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Abstract

It is shown that every accessible group which is integrable orbit equivalent to a free

group is virtually free. Moreover, we also show that any integrable orbit-equivalence

between finitely generated groups extends to their end compactifications.
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1 Introduction

Measure equivalence (ME) is an equivalence relation on groups, introduced by M. Gromov
[Gro93] as a measure-theoretic counterpart to quasi-isometry. Most of the research in this
area has focussed on rigidity phenomena. For example, Furman proved [Fur99a, Fur99b] that
any group ME to a lattice in a higher rank simple Lie group has a finite normal subgroup
whose quotient is commensurable to a lattice in the same Lie group. See [Fur11] for a survey
of further results.

Here we consider the class of free groups. This class is far from rigid: there is a large
variety of groups measure-equivalent to a free group [Gab05] and we do not even have a
conjectural classification of such groups. So it makes sense to consider the more restrictive
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notion of measure-equivalence known as integrable orbit equivalence (IOE) or L1-orbit-
equivalence (L1-OE) which takes into account the metric in addition to measure-theoretic
structure. This notion is stricter than integrable measure equivalence (IME) (also called
L1-measurable equivalence) that first appeared in [BFS13] where it was shown that any
group that is L1-ME to a lattice in SO(n, 1) (n ≥ 3) has a finite normal subgroup whose
quotient is a lattice in SO(n, 1). Another milestone is T. Austin’s work proving L1-ME
rigidity for nilpotent groups [Aus13] (see also M. Cantrell’s recent strengthening of Austin’s
results [Can15]).

The main result of this paper is that any finitely generated accessible group that admits
a strict integrable embedding into a free group is virtually free. In particular, any finitely
generated accessible group that is IOE to a free group is virtually free. These terms are
defined next.

1.1 Accessible groups

According to Stallings’ Ends Theorem [Sta68], if a finitely generated group Γ has more than
one end then it splits as either a nontrivial free product with amalgamation or as an HNN
extension over a finite subgroup. If such splittings cannot occur indefinitely, then the group
is called accessible. C.T.C. Wall conjectured [Wal71] that all finitely generated groups are
accessible. A counterexample was obtained by Dunwoody [Dun93]. However, Dunwoody
showed that all finitely presented groups are accessible [Dun85].

1.2 Strict integrable embeddings

Let Γ, G be finitely generated groups. Intuitively, a strict integrable embedding of Γ into G
is a random map from Γ into G that is ‘Lipschitz on average’ and has a bounded number of
preimages. To be precise, fix a finite symmetric generating set SG of G and define the word

length of any g ∈ G by |g|G := n where n is the smallest natural number such that there
exist s1, . . . , sn ∈ SG with g = s1 · · · sn.

Given an action of Γ on a set X , a cocycle into G is a map α : Γ×X → G such that

α(g1g2, x) = α(g1, g2x)α(g2, x) ∀g1, g2 ∈ Γ, x ∈ X.

In the case of concern, X is endowed with a probability measure µ, the action Γy(X, µ) is
measure-preserving and α is measurable. Then we say that α is integrable if∫

|α(g, x)|G dµ(x) <∞

for every g ∈ Γ. While the precise value of
∫
|α(g, x)|G dµ(x) depends on the generating set

SG, its finiteness does not and therefore integrability of α does not depend on SG.
We say that α is a strict integrable embedding if in addition to being integrable there

is a constant C > 0 such that for every h ∈ G,

#{g ∈ Γ : α(g, x) = h} ≤ C

2



for a.e. x. This notion is more restrictive than the notion of integrable embedding defined
in the appendix of [Aus13].

Our main result is:

Theorem 1.1. Let Γ be a finitely generated accessible group. If Γ admits a strict integrable
embedding into a free group then Γ is virtually free.

Definition 1. Two groups Γ,Λ are integrably orbit equivalent (IOE) if there exist
probability measure-preserving essentially free ergodic actions Γy(X, µ) and Λy(X, µ) such
that for a.e. x ∈ X , Γx = Λx and the orbit cycles, defined by

α : Γ×X → Λ, α(g, x)x = gx,

β : Λ×X → Γ, β(h, x)x = hx

are integrable.

Clearly an IOE cocycle is a strict integrable embedding. So Theorem 1.1 implies that
any finitely generated accessible group IOE to a free group is virtually free.

We do not know whether accessibility is a necessary condition nor whether ‘strict inte-
grable embedding’ can be weakened to ‘integrable embedding’ or IOE weakened to IME.

Acknowledgements. This work was inspired from conversations with Tim Austin, Uri
Bader, Alex Furman and Roman Sauer.

2 Preliminaries

Definition 2. If X is a connected locally connected σ-compact topological space then let

End(X) := lim
←−
K

π0(X \K).

To be precise, the inverse limit is over all compact subsets K ⊂ X and π0(X \K) denotes
the set of noncompact connected components of X \ K. We give π0(X \ K) the discrete
topology. If K ⊂ L are compact subsets of X then there is a natural map from π0(X \L) to
π0(X \K) and End(X) is the inverse limit of this system (where the collection of compacts
of X is ordered by inclusion). In particular, for every compact K, there is a natural map
πK : End(X)→ π0(X \K).

The end compactification of X , denoted X is the space X := X ∪ End(X) with the
following topology: every open subset of X is X . Also, for every compact K ⊂ X and
C ∈ π0(X \K), the set

C ∪ {ξ ∈ End(X) : πK(ξ) ∈ C} ⊂ X

is open. These sets form a basis for the topology of X .
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Let Γ be a group with a finite generating set S. The Cayley graph of (Γ, S), denoted
Cay(Γ, S), has vertex set Γ and edge set {(g, gs) : g ∈ G, s ∈ S}. We usually let Γ̄ denote
the end compactification Cay(Γ, S), leaving the generating set implicit.

It is well-known that any finitely generated group quasi-isometric to a free group is itself
virtually free. This is usually attributed to Gromov via Stallings’ Ends Theorem. Alter-
natively, it follows from Thomassen-Woess [TW93] that accessibility is a quasi-isometric-
invariant and from Papasoglu-Whyte [PW02] that any accessible group quasi-isometric to a
free group must be virtually free. Indeed, this implies more:

Theorem 2.1. If Γ is the fundamental group of a finite graph of groups in which all vertex
and edge groups are finite then Γ is virtually free.

Proof. This follows from [PW02] although it may have been known earlier.

We also note:

Lemma 2.2. If Γ is the fundamental group of a finite graph of groups in which all edge
groups are finite and Γv ≤ Γ is a vertex subgroup then Γv is quasi-isometrically embedded in
Γ.

Finally, we introduce a notion of L1-embedding:

Definition 3. Let Γy(X, µ) a probability measure-preserving action and α : Γ×X → G a
measurable cocycle. We say α is an L1-embedding if

• α is L1: for every g ∈ Γ,
∫
|α(g, x)|G dµ(x) <∞ where | · |G denotes length with respect

to a fixed word metric on G;

• there is a constant C > 0 such that for any h ∈ G,

#{g ∈ Γ : α(g, x) = h} ≤ C

for a.e. x.

Remark 1. It is straightforward to check that a composition of L1-embeddings is an L1-
embedding and that any cocycle arising from an L1-OE is an L1-embedding.

In order to prove Theorem 1.1, it now suffices to show the following. Let Γy(X, µ) be a
probability measure-preserving action and α : Γ×X → G an L1-embedding. Then Γ is not
1-ended. We will show this in the next section.

3 The Space of Ends

Theorem 3.1. Let Γ, G be finitely generated groups, Γy(X, µ) a probability measure-preserving
action, α : Γ×X → G an L1-embedding. Define α′ : Γ×X → G by

α′(g, x) = α(g−1, x)−1.

Let Γ̄, Ḡ denote the end-compactifications of Γ, G respectively with respect to fixed finite
generating subsets. Then α′ extends to a map, also denoted by α′ from Γ̄×X → Ḡ such that
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• α′
gx(gξ) = α(g, x)α′

x(ξ) (for g ∈ G, ξ ∈ Γ̄ and a.e. x ∈ X);

• α′
x : Γ̄→ Ḡ is continuous for a.e. x.

Here, α′
x(g) := α′(g, x).

Remark 2. The Theorem above implies that every finitely generated group is 1-taut relative
to its space of ends, in the terminology of [BFS13]. We will not need this fact.

Theorem 3.1 follows immediately from the next two lemmas.

Lemma 3.2. Let X, Y be connected locally connected σ-compact topological spaces. Let
α : X → Y be a continuous map. Assume that for every compact K ⊂ Y there exists
a compact F ⊂ X such that α(X \ F ) ⊂ Y \ K and α descends to a well defined map
π0(X \ F )→ π0(Y \K). Then α extends continuously to ᾱ : X → Y .

Proof. For every K ⊂ Y we have a map

End(X)→ π0(X \D)→ π0(Y \K),

so the lemma follows by the definition of the inverse limit lim←−
D

π0(Y \K).

Lemma 3.3. For a.e. x ∈ X and every finite set K ⊂ G there exists a finite set F ⊂ Γ
(depending on x and K) such that α′

x(Γ\F ) ⊂ G\K and α′
x descends to a map π0(Γ\F )→

π0(G \K).

Proof. Let SΓ, SG be finite generating sets for Γ, G respectively. Let | · |Γ, | · |G denote word
length on Γ, G respectively.

For each h1, h2 ∈ G, choose a geodesic segment γ[h1, h2] from h1 to h2. More precisely,
for every integer 0 ≤ n ≤ |h−1

1 h2|G, there is an element γ[h1, h2](n) ∈ G so that

γ[h1, h2](n)
−1γ[h1, h2](n + 1) ∈ SG

if n < |h−2

1 h2|G and γ[h1, h2](0) = h1, γ[h1, h2](|h
−1h2|G) = h2. Let us also require that this

choice is left-invariant so that hγ[h1, h2] = γ[hh1, hh2] for any h, h1, h2 ∈ G.
For each x ∈ X , g ∈ Γ, s ∈ SΓ, we imagine an airplane flying from α′

x(g) to α′
x(gs). The

path of the flight is the geodesic γ[α′
x(g), α

′
x(gs)]. We call this an s-flight. For k ∈ G, we let

Fs,k(x) denote the set of elements g ∈ Γ such that the s-flight from α′
x(g) to α′

x(gs) contains
k. That is:

Fs,k(x) := {g ∈ Γ : k ∈ γ[α′
x(g), α

′
x(gs)]}.

Claim 1. Fs,k(x) is finite for a.e. x. In fact,

∫
#Fs,k(x) dµ(x) ≤ C

∫
|α(s−1, x)−1|G dµ(x) <∞

where C > 0 is the constant in the definition of L1-embedding.

5



Proof of Claim 1. It suffices to show that
∫
#Fs,k(x) dµ(x) <∞. In order to prove this, let

Ls,k = {(g, x) ∈ Γ×X : g−1 ∈ Fs,k(x)}.

Let cΓ denote the counting measure on Γ. Then
∫
#Fs,k dµ = cΓ × µ(Ls,k). Because the

action Γy(X, µ) is invariant,

cΓ × µ(Ls,k) = cΓ × µ(Rs,k)

where Rs,k = {(g
−1, gx) : (g, x) ∈ Ls,k}. By definition

cΓ × µ(Rs,k) =

∫
#{g ∈ Γ : (g, x) ∈ Rs,k} dµ(x).

However, (g, x) ∈ Rs,k if and only if (g−1, gx) ∈ Ls,k if and only if g ∈ Fs,k(gx) if and only if
k ∈ γ[α′

gx(g), α
′
gx(gs)] if and only if

α′
gx(g)

−1k ∈ γ[e, α′
gx(g)

−1α′
gx(gs)].

Let us now compute

α′
gx(g)

−1α′
gx(gs) = α(g−1, gx)α(s−1g−1, gx)−1 = α(s−1, x)−1

by the cocycle equation. So
∫

#Fs,k dµ = cΓ × µ(Rs,k) =

∫
#{g ∈ Γ : α′

gx(g)
−1k ∈ γ[e, α(s−1, x)−1]} dµ(x)

≤ C

∫
|α(s−1, x)−1|G dµ(x) <∞.

Now let K ⊂ G be finite and define

FK(x) :=
⋃
{Fs,k : s ∈ SΓ, k ∈ K}.

To finish the proof of the lemma, it suffices to show that if g1, g2 ∈ Γ are in the same
connected component of Γ\FK(x) then α′

x(g1), α
′
x(g2) are in the same connected component

of G \ K. Because SΓ is a generating set, we may assume that g2 = g1s for some s ∈ SΓ.
Because g1 /∈ FK(x), it follows that

K ∩ γ[α′
x(g1), α

′
x(g1s)] = ∅.

So α′
x(g1), α

′
x(g1s) are in the same connected component of G \K as required.

Definition 4. Suppose H is a finitely generated group and SH ⊂ H is a finite symmetric
generating set. Let Cay(H,SH) be the associated Cayley graph. Given a subset F ⊂ H ,
let ∂F be the set of all edges e of Cay(H,SH) with one endpoint in F and one endpoint in
H \ F .
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Lemma 3.4. Suppose H is a finitely generated group and SH ⊂ H is a finite symmetric
generating set. Suppose there exists a constant C > 0 and finite subsets Fn ⊂ H such that

• |∂Fn| ≤ C for all n ∈ N,

• limn→∞ |Fn| =∞.

Then H has at least 2 ends.

Proof. We identify each Fn with its induced subgraph in Cay(H,SH). We may assume
without loss of generality that every connected component of the complement Cay(H,SH)\Fn

is infinite. This is because we may add all finite components of Cay(H,SH)\Fn to Fn without
increasing the size of its boundary.

Choose elements gn ∈ Fn, sn ∈ SH so that

• (gn, gnsn) ∈ ∂Fn

• if F ◦
n ⊂ Fn is the connected component of Fn containing gn then limn→∞ |F

◦
n | = +∞

• there exists an infinite path pn ⊂ Cay(H,SH) \ Fn starting from gnsn.

Let F ′
n = g−1

n F ◦
n and p′n = g−1

n pn. After passing to a subsequence if necessary, we may assume
that F ′

n converges to a limit F ′
∞ and p′n converges to a limit p′∞ (in the topology of uniform

convergence on compact subsets). We observe that F ′
∞ is infinite, p′∞ ⊂ Cay(H,SH) \ F

′
∞

is an infinite path and |∂F ′
∞| ≤ C. Thus the compact set K := ∂F ′

∞ is such that there are
at least two infinite components of Cay(H,SH) \K (namely, the component containing p′∞
and the component containing F ′

∞). This proves that H has at least two ends.

Proposition 3.5. Suppose Γ is an infinite finitely generated group, G = Fr be a nonabelian
free group, Γy(X, µ) a probability measure-preserving action and α : Γ × X → G an L1-
embedding. Then Γ has more than one end.

Proof. We fix a free generating set of G from which we obtain a word metric and a Cayley
graph (which is a regular tree since G is a free group). We also fix a finite generating set SΓ

for Γ.
To obtain a contradiction, we assume that End(Γ) = {ξ} is a singleton. Define φ : X →

End(G) by φ(x) = α′(ξ, x) where α′ is as in Theorem 3.1. By Theorem 3.1,

φ(hx) = α(h, x)φ(x).

For n ∈ N, x ∈ X , let G(n, x) be the set of all g ∈ G such that (g|φ(x))e ≤ n where
(·|·)e is the Gromov product. To be precise (g|φ(x))e = d(e,m) where, if g 6= e, m ∈ G is
the ‘midpoint’ of the geodesic triangle with vertices {g, φ(x), e}. That is, m is the unique
element contained in all three geodesic sides of the triangle with vertices {g, φ(x), e}. If
g = e then by definition m = e. Thus G(n, x) is the set of all elements g ∈ G such
that the geodesic from g to φ(x) contains a point of distance no more than n from e. Let
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F (n, x) = {h ∈ Γ : α′(h, x) ∈ G(n, x)}.
Claim 1.

∫
|∂F (n, x)| dµ(x) ≤ C

∑
s∈SΓ

∫
|α(s, x)|G dµ(x) =: M . Note M is independent

of n.

Proof of Claim 1. Let rn(x) ∈ G be the unique element satisfying

d(e, rn(x)) = n = (rn(x)|φ(x))e.

In other words, n 7→ rn(x) is the geodesic from e to φ(x). Observe that ∂G(n, x) is the
unique edge from rn(x) to rn+1(x).

By definition ∂F (n, x) consists of all edges of the form (g, gs) such that g ∈ F (n, x) and
gs /∈ F (n, x) (s ∈ S). Equivalently, α′

x(g) ∈ G(n, x) and α′
x(gs) /∈ G(n, x). Equivalently,

the s-flight from α′
x(g) to α′

x(gs) flies over rn(x). The claim now follows as in the proof of
Lemma 3.3, Claim 1.

Claim 2. For every n ∈ N and a.e. x ∈ X , |F (n, x)| <∞.

Proof. The previous claim implies ∂F (n, x) is finite for a.e. x. Because Γ is 1-ended, for a.e.
x ∈ X either F (n, x) or Γ \ F (n, x) is finite. Because α′ : Γ̄ × X → Ḡ is continuous and
α′(ξ, x) /∈ G(n, x) = α′(F (n, x), x), it follows that Γ \ F (n, x) must be infinite and therefore
F (n, x) is finite.

Observe that G(n, x) ⊂ G(n+1, x) and ∪n≥0G(n, x) = G. Therefore F (n, x) ⊂ F (n+1, x)
for all n and ∪n≥0F (n, x) = Γ which in particular implies that limn→∞ |F (n, x)| = +∞.

Because

lim
n→∞

∫
|F (n, x)| dµ(x) = +∞,

∫
|∂F (n, x)| dµ(x) ≤ M,

we can choose xn ∈ X so that |F (n, xn)| → ∞ while |∂F (n, xn)| stays bounded. Lemma 3.4
now implies that Γ has at least 2 ends, a contradiction.

Proof of Theorem 1.1. By assumption there exists an L1-embedding α : Γ×X → G and G
is a free group. Since Γ is accessible, we may write it as the fundamental group of a finite
graph of groups in which each edge group is finite and each vertex group has ≤ 1 end. By
Lemma 2.2 each vertex group H quasi-isometrically embeds into Γ. So if we restrict α to
H × X , it is still an L1-embedding. So Proposition 3.5 implies that H is not 1-ended. So
every vertex group and edge group in the graph of groups decomposition of Γ is finite. This
implies that Γ is virtually free by Theorem 2.1.
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