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Depletion-Induced Forces and Crowding in Polymer-Nanoparticle Mixtures:

Role of Polymer Shape Fluctuations and Penetrability

Wei Kang Lim and Alan R. Denton∗

Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA

Depletion forces and macromolecular crowding govern the structure and function of biopolymers
in biological cells and the properties of polymer nanocomposite materials. To isolate and analyze
the influence of polymer shape fluctuations and penetrability on depletion-induced interactions
and crowding by nanoparticles, we model polymers as effective penetrable ellipsoids, whose shapes
fluctuate according to the probability distributions of the eigenvalues of the gyration tensor of an
ideal random walk. Within this model, we apply Monte Carlo simulation methods to compute the
depletion-induced potential of mean force between hard nanospheres and crowding-induced shape
distributions of polymers in the protein limit, in which polymer coils can be easily penetrated
by smaller nanospheres. By comparing depletion potentials from simulations of ellipsoidal and
spherical polymer models with predictions of polymer field theory and free-volume theory, we show
that polymer depletion-induced interactions and crowding depend sensitively on polymer shapes
and penetrability, with important implications for bulk thermodynamic phase behavior.

I. INTRODUCTION

Depletion forces can profoundly influence the proper-
ties of soft materials, e.g., colloid-polymer mixtures [1]
and polymer nanocomposites [2, 3], whose multiple
species intermingle and exclude volume to one another.
The exclusion of polymers, or other flexible macro-
molecules, from a layer surrounding rigid colloidal par-
ticles creates an imbalance in osmotic pressure that can
induce an effective interparticle pair attraction. This de-
pletion mechanism, recognized by Asakura and Oosawa
over 60 years ago [4], is physically reasonable and well
established in the “colloid limit”, in which the particle
radius exceeds the average polymer radius of gyration.
In the opposite “protein limit”, in which nanoparticles
(e.g., globular proteins) can penetrate much larger poly-
mer coils, the concept of a depletion layer around a par-
ticle must be replaced by that of a segment-segment cor-
relation length (blob radius) of the polymer coil [5].
Depending on the relative strengths of competing in-

termolecular interactions [6], including steric, electro-
static, and van der Waals interactions, depletion-induced
attraction can drive aggregation and thermodynamic
phase separation, leading, for example, to coexistence of
polymer-rich and polymer-poor bulk phases [7–11]. In
soft materials, where effective interactions [12] between
macromolecules are typically comparable in magnitude
to thermal energies, and self-assembly often depends on
a delicate balance between energy and entropy, depletion
can crucially affect phase stability. The ability to control
depletion forces has great practical value for stabilizing
foods [13, 14] and pharmaceuticals against coagulation,
purifying water by flocculation and sedimentation of col-
loidal particles [15], guiding the self-assembly of virus
particles [16, 17], and promoting or inhibiting aggrega-
tion of proteins [18], with relevance for deciphering pro-
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tein structure via scattering measurements on crystalline
samples and treating diseases, such as cataracts [19].

An intrinsic complement to depletion is the phe-
nomenon of macromolecular crowding, in which poly-
mers, or other flexible macromolecules, deform in both
size and shape in response to confinement by other
species or bounding surfaces [20–26]. Kuhn’s prescient
insight [27] that a polymer coil in solution fluctuates in
shape, being well-approximated by an elongated, flat-
tened ellipsoid (in its principal-axis frame of reference),
has inspired numerous mathematical and statistical me-
chanical analyses of the shapes of random walks [28–42].
In biology, conformational changes of biopolymers, such
as RNA, DNA, and unfolded proteins are important for
cellular processes in the crowded environment of the nu-
cleus [43–48], packaging of DNA in viral capsids [49], and
translocation of biopolymers through narrow pores [50].

Depletion forces, polymer crowding, and phase behav-
ior in colloid-polymer mixtures and polymer-nanoparticle
composite materials have been probed by a diverse ar-
ray of experimental methods, including neutron scatter-
ing [51–58], atomic force microscopy [59], total internal
reflection microscopy [60], optical trapping [61–63], and
turbidity measurements [64–66]. Related modeling ap-
proaches have been based on mean-field and scaling theo-
ries [5, 67–70], free-volume theories [71–74], force-balance
theory [75], perturbation theory [76, 77], polymer field
theory [78–84], integral-equation theory [85–87], density-
functional theory [88–92], adsorption theory [93–95], and
simulation of both molecular [47, 96–111] and coarse-
grained [73, 74, 112, 113] polymer models.

Previous studies have explored the nature of depletion
interactions induced by aspherical depletants of fixed size
and shape [62, 77, 114, 115] and the impact of crowding
on polymer size [53–58, 71, 104–108]. In recent work,
we reported on preliminary studies of polymer crowding
in models of polymer-nanoparticle mixtures with poly-
mers modeled as fluctuating, penetrable spheres [73] or
ellipsoids [74]. In this paper, using a refined model of
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FIG. 1. Model of a polymer-nanoparticle mixture with poly-
mers represented as ellipsoids that can fluctuate in size and
shape. Nanoparticles are hard spheres of fixed size that are
mutually impenetrable, but able to penetrate the polymers.
Penetration is defined as the intersection of the surfaces of an
ellipsoid and a sphere. For example, the dark nanosphere is
just on the verge of penetrating a polymer.

polymer-nanoparticle penetration, we directly analyze
the complex relationships between polymer depletion-
induced interactions, nanoparticle crowding, and poly-
mer shape fluctuations. By comparing results with the-
oretical predictions, we validate the polymer model and
demonstrate the significance of shape fluctuations in de-
pletion and crowding phenomena. Our model and com-
putational methods are sufficiently general as to be easily
adapted and applied to other soft materials.
The remainder of the paper is assembled as follows.

In Sec. II, we review the model of polymers as fluctu-
ating penetrable ellipsoids and the field theory model
for the free energy cost of penetrating a polymer by a
hard nanosphere. In Sec. III, we outline our simulation
methods for computing polymer depletion-induced inter-
actions between nanospheres and crowding-induced de-
formations in polymer shape. Numerical results are pre-
sented in Sec. III and compared with predictions of field
theories and free-volume theory. Finally, in Sec. III, we
conclude with suggestions for future work.

II. MODELS

A. Ellipsoidal Polymer Model

Our model extends the classic Asakura-Oosawa-Vrij
(AOV) model of colloid-polymer mixtures [4, 7]. The
AOV model represents nonadsorbing polymer coils, in
a coarse-grained approximation, as effective spheres of
fixed size that are mutually noninteracting, but impen-
etrable to the colloidal particles. The spherical poly-
mer approximation ignores fluctuations in conformation,
while the impenetrable polymer assumption is justified

only in the colloid limit, where the polymers are smaller
than the particles. As in our previous studies [74, 116],
we refine the AOV model by representing the polymers
as soft ellipsoids that fluctuate in size and shape and that
can be penetrated by smaller nanoparticles.
For simplicity, we focus on linear homopolymers, al-

though the analysis can be generalized to other polymer
architectures, such as block copolymers [117]. A coil of
N identical, connected segments has a size and shape
characterized by the gyration tensor T with components

Tij =
1

N

N
∑

k=1

rkirkj , (1)

where rki is i
th component of the position vector rk of the

kth segment relative to the center of mass. The familiar
moment of inertia tensor I of rigid body dynamics relates
to the gyration tensor via I = R2

p1 − T, where 1 is the
unit tensor and

Rp =

(

1

N

N
∑

i=1

r2i

)1/2

= (Λ1 + Λ2 + Λ3)
1/2 (2)

is the radius of gyration of a given conformation of the
coil expressed in terms of the eigenvalues Λi (i = 1, 2, 3 in
three dimensions) of T. The experimentally measurable
root-mean-square (rms) radius of gyration is given by

Rg =
√

〈

R2
p

〉

=
√

〈Λ1 + Λ2 + Λ3〉 , (3)

where the angular brackets represent an ensemble average
over polymer conformations.
If the ensemble average in Eq. (3) is evaluated in a

reference frame tied to the principal axes of the coil,
and the coordinate axes are labelled to preserve the or-
der of the eigenvalues by magnitude (Λ1 > Λ2 > Λ3),
then the average tensor is asymmetric and describes an
anisotropic object [36, 37]. Averaging in a fixed (lab-
oratory) frame yields, in contrast, a symmetric average
tensor that has equal eigenvalues and thus describes a
sphere. Simply stated, a fluctuating random walk has an
average shape that is spherical when viewed from the lab-
oratory frame, but significantly aspherical – elongated,
flattened, bean-shaped – when viewed from the principal-
axis frame [27, 33, 34]. The general ellipsoid that best
fits the shape of the polymer coil – roughly corresponding
to the tertiary structure of a biopolymer – has principal
radii proportional to the square-roots of the respective
eigenvalues of the gyration tensor. In Cartesian (x, y, z)
coordinates, the surface is described by

x2

Λ1
+

y2

Λ2
+

z2

Λ3
= 3 . (4)

The probability distribution for the shape of a freely-
jointed polymer coil of N segments of length l, modeled
as a soft ellipsoid [41], is accurately approximated by the
analytical form [42]

P0(λ1, λ2, λ3) = P1(λ1)P2(λ2)P3(λ3) , (5)
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where λi ≡ Λi/(Nl2) are scaled (dimensionless) eigenval-
ues and

Pi(λi) =
(aidi)

ni−1λ−ni

i

2Ki
exp

(

−λi

ai
− d2i

ai
λi

)

, (6)

with fitting parameters K1 = 0.094551, K2 = 0.0144146,
K3 = 0.0052767, a1 = 0.08065, a2 = 0.01813, a3 =
0.006031, d1 = 1.096, d2 = 1.998, d3 = 2.684, n1 = 1/2,
n2 = 5/2, and n3 = 4. Although the factorization ansatz
of Eq. (5) is not exact, since extensions of a random walk
in orthogonal directions are not independent, conforma-
tions that seriously violate the ansatz are rare for suffi-
ciently long random walks. It is important to note that
the eigenvalue distributions [Eq. (6)] are derived from
random-walk segment statistics [41, 42], reflect consider-
able fluctuations in size and shape of a free polymer, and
will be modified by confinement, e.g., for polymers in the
presence of nanoparticle crowders.

B. Polymer-Nanoparticle Mixtures

A mixture of hard nanospheres and nonadsorbing poly-
mers is characterized by the number densities of the two
species, nn and np, the nanosphere radius Rn, and the
rms radius of gyration Rg of free (uncrowded) polymer.
In the colloid limit (Rg < Rn), in which the polymer
coils are impenetrable to particles, the effective polymer
size must be calibrated in order to consistently and ac-
curately account for the polymer excluded volume [116].
In the protein limit (Rg ≫ Rn), in which polymer pene-
tration supplants excluded volume, it is instead the pen-
etration energy that must be calibrated, as explained be-
low (Sec. II C). Thus, we simply take the polymer radius
equal to Rg and define the polymer-to-nanosphere size
ratio as q ≡ Rg/Rn. The volume fractions of the two
species are φn ≡ (4π/3)nnR

3
n and φp ≡ (4π/3)npR

3
g. It

should be noted that the actual fraction of volume oc-
cupied by polymer coils will differ from φp due to the
aspherical shapes and interpenetration of the coils.
In terms of the scaled eigenvalues, deviations of a poly-

mer’s average shape from spherical can be quantified by
an asphericity parameter [36, 37]

A(φn) = 1− 3
〈λ1λ2 + λ1λ3 + λ2λ3〉
〈(λ1 + λ2 + λ3)2〉

. (7)

A spherical object with all three eigenvalues equal has
A = 0, while a greatly elongated object, with one eigen-
value much larger than the other two, has A ≃ 1. The
ratio of the rms radius of gyration [Eq. (3)] of a poly-
mer coil crowded by nanoparticles, Rg(φn), to that of an

uncrowded coil, Rg(0) = l
√

N/6, can be expressed as

Rg(φn)

Rg(0)
=
√

6 〈λ1 + λ2 + λ3〉 , (8)

while the principal radii of the representative ellipsoid
are given by

Ri(φn) = Rg(0)
√

18λi , i = 1, 2, 3 . (9)

C. Polymer-Nanoparticle Penetration

In the protein limit (q ≫ 1), a nanoparticle may pen-
etrate a polymer coil, with a free energy cost associated
with the reduction in conformational entropy of the coil.
The average free energy cost f to insert a hard sphere
into an ideal polymer solution at temperature T is pre-
dicted by polymer field theory [78–80]:

f = kBT
4πnpR

3
p

q

(

1 +
2√
πq

+
1

3q2

)

, (10)

which is valid for all q (Eq. (3.11) of ref. [78]).
The simplest model of the pair interaction between

a polymer and a nanoparticle, proposed by Schmidt
and Fuchs [89] in modeling phase behavior of polymer-
nanoparticle mixtures, treats the penetration energy pro-
file as a step function, equal to a constant ε in the case of
penetration and zero otherwise. For a polymer of average
volume vp, this model predicts an average insertion free
energy npvpε. Equating npvpε to f in Eq. (10) yields

βε =
4πR3

p

vpq

(

1 +
2√
πq

+
1

3q2

)

, (11)

where β ≡ 1/(kBT ). If the polymer were approximated
as a sphere of radius Rp, then Eq. (11) would yield

βε =
3

q

(

1 +
2√
πq

+
1

3q2

)

, (12)

or βε ≃ 3/q for q ≫ 1. Schmidt and Fuchs [89] applied
the latter approximation in their study of demixing, as
did we in our previous studies of crowding [73, 74]. Here
we apply, however, a more consistent and accurate cali-
bration, which evaluates the average volume of the ellip-
soidal polymer from the true shape distribution. For an
uncrowded polymer, Eqs. (5) and (6) yield

vp =
4π

3

∫

dλP0(λ)R1R2R3 = 1.8365 R3
p , (13)

with λ ≡ (λ1, λ2, λ3). Substituting this polymer volume
into Eq. (11) then leads to

βε =
6.8426

q

(

1 +
2√
πq

+
1

3q2

)

. (14)

For a crowded polymer, amidst nanoparticles of vol-
ume fraction φn, whose shape distribution we denote as
P (λ;φn) with factors Pi(λi;φn), Eq. (13) must be mod-
ified accordingly:

vp(φn) =
4π

3

∫

dλP (λ;φn)R1R2R3 . (15)

In the simulations described below, we computed
the polymer-nanosphere penetration free energy from
Eq. (11), with vp consistently determined from Eq. (15).
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III. METHODS

A. Monte Carlo Simulations

For the models described in Sec. II, we developed sim-
ulation methods to compute the potential of mean force
(PMF) between hard nanospheres induced by larger poly-
mers that fluctuate in shape according to Eq. (6) and
the shape distributions of crowded polymers immersed
in nanosphere dispersions. The present analysis signifi-
cantly extends our previous work in which we computed
the PMF in the colloid limit [116] and crowding effects in
the protein limit with a cruder penetration model [74].
We first summarize the Metropolis Monte Carlo (MC)

simulation algorithm in the canonical ensemble. In a sim-
ulation cell shaped as either a cube or a rectangular par-
allelepiped (right rectangular prism) of fixed volume with
periodic boundary conditions, containing a fixed number
of particles at constant temperature, we performed trial
moves comprising displacements of hard nanospheres and
displacements, rotations, and shape deformations of pen-
etrable ellipsoidal polymers. With the exception of poly-
mer shape changes, the trial moves were accepted with
probability [118, 119]

Pconfig(old → new) = min
{

e−β∆F , 1
}

, (16)

where ∆F is the associated change in free energy. While
nanosphere-nanosphere overlaps are rejected outright,
polymer-nanosphere overlaps are accepted with probabil-
ity Pconfig using the penetration free energy of Eq. (14).
For a move that creates/eliminates an overlap, ∆F = ±ε.
Intersection of polymer-nanosphere pairs is diagnosed us-
ing an essentially exact overlap algorithm that computes
the shortest distance between the surfaces of a sphere
and an ellipsoid [120]. Defining the orientation of a poly-
mer coil by a unit vector u, aligned with the long axis of
the ellipsoid, trial rotations are executed by generating a
new (trial) direction u

′ via

u
′ =

u+ τv

|u+ τv| , (17)

where v is a randomly oriented unit vector and the toler-
ance τ determines the magnitude of the rotation [118]. A
trial change in shape of an ellipsoidal polymer coil from
gyration tensor eigenvalues λ to new eigenvalues λ′ is
accepted with probability

Pshape(λ → λ′) = min

{

P0(λ
′)

P0(λ)
e−β∆F , 1

}

, (18)

where P0(λ) is the shape distribution of the uncrowded
polymer [Eqs. (5) and (6) for ideal polymers]. Trial
changes in eigenvalues allow the polymers to evolve to-
ward a new equilibrium shape distribution, modified by
the presence of nanosphere crowders. Although we focus
here on ideal polymers, it is important to note that our
simulation method can be easily extended to nonideal
polymers with excluded-volume interactions by substi-
tuting the appropriate shape distribution into Eq. (18).

B. Potential of Mean Force Algorithm

For two nanospheres in thermal and chemical equi-
librium with a reservoir of nonadsorbing polymers of
bulk density np at constant T , the potential of mean
force (PMF) is defined as the change in grand potential
Ω(r) upon bringing the nanospheres from infinite to finite
(center-to-center) separation r:

vmf(r) = Ω(r)− Ω(∞) , (19)

where we use the fact that in an isotropic fluid the pair
potential depends on only the radial coordinate. The
change in grand potential arises from mechanical (pV )
work performed by the nanoparticles in pushing against
the osmotic pressure of the polymers: Πp = npkBT for
ideal polymers. In the spherical polymer (AOV) model,
this work is easily evaluated:

vmf(r) = −Πp

∫ r

∞

dr′ Aov(r
′) = −ΠpVov(r) , (20)

where Aov(r) and Vov(r) are the cross-sectional area and
volume, respectively, of the overlap region of the two
excluded-volume shells and we choose Ω(∞) = 0. The
convex-lens-shaped overlap region has volume

Vov(r) =
4π

3

[

(Rn +Rp)
3 − 3r

4
(Rn +Rp)

2 +
r3

16

]

,

(21)
for 2Rn < r < 2(Rn + Rp) (zero otherwise). This sim-
ple geometric approach fails, however, for the fluctuating
ellipsoidal polymer model, for which calculating Vov(r)
requires averaging over polymer shapes and orientations.
As an alternative approach, we derive below a more gen-
eral expression for the PMF, which we evaluate numeri-
cally via MC simulation using a variation of the Widom
particle insertion method [121].
The particle insertion method exploits the connection

between the grand potential Ξ and the grand canonical
partition function: Ω = −kBT ln Ξ. For a polymer solu-
tion containing two nanospheres – one fixed at the origin,
the other fixed at a distance r from the origin – the parti-
tion function is proportional to a configurational integral
of the Boltzmann factor for the internal potential energy:

Ξ(r) ∝ 〈exp[−βU(r)]〉 , (22)

where U(r) is the potential energy of the system with
two nanospheres at separation r and 〈 〉 still represents
an ensemble average over polymer conformations. From
Eqs. (19) and (22),

βvmf(r) = − ln

( 〈exp[−βU(r)]〉
〈exp[−βU(∞)]〉

)

, (23)

which, in the dilute limit (φn → 0), wherein vmf(r) be-
comes simply proportional to φn, reduces to

βvmf(r) = 〈exp[−βU(∞)]〉 − 〈exp[−βU(r)]〉 . (24)
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In practice, we computed the PMF induced by ideal
polymers as follows. Fixing a single nanoparticle at the
origin, we inserted a polymer of random shape and ori-
entation at a random position in the box, computed the
resultant overlap potential energy U0, and accumulated
the average of exp(−βU0) over many insertions. This
average, equal to the mean free-volume fraction of the
polymer, can be expressed as 〈exp(−βU0)〉 = 1− c(r)φn,
where c(r) is independent of φn. It follows that

〈exp[−βU(∞)]〉 = 1− 2c(r)φn = 2 〈exp(−βU0)〉 − 1 .
(25)

Note that, because ideal polymers are independent, we
need only insert a single polymer at a time. Repeating
for two nanoparticles fixed at separation r, we calculated
the overlap potential energy U(r) upon insertion of a
polymer and accumulated the average of exp[−βU(r)]
over many insertions to obtain 〈exp[−βU(r)]〉 and finally
vmf(r) from Eqs. (24) and (25).
As a consistency check, in the AOV model, the PMF

can be derived exactly. In the presence of a single
nanoparticle, the average fraction of the total volume V
available to a polymer is

〈exp(−βU0)〉 =
V − 4π

3 (Rn +Rp)
3

V
= 1− φn(1 + q)3 .

(26)
Substituting into Eq. (25) yields

〈exp[−βU(∞)]〉 = 1− 2φn(1 + q)3 . (27)

In the presence of two nanoparticles, the average polymer
free-volume fraction is

〈exp[−βU(r)]〉 = V − 8π
3 (Rn +Rp)

3 + Vov(r)

V
. (28)

Substituting for Vov(r) from Eq. (21) then yields

〈exp[−βU(r)]〉 = 1− φn

[

(1 + q)3 +
3

4
x(1 + q)2 − x3

16

]

,

(29)
with x ≡ r/σn. The difference of Eqs. (29) and (27)
yields finally the AOV expression for the PMF induced
by a single polymer [Eqs. (20 and (21)]. Comparing ana-
lytical and simulation results for the AOVmodel provides
a test of our numerical algorithm (see Sec. IV).

C. Theoretical Approaches

We now summarize theoretical approaches with whose
predictions we compare our simulation results in Sec. IV.
The polymer-induced potential of mean force between
nanoparticles is predicted by polymer field theories.
Within a continuum chain model of monodisperse ho-
mopolymers, Eisenriegler et al. [78–80] solved a diffusion
equation for the partition function of an ideal (non-self-
avoiding) chain in the presence of impenetrable meso-
scopic particles, thus obtaining the first terms in a small-
particle (1/q) series expansion for the average free energy

of immersing both a single hard nanosphere [Eq. (10)]
and a pair of nanospheres in an ideal polymer solution.
Including the leading and next-to-leading contributions,
which should suffice in the protein limit (q ≫ 1), their
result for the PMF can be expressed as (see Eqs. (2.64)
and (2.65) of ref. [80])

βvmf(r) = −12φp

[

h(x/q)

qx
+

g(x/q)

q2x
− h(2x/q)

2qx2

]

, (30)

where

g(x) ≡ e−x2

√
π

− x+ xErf(x) (31)

and

h(x) ≡ 1

4

[

− 2√
π
xe−x2

+ (1 + 2x2)Erfc(x)

]

, (32)

with Erf(x) and Erfc(x) being the error function and com-
plementary error function, respectively.
In related work, Woodward and Forsman [82, 83] and

Wang et al. [84] developed a general field theory, also
within the continuum chain model, for the interaction
between nanospheres immersed in a fluid of polydisperse
ideal homopolymers. By solving a Schrödinger-like equa-
tion for the end-end segment distribution function, these
workers derived an exact expansion in spherical harmon-
ics for the PMF induced by polymers with molecular
weight following the Schulz-Flory distribution:

p(n)(s) =
(n+ 1)n+1

Γ(n+ 1)

sn

s̄n+1
exp[−(n+ 1)s/s̄] , (33)

with s the degree of polymerization and s̄ its mean value.
Their prediction for the PMF reduces to that of Eisen-
riegler et al. [80] in the monodisperse (n → ∞) limit and
readily yields to numerical solution in the case n = 0.
Although several other approaches to modeling depletion
potentials have been proposed (cited in Sec. I), we focus
here on polymer field theories, since their predictions can
be directly compared with our simulation results.
To model polymer crowding, we recently developed

a free-volume theory, which we applied to calculate
polymer shape distributions in polymer-nanosphere mix-
tures [48, 74]. In this approach, the shape distribution of
crowded polymers is given by

P (λ;φn) = P0(λ)
α(λ;φn)

αeff(φn)
, (34)

where α(λ;φn) is the free-volume fraction of a polymer of
shape λ amidst nanoparticles of volume fraction φn and

αeff(φn) ≡
∫

∞

0

dλP0(λ)α(λ;φn) (35)

is an effective polymer free-volume fraction, defined as
an average of α(λ;φn) over uncrowded polymer shapes.
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In the dilute nanoparticle concentration limit (φn → 0),
we have α(λ; 0) = 1 and the shape distribution reduces
to that of the uncrowded polymer: P (λ; 0) = P0(λ).
The essential input to the theory is the poly-

mer free-volume fraction, which is well approximated
by the geometry-based theory of Oversteegen and
Roth [122]. By separating thermodynamic properties
of the nanosphere crowders from geometric properties
of the polymer depletants, using fundamental-measures
density-functional theory [123–125], this approach gen-
eralizes scaled-particle theory [126] from spheres to arbi-
trary shapes, yielding

α(λ;φn) = (1− φ′

n) exp[−β(pvp + γap + κcp)] , (36)

where φ′

n ≡ φn(1 − e−βε) and p, γ, and κ are the bulk
pressure, surface tension at a planar hard wall, and bend-
ing rigidity of the nanoparticles, while vp, ap, and cp
are the volume, surface area, and integrated mean cur-
vature of a polymer. For a general ellipsoidal polymer,
vp = (4π/3)R1R2R3, with the principal-radii Ri given
by Eq. (9), while ap and cp are numerically evaluated
from the principal radii. The thermodynamic properties
of hard nanospheres are accurately approximated by the
Carnahan-Starling expressions [122, 127]:

βp =
3φn

4πR3
n

1 + φn + φ2
n − φ3

n

(1− φn)3

βγ =
3

4πR2
n

[

φn(2− φn)

(1− φn)2
+ ln(1− φn)

]

βκ =
3φn

Rn(1− φn)
. (37)

IV. RESULTS AND DISCUSSION

To test the accuracy of the ellipsoidal polymer model
in describing polymer depletion-induced interactions be-
tween nanoparticles and nanoparticle-induced crowding
of polymers, as well as to validate our MC algorithms,
we performed two series of simulations in the protein
limit. In one series, we computed the PMF between pairs
of hard nanospheres; in the second series, we computed
the shape distributions of polymers crowded by many
nanospheres. In this section, we compare our results for
the depletion potential and polymer crowding with pre-
dictions of polymer field theory and free-volume theory,
respectively.
In the first series of simulations, we computed the PMF

over a range of nanosphere separations, using the poly-
mer trial insertion method outlined in Sec. III B. The
dimensions of the rectangular parallelepiped simulation
cell were set to maximize the acceptance ratio, while
avoiding interaction of polymers with periodic images
of the nanospheres. Tolerances for polymer trial moves
were fixed at τ = 0.001 for rotations and ∆λ1 = 0.01,
∆λ2 = 0.003, ∆λ3 = 0.001 for shape changes. Each run
comprised 2 × 107 independent polymer insertions. We
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FIG. 2. Potential of mean force (units of npR
3

gkBT ) induced
by ideal polymers between hard nanospheres for polymer-to-
nanosphere size ratio (a) q = 5 and (b) q = 10. Our sim-
ulation data for ellipsoidal polymers (squares) and spherical
polymers (circles) are compared with predictions of polymer
field theory for monodisperse coils [80] (n = ∞, solid curves)
and polydisperse coils [84] (n = 0, dashed curves). Error bars
are smaller than symbol sizes.

determined statistical uncertainties (error bars) by com-
puting standard deviations from five independent runs.
As a test, we first simulated the original AOV model
of spherical polymers, fixed in size and impenetrable to
nanospheres, and confirmed that our algorithm repro-
duces the exact PMF of Eqs. (20) and (21) to within sta-
tistical uncertainties. Next, we simulated the penetrable
ellipsoidal polymer model (Sec. II C), with penetration
free energy given by Eq. (14). For comparison, we also
simulated a modified AOV model of spherical polymers,
fixed in size but penetrable to the nanospheres, with the
penetration free energy given by Eq. (12).

Figure 2 presents direct comparisons of our simula-
tion data with predictions of two polymer field theo-
ries [80, 84] for size ratios q = 5 and q = 10. The two
theories make slightly different predictions, since one [80]
describes monodisperse coils [n = ∞ in Eq. (33)] and
the other [84] polydisperse coils (n = 0). (When re-
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FIG. 3. Snapshot from simulation of polymer-nanoparticle
mixture for computing shape distribution of ellipsoidal poly-
mer immersed in a concentrated dispersion of nanospheres.

plotted in Fig. 2, the pair potentials from ref. [84] have
been corrected for a missing scale factor [128].) With no
fitting parameters, the ellipsoidal polymer model yields
a PMF in good agreement with field theories, although
with somewhat less curvature. In contrast, the penetra-
ble spherical polymer model, with penetration free en-
ergy given by Eq. (12), produces a PMF with a shal-
lower attractive well and a qualitatively different shape.
For reference, the AOV model of impenetrable spherical
polymer greatly overestimates the depth of the attrac-
tion, yielding contact values of βvmf(σn)/(npR

3
g) = 5.4

for q = 5 and 4.8 for q = 10 – hardly surprising in the
protein limit, where polymers are far from impenetrable.
Quantitative discrepancies between simulation and the-
ory, especially at intermediate distances, may originate
from the step-function approximation for the polymer-
nanoparticle penetration energy profile.

Evidently, polymer shape fluctuations and penetrabil-
ity both play vital roles in depletion-induced interactions.
In passing, we note that using βε = 3/q as the penetra-
tion energy for the ellipsoidal polymer model leads to a
much weaker pair attraction. Close agreement between
polymer field theory predictions and the potentials out-
put by our simulations, which use as input the penetra-
tion free energy predicted by the same theory, not only
validates the ellipsoidal polymer model, but also confirms
the self-consistency of the field theories. We emphasize,
however, that our approach, unlike the field theories, can
be applied also in the colloid limit [116].

In the second series of simulations, using the eigenvalue
distributions of an uncrowded polymer [Eqs. (5) and (6)],
we computed the shape distributions of polymers im-

mersed in bulk dispersions of nanospheres of various con-
centrations (Fig. 3). For both polymers and nanospheres,
the tolerance for trial displacements was fixed at 0.1 σn.
Extending our preliminary study of crowding [74], we
implemented an exact polymer-nanosphere overlap algo-
rithm [120] and used a more realistic penetration free
energy ε [Eqs. (11) and (15)]. Since ε depends, at each
nanosphere volume fraction φn, on the average volume of
the crowded polymer vp(φn), which itself depends on ε,
we input the vp(φn) predicted by free-volume theory and
subsequently checked for self-consistency.

In each of the five independent runs, we accumu-
lated configurational data over 107 steps, following an
equilibration stage of 5 × 104 MC steps, and calcu-
lated the polymer gyration tensor eigenvalue distribu-
tions, asphericity, and rms radius of gyration by averag-
ing over 104 independent configurations, spaced by inter-
vals of 103 steps to minimize correlations. We typically
chose Nn = 216, but performed runs with up to 1728
nanospheres to ensure statistical independence of system
size. In the process, we confirmed that our previous ap-
proximation [74] for the shape of the intersection region
as a “stretched” ellipsoid – an ellipsoid whose principal
radii are lengthened by Rn – is quite reasonable in the
protein limit and gives qualitatively consistent results.
Results reported below are compared with predictions of
free-volume theory. To our knowledge, no corresponding
data from simulations of explicit polymer models are yet
available for direct comparison.

For a polymer immersed in a nanosphere dispersion,
with uncrowded rms radius of gyration equal to five times
the nanosphere radius (q = 5), Fig. 4 presents the prob-
ability distributions for the eigenvalues of the gyration
tensor, representing the distribution of shapes of the el-
lipsoid that best fits the polymer coil. A comparison of
the scales of the distributions for the three eigenvalues re-
veals that the typical shape of the polymer is that of an
elongated, flattened ellipsoid. With increasing crowding,
i.e., nanosphere concentration, all three eigenvalue dis-
tributions steadily shift toward smaller ranges, reflecting
contraction of the polymer along all three principle axes.
Also shown in Fig. 4 are predictions of free-volume theory
(Sec. III C). At lower nanosphere concentrations, simula-
tion and theory agree closely. With increasing crowding,
however, small deviations emerge, especially notable for
the largest eigenvalue λ1.

Figure 5 shows the probability distributions for a poly-
mer doubled in size (q = 10). Compared with the
smaller polymer, for the same nanosphere concentration,
the shifts in the eigenvalue distributions are significantly
larger relative to the uncrowded distributions. As dis-
cussed in ref. [74], this trend can be understood by not-
ing that the average overlap free energy increases roughly
with the square of the size ratio. Also apparent is that
the free-volume theory is less accurate for this larger size
ratio, somewhat overpredicting the polymer compression,
especially at the highest volume fraction.

From the eigenvalue distributions, we computed the as-
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FIG. 4. Probability distributions for the eigenvalues of the
gyration tensor of a crowded polymer, modeled as an ideal,
freely-jointed chain: (a) λ1, (b) λ2, (c) λ3. Our simula-
tion data (symbols) are compared with predictions of free-
volume theory (solid curves) for a single ellipsoidal polymer,
with uncrowded rms radius of gyration equal to five times
the nanoparticle radius (q = 5), amidst Nn = 216 hard
nanospheres with volume fraction φn = 0.1 (triangles), 0.2
(squares), and 0.3 (circles). Dashed curves show uncrowded
distributions (φn = 0) from Eqs. (5) and (6).
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FIG. 5. Same as Fig. 4, but for larger polymer-to-nanosphere
size ratio (q = 10). Notice the changes in scale.

phericity [Eq. (7)], rms radius of gyration [Eq. (8)], and
average volume [Eq. (15)] of a crowded polymer over a
range of nanosphere concentrations. As Fig. 6 demon-
strates, a polymer responds to progressive crowding not
only by contracting, but also by becoming more spher-
ical, as reflected by the decrease in A, Rg, and vp with
increasing φn. These trends are amplified upon increas-
ing the size ratio from q = 5 to q = 10, the larger poly-
mer being relatively more compactified. Moreover, the
crowding effect is much stronger here, where we com-
puted ε from Eqs. (11) and (15), than in our previous
study [74], where we used lower penetration free ener-
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FIG. 6. (a) Asphericity [Eq. (7)], (b) rms radius of gyra-
tion [Eq. (8)], and (c) average volume [Eq. (15)] of a fluctu-
ating ellipsoidal polymer vs. nanosphere volume fraction φn.
Our simulation data are shown for uncrowded polymer-to-
nanosphere size ratio q = 5 (circles) and q = 10 (squares) and
compared with predictions of free-volume theory (curves). Er-
ror bars are smaller than symbols. As crowding increases, the
polymer becomes more compact (smaller and less aspherical).
Inset to panel (b): Comparison with scaling prediction [81],

Rg ∼ φ
−1/4
n , on a log-log scale.

gies. Nevertheless, a model of spherical, compressible

polymers gives yet greater contraction [73, 74], which is
attributable to the lack of freedom of a spherical polymer
to distort its shape.
Figure 6 also shows a comparison of our simulation

data with predictions of free-volume theory. As with the
eigenvalue distributions, the theory faithfully captures
the trends in shape, size, and volume. The inset to panel
(b) shows a further comparison with the scaling predic-

tion of Odijk [81] for the radius of gyration, Rg ∼ φ
−1/4
n ,

which is seen to be fairly consistent with our data over a
significant range of nanosphere concentrations. Here the
close agreement between the input (theory) and output
(simulation) values of vp serves as a consistency check on
our approximation for the penetration free energy. In the
coarse-grained polymer model, for the size ratios studied
here, neither simulation nor theory indicates a sudden
collapse of an ideal coil up to volume fractions φn ≃ 0.4.

V. CONCLUSIONS

In summary, to investigate influences of polymer shape
and penetrability on mixtures of hard nanospheres and
nonadsorbing homopolymers, modeled as penetrable el-
lipsoids with fluctuating shapes, we developed a Monte
Carlo simulation method based on polymer insertion and
geometric overlap algorithms. We applied our method to
compute depletion-induced potentials of mean force be-
tween nanospheres and crowding-induced shape deforma-
tions of ideal polymers in the protein limit. Our simula-
tion data for pair interactions are in good agreement with
predictions of polymer field theories, further validating
the ellipsoidal polymer model and demonstrating the im-
portance of polymer shape fluctuations and penetrability
for depletion interactions. Our results for shape distri-
butions of crowded polymers, including asphericity and
rms radius of gyration, agree closely with predictions of
free-volume theory, differing quantitatively only in highly
concentrated nanosphere dispersions. Extending our pre-
vious study [74], we consistently incorporated the de-
pendence of the penetration free energy on the polymer
shape and nanoparticle concentration. Furthermore, our
predictions for polymer shape deformations can be tested
against molecular simulations or density-functional the-
ory calculations for explicit segmented-chain polymers,
which may guide refinement of the step-function approx-
imation assumed for the penetration energy profile.
The methods and results presented here lay a foun-

dation for simulating more realistic models of polymer-
nanoparticle mixtures, as well as models of polymers in
quenched disordered media [129–131]. Future work will
focus on generalizing the model from ideal polymers to
nonideal polymers in good solvents with excluded-volume
interactions [101–103] characterized by shape distribu-
tions of self-avoiding random walks [39, 40], analyzing
crowding of real biopolymers [104–108] (e.g., specific pro-
teins and RNA), and exploring influences of polymer
shape fluctuations on thermodynamic stability and phase
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behavior (e.g., demixing) of bulk polymer-nanoparticle
mixtures.
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