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Abstract. We consider the simplest one-constant model, put forward by J. Ericksen, for nematic
liquid crystals with variable degree of orientation. The equilibrium state is described by a director
field n and its degree of orientation s, where the pair (s,n) minimizes a sum of Frank-like energies
and a double well potential. In particular, the Euler-Lagrange equations for the minimizer contain
a degenerate elliptic equation for n, which allows for line and plane defects to have finite energy.

We present a structure preserving discretization of the liquid crystal energy with piecewise linear
finite elements that can handle the degenerate elliptic part without regularization, and show that it is
consistent and stable. We prove Γ-convergence of discrete global minimizers to continuous ones as the
mesh size goes to zero. We develop a quasi-gradient flow scheme for computing discrete equilibrium
solutions and prove it has a strictly monotone energy decreasing property. We present simulations
in two and three dimensions to illustrate the method’s ability to handle non-trivial defects.
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1. Introduction. Complex fluids are ubiquitous in nature and industrial pro-
cesses and are critical for modern engineering systems [30, 39, 14]. An important
difficulty in modeling and simulating complex fluids is their inherent microstructure.
Manipulating the microstructure via external forces can enable control of the me-
chanical, chemical, optical, or thermal properties of the material. Liquid crystals
[45, 24, 20, 3, 2, 12, 6, 31, 32, 4, 44] are a relatively simple example of a material with
microstructure that may be immersed in a fluid with a free interface [51, 50].

Several numerical methods for liquid crystals have been proposed in [9, 28, 22,
33, 1] for harmonic mappings and liquid crystals with fixed degree of orientation, i.e.
a unit vector field n(x) (called the director field) is used to represent the orientation
of liquid crystal molecules. See [27, 34, 47] for methods that couple liquid crystals to
Stokes flow. We also refer to the survey paper [5] for more numerical methods.

In this paper, we consider the one-constant model for liquid crystals with variable
degree of orientation [25, 24, 45]. The state of the liquid crystal is described by a
director field n(x) and a scalar function s(x), −1/2 < s < 1, that represents the
degree of alignment that molecules have with respect to n. The equilibrium state is
given by (s,n) which minimizes the so-called one-constant Ericksen’s energy (2.1).

Despite the simple form of the one-constant Ericksen’s model, its minimizer may
have non-trivial defects. If s is a non-vanishing constant, then the energy reduces
to the Oseen-Frank energy whose minimizers are harmonic maps that may exhibit
point defects (depending on boundary conditions) [13, 15, 19, 32, 31, 40]. If s is
part of the minimization of (2.1), then s may vanish to allow for line (and plane)
defects in dimension d = 3 [4, 44], and the resulting Euler-Lagrange equation for n is
degenerate. However, in [32], it was shown that both s and u = sn have strong limits,
which enabled the study of regularity properties of minimizers and the size of defects.
This inspired the study of dynamics [20] and corresponding numerics [7], which are
most relevant to our paper. However, in both cases they regularize the model to avoid
the degeneracy introduced by the s parameter.
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We design a finite element method (FEM) without any regularization. We prove
stability and convergence properties and explore equilibrium configurations of liquid
crystals via quasi-gradient flows. Our method builds on [11, 8, 10] and consists of
a structure preserving discretization of (2.1). Given a weakly acute mesh Th with
meshsize h (see Section 2.2), we use the subscript h to denote continuous piecewise
linear functions defined over Th, e.g. (sh,nh) is a discrete approximation of (s,n).

Our discretization of the energy is defined in (2.13) and requires that Th be
weakly acute. This discretization preserves the underlying structure and converges to
the continuous energy in the sense of Γ-convergence [16] as h goes to zero. Next, we
develop a quasi-gradient flow scheme for computing discrete equilibrium solutions. We
prove that this scheme has a strictly monotone energy decreasing property. Finally,
we carry out numerical experiments and show that our finite element method, and
gradient flow, allows for computing minimizers that exhibit line and plane defects.

The paper is organized as follows. In Section 2, we describe the Ericksen model
for liquid crystals with variable degree of orientation, as well as the details of our
discretization. Section 3 shows the Γ-convergence of our numerical method. A quasi-
gradient flow scheme is given in Section 4, where we also prove a strictly monotone
energy decreasing property. Section 5 presents simulations in two and three dimen-
sions that exhibit non-trivial defects in order to illustrate the method’s capabilities.

2. Discretization of Ericksen’s model. We review the model [25] and relevant
analysis results from the literature. We then develop our discretization strategy and
show it is stable. In principle, the space dimension d can be arbitrary d ≥ 2, but for
some of the proofs we require d = 2, 3.

2.1. Ericksen’s one constant model. Let the director field n : Ω ⊂ Rd →
Sd−1 be a vector-valued function with unit length, and the degree of orientation
s : Ω ⊂ Rd → [− 1

2 , 1] be a real valued function. The case s = 1 represents the state
of perfect alignment in which all molecules are parallel to n. Likewise, s = −1/2
represents the state of microscopic order in which all molecules are orthogonal to the
orientation n. When s = 0, the molecules do not lie along any preferred direction
which represents the state of an isotropic distribution of molecules.

The equilibrium state of the liquid crystals is described by the pair (s,n) mini-
mizing a bulk-energy functional which in the simplest one-constant model reduces to

E[s,n] :=

∫
Ω

(
κ|∇s|2 + s2|∇n|2

)
dx︸ ︷︷ ︸

=:E1[s,n]

+

∫
Ω

ψ(s)dx︸ ︷︷ ︸
=:E2[s]

, (2.1)

with κ > 0 and double well potential ψ, which is a C2 function defined on −1/2 <
s < 1 that satisfies

1. lims→1 ψ(s) = lims→−1/2 ψ(s) =∞,
2. ψ(0) > ψ(s∗) = mins∈[−1/2,1] ψ(s) for some s∗ ∈ (0, 1),
3. ψ′(0) = 0;

see [25]. By introducing an auxiliary variable u = sn, we rewrite the energy as

E1[s,n] = Ẽ1[s,u] :=

∫
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
dx, (2.2)

which follows from the orthogonal splitting ∇u = n⊗∇s+s∇n due to the constraint
|n| = 1. Accordingly, we define the admissible class

A :={(s,n) : Ω→ [−1/2, 1]× Sd−1, where s ∈ H1(Ω), u = sn ∈ H1(Ω)d}. (2.3)
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Moreover, we may also enforce boundary conditions on s and n, possibly on different
parts of the boundary. Let Γs (Γn) be an open subset of ∂Ω where we will set Dirichlet
boundary conditions for s (n). Then we have the following restricted admissible class

A(g, r) := {(s,n) ∈ A : s|Γs = g, n|Γn = r} , (2.4)

for some given smooth functions g and r such that |r| = 1 and both g and gr are the
traces of some H1(Ω) functions.

Note that when the degree of orientation s equals a non-zero constant, the energy
(2.1) effectively reduces to the Oseen-Frank energy

∫
Ω
|∇n|2. The introduction of the

degree of orientation relaxes the energy of defects. In fact, with finite energy E[s,n],
defects (i.e. discontinuities in n) may still occur in the singular set

S := {x ∈ Ω, s(x) = 0}. (2.5)

The existence of such a minimizer in the admissible class subject to Dirichlet boundary
conditions is shown in [32, 2]. It is worth mentioning that the constant κ in E[s,n]
(2.1) plays a significant role in the occurrence of the defects. Roughly speaking, if
κ is large, then

∫
Ω
κ|∇s|2dx dominates the energy and s is close to a constant. In

this case, defects with finite energy are less likely to occur. But if κ is small, then∫
Ω
s2|∇n|2dx dominates the energy, and s may become zero. In this case, defects are

more likely to occur. (This heuristic argument is later confirmed in the numerical
experiments.) Since the investigation of defects is of primary interest in this paper,
we consider the most significant case to be 0 < κ < 1.

We now describe our discretization Eh[sh,nh] of the energy (2.1) and its finite
element minimizer (sh,nh).

2.2. Discretization of the energy. Let Th = {T} be a conforming simplicial
triangulation of the domain Ω. We denote by Nh the set of nodes (vertices) of Th and
the cardinality of Nh by N (with some abuse of notation). We demand that Th be
weakly acute, namely

kij := −
∫

Ω

∇φi · ∇φjdx ≥ 0 for all i 6= j, (2.6)

where φi is the standard “hat” function associated with node xi ∈ Nh. We indicate
with ωi = supp φi the patch of a node xi (i.e. the “star” of elements in Th that
contain the vertex xi). Condition (2.6) imposes a severe geometric restriction on Th
[21, 43]. We recall the following characterization of (2.6) for d = 2.

Proposition 2.1 (weak acuteness in two dimensions). For any pair of triangles
T1, T2 in Th that share a common edge e, let αi be the angle in Ti opposite to e (for
i = 1, 2). If α1 + α2 ≤ π for every edge e, then (2.6) holds.

Generalizations of Proposition 2.1 to three dimensions, involving interior dihedral
angles of tetrahedra, can be found in [29, 18].

We construct continuous piecewise affine spaces associated with the mesh, i.e.

Sh := {sh ∈ H1(Ω) : sh|T is affine for all T ∈ Th},
Uh := {uh ∈ H1(Ω)d : uh|T is affine in each component for all T ∈ Th},
Nh := {nh ∈ Uh : |nh(xi)| = 1 for all nodes xi ∈ Nh}.

(2.7)

We also have the discrete spaces that include (Dirichlet) boundary conditions:

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs = gh}, Nh(Γn, rh) := {nh ∈ Nh : nh|Γn = rh}, (2.8)



4 Nochetto, Walker, Zhang

where (gh, rh) are the Lagrange interpolations of (g, r) and g and r are the traces of
some W 1

∞(Ω) functions.

In order to motivate our discrete version of E1[s,n], note that
∑N
j=1 kij = 0 for

all xi ∈ Nh. Therefore, for piecewise linear sh =
∑N
i=1 sh(xi)φi, we have∫

Ω

|∇sh|2dx = −
N∑
i=1

kiish(xi)
2 −

N∑
i,j=1,i6=j

kijsh(xi)sh(xj),

whence, exploiting kii = −
∑
j 6=i kij and the symmetry kij = kji, we get

∫
Ω

|∇sh|2dx =

N∑
i,j=1

kijsh(xi)
(
sh(xi)− sh(xj)

)
=

1

2

N∑
i,j=1

kij
(
sh(xi)− sh(xj)

)2
=

1

2

N∑
i,j=1

kij
(
δijsh

)2
,

(2.9)

where we define

δijsh := sh(xi)− sh(xj), δijnh := nh(xi)− nh(xj). (2.10)

With this in mind, we define the discrete energy using

Eh1 [sh,nh] :=
κ

2

N∑
i,j=1

kij (δijsh)
2

+
1

2

N∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijnh|2, (2.11)

and

Eh2 [sh] :=

∫
Ω

ψ(sh(x))dx. (2.12)

The second summation in (2.11) does not come from applying the standard discretiza-
tion of

∫
Ω
s2|∇n|2dx by piecewise linear elements. It turns out that this special form

of the discrete energy allows us to handle the degenerate coefficient s2 without regu-
larization. Eventually, we seek an approximation (sh,nh) ∈ Sh(Γs, gh) × Nh(Γn, rh)
of the pair (s,n) such that the discrete pair (sh,nh) minimizes the discrete version of
the bulk energy (2.1) given by

Eh[sh,nh] := Eh1 [sh,nh] + Eh2 [sh]. (2.13)

The following result shows that definition (2.11) preserves the key structure (2.2)
of [2, 32] at the discrete level, and turns out to be crucial for our analysis as well. We
first introduce two discrete versions of the auxiliary vector field u

uh := Ih[shnh] ∈ Uh, ũh := Ih[|sh|nh] ∈ Uh, (2.14)

where Ih denotes the piecewise linear Lagrange interpolation operator on mesh Th.

Lemma 2.2 (energy inequality). Let the mesh Th satisfy (2.6). If (sh,nh) ∈
Sh × Nh, then, for any κ > 0, the discrete energy (2.11) satisfies

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇sh|2dx+

∫
Ω

|∇uh|2dx =: Ẽh1 [sh,uh], (2.15)
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as well as

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇Ih|sh||2dx+

∫
Ω

|∇ũh|2dx =: Ẽh1 [Ih|sh|, ũh]. (2.16)

Proof. Since

sh(xi)nh(xi)− sh(xj)nh(xj) =
sh(xi) + sh(xj)

2

(
nh(xi)− nh(xj)

)
+
(
sh(xi)− sh(xj)

)nh(xi) + nh(xj)

2
,

using the orthogonality relation
(
nh(xi)− nh(xj)

)
·
(
nh(xi) + nh(xj)

)
= |nh(xi)|2 −

|nh(xj)|2 = 0 and (2.9) yields∫
Ω

|∇uh|2dx =
1

2

N∑
i,j=1

kij |sh(xi)nh(xi)− sh(xj)nh(xj)|2

=
1

2

N∑
i,j=1

kij

(
sh(xi) + sh(xj)

2

)2

|δijnh|2 +
1

2

N∑
i,j=1

kij(δijsh)2

∣∣∣∣nh(xi) + nh(xj)

2

∣∣∣∣2 .
Employing again this orthogonality, this time in the form |nh(xi)−nh(xj)|2+|nh(xi)+
nh(xj)|2 = 4, we obtain∫

Ω

|∇uh|2dx =
1

2

N∑
i,j=1

kij

(
sh(xi) + sh(xj)

2

)2

|δijnh|2

+
1

2

N∑
i,j=1

kij(δijsh)2 − 1

2

N∑
i,j=1

kij(δijsh)2

∣∣∣∣nh(xi)− nh(xj)

2

∣∣∣∣2 .
(2.17)

Since
(
sh(xi) + sh(xj)

)2
=
(
sh(xi)

2 + sh(xj)
2
)
−
(
sh(xi)− sh(xj)

)2
, we infer that

Eh1 [sh,nh] =

∫
Ω

(κ− 1)|∇sh|2 + |∇uh|2dx+

N∑
i,j=1

kij(δijsh)2

∣∣∣∣δijnh2

∣∣∣∣2 . (2.18)

The inequality (2.15) follows directly from kij ≥ 0 for i 6= j.
To prove (2.16), we note that the argument above still holds if we replace uh with

ũh and sh with |sh| to get∫
Ω

|∇ũh|2dx ≤
1

2

N∑
i,j=1

kij
sh(xi)

2 + sh(xj)
2

2
|δijnh|2 +

1

2

N∑
i,j=1

kij(δij |sh|)2. (2.19)

We finally find that∫
Ω

|∇ũh|2dx+ (κ− 1)

∫
Ω

|∇Ih|sh||2dx =

∫
Ω

|∇ũh|2dx+
κ− 1

2

N∑
i,j=1

kij(δij |sh|)2

≤ 1

2

N∑
i,j=1

kij
sh(xi)

2 + sh(xj)
2

2
|δijnh|2 +

κ

2

N∑
i,j=1

kij(δij |sh|)2 ≤ Eh1 [sh,nh],
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where we have used the triangle inequality
(
|sh(xi)|− |sh(xj)|

)2 ≤ (sh(xi)−sh(xj)
)2

.
This completes the proof.

Remark 2.3 (purpose of (2.16)). The presence of the Lagrange interpolation
operator Ih in (2.16) might seem strange, but accounts for the variational crime com-
mitted when enforcing ũh = |sh|nh only at the vertices. This is necessary to prove the
Γ-convergence of our discrete energy (2.11) to the original continuous energy in (2.1).

In fact, we later exploit the weak lower semicontinuity in H1(Ω) of Ẽh1 [Ih|sh|, ũh] in
(2.16) (Lemma 3.4 below), which is a consequence of its convexity with respect to ∇ũh.
This is not obvious when κ < 1, the most significant case for formation of defects.

3. Γ-convergence of the discrete energy. In this section, we show that our
discrete energy (2.11) converges to the continuous energy (2.1) in the sense of Γ-
convergence. Let the product space X := L2(Ω) × L2(Ω)d be equipped with the
L2-norm and let Xh := Sh × Nh. We define E[s,n] as in (2.1) for (s,n) ∈ A and
E[s,n] = ∞ for (s,n) ∈ X \ A. Likewise, we define Eh1 [sh,nh] as in (2.11) for
(sh,nh) ∈ Xh and Eh1 [s,n] =∞ for all (s,n) ∈ X \ Xh.

Theorem 3.1 (Γ-convergence). Let {Th} be a sequence of weakly acute meshes.
Then, for every (s,n) ∈ X the following two properties hold:

• Lim-inf inequality: for every sequence {(sh,nh)} converging strongly to (s,n)
in X, we have

E1[s,n] ≤ lim inf
h→0

Eh1 [sh,nh]; (3.1)

• Lim-sup inequality: there exists a sequence {(sh,nh)} such that (sh,nh) con-
verges strongly to (s,n) in X and

E1[s,n] ≥ lim sup
h→0

Eh1 [sh,nh]. (3.2)

The proof of this theorem is split into several lemmas. We start with the lim-sup
inequality (or consistency). We first observe that if E1(s,n) =∞, then the assertion
(3.2) is valid for any sequence (sh,nh). Consequently, we consider the nontrivial case

E1(s,n) = Ẽ1[s,u] < ∞ or equivalently (s,n) ∈ A. Since H2-functions are dense in
A, given ε > 0 there exists (sε,uε) ∈ H2(Ω)×H2(Ω)d such that

‖(s,u)− (sε,uε)‖H1(Ω) ≤ ε ⇒
∣∣Ẽ[s,u]− Ẽ[sε,uε]

∣∣ ≤ Cε.
Therefore, we can assume that (s,u) ∈ H2(Ω)1+d for d = 2, 3, and let (sh,uh) be
the Lagrange interpolants of (s,u), which are well defined because H2(Ω) ⊂ C0(Ω).
Since (sh,uh)→ (s,u) in H1(Ω), in view of the energy identity (2.18), we must show

N∑
i,j=1

kij
(
δijsh

)2∣∣δijnh∣∣2 → 0, as h→ 0. (3.3)

Heuristically, if n(x) is smooth, then the sum (3.3) is of order h2
∫

Ω
|∇sh|2dx which

obviously converges to zero. However, such an argument fails if the director field
n(x) lacks high regularity, which is the case with defects. These are discontinuities
of n(x) which occur in the singular set S defined in (2.5). Since n(x) is not regular
in general, the proof of consistency requires a separate treatment of the region where
n(x) is regular and the region where n(x) is singular. The heuristic argument can
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be carried out in the regular region, while in the singular region we appeal to basic
measure theory. With this motivation in mind, we now prove the following lemma.

Lemma 3.2 (lim-sup inequality). Let the pair (s,n) belong to the admissible
class A and (s,u) ∈ H2(Ω)1+d. If (sh,uh) are the Lagrange interpolants of (s,u),

then Ẽh1 [sh,uh]→ Ẽ1[s,u] as h→ 0.
Proof. Given ε > 0, we divide the domain Ω into two regions, Sε = {x ∈

Ω, |s(x)| < ε} and Kε = Ω \ Sε, and the sum in (3.3) into two parts

Ih(Kε) :=
∑

xi,xj∈Kε

kij
(
δijsh

)2∣∣δijnh∣∣2, Ih(Sε) :=
∑

xi or xj ∈ Sε

kij
(
δijsh

)2∣∣δijnh∣∣2,
where nh(xi) = n(xi) is well defined provided s(xi) 6= 0 and otherwise nh(xi) is an
arbitrary vector of unit length; thus nh ∈ Nh.

Step 1: Estimate on Kε. Note that Kε is a compact set. Since n = s−1u is
continuous everywhere except on the singular set S, the field n is uniformly continuous
on Kε. Thus, we have |nh(xi)−nh(xj)| → 0 uniformly as the meshsize h→ 0 because
xi and xj are connected by a single edge of the mesh. Therefore, as h→ 0

Ih(Kε) ≤

 max
xi,xj∈Kε,
|xi−xj |≤h

|nh(xi)− nh(xj)|2
 N∑
i,j=1

kij(δijsh)2 = o(1)

∫
Ω

|∇sh|2dx→ 0.

Step 2: Estimate on Sε. If either xi or xj is in Sε, without loss of generality, we
assume that xi ∈ Sε. Since s(x) is uniformly continuous, and sh(x) is the Lagrange
interpolant of s(x), there is a meshsize h such that for any x in the star ωi of xi,
|sh(x)− sh(xi)| ≤ ε, which implies that ωi ⊂ S2ε. Thus, by the triangle inequality,

Ih(Sε) ≤ 4
∑

xi or xj ∈ Sε

kij(δijsh)2 ≤ 8

∫
∪ωi
|∇sh|2dx ≤ 8

∫
S2ε
|∇sh|2dx,

where the union ∪ωi is taken over all nodes xi in Sε. Since s ∈ H2(Ω), we have∫
S2ε
|∇sh|2dx→

∫
S2ε
|∇s|2dx as h→ 0.

Step 3: The limit ε→ 0. Combining Steps 1 and 2 gives

lim
h→0

N∑
i,j=1

kij
(
δijsh

)2∣∣δijnh∣∣2 ≤ 8

∫
S2ε
|∇s|2dx,

for all ε > 0. We finally show that∫
S2ε
|∇s|2dx =

∫
Ω

|∇s|2χ{|s|≤2ε}dx→ 0 as ε→ 0,

where χA is the characteristic function of the set A. By virtue of the Lebesgue’s
dominated convergence theorem, we obtain

lim
ε→0

∫
Ω

|∇s|2χ{|s|≤2ε}dx =

∫
Ω

|∇s|2χ{s=0}dx = 0,

where the last equality follows by basic measure theory, i.e. ∇s(x) = 0 for a.e. x in
{s(x) = 0} [26, Ch. 5, exercise 17, p. 292.]. This proves the lemma.
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To prove the lim-inf inequality (3.1), we need first to show coercivity (Lemma
3.3) and weak lower semi-continuity (Lemma 3.4). We do this next.

Lemma 3.3 (coercivity). For any (sh,nh) ∈ Sh × Nh, we have

Eh1 [sh,nh] ≥ min{κ, 1}
∫

Ω

|∇ũh|2dx ≥ min{κ, 1}
∫

Ω

|∇Ih|sh||2dx.

Proof. Inequality (2.16) of Lemma 2.2 shows that

Eh1 [sh,nh] ≥ (κ− 1)

∫
Ω

|∇Ih|sh||2dx+

∫
Ω

|∇ũh|2dx. (3.4)

If κ ≥ 1, then Eh1 [sh,nh] obviously controls the H1-norm of ũh with constant 1.
If 0 < κ < 1, then combining (2.11) with (2.19) yields

Eh1 [sh,nh] ≥ κ

2

N∑
i,j=1

kij (δij |sh|)2
+
κ

2

N∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijnh|2

≥ κ
∫

Ω

|∇ũh|2dx,

whence Eh1 [sh,nh] ≥ min{κ, 1}
∫

Ω
|∇ũh|2dx as asserted. Since

N∑
i,j=1

kij |ũh(xi)− ũh(xj)|2 ≥
N∑

i,j=1

kij (|ũh(xi)| − |ũh(xj)|)2
,

and |sh(xi)| = |ũh(xi)| for all nodes, we obtain∫
Ω

|∇ũh|2dx ≥
∫

Ω

|∇Ih|ũh||2dx =

∫
Ω

|∇Ih|sh||2dx,

which is the desired second estimate.
Weak lower semi-continuity usually follows from convexity. While it is obvious

that the discrete energy Ẽ1[sh,uh] in (2.15) is convex with respect to ∇uh and ∇sh
if κ ≥ 1, the convexity is not clear if 0 < κ < 1. It is worth mentioning that if κ < 1,
the convexity of the continuous energy (2.2) is based on the fact that |u| = |s| a.e. in
Ω and hence the convex part

∫
Ω
|∇u|2dx controls the concave part (κ− 1)

∫
Ω
|∇s|2dx

[32]. However, for the discrete energy (2.15), the equality |uh| = |sh| holds only at
the vertices. Therefore, it is nontrivial to establish the weak lower semi-continuity
of Ẽh1 [sh,uh]. This is why we exploit the nodal relation |sh| = |uh| to derive an

alternative formula for Ẽh1 [Ih|sh|, ũh]. Our next lemma hinges on (2.16) and makes

the convexity of Ẽh1 [Ih|sh|, ũh] with respect to ∇ũh completely explicit.
Lemma 3.4 (weak lower semi-continuity). The energy

∫
Ω
Lh(wh,∇wh)dx, with

Lh(wh,∇wh) := (κ− 1)|∇Ih|wh||2 + |∇wh|2,

is well defined for any wh ∈ Uh and is weakly lower semi-continuous in H1(Ω), i.e.
for any weakly convergent sequence wh ⇀ w in the H1 norm, we have

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫

Ω

(κ− 1)|∇|w||2 + |∇w|2dx.
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Proof. If κ ≥ 1, then the assertion follows from standard arguments. Here, we
only dwell upon 0 < κ < 1 and dimension d = 2, because the case d = 3 is similar.
After extracting a subsequence (not relabeled) we can assume that wh converges to
w strongly in L2(Ω) and pointwise a.e. in Ω.

Step 1: Equivalent form of Lh. We let T be any triangle in the mesh Th, label
its three vertices as x0, x1, x2, and define e1 := x1 − x0 and e2 := x2 − x0. After
denoting wi

h = wh(xi) for i = 0, 1, 2, a simple calculation yields

∇wh = (w1
h −w0

h)⊗ e∗1 + (w2
h −w0

h)⊗ e∗2,

∇Ih|wh| = (|w1
h| − |w0

h|)e∗1 + (|w2
h| − |w0

h|)e∗2,

where {e∗i } is the dual basis of {ei}, that is, e∗i · ej = Iij , and I = (Iij)
2
i,j=1 is the

identity matrix. Assuming |wi
h|+ |w0

h| 6= 0, we realize that

|wi
h| − |w0

h| =
wi
h + w0

h

|wi
h|+ |w0

h|
· (wi

h −w0
h).

We then obtain ∇Ih|wh| = Gh(wh) : ∇wh where Gh(wh) is the 3-tensor:

Gh(wh) :=
w1
h + w0

h

|w1
h|+ |w0

h|
⊗ e1 ⊗ e∗1 +

w2
h + w0

h

|w2
h|+ |w0

h|
⊗ e2 ⊗ e∗2, on T,

and the contraction between a 3-tensor and a 2-tensor in dyadic form is given by

(g1 ⊗ g2 ⊗ g3) : (m1 ⊗m2) := (g1 ·m1)(g2 ·m2)g3.

Therefore, we have

Lh(wh,∇wh) = |∇wh|2 + (κ− 1)|Gh(wh) : ∇wh|2,

which expresses Lh(wh,∇wh) directly in terms of ∇wh and nodal values of wh.
Step 2: Convergence of Gh(wh). Given ε > 0, Egoroff’s Theorem [48] asserts that

wh → w uniformly on Eε,

for some subset Eε and |Ω\Eε| ≤ ε. We now consider the set Aε := {|w(x)| ≥ 2ε}∩Eε,
and observe that there exists a sufficiently small hε such that for any x ∈ Aε

|wh(x)| ≥ ε for all h ≤ hε.

If G(w) := w
|w| ⊗ I, then we claim that∫

Aε

|Gh(wh)−G(w)|2dx→ 0, as h→ 0. (3.5)

For any x ∈ Aε, let {Th} be a sequence of triangles such that x ∈ Th. Since |wh(x)| ≥ ε
and wh is piecewise linear, there exists a vertex of Th, which we label as x0

h, such that

|w0
h| ≥ ε. To compare Gh(wh) with wh(x)

|wh(x)| ⊗ I, we use that I = e1 ⊗ e∗1 + e2 ⊗ e∗2:

Gh(wh)− wh(x)

|wh(x)|
⊗ I =

∑
i=1,2

(
wi
h + w0

h

|wi
h|+ |w0

h|
− wh(x)

|wh(x)|

)
⊗ ei ⊗ e∗i .
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We define H(x,y) := x+y
|x|+|y| and observe that for all x ∈ Aε, we have

Gh(wh)− wh(x)

|wh(x)|
⊗ I =

∑
i=1,2

(
H(w0

h,w
i
h)−H(wh(x),wh(x))

)
⊗ ei ⊗ e∗i .

Next, we estimate

|H(w0
h,w

i
h)−H(wh(x),wh(x))| =

∣∣∣∣ |wh(x)|(w0
h + wi

h)− (|w0
h|+ |wi

h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣
≤
∣∣∣∣w0

h + wi
h − 2wh(x)

|w0
h|+ |wi

h|

∣∣∣∣+

∣∣∣∣ (|wh(x)| − |w0
h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣+

∣∣∣∣ (|wh(x)| − |wi
h|)wh(x)

(|w0
h|+ |wi

h|)|wh(x)|

∣∣∣∣ .
Since |w0

h|, |wh(x)| ≥ ε, and wh(x)−wh(xih) = ∇wh · (x−xih) for all x ∈ Th, we have

∣∣H(w0
h,w

i
h)−H(wh(x),wh(x))| ≤ Ch

ε
|∇wh| ∀x ∈ Aε ∩ Th.

Integrating on Aε, we obtain∫
Aε

∣∣∣∣Gh(wh)− wh(x)

|wh(x)|
⊗ I
∣∣∣∣2 dx ≤ Ch2

ε2

∫
Aε

|∇wh(x)|2dx→ 0, as h→ 0.

Since wh → w a.e. in Ω, and wh
|wh| −

w
|w| is bounded, applying the dominated conver-

gence theorem, we infer that∫
Aε

∣∣∣∣ wh

|wh|
− w

|w|

∣∣∣∣2 → 0, as h→ 0.

Combining these two limits, we deduce (3.5).
Step 3: Convexity. We now prove that the energy density

L(w,M) := |M |2 + (κ− 1)|G(w) : M |2

is convex with respect to any matrix M for any vector w. Note that L(w,M) is a
quadratic function of M , so we only need to show that L(w,M) ≥ 0 for any M and
w. Thus, it suffices to show that |G(w) : M | ≤ |M |.

Assume that M =
∑
i,jmijvi ⊗ vj where {vi}2i=1 is the canonical basis on R2.

Then we have |M |2 =
∑2
i,j=1m

2
ij and a simple calculation yields

G(w) : M =

∑
i wivi
|w|

⊗ (v1 ⊗ v1 + v2 ⊗ v2) :

∑
k,l

mklvk ⊗ vl


=

1

|w|
∑
i,k,l

wimklδikvl =
1

|w|
∑
i,l

wimilvl,

where w =
∑2
i=1 wivi. Therefore, we obtain

|G(w) : M |2 =
1

|w|2
2∑
j=1

(
2∑
i=1

wimij

)2

.
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The Cauchy-Schwarz inequality yields(
2∑
i=1

wimij

)2

≤

(
2∑
i=1

w2
i

)(
2∑
i=1

m2
ij

)
= |w|2

(
2∑
i=1

m2
ij

)
,

which implies |G(w) : M |2 ≤ |M |2 and L(w,M) ≥ 0 for any matrix M and vector w.
A similar argument shows that Lh(wh,M) ≥ 0 for any matrix M and vector wh.

Step 4: Weak lower semi-continuity. Since Gh(wh)→ G(w) in L2(Aε) according
to (3.5), Egoroff’s theorem yields

Gh(wh)→ G(w) uniformly on Bε,

where Bε ⊂ Aε and |Aε \Bε| ≤ ε. We claim that

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

L(w,∇w)dx. (3.6)

Step 3 implies Lh(wh,∇wh) ≥ 0 for all x ∈ Ω. Hence,∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

(
|∇wh|2 + (κ− 1)|Gh(wh) : ∇wh|2

)
dx.

A simple calculation yields∫
Ω

Lh(wh,∇wh)dx ≥
∫
Bε

L(w,∇wh)dx+ (κ− 1)Qh(w,wh)

where

Qh(w,wh) :=

∫
Bε

(
[(Gh(wh)−G(w)) : ∇wh]t[Gh(wh) : ∇wh]

+ (G(w) : ∇wh)t[(Gh(wh)−G(w)) : ∇wh]
)
dx.

Since L(w,∇wh) is convex with respect to ∇wh (Step 3), we have [26, pg. 446, Sec.
8.2.2]

lim inf
h→0

∫
Bε

L(w,∇wh)dx ≥
∫
Bε

L(w,∇w)dx.

To prove (3.6), it remains to show that Qh(w,wh) → 0 as h → 0. Since G(w)
and Gh(wh) are bounded and

∫
Ω
|∇wh(x)|2dx is uniformly bounded, we have

Qh(w,wh) ≤ C
∫
Bε

|Gh(wh)−G(w)||∇wh|2dx

≤ C max
Bε

∣∣Gh(wh)−G(w)
∣∣ ∫
Bε

|∇wh|2dx→ 0 as h→ 0,

due to the uniform convergence of Gh(wh) to G(w) in Bε. Therefore, we infer that
lim infh→0

∫
Ω
Lh(wh,∇wh)dx ≥

∫
Bε
L(w,∇w)dx.

Since the inequality above holds for arbitrarily small ε, taking ε→ 0 yields

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫

Ω\{w(x)=0}
L(w,∇w)dx =

∫
Ω

L(w,∇w)dx,
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where the last equality follows from ∇w = 0 a.e. in the set {w(x) = 0} [26, Ch. 5,
exercise 17, p. 292.]. Finally, noting that G(w) : ∇w = ∇|w|, we get the assertion.

Lemma 3.5 (characterizing limits). Let {Th} satisfy (2.6) and let (sh,nh) ∈ Xh
converge strongly to (s,n) ∈ X. Suppose that there exists a constant C > 0 such that

Eh1 (sh,nh) ≤ C for all h > 0, (3.7)

and let uh, ũh ∈ Uh be defined in (2.14). Then (s,n) ∈ A and there is a subsequence
{(Ih|sh|, ũh)} (not relabeled) that converges weakly in H1(Ω), strongly in L2(Ω), and
pointwise a.e. to (|s|, ũ), where ũ = |s|n. In addition, there is also a subsequence
{(sh,uh)} (not relabeled) that converges weakly in H1(Ω), strongly in L2(Ω), and
pointwise a.e. to (s,u), where u = sn.

Proof. We define s̃h := Ih|sh| and use Lemma 3.3 (coercivity) in conjunction with
(3.7) to realize that the H1-norm of (s̃h, ũh) is uniformly bounded in h. We can thus
extract a subsequence (not relabeled) converging weakly in H1(Ω), strongly in L2(Ω),
and pointwise a.e. to (s̃, ũ) ∈ H1+d(Ω). We must relate this limit to (s,n).

Since sh → s in L2(Ω), sh and |sh| converge pointwise a.e. to s and |s|. Moreover,

‖s̃h − |sh|‖L2(Ω) = ‖Ih|sh| − |sh|‖L2(Ω) ≤ Ch‖∇|sh|‖L2(Ω) ≤ Ch‖∇sh‖L2(Ω),

where ‖∇sh‖L2(Ω) is uniformly bounded because of (3.7) as well as (2.9) and (2.11).
Consequently, |s| = s̃ ∈ H1(Ω) and so s ∈ H1(Ω) as well.

Next, we show that ũ = |s|n. Since s̃h and nh are piecewise linear functions over
Th, we observe that

‖s̃hnh − Ih[s̃hnh]‖L1(Ω) ≤ Ch2‖∇s̃h ⊗∇nh‖L1(Ω) ≤ Ch2‖∇s̃h‖L2(Ω)‖∇nh‖L2(Ω).

An inverse estimate shows that ‖∇nh‖L2(Ω) ≤ Ch−1|Ω|1/2 because |nh| ≤ 1. Hence,
‖s̃hnh − Ih[s̃hnh]‖L1(Ω) = O(h). Now write

ũh − |s|n = (Ih[s̃hnh]− s̃hnh) + (s̃hnh − |s|n),

and note that the first term goes to zero in L1(Ω) with rate h and the second one
goes to zero in L1(Ω) because (s̃h,nh) converges to (|s|,n) in L2(Ω); ergo, ũ = |s|n.

Since ‖∇sh‖L2(Ω) ≤ C, (3.7) together with (2.15) gives ‖∇uh‖L2(Ω) ≤ C. The
preceding argument thus shows that a subsequence of uh converges weakly in H1(Ω),
strongly in L2(Ω) and pointwise a.e. to u = sn ∈ H1(Ω)d.

We finally prove that |n| = 1 a.e. in Ω, which implies (s,n) ∈ A. We first observe
that Ih|ũh| = Ih|sh| along with

‖|ũh| − Ih|ũh|‖L2(Ω) ≤ Ch‖∇|ũh|‖L2(Ω) ≤ Ch‖∇ũh‖L2(Ω) ≤ Ch.

Since Ih|sh| → |s| and Ih|ũh| → |ũ| as h → 0, we deduce that |s| = |ũ| a.e. in Ω, or
equivalently |n| = 1 a.e. in Ω as asserted.

We now prove the main theorem.

Proof of Theorem 3.1. he lim-sup inequality (3.2) follows directly from Lemma
3.2 provided (s,n) ∈ A; otherwise E[s,n] =∞ and (3.2) is obvious.

As for the lim-inf inequality (3.1), let (s,n) ∈ X and take {(sh,nh) ∈ Xh} to be
any sequence that converges to (s,n) in the L2-norm. If lim infh→0E

h
1 (sh,nh) =∞,

then there is nothing to prove. So assume that Eh1 (sh,nh) is uniformly bounded for
a subsequence (not relabeled). By Lemma 3.5, (s,n) ∈ A is an admissible pair and
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there exists a subsequence (Ih|sh|, ũh) converging weakly in H1, strongly in L2 and
pointwise a.e. to (|s|, ũ) with ũ = |s|n. Since Ih|sh| = Ih|ũh|, invoking (2.16) in
conjunction with Lemma 3.4 (weak lower semi-continuity), we obtain

lim inf
h→0

Eh1 [sh,nh] ≥
∫

Ω

(κ− 1)|∇|ũ||2 + |∇ũ|2dx.

Exploiting the properties ũ = |s|n and |n| = 1 a.e. in Ω, we deduce the orthogonal
decomposition ∇ũ = ∇|s| ⊗ n + |s|∇n a.e. in Ω. Hence,∫

Ω

(κ− 1)|∇|ũ||2 + |∇ũ|2dx =

∫
Ω

κ|∇|s||2 + |s|2|∇n|2dx

=

∫
Ω

κ|∇s|2 + s2|∇n|2dx ≡ E1[s,n].

This completes the proof. �
The Γ-convergence result immediately yields the following corollary [17, 23].

Corollary 3.6 (convergence of global discrete minimizers). Let {Th} satisfy
(2.6). If {(sn,nh)} ⊂ Xh is a sequence of global minimizers of the discrete energy
Eh[sh,nh] in (2.13), then there is a subsequence that converges weakly in H1(Ω),
strongly in L2(Ω), and pointwise a.e. in Ω to an admissible pair (s,n) ∈ A, which is
a global minimizer of the continuous energy E[s,n] in (2.1). In addition,

Eh[sh,nh]→ E[s,n] as h→ 0.

This corollary is about global minimizers, both discrete and continuous. In the
next section, we design a quasi-gradient flow to compute discrete local minimizers,
and show its convergence (see Theorem 4.2). In general, convergence to a global
minimizer is not available, nor are rates of convergence due to the lack of continuous
dependence results. However, if local minimizers of E[s,n] are isolated, then there
exists local minimizers of Eh[sh,nh] that Γ-converge to (s,n) [17, 23].

4. Quasi-Gradient Flow. We consider a gradient flow methodology consisting
of a gradient flow in s and a minimization in n as a way to compute minimizers of
(2.1) and (2.13). We begin with its description for the continuous system and verify
that it has a monotone energy decreasing property. We then do the same for the
discrete system.

4.1. Continuous case. We introduce the following subspace to enforce Dirichlet
boundary conditions on open subsets Γ of ∂Ω:

H1
Γ(Ω) = {v ∈ H1(Ω) : v = 0 on Γ}. (4.1)

4.1.1. First order variation. Consider the bulk energy E[s,n] where the pair
(s,n) is in the admissible class A defined in (2.3). We take a variation z ∈ H1

0 (Ω)
of s and obtain δsE[s,n; z] = δsE1[s,n; z] + δsE2[s; z], the first variation of E in the
direction z, where

δsE1[s,n; z] = 2

∫
Ω

(∇s · ∇z + |∇n|2sz) and δsE2[s; z] =

∫
Ω

ψ′(s)z.
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Next, we introduce the space of tangential variations of n:

V ⊥(n) =
{
v ∈ H1(Ω)d : v · n = 0 a.e. in Ω

}
. (4.2)

In order to satisfy the constraint |n| = 1, we take a variation v ∈ V ⊥(n) of n and get

δnE[s,n; v] = δnE1[s,n; v] = 2

∫
Ω

s2(∇n · ∇v).

Note that variations in V ⊥(n) preserve the unit length constraint up to second order
accuracy [45]: |n + tv|2 = 1 + t2|v|2 and |n+ tv| ≥ 1 for all t ∈ R.

4.1.2. Quasi-gradient flow. We consider an L2-gradient flow for E with re-
spect to the scalar variable s(t):∫

Ω

∂tsz := −δsE1[s,n; z]− δsE2[s; z] for all z ∈ H1
Γs(Ω);

here, we enforce stationary Dirichlet boundary conditions for s on the set Γs ⊂ ∂Ω,
whence z = 0 on Γs. A simple but formal integration by parts yields∫

Ω

∂tsz = −
∫

Ω

(
− 2∆s+ 2|∇n|2s+ ψ′(s)

)
z for all z ∈ H1

Γs(Ω),

where we use the implicit Neumann condition ν · ∇s = 0 on ∂Ω \ Γs, ν being the
outer unit normal on ∂Ω. Therefore, s satisfies the (nonlinear) parabolic PDE:

∂ts = 2∆s− 2|∇n|2s− ψ′(s). (4.3)

Given s, let n satisfy |n| = 1 a.e. in Ω, a stationary Dirichlet boundary condition
on the open set Γn ⊂ ∂Ω, and the following degenerate minimization problem:

E[s,n] ≤ E[s,m] for all |m| = 1 a.e. Ω,

with the same boundary condition as n. This implies

δnE[s,n; v] = 0 for all v ∈ V ⊥(n) ∩H1
Γn

(Ω)d. (4.4)

4.1.3. Formal energy decreasing property. Differentiating the energy E[s,n]
with respect to time, we obtain

∂tE[s,n] = δsE[s,n; ∂ts] + δnE[s,n; ∂tn].

By virtue of (4.3) and (4.4), we deduce that

∂tE[s,n] = −δsE[s,n; ∂ts] = −
∫

Ω

|∂ts|2. (4.5)

Hence, the bulk energy E is monotonically decreasing for our quasi-gradient flow.

4.2. Discrete case. Let skh ∈ Sh(Γs, gh) and nkh ∈ Nh(Γn, rh) denote finite
element functions, where k indicates a “time-step” index (see Section 4.2.2 for the
discrete gradient flow algorithm). To simplify notation, we use the following:

ski := skh(xi), nki := nkh(xi), zi := zh(xi), vi := vh(xi).
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4.2.1. First order variation. First, we introduce the discrete version of (4.2):

V ⊥h (nh) = {vh ∈ Uh : vh(xi) · nh(xi) = 0 for all nodes xi ∈ Nh}. (4.6)

Next, the first order variation of Eh1 in the direction vh ∈ V ⊥h (nkh) ∩ H1
Γn

(Ω) at the

director variable nkh reads

δnhE
h
1 [skh,n

k
h; vh] =

N∑
i,j=1

kij

(
(ski )2 + (skj )2

2

)
(δijn

k
h) · (δijvh), (4.7)

whereas the first order variation of Eh1 in the direction zh ∈ Sh∩H1
Γs

(Ω) at the degree

of orientation variable skh consists of two terms

δshE
h
1 [skh,n

k
h; zh] = κ

N∑
i,j=1

kij
(
δijs

k
h

)
(δijzh) +

N∑
i,j=1

kij |δijnkh|2
(
ski zi + skj zj

2

)
. (4.8)

To design an unconditionally stable scheme for the discrete gradient flow, we
employ the convex splitting technique in [49, 41, 42]. We split the double well potential
into a convex and concave part: let ψc and ψe be both convex for all s ∈ (−1/2, 1) so
that ψ(s) = ψc(s)− ψe(s), and set

δshE
h
2 [sk+1

h ; zh] :=

∫
Ω

[
ψ′c(s

k+1
h )− ψ′e(skh)

]
zhdx. (4.9)

Lemma 4.1 (convex-concave splitting). For any skh and sk+1
h in Sh, we have∫

Ω

ψ(sk+1
h )dx−

∫
Ω

ψ(skh)dx ≤ δshEh2 [sk+1
h ; sk+1

h − skh].

Proof. A simple calculation, based on the mean-value theorem and the convex
splitting ψ = ψc − ψe, yields∫

Ω

(
ψ(sk+1

h )− ψ(skh)
)
dx = δshE

h
2 [sk+1

h ; sk+1
h − skh] + T,

where

T =

∫
Ω

∫ 1

0

[
ψ′c(s

k
h + θ(sk+1

h − skh))− ψ′c(sk+1
h )

]
(sk+1
h − skh)dθdx

+

∫
Ω

∫ 1

0

[
ψ′e(s

k
h)− ψ′e(skh + θ(sk+1

h − skh))
]
(sk+1
h − skh)dθdx.

The convexity of both ψc and ψe implies T ≤ 0, as desired.

4.2.2. Discrete quasi-gradient flow algorithm. Our scheme for minimizing
the discrete energy Eh[sh,nh] is an alternating direction method, which minimizes
with respect to nh and evolves sh separately in the steepest descent direction during
each iteration. Therefore, this algorithm is not a standard gradient flow but rather a
quasi-gradient flow.
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Algorithm: Given (s0
h,n

0
h) in Sh(Γs, g)× Nh(Γn, r), iterate Steps (a)-(c) for k ≥ 0.

Step (a): Minimization. Find tkh ∈ V ⊥h (nkh)∩H1
Γn

(Ω) such that nkh+ tkh minimizes

the energy Eh1 [skh,n
k
h + vh] for all vh in V ⊥h (nkh) ∩H1

Γn
(Ω), i.e. tkh satisfies

δnhE
h
1 [skh,n

k
h + tkh; vh] = 0, ∀vh ∈ V ⊥h (nkh) ∩H1

Γn
(Ω).

Step (b): Projection. Normalize nk+1
i :=

nki+tki
|nki+tki |

at all nodes xi ∈ Nh.

Step (c): Gradient flow. Using (skh,n
k+1
h ), find sk+1

h in Sh(Γs, g) such that∫
Ω

sk+1
h − skh
δt

zh = −δshEh1 [sk+1
h ,nk+1

h ; zh]− δshEh2 [sk+1
h ; zh], ∀zh ∈ Sh ∩H1

Γs(Ω).

We impose Dirichlet boundary conditions for both skh and nkh. Note that the scheme
has no restriction on the time step thanks to the implicit Euler method in Step (c).

4.3. Energy decreasing property. The quasi-gradient flow scheme in Section
4.2.2 has a monotone energy decreasing property, a discrete version of (4.5), provided
the mesh Th is weakly acute, namely it satisfies (2.6) [21, 43].

Theorem 4.2 (energy decrease). Let Th satisfy (2.6). The iterate (sk+1
h ,nk+1

h )
of the Algorithm (discrete quasi-gradient flow) of Section (4.2.2) exists and satisfies

Eh[sk+1
h ,nk+1

h ] ≤ Eh[skh,n
k
h]− 1

δt

∫
Ω

(sk+1
h − skh)2dx.

Equality holds if and only if (sk+1
h ,nk+1

h ) = (skh,n
k
h) (equilibrium state).

Proof. The Steps (a) and (b) are monotone whereas Step (c) decreases the energy.
Step (a): Minimization. Since Eh1 is convex in nkh for fixed skh, there exists a

tangential variation tkh which minimizes Eh1 [skh,n
k
h+vkh] among all tangential variations

vkh. The fact that Eh2 is independent of the director field nkh implies

Eh[skh,n
k
h + tkh] ≤ Eh[skh,n

k
h].

Step (b): Projection. Since the mesh Th is weakly acute, we claim that

nk+1
h =

nkh + tkh
|nkh + tkh|

⇒ Eh1
[
skh,n

k+1
h

]
≤ Eh1

[
skh,n

k
h + tkh

]
.

We follow [1, 8]. Let vh = nkh + tkh, wh = vh
|vh| , and observe that |vh| ≥ 1 and wh is

well-defined. By (2.11) (definition of discrete energy), we only need to show that

kij
(ski )2 + (skj )2

2
|wh(xi)−wh(xj)|2 ≤ kij

(ski )2 + (skj )2

2
|vh(xi)− vh(xj)|2.

for all xi, xj ∈ Nh. Because kij ≥ 0 for i 6= j, this is equivalent to showing that
|wh(xi) −wh(xj)| ≤ |vh(xi) − vh(xj)|. This follows from the fact that the mapping
a 7→ a/|a| defined on {a ∈ Rd : |a| ≥ 1} is Lipschitz continuous with constant 1. Note
that equality above holds if and only if nk+1

h = nkh or equivalently tkh = 0.
Step (c): Gradient flow. Since Eh1 is quadratic in terms of skh, and

2sk+1
h

(
sk+1
h − skh

)
=
(
sk+1
h − skh

)2
+
∣∣sk+1
h

∣∣2 − ∣∣skh∣∣2,
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reordering terms gives

Eh1 [sk+1
h ,nk+1

h ]− Eh1 [skh,n
k+1
h ] = R1 − Eh1 [sk+1

h − skh,nk+1
h ] ≤ R1,

where

R1 := δshE
h
1 [sk+1

h ,nk+1
h ; sk+1

h − skh].

On the other hand, Lemma 4.1 implies

Eh2 [sk+1
h ]− Eh2 [skh] =

∫
Ω

ψ(sk+1
h )dx−

∫
Ω

ψ(skh)dx ≤ R2 := δshE
h
2 [sk+1

h ; sk+1
h − skh].

Combining both estimates and invoking Step (c) of the Algorithm yields

Eh[sk+1
h ,nk+1

h ]− Eh[skh,n
k+1
h ] ≤ R1 +R2 = − 1

δt

∫
Ω

(sk+1
h − skh)2 ≤ 0,

which is the assertion. Note finally that equality occurs if and only if sk+1
h = skh and

nk+1
h = nkh, which corresponds to an equilibrium state. This completes the proof.

5. Numerical experiments. We present computational experiments to illus-
trate our method, which was implemented with the MATLAB/C++ finite element
toolbox FELICITY [46]. For all 3-D simulations, we used the algebraic multi-grid
solver (AGMG) [37, 35, 36, 38] to solve the linear systems in parts (a) and (c) of the
quasi-gradient flow algorithm. In 2-D, we simply used the “backslash” command in
MATLAB.

5.1. Tangential variations. Solving step (a) of the Algorithm requires a tan-
gential basis for the test function and the solution. However, forming the matrix
system is easily done by first ignoring the tangential variation constraint (i.e. arbi-
trary variations), followed by a simple modification of the matrix system.

Let Atkh = B represent the linear system in Step (a) and suppose d = 3. Multi-
plying by a discrete test function vh, we have

vThAtkh = vThB, for all vh ∈ RdN .

Next, using nkh, find r1, r2 such that {nkh, r1, r2} forms an orthonormal basis of R3

at each node xi, i.e. find an orthonormal basis of V ⊥h (nkh). Next, expand tkh =
Φ1r1 + Φ2r2 and make a similar expansion for vh. After a simple rearrangement and
partitioning of the linear system, one finds it decouples into two smaller systems: one
for Φ1 and one for Φ2. After solving for Φ1, Φ2, define the nodal values of tkh by the
formula tkh = Φ1r1 + Φ2r2.

5.2. Point defect in 2-D. For the classic Frank energy
∫

Ω
|∇n|2, a point defect

in two dimensions has infinite energy [45]. This is not the case for the energy (2.1),
because s can go to zero at the location of the point defect, so the term

∫
Ω
s2|∇n|2

will be finite.
We simulate the gradient flow evolution of a point defect moving to the center of

the domain (Ω is the unit square). We set κ = 2 and take the double well potential
to have the following splitting:

ψ(s) = ψc(s)− ψe(s)
= 63.0s2 − (−16.0s4 + 21.33333333333s3 + 57.0s2),
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Fig. 5.1: Evolution of a point defect toward its equilibrium state (Section 5.2). Time
step is δt = 0.02. The minimum value of s, at time index 230, is 2.0226 · 10−2.

with a local minimum at s = 0 and global minimum at s = s∗ := 0.750025 (see
Section 2.1 for more information). The following Dirichlet boundary conditions on
∂Ω are imposed for s and n:

s = s∗, n =
(x, y)− (0.5, 0.5)

|(x, y)− (0.5, 0.5)|
. (5.1)

Initial conditions on Ω for the gradient flow are: s = s∗ and a regularized point defect
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away from the center.
Figure 5.1 shows the evolution of the director field n and the scalar degree of

orientation parameter s. One can see the regularizing effect that s has. We note
that an L2 gradient flow scheme, instead of the quasi (weighted) gradient flow we use,
yields a much slower evolution to equilibrium.

5.3. Plane defect in 3-D. Next, we simulate the gradient flow evolution of the
liquid crystal director field toward a plane defect on a cube domain (Ω = (0, 1)3 is
the unit cube). This is motivated by an exact solution found in [45, Sec. 6.4]. We
set κ = 0.2 and remove the double well potential. The following Dirichlet boundary
conditions on ∂Ω ∩ ({z = 0} ∪ {z = 1}) are imposed for (s,n):

z = 0 : s = s∗, n = (1, 0, 0),

z = 1 : s = s∗, n = (0, 1, 0),
(5.2)

and Neumann conditions are imposed on the remaining part of ∂Ω, i.e. ν · ∇s = 0
and ν · ∇n = 0. The exact solution (s,n) (at equilibrium) only depends on z and is
given by

n(z) = (1, 0, 0), for z < 0.5, n(z) = (0, 1, 0), for z > 0.5,

s(z) = 0, at z = 0.5, and s(z) is linear for z ∈ (0, 0.5) ∪ (0.5, 1.0).
(5.3)

Initial conditions on Ω for the gradient flow are: s = s∗ and a regularized point defect
away from the center of the cube.

Figure 5.2 shows the evolution of the director field n toward the plane defect.
Only a few slices are shown in Figure 5.2 because of the simple form of the equilibrium
solution.

Figure 5.3 (left) shows the components of n evaluated along a one dimensional
vertical slice. Clearly, the numerical solution approximates the exact solution well,
except at the narrow transition region near z = 0.5. Furthermore, Figure 5.3 (right)
shows the corresponding evolution of the degree of orientation parameter s (evaluated
along the same one dimensional vertical slice). One can see the regularizing effect that
s has, i.e. at equilibrium, s ≈ 0.008 at the z = 0.5 plane (the defect plane of n). Our
numerical experiments suggest that s|z=0.5 → 0 as the mesh size goes to zero.

5.4. Fluting effect and propeller defect. This example further investigates
the effect of κ on the presence of defects. An exact solution of a line defect in a right
circular cylinder is given in [45, Sec. 6.5]. They show that for κ sufficiently large (say
κ > 1) the director field is smooth, but if κ is sufficiently small, then a line defect in
n appears along the axis of the cylinder. Our numerical experiments confirm this.

To further illustrate this effect, we conducted a similar experiment for a unit cube
domain Ω = (0, 1)3. Again, for simplicity, we remove the double well potential. The
following Dirichlet boundary conditions on the vertical sides of the cube ∂Ω ∩ ({x =
0} ∪ {x = 1} ∪ {y = 0} ∪ {y = 1}) are imposed for (s,n):

s = s∗, n(x, y, z) =
(x, y)− (0.5, 0.5)

|(x, y)− (0.5, 0.5)|
, (5.4)

and Neumann conditions are imposed on the top and bottom parts of ∂Ω, i.e. ν ·∇s =
0 and ν · ∇n = 0. Figure 5.4 shows the equilibrium solution when κ = 2. The z-
component of n is not zero, i.e. it points out of the plane of the horizontal slice that
we plot. This is referred to as the “fluting effect” (or escape to the third dimension
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Fig. 5.2: Evolution toward an (equilibrium) plane defect (Section 5.3). The director
field n is shown at five different horizontal slices. The time step used was δt = 0.02.

[45]). In this case, the degree of orientation parameter s is bounded well away from
zero, so the director field is smooth (i.e. no defect).

Next, we choose κ = 0.1, and initialize our gradient flow scheme with s = s∗

and a regularized point defect away from the center of the cube for n. Figure 5.5
shows the evolution of the director field n toward a “propeller” defect (two plane
defects intersecting). Figure 5.6 shows n and s in their final equilibrium state at the
z = 0.5 plane. Both n and s are nearly uniform with respect to the z variable. The
regularizing effect of s is apparent, i.e. s ≈ 2×10−5 near where n has a discontinuity.
The 3-D shape of the defect resembles two planes intersecting near the x = 0.5, y = 0.5
vertical line, i.e. the defect looks like an “X” extruded in the z direction.

5.5. Floating plane defect. This example investigates the effect of the domain
shape on the defect. The setup here is essentially the same as in Section 5.4, with
κ = 0.1, except the domain is a rectangular box: Ω = (0, 1) × (0, 0.7143) × (0, 1).
Figure 5.7 shows n and s in their final equilibrium state at the z = 0.5 plane. Both
n and s are approximately uniform with respect to the z variable. Instead of the
propeller defect, we get a “floating” plane defect aligned with the major axis of the
box. Again, the regularizing effect of s is apparent, i.e. s ≈ 7 × 10−5 near where n
has a discontinuity.

6. Conclusion. We introduced and analyzed a robust finite element method for
a degenerate energy functional that models nematic liquid crystals with variable de-
gree of orientation. We also developed a gradient flow scheme for computing energy
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Fig. 5.3: Evolution toward an (equilibrium) plane defect (Section 5.3); time step is
δt = 0.02. Left: plots of the three components of n, evaluated along the vertical line
x = 0.5, y = 0.5, are shown at three time indices (solid blue curve: n · e1, dashed
black curve: n · e2, dotted red curve: n · e3). At equilibrium, n is nearly piecewise
constant with a narrow transition region around z = 0.5. Right: plots of the degree-
of-orientation s, corresponding to n, are shown. The equilibrium solution is piecewise
linear, with a kink at z = 0.5 where s ≈ 0.008.
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Fig. 5.4: Equilibrium state (Section 5.4) of n and s. One horizontal slice (z = 0.5) is
plotted: n on the left, s on the right (n and s are approximately independent of z).
The director field points out of the plane (i.e. n · e3 6= 0) and s > 0.278, so there is
no defect.
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minimizers, with a strict monotone energy decreasing property. The numerical ex-
periments show a variety of defect structures that Ericksen’s model exhibits. Some
of the defect structures are high dimensional with surprising shapes (see Figure 5.6).
An interesting extension of this work is to couple the effect of external fields (e.g.
magnetic and electric fields) to the liquid crystal as way to drive and manipulate the
defect structures.
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MA, 1994.

[14] R. Byron Bird, Robert C. Armstrong, and Ole Hassager, Dynamics of Polymeric Liquids
- Volume 1: Fluid Mechanics, vol. 1 of Wiley Interscience Publication, John Wiley and
Sons, 2nd ed., 1987.

[15] L.M. Blinov, Electro-optical and magneto-optical properties of liquid crystals, Wiley, 1983.
[16] Andrea Braides, Gamma-Convergence for Beginners, vol. 22 of Oxford Lecture Series in

Mathematics and Its Applications, Oxford Scholarship, 2002.
[17] , Local minimization, variational evolution and Γ-convergence, vol. 2094 of Lecture Notes

in Mathematics, Springer, 2014.
[18] Jan H. Brandts, Sergey Korotov, and Michal Kř́ıžek, The discrete maximum principle
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