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Randomized Aperture Imaging
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Speckled images of a binary broad band light source (600-670 nm), generated by randomized
reflections or transmissions, were used to reconstruct a binary image by use of multi-frame blind
deconvolution algorithms. Craft store glitter was used as reflective elements. Another experiment
used perforated foil. Also reported here are numerical models that afforded controlled tip-tilt and
piston aberrations. These results suggest the potential importance of a poorly figured, randomly

varying segmented imaging system.
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I. INTRODUCTION

It is well known that angular resolution may be
enhanced by use of a larger aperture. In practice,
the size of a monolithic aperture is limited by the
cost, weight and construction constraints[l, 2]. Even
if such constrains can be surmounted, adaptive optics
methods must be applied to achieve diffraction limited
performance[3]. Alternatively, passive approaches that
make use of computer post-processing have been suc-
cessfully employed[4H6]. Examples, including an aper-
ture masking system[7], and a multi-aperture system|g]
have shown great promise in astronomy and remote
sensing[0H11],biology[12], clinical trials[13, [14], and new
types of computational cameras[I5HI7]. In these imag-
ing systems, the burden of hardware control are replaced
or greatly alleviated by digital computations. Mathe-
matical tools, such as Fourier analysis[I8], constrained
optimization[I9, 20], and Bayesian inference[2I] are es-
sential in this approach. Both aperture masking and
multi-aperture systems have demonstrated an improved
signal-to-noise ratio of the acquired images, a calibrated
point spread function (PSF), rejection of atmospheric
noise, and closure phase measurements[22]. However, the
sparsity of apertures implies a sparse coverage of spatial
frequencies and loss of flux. Both adaptive optics and
aperture masking systems attempt to improve the im-
ages obtained from a relatively well-figured optical sys-
tem. In this paper we address the case of an ill-figured
segmented optical system that varies randomly in time.
To make matters worse, we assume no knowledge of the
randomly varying PSF. We ask the following the proof
of concept question: Is it possible to reconstruct a near
diffraction-limited image from a series of recordings from
such a system?
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FIG. 1. Random aperture imaging system having baseline
D, depicting a distant light source, random elements, and a
detector in an effective focal plane. A sequence of images are
recorded for different random orientations of the elements.
Computational imaging methods are used to reconstruct the
image of the light source.

In some respects this study is related to the random
lens imaging system[23], where a collection of random
reflectors served as a primary camera lens. Similarly,
the sparkle vision system[24], simplifies the random lens
imaging system by using a lens to better focus the light.
However, in these examples, the PSF was not time-
varying, and intensive machine learning algorithms were
needed to uncover the PSF. In contrast, we aimed to re-
construct the time-varying PSF in a near real-time man-
ner.

This report is organized as follows. In Section 2 we
provide a description of a randomized complex aperture
system. Two different experimental scenarios are estab-
lished in Section 3: “far field”and “near field”. For the
purpose of comparing experimental and modeled results,
we next describe in Section 4 the corresponding numer-
ical models. Both the experimental and numerical data
are processed by means of the multiframe blind decon-
volution scheme described in Section 5. We then report
image construction results in Section 6. Concluding re-
marks are provided in Section 7.
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FIG. 2. Configuration of the far field experiment. (a)Two polychromatic sources subtend an angle 6y with respect to the optical
axis. Rays are transmitted though a phase mask (PM) and aperture mask (AM) near the front face of a lens L of focal length
f = 200mm. Using different random masks, multiple images are recorded on the detector array (DA), placed in the Fourier
transform (back focal plane) of the lens. (b) Example of a recorded image from a random mask.

II. BASICS OF RANDOMIZED APERTURE
IMAGING

An illustration of the randomized aperture scheme,
shown in Fig. 1, depicts a point source (or sources) an in-
finite distance from elements that are distributed across
a quasi-parabolic surface of baseline D and a detector at
the mean focal distance f. For a continuous parabolic re-
flector, a diffraction-limited image would appear on the
detector. However, tip,tilt and piston errors associated
with each reflecting element produces aberrated speck-
les. Further, the distribution may be evolving in time,
providing a sequence of N speckled images. Here, we
ignore motion blur. Postprocessing techniques such a
multi-frame blind deconvolution [25H28] may be used to
recover a near-perfect image. This approach is particu-
larly suitable in cases where it is not practical to make re-
peated measurement of time varying PSF. What is more,
multi-frame blind deconvolution is a self-heuristic algo-
rithm with less computational cost than machine learn-
ing, and may be simpler to implement than phase re-
trieval methods when the PSF is time varying. An ad-
vantage of this approach is (see Section 5) that whereas
a single-image blind deconvolution scheme prescribes a
ratio of unknowns (the PSF and the recovered object) to
measurements as 2 : 1, the multi-frame blind deconvolu-
tion scheme improves the ratio to N + 1 : N. In gen-
eral, the system shown in Fig. 1 may be shift-variant, in
which case shift-variant multi-frame blind deconvolution
algorithms[27] are better suited. For the cases exam-
ined below, however, the small shift-variance may be ne-
glected, and we find the shift-invariant multi-frame blind
deconvolution algorithm is sufficient to achieve good re-
constructed image of a pair of point sources.

III. LABORATORY DEMONSTRATION

Far Field. In the case shown in Fig 2, a “far field” ar-
rangement was constructed whereby a transmissive mask

was positioned at the surface of a convex lens of fo-
cal length f = 200mm. A set of N = 50 thin foil
masks was produced, each having M = 50 randomly
placed pinholes(radius r a~ 0.1mm ) distributed across
a D = 3mm diameter. The foil was covered by a layer
of wrinkled cellophane to randomize the phase at each
pinhole. The close proximity of the cellophane and foil
allowed for a nearly shift-invariant system. An Ener-
getiq laser-driven white light source was spatially and
spectrally filtered to produce a collimated polychromatic
beam with a wavelength range A = 600 — 670nm. Light
transmitted through the mask was recorded at the back
focal plane of the lens on the detector array of a Canon
5D Mark III camera having a pixel pitch of 6.25um and
detector size of 24 x 36mm. We call this arrangement “far
field” because the detected light is governed by Fraun-
hofer diffraction from the pinholes. Imaging information
is encoded in the interference of the diffracting beamlets.
An effective second mutually incoherent light source was
introduced by transmitting the beam through the sys-
tem at angle 26y. The two images were added together
to produce a single image of a binary source. The ground
truth image can be obtained using the same setup, but
without the phase and aperture masks.

Near Field. A schematic of the second experimen-
tal setup is shown in Fig 3. for a “near field” arrange-
ment. As above, spatially and spectrally filtered light was
formed into a collimated beam. In this case, however, re-
flecting elements were used to divert beamlets toward the
detector. We used the front surface reflection from a glass
wedge to produce a binary light source. The reflecting
elements were comprised of square “fine size” craft store
glitter, with dimensions of roughly 0.3 x0.3mm. The ran-
dom aperture condition was achieved by randomly sprin-
kling glitter across a blackened concave surface having
a radius of curvature 65.4mm. After each image was
recorded, the glitter was washed off, and a new ran-
dom surface was prepared. The number of sub-apertures
across the full D = 10mm beam diameter ranged from
M = 200 to 400. The pellicle beam splitter was used
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FIG. 3. Configuration of the near field experiment.

to collect the reflected light and direct it toward the de-
tector array of the same camera. Owing to space con-
straints, the detector could not be placed directly in the
focal plane of the concave surface (f = 32.7mm from the
surface), and thus, a 150mm relay lens was used. This
configuration is called “near field” because the beamlets
from each reflecting element undergo Fresnel diffraction
upon reaching the detector. The diffraction length of
a single reflecting element is roughly 450mm, which is
much greater than f. We assert that the system is nearly
shift invariant since the elements roughly conform to a
small patch of diameter D on the concave surface. As
seen in the inset of Fig. 3, the elements display signifi-
cant tip-tilt errors.

The reconstruction results of experimental data are
discussed in Section 6. Parameters of both schemes are
listed in Table 1.

IV. NUMERICAL SIMULATION OF OPTICAL
SYSTEM

Far Field. A numerical model of the far field exper-
iment may be represented by a distribution of complex
circular sub-aperture functions (see Fig :

Ui(x) = eap (%) eap(ios) (1)

where X; = |x — ¢;|2/7s is a normalized vector, x = (z,y)
is an arbitrary vector in the plane of the aperture, ¢; =

(a) A glass wedge (W) is used to create a double image of a single
polychromatic light source. The rays are reflected from randomly distributed glitter across a blackened concave surface (.5)
having a radius of curvature 65.4mm. A Pellicle beam splitter (BS) direct the rays through a lens (L), which acts to relay
the image at the focal plane, to the detector array (DA). (b) Photograph of the random glitter surface having an effective
diameter, D. (c¢) Example of a recorded image of the binary source from a random glitter surface. Multiple random images
were recorded by removing and then re-applying glitter.

TABLE I. Values of Experimental Parameters

Parameter Far Field Near Field
Number of sub-apertures in the cloud M 50 200-400
Diameter of the baseline D[mm] 3 10

Size of sub-aperture [mm] 0.2 0.3

Focal length f[mm] 200 32.7
Samples per AF'# in image plane[pix] 7 0.4
Angular Separation of sources A/D 26 625
Bandwidth [A)] %10 %10
Detector array size[mm?] 24 x 36

Detector pixel pitch [pm] 6.25

(€z,isCy,i) indicates the center of the i-th sub-aperture,
7, is the radius of the sub-apertures, |- |2 is /2-norm, and
B = 100 is the power of Super-Gaussian function that
defines the sub-apertures.

Phase aberrations, ¢; = ¢, + ¢+, across each sub-
aperture are represented, respectively, by piston and tip-
tilt terms:

bp,i(x) = ka; (2)

¢1,i(x) = kxb; (3)

where k = 27 /) is wavenumber, a; is a pairwise inde-
pendent uniformly distributed random variable with in-
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FIG. 4. Numerical model of the far field scheme. (a) Sub-apertures of radius r (small circles) are distributed across the baseline
radius D = 2R on an N x N grid (N = 8192). The transmitted light has a Gaussian random tip-tilt phase (with standard
deviation up to 40\/D across the diameter D = 2R), as well as a uniformly distributed piston error of up to one wave. The
M = 100 non-overlapping randomly placed sub-apertures are assigned a position ¢; = (x;,¥;). (b)Numerical image of a binary
light source at the Fourier transform plane. The image has been inverted to aid the eye.

terval equals to Az, b; is a pairwise independent Gaus-

sian random variable with mean 0 and variance given by

< a? >= 03, and < — > denotes an ensemble average.
The complete system aperture function may be ex-

pressed as
.
X—cC
o ('R) (1)

where M is the number of sub-apertures, ¢y = (cz,0,¢y,0)
indicates the center of the baseline, and R the radius of
the full effective aperture, and v = 100 is the power of
Super-Gaussian function that defines the baseline.

We further impose a non-overlapping condition to the
sub-apertures:

M

> Ui(x)

i=1

Ux) =

lci —¢j| > 2rs,i #j (5)

An example of the complex pupil function is shown in
Fig[d(a) for M = 100 sub-apertures.

For two monochromatic point sources at infinity hav-
ing an apparent angular separation of 20y along the x-
direction, the electric field in the back focal plane of the
system may be expressed as Fourier transforms of the
field from each source, incident upon the imaging sys-
tem(assuming it is shift-invariant):

ET(v) = % zx: exp <z2)7\rv . x) U(x)exp(+ikyx) (6)

E=(v)= izx: erp (22;\Tv . x) U(x)exp(—ikyx) (7)

where for paraxial rays, k, = 2mw6y/\.

Assuming the two light sources are mutually incoher-
ent, we write the intensity in the plane of the detector
as:

I(x) = |E*]* + |E7|? (8)

Near Field In the near field regime, the numerical
model ignores diffraction of the reflected light as it propa-
gates from the aperture to the focal plane detector. That
is, we assume the characteristic diffraction distance is
much longer than the effective focal length: mr2/\ >> f.

The geometric model of near field scheme is illustrated
in Fig 5. For a single source of collimated light, we as-
sume a beam of parallel ray aligned along the unit vector
dp. Rays incident upon the i, reflector centered at the
point c; are reflected along the unit vector d, ;:

d'r,i = do -2 (do . l’li) n; (9)

where the Cartesian components of the unit normal vec-

tor of the iy, reflector may be expressed in terms of direc-

tion cosines as: n; = (cosé;), where 0; = (0, ,;,0y,,0..).
If the reflectors conformed to a paraboloid

z=—(a®+y*)/Af + f (10)

where f is the focal length. Each of the i;, rays di-
rected along d,; would coincide at the focal point o =
(0,0,0). In that special case the direction angles of
the normal vector of each reflector may be expressed as
0i0 = (02,i,0,0y,i,0,024,0), where
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FIG. 5. Numerical model of the near field scheme. (a) Randomly distributed circular reflecting elements of radius r = 100 pix
at the points ¢; = (xs,¥s, 2:) are aligned along a parabolic surface with F'# = 75, each provided with random tip-tilt (with
standard deviation up to 60\/D across the diameter D = 20000 pix), as well as a uniform piston error of up to ten waves.
Incoming collimated rays directed along the unit vector do are assumed to reflect in the direction d,; without diffracting as
they propagate to the focal plane detector array. Respective element and detector surface normals: n; and ng. (b) Example of

a numerical image of a binary light source at the focal plane.

0z.i0 = cos™ ' (z/2pf)
0,10 = cos™ ' (y/2pf) (11)
0.0 = cos” ' (1/p)

and p = ((z/2f)2+(y/2f)%+1)'/2. We note theses angles
are related by cos?(0, .0) +cos?(0y,:.0) +cos? (0 ;0) = 1.

In general, the normal vector of each reflec-
tor will suffer from random tip-tilt errors Af; =
(0z,i0ag ;ay Ay i a, ;A8 ;), and thus the directional
angles becomes

0; = 92‘,0 + A0 (12)

where az i, ay,i,0,,; are pairwise independent Gaussian
random variables variable with mean 0 and variance
equal to og.

Piston error, w; Az; may be introduced by displacing
the center of the i;;, mirror from the paraboloid surface
defined by ¢; = (¢iz,Ciy, f + (c?m + cf,y)/élf), where w
is pairwise independent uniform random variable with
interval of Az;

Let us consider a ray incident upon an arbitrary point
x = (z,y,2z) on the iy flat reflecting element. The
plane of the element is represented by the equation
n;(x — ¢;) = 0. For a circular reflector of radius r; we
impose |x — ¢;|? < rs2. The intersection points of the
incident beam with the plane of the i, circular reflector
can be represented parametrically as:

m; = c; + acoste; + a costesy (13)

where t € [0,2n], a € [0,75], e; and ey are
unit vectors that satisfy e; = (0,1, cosf,/cost,)/(1 +
(cos,/cosf,)?)'/? and e, = e; x n.

Next we wish to determine where the reflected beam
intersects the detector plane. In general, the detector
plane can be defined by a center point q (usually the
focal point of the paraboloid) and a normal vector ng.
The projection of the points m along the reflected beam
onto the detector plane may then be expressed as:

(q—m;)-ng

ui =m; +d, d, ng
T

(14)

The electric field within each of the i, projected beams
in the detector plane may be represented as a tilted plane
wave scaled by an obliquity factor from both the mirror
dj - n;, and the detector d, - ng.

With two point sources at infinity, we repeat the above
procedure by including two bundles of incoming rays re-
flected from an element along unit vectors dj and dg
respectively. The two fields in the detection plane are
labelled E;" and E; :

E*(uf) = Af exp(ikd},; - u] )exp(ik L)

(2

~(ur —ern(ikd=. - u- I (15)
E~(u;) = A exp(ikd,; - u; Jexp(ikL; )



TABLE II. Value of Numerical Parameters

Parameter Far Field Near Field
Image plane grid size [pix] 4096 4096
Radius of sub-aperture 2r[pix] 82 100
Diameter of the baseline D[pix] 8092 20000
Pixels per AF'# in image plane 4 7.5
Angular separation of the objects[A/D] 1.5 1.5

where A and A; are zero valued outside the projection
area of the 4;;, mirror. LZT" and L; are full path length
of rays that travel from the binary source to the i;; mir-
ror, and then reflected onto the detector. k = 27/ is
the wavenumber. For small angular deviations in the
detector plane and for equally luminous point sources,
we make the approximation of setting the A; and A
within the interior regions of each bundle of rays equal
for all u;. Here we consider two mutually incoherent
sources subtending an angle 26y and bisecting the z-axis:
d*-d~ = cos(26y). Defining the postion vector on detec-
tor plane as x4 = (x4,yq), the measured irradiance may
be expressed:

M M
I(xa) = | Y B (xa) + 1D Ei™ (xa)| (16)
i=1 1=1

The ground truth image is captured by imaging the
objects using a monolithic mirror of the baseline size.
The value numerical parameters are given in Table 2.

V. SYSTEM ESTIMATION AND IMAGE
RECOVERY

Multi-frame blind deconvolution algorithms are used
to recover a target scene from a set of blurry, noisy
and distorted observations. They are generally catego-
rized into two types: (1) non-blind deconvolution, where
the target scene is reconstructed based on complete or
partial knowledge of the point spread function(PSF) of
the imaging system; and (2) blind deconvolution, where
the unknown target scene and system point spread func-
tion are recovered simultaneously without a priori knowl-
edge. Since the work of Ayers and Dainty[29], multi-
frame blind deconvolution has become an important tool
for image recovery, resulting in numerous research ef-
forts and applications. Common approaches involve:
(1) Batch mode multi-frame blind deconvolution[25], [30],
where all the distorted observations are processed at
the same time; and (2) Serial mode multi-frame blind
deconvolution[26] [31], [32], where degraded inputs are se-
quentially processed. Compared with the batch mode,
the serial approach is more memory efficient and can in
principle be done at the same time as the image acquisi-
tion. In this paper image restoration was accomplished

by use of a serial multi-frame blind deconvolution[3T]
scheme.

Here we give a brief review of the online multi-frame
blind deconvolution algorithm. We assume that at each
time point n = 1,2,--- , N, the random aperture mir-
ror system records a blurred image {g,}. Assuming the
imaging system is shift-invariant(or approximate shift-
invariant), the image formation process can be modeled
as convolution of the target image and the system PSF,
where the recorded ny, image g, (z,y) may be expressed:

gn = (f®hn) +an (17)

where ® denotes the two-dimensional convolution oper-
ator, and f(z,y) and ¢,(z,y) respectively represent the
ideal image and its random noise, and h,,(z,y) represents
the shift-invariant PSF of the ny, time frame. We assume
the PSF changes from frame to frame owing to time vary-
ing tip, tilt, and piston errors, as well as the location of
each mirror. The goal for multi-frame blind deconvolu-
tion is to recover the ideal image f and the temporally
varying PSF h,, from a set of degraded images {g,}. A
simple but effective choice for the blind deconvolution
can be achieved by solving the following non-negatively
constrained problem [20]

1 -
{fv hn} = hngg,r}zo N2 Z Z |Gn - FHn|2(u) (18)

n=0 u

where G;, F,H; are the Fourier transforms of the ob-
served images g;, ideal image f, and PSFs h; respectively,
and u is the position vector in frequency space.

Solutions to Eq[I8| are commonly solved using either:
(1) batch mode optimization using the constrained con-
jugate gradient descent of cost function with respect to
f and {h,} in an alternating manner[25, 28] [30]; and
(2) serial mode optimization using the multiplicative
updates[26] B1], as is shown in the method we employed,
outlined below in Algorithm 1,estimated image and PSF
are updated respectively using multiplicative method in
each iteration:

FTG,
H, = H,;_ _ 19
YO R R E) (19)

HTG,
F,=F,_ 10 L (20)

HI(H;F;_1)



and where ® denote the component-wise multiplication.

Algorithm 1: Alternating Minimization for Online
Blind Deconvolution
Input: Captured image sequence {G,}
Output: Restored image F' and PSFs {H,,}
Tnitialize F = Fy, Hy
1=1
while > |G; — FH;|*> > € and i < N do
H; =argminy_ |G; — F;_1)H|?
F; =argmin_ |G, — FH;|?
1=1+1
F=F
end

VI. RESULTS AND DISCUSSION

Analyses of our reconstructed images resulting from
multi-frame blind deconvolution are presented below.
First we describe the experimentally measured data for
far field and near field schemes using a polychromatic
(10% bandwidth) light source. Numerically generated
data is then used to demonstrate the reconstruction of a
monochromatic binary light source under different tip-
tilt and piston errors. Quantitative comparisons be-
tween ground truth and reconstructed images are eval-
uated based on two metrics: spatial separation error
Ep = |D — D'|/D and the peak intensity ratio error
By, = |I1/Ip2 — 1, 1/1},5]/(Ip1/1p2), where D and D’
are the respective distances between the peaks of the
ground truth and restored images respectively, and where
I, and I;/o are the respective peak intensities of the ground
truth and restored results.

A. Experimental Results

Reconstructed images were obtained by use of N = 50
images for both the far field and near field schemes. De-
tails of the experimental setup and parameters are dis-
cussed in Section 4 and Table 1. The restored images of
a binary light source and examples of speckle images are
shown in Fig 6. Immediately we see in both cases that
the reconstructed images are superior to the speckle im-
ages, i.e, qualitative agreement with the ground truth
is acheived. Quantitatively, we find the distance be-
tween the intensity peaks are in good agreement, with
Ep =~ 5%. Furthermore the intensity peaks are equal to
within F, ~ 15%. This is remarkable considering the
10% bandwidth of the light source, and the estimated
15/ D tip-tilt error and a likely piston error of at least
several waves. The good agreement between the ground
truth and reconstructed images may be attributed to the
high degree of shift invariance of the imaging systems.
That is, the speckle data in both Fig 6.(b) and (d) con-
tains multiple overlapping pairs of binary images. We
note that in the far field (diffracted) case the pairs dis-

placed from the central region of the speckle image are
diffused owing to the broad bandwidth of the light source.
In contrast, for the near field case, the beamlets from
each reflecting element experience little diffraction, and
thus no chromatic spreading of the beamlets. We believe
the multiframe BD scheme is successful at recovering the
binary light source in both cases because the underlying
imaging systems are well described by a shift invariant
convolution process.

B. Numerical Results

To explore how well multiframe blind deconvolution
restores a binary image from random aperture mirror im-
ages, numerically simulated far field and near field data
were generated for various degrees of tip-tilt and piston
error. Details of the system were described in Sec 4 and
Table 2.

First we examine numerical cases that closely resemble
the experimental system. For both the near and far field
schemes we numerically generated speckled images with
50 non-overlapping sub-apertures. Gaussian random tip-
tilt error with o9 = 10A/D and uniform random piston
error with Az = 1\ were assumed for each of the N = 60
images of the generated sequence. Shown in Fig 7 are
the ground truth and example speckle images for the far
field and near field scenarios. The insets show a zoomed
image of the ground truth in Fig 7.(a), and the corre-
sponding reconstructed images in Fig 7.(b,c). As in the
experimental case, the qualitative agreement between the
ground truth and reconstructed images is good. Quan-
titatively the spatial separation error is Ep ~ 10% for
both cases, and the magnitude ratio error is E, is less
than 4%. These errors are smaller than the experimen-
tal values because the numerical cases are noise free and
monochromatic. We found that the near field values of
Ep and E, are somewhat larger than the far field val-
ues. We attributed this difference to the lower degree of
shift invariance in the near field case owing to different
projections of the beamlets on the detector plane.

To examine the fidelity of reconstructed image as a
function of tip-tilt and piston error, we modeled the far
field system with o9 = 10,20, 40[A/D] with no piston er-
ror (see Fig 8), and then Az = 0.5,1.0, 1.5\ with no tip
tilt error (see Fig 9). In these cases we set the number of
sub-apertures to M = 100, and the number of images to
N = 50. As expected, the quality of the reconstructed
images deteriorates with increasing phase error. The re-
construction errors increase from Ep ~ 8.9, 9.1 to 9.4%,
and Ep ~ 2, 24 to 34% as the tip-tilt error increase
from o9 = 10 to 20 to 40[\/D]. On the other hand, as
the increment of piston error increases from Az = 0.5 to
1.0 to 1.5), the errors for the restoration increase from
Ep ~ 13, 16 to 22%, and Ep increase from = 6, 27 to
58%. For both tip-tilt and piston error we find the mag-
nitude ratio error suffers more significantly than the spa-
tial separation error. We attribute this to the increased
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FIG. 6. Image reconstruction results of multi-frame blind deconvolution applied to an experimental far field sequence and an
experimental near field sequence respectively (polychromatic with band width AX/A = 10%). The far field sequence is obtained

with M = 50 non-overlapping sub-apertures, and the near field sequence is obtained with M =

200 — 400 non-overlapping

reflecting elements. The tip-tilt error in near field sequence is approximate to 15A/D (a)Groundtruth image of the binary light
sources in far field scheme, and the comparison of the line profile of the ground truth and the recovered result; (b)A typical
image in the captured far field sequence and the enlarged part of the recovered result; (¢)Groundtruth image of the binary light
sources in near field scheme, and the comparison of the line profile of the ground truth and the recovered results; (d)A typical
image in the captured near field sequence and the enlarged part of the recovered result;

intensity of speckles and interference patterns that are
resulted from sufficiently large phase errors.

VII. CONCLUSION

We numerically and experimentally explored the con-
cept of random aperture mirror telescope for both
monochromatic binary light sources and polychromatic
binary light sources, in both far field and near field
schemes. For an approximate shift-invariant system, bi-
nary light sources can be restored using Multi-frame
blind deconvolution techniques from both experimen-
tal and numerical data with reconstruction error kept
in a tight tolerance. The numerical results further
demonstrate that for an approximate shift-invariant sys-
tem, a near diffraction limit resolution (1.5AF'#) can be
achieved in the presence of tip-tilt of 40\/D and piston
phase up to 1.0\ for monochromatic sources.

Several interesting aspects remain yet to be analyzed.

We would like to quantifying the phase errors by the use
of spatial light modulator in the experiments. Also, fur-
ther investigation of a few system parameters, i.e. fill
factor of sub-apertures, varying F'#, the number of light
sources, the magnitude ratio among sources, as well as
noise will be conducted for both experiments and numeri-
cal simulation to better evaluate the system performance.
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result; (¢))A typical near field image in the sequence, and enlarged part of recover result
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FIG. 8. Comparison of tip-tilt error to the image reconstruction results. Three monochromatic far field sequences are numer-
ically simulated with M = 100 non-overlapping sub-apertures having random tilt-tilt error with oo of 20, 40, and 60[\/D]
respectively, and piston phase error with of Az = 1\.Each sequence consists of N = 60 images.(a)Groundtruth image of the
binary light sources; (b)-(d) a typical image from each of the three sequences and enlarged part of its reconstruction result.
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FIG. 9. Comparison of piston error to the image reconstruction results. Three monochromatic far field sequences are numerically
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