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Abstract

We propose a Laplace approximation that
closely links any smooth monotonic activa-
tion function to its stochastic counterpart us-
ing Gaussian noise. We investigate the ap-
plication of this approximation in training
a family of Restricted Boltzmann Machines
(RBM) that are closely linked to Bregman
divergences. This family – exponential fam-
ily RBM (Exp-RBM) – is a subset of the ex-
ponential family Harmoniums that expresses
family members through a choice of smooth
monotonic non-linearities for neurons. Using
contrastive divergence along with our Gaus-
sian approximation, we show that Exp-RBM
can learn useful representations using novel
stochastic units.

1 Introduction

Deep neural networks (LeCun et al., 2015; Bengio,
2009) have produced some of the best results in com-
plex pattern recognition tasks where the training data
is abundant.

Here, we are interested in deep learning for generative
modeling. Recent years has witnessed a surge of in-
terest in directed generative models that are trained
using (stochastic) back-propagation (e.g., Kingma
and Welling, 2013; Rezende et al., 2014; Goodfellow
et al., 2014). These models are radically different from
deep energy-based generative models – including deep
Boltzmann machine (Hinton et al., 2006) and (convo-
lutional) deep belief network (Salakhutdinov and Hin-
ton, 2009; Lee et al., 2009) – that rely on a bipar-
tite graphical model called restricted Boltzmann ma-
chine (RBM) in each layer. Although, due to their use

of Gaussian noise, the stochastic units that we intro-
duce in this paper can be used with stochastic back-
propagation, our investigation here is limited to their
application to RBM.

To this day, the choice of stochastic units in RBM has
been constrained to well-known members of the expo-
nential family; in the past RBMs have used units with
Bernoulli (Smolensky, 1986), Gaussian (Freund and
Haussler, 1994; Marks and Movellan, 2001), categori-
cal (Welling et al., 2004), Gamma (Welling et al., 2002)
and Poisson (Gehler et al., 2006) conditional distribu-
tions. The exception to this specialization, is the Rec-
tified Linear Unit that was introduced with a (heuris-
tic) sampling procedure (Nair and Hinton, 2010).

This limitation of RBM to well-known exponential
family members is despite the fact that Welling et al.
(2004) introduced a generalization of RBMs, called Ex-
ponential Family Harmoniums (EFH), covering a large
subset of exponential family with bipartite structure.
The architecture of EFH does not suggest a proce-
dure connecting the EFH to arbitrary non-linearities
and more importantly a general sampling procedure is
missing. As the concluding remarks of Welling et al.
(2004) suggest, this capability is indeed desirable:“A
future challenge is therefore to start the modelling pro-
cess with the desired non-linearity and to subsequently
introduce auxiliary variables to facilitate inference and
learning.” We introduce a useful subset of the EFH,
which we call exponential family RBMs (Exp-RBMs),
with an approximate sampling procedure to achieve
this goal.

The basic idea in Exp-RBM is simple: restrict the
sufficient statistics to identity function. This allows
definition of each unit using only its mean stochastic
activation, which is the non-linearity of the neuron.
With this restriction, not only we gain interpretabil-
ity, but also trainability; we show that it is possible
to efficiently sample the activation of these stochas-
tic neurons and train the resulting model using con-
trastive divergence. Interestingly, this restriction also
closely relates the generative training of Exp-RBM to
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discriminative training of corresponding auto-encoder
using the matching loss (Helmbold et al., 1999) and its
regularization by noise injection.

In the following, Section 2 introduces the Exp-RBM
family and Section 3 investigates learning of Exp-
RBMs via an efficient approximate sampling proce-
dure. Here, we also establish connections to dis-
criminative training and produce an interpretation of
stochastic units in Exp-RBMs as an infinite collection
of Bernoulli units with different activation biases. Sec-
tion 4 demonstrates the effectiveness of the proposed
sampling procedure (when combined with contrastive
divergence training) in data representation.

2 The Model

RBM models the joint probability p(v, h | W ) for vis-
ible variables v = [v1, . . . , vi, . . . , vI ] with v ∈ V1 ×
. . . × VI and hidden variables h = [h1, . . . , hj , . . . hJ ]
with h ∈ H1 × . . .×HJ as

p(v, h |W ) = exp(−E(v, h)−A(W )).

This joint probability is a Boltzmann distribution with
a particular energy function E : V × H → R and a
normalization function A. The distinguishing property
of RBM compared to other Boltzmann distributions is
the conditional independence of each visible (hidden)
variable from other visible (hidden) variables given the
hidden (visible) variables, so that it can be represented
as a graphical model with a bipartite structure.

Welling et al. (2004) construct Exponential Family
Harmoniums (EFH), by first constructing independent
distribution over individual variables: considering a
hidden variable hj , its sufficient statistics {tb}b and
canonical parameters {η̃j,b}b, this independent distri-
bution is

p(hj) = r(hj) exp

(∑
b

η̃j,b tb(hj)−A({η̃j,b}b)
)

where r : Hj → R is the base measure and A({ηi,a}a) is
the normalization constant. Here, for notational con-
venience, we are assuming functions with distinct in-
puts are distinct – i.e., tb(hj) is not necessarily the
same function as tb(hj′), for j′ 6= j.

The authors then combine these independent distribu-
tions using quadratic terms that reflect the bipartite
structure of the RBM to get the joint form

p(v, h) ∝ exp

(∑
i,a

ν̃i,a ta(vi) (1)

+
∑
j,b

η̃j,b tb(hj) +
∑
i,a,j,b

W a,b
i,j ta(vi)tb(hj)

)

where the normalization function is ignored and the
base measures are represented as additional sufficient
statistics with fixed parameters. In this model, the
conditional distributions are

p(vi | h) = exp

(∑
a

νi,ata(vj)−A({νi,a}a
)

p(hj | v) = exp

(∑
b

ηj,btb(hj)−A({ηj,b}b
)

where the shifted parameters ηj,b = η̃j,b +∑
i,aW

a,b
i,j ta(vi) and νi,a = ν̃i,a +

∑
j,bW

a,b
i,j tb(hj) in-

corporate the effect of evidence in network on the ran-
dom variable of interest.

It is generally not possible to sample these conditionals
(or the joint probability) for arbitrary sufficient statis-
tics. Moreover, the joint form of eq. (1) and its energy
function are obscure. This is in the sense that the base
measures {r}, depend on the choice of sufficient statis-
tics and the normalization function A(W ). In fact for a
fixed set of sufficient statistics {ta(vi)}i, {tb(hj)}j , dif-
ferent compatible choices of normalization constants
and base measures can produce diverse subsets of ex-
ponential families. Exp-RBM is one such family, where
sufficient statistics are identity functions.

2.1 Bregman Divergences and Exp-RBM

Exp-RBM restricts the sufficient statistics ta(vi) and
tb(hj) to single identity functions vi, hj for all i and
j. This means the RBM has a single weight matrix
W ∈ RI×J . As before, each hidden unit j, receives an
input ηj =

∑
iWi,jvi and similarly each visible unit i

receives the input νi =
∑
jWi,jhj .

1

Here, the conditional distributions p(vi | νi) and p(hj |
ηj) have a single mean parameter which is equal to
the mean of the conditional distribution. More impor-
tantly, we could freely assign any desired continuous
and monotonic non-linearity f : R → R to represent
the mapping f(ηj) =

∫
Hj hjp(hj | ηj) dhj from canon-

ical parameter ηj to this mean parameter. This is
achieved by defining the conditionals as

p(hj | ηj) = exp

(
−Df (ηj ‖hj) + g(hj)

)
(2)

p(vi | νi) = exp

(
−Df (νi ‖ vi) + g(vi)

)
where g is the base measure and Df is the Bregman
divergence for the function f .

1Note that we ignore the “bias parameters” ν̃i and η̃j ,
since they can be encoded using the weights for additional
hidden or visible units (hj = 1, vi = 1) that are clamped
to one.



The Bregman divergence (Bregman, 1967; Banerjee
et al., 2005) between hj and ηj for a monotonically
increasing transfer function (corresponding to the ac-
tivation function) f is given by

Df (ηj ‖hj) = −ηjhj + F (ηj) + F ∗(hj) (3)

where F with d
dηF (ηj) = f(ηj) is the anti-derivative

of f and F ∗ is the anti-derivative of f−1. Substituting
this expression for Bregmann divergence in eq. (2), we
notice both F ∗ and g are functions of hj . In fact, these
two functions are often not separated (e.g., McCullagh
et al., 1989). By separating them we see that some
times, the new base measure g simplifies to a constant,
enabling us to approximate eq. (2) in Section 3.1.

Example 2.1. Let f(ηj) = ηj be a linear neu-
ron. Then F (ηj) = 1

2η
2
j and F ∗(hj) = 1

2h
2
j , giv-

ing a Gaussian conditional distribution p(hj | ηj) =

e−
1
2 (hj−ηj)

2−g(hj), where g(hj) = − log(
√

2π) is a con-
stant.

2.2 The Joint Form

So far we have defined the conditional distribution of
the RBM as members of the exponential family, using a
single mean parameter f(ηj) (or f(νi)) that represents
the activation function of the neuron. Now we would
like to find the corresponding joint form and the energy
function.

The problem of relating the local conditionals to the
joint form in graphical models goes back to the work of
Besag (1974), where the author derives Hammersley-
Clifford theorem using the distribution expressed in
terms of local conditionals. It is easy to check that,
using the more general treatment of Yang et al. (2012),
the joint form corresponding to the conditional of
eq. (2) is

p(v, h |W ) = exp

(
vT ·W · h (4)

−
∑
i

(
F ∗(vi) + g(vi)

)
−
∑
j

(
F ∗(hj) + g(hj)

)
−A(W )

)
where A(W ) is the joint normalization constant. It
is noteworthy that only the anti-derivative of f−1, F ∗

appears in the joint form. From this, the energy func-
tion is

E(v, h) = −vT ·W · h (5)

+
∑
i

(
F ∗(vi) + g(vi)

)
+
∑
j

(
F ∗(hj) + g(hj)

)
.

Example 2.2. For the sigmoid non-linearity f(ηj) =
1

1+e−ηj
, we have F (ηj) = log(1 + eηj ) and F ∗(hj) =

(1−hj) log(1−hj)+hj log(hj) is the negative entropy.

Since hj ∈ {0, 1} only takes extreme values, the nega-
tive entropy F ∗(hj) evaluates to zero:

p(hj | ηj) = exp

(
hjηj−log(1+exp(ηj))+g(hj)

)
(6)

Separately evaluating this expression for hj = 0 and
hj = 1, shows that the above conditional is a well-
defined distribution for g(hj) = 0, and in fact it turns
out to be the sigmoid function itself – i.e., p(hj = 1 |
ηj) = 1

1+e−ηj
. When all conditionals in the RBM are of

the form eq. (6) – i.e., for a binary RBM with a sigmoid
non-linearity, since {F (ηj)}j and {F (νi)}i do not ap-
pear in the joint form eq. (4) and F ∗(0) = F ∗(1) = 0,
the joint form has the simple and the familiar form
p(v, h) = exp

(
vT ·W · h−A(W )

)
.

3 Learning

A consistent estimator for the parameters W , given
observations D = {v(1), . . . , v(N)}, is obtained by max-
imizing the marginal likelihood

∏
n p(v

(n) |W ), where
the eq. (4) defines the joint probability. The gradient
of the log-likelihood ∇W

(∑
n log(p(v(n) |W ))

)
is

1

N

∑
n

Ep(h|v(n),W )[h · (v(n))T ] − Ep(h,v|W )[h · vT ](7)

where the first expectation is w.r.t. the observed data
in which p(h | v) =

∏
j p(hj | v) and p(hj | v) is given

by eq. (2). The second expectation is w.r.t. the model
of eq. (4).

When discriminatively training a neuron f(
∑
iWi,jvi)

using input output pairs D = {(v(n), h(n)j )}n, in order
to have a loss that is convex in the model parame-
ters W:j , it is common to use a matching loss for the
given transfer function f (Helmbold et al., 1999). This

is simply the Bregman divergence Df (f(η
(n)
j )‖h(n)j ),

where η
(n)
j =

∑
iWi,jv

(n)
i . Minimizing this match-

ing loss corresponds to maximizing the log-likelihood
of eq. (2), and it should not be surprising that

the gradient ∇W:j

(∑
nDf (f(η

(n)
j )‖h(n)j )

)
of this loss

w.r.t. W:j = [W1,j , . . . ,WM,j ]∑
n

f(η
(n)
j )(v(n))T − h

(n)
j (v(n))T

resembles that of eq. (7), where f(η
(n)
j ) above substi-

tutes hj in eq. (7).

However, note that in generative training, hj is not
simply equal to f(ηj), but it is sampled from the ex-
ponential family distribution of eq. (2) with the mean
f(ηj) – i.e., hj = f(ηj) + noise.2

2In this example, for the discriminative model, we as-



unit name non-linearity f(η) Gaussian approximation conditional dist p(h | η)

Sigmoid (Bernoulli) Unit (1 + e−η)−1 - exp{ηh− log(1 + exp(η))}
Noisy Tanh Unit (1 + e−η)−1 − 1

2 N (f(η), (f(η)− 1/2)(f(η) + 1/2)) exp{ηh− log(1 + exp(η)) + ent(h) + g(h)}
ArcSinh Unit log(η +

√
1 + η2) N (sinh−1(η), (

√
1 + η2)−1) exp{ηh− cosh(h) +

√
1 + η2 − η sin−1(η) + g(h)}

Symmetric Sqrt Unit (SymSqU) sign(η)
√
|η| N (f(η),

√
|η|/2) exp{ηh− |h|3/3− 2(η2)

3
4 /3 + g(h)}

Linear (Gaussian) Unit η N (η, 1) exp{ηh− 1
2 (η2)− 1

2 (h2)− log(
√

2π)}
Softplus Unit log(1 + eη) N (f(η), (1 + e−η)−1) exp{ηh− 2Li2(−eη)− h log(1− eh) + y log(eη − 1) + g(h)}

Rectified Linear Unit (ReLU) max(0, η) N (f(η), I(η > 0)) -
Rectified Quadratic Unit (ReQU) max(0, η|η|) N (f(η), I(η > 0)η) -

Symmetric Quadratic Unit (SymQU) η|η| N (η|η|, |η|) exp{ηh− |η|3/3− 2(h2)
3
4 /3 + g(h)}

Exponential Unit eη N (eη, eη) exp{ηh− eη − h(log(y)− 1) + g(h)}
Sinh Unit 1

2 (eη − e−η) N (sinh(η), cosh(η)) exp{ηh− cosh(η) +
√

1 + h2 − h sin−1(h) + g(h)}
Poisson Unit eη - exp{ηh− eη − y!}

Table 1: Stochastic units, their conditional distribution (eq. (2)) and the Gaussian approximation to this distribution.
Here Li(·) is the polylogarithmic function and I(cond.) is equal to one if the condition is satisfied and zero otherwise.
ent(p) is the binary entropy function.

This extends the previous observations linking the dis-
criminative and generative (or regularized) training –
via Gaussian noise injection – to the noise from other
members of the exponential family (e.g., An, 1996;
Vincent et al., 2008; Bishop, 1995) which in turn re-
lates to the regularizing role of generative pretraining
of neural networks (Erhan et al., 2010).

Our sampling scheme (next section) further suggests
that when using output Gaussian noise injection for
regularization of arbitrary activation functions, the
variance of this noise should be scaled by the derivative
of the activation function.

3.1 Sampling

To learn the generative model, we need to be able to
sample from the distributions that define the expec-
tations in eq. (7). Sampling from the joint model can
also be reduced to alternating conditional sampling of
visible and hidden variables (i.e., block Gibbs sam-
pling). Many methods, including contrastive diver-
gence (CD; Hinton, 2002), stochastic maximum likeli-
hood (a.k.a. persistent CD Tieleman, 2008) and their
variations (e.g., Tieleman and Hinton, 2009; Breuleux
et al., 2011) only require this alternating sampling in
order to optimize an approximation to the gradient
of eq. (7). Alternatively, techniques that rely on en-
ergy function evaluation for sampling (e.g., Desjardins
et al., 2010; Ravanbakhsh et al., 2014) can use eq. (5).

Here, we are interested in sampling from p(hj | ηj)
and p(xi | νi) as defined in eq. (2), which is in gen-
eral non-trivial. However some members of the expo-
nential family have relatively efficient sampling proce-
dures (Ahrens and Dieter, 1974). One of these mem-
bers that we use in our experiments is the Poisson

sume that the training data includes both v(n) and h(n),
which is different from the assumption of RBMs. The dis-
criminative setting can be made further similar to our gen-
erative setting using auto-encoder framework.

distribution.

Example 3.1. For a Poisson unit, a Poisson distribu-
tion

p(hj | λ) =
λhj

hj !
e−λ (8)

represents the probability of a neuron firing hj times in
a unit of time, given its average rate is λ. We can define
Poisson units within Exp-RBM using fj(ηj) = eηj ,
which gives F (ηj) = eηj and F ∗(hj) = hj(log(hj) −
1). For p(hj | ηj) to be properly normalized, since
hj ∈ Z+ is a non-negative integer, F ∗(hj) + g(hj) =
log(hj !) ≈ F ∗(hj) (using Sterling’s approximation).
This gives p(hj | ηj) = exp

(
hjηj − eηj − log(hj !)

)
which is identical to distribution of eq. (8), for λ = eηj .
This means, we can use any available sampling routine
for Poisson distribution to learn the parameters for an
exponential family RBM where some units are Poisson.

By making a simplifying assumption, the following
Laplace approximation demonstrates how to use Gaus-
sian noise to sample from this conditional, for “any”
smooth and monotonic non-linearity.

Proposition 3.1. Assuming a constant base measure
g(hi) = c, the distribution of p(hj ‖ ηj) is (to the sec-
ond order) approximated by a Gaussian

exp

(
−Df (ηj ‖hj) + c

)
≈ N (hj | f(ηj), f

′(ηj) )

(9)

where f ′(ηj) = d
dηj

f(ηj) is the derivative of the acti-

vation function.

Proof. The mode (and the mean) of the conditional
eq. (2) for ηj is f(ηj). This is because the Bregman
divergence Df (hj‖ηj) achieves minimum when hj =
f(ηj). Now, write the Taylor series approximation to



the target log-probability around its mode

log( p(ε+ f(ηj) | ηj ))

= log(−Df (ε+ f(ηj)‖ηj)) + c

= ηjf(ηj)− F ∗(f(ηj))− F (ηj)

+ ε(ηj − f−1(f(ηj)) +
1

2
ε2(

−1

f ′(ηj)
) +O(ε3)

= ηjf(ηj)− (ηjf(ηj)− F (ηj))− F (ηj)

+ ε(ηj − ηj) +
1

2
ε2(

−1

f ′(ηj)
) +O(ε3)

= −1

2

ε2

f ′(ηj)
+O(ε3)

(10a)

(10b)

(10c)

In eq. (10a) we used the fact that d
dyf
−1(y) =

1
f ′(f−1(y)) and in eq. (10b), we used the conjugate du-

ality of F and F ∗. Note that the final unnormalized
log-probability in eq. (10c) is that of a Gaussian, with
mean zero and variance f ′(ηj). Since our Taylor ex-
pansion was around f(ηj), this gives us the approxi-
mation of eq. (9).

3.1.1 Sampling Accuracy

To exactly evaluate the accuracy of our sampling
scheme, we need to evaluate the conditional distribu-
tion of eq. (2). However, we are not aware of any an-
alytical or numeric method to estimate the base mea-
sure g(hj). Here, we replace g(hj) with g̃(ηj), playing
the role of a normalization constant. We then evaluate

p(hj | ηj) ≈ exp
(
−Df (ηj ‖hj) + g̃(ηj)

)
(11)

where g̃(ηj) is numerically approximated for each
ηj value. Figure 1 compares this density against
the Gaussian approximation p(hj | ηj) ≈
N ( f(ηj), f

′(ηj) ). As the figure shows, the densities
are very similar.

3.2 Bernoulli Ensemble Interpretation

This section gives an interpretation of Exp-RBM in
terms of a Bernoulli RBM with an infinite collection of
Bernoulli units. Nair and Hinton (2010) introduce the
softplus unit, f(ηj) = log(1+eηj ), as an approximation
to the rectified linear unit (ReLU) f(ηj) = max(0, ηj).
To have a probabilistic interpretation for this non-
linearity, the authors represent it as an infinite series
of Bernoulli units with shifted bias:

log(1 + eηj ) =

∞∑
n=1

σ(ηj − n+ .5) (12)

where σ(x) = 1
1+e−x is the sigmoid function.

This means that the sample yj from a softplus
unit is effectively the number of active Bernoulli

- 20 - 10 10 20
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Figure 2: Numerical approximation to the integral∫
Hj

exp
(
− Df (hj‖ηj)

)
dhj for the softplus unit f(ηj) =

log(1 + eηj ), at different ηj.

units. The authors then suggest using hj ∼
max(0,N (ηj , σ(ηj)) to sample from this type of unit.
In comparison, our Proposition 3.1 suggests using
hj ∼ N (log(1 + eηj ), σ(ηj)) for softplus and hj ∼
N (max(0, ηj), step(ηj)) – where step(ηj) is the step
function – for ReLU. Both of these are very similar to
the approximation of (Nair and Hinton, 2010) and we
found them to perform similarly in practice as well.

Note that these Gaussian approximations are assum-
ing g(ηj) is constant. However, by numerically ap-
proximating

∫
Hj exp

(
− Df (hj‖ηj)

)
dhj , for f(ηj) =

log(1 + eηj ), fig. 2 shows that the integrals are not the
same for different values of ηj , showing that the base
measure g(hj) is not constant for ReLU. In spite of
this, experimental results for pretraining ReLU units
using Gaussian noise suggests the usefulness of this
type of approximation.

We can extend this interpretation as a collection of
(weighted) Bernoulli units to any non-linearity f . For
simplicity, let us assume limη→−∞ f(η) = 0 and
limη→+∞ f(η) =∞3, and define the following series of
Bernoulli units:

∑∞
n=0 ασ(f−1(αn)), where the given

parameter α is the weight of each unit. Here, we are
defining a new Bernoulli unit with a weight α for each
α unit of change in the value of f . Note that the un-
derlying idea is similar to that of inverse transform
sampling (Devroye, 1986). At the limit of α→ 0+ we
have

f(ηj) ≈ α
∞∑
n=0

σ(ηj − f−1(αn)) (13)

that is ĥj ∼ p(hj | ηj) is the weighted sum of active
Bernoulli units. Figure 4(a) shows the approximation
of this series for the softplus function for decreasing
values of α.

3The following series and the sigmoid function need
to be adjusted depending on these limits. For example,
for the case where hj is antisymmetric and unbounded
(e.g., f(ηj) ∈ { sinh(ηj), sinh−1(ηj), ηj |ηj |}), we need
to change the domain of Bernoulli units from {0, 1} to
{−.5,+.5}. This corresponds to changing the sigmoid to
hyperbolic tangent 1

2
tanh( 1

2
ηj). In this case, we also need

to change the bounds for n in the series of eq. (13) to ±∞.



(a) ArcSinh unit (b) Sinh unit (c) Softplus unit (d) Exp unit

Figure 1: Conditional probability of eq. (11) for different stochastic units (top row) and the Gaussian approximation of
Proposition 3.1 (bottom row) for the same unit. Here the horizontal axis is the input ηj =

∑
iWi,jvi and the vertical axis

is the stochastic activation hj with the intensity p(hj | ηj). see table 1 for more details on these stochastic units.

Figure 3: reconstruction of ReLU by as a series of
Bernoulli units with shifted bias.

4 Experiments and Discussion

We evaluate the representation capabilities of Exp-
RBM for different stochastic units in the following two
sections. Our initial attempt was to adapt Annealed
Importance Sampling (AIS; Salakhutdinov and Mur-
ray, 2008) to Exp-RBMs. However, application of AIS
to this setting is complicated as it must use Laplace ap-
proximation in each AIS step.4 Overall, we observed
unrealistic estimates using AIS+Laplace approxima-
tion, with very high variance.

Therefore, for large datasets, Section 4.1 qualitatively
evaluates the filters learned by various units and their
properties. For lower-dimensional data, we can use in-
direct sampling likelihood to quantify the generative
quality of the models with different activation func-
tions; Section 4.2 presents this result.

Our objective here is to demonstrate that a combi-
nation of our sampling scheme with contrastive di-
vergence (CD) training can indeed produce generative
models for a diverse choice of activation function. For

4Since the exact base measure is unknown, this approx-
imation is needed for the free-energy calculation to obtain
the IS ratio.

Figure 4: Histogram of hidden variable activities on the
MNIST test data, for different types of units. Units with
heavier tails produce longer strokes in fig. 5. Note that the
linear decay of activities in the log-domain correspond to
exponential decay with different exponential coefficients.

completeness, Alg. 1 summarizes the CD algorithm us-
ing our approximate sampling scheme.

4.1 Learning Filters

In this section, we used CD with a single Gibbs sam-
pling step, 1000 hidden units, Gaussian visible units5,
mini-batches and method of momentum, and selected
the learning rate from {10−2, 10−3, 10−4} using recon-
struction error at the final epoch.6

The MNIST handwritten digits dataset (LeCun et al.,
1998) is a dataset of 70,000 “size-normalized and cen-
tered” binary images. Each image is 28 × 28 pixel,
and represents one of {0, 1, . . . , 9} digits. See the first
row of fig. 5 for few instances from MNIST dataset.
For this dataset we use a momentum of .9 and train

5Using Gaussian visible units also assumes that the in-
put data is normalized to have a standard deviation of 1.

6 The reconstruction error is simply the Bregman di-
vergence between the observed data and the visible layer
samples after a single step of block Gibbs sampling. As
such, the reconstruction error is not a good measure of
generative quality. Despite this, it is often used in prac-
tice to monitor the progress of the learning process. In
experiments of this section, we stop the training if the re-
construction error increases for five consecutive iterations.
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Figure 5: Samples from the MNIST dataset (first two
rows) and the receptive fields with highest variance for dif-
ferent Exp-RBM stochastic units (two rows per unit type).
From top to bottom the non-linearities grow more rapidly,
also producing features that represent longer strokes.

each model for 25 epochs. Fig. 5 shows the receptive
fields of different stochastic units; see table 1 for de-
tails on different stochastic units.7Here, the units are
ordered based on the asymptotic behavior of the acti-
vation function f ; see the right margin of the figure.
This asymptotic change in the activation function is
also evident from the hidden unit activation histogram
of fig. 4(b), where the activation are produced on the
test set using the trained model.

These two figures suggest that transfer functions with
faster asymptotic growth, have a more heavy-tailed
distributions of activations and longer strokes for the
MNIST dataset, also hinting that using exponential
and quadratic activation functions may be preferable
to Sigmoid and ArcSinh non-linearities. However, this
comes at the cost of train-ability. In particular, for
all exponential units, due to occasionally large gra-
dients, we have to reduce the learning rate to 10−4

while the Sigmoid/Tanh unit remains stable for a
learning rate of 10−2. Other factors that affect the
instability of training for exponential and quadratic
Exp-RBMs are large momentum and small number
of hidden units. Initialization of the weights could
also play an important role, and sparse initializa-
tion (Sutskever et al., 2013; Martens, 2010) and regu-
larization schemes (Goodfellow et al., 2013) and simple
techniques such as gradient clipping could potentially
improve the training of these models. In all experi-

7Here, for sampling from Poisson distribution we use a

modified version of (Knuth, 1969), and limit ĥj ∼ p(hj | ηj)
to ĥj ≤ 60
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Figure 6: Samples and the receptive fields of different
stochastic units for from the (top three rows) SVHN
dataset and (bottom three rows) 48 × 48 (non-stereo)
NORB dataset with jittered objects and cluttered back-
ground. Selection of the receptive fields is based on their
variance.

ments, we used uniformly random values in [−.01, .01]
for all unit types. In terms of training time, different
Exp-RBMs that use the Gaussian noise and/or Sig-
moid/Tanh units have similar computation time on
both CPU and GPU.

Figure 6(top) shows the receptive fields for the street-
view house numbers (SVHN) (Netzer et al., 2011)
dataset. This dataset contains 600,000 images of digits
in natural settings. Each image contains three RGB
values for 32 × 32 pixels. Figure 6(bottom) shows
few filters obtained from the jittered-cluttered NORB
dataset (LeCun et al., 2004). NORB dataset contains
291,600 stereo 2× (108× 108) images of 50 toys under
different lighting, angle and backgrounds. Here, we
use a sub-sampled 48 × 48 variation, and report the
features learned by two types of neurons. For learn-
ing from these two datasets, we increased the momen-
tum to .95 and trained different models using up to 50
epochs.

4.2 Generating Samples

The USPS dataset (Hull, 1994) is relatively smaller
dataset of 9,298, 16×16 digits. We binarized this data
and used 90%, 5% and 5% of instances for training,
validation and test respectively; see fig. 7 (first two
rows) for instances from this dataset.

We used Tanh activation function for the 16×16 = 256
visible units of the Exp-RBMs8 and 500 hidden units
of different types: 1) Tanh unit; 2) ReLU; 3) ReQU
and 4)Sinh unit. We then trained these models us-
ing CD with 10 Gibbs sampling steps. Our choice of
CD rather than alternatives that are known to produce
better generative models, such as Persistent CD (PCD;

8Tanh unit is similar to the sigmoid/Bernoulli unit, with
the difference that it is (anti)symmetric vi ∈ {−.5,+.5}.
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Figure 7: Samples from the USPS dataset (first two rows)
and few of the consecutive samples generated from different
Exp-RBMs using rates-FPCD.
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Figure 8: Indirect Sampling Likelihood of the test data
(left) and the kernel bandwidth β∗ for the density estimate
(right) at different epochs (x-axis) for USPS dataset.

Tieleman, 2008), fast PCD (FPCD; Tieleman and Hin-
ton, 2009) and (rates-FPCD; Breuleux et al., 2011) is
due to practical reasons; these alternatives were unsta-
ble for some activation functions, while CD was always
well-behaved. We ran CD for 10,000 epochs with three
different learning rates {.05, .01, .001} for each model.
Note that here, we did not use method of momentum
and mini-batches in order to to minimize the number
of hyper-parameters for our quantitative comparison.
We used rates-FPCD 9 to generate 9298 × 90

100 sam-
ples from each model – i.e., the same number as the
samples in the training set. We produce these sampled
datasets every 1000 epochs. Figure 7 shows the sam-
ples generated by different models at their final epoch,
for the “best choice” of sampling parameters.

We then used these samples Dsample =
{v(1), . . . , v(N=9298)}, from each model to esti-
mate the Indirect Sampling Likelihood (ISL; Breuleux
et al., 2011) of the validation set. For this, we built a
non-parametric density estimate

p̂(v;β) =

N∑
n=1

256∏
j=1

βI(v(n)
j =vj)(1− β)I(v

(n)
j 6=vj) (14)

and optimized the parameter β ∈ (.5, 1) to maxi-

9 We used 10 Gibbs sampling steps for each sample, zero
decay of fast weights – as suggested in (Breuleux et al.,
2011) – and three different fast rates {.01, .001, .0001}.

mize the likelihood of the validation set – that is
β∗ = argβ max

∏
v∈Dvalid p̂(v, β). Here, β = .5 defines

a uniform distribution over all possible binary images,
while for β = 1, only the training instances have a
non-zero probability.

We then used the density estimate for β∗ as well as
the best rates-FPCD sampling parameter to evaluate
the ISL of the test set. At this point, we have an
estimate of the likelihood of test data for each hidden
unit type, for every 1000 iteration of CD updates. The
likelihood of the test data using the density estimate
produced directly from the training data, gives us an
upper-bound on the ISL of these models.

Figure 8 presents all these quantities: for each hidden
unit type, we present the results for the learning rate
that achieves the highest ISL. The figure shows the es-
timated log-likelihood (left) as well as β∗ (right) as a
function of the number of epochs. As the number of
iterations increases, all models produce samples that
are more representative (and closer to the training-set
likelihood). This is also consistent with β∗ values get-
ting closer to β∗training = .93, the optimal parameter
for the training set.

For this problem ReQU learns the best model and even
by increasing the CD steps to 25 and also increas-
ing the epochs by a factor of two we could not pro-
duce similar results using Tanh units. This shows that
a non-linearities outside the circle of well-known and
commonly used exponential family, can indeed pro-
duce more powerful generative models, even using an
“approximate” sampling procedure.

Conclusion

This paper studies a subset of exponential family Har-
moniums (EFH) with a single sufficient statistics for
the purpose of learning generative models. The result-
ing family of distributions, Exp-RBM, gives a free-
dom of choice for the activation function of individ-
ual units, paralleling the freedom in discriminative
training of neural networks. Moreover, it is possi-
ble to efficiently train arbitrary members of this fam-
ily. For this, we introduced a principled and ef-
ficient approximate sampling procedure and demon-
strated that various Exp-RBMs can learn useful gen-
erative models and filters, that are more representa-
tive than commonly used RBMs with Bernoulli and
Gaussian units. The proposed “approximate” stochas-
tic units also could be used in variational autoen-
coders (Kingma and Welling, 2013) / deep latent
Gaussian models (Rezende et al., 2014). This suggests
and interesting direction for future work.
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Algorithm 1: Training Exp-RBMs using contrastive
divergence

Input: training data D = {v(n)}1≤n≤N ;#CD steps;
#epochs; learning rate λ; activation
functions {f(vi)}i, {f(hj)}j

Output: model parameters W
Initialize W
for #epochs do

/* positive phase (+) */
+η

(n)
j =

∑
iWi,j

+v
(n)
i ∀j, n

if using Gaussian apprx. then
+h

(n)
j ∼ N (f(+η

(n)
j ), f ′(+η

(n)
j )) ∀j, n else

+h
(n)
j ∼ p(hj |+ v(n)) ∀j, n

−h(n) ←+ h(n) ∀n
/* negative phase (-) */

for #CD steps do
−ν

(n)
i =

∑
jWi,j

−h
(n)
i ∀i, n

if using Gaussian apprx. then
−v

(n)
i ∼ N (f(−ν

(n)
i ), f ′(−ν

(n)
i )) ∀i, n else

−v
(n)
j ∼ p(vj | h(n)) ∀i, n

−η
(n)
j =

∑
iWi,j

−v
(n)
i ∀j, n

if using Gaussian apprx. then
−h

(n)
j ∼ N (f(−η

(n)
j ), f ′(−η

(n)
j )) ∀j, n else

+h
(n)
j ∼ p(hj |− v(n)) ∀j, n

end

Wi,j ←Wi,j + λ

(
(+vi

+hj)− (−vi
−hj)

)
∀i, j

end
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