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Abstract

Visible-light long baseline interferometry holds the promise of advancing a number of impor-

tant applications in fundamental astronomy, including the direct measurement of the angular

diameters and oblateness of stars, and the direct measurement of the orbits of binary and mul-

tiple star systems. To advance, the field of visible-light interferometry requires development of

instruments capable of combining light from 15 baselines (6 telescopes) simultaneously. The Vis-

ible Imaging System for Interferometric Observations at NPOI (VISION) is a new visible light

beam combiner for the Navy Precision Optical Interferometer (NPOI) that uses single-mode

fibers to coherently combine light from up to six telescopes simultaneously with an image-plane

combination scheme. It features a photometric camera for calibrations and spatial filtering from

single-mode fibers with two Andor Ixon electron multiplying CCDs. This paper presents the

VISION system, results of laboratory tests, and results of commissioning on-sky observations. A

new set of corrections have been determined for the power spectrum and bispectrum by taking

into account non-Gaussian statistics and read noise present in electron-multipying CCDs to en-

able measurement of visibilities and closure phases in the VISION post-processing pipeline. The

post-processing pipeline has been verified via new on-sky observations of the O-type supergiant

binary ζ Orionis A, obtaining a flux ratio of 2.18 ± 0.13 with a position angle of 223.9 ± 1.0◦

and separation 40.6 ± 1.8 mas over 570-750 nm, in good agreement with expectations from the

previously published orbit.
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1. Introduction

A beam combiner coherently combines the starlight from the multiple telescopes of the interferometer

to form interference patterns (fringes). These fringes are the Fourier components of the image of the object

being observed and thus allow for the measurement of the angular diameters of stars, the orbits of binary

and multi-star systems with milliarcsecond separations, and the direct observation of stellar surface features.

The advantage of optical interferometry is high angular resolution typically in the milliarcsecond or sub-

milliarcsecond range.

Over the past two decades, visible-light beam combiners have been commissioned for three interferome-

ters: the Navy Precision Optical Interferometer (NPOI, Armstrong et al. 1998b), the Center for High Angu-

lar Resolution Astronomy (CHARA) Array (ten Brummelaar et al. 2005), and the Sydney University Stellar

Interferometer (SUSI, Davis et al. 1999a,b). Currently, visible-light beam combiners being commissioned

or recently made operational are the Precision Astronomical Visible Observations (PAVO) for the CHARA

Array and SUSI (Ireland et al. 2008; Maestro et al. 2012, 2013), the Micro-arcsecond University of Sydney

Companion Astrometry instrument (MUSCA) for SUSI (Kok et al. 2012), and the Visible spEctroGraph and

polArimeter (VEGA, Mourard et al. 2008, 2009, 2011, 2012) for CHARA. In addition, at NPOI there is the

“Classic” pupil-plane combiner (Mozurkewich 1994), which is having its fringe engine upgraded (Sun et al.

2014; Landavazo et al. 2014), and is named the New Classic fringe engine. All of these beam combiners have

provided insights into rapidly rotating stars (Ohishi et al. 2004; Peterson et al. 2006; Jamialahmadi et al.

2015), direct measurements of stellar radii (Armstrong et al. 2001; Wittkowski et al. 2006; North et al. 2007,

2009; Bazot et al. 2011; Armstrong et al. 2012; Baines et al. 2013, 2014; Challouf et al. 2014; Jorgensen et al.

2014), validation of transiting exoplanets (Huber et al. 2012a,b), and binary and multiple star systems

(Hummel et al. 1998, 2001, 2003; Patience et al. 2008; Schmitt et al. 2009; Zavala et al. 2010; Tango et al.

2009; Hummel et al. 2013; Wang et al. 2015).

However, with the exception of the upgraded “Classic” fringe engine for the NPOI, none of these are yet

capable of simultaneous measurement of fringes on all available baselines. Dense coverage of the UV plane is

critical for making the first direct stellar surface images at visible wavelengths, and this is best accomplished

by simultaneously observing a star with as many baselines as possible. This is one of main advantages of

the Visible Imaging System for Interferometric Observations at NPOI (VISION), which has recently been

commissioned and is described in this paper.

VISION’s design was derived from the six-telescope Michigan InfraRed Combiner (MIRC, Monnier et al.

2004, 2006, 2007). VISION is a six-telescope, all-in-one beam combiner using single-mode fibers and visible

light electron-multiplying charge coupled devices (EMCCDs). Prior to VISION and MIRC, the IONIC

(Integrated Optics Near-infrared Interferometric Camera) instrument for the Infrared Optical Telescope

Array (IOTA) (Rousselet-Perraut et al. 1999, 2000; Berger et al. 2003; Traub et al. 2004) to filter and guide

light also used single mode fibers to measure closure phases (Ragland et al. 2004).

VISION was built by Tennessee State University in collaboration with Lowell Observatory, the United

States Naval Observatory, and the Naval Research Laboratory (Ghasempour et al. 2012). It monitors indi-

vidual telescope throughputs and fiber coupling efficiencies in real time for visibility calibration. VISION

operates from 580− 850 nm, whereas MIRC operates in the near infrared (IR) at 1490− 1750 nm (H-band).

It is capable of simultaneously measuring 15 visibilities, 20 triple amplitudes, and 20 closure phases, allowing

for dense UV plane coverage and image reconstruction.

VISION’s six-telescope simultaneous beam combination allows for multi-pixel images across the sur-
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face of a target star via image reconstruction. VISION is intended to deliver complementary visible-light

observations to MIRC’s near-IR observations of rapidly rotating stars, binary stars, and red super giants

(Monnier et al. 2007; Zhao et al. 2008; Che et al. 2011; Monnier et al. 2012; White et al. 2013; Baron et al.

2014; Kloppenborg et al. 2015; Roettenbacher et al. 2015a,b). Early science targets for VISION include imag-

ing the surfaces of rapidly rotating stars and red supergiants for testing of 2D and 3D stellar models. It will be

used to test 2D models of rapidly rotating stars (Espinosa Lara and Rieutord 2011, 2013) and 3D radiative-

hydrodynamic models of red supergiants (Freytag et al. 2002; Freytag and Höfner 2008; Chiavassa et al.

2009, 2010, 2011, 2012); to date, only a few rapidly rotating stars and several red supergiants have been

observed via interferometry (see reviews by van Belle 2012; Domiciano de Souza et al. 2003; Peterson et al.

2006; Monnier et al. 2007; Zhao et al. 2008; Che et al. 2011; Monnier et al. 2012; Domiciano de Souza et al.

2012; Haubois et al. 2009; Baron et al. 2014).

Furthermore, VISION has high spatial resolution imaging coupled with a large field of view from mod-

erate spectral resolution. This allows VISION to study hierarchical triple star systems, where one of the two

components of a relatively wide pair of stars is itself a much more narrowly separated binary. VISION can

measure the relative astrometry between the different components of the triple or quadruple system. There

are only a handful of fully characterized orbits of multi-star systems (Hummel et al. 2003; Muterspaugh et al.

2005, 2006a,c,b, 2008, 2010).

This paper presents the design of the VISION instrument, laboratory tests evaluating the system per-

formance, and validation of the data-processing pipeline from new on-sky resolved measurements of the

O-type supergiant binary ζ Orionis A. In §2, the VISION optical design and light path is detailed. In §3 the

data acquisition sequence is described. In §4 the throughput, cameras, system visibility, and fringe crosstalk

are evaluated. In §5 the adaptation of the MIRC data-processing pipeline for VISION is described and

the theoretical bispectrum and power spectrum bias subtraction equations for an EMCCD in the photon

counting regime are evaluated. The post-processing pipeline is validated in §6 using on-sky commissioning

observations of ζ Orionis A and new resolved astrometric measurements of the flux ratio, separation, and

position angle of this benchmark binary star system are reported. Finally, in §7 a summary and a brief

description of planned future work are discussed.

2. The VISION Instrument

2.1. Optical design

The VISION optical design is shown in Figure 1, and the beam combiner itself in Figure 2. Similar

to MIRC, VISION uses single-mode optical fibers that spatially filter incoming starlight, enabling pre-

cise visibility and closure phase measurements (Shaklan et al. 1992). Unlike MIRC, the VISION fibers are

polarization-maintaining. The six outputs of VISION’s single mode fibers are arranged in a non-redundant

pattern using a V-groove array. The polarization of the starlight parallel to the optical bench is reflected

by a polarizing beam splitter, focused into multimode fibers, which are reconfigured into linear arrangement

with equal spacing, and imaged onto a EMCCD to monitor the fluxes of each beam in real-time (the “pho-

tometric camera” hereafter). The polarization of the light perpendicular to the optical bench is imaged onto

an identical EMCCD to form 15 unique sets of fringes (the “fringing camera” hereafter). The EMCCDs

feature sub-electron, but non-negligible, effective read noise. Light is spectrally dispersed using identical

optical (570− 850 nm) slit spectrographs attached to photometric and fringing cameras. Each spectrograph

has a low resolution (R ≈ 200) and medium resolution (R ≈ 1000) option. Below is a sequential description
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of each optical system, in order from the siderostats where light is collected to the EMCCD detectors:

• Light Gathering: NPOI uses a 12.5 cm circular beam of starlight gathered by 50 cm siderostats.

The light is guided to the central beam combining facility in vacuum pipes that include 125:35 beam

reducers. After beam reduction, the light is passed to delay line carts with mirrors that receive feedback

from the VISION fringe tracker to match optical path lengths. The result is six coherently phased,

collimated circular beams of light with 35-mm diameters.

• Routing Light to the VISION Optical Bench: The routing of the six 35-mm collimated beams

from NPOI delay lines to the optical bench is shown in Figure 3. The 35-mm beams are reflected by

six UV fused silica broadband plate 70/20 beam splitters placed at a 45◦ angle to each beam (top panel,

Figure 3). Some light is lost in transmission and scattering through our custom made broadband beam

splitters which results in the ≈ 70 reflectivity and ≈ 20 transmissivity across 570− 850 nm. The 70/20

beam splitter reflects 70% of the light to VISION and transmits ≈20% of the light to NPOI’s tip/tilt

quad cells. The six beams are then reflected to the optical bench via 3-inch flat Newport Zerodur

Broadband Metallic Mirrors with silver coating1. The 3-inch flat mirrors are placed 45◦ to the beam

(bottom panel, Figure 3). At the front of the VISION optical bench are shutters that can be controlled

either manually or by computer. These can block light for individual beams (panel 1, Figure 2). The

six beams are then reflected off 2-inch flat mirrors to the VISION off-axis parabolas.

• Coupling Light to Single-Mode Fibers: Each 35-mm beam is coupled to a single-mode polarization-

maintaining fiber using 2-inch Nu-tek 480-900 nm silver coated off-axis parabolas (OAPs). The 165

mm focal lengths of the OAPs (f/4.7 optics) were calculated by Ghasempour et al. (2012) for typi-

cal r0 = 9 cm site seeing using the method of Shaklan and Roddier (1988) (panel 2, Figure 2). The

OAPs collapse the beams from 35-mm to 4-8 µm over 165 mm. Newport closed-loop picomotors and

drivers are used to move the fibers vertically and horizontally relative to the VISION optical bench

to maximize the coupling efficiency of the starlight into each fiber. This alignment is both manually

and computer controllable. Except for the X-axis of the beam 5 driver and all of the beam 6 drivers,

the picomotor drivers operate in closed-loop mode, which corrects for fiber positioning hysteresis. The

fibers can be positioned to better than 2 µm, and the X and Y axis of the fibers can be aligned using

an automated fiber alignment algorithm written in C++ and Python. The Newport picomotors and

drivers occasionally fail with error status on startup; the picomotor drivers often require restarting a

few times until they operate normally. This is an issue that will eventually be addressed but does not

significantly affect performance.

• Single-Mode Polarization-Maintaining Fibers: In order to increase fringe contrast, VISION uses

single-mode fibers that filter the atmospheric turbulence, removing residual wavefront errors for each

beam. VISION uses Nufern PM630-HP single-mode polarization maintaining fibers that are operational

over 570-900 nm. The fibers are multimode at wavelengths . 570 nm. The single-mode fibers spatially

filter wavefront errors by transmitting only the fundamental transverse mode of incoming light (LP01).

This filtering enhances fringe contrast by partially removing spatial but not temporal atmospheric

turbulence. The polarization of starlight through the fibers is maintained via strong birefringence due

to stress rods along the slow axis of the fiber. The mode field diameter of the fibers is 4.5 µm at 630

nm, with a core size of 3.5 µm and numerical aperture of 0.12. The beam exiting each single mode

fiber can be described by a Gaussian model.

1http://www.newport.com/Broadband-Metallic-Mirrors/141088/1033/info.aspx#tab Specifications
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• Non-redundant Spacing with V-groove Array: VISION produces a unique fringe frequency for

each telescope pair by arranging the outputs of the fibers in a non-redundant linear pattern on a silicon

OZ-optics V-groove array (Table 1). The V-groove array has a base spacing of 250 µm. Non redundant

fiber positions of 0-2-8-13-17-20 were chosen. After passing the light through a lens with long focal

length, interference fringes are imaged. The fringe frequency, or number of pixels per fringe is:

Pixels

Fringe
=

fλ

p(dA − dB)
(1)

where λ is the wavelength of the fringe, dA and dB are the location of fiber A and B on the V-groove

array, f is the focal length (f = 750 mm), and p = 24 µm is the size of the pixels of the camera on

which the fringes are formed. Given that each fiber pair AB has a unique physical separation dA − dB
on the V-groove array, the corresponding telescope pair have a unique fringe frequency on the VISION

cameras and therefore each of VISION’s 15 telescope pairs has a unique signature in a power spectrum

of the image (Figure 4). The VISION geometry minimizes the overlap between the peaks in power

spectra for each telescope pair (the “fringe cross talk”). The fast axis of all fibers on output of the

V-groove array are aligned vertically. A lenslet array glued to the polarizing beam splitter re-collimates

the beams to 250 µm diameter after they exit the fibers.

• Output to Photometric and Fringing Cameras: VISION splits the light between a camera to

record interferograms (the “fringing” camera), and a camera to record individual beam fluxes (the

“photometric” camera), using a polarizing beam splitter. The polarization of the six beams parallel

to the optical bench is reflected through the beam splitter at 90◦ and is coupled to six multimode

fibers positioned on a second V-groove array (blue arrow, panel 3, Figure 2). It is then guided to the

spectrograph attached the photometric camera (blue arrow, Figure 2, panel 4). Each beam output

has a unique spatial location on the photometric camera due to a V-groove array that positions the

multi-mode output for each fiber onto the photometric camera. The photometric camera monitors the

real-time wavelength-dependent flux of each beam.

The polarization of the light perpendicular to the optical bench is transmitted directly through the

polarizing beam splitter (red arrow, panel 3, Figure 2), and is focused by a 750 mm focal length

Thorlabs antireflection coated achromatic cemented doublet to a ∼ 3.5 mm diameter spot size. Next,

to condense the image in the non-fringing direction, VISION uses a 50 mm focal length cylindrical lens

to collapse the light in the horizontal direction (red arrow, panel 4, Figure 2) to 24 µm, the size of a

single pixel on the EMCCDs. This results in an image 24 µm by 3.5 mm, with fringing in the long

direction that is passed to a spectrograph attached to the fringing camera, which in turn results in 128

unique spectral channels of fringes with a height of 3.5 mm in the fringing direction. The combination

of the microlens array, polarizing beam splitter, and 750 mm achromatic cemented doublet achieve the

desired overlap of the six Gaussian beam profiles from the six single-mode fibers along the fringing

direction on the VISION camera, which produces the fringes (see the fringe forming lens to cylindrical

lens ray tracing in Figure 1). The fringes are produced at the entrance to the slit of the spectrograph.

• Spectrographs: VISION spectrally disperses the incoming light using two identical Princeton In-

struments SP-2156 Acton spectrographs, attached to the fringing and photometric cameras. The

spectrographs are 1:1, i.e. there is no magnification of the Gaussian beam profiles at the entrance to

the slit. VISION has two observing modes, one low resolution (R = 200) and one medium resolution

(R = 1000). Switching between the R = 200 and R = 1000 grating for each spectrometer is remotely

controllable and can be accomplished in a few seconds. The wavelength solution for the spectrographs

was initialy derived using a Ne-Ar lamp source. This wavelength solution was verified with the pixel
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locations of the Hα feature from on-sky observations of Vega, and an in-lab HeNe laser source on the

fringing and photometric cameras. The resulting wavelength solution for the R = 200 mode is:

λ(i) = (λcent − 232.294)+ 2.91(i + 1)− 1.30 nm, fringing camera

λ(i) = (λcent − 214.986)+ 2.91(i + 1) + 4.66 nm, photometric camera

where i = 0− 127 is the pixel number, λcent is the user-chosen central wavelength of the spectrograph

in nanometers, and λ(i) is the wavelength in nanometers corresponding to pixel i. In this paper, only

the commissioning of the low resolution observing mode is described, as the medium resolution mode

has not yet been fully tested on sky.

• Andor Ixon EMCCDs: VISION features two identical 128×128 pixel Andor Ixon DU 860 EMCCDs,

with 24 µm square pixels and quantum efficiencies of 70-85% over 550-850 nm at −50◦ C and dark

current of 0.002 electrons/pixel/second. For recording stellar interferograms, the EMCCDs are oper-

ated at −50◦ C, with 6 ms exposure times, electron multiplying gains of 300, and fast readout rates of

10 MHz with vertical clock speeds of 0.1 µs to minimize clock induced charge (CIC) noise. The typical

CIC event rate for the Andor Ixon EMCCDs was found to be 0.08− 0.11 events/pixel/frame. Longer

exposure times of 10-12 ms were tested on sky resulting in interferograms with significantly reduced

fringe contrast due to atmospheric turbulence. Custom C++ and Python code controls data acqui-

sition, the fringe searching, the fringe tracking, the spectrographs, the shutters, and the single-mode

fiber positioners using a computer running Ubuntu Linux OS 12.04.

2.2. Raw Interferograms & Calibration Data

VISION requires large amounts of support measurements to calibrate the raw interferograms of a given

star. A complete VISION data set for extracting photometrically calibrated visibilities and closure phases is

shown in Figure 5 for beams 1 and 4. For both the fringing and photometric cameras, the spatial direction

is vertical in the figure, and the wavelength direction is horizontal.

A sample averaged interferogram is shown in the top center panel of Figure 5 from the combined light

of beams 1 and 4 using a laboratory white-light source. To produce the interferogram, the light path length

difference between beams 1 and 4 was minimized using the delay line carts. The averaged interferogram was

constructed from several hundred co-added, dark subtracted, 20 ms frames with a gain of 300 in medium

(R ∼ 1000) resolution mode. The low resolution observing mode is not typically used for measurements

illuminated by internal light sources because the laboratory light source path passes through the 70/20 beam

splitters in transmission, leading to significant dispersion. The different types of data necessary to extract

calibrated squared visibilities and closure phases from any given set of interferograms are:

• Darks are frames with no starlight on the detector. For each data set, ≈ 5×103−104 six-ms dark frames

are recorded (requiring 30–60 seconds of real time). Darks are recorded by blocking incoming starlight

by closing all shutters at the front of the VISION optical bench. Darks are recorded semi-hourly

throughout the night for typical observing to carefully characterize the clock induced charge and bias

count levels. The sky background is not included in the darks, as it is not a significant source of photons

given that VISION observes bright (Rmag < 4) stars. Darks are used to estimate the EMCCD read

noise, gain, and CIC rate, which are necessary parameters for extracting calibrated squared visibilities,

bias-corrected closure phases, and triple amplitudes from raw interferograms. Sample average dark

frames are shown in the left panels of Figure 5 for the fringing and photometric cameras.
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• Foregrounds are frames with incoherent light from all beams on the detector. Incoherent light is

obtained when the delay line carts are moved many coherence lengths away from the fringing position.

A sample foreground for beams 1 and 4 is shown in the bottom-center panel of Figure 5. Foregrounds

are used to characterize the Gaussian profiles from the single-mode fibers on the fringing camera.

This is needed to compute the power spectrum and bispectrum biases, which are in turn needed for

calibrating squared visibilities and triple amplitudes.

• Real-Time Flux Estimation. The flux for each beam is recorded simultaneously with the interfer-

ograms. A sample image from the photometric camera with beams 1 and 4 is shown in the bottom

right and top right panels of Figure 5. The real-time flux is used to estimate the system visibility due

to beam intensity mismatch. The photometric imbalance between two beams with intensities IA, IB
will reduce the visibility by 2

√
IAIB

IA+IB
(Coudé du Foresto et al. 1997). The fringing camera beam fluxes

If,A and If,B are estimated from the photometric camera beam fluxes, as described next.

• Single Telescope Data. A sample set of single telescope data for beams 1 and 4 is shown in the

center panels of Figure 5. The precise ratio of fluxes between the fringing and photometric cameras

using the polarizing beam splitter can deviate from an exact 50/50 split. This is the result of slightly

varying polarization of light from the several telescopes, which is due to the siderostats’ motions when

tracking stars. Thus, the fringing-to-photometric light flux ratio can vary from star to star and night

to night at different wavelengths. In order to calibrate this effect, the time and wavelength dependent

flux ratio α(λ) between the fringing and photometric cameras are measured for each beam and for

each star observed. This flux ratio is then used to correlate the real-time flux for each beam on the

photometric camera to the fringing camera. The flux for each beam on the fringing camera is given as:

If,i(λ, t) = αi(λ, t)Ip,i(λ, t). (2)

If,i(λ, t) is the flux at wavelength λ and time t on the fringing camera for beam i, and αi(λ, t) is the

measured wavelength- and time-dependent flux ratio between the fringing and photometric cameras

using single beam data for beam i:

αi(λ) =
If,i(λ)

Ip,i(λ)
(3)

where the fringing-to-photometric camera flux ratio αi(λ) is measured using single beam data (center

panels, Figure 5). Equations 2 and 3 are used to estimate the flux on the fringing camera for each

beam, i, separately. The estimated fluxes for each beam on the fringing camera are used to correct

observed squared visibilities and triple amplitudes for beam intensity mismatch.

2.3. Daily Alignments

A series of daily alignments are performed for each of the six beams to maximize the starlight throughput

for on-sky observations, using a 632.8 nm HeNe laser source. The procedure is as follows:

1. Align the “switchyard” mirror (top panel, second mirror in the light path of Figure 3) to the 70/20

beam splitters in order to route each beam towards the VISION “switchyard” table.

2. Mount the 70/20 beam splitters and accompanying beam-shear compensating windows. The beam

splitters route light from the feed system to the VISION optical bench.
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3. Place an auto-collimation mirror directly in front of each of the 70/20 beam splitters, thus retro-reflecting

the HeNe laser back on itself and to the VISION optical bench. This is necessary because the HeNe

laser light path is opposite that of the feed system.

4. Align the 70/20 beam splitters (top panel, Figure 3) to place the laser spot as close as possible to the

fiber tip of each single-mode fiber.

5. Align each fiber with an automated algorithm that directs the fiber to move horizontally and vertically

to the optical bench until the laser light coupled to the fiber is at maximum. This alignment algorithm

typically is repeated twice, once as a rough pass with total grid search size of 32×32 µm, and once

with a smaller grid search size of 8×8 µm. Occasionally, the fiber focus for each beam is determined

using the fiber alignment algorithm.

6. Remove the auto-collimation mirrors, and after acquiring a star, re-align the fibers to maximize the

coupling of starlight to each fiber.

3. Data Acquisition

3.1. Fringe Searching

The fringe search algorithm acquires fringes by automatically stepping the delay line carts back and

forth until the fringes are found. For the first star observed each night, this procedure typically takes several

minutes. After that, offsets of 1–3 mm in the cart positions generally remain fixed throughout the night,

and the fringe searching on subsequent stars can take less than a few seconds. VISION takes advantage of

the roughly equal spacing of the NPOI array to use the shortest baselines to phase the long baselines via

baseline bootstrapping (Armstrong et al. 1998a; Jorgensen et al. 2006). The fringe search algorithm uses up

to 5 baselines for fringe searching and fringe tracking. For single stars that are resolved with NPOI baselines,

the shortest baselines are typically used to fringe search, since the visibility is highest on the first peak of

the visibility function. For binary stars, the baselines used for fringe tracking are strategically chosen based

on the observed fringe SNR on each baseline, and this can be done in real time.

For example, for 3-way beam combination on a star using beams 2, 4, and 5, beam pairs 2-4 and 4-5 can

be selected for fringe tracking while the longer baseline with beam pair 2-5 is also phased without additional

delay line feedback. Each of the fringe searching and fringe tracking parameters are adjustable.

Next the fringe search algorithm is detailed for beams 2, 4, and 5 with the nominal settings:

1. First, the algorithm begins searching for fringes between beams 2 and 4 with an increasing search

pattern around the nominal delay point, stepping delay line cart 4 by ∼ +20 µm. If the fringe SNR is

greater than the semi-lock SNR at least ∼ 3 consecutive times, then the fringe is considered “found”.

The fringe SNR is estimated in the control system code after the sum of ∼ 20 power spectra co-adds:

SNR =
Peak of power spectrum

Average power spectrum noise
. (4)

If the fringe is not found by the time the delay line cart has reached ∼ 500 µm, the cart stepping

reverses direction with steps of ∼ −20 µm until the cart has reached ∼ −500 µm.

2. If no fringe is found, the search range is repeated and increased by ∼ 2×, from ∼ −1000 µm to

+ ∼ 1000 µm about the nominal delay point. This search range is increased continually until the
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fringe is found, which is typically within 1−3 mm of the nominal delay point for the first star observed

that night.

3. Once the fringe is found, if the fringe SNR is greater than the track SNR, tracking begins on beam

pair 2-4, with delay line feedback sent to cart 4 to correct for atmospheric piston errors. If the fringe

SNR is lower than a separate “fringe-lost” SNR at least ∼ 3 times, then the fringe searching for cart

4 resumes, with a small, fixed delay range of ± ∼ 5 µm.

4. The fringe search algorithm then repeats the above process to search for fringes between beams 4 and

5. Searching for fringes using delay line cart 5 is relative to any delay line feedback sent to cart 4.

The fringe search algorithm automatically keeps the cart of the first beam given as the stationary cart.

In this example, the algorithm was given tracking beam pairs 2-4 and 4-5 and thus cart 2 was kept

stationary. If the algorithm is tracking beam pairs 4-2 and 2-5, it would keep cart 4 stationary.

3.2. Fringe Tracking

Due to atmospheric turbulence, the path length that light travels from each star to the telescopes often

changes on 10-500 ms timescales. To correct for this effect the fringes are tracked in real time using a fringe

tracking algorithm. The fringe tracking code is written in C++ and installed on the VISION control system

computer, which sends feedback directly to the delay line carts.

VISION forms spatially dispersed fringes on the fringing camera in real time, and thus avoids the need

for modulation of the delay line mirrors to create temporal fringes. This design was chosen to avoid possible

non-linear modulations in the shapes of the delay line modulations observed in NPOI classic, which can lead

to cross talk between the fringe amplitudes and phases, when multiple baselines are observed with the same

detector pixel.

A fringe-fitting approach is used to estimate group delay in the fringe tracking algorithm. The delay

to move each of the five operational delay line carts is evaluated on ≈ 100 ms timescales to minimize the

path length differences between the carts, ideally to within a few hundred nm or better. The fringe tracking

approach uses a Fourier transform along the wavelength direction, and a direct fit to the data along the

fringing (spatial) direction for each 6 ms frame of data. The theoretical fringe model for an image plane

combiner adopted from Equation 10.1 on page 569 of Born and Wolf (1999) is:

I(y) = I1 + I2 + 2
√

I1I2|γ| cos
(

fy + arg(γ)

)

(5)

where, I1 and I2 are the fluxes for beams 1 and 2 respectively. The coherence between the two beams γ has

both an amplitude |γ| and a phase arg(γ), and the fringes are modulated by frequency f . Note that the

phase can be instead represented by replacing the cosine function with independent cosine and sine functions

each with independent amplitudes using the identity

cos(θ1 − θ2) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2);

the phase would be found as the inverse tangent of the ratio of sine to cosine amplitudes. This allows the

nonlinear phase parameter to be replaced by linear coefficients, simplifying model fitting procedures.

If only a single telescope pair were being used, and if there were no further modulation of the fringe

amplitude, the intensity pattern could be fit using a Fourier Transform, and implemented efficiently in real
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time using, for example, the Fast Fourier Transform algorithm (with attention to zero-pad the array for better

sampling of the fringe frequencies f , since the fringe wavelengths will not necessary be integer fractions of

the number of pixels).

In practice this theoretical fringe model is modulated by both a coherence envelope (as a function of

distance from zero differential optical path length) and detector illumination pattern, and multiple fringe

signals are present simultaneously. The first can be modeled according to the instrument and source band-

passes (though only with nonlinear parameters), and the second according to incoherent illumination pattern

measurements. For fringe tracking, a model combining the effects of the illumination pattern and fringing is

used as follows (however, the coherence envelope is presently ignored in real-time analysis due to nonlinear

parameter complexities).

Fringes are dispersed horizontally (x), with the fringing (delay) direction vertical (y). For a given

spectral channel x, the interferogram is modeled as

I(x, y) = e−(y−P1)
2/P 2

2

(

P3 +
∑

k=1

[P4,k cos (P6,x,k (y − 64− P7,x,k)) + P5,k sin (P6,x,k (y − 64− P7,x,k))]

)

(6)

where k is the index of each beam pair, P1 and P2 describe the approximately Gaussian illumination pattern

on the detector, P3 is the overall intensity, P4,k and P5,k are the cosine and sine amplitudes for each pair

(with the phase φ given by tanφ = P5,k/P4,k and the total fringe amplitude
√

P 2
4,k + P 2

5,k), and P6,x,k is the

(wavelength dependent) fringe frequency. More generally, the form can be written as

I(y) =

m=2N
∑

m=0

Amgm

where

gm(x, y) =











1 m = 0

e−(y−P1)
2/P 2

2 cos (P6,x,k (y − 64− P7,x,k)) m = 2n− 1, m odd

e−(y−P1)
2/P 2

2 sin (P6,x,k (y − 64− P7,x,k)) m = 2n, m even

and these functions can be precomputed based on laboratory evaluations of the Gaussian profile parame-

ters P1 and P2, fringe frequencies P6,x,k, and internal differential dispersion P7,x,k (presently set to zero).

The remaining coefficients Am are all linear, allowing for a single matrix inversion to solve the best χ2 fit.

This is efficient to implement in real-time, whereas an iterative nonlinear fitting procedure would be pro-

hibitively slow. It is also trivial to parallelize the fit computations, as each spectral channel’s fit is evaluated

independently.

The typical fringe tracking parameters are given in Table 4 and are optimized with on-sky observations

in median seeing conditions. An exposure time of 6 ms is commonly used for the EMCCD. The typical fringe

search step sizes are ∼ 12.5 µm. During fringe tracking, two 6 ms frames are added together for a total

on-sky coherent integration time of 12 ms (2 coherent co-adds). While a 12 ms effective exposure time on

sky does reduce the fringe SNR (see Equation 4 in §3.1) due to the atmospheric fluctuations, the added flux

more than makes up for the lost fringe SNR. Fringe fitting is done as described above using Equation 6 to

determine P4 and P5. The group delay for each telescope pair is estimated by treating P4 and P5 as the real

and imaginary components of a 1D Fourier Transform (FT) for that frequency, and another 1D FT along

the wavelength direction using the FFTW2 program in C++ (Frigo and Johnson 2005) is performed. The

2http://www.fftw.org/
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resulting power spectrum is coadded over thirty 12 ms co-added frames, for an effective in-coherent exposure

time of 360 ms (30 incoherent co-adds) to generate a total power spectrum. The location of the peak of the

total power spectrum corresponds to the delay that is sent to the delay line carts.

3.3. Observing Sequence

A complete observing sequence for a target or calibrator star is detailed in Table 2. After acquiring

the star, the fibers are aligned to maximize the light coupled using an automatic fiber alignment algorithm.

This step is typically required several times a night depending upon whether the observed fluxes are lower

than expected. Next the different types of VISION data necessary to calibrate the observed interferograms

in post-processing are recorded: darks, interferograms while fringe tracking, foregrounds, and single beam

data, as detailed in §2.2.

Target star and calibrator star observation sequences are interleaved. Calibrator stars are selected that

are typically 1–4 mas (depending upon whether longer (30–80 m) or shorter (8–12 m) baselines are used)

to correct for the system visibility drift and bispectrum bias in the data. For typical ≈ 2 hour observations

of a given star, a calibrator-target-calibrator pattern is alternated on ≈ 20 minute timescales, given that

single beam and foreground data are required. A typical VISION observation of a star produces 20–50 GB of

raw data, and consists of ≈ 106 individual frames with 6 ms exposures; an observing run typically produces

200–400 GB of raw data per night.

3.4. Faint Magnitude Limit

Fringe detection has been demonstrated with current hardware at apparent magnitude Rmag = 4.5, in

excellent seeing. Funds from the Office of Naval Research DURIP competition have recently been received

to replace the existing Andor DU-860 EMCCDs used for fringe detection and intensity mismatch monitoring

with new Nüvü EMCCDs. The new EMCCDs feature ×10 less CIC noise (0.005 events pixels−1 per frame)

as compared to our measured CIC of 0.08− 0.11 events pixels−1 per frame. This reduced noise is expected

to greatly improve our faint magnitude limit.

4. Characterizing the VISION instrument

4.1. System Throughput

An observed throughput of 0.67% was measured using the average total flux of of γ Orionis on the

night of March 16, 2015, in median seeing. The total observed photons per second Fobs for γ Orionis was

estimated as:

Fobs(phot s
−1) =

i=127
∑

i=0

π

4
D2 < F0 > 10−0.4(Rmag+kz) λi

hc
∆λ < T > (7)

where i is the pixel index on the VISION fringing and photometric cameras, D = 12.5 cm is the effective

collecting area diameter, k = 0.11 is the extinction in R-band in magnitudes, z = 1.43 is the airmass

during the observations, < F0 >= 2.25 × 10−9 ergs cm−2 s−1 Å−1 is the zero magnitude R band flux,
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Rmag = 1.73 ± 0.1 (Ducati 2002) is the magnitude γ Orionis from SIMBAD3 (Wenger et al. 2000), λi is

wavelength of light at pixel i on the cameras, h is Planck’s constant, c is the speed of light, ∆λ ≈ 1860 Å is

the wavelength range over the entire filter, and finally < T > is the average throughput for the observations.

Fobs for γ Orionis was measured on both the fringing and photometric cameras on March 16, 2015 in median

seeing. We computed the observed throughput, for both the fringing and photometric cameras by solving

Equation 7 above for < T >.

Accounting for all optical surfaces from the telescopes to the beam combiner, a total theoretical through-

put of ≈8.6% was computed by multiplying the reflectivity and transmission of all optical surfaces from the

telescope to the VISION cameras including filter response and quantum efficiency as detailed in Table 3.

The total observed throughput was ≈0.67%, which is nearly 13 times lower than the theoretical throughput.

This significant difference could be due to the adopted throughput of the NPOI feed system and the delay

line carts of ≈75% and ≈73% respectively, as measured 9 years ago by Zhang et al. (2006). The loss of light

in the feed system could be much larger due to 9 additional years of optical coating degradation. Similarly,

the delay line cart mirrors have drifted out of focus, meaning the adopted theoretical fiber coupling efficiency

of 55% is likely overestimated. An additional cause of lost light is that the fringing camera does not sample

the full Gaussian profile from each fiber on the detector as shown in Figure 7, which leads to ≈ 30% loss

in light. Finally, the misalignment of the focusing optics for light from the multi-mode fiber output to the

photometric camera also could lead to an additional loss of light for beams 3 and 5, which are on the edges

of the photometric camera chip.

4.2. Beam Overlap

Fringes can only exist where the Gaussian beam profiles of each single-mode fiber overlap on the fringing

camera. The Gaussian beam profile was measured for each beam individually on the fringing camera using

a laboratory white light source, 20 ms exposure times, a gain of 300, and the low resolution R = 200

observing mode. Ten minutes of frames were recorded on the fringing camera for each beam to build high-

SNR Gaussian beam profiles. Figure 7 illustrates the overlap for all 5 beams averaged over 570 − 850 nm.

With the exception of beam 3, the percent flux overlap for each beam with each other beam is > 90%. The

percent flux for beam 3 that overlaps with beams 1, 2, 4, and 5 is 72%− 79%. The lower overlap for beam

3 is likely due to a slight misplacement of the fiber for beam 3 in the V-groove array. The lower overlap

fraction in beam 3 can lead to slightly lower fringe contrast between beam 3 and the other beams. These

systematic differences in visibility can be removed by observing a calibrator star.

4.3. Laboratory Fringe Model

Given that VISION uses single-mode fibers, high visibilities of > 80% are expected for all beam pairs

under ideal laboratory conditions, similar to commissioning tests of other beam combiners such as MIRC

and AMBER (Petrov et al. 2007) that use optical fibers. This maximum possible visibility measured for a

given beam pair under ideal conditions is the “system visibility”. In order to verify that the system visibility

is > 80%, a fringe model was chosen to match sets of high signal-to-noise laboratory fringes that do not

suffer from visibility loss due to beam intensity mismatch and atmospheric turbulence or CIC noise.

3http://simbad.u-strasbg.fr/simbad/
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Equation 6 was parameterized making the basic fringe model directly comparable to VISION interfero-

grams, at a single wavelength channel:

I(x, y) = e−(y−P1)
2/P 2

2

(

P3 +
∑

k=1

sin(P8y + P9)

P8y + P9
[P4,k cos (P6,x,k (y − 63.5− P5,k))]

)

(8)

where parameters P4,k and P5,k are redefined as overall fringe amplitude and phase, and new parameters

P8, P9 are introduced modulation by the coherence envelope due to the finite spectral resolution of the

detector, which can be modeled by integrating over several wavelengths.

The integration is done by evaluating the fringe model at 0.01 pixel steps, or 1.28× 104 evenly spaced

points from pixels 0 to 127, and integrating the resulting model fringe to 128 pixels. By integrating, the

pixelation of each interferogram by the finite spectral resolution is modeled. The fringe model (Equation 8)

assumes a rectangular bandpass, due to the use of a sinc function. The model is an approximation given

that the VISION bandpass is likely closer to a Gaussian and not square (as dictated by a sinc function) for

each resolution element, but was sufficient for the present study.

The system visibilities for all 10 available beam pairs (beams 1–5) were measured under laboratory

conditions using the fringe model above. The fringe parameters for each beam pair were evaluated by fitting

the fringe model in Equation 8 to interferograms from a laboratory HeNe 632.8 nm laser source. The visibility

was estimated as the ratio between total flux on the detector and the amplitude of the coherence:

V =
P4

P3
= 2

√
I1I2

I1 + I2
|γ|. (9)

The procedure to obtain the interferograms for each beam pair was as follows. First, a 632.8 nm

HeNe laser source was coupled to the single-mode fiber of each beam. The delay line carts were positioned

to minimize light path difference between the two beams to within the coherence length (. 1300 µm),

maximizing the visibility for a given pair of beams. Several minutes of 2-ms exposure time raw interferograms

were recorded for each beam pair and the gain set to zero. Electron multiplying gain was not used in

order to avoid additional multiplication noise. A time averaged dark was subtracted from each of the raw

interferograms to remove the bias counts on the EMCCD. A median selected dark was not used because

there was negligible CIC on the detector when running the EMCCD with zero gain.

The system visibility was Vlaser ≈ 85 − 97%, as expected when using single-mode fibers. Fitting was

performed using IDL’s MPFIT4 which employs a modified Levenberg-Marquardt χ2 minimization to fit the

fringe model (Equation 8) to the interferograms. Sample interferograms for each beam and model fits are

shown in Figure 8. The residuals between the fringe model and the interferograms are 1–5% as shown in

Figure 9, as expected given the imperfect fringe model (e.g. sinc envelope instead of Gaussian). Nevertheless,

the laboratory system visibilities for VISION were > 80% for all beam pairs, as expected.

4.4. Fringe Crosstalk

Fringe analysis based on Fourier Transforms shows slight overlap among the peaks in the power spectra

from each beam pair (see Figure 4). This is because the fringes do not fit along the 128 pixels of the fringe

4http://www.physics.wisc.edu/∼craigm/idl/down/mpfit.pro



– 14 –

direction an exact integer number of times. While the fringe frequencies were selected to be unique and

produce orthogonal intensity pattern functions, sinusoids are only orthogonal on domains in which both

sinusoids have an exact integer number of waves. (Even if a perfect integer number of waves fit across

the detector for one wavelength, this would not be the case for other wavelengths.) As a result, the fringe

sinusoids are not strictly orthogonal functions on the domain of 128 pixels, though they may be unique and

orthogonal overall. This results in perceived cross-talk between channels even in the case of a perfect setup

(instrumental alignment inaccuracies will add to the effect). This is independent of the method used to

evaluate the fringe models and instead related to the non-orthogonality of the basis functions on the 128

pixel restricted domain.

As expected, the observed crosstalk between peaks in the power spectra were found to occur between

pairs of beams that are closest in fringe frequency such as beam pairs 1-4 and 2-5. The crosstalk percentage

was calculated as the total power in the power spectrum for each beam pair at the location of the peak of

each other beam pair. The magnitude of the fringe crosstalk using the Fourier Transform method was found

to be ≈ 1− 8% of the power in the power spectra for the laboratory fringes. Fringe fitting with better fringe

models (including illumination profile, coherence reduction far from zero optical path delay, dispersion, etc.),

as described in §3.2 and below, can improve but not entirely eliminate these effects.

In an attempt to further understand the crosstalk, a multi-fringe model based on Equation 8, was used

to fit fringes from multiple beam pairs on the detector. Laser fringes from beam pairs 1-4 and 2-5 were

added together and fit for parameters of both beam pairs simultaneously.

In Figure 11 the χ2 space is mapped by varying the amplitude of the fringes, parameter P4,k for both

beam pairs 1-4 and 2-5 in Equation 8 above. For two parameters of interest, ∆χ2 = 2.30, 6.17, and 11.8

for 1σ, 2σ, and 3σ confidence intervals respectively (Press et al. 2002). Even for ideal, high SNR fringes,

a correlation in the visibilities is seen of both beam pairs at the ≈ 2% level for the 3σ confidence interval.

This could also be interpreted as a form of crosstalk. This test suggests that the χ2 minimization between

a multi-fringe model and multi-fringe data likely leads to correlations between the visibility parameters and

is thus a manifestation of crosstalk, similar to the overlapping peaks in the power spectra.

5. The VISION Data-Processing Pipeline

5.1. Dark Subtraction Algorithm

Dark frames are used to subtract the bias counts for all raw calibration data and interferograms. The

bias counts are important to characterize given that average signal counts can be as low as ≈ 0.1 pho-

tons/pixel/frame for Rmag ≈ 3.5 stars. Bias level subtracted interferograms and calibration data are used

in the data processing pipeline. Following Harpsøe et al. (2012) the bias count levels on the photometric

and fringe camera chips were characterized by the sum of time-dependent (frame to frame) and spatially

dependent bias counts:

b(x, y, t) = b(x, y) + b(t) (10)

where b(x, y, t) are the bias counts at pixel (x, y), and time t. Andor’s “baseline clamp” software stabilizes

b(t) for each frame by subtracting off a running average of a 128 pixel overscan region of the chip and then

adding back in 100 Analog-to-Digital Units (ADU). The output probabilities of ADU for the EMCCDs are

characterized using an analytic model that is a convolution of the probability that a pixel will have a CIC

event or just a bias count (Equation 8, Harpsøe et al. 2012).
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This analytic EMCCD model was modified to include the probability that two CIC events occur in

the same pixel, given that the probability of a CIC electron is ≈ 8 − 11% for the EMCCDs, and thus the

probability of two concurrent CIC electrons was ≈ 0.6−1.2%, which is significant for characterizing the high

end tail of pixels with > 200 ADU:

P (Z = n) =

∫ n

0

[

(1− p− p2)

(

δ(x) +
( p

G
e−x/G +

p2

G2
xe−x/G

)

H(x)

)]

×N(n− x, σRN)dx (11)

where P (Z = n) is the normalized probability that a given pixel will have output n ADU. Furthermore, p

is the probability of CIC, G is the gain, σRN is the read noise in ADU, H(x) is the heaviside step function,

and N(n− x, σRN) is the normal distribution that describes the bias counts b(x, y) at each pixel:

N(n− x, σRN) =
1

√

2πσ2
RN

e−(n−x)2/(2σ2
RN) (12)

where N(n− x, σRN) describes the bias counts (which has Gaussian read noise) when no CIC event occurs.

If a CIC event occurs, the output counts n from the EMCCD go as e−x/G

G (Basden and Haniff 2004).

This EMCCD model was tested by fitting a histogram of 105 raw dark frames from the fringing camera

on a pixel by pixel basis to derive a bias count level b(x, y), read noise σRN(x, y), gain G(x, y), and CIC

probability p(x, y). The darks were recorded with 6 ms exposures, and a gain setting of 300 on the camera.

The modified Levenberg least squares minimization algorithm MPFIT (Markwardt 2009) was used to fit the

EMCCDmodel to the darks. A sample fit to pixel (x, y) = (50, 50) is shown in Figure 12. The EMCCDmodel

fit the data well with small residuals. The typical read noise was σRN,obs ≈ 3.5 ADU5, gain of ≈ 16 − 18,

and clock induced charge probability of ≈ 11 − 13% averaged over the entire chip for the fringing camera.

The observed gain of ≈ 16− 19 is 258− 305 when multiplied by the e−/ADU conversion of 16.3 and 16.1 for

the fringing and photometric camera, respectively. This gain is comparable to the camera gain setting of

300 for these darks. The read noise, gain, and CIC were similar for the photometric camera. Andor’s listed

CIC rate of 0.05 events/pixel/frame for the cameras is likely underestimated since it does not include CIC

events buried within the read noise. A higher CIC rate of 0.08− 0.11 events/pixel/frame was measured and

accounted for CIC within the read noise using the EMCCD model above.

With a derived CIC p(x, y) and gain G(x, y) from fitting dark frames using Equation 11, the dark

subtraction algorithm of Harpsøe et al. (2012) was used to subtract the bias count level. First, the mean

bias level for each raw frame was computed using pixel 127 to further stabilize the frame to frame bias count

variability:

bo(t) = avg
[

c(127, y, t)− b(127, y)
]

(13)

where c(127, y, t) are pixel values for the raw frame at pixel x = 127. Finally, the bias counts from each raw

frame are subtracted as:

cb(x, y, t) = c(x, y, t)− [b(x, y) + bo(t)]−G(x, y)p(x, y) (14)

where cb(x, y, t) is the bias count subtracted frame.

5Following the literature convention, counts instead of electrons are used given that the gain on an EMCCD is stochastic

and varies as a function of time and location on the detector. Therefore there is no exact conversion between electrons and

ADU for an EMCCD.
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5.2. Pre-Processing Raw Interferograms

Prior to extracting squared visibilities, closure phases, and triple amplitudes from raw interferograms,

the following steps are performed:

1. estimate the gain, read noise, and clock induced charge for darks,

2. perform dark subtraction,

3. remove poor quality interferograms, and

4. bin the data spectrally to increase SNR.

First, a series of dark frames taken during the observing sequence (see §3.3) is used to estimate the gain,

clock induced charge rate, and read noise for the raw interferograms as detailed in §5.1 above. Next, dark

subtraction is performed using Equation 14 from §5.1 above. Raw interferograms for which the fringe tracking

SNR is so low that no fringes were identified are removed. This loss of coherence can occur often due to the

turbulence of the atmosphere at visible wavelengths. With this step 1–5% of the raw interferograms that

have the lowest fringe SNR (see §3.2) are removed. Next, spectral channels with very little light are removed.

For stars with spectral types O–F, typically only spectral channels with wavelengths 580− 750 nm are used,

given that the single-mode fibers enter multimode at < 580 nm and spectral channels with wavelengths

> 750 nm had too little SNR. Next, these spectral channels are binned in the wavelength by a factors of 8, 9,

or 10. For a typical 9 spectral channels, this results in an overall read noise of σRN,binned =
√
9σRN,obs ≈ 10.5

ADU, and ≈ 19 nm per spectral channel. Finally, the raw interferograms are divided by the mean gain as

derived above, typically 15− 18 ADU/e−.

5.3. Adapting the MIRC Data-Processing Pipeline for VISION

Since MIRC and VISION are nearly identical in design, the MIRC data-processing pipeline (Monnier et al.

2004, 2007) was modified to estimate calibrated squared visibilities, closure phases, and triple amplitudes

from interferograms pre-processed as detailed in §5.2 above. Briefly, the MIRC pipeline measures uncali-

brated squared visibilities and triple amplitudes from raw interferograms after a series of Fourier transfor-

mations and foreground subtractions. The MIRC pipeline then calibrates the squared visibilities and triple

amplitudes using fluxes measured simultaneously with fringes. The last step of the MIRC pipeline is to use

calibrators with known sizes to compensate for system visibility drift.

A significant change to the MIRC pipeline for processing VISION interferograms is the use of single 6

ms frames to estimate the uncalibrated squared visibilities. By contrast, MIRC pipeline coherently co-adds

several frames of data before estimating uncalibrated squared visibilities. In adapting the MIRC pipeline, the

complex bispectrum bias must also be corrected on a frame by frame basis, since VISION data are photon

noise limited whereas MIRC data are read-noise limited; the MIRC pipeline only partially implements this

correction, since MIRC operates in a regime where photon noise bias in the bispectrum is rarely important.

The uncorrected bispectrum is given as

B0,ijk = CijCjkCki (15)

where B0,ijk is the bispectrum for beams i, j, k, and Cij is the complex discrete Fourier transform for beam

pair i, j. The triple product bias was adopted from EMCCD simulations of Basden and Haniff (2004), with
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an additional read noise term from Gordon and Buscher (2012) that was modified for the EMCCDs:

B1,ijk = B0,ijk − 2

(

|Cij |2 + |Cjk|2 + |Cki|2
)

+ 6N + 6Npixσ
2
RN,binned. (16)

where |Cij |2 is the power spectra, N is the total number of counts in the frame, Npix = 128 is the total number

of pixels in the spectral channel, B1,ijk is the bias-corrected bispectrum, and σRN,binned is the summed read

noise in quadrature over the wavelength-binned pixels in Equation 16.

Equation 16 was derived by attempting to recover the correct closure phases extracted from simulated

fringes of a binary star with an input orbit, a simulated EMCCD gain register, and added read-noise and

Poisson noise. The EMCCD simulations of Basden and Haniff (2004) were replicated, and their Equation 4

was extended by adapting the Gordon and Buscher (2012) treatment of read noise, yielding an extra term

of 6Npixσ
2
RN,binned. Gordon and Buscher (2012) provide equations to correct the bispectrum in the presence

of read noise, but their equations only apply for Poission statistics, and the output of the EMCCDs is

non-Poissonian due to the stochastiscity of the electron multiplying gain. As detailed in Basden and Haniff

(2004), the coefficients of 2 and 6 multiplied by the power spectra |Cij |2 and total counts N in Equation 16

also differ from the traditional Wirnitzer (1985) coefficients of 1 and 2 given that the output from an EMCCD

is not Poissonian. The VISION implementation uses the bispectrum bias subtraction in Equation 16 on a

frame-by-frame basis as recommended by both Basden and Haniff (2004) and Gordon and Buscher (2012)

for extracting unbiased closure phases and triple amplitudes from VISION raw interferograms.

The corrected bispectrum B1,ijk should be zero within error for foreground data, given that these data

have no fringes. Therefore, Equation 16 was further tested by comparing the uncorrected bispectrum B0,ijk

of a sample set of foregrounds to the theoretical bispectrum bias:

B0,ijk of Foreground = −2

(

|Cij |2 + |Cjk|2 + |Cki|2
)

+ 6N + 6Npixσ
2
RN,binned. (17)

B0,ijk was computed for foreground data from observations of γ Orionis, and it closely matched the right

side of Equation 17 above, as shown in Figure 14. This further validated that the derived bispectrum bias

correction (Equation 16) for the EMCCDs was correct.

The theoretical prediction for the power spectrum bias was also derived as a modified version of the

Gordon and Buscher (2012) power spectrum bias adapted for EMCCDs, in the presence of read noise:

|C1,ij |2 = |C0,ij |2 − 2N +Npixσ
2
RN,binned (18)

where |C1,ij |2 is the corrected power spectrum and |C0,ij |2 is the uncorrected power spectrum. Similar to

the previous approach, foreground data contains no fringes and therefore no peaks in the power spectrum.

Thus, the corrected power spectrum |C1,ij |2 should be zero. The power spectrum bias correction matches

the uncorrected power spectrum |C0,ij |2 to within 1% as shown in Figure 15.

6. The Orbit and Flux Ratio of ζ Orionis A

To both provide a first on-sky science result and to verify the VISION data-processing pipeline from

§5.2 and §5.3, VISION was used to obtain new resolved observations of the massive binary star ζ Orionis A.

The orbit and flux ratio of ζ Orionis A have previously been measured by Hummel et al. (2013), therefore

the new observations serve as an established test of the VISION system and provide an additional epoch of

constraint on the orbit of this benchmark astrometric binary.
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ζ Orionis A was observed on March 16th, 2015, with stations AC, AE and N3, with baselines between

10.77 − 25.92 m using the observation sequence in Table 2. Fringe searching and tracking were performed

as described in §3.1 and §3.2. The calibrator star γ Orionis (θUD = 0.701± 0.005; Challouf et al. 2014) was

observed immediately after, using the same observing sequence to compensate for any visibility drift. The

wavelength solutions for the cameras from §2.1 was used.

Sample squared visibilities versus time for γ Orionis are shown in Figure 13. The squared visibility drift

for VISION as measured using γ Orionis is 0.01− 0.02 over 30 minutes. Dark subtraction was performed on

all the raw frames of ζ Orionis and the calibrator γ Orionis as described in §5.1. The data were pre-processed

as described in §5.2 and calibrated squared visibilities and bias-corrected closure phases were extracted as

described in §5.3.

From the orbit of Hummel et al. (2013), ζ Orionis A is predicted to have a separation of 40.1± 1.0 mas

and a position angle of 223.2± 2.3◦ at the epoch of the observations, with a flux ratio of 2.2± 0.1 mag. The

1σ errors on the predicted separation and position angle were calculated from distributions of separation

and position angle from 107 uniformly randomly selected orbits from the reported 1σ errors of the orbital

elements from Hummel et al. (2013) and then projected on sky.

The new observations of ζ Orionis A with VISION yield a best-fit separation of 40.6 ± 1.8 mas, a

position angle of 223.9± 1.0◦, and flux ratio of 2.18± 0.13 mag at 580− 750 nm and are listed in Table 7.

A sample of the extracted squared visibilities and closure phases along with the best fit model are shown in

Figure 16. The median error on the closure phase is 1.9◦ and on V 2 is 4.5%. The error increases towards

redder wavelengths due to decreased SNR, which is in part due to a decrease in quantum efficiency of 83%

to 73% from 600 to 750 nm. The formal 1σ errors were plotted on the fitted orbit and flux ratio using 1σ

confidence intervals with ∆χ2 = χ2 − χ2
min = 3.53, which corresponds to 1σ for 3 parameters of interested

(Press et al. 2002). The 1σ, 2σ, and 3σ confidence intervals for the fitted orbit to ζ Orionis are shown in

Figure 17. Finally, as shown in Figure 18, there is excellent agreement between the observed separation and

position angle for ζ Orionis A as observed by VISION versus that predicted by the previously published

orbit (Hummel et al. 2013).

7. Conclusions & Future Work

This paper introduces the VISION beam combiner for NPOI: a six-telescope image plane combiner

featuring optical fibers, electron multiplying CCDs, and real-time photometric monitoring of each beam

for visibility calibration. The VISION cameras, the fringe crosstalk, and the system visibility have been

characterized, and a version of the MIRC data-processing pipeline has been adapted and verified for VISION

with an observation of the benchmark astrometric binary star ζ Orionis A.

Future work on the instrument includes installation of new Nüvü cameras with 10 times less clock-

induced charge noise. Recently, the 750 mm fringe-forming lens was replaced with a 500 mm lens to fully

sample the Gaussian profile on the fringing camera, with early indications showing a gain of 30% flux, as

well as a significant reduction in fringe crosstalk. Finally, the control system code will be updated from a

text user interface to a graphical user interface.

With the capabilities demonstrated here, we anticipate now being able to use VISION to make the first

5- or 6-telescope reconstructed images at visible wavelengths of the main sequence stars Altair and Vega, as

well observations of triple star systems and the TiO lines on the surfaces of spotted red supergiant stars.
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Y. Rabbia, A. Spang, and O. Chesneau. Radiative hydrodynamic simulations of red supergiant stars.

III. Spectro-photocentric variability, photometric variability, and consequences on Gaia measurements.

A&A, 528:A120, Apr. 2011. doi: 10.1051/0004-6361/201015768.

A. Chiavassa, L. Bigot, P. Kervella, A. Matter, B. Lopez, R. Collet, Z. Magic, and M. Asplund. Three-

dimensional interferometric, spectrometric, and planetary views of Procyon. A&A, 540:A5, Apr.

2012. doi: 10.1051/0004-6361/201118652.
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D. Mourard, P. Bério, K. Perraut, R. Ligi, A. Blazit, J. M. Clausse, N. Nardetto, A. Spang, I. Tallon-

Bosc, D. Bonneau, O. Chesneau, O. Delaa, F. Millour, P. Stee, J. B. Le Bouquin, T. ten Brummelaar,

C. Farrington, P. J. Goldfinger, and J. D. Monnier. Spatio-spectral encoding of fringes in optical long-

baseline interferometry. Example of the 3T and 4T recombining mode of VEGA/CHARA. A&A, 531:

A110, July 2011. doi: 10.1051/0004-6361/201116976.
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Table 1

Laser Fringe Results

Beam Pixels Per Fitted

Pair Fringe Visibility

1-3 39.38 0.968± 0.006

2-4 16.52 0.969± 0.010

1-4 13.89 0.939± 0.009

2-5 11.91 0.949± 0.019

3-4 10.45 0.954± 0.010

1-2 7.64 0.922± 0.005

4-5 7.01 0.884± 0.018

2-3 6.48 0.928± 0.008

1-5 4.65 0.858± 0.015

3-5 4.20 0.867± 0.014

Table 1: Pixels per fringe and raw visibility derived from the model fits to the 632.8 nm HeNe laser fringes

in Figure 8.
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Table 2

Observing Sequence

Align Fibers 120 s

Take Darks 30 s

Fringe Search 30 s

Record Fringes 720 s

Record Foreground 60 s

Record Single Beams 1−6 45 s per beam

Total 1230 s

Table 2: The observing sequence for each target or calibrator star. Raw interferograms are recorded while

fringe tracking. The fibers only need to be aligned a couple of times per night. The rest of the data obtained

are used to calibrate these raw interferograms: “Dark” frames are used to subtract off the bias counts of

the EMCCDs. “Foreground” frames are observations of the star with incoherent flux (no fringes). These

data are used to characterize the bias in power spectrum and triple amplitudes. “Single Beam” frames are

the flux measurements of each beam individually, which is used to measure how the polarizing beam splitter

splits light between the photometric and fringing cameras at each wavelength.
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Table 3

Throughput

Reflection

Feed System 75%

Delay Line Carts 73%
70/20 Beam Splitter, (20% to Tip/Tilt) 70%

3 Inch Flat Mirror (Protected silver coating) 96%

2 Inch Flat Mirror (Silver coating) 98%

Off Axis Parabola (Silver coating) 98%

Fiber Coupling Efficiency (r0 = 9 cm) 55%

Fiber Fresnel Air-to-Glass 92%

Lenslet Array at output of Fibers 98%

Light to Fringing Camera

Polarizing Beam Splitter S mode 50%

Fringe Focusing Lens (AR coating) 97%

Cylindrical Lens (AR coating) 98%

R = 200 Fringing Spectrograph Filter 62%

Quantum Efficiency of Andor Ixon DU 860 (8% loss from air to chip) 83%

Throughput Fringing Camera (theoretical) ≈4.2%

Throughput Fringing Camera (observed) ≈0.45%

Light to Photometric Camera

Lenslet Array at input of Multi-mode Fibers 98%

Polarizing Beam Splitter P mode 50%

R = 200 Photometric Spectrograph Filter 62%

Quantum Efficiency of Andor Ixon DU 860 (8% loss from air to chip) 83%

Throughput Photometric Camera (theoretical) ≈4.4%

Throughput Photometric Camera (observed) ≈0.22%

Table 3: List of throughput for the VISION fringing and photometric cameras. Most VISION mirrors are

silver-coated. The biggest single contributor to the loss of light is coupling to the single-model fibers. The

theoretical fiber coupling efficiency of 55% is likely greatly over estimated due to feed alignment and delay

line cart optics misalignments detailed in §4.1.
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Table 4

Fringe Searching and Tracking Parameters

EMCCD Exposure Time 6 ms

Effective Coherent Exposure Time 12 ms

Number of Coherent Co-adds 2

Effective In-coherent Exposure Time 360 ms

Number of Incoherent Co-adds 30

Search Step Size 12.5 µm

Table 4: Fringe searching and tracking parameters detailed in §3.1 and §3.2. These optimal parameters were

determined using on-sky observations in median-seeing conditions.

Table 7

Observations of ζ Orionis

HJD 24557098.122

UT Date 2015−03−17

Telescopes Used AC−AE−N3

Baseline Length Range 10.77− 25.92 m

Wavelength Range 570-750 nm

# Closure Phases 35

# V 2 90

Median Closure Phase Error 1.9◦

Median V 2 Error 4.5%

This Work Hummel et al. (2013)

Separation (mas) 40.6± 1.8 40.1± 1.01

Position Angle (deg) 223.9± 1.0◦ 223.2± 2.3◦ 1

∆Mag(570-750 nm) 2.18± 0.13 2.2± 0.11
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Fig. 1.— A diagram of light path for the VISION beam combiner. Light from up to six telescopes is coupled

to single-mode polarization-maintaining fibers via off-axis parabolas and picomotor fiber positioners. Beam

6 has not yet been commissioned due to observatory maintenance. The single-mode fibers are placed on a

V-groove array to ensure unique fringe frequencies for each beam pair. Finally, the light from each beam is

split by a polarizing beam splitter: 50% is transmitted and focused onto the fringing camera, which records

the interferograms, and 50% is reflected by the polarizing beam splitter and focused onto the photometric

camera, which monitors real-time fluxes of each beam for visibility and triple amplitude calibration.
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Fig. 2.— The light path through the VISION beam combiner. (1) The entire VISION optical bench. (2)

Each 35 mm diameter beam is collapsed to a 4−8 µm spot size, focused onto each single-mode fiber tip held

in place by a fiber positioner. (3) The light from each single-mode fiber is positioned on a V-groove array,

where 50% is sent to the photometric camera via multi-mode fibers and 50% is sent to the fringing camera

after passing through a fringe focusing lens and cylindrical lens. The photometric and fringing cameras and

the identical R = 200 spectrographs attached to these cameras are shown in (4).
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Fig. 3.— The light path towards the VISION beam combiner. (TOP) A minority (20%) of the light passes

through the beam splitter in transmission to the tip/tilt mirrors for 1st order correction of the atmospheric

turbulence. The majority (70%) of the light is reflected towards VISION. (BOTTOM) The light is re-routed

towards the VISION beam combiner.
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Fig. 4.— The unique fringe frequencies for each beam pair combination for beams 1-5 for VISION as

measured using an in-laboratory 632.8 nm HeNe laser source. At fixed wavelength, the fringe frequency

increases with increased distance between the fibers on the V-groove array. The peaks in the power spectra

for each beam pair are well isolated resulting in very low cross talk between the fringes. The label bAB is

the power spectrum peak for a fringe resulting from combining beams A and B.
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Fig. 5.— Sample VISION data set using an laboratory white light source with an R = 1000 spectrograph.

A complete VISION data set to measure visibilities and closure phases includes (1) an average dark frame

for both the fringing and photometric cameras to characterize the bias count structure across the EMCCDs,

(2) the fringing data and simultaneous real-time flux measurements, (3) frames with light from each beam

individually on the fringing and photometric cameras to measure the split of the light from the polarizing

beam splitter, and (4) the foreground data to characterize the bias in the power spectrum (visibility bias)

and the bispectrum. The small fringing seen in the foreground data is due to pixel-to-pixel sensitivity of the

EMCCD chips. This pixel-to-pixel sensitivity only appears strongly after averaging at least 10 minutes of

frames. The small point sources of light on the photometric camera frames are due to leakage of the laser

metrology used by the delay line carts onto the EMCCDs.
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Fig. 6.— Thirty second time-averaged darks on the fringing and photometric cameras. There are variable

bias counts across each EMCCD that must be subtracted off for each VISION data set. The maximum,

median, and minimum for the average fringing camera dark are ≈ 87, ≈ 91 and ≈ 107 counts respectively.

The maximum, median, and minimum for the average photometric camera dark are ≈ 97, ≈ 99 and ≈ 109

counts respectively.
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Fig. 7.— The wavelength averaged (550−850 nm) shape of the Gaussian beam profile outputs from the single

mode fibers on the fringing camera (see §4.2). All five beams overlap well. A Gaussian shape is expected

for the LP01 mode of electric field that propagates through each single-mode fiber used for VISION. Beam

3 is offset from the center of fringing camera chip due the single mode fiber being slighlty misplaced in the

V-groove array.
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Fig. 8.— Interferograms using a 632.8 nm HeNe laser source and matched light paths for each beam pair for

beams 1-5 (see §4.3). A fringe model was fit to each set of laser fringes for each beam pair using the fringe

model Equation 8, and measure visibilities of 85-97%, which implies that the majority of light is interfering.

The small visibility loss could be the result of polarization effects, beam intensity mismatch.
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Fig. 9.— The residuals for figure 8.
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Fig. 10.— Laser fringe data from beam pair 1-4 and 2-5 added together on the detector, with the corre-

sponding best fit model using Equation 6 in §4.4.
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Fig. 11.— A map of χ2 space for the correlation between the visibility of beam pair 1-4 and beam pair

2-5, using co-added laser fringes. The confidence intervals correspond to ∆χ2 = χ2 − χ2
min = 2.30, 6.17 and

11.8 for 1σ, 2σ and 3σ respectively for 2 parameters of interest (see §4.4, and also Press et al. 2002). The

visibility parameters for either beam pair are correlated on the ≈ 2% level for the 3σ confidence interval

even for these very high signal-to-noise laser fringes. This suggests crosstalk is inherent to the instrument

set up.
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Fig. 12.— Sample fit to a histogram of a time series of ≈ 105 dark frames for pixel (50, 50), (black circles).

The gain, read noise, and clock induced charge rate are derived by fitting an analytic EMCCD model to the

data (red line). The analytic EMCCD model (see §5.1) is the convolution of the probability that a pixel only

has read noise, or has read noise and a clock induced charge event.
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Fig. 13.— Beam intensity mismatch corrected squared visibilities vs time for observations of calibrator γ

Orionis during commissioning on March 16th, 2015 with stations AC, AE and N3. The system visibility

drift is at max 0.01− 0.02 over half an hour for γ Orionis.
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Fig. 14.— The theoretical bispectrum matches the amplitude of foreground bispectrum for γ Orionis, further

verifying that the bias correction procedures in the data-processing pipeline are accurate. The foreground

amplitude of the bispectrum and power spectrum were averaged over 15.36 seconds, using 6 ms exposure

times.
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Fig. 15.— The theoretical power spectrum bias matches the foreground power spectrum for γ Orionis, further

verifying that the bias correction procedures in the data-processing pipeline are accurate. The foreground

amplitude of the bispectrum and power spectrum were averaged over 15.36 seconds, using 6 ms exposure

times.
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Fig. 16.— Sample calibrated squared visibilities and closure phase observations of ζ Orionis on UT 03152016

at two different times of the night. The red solid line is the best fit model to the data. the best fit model

for this binary star at the epoch the observations yields a separation of 40.6 ± 1.8 mas, a position angle

of 223.9 ± 1.0◦ for observations from 580 − 750 nm, in good agreement with the predicted separation of

40.1 ± 1.0 mas and position angle 223.2 ± 2.3 mas from Hummel et al. (2013). The observed flux ratio of

2.18± 0.13 mag is also in good agreement with the flux ratio 2.2± 0.1 mag from Hummel et al. (2013). The

AC-N3 visibilities have a small bias likely due possibly to imperfect photometric calibration.
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Fig. 17.— Confidence intervals for 1σ (blue line), 2σ (green line) and 3σ (red line) errors on the separation

and position angle corresponding to ∆χ2 = χ2−χ2
min of 3.53, 8.02 and 14.03 respectively for 3 parameters of

interest (Press et al. 2002). The minimum χ2
min corresponds to the best fit model (red solid line) in Figure 16.
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Fig. 18.— The observed position angle and separation for the binary ζ Orionis A (red) match the known

orbit Hummel et al. (2013) (black line). The errors on the predicted ∆RA and ∆Dec (green) was calculated

from the error on the orbital elements from Hummel et al. (2013).
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