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Abstract. For any finite-dimensional corepresentation V of a coalgebra C coacting prin-
cipally on an algebra A, we can form an associated finitely generated projective module
A✷V over the coaction-invariant subalgebra B. The module A✷V is the section module
of the associated noncommutative vector bundle. Any equvariant (colinear) algebra homo-
morphism A → A′, where A′ is an algebra with a principal coaction of C and the coaction-
invariant subalgebra B′, restricts and corestricts to an algebra homomorphism B → B′ mak-
ing B a (B − B′)-bimodule. Our main result is that the finitely generated left B′-modules
B′ ⊗B (A✷V ) and A′

✷V are isomorphic. As a corollary, we conclude that, for any equiv-
ariant *-homomorphism f : A→ A′ between unital C*-algebras equipped with a free action
of a compact quantum group, the induced K-theory map f∗ : K0(B) → K0(B

′), where B
and B′ are the respective fixed-point subalgebras, satisfies f∗([A✷V ]) = [A′

✷V ]. As a key
application, we show that any finitely-iterated equivariant noncommutative join of SUq(2)
with itself is not trivializable as an SUq(2)-compact quantum principal bundle.

Our result is motivated by the search of K0-invariants. The main idea is to use equivariant
homomorphisms to facilitate computations of such invariants by moving them from more com-
plicated to simpler algebras. This strategy was recently successfully applied in [12] to distinguish
the K0-classes of noncommutative line bundles over two different types of quantum complex
projective spaces. Herein we generalize from associated noncommutative line bundles to asso-
ciated noncommutative vector bundles. Then we apply our general result to a vector bundle
associated through the fundamental represention of SUq(2) with a finitely-iterated equivariant
noncommutative join of SUq(2) with itself. Thus we prove the Borsuk-Ulam-type conjecture [1,
Conjecture 2.3 type 2] in this case: there does not exist an equivariant *-homomorphism from
the C*-algebra C(SUq(2)) to the C*-algebra of the finitely-iterated equivariant noncommutative
join of C(SUq(2)) with itself.

A classical argument proving the non-triviality of a vector bundle associated with a principal
bundle by restricting the vector bundle to an appropriate subspace uses the fact that the thus
restricted vector bundle is associated with a restricted principal bundle. The latter restriction
is encoded by an equivariant map of total spaces of principal bundles, which induces a natu-
ral transformation of Chern characters of the vector bundles in question. The present paper
generalizes this reasoning to the noncommutative setting.

We begin by stating our main result in the standard and easily accessible Hopf-algebraic
setting. Then we state and prove two slightly different coalgebraic versions of the result: one
based on faithful flatness and coflatness, and one based on Chern-Galois theory [3]. Next we
use the Peter-Weyl functor to make the result applicable to free actions of compact quantum
groups on unital C*-algebras [2]. In the C*-algebraic setting we consider our example and main
application: the finitely-iterated equivariant noncommutative join of C(SUq(2)) with itself.
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1 Modules associated with Galois-type coactions

Let C be a coalgebra, δM : M →M⊗C a right coaction, and Nδ : N → C⊗N a left coaction. The
cotensor product of M with N is M✷

CN := ker(δM ⊗ id− id⊗Nδ). In what follows, we will also
use the Heyneman-Sweedler notation (with the summation sign suppressed) for comultiplications
and right coactions:

∆(c) =: c(1) ⊗ c(2), δM (m) =: m(0) ⊗m(1) .

Next, let H be a Hopf algebra with bijective antipode S, comultiplication ∆, counit ε. Also,
let δA : A → A ⊗ H be a coaction rendering A a right H-comodule algebra. The subalgebra
of coaction invariants {b ∈ A | δA(b) = b ⊗ 1} is called the coaction- invariant (or fixed-point)
subalgebra. We say that A is a principal comodule algebra iff there exists a strong connection
[10, 7], i.e., a unital linear map ℓ : H → A⊗A satisfying:

(1) (id ⊗ δA) ◦ ℓ = (ℓ⊗ id) ◦∆,
(
((S−1 ⊗ id) ◦ flip ◦ δA)⊗ id

)
◦ ℓ = (id⊗ ℓ) ◦∆;

(2) m ◦ ℓ = ε, where m : A⊗A → A is the multiplication map.

Let H be a Hopf algebra with bijective antipode. In [11] the principality of an H-comodule
algebra was defined by requiring the bijectivity of the canonical map (see Definition 1.1 (1))
and equivariant projectivity (see Definition 1.2 (2)). One can prove (see [5] and references
therein) that an H-comodule algebra is principal in this sense if and only if it admits a strong
connection. Therefore we will treat the existence of a strong connection as a condition defining
the principality of a comodule algebra and avoid the original definition of a principal comodule
algebra. The latter is important when going beyond coactions that are algebra homomorphisms
— then the existence of a strong connection is implied by principality but we do not have the
reverse implication [3].

Theorem 1.1. Let A and A′ be right H-comodule algebras for a Hopf algebra H with bijec-
tive antipode, and V be a finite-dimensional left H-comodule. Denote by B and B′ the respective
coaction-invariant subalgebras. Assume that A is principal and that there exists an H-equivariant
algebra homomorphism f : A → A′. The restriction-corestriction of f to B → B′ makes B′ a
(B′ − B)-bimodule such that the associated left B′-modules B′ ⊗B (A✷

CV ) and A′
✷

CV are iso-
morphic. In particular, the induced map f∗ : K0(B) → K0(B

′) satisfies f∗([A✷
CV ]) = [A′

✷
CV ].

As will be explained later on, the above Theorem 1.1 specializes Theorem 1.3, and Theorem 2.1
is a common denominator of Theorem 1.2 and Theorem 1.1.

1.1 Faithfully flat coalgebra-Galois extensions

Definition 1.1. [5] Let C be a coalgebra coaugmented by a group-like element e ∈ C, and A
an algebra and a right C-comodule via δA : A → A ⊗ C. Put B := {b ∈ A | δA(b) = b ⊗ e}
(coaction-invariant subalgebra). We say that the inclusion B ⊆ A is an e-coaugmented C-Galois
extension iff

(1) the canonical map can : A⊗B A→A⊗A, a⊗ a′ 7→ aδA(a
′) is bijective,

(2) δA(1) = 1⊗ e.

Theorem 1.2. Let B ⊆ A and B′ ⊆ A′ be e-coaugmented C-Galois extensions, let V be a
left C-comodule. Assume that A′ is faithfully flat as a left B′-module and that coalgebra C is
cosemisimple. Then every C-equivariant algebra map f : A → A′ restricts and corestricts to an
algebra homomorphism B → B′, and induces an isomorphism

B′⊗B(A✷
CV ) ∼= A′

✷
CV

of left B′-modules that is natural in V .
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Proof. Since A′ is a faithfully flat right B′-module, the map of left B′-modules right C-comodules

f̃ := mA′ ◦ (idB′ ⊗B f) : B
′ ⊗B A −→ A′, mA′(b′ ⊗ a′) = b′a′,

is an isomorphism if and only if the map of left A′-modules right C-comodules

idA′ ⊗B′ f̃ : A′ ⊗B′ B′ ⊗B A −→ A′ ⊗B′ A′

is an isomorphism. Replacing the left-hand-side B′ by A, the latter is an isomorphism if and
only if

idA′ ⊗A (f ⊗B′ f) : A′ ⊗A A⊗B A −→ A′ ⊗B′ A′

is an isomorphism. Thus, from the commutativity of the diagram

A′ ⊗A A⊗B A

idA′⊗A can

��

idA′⊗A(f⊗B′f)// A′ ⊗B′ A′

can′

��
A′ ⊗A A⊗ C

∼= // A′ ⊗ C

and the bijectivity of the canonical maps, we infer that f̃ is an isomorphism.
Furthermore, as f̃ is a homomorphism of left B-modules right C-comodules, we conclude that

f̃ ✷
C idV : (B′ ⊗B A)✷CV −→ A′

✷
CV

is an isomorphism of left B′-modules. Finally, since C is cosemisimple, and any comodule over
a cosemisimple coalgebra is injective [6, Theorem 3.1.5 (iii)], whence coflat [6, Theorem 2.4.17
(i)-(iii)], the balanced tensor product B′ ⊗B (−) and the cotensor product (−)✷CV commute.
Therefore, there is a natural in V isomorphism of left B′-modules

B′⊗B(A✷
CV ) ∼= (B′⊗BA)✷CV ∼= A′

✷
CV,

as claimed. �

1.2 Principal coactions

Definition 1.2. [3] Let B ⊆ A be an e-coaugmented C-Galois extension. We call such an
extension a principal C-extension iff

(1) ψ : C ⊗ A→A ⊗ C, c ⊗ a 7→ can(can−1(1 ⊗ c)a) is bijective (invertibility of the canonical
entwining),

(2) there exists a left B-linear right C-colinear splitting of the multiplication map B ⊗A → A
(equivariant projectivity).

Using the invertibility of the canonical entwining ψ, one can define a left coaction

Aδ : A → C ⊗A, Aδ(a) = ψ−1(a⊗ e). (1)

Lemma 1.1. Let A and A′ be e-coaugmented C-Galois extensions with invertible canonical en-
twinings. Then, if an algebra map f : A → A′ is right C-colinear, it is also left C-colinear.

Proof. If f : A → A′ is a C-colinear algebra homomorphism, then it intertwines the canonical
maps can and can′ of A and A′ respectively in the following way:

(f ⊗ idC) ◦ can = can′ ◦ (f ⊗B f). (2)
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Since both can and can′ are invertible, this implies that

(can′)−1 ◦ (f ⊗ idC) = (f ⊗B f) ◦ can
−1. (3)

Therefore, canonical entwinings ψ and ψ′ are related as follows:

(
(f ⊗ idC) ◦ ψ

)
(c⊗ a) = (f ⊗ idC)

(
can

(
(can−1(1⊗ c)a)

))
(4)

=
(
can′ ◦ (f ⊗B f)

)(
can−1(1⊗ c)a

)
(5)

= can′
(
(f ⊗B f)

(
can−1(1⊗ c)a

))
(6)

= can′
(
(f ⊗B f)

(
can−1(1⊗ c)

)
f(a)

)
(7)

= can′
((

(can′)−1(f(1)⊗ c)
)
f(a)

)
(8)

= can′
((

(can′)−1(1⊗ c)
)
f(a)

)
(9)

= ψ′(c⊗ f(a)) (10)

=
(
ψ′ ◦ (idC ⊗ f)

)
(c⊗ a). (11)

As c and a are arbitrary, we conclude that

(f ⊗ idC) ◦ ψ = ψ′ ◦ (idC ⊗ f). (12)

Now it follows from the invertibility of the entwinings that

(ψ′)−1 ◦ (f ⊗ idC) = (idC ⊗ f) ◦ ψ−1. (13)

Finally, evaluating the above equation on a⊗ e, we get
(
(ψ′)−1 ◦ (f ⊗ idC)

)
(a⊗ e) =

(
(idC ⊗ f) ◦ ψ−1

)
(a⊗ e), (14)

which reads
(
A′δ ◦ f

)
(a) =

(
(idC ⊗ f) ◦Aδ

)
(a). (15)

Since a is arbitrary, we infer the left C-colinearity of f as claimed. �

Note that in the Hopf-algebraic setting of comodule algebras, the invertibility of the canonical
entwining ψ is equivalent to the bijectivity of the antipode S. Then the left-coaction formula (1)
reads Aδ = (S−1 ⊗ id) ◦ flip ◦ δA, and the above lemma is trivially true.

Next, let us consider A ⊗ A as a C-bicomodule via the right coaction id ⊗ δA and the left
coaction Aδ ⊗ id, and C as a C-bicomodule via its comultiplication.

Definition 1.3. A strong connection is a C-bicolinear map ℓ : C → A⊗A such that ℓ(e) = 1⊗ 1
and m ◦ ℓ = ε, where m and ε stand for the multiplication in A and the counit of C, respectively.

It is clear that the above definition of a strong connection coincides with its Hopf-algebraic
counterpart by choosing e = 1 (see the beginning of Section 1).

Theorem 1.3. Let B ⊆ A and B′ ⊆ A′ be principal C-extensions, and V a finite-dimensional
left C-comodule. Then every C-equivariant algebra map f : A → A′ restricts and corestricts to an
algebra homomorphism B → B′, and induces an isomorphism of finitely generated projective left
B′-modules

B′⊗B(A✷
CV ) ∼= A′

✷
CV

that is natural in V . In particular, the induced map f∗ : K0(B) → K0(B
′) satisfies

f∗([A✷
CV ]) = [A′

✷
CV ].
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Proof. Note first that combining [3, Lemma 2.2] with [3, Lemma 2.3] implies that a principal
C-extension always admits a strong connection:

ℓ : C −→ A⊗A,
∑

µ

aµ ⊗ rµ(c) := ℓ(c) =: ℓ (c)〈1〉 ⊗ ℓ (c)〈2〉 (summation suppressed), (16)

where {aµ}µ is a basis of A. Given a unital linear functional ϕ : A → C, one can construct [11]
a left B-linear map σ : A → B,

σ(a) := a(0)ℓ
(
a(1)

)〈1〉
ϕ
(
ℓ
(
a(1)

)〈2〉)
, (17)

such that σ(b) = b for all b ∈ B. For a finite-dimensional left C-comodule V with a basis
{vi}i, we define the coefficient matrix of the coaction ̺ : V → C ⊗ V with respect to {vi}i by
̺(vi) =:

∑
j cij ⊗ vj . By [3, Theorem 3.1], we can now combine (16) and (17) with the cij to

obtain a finite-size (say N) idempotent matrix e with entries

e(µ,i)(ν,j) := σ(rµ(cij)aν) ∈ B

such that A✷
CV ∼= BNe as left B-modules. Consequently, A✷

CV is finitely generated projective,
and its class in K0(B) can be represented by e.

Since f : A → A′ satisfies the assumptions of Lemma 1.1,

ℓ′ := (f ⊗ f) ◦ ℓ : C −→ A′ ⊗A′ (18)

is a strong connection on A′. Next, we choose bases {aµ | µ ∈ J} and {a′µ | µ ∈ J ′} of A and A′

respectively in such a way that

{a′µ = f(aµ) | µ ∈ I} is a basis of f(A) and {aµ | µ 6∈ I} is a basis of ker f.

Under the above choices, using (16) and (18) we compute

∑

µ

a′µ ⊗ r′µ(c) := ℓ′(c) =
∑

µ

f(aµ)⊗ f(rµ(c)) =
∑

µ

a′µ ⊗ f(rµ(c)).

Thus we obtain r′µ(h) = f(rµ(h)) for all µ ∈ I.

Now we choose a unital functional ϕ′ on A′ and take ϕ := ϕ′ ◦ f . For σ′ produced from ϕ′

and ℓ′ as in (17), we check that the diagram

C

A

ϕ
??⑦⑦⑦⑦⑦⑦ f //

σ

&&

A′

ϕ′aa❇❇❇❇❇❇

σ′

yy

∪p ∪p

B
f |B // B′,

commutes by the following calculation. First we compute

σ′(a′) = a′(0)ℓ
′(a′(1))

〈1〉ϕ′
(
ℓ′(a′(1))

〈2〉
)

= a′(0)f
(
ℓ(a′(1))

〈1〉
)
ϕ′
(
f(ℓ(a′(1))

〈2〉)
)

= a′(0)f
(
ℓ(a′(1))

〈1〉
)
ϕ
(
ℓ(a′(1))

〈2〉
)
.
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Next we plug in a′ = f(a) to get

σ′(f(a)) = f(a)(0)f
(
ℓ
(
f(a)(1)

)〈1〉)
ϕ
(
ℓ(f(a)(1))

〈2〉
)

= f
(
a(0)

)
f
(
ℓ
(
a(1)

)〈1〉)
ϕ
(
ℓ(a(1))

〈2〉
)

= f
(
a(0)ℓ

(
a(1)

)〈1〉
ϕ
(
ℓ(a(1))

〈2〉
))

= f(σ(a)).

Hence

f
(
e(µ,i)(ν,j)

)
= f (σ (rµ(cij)aν)) = σ′ (f (rµ(cij)aν))

= σ′ (f (rµ(cij)) f (aν)) = σ′
(
r′µ(cij)a

′
ν

)
.

Note that f
(
e(µ,i)(ν,j)

)
is zero for ν 6∈ I because then f(aν) = 0.

Furthermore, applying [3, Theorem 3.1] to the strong connection ℓ′, the basis {a′µ}µ, and the
matrix coefficients cij , for all µ, ν ∈ I, i, j ∈ {1, . . . ,dimV }, we obtain

σ′
(
r′µ(cij)a

′
ν

)
=: e′(µ,i)(ν,j) ,

where the e′(µ,i)(ν,j) are the entries of an idempotent matrix e′ such that B′N ′

e′ ∼= A′
✷

CV as left

B′-modules. Thus, in the block matrix notation, we arrive at the following crucial equality

f(e) =

(
e′ 0
d 0

)
,

where d is unspecified. Now, taking into account that f(e) is an idempotent matrix, we derive
the equality de′ = d, which allows us to verify that

(
e′ 0
d 0

)
=

(
1 0
d 1

)(
e′ 0
0 0

)(
1 0
d 1

)−1

.

Hence the corresponding finitely generated projective left B′-modules are isomorphic:

B′ ⊗B (A✷CV ) ∼= B′ ⊗B (BNe) ∼= B′Nf(e) ∼= B′N ′

e′ ∼= A′
✷

CV.

In particular, (f |B)∗ [e] := [f(e)] = [e′] ∈ K0(B
′). �

The importance of the above theorem relies on a possibility to apply an explicit formula for
the Chern-Galois character [3] to show that a given principal extension is not cleft [13, §8.2].

1.3 The Hopf-algebraic case revisited

We end this section by arguing that Theorem 1.3 specializes to Theorem 1.1 in the Hopf-algebraic
setting. First, observe that the lacking assumption of the principality of A′ in Theorem 1.1 is
redundant. Indeed, if ℓ is a strong connection on A and f : A → A′ is an H-equivariant algebra
homomorphism, then (f ⊗ f) ◦ ℓ is immediately a strong connection on A′. Furthermore, the
bijectivity of the antipode S is equivalent to the invertibility of the canonical entwining, and
the coaugmentation is readily provided by 1 ∈ H. Finally, as is explained at the beginning of
Section 1, the existence of a strong connection implies both the bijectivity of the canonical map
and equivariant projectivity.
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2 Noncommutative vector bundles associated with free actions of

compact quantum groups

Let (H,∆) be a compact quantum group [15]. Let A be a unital C*-algebra and δA : A→ A⊗min H

an injective unital ∗-homomorphism. We call δA a right coaction of H on A (or a right action of
the compact quantum group on a compact quantum space) iff

(1) (δA ⊗ idH) ◦ δA = (idH ⊗∆) ◦ δA (coassociativity),

(2) {δA(a)h | a ∈ A, h ∈ H}cls = A ⊗
min

H (counitality).

Furthermore, a coaction δA is called free [9] iff

{aδA(ã) | a, ã ∈ A}cls = A ⊗
min

H, where “cls” stands for “closed linear span”.

Given a compact quantum group (H,∆), we denote by O(H) its dense cosemisimple Hopf
∗-subalgebra spanned by the matrix coefficients of irreducible (or finite dimensional) unitary
corepresentations [15]. In the same spirit, we define the Peter-Weyl subalgebra [2] of A as

PH(A) := { a ∈ A | δA(a) ∈ A⊗O(H) } .

It follows from Woronowicz’s definition of a compact quantum group that the left and right coac-
tions of H on itself by the comultiplication are free. Also, it is easy to check that PH(H) = O(H),
and PH(H) becomes a right O(H)-comodule via the restriction-corestriction of δA [2]. Its
coaction-invariant subalegbra coincides with the fixed-point subalgebra

B := {b ∈ A | δA(b) = b⊗ 1}.

A fundamental result concerning Peter-Weyl comodule algebras is that the freeness of an action
of a compact quantum group (H,∆) on a unital C*-algebra A is equivalent to the principality
of the Peter-Weyl O(H)-comodule algebra PH(A) [2]. The result bridges algebra and analysis
allowing us to conclude from Theorem 1.1 the following crucial claim.

Theorem 2.1. Let (H,∆) be a compact quantum group, let A and A′ be (H,∆)-C*-algebras, B
and B′ the corresponding fixed-point subalgebras, and f : A→ A′ an equivariant *-homomorphism.
Then, if the coaction of (H,∆) on A is free and V is a representation of (H,∆), the following
left B′-modules are isomorphic

B′ ⊗B

(
PH(A)✷O(H)V

)
∼= PH(A′)✷O(H)V.

In particular, if V is finite dimensional, then the induced map f∗ : K0(B) → K0(B
′) satisfies

f∗([PH(A)✷O(H)V ]) = [PH(A′)✷O(H)V ].

Proof. Note that, since O(H) is cosemisimple, any comodule is a direct sum of finite-dimensional
comodules, so that it suffices to prove the theorem for finite-dimesional representations of (H,∆).
By [2], the freeness of the (H,∆)-action is equivalent to principality of the Peter-Weyl comodule
algebra PH(A), which (as explained at the beginning of Section 1) is tantamount to the existence
of a strong connection: ℓ : O(H) → PH(A)⊗ PH(A). Now the claim follows from Theorem 1.1
applied to the case A = PH(A), H = O(H), and B = B. �

Recall that the existence of a strong connection implies equivariant projectivity, which (by
[14]) is equivalent to faithful flatness. Combining this with the cosemisimplicity of O(H), we can
view the above Theorem 2.1 as a specialization of Theorem 1.2.
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2.1 Equivariant noncommutative join construction

Definition 2.1. [8] For any compact quantum group (H,∆) acting freely on a unital C*-
algebra A via δA : A→ A⊗minH, we define its equivariant join withH to be the unital C*-algebra

A⊛
δA H :=

{
f ∈ C([0, 1], A)C

∣∣∣ f(0) ∈ C⊗H, f(1) ∈ δA(A)
}
.

Theorem 2.2. [2] The *-homomorphism

id⊗∆: C([0, 1], A) ⊗
min

H −→ C([0, 1], A) ⊗
min

H ⊗
min

H

restricts and corestricts to *-homomorphism

δ∆ : A⊛
δA H −→ (A⊛

δA H) ⊗
min

H

defining a free action of the compact quantum group (H,∆) on the equivariant join C*-algebra
A⊛δAH.

The following proposition relates associated noncommutative vector bundles and the Borsuk-
Ulam type 2 conjecture of non-existence of equivariant maps from an equivariant join with a
compact quantum group to the compact quantum group group itself [1].

Proposition 2.1. Let (H,∆) be a compact quantum group acting freely on a unital C*-algebra A.
Assume that there exist an equivariant *-homomorphism F : A → A′ of (H,∆)-C*-algebras
and a finite-dimensional representation V of (H,∆) such that the finitely generated projec-
tive module PH(A′⊛δ

A′H)✷O(H)V is not stably free. Then there does not exist an equivariant
*-homomorphism H → A⊛δAH.

Proof. Since the *-homomorphism F is equivariant, the *-homomorphism

id⊗ F ⊗ id : C([0, 1]) ⊗
min

A ⊗
min

H −→ C([0, 1]) ⊗
min

A′ ⊗
min

H

restricts and corestricts to an equivariant *-homomorphism f : A⊛δAH → A′⊛δ
A′H. Hence, by

Theorem 2.2 and Theorem 2.1,

PH(A′
⊛

δ
A′H)✷O(H)V ∼= B′ ⊗B

(
PH(A⊛

δAH)✷O(H)V
)

(19)

as left B′-modules. (Here B and B′ are the respective fixed-point subalgebras.)
If there would exist a *-homomorphism H → A⊛δAH, then, by [1, Proposition 3.2], the

associated module PH(A⊛δAH)✷O(H)V would be free. Through (19), this would contradict our
assumption that PH(A′⊛δ

A′H)✷O(H)V is not stably free. �

2.2 Iterated equivariant noncommutative join of SUq(2)

Theorem 2.3. Let A be any finitely iterated equivariant join of C(SUq(2)) with itself. Then
there does not exist an equivariant *-homomorphism C(SUq(2)) → A⊛δ∆C(SUq(2)).

Proof. Let (H,∆) be a compact quantum group such that the C*-algebra H admits a charac-
ter χ. Then

ev 1

2

⊗ χ⊗ id : H⊛
∆H −→ H

is an equivariant *-homomorphism. More generally, applying character χ to the leftmost factor
in an arbitrary finitely iterated equivariant join of H with itself, we obtain an equivariant map
to the iterated join consisting of one less number of copies of H. Composing all these maps, we



Pulling back associated vector bundles 9

obtain an equivariant map A→ H. Now, by the preceding Proposition 2.1 and Theorem 2.2, it
suffices to show that there exists a finite-dimensional representation V of (H,∆) such that the
module PH(H⊛∆H)✷O(H)V is not stably free.

For H = C(SUq(2) we have a circle of characters. Moreover, if V is a fundamental represen-
tation of SUq(2), then applying to it [1, Theorem 3.3] combined with an index computation in
[8] shows that the module PH(H⊛∆H)✷O(H)V is not stably free, as desired. (See [1, Section 3.2]
for details.) �
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