the kinematic indicators that may be used instead.

– Difference in average velocity between gas and stars
This has been found to be quite large for a number of
extremely metal-poor (XMP) galaxies (Filho et al. 2013).
In our simulations the average line-of-sight velocities are
mass-weighted and computed for all particles within a
bin with surface brightness or column density above the
thresholds. We compare this difference to the “maximum”
rotational velocity defined as 1

2 (|max(vproj)| + |min(vproj)|),
where these stem from the projected gas velocities within
the observed region.
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– Misalignment between stars and gas
A relatively straightforward measurement consists in com-
paring the orientation of the major axis of the surface bright-
ness to that of the projected cold gas distribution. These are
computed by fitting a 2D-gaussian to these projected distri-
butions.
Since measuring velocity fields for stars is challenging, in
general it will not be possible to estimate the misalignment
between the kinematic axes of stars and of gas. Therefore
instead, we compare the orientation of the photometric major
axis of the stars to the gas kinematic major axis which can
easily determined observationally from HI velocity maps.
The gas kinematic major axis is determined in our simula-
tions using the line connecting the maximum and minimum
velocities observed. To obtain an estimate of the uncertainty
in the orientation we compute the kinematic axis 50 times,
each time using two randomly chosen values amongst those
ranked in the top 10% as maximum and minimum. From this
random sampling we estimate an uncertainty of 9.8 deg, for
the merging systems (lower for isolated systems). However,
this estimate depends strongly on the amplitude of the veloc-
ity field, e.g. for systems close to face on, the uncertainty can
be as large as ∼ 54 degrees.

Figure 6 presents the results for all our simulated systems.
We have separated the analysis according to the projected in-
clination because this has a significant impact on the ability to
separate isolated from merging systems.

For low mass systems (indicated by the dashes), we find
the largest average velocity differences between stars and gas
in mergers, while for all isolated systems, independently of their
mass, ∆ . 0.1vrot, and this appears to be relatively robust to
inclination effects. Inspection of the simulations shows that the
largest amplitude is reached around the time the satellite reaches
the disk, i.e. around the first pericenter passages.

The velocity differences in our simulations are typically
smaller (a few km/s) than those observed for XMP dwarfs by
Filho et al. (2013)1. However, the normalised velocity differ-
ences are 0 . ∆HI/w50 . 1, and hence consistent with those
in our simulations.

Comparison of the different rows in Figure 6 directly shows
that the effects of inclination are important. Especially for nearly
face-on systems, the separation between mergers and isolated
dwarfs is not straightforward. This is entirely due to the large
uncertainties in the determination of the orientation of the pho-
tometric and kinematic axes. For example, isolated systems have
close to circular spatial distributions, so that major and minor
axes directions are hard to define. Furthermore, the line-of-sight
velocities are typically small in this case and so also the rotation
axis is not well constrained. This leads to more scatter in these
distributions.

For other inclinations, the isolated systems tend to be clus-
tered around small average velocity differences, and small mis-
alignments. In other words, mergers are clearly more likely to
have misaligned stellar photometric and gas photometric or kine-
matic major axes. The lack of correlation seen in the bottom left
panel of Fig. 6 is a result of the misalignment between the pho-
tometric and kinematic axes for the gas in the case of mergers.

Fig. 7 provides a visual impression of a projection where the
gas kinematic and the stellar distribution major axes are mis-
aligned for the system from Fig. 1 at 2 Gyr seen for an incli-
1 These authors disregard offsets smaller than 10 km/s because the
uncertainties and their expectation that HI velocity dispersions are ∼ 10
km/s for dwarf galaxies.

Fig. 7. The gas line-of-sight velocity field with the stellar surface
brightness overplotted as contours for the model-A dwarf system dur-
ing the minor merger shown in Fig. 1 at t = 2 Gyr, but now for an
inclination angle of i = 72.6 deg from face-on. The kinematic axis for
the gas (solid line) and the major axis of the surface brightness distribu-
tion (dotted line) are misaligned. The fitted profiles to the stellar and gas
(dashed line) distributions have similar orientations, and this is because
they are dominated by the behaviour in the central regions.

nation of 72.6 degrees. The gas column density distribution and
stellar surface brightness distribution have roughly the same ori-
entation (the misalignment angle is ∼ 2 degrees), but for both
the orientation in the inner regions is different from that in the
outer parts. The gas kinematic axis however has a significantly
different major axis orientation, offset by ∼ 28 degrees.

5. Some intriguing cases

So far we have focused on general trends followed by our mor-
phological and kinematic indicators, and especially on the differ-
ences between isolated and merger systems to facilitate the ob-
servational identification of dwarf galaxies undergoing a merger
when the secondary is not visible, in our case being a dark satel-
lite. We now make a rough comparison to a few intriguing cases
from the literature.

The system depicted in Fig. 1 shows a distribution of gas and
stars that shares characteristics with the irregular dwarf galaxy
IC10: a disturbed gas and stellar distribution with multiple star
forming cores and an extended HI distribution with plums and
spurs with velocities that differ from that of the main gas disk
(see for example Ashley et al. 2014). On the other hand, the HII
regions have a low metallicity (Garnett 1990) which has been
suggested as being due to the influx of fresh pristine gas from
the environment (Sánchez Almeida et al. 2014). However, an-
other interpretation is possible since as we have seen the merger
leads to an extended starburst that is fueled from gas that was
originally present in the outskirts of the main system, and which
presumably also had a lower metallicity (see also Starkenburg
et al. 2015).

Another intriguing system, though for different reasons, is
the dwarf irregular galaxy NGC6822. In addition to a disturbed
gas and stellar distribution and a high rate of recent star forma-
tion, this system has a star formation core located very far from
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the center. This outer star forming region was proposed to indi-
cate the location of a companion system, also due to a signifi-
cant velocity offset (de Blok & Walter 2000), but this has been
discarded because no older stellar population has been found at
that location (Cannon et al. 2012). An interaction with a dark
substructure will however display exactly this signature: a star
formation region at a large distance without an underlying older
population and a metallicity similar to the main system.

6. Conclusions

We have investigated the distribution of quantitative morpholog-
ical and kinematic parameters (often used to characterize inter-
acting, starburst, or peculiar systems), measured during a minor
merger between a dwarf galaxy and a dark satellite. For our sys-
tem with M? > 108 M� the very disturbed morphologies for the
gas and stellar distributions induced by the merger are reflected
most notably in asymmetry parameters during the merger itself.
A post-merger system however stands out the most in its high
values for concentration related parameters, such as C, M20 and
the Gini coefficient. This is the result of an increase in central
stellar and gas density due to gas being driven toward the center
by tidal torques and causing a nuclear starburst episode, which
can last several Gyrs.

Kinematic based parameters can be used to identify merger
systems, for example via the large differences between average
projected gas and stellar velocities. This works particularly well
for smaller mass systems (M? < 2×107 M�), for which the mor-
phological indicators fail. Misalignments between the gas kine-
matic major axis and the stellar surface brightness major axis are
also useful, but can only be applied for systems that are far from
face-on.

Although we still have to determine the smoking-gun that
will allow to determine that an interaction between a dwarf
galaxy and a dark satellite has taken place, in our simulations
star forming cores located far from the center actually seem to
pinpoint the location of the satellite. This could be the way to
shed light on a missing satellite.
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