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THE WEAK IDEAL PROPERTY AND TOPOLOGICAL

DIMENSION ZERO

CORNEL PASNICU AND N. CHRISTOPHER PHILLIPS

Abstract. Following up on previous work, we prove a number of results for
C*-algebras with the weak ideal property or topological dimension zero, and
some results for C*-algebras with related properties. Some of the more impor-
tant results include:

• The weak ideal property implies topological dimension zero.
• For a separable C*-algebra A, topological dimension zero is equivalent to

RR(O2 ⊗ A) = 0, to D ⊗A having the ideal property for some (or any)
Kirchberg algebra D, and to A being residually hereditarily in the class
of all C*-algebras B such that O∞ ⊗B contains a nonzero projection.

• Extending the known result for Z2, the classes of C*-algebras with topo-
logical dimension zero, with the weak ideal property, and with residual
(SP) are closed under crossed products by arbitrary actions of abelian
2-groups.

• If X is a totally disconnected locally compact Hausdorff space and A is
a C0(X)-algebra all of whose fibers have one of the weak ideal property,
topological dimension zero, residual (SP), or the combination of pure
infiniteness and the ideal property, then A also has the corresponding
property.

• For a substantial class of separable C*-algebras including all separable
locally AH algebras, topological dimension zero, the weak ideal property,
and the ideal property are all equivalent.

• The weak ideal property does not imply the ideal property for separable
Z-stable C*-algebras.

We also give counterexamples to several other statements one might hope for.

The weak ideal property (recalled in Definition 1.3 below) was introduced in [24];
it is the property for which there are good permanence results (see Section 8 of [24])
which seems to be closest to the ideal property. (The ideal property fails to pass
to extensions, by Theorem 5.1 of [17], to corners, by Example 2.8 of [23], and to
fixed point algebras under actions of Z2, by Example 2.7 of [23]. The weak ideal
property does all of these.) Topological dimension zero was introduced in [3]; it
is a non-Hausdorff version of total disconnectedness of the primitive ideal space of
a C*-algebra. These two properties are related, although not identical, and the
purpose of this paper is to study them and their connections further.

The main results are as follows. We prove that the weak ideal property implies
topological dimension zero in complete generality. For separable C*-algebras which
are purely infinite in the sense of [13], it is equivalent to the ideal property and
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to topological dimension zero. A general separable C*-algebra A has topological
dimension zero if and only if O2 ⊗ A has real rank zero; this is also equivalent to
D ⊗ A having the ideal property for some (or any) Kirchberg algebra D. We rule
out by example other results in this direction that one might hope for. Topological
dimension zero, at least for separable C*-algebras, is also equivalent to a property
of the sort considered in [24]. That is, there is an upwards directed class C such
that a separable C*-algebra A has topological dimension zero if and only if A is
residually hereditarily in C. (See the end of the introduction for other examples of
this kind of property.) All this is in Section 1.

In Section 2, we improve the closure properties of the class of C*-algebras residu-
ally hereditarily in a class C by replacing an arbitrary action of Z2 with an arbitrary
action of a finite abelian 2-group. This refinement was overlooked in [24]. It applies
to the weak ideal property as well as to residual (SP) and to the combination of
pure infiniteness and the ideal property. For topological dimension zero, better
results are already known (Theorem 3.17 of [23]), but, in the separable case, we
remove the technical hypothesis in Theorem 3.14 of [23], and show that if a finite
group acts on a C*-algebra A and the fixed point algebra has topological dimension
zero, then A has topological dimension zero.

Section 3 is a brief look at minimal tensor products. For the tensor product to
have the weak ideal property or topological dimension zero, it is usually necessary
that both tensor factors have the corresponding property. In the separable case
and with one factor exact, this is sufficient for topological dimension zero, but we
don’t know about the weak ideal property. We show by example that this result
fails without the exactness hypothesis.

Proceeding to a C0(X)-algebra A, we show that if X is totally disconnected
and the fibers all have the weak ideal property, topological dimension zero, resid-
ual (SP), or the combination of pure infiniteness and the ideal property, then A
also has the corresponding property. This result is the analog for these properties
of Theorem 2.1 of [20] (for real rank zero) and Theorem 2.1 of [21] (for the ideal
property), but we do not assume that the C0(X)-algebra is continuous. If A is a
separable continuous C0(X)-algebra with nonzero fibers, then total disconnected-
ness of X is also necessary. This is in Section 4. In the short Section 5, we consider
locally trivial C0(X)-algebras with fibers which are strongly purely infinite in the
sense of Definition 5.1 of [14], and show (slightly generalizing the known result for
C0(X,B)) that A is again strongly purely infinite. In particular, this applies if the
fibers are separable, purely infinite, and have topological dimension zero.

Section 6 gives a substantial class of C*-algebras for which the ideal property, the
weak ideal property, and topological dimension zero are all equivalent. This class
includes all separable locally AH algebras (and further generalizations of AH al-
gebras, such as separable LS-algebras). However, we show by example that there
is a Z-stable C*-algebra with just one nontrivial ideal which has the weak ideal
property but not the ideal property.

Ideals in C*-algebras are assumed to be closed and two sided. We write Zn for
Z/nZ, since the p-adic integers will not appear. If α : G→ Aut(A) is a action of a
group G on a C*-algebra A, then Aα denotes the fixed point algebra.

Because of the role they play in this paper, we recall the following definitions
from [24].
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Definition 0.1 (Definition 5.1 of [24]). Let C be a class of C*-algebras. We say that
C is upwards directed if whenever A is a C*-algebra which contains a subalgebra
isomorphic to an algebra in C, then A ∈ C.

Definition 0.2 (Definition 5.2 of [24]). Let C be an upwards directed class of
C*-algebras, and let A be a C*-algebra.

(1) We say that A is hereditarily in C if every nonzero hereditary subalgebra
of A is in C.

(2) We say that A is residually hereditarily in C if A/I is hereditarily in C for
every ideal I ⊂ A with I 6= A.

Section 5 of [24] gives permanence properties for a general condition defined this
way. We recall the conditions of this type considered in [24], and add one more to
be proved here.

(1) Let C be the class of all C*-algebras which contain an infinite projection.
Then C is upwards directed (clear) and a C*-algebra A is purely infinite
and has the ideal property if and only if A is residually hereditarily in C.
See the equivalence of conditions (ii) and (iv) of Proposition 2.11 of [26]
(valid, as shown there, even when A is not separable).

(2) Let C be the class of all C*-algebras which contain an infinite element. Then
C is upwards directed (clear) and a C*-algebra A is (residually) hereditarily
infinite (Definition 6.1 of [24]) if and only if A is residually hereditarily in C.
(See Corollary 6.5 of [24]. We should point out that, by Lemma 2.2(iii)
of [13], if D is a C*-algebra, B ⊂ D is a hereditary subalgebra, and a and b
are positive elements of B such that a is Cuntz subequivalent to b relative
to D, then a is Cuntz subequivalent to b relative to B.)

(3) Let C be the class of all C*-algebras which contain a properly infinite ele-
ment. Then C is upwards directed (clear) and a C*-algebra A is (residually)
hereditarily properly infinite (Definition 6.2 of [24]) if and only if A is resid-
ually hereditarily in C. (Lemma 2.2(iii) of [13] plays the same role here as
in (2).)

(4) Let C be the class of all C*-algebras which contain a nonzero projection.
Then C is upwards directed (clear). A C*-algebra A has Property (SP)
if and only if A is hereditarily in C, and has residual (SP) (Definition 7.1
of [24]) if and only if A is residually hereditarily in C. (Both statements are
clear.)

(5) Let C be the class of all C*-algebras B such that K ⊗B contains a nonzero
projection. Then C is upwards directed (clear) and a C*-algebra A has
the weak ideal property (Definition 8.1 of [24]; recalled in Definition 1.3
below) if and only if A is residually hereditarily in C. (This is shown at the
beginning of the proof of Theorem 8.5 of [24].)

(6) Let C be the class of all C*-algebras B such that O2⊗B contains a nonzero
projection. Then C is upwards directed. (This is clear.) A separable C*-
algebra A has topological dimension zero if and only if A is residually
hereditarily in C. (This will be proved in Theorem 1.10 below.)

1. Topological dimension zero

In this section, we prove (Theorem 1.8) that the weak ideal property implies
topological dimension zero for general C*-algebras. We then give characterizations
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of topological dimension zero for separable C*-algebras (Theorem 1.10) and purely
infinite separable C*-algebras (Theorem 1.9), in terms of other properties of the
algebra, in terms of properties of their tensor products with suitable Kirchberg
algebras, and (for general separable C*-algebras) of the form of being residually
hereditarily in suitable upwards directed classes. We also give two related coun-
terexamples. In particular, there is a separable purely infinite unital nuclear C*-
algebra A with one nontrivial ideal such that O2 ⊗A ∼= A and RR(A) = 0, and an
action α : Z2 → Aut(A), such that RR(C∗(Z2, A, α)) 6= 0.

We recall two definitions from [23]. We call a not necessarily Hausdorff space
locally compact if the compact (but not necessarily closed) neighborhoods of every
point x ∈ X form a neighborhood base at x.

Definition 1.1 (Remark 2.5(vi) of [3]; Definition 3.2 of [23]). Let X be a locally
compact but not necessarily Hausdorff topological space. We say that X has topo-
logical dimension zero if for every x ∈ X and every open set U ⊂ X such that
x ∈ U , there exists a compact open (but not necessarily closed) subset Y ⊂ X such
that x ∈ Y ⊂ U . (Equivalently, X has a base for its topology consisting of subsets
which are compact and open, but not necessarily closed.) We further say that a
C*-algebra A has topological dimension zero if Prim(A) has topological dimension
zero.

Definition 1.2 (Definition 3.4 of [23]). Let X be a not necessarily Hausdorff topo-
logical space. A compact open exhaustion of X is an increasing net (Yλ)λ∈Λ of
compact open subsets Yλ ⊂ X such that X =

⋃
λ∈Λ Yλ.

We further recall (Lemma 3.10 of [23]; see Definition 3.9 of [23] or page 53 of [26]
for the original definition) that if A is a C*-algebra and I ⊂ A is an ideal, then I
is compact if and only if Prim(I) is a compact open (but not necessarily closed)
subset of Prim(A).

Finally, we recall the definition of the weak ideal property.

Definition 1.3 (Definition 8.1 of [24]). Let A be a C*-algebra. We say that A has
the weak ideal property if whenever I ⊂ J ⊂ K ⊗ A are ideals in K ⊗ A such that
I 6= J , then J/I contains a nonzero projection.

Lemma 1.4. Let A be a C*-algebra with the weak ideal property. Let I1 ⊂ I2 ⊂ A
be ideals with I1 6= I2. Then there exists an ideal J ⊂ A with I1 $ J and such that
K ⊗ (J/I1) is generated as an ideal by a single nonzero projection.

Proof. Since A has the weak ideal property and K⊗ (I2/I1) 6= 0, there is a nonzero
projection e ∈ K ⊗ (I2/I1). Let I ⊂ K ⊗ (I2/I1) be the ideal generated by e. Then
there is an ideal J ⊂ A with I1 ⊂ J ⊂ I2 such that I = K⊗ (J/I1). Since J/I1 6= 0,
it follows that J 6= I1. �

Lemma 1.5. Let A be a C*-algebra, let F ⊂ A be a finite set of projections, and
let I ⊂ A be the ideal generated by F . Then Prim(I) is a compact open subset of
Prim(A).

Proof. This can be shown by using the same argument as in (iii) implies (i) in the
proof of Proposition 2.7 of [26]. However, we can give a more direct proof (not
involving the Pedersen ideal). As there, we prove that I is compact (as recalled
after Definition 1.2). So let (Iλ)λ∈Λ be an increasing net of ideals in A such that⋃

λ∈Λ Iλ = I. Standard functional calculus arguments produce ε > 0 such that
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whenever B is a C*-algebra, C ⊂ B is a subalgebra, and p ∈ B is a projection such
that dist(p, C) < ε, then there is a projection q ∈ C such that ‖q − p‖ < 1, and
in particular q is Murray-von Neumann equivalent q. Write F = {p1, p2, . . . , pn}.
Choose λ ∈ Λ such that dist(pj , Iλ) < ε for j = 1, 2, . . . , n. Let q1, q2, . . . , qn ∈ Iλ
be projections obtained from the choice of ε. Then there are partial isometries
s1, s2, . . . , sn ∈ A such that pj = sjqjs

∗
j for j = 1, 2, . . . , n. So p1, p2, . . . , pn ∈ Iλ,

whence Iλ = I. This completes the proof. �

Lemma 1.6. Let A be a C*-algebra, and let I ⊂ A be an ideal. Suppose that there
is a collection (Iλ)λ∈Λ (not necessarily a net) of ideals in A such that I is the ideal
generated by

⋃
λ∈Λ Iλ and such that Prim(Iλ) has a compact open exhaustion (as

in Definition 1.2) for every λ ∈ Λ. Then Prim(I) has a compact open exhaustion.

Proof. It is easily checked that a union of open sets with compact open exhaustions
also has a compact open exhaustion. �

Proposition 1.7. Let A be a C*-algebra. Then there is a largest ideal I ⊂ A such
that Prim(I) has a compact open exhaustion.

Proof. Let I be the closure of the union of all ideals J ⊂ A such that Prim(J)
has a compact open exhaustion. Then Prim(I) has a compact open exhaustion by
Lemma 1.6. �

Theorem 1.8. Let A be a C*-algebra with the weak ideal property. Then A has
topological dimension zero.

Proof. We will show that for every ideal I ⊂ A, the subset Prim(I) has a compact
open exhaustion. The desired conclusion will then follow from Lemma 3.6 of [23].

So let I ⊂ A be an ideal. By Proposition 1.7, there is a largest ideal J ⊂ I
such that Prim(J) has a compact open exhaustion. We prove that J = I. Suppose
not. Use Lemma 1.4 to find an ideal N ⊂ I with J $ N and such that K ⊗ (N/J)
is generated by one nonzero projection. Then Prim(K ⊗ (N/J)) is a compact
open subset of Prim(K ⊗ (I/J)) by Lemma 1.5. So Prim(N/J) is a compact open
subset of Prim(I/J). Since Prim(J) has a compact open exhaustion, we can apply
Lemma 3.7 of [23] (taking U = Prim(J)) to deduce that Prim(N) has a compact
open exhaustion. Since J $ N , we have a contradiction. Thus J = I, and Prim(I)
has a compact open exhaustion. �

The list of equivalent conditions in the next theorem extends the list in Corollary
4.3 of [26], by adding condition (5). As discussed in the introduction, this condition
is better behaved than the related condition (4).

Theorem 1.9. Let A be a separable C*-algebra which is purely infinite in the
sense of Definition 4.1 of [13]. Then the following are equivalent:

(1) O2 ⊗A has real rank zero.
(2) O2 ⊗A has the ideal property.
(3) A has topological dimension zero.
(4) A has the ideal property.
(5) A has the weak ideal property.

Proof. The equivalence of conditions (1), (2), (3), and (4) is Corollary 4.3 of [26].
That (4) implies (5) is trivial. That (5) implies (3) is Theorem 1.8. �
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We presume that Theorem 1.9 holds without separability. However, some of the
results used in the proof of Corollary 4.3 of [26] are only known in the separable
case, and it seems likely to require some work to generalize them.

Recall that a Kirchberg algebra is a simple separable nuclear purely infinite
C*-algebra.

Theorem 1.10. Let A be a separable C*-algebra. Then the following are equiva-
lent:

(1) A has topological dimension zero.
(2) O2 ⊗A has real rank zero.
(3) O2 ⊗A has the ideal property.
(4) O2 ⊗A has the weak ideal property.
(5) O∞ ⊗A has the ideal property.
(6) O∞ ⊗A has the weak ideal property.
(7) There exists a Kirchberg algebra D such that D ⊗ A has the weak ideal

property.
(8) For every Kirchberg algebra D, the algebra D ⊗A has the ideal property.
(9) A is residually hereditarily in the class of all C*-algebrasB such thatO2⊗B

contains a nonzero projection.
(10) A is residually hereditarily in the class of all C*-algebras B such that K ⊗

O2 ⊗B contains a nonzero projection.
(11) A is residually hereditarily in the class of all C*-algebras B such that O∞⊗

B contains a nonzero projection.

We presume that Theorem 1.10 also holds without separability.
To put conditions (9), (10), and (11) in context, we point out that it is clear

that the classes used in them are upwards directed in the sense of Definition 0.1.
However, applying the results of Section 5 of [24] does not give any closure properties
for the collection of C*-algebras with topological dimension zero which are not
already known.

The conditions in Theorem 1.10 are not equivalent to A having the weak ideal
property, since there are nonzero simple separable C*-algebras A, such as those
classified in [29], for which K ⊗ A has no nonzero projections. They are also not
equivalent to RR(O∞ ⊗A) = 0. See Example 1.13 below.

Proof of Theorem 1.10. Since A has topological dimension zero if and only if O2⊗A
has topological dimension zero, and since O2 ⊗ A is purely infinite (by Proposi-
tion 4.5 of [13]), the equivalence of (1), (2), (3), and (4) follows by applying Theo-
rem 1.9 to O2⊗A. Since O∞⊗A is purely infinite (by Proposition 4.5 of [13]) and
O2⊗O∞

∼= O2, the equivalence of (3), (5), and (6) follows by applying Theorem 1.9
to O∞ ⊗A.

We prove the equivalence of (1) and (9). Let C be the class of all C*-algebras B
such that O2 ⊗B contains a nonzero projection.

Assume that A has topological dimension zero; we prove that A is residually
hereditarily in C. Let I ⊂ A be an ideal, and let B ⊂ A/I be a nonzero hereditary
subalgebra. Then A/I has topological dimension zero by Proposition 2.6 of [4]
and Lemma 3.6 of [23]. It follows from Lemma 3.3 of [23] that B has topological
dimension zero. Use (3) implies (1) in Theorem 1.9 to conclude thatO2⊗B contains
a nonzero projection.
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Conversely, assume that A is residually hereditarily in C. We actually prove that
O2 ⊗A has the weak ideal property. By (5) implies (3) in Theorem 1.9, and since
O2⊗A is purely infinite (by Proposition 4.5 of [13]), it will follow that O2⊗A has
topological dimension zero. Since Prim(O2 ⊗ A) ∼= Prim(A), it will follow that A
has topological dimension zero.

Thus, let I ⊂ J ⊂ O2 ⊗ A be ideals such that J 6= I; we must show that
K ⊗ (J/I) contains a nonzero projection. Since O2 is simple and nuclear, there
are ideals I0 ⊂ J0 ⊂ A such that I = O2 ⊗ I0 and J = O2 ⊗ J0; moreover,
J/I ∼= O2 ⊗ (J0/I0). Since J0/I0 is a nonzero hereditary subalgebra of A/I0, the
definition of being hereditarily in C implies that O2 ⊗ (J0/I0) contains a nonzero
projection, so K ⊗ (J/I) ∼= K ⊗O2 ⊗ (J0/I0) does also. This completes the proof
of the equivalence of (1) and (9).

We prove equivalence of (9) and (11) by showing that the two classes involved
are equal, that is, by showing that if B is any C*-algebra, then O2 ⊗ B contains
a nonzero projection if and only if O∞ ⊗ B contains a nonzero projection. If
O2 ⊗B contains a nonzero projection, use an injective (nonunital) homomorphism
O2 → O∞ to produce an injective homomorphism of the minimal tensor products
O2 ⊗min B → O∞ ⊗min B. Since O2 and O∞ are nuclear, we have an injective
homomorphism O2 ⊗ B → O∞ ⊗ B, and hence a nonzero projection in O∞ ⊗ B.
Using an injective (unital) homomorphism from O∞ to O2, the same argument also
shows that if O∞ ⊗B contains a nonzero projection then so does O2 ⊗B.

The proof of the equivalence of (9) and (10) is essentially the same as in the
previous paragraph, using injective homomorphisms

O2 −→ K ⊗O2 and K ⊗O2 −→ O2 ⊗O2

∼=
−→ O2.

We have now proved the equivalence of all the conditions except (7) and (8).
It is trivial that (6) implies (7) and that (8) implies (5).
Assume (7), so that there is a Kirchberg algebraD0 such thatD0⊗A has the weak

ideal property. We prove (8). Let D be any Kirchberg algebra. By Theorem 1.8,
the algebra D0 ⊗A has topological dimension zero. Since

Prim(D0 ⊗A) ∼= Prim(A) ∼= Prim(D ⊗A),

D ⊗A has topological dimension zero. Apply the already proved implication from
(1) to (5) with D ⊗ A in place of A, concluding that O∞ ⊗ D ⊗ A has the ideal
property. Since O∞ ⊗D ∼= D (Theorem 3.15 of [12]), we see that D ⊗ A has the
ideal property. �

A naive look at condition (1) of Theorem 1.9 and the permanence properties for
C*-algebras which are residually hereditarily in some class C (see Corollary 5.6 and
Theorem 5.3 of [24]) might suggest that if O∞ ⊗A has real rank zero and one has
an arbitrary action of Z2 on O∞ ⊗ A, or a spectrally free (Definition 1.3 of [24])
action of any discrete group on O∞⊗A, then the crossed product should also have
real rank zero. This is false. We give an example of a nonsimple purely infinite
unital nuclear C*-algebra A satisfying the Universal Coefficient Theorem (in fact,
with O2⊗A ∼= A), with exactly one nontrivial ideal, and such that RR(A) = 0, and
an action α : Z2 → Aut(A), such that C∗(Z2, A, α) does not have real rank zero.

To put our example in context, we recall the following. First, Example 9 of [7]
gives an example of a pointwise outer action α of Z2 on a simple unital AF algebraA
such that C∗(Z2, A, α) does not have real rank zero. Second, by Corollary 4.4 of [9],
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if A is purely infinite and simple, then for any action α : Z2 → Aut(A) the crossed
product is again purely infinite. If α is pointwise outer, then C∗(Z2, A, α) is again
simple, so automatically has real rank zero. Otherwise, α must be an inner action.
(See Lemma 1.11 below.) Then C∗(Z2, A, α) ∼= A⊕A, so has real rank zero. Thus,
no such example is possible when A is purely infinite and simple. Third, it is
possible for A to satisfy O2⊗A ∼= A but to have O2⊗C∗(Z2, A, α) 6∼= C∗(Z2, A, α).
See Lemma 4.7 of [8], where this happens with A = O2.

The following lemma is well known, but we don’t know a reference.

Lemma 1.11. Let A be a simple C*-algebra, let G be a finite cyclic group, and
let α : G→ Aut(A) be an action of G on A. Let g0 ∈ G be a generator of G. If αg0

is inner, then α is an inner action, that is, there is a homomorphism g 7→ ug from
G to the unitary group of M(A) such that αg(a) = ugau

∗
g for all g ∈ G and a ∈ A.

Proof. Let n be the order of G.
By hypothesis, there is a unitary v ∈ M(A) such that αg0(a) = vav∗ for all

a ∈ A. Then a = αn
g0(a) = vnav−n for all a ∈ A. Simplicity of A implies that

the center of M(A) contains only scalars, so there is λ ∈ S1 such that vn = λ · 1.
Now choose ω ∈ S1 such that ωn = λ−1, giving (ωv)n = 1. Define ugk

0

= ωkvk for

k = 0, 1, . . . , n− 1. �

Example 1.12. There is a separable purely infinite unital nuclear C*-algebra A
with exactly one nontrivial ideal I, satisfying the Universal Coefficient Theorem,
satisfying O2 ⊗ A ∼= A, and such that RR(A) = 0, and there is an action α : Z2 →
Aut(A) such that RR(C∗(Z2, A, α)) 6= 0. Moreover, α is strongly pointwise outer
in the sense of Definition 4.11 of [28] (Definition 1.1 of [24]) and spectrally free in
the sense of Definition 1.3 of [24].

To start the construction, let ν : Z2 → Aut(O2) be the action considered in
Lemma 4.7 of [8]. Define B = C∗(Z2,O2, ν). Lemma 4.7 of [8] implies that B is a
Kirchberg algebra (simple, separable, nuclear, and purely infinite) which is unital
and satisfies the Universal Coefficient Theorem, and moreover that K0(B) ∼= Z

[
1
2

]

and K1(B) = 0.
Let P be the unital Kirchberg algebra satisfying the Universal Coefficient The-

orem, K0(P ) = 0, and K1(P ) ∼= Z. The Künneth formula (Theorem 4.1 of [31])
implies that K0(P ⊗O4) = 0 and K1(P ⊗O4) ∼= Z3.

Since O4 satisfies the Universal Coefficient Theorem, and since K ⊗P ⊗O4 and
O4 are separable and nuclear, every possible six term exact sequence

K0(P ⊗O4) −−−−→ M0 −−−−→ K0(O4)

exp

x
y∂

K1(O4) ←−−−− M1 ←−−−− K1(P ⊗O4)

(for any possible choice of abelian groups M0 and M1 and homomorphisms exp
and ∂) is realized as the K-theory of an exact sequence

(1.1) 0 −→ K ⊗ P ⊗O4 −→ D −→ O4 −→ 0,

in which D is unital, K0(D) ∼= M0, and K1(D) ∼= M1. Choose the exact se-
quence (1.1) such that the connecting map

(1.2) exp: K0(O4)→ K1

(
P ⊗O4

)
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is an isomorphism. Define A = O2 ⊗D. Let ι : Z2 → Aut(D) be the trivial action,
and let α = ν ⊗ ι : Z2 → Aut(A) be the obvious action on the tensor product.

It follows from the isomorphisms O2 ⊗O4
∼= O2 and O2 ⊗ P ⊗O4

∼= O2 that A
fits into an exact sequence

0 −→ K ⊗O2 −→ A −→ O2 −→ 0.

Theorem 3.14 and Corollary 3.16 of [3] therefore imply that RR(A) = 0. There is
also an exact sequence of crossed products

0 −→ C∗
(
Z2, O2 ⊗K ⊗ P ⊗O4

)
−→ C∗(Z2, A, α) −→ C∗

(
Z2, O2 ⊗O4

)
−→ 0,

in which the actions on the ideal and quotient are the tensor product of ν and the
trivial action. This sequence reduces to

0 −→ B ⊗K ⊗ P ⊗O4 −→ B ⊗D −→ B ⊗O4 −→ 0,

in which the maps are gotten from those of (1.1) by tensoring them with idB. It
follows from Künneth formula (Theorem 4.1 of [31]) that

K0(B ⊗O4) ∼= K1

(
B ⊗K ⊗ P ⊗O4

)
∼= Z

[
1
2

]
⊗ Z3

∼= Z3.

By naturality, the connecting map

K0(B ⊗O4)→ K1

(
B ⊗K ⊗ P ⊗O4

)

is the tensor product of the isomorphism (1.2) with id
Z[ 1

2
], and is hence nonzero.

Since every class in K0(B⊗O4) is represented by a projection in B⊗O4, it follows
from the six term exact sequence in K-theory that projections in B⊗O4 need not lift
to projections in B⊗D. Theorem 3.14 of [3] therefore implies that RR(B⊗D) 6= 0.
Thus RR(C∗(Z2, A, α)) 6= 0.

It remains to prove strong pointwise outerness and spectral freeness. In our
case, these are equivalent by Theorem 1.16 of [24], so we prove strong pointwise
outerness. This reduces to proving that automorphisms of O2 ⊗K ⊗ P ⊗O4 and
O2 ⊗ O4 coming from the nontrivial element of Z2 are outer. The automorphism
of O2 coming from the action ν and the nontrivial element of Z2 is outer, since
otherwise the action would be inner by Lemma 1.11, so crossed product would
be O2 ⊕ O2. We can now apply Proposition 1.19 of [24] twice, both times using
ν : Z2 → Aut(O2) in place of α : G → Aut(A), and in one case using K ⊗ P ⊗O4

in place of B and in the other case using O4.

We would like to get outerness from Theorem 1 of [32], but that theorem is only
stated for unital C*-algebras.

Example 1.13. There is a separable purely infinite unital nuclear C*-algebra A
with exactly one nontrivial ideal and which has the ideal property but such that
O∞ ⊗ A does not have real rank zero.

Let D be as in (1.1) in Example 1.12, with the property that the connecting map
in (1.2) is nonzero. Set A = O∞⊗D. Since O∞⊗K⊗P⊗O4 and O∞⊗O4 have the
weak ideal property (for trivial reasons), it follows from Theorem 8.5(5) of [24] that
A has the weak ideal property, and from Theorem 1.9 that A has the ideal property.
However, A is by construction not K0-liftable in the sense of Definition 3.1 of [26],
so Corollary 4.3 of [26] implies that O∞ ⊗ A (which is of course isomorphic to A)
does not have real rank zero.
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2. Permanence properties for crossed products

In [24] we proved that if C is an upwards directed class of C*-algebras, α is
a completely arbitrary action of Z2 on a C*-algebra A, and Aα is (residually)
hereditarily in C, then A is (residually) hereditarily in C. (See Theorem 5.5 of [24].)
In particular, by considering dual actions, it follows (Corollary 5.6 of [24]) that
crossed products by arbitrary actions of Z2 preserve the class of C*-algebras which
are (residually) hereditarily in C. Here, we show how one can easily extend the first
result to arbitrary groups of order a power of 2 and the second result to arbitrary
abelian groups of order a power of 2. This should have been done in [24], but was
overlooked there. We believe these results should be true for any finite group in
place of Z2, or at least any finite abelian group, but we don’t know how to prove
them in this generality.

The following lemma is surely well known.

Lemma 2.1. Let G be a topological group, let A be a C*-algebra, and let α : G→
Aut(A) be an action of G on A. Let N ⊂ G be a closed normal subgroup. Then
there is an action α : G/N → Aut(Aα|N ) such that for g ∈ G and a ∈ Aα|N we have
αgN (a) = αg(a). Moreover, (Aα|N )α = Aα.

Proof. The only thing requiring proof is that if g ∈ G and a ∈ Aα|N then αg(a) ∈

Aα|N . So let k ∈ N . Since g−1kg ∈ N , we get

αk(αg(a)) = αg

(
αg−1kg(a)

)
= αg(a).

This completes the proof. �

Theorem 2.2. Let C be an upwards directed class of C*-algebras. Let G be a finite
2-group, and let α : G→ Aut(A) be an arbitrary action of G on a C*-algebra A.

(1) If Aα is hereditarily in C, then A is hereditarily in C.
(2) If Aα is residually hereditarily in C, then A is residually hereditarily in C.

Proof. We prove both parts at once.
We use induction on the number n ∈ Z≥0 such that the order of G is 2n. When

n = 0, the statement is trivial. So assume n ∈ Z≥0, the statement is known for
all groups of order 2n, G is a group with card(G) = 2n+1, A is a C*-algebra,
α : G → Aut(A) is an action, and Aα is (residually) hereditarily in C. The Sylow
Theorems provide a subgroup N ⊂ G such that card(N) = 2n. Since N has
index 2, N must be normal. Let α : G/N → Aut(Aα|N ) be as in Lemma 2.1.
Then (Aα|N )α = Aα is (residually) hereditarily in C. Since G/N ∼= Z2, it follows
from Theorem 5.5 of [24] that Aα|N is (residually) hereditarily in C. The induction
hypothesis now implies that A is (residually) hereditarily in C. �

Corollary 2.3. Let C be an upwards directed class of C*-algebras. Let G be a
finite abelian 2-group, and let α : G → Aut(A) be an arbitrary action of G on a
C*-algebra A.

(1) If A is hereditarily in C, then C∗(G,A, α) and Aα are hereditarily in C.
(2) If A is residually hereditarily in C, then C∗(G,A, α) and Aα are residually

hereditarily in C.

Proof. For C∗(G,A, α), apply Theorem 2.2 with C∗(G,A, α) in place of A and the
dual action α̂ in place of α.
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For Aα, use the Proposition in [30] to see that Aα is isomorphic to a corner of
C∗(G,A, α), and apply Proposition 5.10 of [24]. �

Presumably Corollary 2.3 is valid for crossed products by coactions of not neces-
sarily abelian 2-groups. Indeed, possibly the appropriate context is that of actions
of finite dimensional Hopf C*-algebras. We will not pursue this direction here.

Corollary 2.4. Let G be a finite 2-group, and let α : G→ Aut(A) be an arbitrary
action of G on a C*-algebra A. Suppose Aα has one of the following proper-
ties: residual hereditary infiniteness, residual hereditary proper infiniteness, resid-
ual (SP), or the combination of the ideal property and pure infiniteness. Then A
has the same property.

Proof. As discussed in the introduction, for each of these properties there is an
upwards directed class C such that a C*-algebra has the property if and only if it
is residually hereditarily in the class C. Apply Theorem 2.2. �

Corollary 2.5. Let G be a finite abelian 2-group, and let α : G → Aut(A) be
an arbitrary action of G on a C*-algebra A. Suppose A has one of the following
properties: residual hereditary infiniteness, residual hereditary proper infiniteness,
residual (SP), or the combination of the ideal property and pure infiniteness. Then
C∗(G,A, α) and Aα have the same property.

Proof. The proof is the same as that of Corollary 2.4, using Corollary 2.3 instead
of Theorem 2.2. �

We omit the weak ideal property in Corollary 2.4 and Corollary 2.5, because
better results are already known (Theorem 8.9 and Corollary 8.10 of [24]). We also
already know (Theorem 3.17 of [23]) that topological dimension zero is preserved
by crossed products by actions of arbitrary finite abelian groups, not just abelian
2-groups. The result analogous to Corollary 2.4 is Theorem 3.14 of [23], but it has
an extra technical hypothesis. In the separable case, we remove this hypothesis.

Theorem 2.6. Let α : G→ Aut(A) be an action of a finite group G on a separable
C*-algebra A. Suppose that Aα has topological dimension zero. Then A has
topological dimension zero.

Proof. Define an action β : G → Aut(O2 ⊗ A) by βg = idO2
⊗ αg for g ∈ G. The

implication from (1) to (4) in Theorem 1.10 shows that (O2 ⊗A)β = O2 ⊗Aα has
the weak ideal property. Theorem 8.9 of [24] now implies that O2⊗A has the weak
ideal property. So A has topological dimension zero by the implication from (4)
to (1) in Theorem 1.10. �

3. Permanence properties for tensor products

In this section, we consider permanence properties for tensor products. Its main
purpose is to serve as motivation for Section 4. The new positive result is Theo-
rem 3.6: if A and B are separable C*-algebras and A is exact, then A⊗min B has
topological dimension zero if and only if A and B have topological dimension zero.
The exactness hypothesis is necessary (Example 3.3). We also give a partial result
for the weak ideal property (Proposition 3.9).

The following two examples show that the properties we are considering are
certainly not preserved by taking tensor products with arbitrary C*-algebras.
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Example 3.1. The algebra C has all of topological dimension zero, the ideal prop-
erty, the weak ideal property, and residual (SP), but C([0, 1]) ⊗ C has none of
these.

Example 3.2. The algebra O2 is purely infinite and has the ideal property but
C([0, 1])⊗O2 does not have the ideal property.

In particular, there is no hope of any general theorem about tensor products for
properties of the form “residually hereditarily in C” when only one tensor factor
has the property. Permanence theorems will therefore have to assume that both
factors have the property in question. The following example shows that we will
also need to assume that at least one tensor factor is exact.

Example 3.3. We show that there are separable unital C*-algebras A and C
(neither of which is exact) which have topological dimension zero and such that
A ⊗min C does not have topological dimension zero. In fact, A and C even have
real rank zero, and C is simple. We also show that there are separable unital C*-
algebras B and D which are purely infinite and have the ideal property, but such
that B ⊗min D does not have the ideal property. In fact, B and D even tensorially
absorb O2, and D is simple.

Since topological dimension zero and the weak ideal property are preserved by
passing to quotients, it follows that no other tensor product of A and C has topo-
logical dimension zero, and that no other tensor product of B and D even has the
weak ideal property.

Let A and C be as in Theorem 2.6 of [25]. As there, A and C are separable
unital C*-algebras with real rank zero, C is simple, and A ⊗min C does not have
the ideal property. These are the same algebras A and C as used in the proof of
Proposition 4.5 of [26]. Thus, A ⊗min C does not have topological dimension zero
by Proposition 4.5(1) of [26]. Also, O2⊗A⊗minC does not have the ideal property
by Proposition 4.5(2) of [26]. Thus taking B = O2 ⊗ A and D = O2 ⊗ C gives
algebras B and D with the required properties.

We have several positive results, but no answers for several obvious questions.
We recall known results, then give the new result we can prove, and conclude with
open questions and a partial result.

We will assume one of the algebras is exact, but this assumption can be re-
placed by any of the other conditions in Proposition 2.17 of [1] which ensure that
Prim(A⊗min B) ∼= Prim(A) × Prim(B).

Theorem 3.4 (Corollary 1.3 of [25]). Let A and B be C*-algebras with the ideal
property. Assume that A is exact. Then A⊗min B has the ideal property.

Theorem 3.5 (Proposition 4.6 of [26]). Let A and B be C*-algebras with the ideal
property. Assume that B is purely infinite and A is exact. Then A⊗minB is purely
infinite and has the ideal property.

Theorem 3.6. Let A and B be separable C*-algebras. Assume that A is exact.
Then A ⊗min B has topological dimension zero if and only if both A and B have
topological dimension zero.

Proof. By Proposition 2.17 of [1] (see Remark 2.11 of [1] for the notation in Propo-
sition 2.16 of [1], to which it refers), the spaces of closed prime ideals satisfy

prime(A⊗min B) ∼= prime(A)× prime(B),
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with the homeomorphism being implemented in the obvious way. (See Proposition
2.16(iii) of [1].) Since A, B, and A⊗minB are all separable, Proposition 4.3.6 of [27]
implies that prime ideals are primitive; the reverse is well known. So

(3.1) Prim(A⊗min B) ∼= Prim(A) × Prim(B).

Assume A and B have topological dimension zero. Then (see Definition 1.1) we
need to prove that if X and Y are locally compact but not necessarily Hausdorff
spaces which have topological dimension zero, then X×Y has topological dimension
zero. So let (x, y) ∈ X×Y , and let W ⊂ X×Y be an open set with (x, y) ∈W . By
the definition of the product topology, there are open subsets U0 ⊂ X and V0 ⊂ Y
such that x ∈ U0 and y ∈ V0. By the definition of topological dimension zero, there
are compact open (but not necessarily closed) subsets U0 ⊂ X and V0 ⊂ Y such
that x ∈ U ⊂ U0 and y ∈ V ⊂ V0. Then U × V is a compact open subset of X × Y
such that (x, y) ∈ U × V ⊂W .

Now assume A ⊗min B has topological dimension zero. We prove that B has
topological dimension zero; the proof that A has topological dimension zero is
the same, except that we don’t need to know that exactness passes to quotients.
Choose a maximal ideal I ⊂ A. Then A/I is also exact, by Proposition 7.1(ii)
of [10]. Apply (3.1) as is and also with A/I in place of A, use the formula for
the homeomorphism from Proposition 2.16(iii) of [1], and use the quotient map
A → A/I and the map Prim((A/I) ⊗min B) → Prim(A ⊗min B) it induces. The
outcome is that

Prim(B) ∼= Prim((A/I)⊗min B) ∼= {I} × Prim(B)

⊂ Prim(A)× Prim(B) ∼= Prim(A⊗min B),

and is a closed subset. Combining Lemmas 3.6 and 3.8 of [23], we see that closed
subsets of spaces with topological dimension zero also have topological dimension
zero. �

Question 3.7. Let A and B be C*-algebras, with A exact. If A and B have
residual (SP), does A⊗min B have residual (SP)?

Question 3.8. Let A and B be C*-algebras, with A exact. If A and B have the
weak ideal property, does A⊗min B have the weak ideal property?

Using results from Section 6 below, we can get a partial result towards Ques-
tion 3.8. But its proof depends on relating the weak ideal property to topological
dimension zero and the ideal property, and doesn’t seem to help with the general
case.

Proposition 3.9. Let A and B be C*-algebras in the classW of Theorem 6.11. If
A and B have the weak ideal property and A is exact, then A⊗minB has the weak
ideal property.

The class W is the smallest class of separable C*-algebras which contains the
separable locally AH algebras, the separable LS algebras, the separable type I C*-
algebras, and the separable purely infinite C*-algebras, and is closed under finite
and countable direct sums and under minimal tensor products when one tensor
factor is exact.

Proof of Proposition 3.9. By Theorem 1.8, the algebras A and B have topological
dimension zero. Combining Lemma 6.3, Lemma 6.4, Lemma 6.8, Lemma 6.7(2),
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Proposition 6.9, and Lemma 6.10, we see that A and B are in the class P of
Notation 6.1. Therefore A and B have the ideal property. So A ⊗min B has the
ideal property by Theorem 3.4. It clearly follows that A⊗minB has the weak ideal
property. �

4. Permanence properties for bundles over totally disconnected

spaces

We now turn to section algebras of continuous fields over totally disconnected
base spaces. We prove that if A is the section algebra of a bundle over a totally
disconnected space, and the fibers all have one of the properties residual (SP),
topological dimension zero, the weak ideal property, or the combination of the
ideal property and pure infiniteness, then A also has the same property. Moreover,
if A has one of these properties, so do all the fibers.

The section algebra of a continuous field over a space which is not totally discon-
nected will not have the weak ideal property except in trivial cases, and the same
is true of the other properties involving the existence of projections in ideals. See
Example 3.1 and Example 3.2, showing that this fails even for trivial continuous
fields. Accordingly, we can’t drop the requirement that the base space be totally
disconnected. Indeed, we prove that for a continuous field with nonzero fibers,
and assuming everything is separable, if the section algebra has one of the four
properties above then the base space must be totally disconnected.

The fact that the properties we consider are equivalent to being residually hered-
itarily in a suitable class C underlies some of our reasoning, but knowing that a
property has this form does not seem to be sufficient for our results.

Following standard notation, if A is a C*-algebra then M(A) is its multiplier
algebra and Z(A) is its center.

Definition 4.1. Let X be a locally compact Hausdorff space. Then a C0(X)-
algebra is a C*-algebraA together with a nondegenerate (see below) homomorphism

ι : C0(X)→ Z(M(A)). Here ι is nondegenerate if ι(C0(X))A = A.

Unlike in Definition 2.1 of [16], we do not assume that ι is injective. This permits
a hereditary subalgebra of A to also be a C0(X)-algebra, without having to replace
X by a closed subspace.

Notation 4.2. Let the notation be as in Definition 4.1. For an open set U ⊂ X
we identify C0(U) with the obvious ideal of C0(X). Then ι(C0(U))A is an ideal
in A. For x ∈ X , we define

Ax = A
/
ι(C0(X \ {x}))A,

and we let evx : A→ Ax be the quotient map. For a closed subset L ⊂ X , we define
A|L = A/ι(C0(X \ L))A. We equip it with the C0(L)-algebra structure which
comes from the fact that C0(X \ L) is contained in the kernel of the composition

C0(X) −→ Z(M(A)) −→ Z(M(A|L)).

Thus Ax = A|{x}. Strictly speaking, A is the section algebra of a bundle and
A|L is the section algebra of the restriction of this bundle to L, but the abuse of
notation is convenient.

Lemma 4.3. Let the notation be as in Definition 4.1 and Notation 4.2. Let a ∈ A.
Then:
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(1) ‖a‖ = supx∈X ‖evx(a)‖.

(2) For every ε > 0, the set
{
x ∈ X : ‖evx(a)‖ ≥ ε

}
⊂ X is compact.

(3) The function x 7→ ‖evx(a)‖ is upper semicontinuous.
(4) For f ∈ C0(X) and x ∈ X , we have evx(ι(f)a) = f(x)evx(a).

Proof. When ι is injective, the first three parts are Corollary 2.2 of [16], and the
last part is contained in the proof of Theorem 2.3 of [16]. In the general case, let
Y ⊂ X be the closed subset such that

Ker(ι) =
{
f ∈ C0(X) : f |Y = 0

}
.

Then A is a C0(Y )-algebra in the obvious way. We have Ax = 0 for x 6∈ Y , and
the function x 7→ ‖evx(a)‖ associated with the C0(X)-algebra structure is gotten
by extending the one associated with the C0(Y )-algebra structure to be zero on
X \Y . The first three parts then follow from those for the C0(Y )-algebra structure,
as does the last when x ∈ Y . The last part is trivial for x ∈ X \ Y . �

Definition 4.4. Let X be a locally compact Hausdorff space, and let A be a
C0(X)-algebra. We say that A is a continuous C0(X)-algebra if for all a ∈ A, the
map x 7→ ‖evx(a)‖ of Lemma 4.3(3) is continuous.

Proposition 4.5. Let X be a locally compact Hausdorff space and let A be a
C*-algebra. Then homomorphisms ι : C0(X) → Z(M(A)) which make A is a con-
tinuous C0(X)-algebra correspond bijectively to isomorphisms of A with the alge-
bra of continuous sections vanishing at infinity of a continuous field of C*-algebras
over X , as in 10.4.1 of [6].

Proof. This is essentially contained in Theorem 2.3 of [16], referring to the defini-
tions at the end of Section 1 of [16]. �

We will also need to use results from [15], so we compare definitions.

Proposition 4.6. Let X be a locally compact Hausdorff space.

(1) Let
(
X, (πx : A→ Ax)x∈X , A

)
be a C*-bundle in the sense of Definition 1.1

of [15]. Then A is a C0(X)-algebra, with structure map ι : C0(X)→M(A)
determined by the product in Definition 1.1(ii) of [15], if and only if for every
a ∈ A the function x 7→ ‖πx(a)‖ is upper semicontinuous and vanishes at
infinity.

(2) Let A be a C0(X)-algebra. Then
(
X, (evx : A → Ax)x∈X , A

)
is a C*-

bundle in the sense of Definition 1.1 of [15] which satisfies the condition
in (1).

Proof. Theorem 2.3 of [16] and the preceding discussion gives a one to one corre-
spondence between C0(X)-algebras and upper semicontinuous bundles over X in
the sense of the definitions at the end of Section 1 of [16]. (The version stated
there is for a special case: the structure map of the C0(X)-algebra is required to be
injective and the fibers of the bundle are required to be nonzero on a dense subset
of X . But the argument in [16] also proves the general case. Some of the argument
is also contained in Lemma 2.1 of [15].)

The difference between Definition 1.1 of [15] and the definition of [16] is that
[15] omits the requirement (condition (ii) in [16]) that for a ∈ A and r > 0, the set{
x ∈ X : ‖a(x)‖ ≥ r

}
be compact. It is easy to check that a function f : X → [0,∞)

is upper semicontinuous and vanishes at infinity if and only if for every r > 0 the
set

{
x ∈ X : f(x) ≥ r

}
is compact. �
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We prove results stating that if X is totally disconnected and the fibers of a
C0(X)-algebra A have a particular property, then so does A. These don’t require
continuity. We will return to continuity later in this section, when we want to prove
that if a continuous C0(X)-algebra with nonzero fibers has one of our properties,
then X is totally disconnected.

Lemma 4.7. Let the notation be as in Definition 4.1 and Notation 4.2. Let B ⊂ A
be a hereditary subalgebra. Let a ∈ A. Then a ∈ B if and only if evx(a) ∈ evx(B)
for all x ∈ X .

Proof. The forward implication is immediate.
For the reverse implication, we first claim that if f ∈ C0(X) satisfies 0 ≤ f ≤ 1

and if b ∈ B, then ι(f)b ∈ B. To prove the claim, it suffices to consider the case
b ≥ 0. In this case, ι(f)b = b1/2ι(f)b1/2, and the claim follows from the fact that
B is also a hereditary subalgebra in M(A).

To prove the result, it is enough to prove that for every ε > 0 there is b ∈ B
such that ‖a− b‖ < ε. So let ε > 0. Define K ⊂ X by

K =
{
x ∈ X : ‖evx(a)‖ ≥

ε

2

}
.

For x ∈ K choose cx ∈ B such that evx(cx) = evx(a), and define Ux ⊂ X by

Ux =
{
y ∈ X : ‖evy(cx − a)‖ <

ε

2

}
.

It follows from Lemma 4.3(2) that K is compact and from Lemma 4.3(3) that Ux is
open for all x ∈ K. Choose x1, x2, . . . , xn ∈ K such that the sets Ux1

, Ux2
, . . . , Uxn

cover K. Choose continuous functions fk : X → [0, 1] with compact support con-
tained in Uxk

for k = 1, 2, . . . , n, and such that for x ∈ K we have
∑n

k=1 fk(x) = 1
and for x ∈ X \K we have

∑n
k=1 fk(x) ≤ 1. Define b ∈ A by

b =

n∑

k=1

ι(fk)cxk
.

Then b ∈ B by the claim. Moreover, if x ∈ K then, using Lemma 4.3(4) at the first
step, and ‖evx(cxk

− a)‖ < ε
2 whenever fk(x) 6= 0 at the second step, we have

‖evx(b− a)‖ ≤

n∑

k=1

fk(x)‖evx(cxk
− a)‖ <

ε

2
.

Define f(x) = 1−
∑n

k=1 fk(x) for x ∈ X . For x ∈ X \K, similar reasoning gives

‖evx(b − a)‖ ≤
∥∥evx(b− [1− f(x)]a)

∥∥ + ‖f(x)evx(a)‖

≤

n∑

k=1

fk(x)‖evx(cxk
− a)‖+ f(x)‖evx(a)‖

≤ [1− f(x)]
ε

2
+ f(x)‖evx(a)‖ ≤

ε

2
.

It now follows from Lemma 4.3(1) that ‖b− a‖ < ε. This completes the proof. �

Corollary 4.8. Let X be a locally compact Hausdorff space, let A be a C0(X)-
algebra with structure map ι : C0(X)→ Z(M(A)), and let B ⊂ A be a hereditary
subalgebra. Then there is a homomorphism µ : C0(X)→ Z(M(B)) which makes B
a C0(X)-algebra and such that for all b ∈ B and f ∈ C0(X) we have µ(f)b = ι(f)b.
Moreover, Bx = evx(B) for all x ∈ X .
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Proof. It follows from Lemma 4.7 that if f ∈ C0(X) and b ∈ B then ι(f)b ∈ B. For
f ∈ C0(X) we define Tf : B → B by Tf (b) = ι(f)b for b ∈ B. It is easy to check that
(Tf , Tf ) is a double centralizer ofB, and that f 7→ (Tf , Tf ) defines a homomorphism
µ : C0(X)→ Z(M(B)). Nondegeneracy of µ follows from nondegeneracy of ι. The
relations µ(f)b = ι(f)b and Bx = evx(B) hold by construction. �

Lemma 4.9. LetX be a locally compact Hausdorff space, let A be a C0(X)-algebra
with structure map ι : C0(X)→ Z(M(A)), let F ⊂ A be a finite set, and let ε > 0.
Then there is f ∈ Cc(X) such that 0 ≤ f ≤ 1 and ‖ι(f)a− a‖ < ε for all a ∈ F .

Proof. Define K ⊂ X by

K =
{
x ∈ X : there is a ∈ F such that ‖evx(a)‖ ≥

ε
3

}
.

It follows from Lemma 4.3(2) that K is compact. Choose f ∈ Cc(X) such that
0 ≤ f ≤ 1 and f(x) = 1 for all x ∈ K.

Fix a ∈ F . Let x ∈ X . If x ∈ K then, using Lemma 4.3(4), ‖evx(ι(f)a−a)‖ = 0.
Otherwise, again using Lemma 4.3(4),

‖evx(ι(f)a− a)‖ ≤ f(x)‖evx(a)‖+ ‖evx(a)‖ <
ε

3
+

ε

3
=

2ε

3
.

Clearly supx∈X ‖evx(ι(f)a−a)‖ ≤
2ε
3 < ε. So ‖ι(f)a−a‖ < ε by Lemma 4.3(1). �

Lemma 4.10. Let X be a locally compact Hausdorff space, let A be a C0(X)-
algebra with structure map ι : C0(X)→ Z(M(A)), let z ∈ X , let F ⊂ Ker(evz) be
a finite set, and let ε > 0. Then there is f ∈ Cc(X \ {z}) such that 0 ≤ f ≤ 1 and
‖ι(f)a− a‖ < ε for all a ∈ F .

Proof. The proof is essentially the same as that of Lemma 4.9. We define K as
there, observe that z 6∈ K, and require that supp(f), in addition to being compact,
be contained in X \ {z}. �

Lemma 4.11. Let X be a locally compact Hausdorff space, let A be a C0(X)-
algebra with structure map ι : C0(X)→ Z(M(A)), and let I ⊂ A be an ideal. Let
π : A → A/I be the quotient map. Then there is a homomorphism µ : C0(X) →
Z(M(A/I)) which makes A/I a C0(X)-algebra and such that for all a ∈ A and
f ∈ C0(X) we have µ(f)π(a) = π(ι(f)a). Moreover, giving I the C0(X)-algebra
from Corollary 4.8, for every x ∈ X we have (A/I)x ∼= Ax/Ix.

Proof. Let π : M(A) → M(A/I) be the map on multiplier algebras induced by
π : A→ A/I. Define µ = π ◦ ι. All required properties of µ are obvious except for
nondegeneracy.

To prove nondegeneracy, let b ∈ A/I and let ε > 0. Choose a ∈ A such that
π(a) = b. Use Lemma 4.9 to choose f ∈ Cc(X) such that 0 ≤ f ≤ 1 and ‖ι(f)a−
a‖ < ε. Then

‖µ(f)b− b‖ =
∥∥π

(
ι(f)a− a

)∥∥ < ε.

This completes the proof of nondegeneracy.
It remains to prove the last statement. Let x ∈ X . Let evx : A → Ax be as in

Notation 4.2, and let evx : A/I → (A/I)x be the corresponding map with A/I in
place of A. Also let πx : Ax → Ax/Ix be the quotient map. Then πx ◦ evx and
evx ◦ π are surjective, so it suffices to show that they have the same kernel.

Let a ∈ A. Suppose first (πx ◦ evx)(a) = 0. Let ε > 0; we prove that ‖(evx ◦
π)(a)‖ < ε. We have evx(a) ∈ Ix. So there is b ∈ I such that evx(b) = evx(a).
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Then evx(a−b) = 0. So Lemma 4.10 provides f ∈ Cc(X \{x}) such that 0 ≤ f ≤ 1
and ‖ι(f)(a − b) − (a − b)‖ < ε. By Corollary 4.8, we have ι(f)b ∈ I. So π(b) =
π(ι(f)b) = 0. Thus

‖µ(f)π(a)− π(a)‖ =
∥∥π

(
ι(f)(a− b)− (a− b)

)∥∥ < ε.

Since evx(µ(f)π(a)) = 0, it follows that ‖(evx ◦ π)(a)‖ < ε.
Now assume that (evx ◦π)(a) = 0. Let ε > 0; we prove that ‖(πx ◦ evx)(a)‖ < ε.

Apply Lemma 4.10 to the C0(X)-algebra A/I, getting f ∈ Cc(X \ {x}) such that
0 ≤ f ≤ 1 and ‖µ(f)π(a)−π(a)‖ < ε. Thus ‖π(ι(f)a− a)‖ < ε. Choose b ∈ I such
that

∥∥[ι(f)a− a]− b
∥∥ < ε. It follows that

∥∥(πx ◦ evx)
(
ι(f)a− a− b

)∥∥ < ε.

Since evx(ι(f)a) = 0 and (πx ◦ evx)(b) = 0, it follows that ‖(πx ◦ evx)(a)‖ < ε, as
desired. �

Lemma 4.12. Let X be a locally compact Hausdorff space, let A be a C0(X)-
algebra with structure map ι : C0(X)→ Z(M(A)), and letD be a C*-algebra. Then
there is a homomorphism µ : C0(X) → Z(M(D ⊗max A)) which makes D ⊗max A
a C0(X)-algebra and such that for all a ∈ A, d ∈ D, and f ∈ C0(X) we have
µ(f)(d ⊗ a) = d ⊗ ι(f)a. Moreover, for every x ∈ X we have (D ⊗max A)x ∼=
D ⊗max Ax.

Proof. The family
(
X, (idD ⊗max πx : A→ Ax)x∈X , D ⊗max A

)

is a C*-bundle in the sense of Definition 1.1 of [15]. (See (2) on page 678 of [15].)
Using exactness of the maximal tensor product and Lemma 4.10, one verifies the

hypothesis of Lemma 2.3 of [15]. This lemma therefore implies that for b ∈ D⊗maxA
the function x 7→ ‖evx(b)‖ is upper semicontinuous. It is clear that for d ∈ D and
a ∈ A the function x 7→ ‖evx(d ⊗ a)‖ vanishes at infinity, and it then follows from
density that for all b ∈ D ⊗max A the function x 7→ ‖evx(b)‖ vanishes at infinity.
Now apply Proposition 4.6. �

Lemma 4.13. Let X be a totally disconnected locally compact Hausdorff space,
let A be a C0(X)-algebra with structure map ι : C0(X)→ Z(M(A)), and let x ∈ X .

(1) Let p ∈ Ax be a projection. Then there is a projection e ∈ A such that
evx(e) = p.

(2) Let p ∈ Ax be an infinite projection. Then there is an infinite projection
e ∈ A such that evx(e) = p.

The use of semiprojectivity is slightly indirect, because we don’t know that there
is a countable neighborhood base at x.

Proof of Lemma 4.13. We prove (1). Since C is semiprojective, there is ε > 0 such
that whenever B and C are C*-algebras, ϕ : B → C is a homomorphism, and b ∈ B
satisfies ‖b∗ − b‖ < ε, ‖b2 − b‖ < ε, and ϕ(b) is a projection, then there exists a
projection e ∈ B such that ϕ(e) = ϕ(b). Since evx is surjective, there is a ∈ A such
that evx(a) = p. By Lemma 4.3(3), there is an open set U ⊂ X with x ∈ U such
that for all y ∈ U we have ‖evy(a

∗ − a)‖ < ε
2 and ‖evy(a

2 − a)‖ < ε
2 . Since X is
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totally disconnected, there is a compact open set K ⊂ X such that x ∈ K ⊂ U .
Define b = ι(χK)a. Using Lemma 4.3(4), we get

‖evy(b
∗ − b)‖ <

ε

2
and ‖evy(b

2 − b)‖ <
ε

2

when y ∈ K, and evy(b
∗ − b) = evy(b

2 − b) = 0 when y ∈ X \K. It follows from
Lemma 4.3(1) that

‖b∗ − b‖ ≤
ε

2
< ε and ‖b2 − b‖ ≤

ε

2
< ε.

Now obtain e by using the choice of ε with B = A and C = Ax.
We describe the changes needed for the proof of (2). Let T be the Toeplitz

algebra, generated by an isometry s (so s∗s = 1 but ss∗ 6= 1). By hypothesis, there
is a homomorphism ϕ0 : T → Ax such that ϕ0(1) = p and ϕ0(1−ss

∗) 6= 0. Since T is
semiprojective, an argument similar to that in the proof of (2) shows that there is a
homomorphism ϕ : T → A such that evx ◦ϕ = ϕ0. Set e = ϕ(1). Then ϕ(s)∗ϕ(s) =
e and ϕ(s)ϕ(s)∗ ≤ e We have e − ϕ(s)ϕ(s)∗ 6= 0 because evx(e − ϕ(s)ϕ(s)∗) 6= 0.
So e is an infinite projection. �

Theorem 4.14. Let X be a totally disconnected locally compact Hausdorff space
and let A be a C0(X)-algebra.

(1) Assume that Ax has residual (SP) for all x ∈ X . Then A has residual (SP).
(2) Assume that Ax is purely infinite and has the ideal property for all x ∈ X .

Then A is purely infinite and has the ideal property.
(3) Assume that Ax has the weak ideal property for all x ∈ X . Then A has

the weak ideal property.
(4) Assume that A is separable and Ax has topological dimension zero for all

x ∈ X . Then A has topological dimension zero.

Proof. We prove (1). Recall (Definition 7.1 of [24]) that a C*-algebra D has resid-
ual (SP) if and only if D is residually hereditarily in the class C of all C*-algebras
which contain a nonzero projection. (See (4) in the introduction.)

We verify the definition directly. So let I ⊂ A be an ideal such that A/I 6= 0,
and let B ⊂ A/I be a nonzero hereditary subalgebra. Combining Lemma 4.11
and Corollary 4.8, we see that B is a C0(X)-algebra. Since B 6= 0, Lemma 4.3(1)
provides x ∈ X such that Bx 6= 0. Let evx : A/I → (A/I)x be the map of No-
tation 4.2 for the C0(X)-algebra A/I. Then Bx = evx(B) by Corollary 4.8 and
(A/I)x ∼= Ax/Ix by Lemma 4.11. Thus Bx is isomorphic to a nonzero heredi-
tary subalgebra of Ax/Ix. Since Ax has residual (SP), it follows that there is a
nonzero projection p ∈ Bx. Lemma 4.13(1) provides a projection e ∈ B such that
evx(e) = p. Then e 6= 0 since evx(e) 6= 0. We have thus verified that A has
residual (SP).

We next prove (2). Let C be the class of all C*-algebras which contain an infinite
projection. By the equivalence of conditions (ii) and (iv) of Proposition 2.11 of [26]
(valid, as shown there, even when A is not separable), a C*-algebra D is purely
infinite and has the ideal property if and only if D is residually hereditarily in C.
(See (1) in the introduction.) The argument is now the same as for (1), except
using Lemma 4.13(2) in place of Lemma 4.13(1).

Now we prove (3). Let C be the class of all C*-algebras B such that K ⊗
B contains a nonzero projection. It is shown at the beginning of the proof of
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Theorem 8.5 of [24] that a C*-algebra D has the weak ideal property if and only if
D is residually hereditarily in C. (See (5) in the introduction.)

We verify that A satisfies this condition. So let I ⊂ A be an ideal such that
A/I 6= 0, and let B ⊂ A/I be a nonzero hereditary subalgebra. As in the proof
of (1), B is a C0(X)-algebra and there is x ∈ X such that Bx is isomorphic to
a nonzero hereditary subalgebra of Ax/Ix. Therefore K ⊗ Bx contains a nonzero
projection p. Since K is nuclear, Lemma 4.12 implies that K⊗B is a C0(X)-algebra
with (K ⊗ B)x ∼= K ⊗ Bx. So Lemma 4.13(1) provides a projection e ∈ K ⊗ B
such that evx(e) = p. Then e 6= 0 since evx(e) 6= 0. This shows that A is residually
hereditarily in C, as desired.

Finally, we prove (4). Since A is separable, by Theorem 1.10 it suffices to show
that A is residually hereditarily in the class C of all C*-algebrasD such that O2⊗D
contains a nonzero projection. Also, for every x ∈ X , the algebra Ax is separable.
So Theorem 1.10 implies that Ax is residually hereditarily in C. The proof is now
the same as for (3), except using O2 in place of K. �

We will next show that when the C0(X)-algebra is continuous, the fibers are all
nonzero, and the algebra is separable, then the algebra has one of our properties if
and only if all the fibers have this property and X is totally disconnected.

Separability should not be necessary.
Having nonzero fibers is necessary. The zero C*-algebra is a C0(X)-algebra for

any X , and it certainly has all our properties. For a less trivial example, let X0

be the Cantor set, take X = X0 ∐ [0, 1], and make C(X0,O2) a C(X)-algebra via
restriction of functions in C(X) to X0.

Continuity is necessary, at least without separability. Let X be any compact
Hausdorff space, and for x ∈ X let Bx be any nonzero unital C*-algebra. Let A
be the C*-algebra product

∏
x∈X Bx, consisting of elements a in the set theoretic

product such that supx∈X ‖ax‖ is finite. Define a homomorphism ι : C(X) → A
by ι(f) = (f(x) · 1Ax

)x∈X for f ∈ C(X). This homomorphism makes A a C(X)-
algebra. If, say, Bx = O2 for all x ∈ X , then A has all our properties, but X need
not be totally disconnected. (The construction is easily adapted to spaces X which
are only locally compact and possibly nonunital fibers.) It is possible that requiring
separability and that all fibers be nonzero will force X to be totally disconnected.

Lemma 4.15. Let X be a second countable locally compact Hausdorff space, and
let A be a separable continuous C0(X)-algebra such that Ax 6= 0 for all x ∈ X . If
A has topological dimension zero then X is totally disconnected.

Proof. By Theorem 3.2 of [15] (see condition (v) there), O2 ⊗ A is a continuous
C0(X)-algebra. It follows from Theorem 1.9 that O2 ⊗ A has the ideal property,
and then from Theorem 2.1 of [21] that X is totally disconnected. �

Theorem 4.16. Let X be a second countable locally compact Hausdorff space,
and let A be a separable continuous C0(X)-algebra such that Ax 6= 0 for all x ∈ X .

(1) A has residual (SP) if and only if X is totally disconnected and Ax has
residual (SP) for all x ∈ X .

(2) A is purely infinite and has the ideal property if and only if X is totally
disconnected and Ax is purely infinite and has the ideal property for all
x ∈ X .

(3) A has the weak ideal property if and only if X is totally disconnected and
Ax has the weak ideal property for all x ∈ X .
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(4) A has topological dimension zero if and only if X is totally disconnected
and Ax has topological dimension zero for all x ∈ X .

Proof. In all four parts, the reverse implications follow from Theorem 4.14. Also,
in all four parts, the fact that Ax has the appropriate property for all x ∈ X
follows from the general fact that the property passes to arbitrary quotients. See
Theorem 7.4(7) of [24] for residual (SP), Theorem 6.8(7) of [24] for the combination
of purely infiniteness and the ideal property, Theorem 8.5(5) of [24] for the weak
ideal property, and combine Proposition 5.8 of [24] with Theorem 1.10(9) for the
weak ideal property.

It remains to show that all four properties imply that X is totally disconnected.
All four properties imply topological dimension zero (using Theorem 1.8 as neces-
sary), so this follows from Lemma 4.15. �

The proofs in this section depend on properties of projections, and so do not
work for a general property defined by being residually hereditarily in an upwards
directed class of C*-algebras. However, we know of no counterexamples to either
version of the following question.

Question 4.17. Let C be an upwards directed class of C*-algebras, let X be a
totally disconnected locally compact space, and let A be a C0(X)-algebra such that
Ax is residually hereditarily in C for all x ∈ X Does it follow that A is residually
hereditarily in C? What if we assume that A is a continuous C0(X)-algebra?

5. Strong pure infiniteness for bundles

It seems to be unknown whether C0(X)⊗A is purely infinite when X is a locally
compact Hausdorff space and A is a general purely infinite C*-algebra, even when
A is additionally assumed to be simple. (To apply Theorem 5.11 of [13], one also
needs to know that A is approximately divisible.) Efforts to prove this by working
locally on X seem to fail. Even in cases in which they work, such methods are
messy. It therefore seems worthwhile to give the following result, which, given
what is known already, has a simple proof.

Theorem 5.1. Let X be a locally compact Hausdorff space, and let A be a locally
trivial C0(X)-algebra whose fibers Ax are strongly purely infinite in the sense of
Definition 5.1 of [14]. Then A is strongly purely infinite.

Since X is locally compact, local triviality is equivalent to the requirement that
every point x ∈ X have a compact neighborhood L such that, using the C(L)-
algebra structure on A|L from Notation 4.2 and the obvious C(L)-algebra structure
on C(L,Ax), these two algebras are isomorphic as C(L)-algebras. We say in this
case that A|L is trivial.

Proof of Theorem 5.1. Let ι : C0(X)→ Z(M(A)) be the structure map.
We first prove the result when X is compact, by induction on the least n ∈ Z>0

for which there are open sets U1, U2, . . . , Un ⊂ X which cover X and such that
A|Uj

is trivial for j = 1, 2, . . . , n. If n = 1, there is a strongly purely infinite C*-

algebra B such that A ∼= C(X,B), and A is strongly purely infinite by Corollary 5.3
of [11]. Assume the result is known for some n ∈ Z>0, and suppose that there are
open sets U1, U2, . . . , Un+1 ⊂ X which cover X and such that A|Uj

is trivial for

j = 1, 2, . . . , n + 1. Define U =
⋃n

j=1 Uj . If X \ U = ∅ then the induction
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hypothesis applies directly. Otherwise, use X \ U ⊂ Un+1 to choose an open set
W ⊂ X such that X \U ⊂W ⊂W ⊂ Un+1. Define Y = X \W and L = W . Then

L ∪ Y = X, X \ L ⊂ Y, Y ⊂ U, and L ⊂ Un+1.

Since L ⊂ Un+1, there is a strongly purely infinite C*-algebra B such that A|L ∼=
C(L,B). By definition (see Notation 4.2), there is a short exact sequence

0 −→ ι(C0(X \ L))A −→ A −→ A|L −→ 0.

We can identify the algebra ι(C0(X \ L))A with an ideal in A|Y . Consideration of
the sets U1 ∩ Y, U2 ∩ Y, . . . , Un ∩ Y shows that the induction hypothesis applies
to A|Y , which is therefore strongly purely infinite. So ι(C0(X \ L))A is strongly
purely infinite by Proposition 5.11(ii) of [14]. Also A|L is strongly purely infinite by
Corollary 5.3 of [11], so A is strongly purely infinite by Theorem 1.3 of [11]. This
completes the induction step, and the proof of the theorem when X is compact.

We now prove the general case. Let (Uλ)λ∈Λ be an increasing net of open subsets
of X such that Uλ is compact for all λ ∈ Λ and

⋃
λ∈Λ Uλ = X . For λ ∈ Λ, the alge-

braA|Uλ
is strongly purely infinite by the case already done. So its ideal ι(C0(Uλ))A

is strongly purely infinite by Proposition 5.11(ii) of [14]. Using Lemma 4.9, one

checks that A ∼= lim
−→λ∈Λ

ι(C0(Uλ))A, so A is strongly purely infinite by Proposition

5.11(iv) of [14]. �

Lemma 5.2. Let A be a separable C*-algebra. Then the following are equivalent:

(1) A is purely infinite and has topological dimension zero.
(2) A is strongly purely infinite and has the ideal property.

Proof. Condition (2) implies condition (1) because strong pure infiniteness implies
pure infiniteness (Proposition 5.4 of [14]), the ideal property implies the weak ideal
property, and the weak ideal property implies topological dimension zero (Theo-
rem 1.8).

Now assume (1). Then A has the ideal property by Theorem 1.9. Apply Propo-
sition 2.14 of [26]. �

Corollary 5.3. Let X be a locally compact Hausdorff space, and let A be a locally
trivial C0(X)-algebra whose fibers Ax are all strongly purely infinite, separable, and
have topological dimension zero. Then A is strongly purely infinite.

Proof. Lemma 5.2 implies that the fibers are all strongly purely infinite, so that
Theorem 5.1 applies. �

6. When does the weak ideal property imply the ideal property?

The weak ideal property seems to be the property most closely related to the
ideal property which has good behavior on passing to hereditary subalgebras, fixed
point algebras, and extensions. (Example 2.7 of [23] gives a separable unital C*-
algebra A with the ideal property and an action of Z2 on A such that the fixed
point algebra does not have the ideal property. Example 2.8 of [23] gives a separable
unital C*-algebra A such that M2(A) has the ideal property but A does not have
the ideal property. Theorem 5.1 of [17] gives an extension of separable C*-algebras
with the ideal property such that the extension does not have the ideal property.)
On the other hand, the ideal property came first, and in some ways seems more
natural. Accordingly, it seems interesting to find conditions under which the weak
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ideal property implies the ideal property. Our main result in this direction is
Theorem 6.11. We also give an example to show that this implication can fail for
Z-stable C*-algebras.

It is convenient to work with the following class of C*-algebras.

Notation 6.1. We denote by P the class of all separable C*-algebras for which
topological dimension zero, the ideal property, and the weak ideal property are all
equivalent.

That is, a separable C*-algebra A is in P exactly when either A has all of
the properties topological dimension zero, the ideal property, and the weak ideal
property, or none of them.

The class P is not particularly interesting in itself. (For example, all cones over
nonzero C*-algebras are in it, because they have none of the three properties.)
However, proving results about it will make possible a result to the effect that
these properties are all equivalent for the smallest class of separable C*-algebras
which contains the AH algebras (as well as some others) and is closed under certain
operations.

The following lemma isolates, for convenient reference, what we actually need to
prove to show that a separable C*-algebra is in P .

Lemma 6.2. Let A be a separable C*-algebra for which topological dimension zero
implies the ideal property. Then A ∈ P .

Proof. The ideal property implies the weak ideal property by Proposition 8.2 of [24].
The weak ideal property implies topological dimension zero by Theorem 1.8. �

We prove two closure property for the class P . What can be done here is limited
by the failure of other closure properties for the class of C*-algebras with the ideal
property. See the introduction to this section. (It is hopeless to try to prove results
for P for quotients, since the cone over every C*-algebra is in P).

Lemma 6.3. Let (Aλ)λ∈Λ be a countable family of C*-algebras in P . Then⊕
λ∈ΛAλ ∈ P .

Proof. Set A =
⊕

λ∈Λ Aλ. Then A is separable, since Λ is countable and Aλ is
separable for all λ ∈ Λ. By Lemma 6.2, we need to show that if A has topological
dimension zero then A has the ideal property. For λ ∈ Λ, the algebra Aλ is a
quotient of A, so has topological dimension zero by Proposition 2.6 of [4] and
Lemma 3.6 of [23]. Therefore Aλ has the ideal property by hypothesis.

It is clear that arbitrary direct sums of C*-algebras with the ideal property also
have the ideal property, so it follows that A has the ideal property. �

Lemma 6.4. Let A and B be C*-algebras in P . Assume that A is exact. Then
A⊗min B ∈ P .

Proof. The algebra A⊗minB is separable because A and B are. By Lemma 6.2, we
need to show that if A ⊗min B has topological dimension zero then A ⊗min B has
the ideal property. Now A and B have topological dimension zero by Theorem 3.6,
so have the ideal property by hypothesis. It now follows from Corollary 1.3 of [25]
that A⊗min B has the ideal property. �
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We now identify a basic collection of C*-algebras in P . The main point of the
first class we consider is that it contains the AH algebras (as described below), but
in fact it is much larger.

Since there are conflicting definitions of AH algebras in the literature, we include
a definition. We don’t assume that the projections involved have constant rank.
We thus do not need to include finite direct sums of corners of algebras of the form
C(X,Mk), because such finite direct sums are again of the same form—use the
disjoint union of the spaces.

Definition 6.5. Let A be a C*-algebra.

(1) We say that A is an AH algebra if A is a direct limit of a sequence (An)n∈Z≥0

of C*-algebras of the form pC(X,Mk)p for a compact Hausdorff space X ,
k ∈ Z>0, and a projection p ∈ C(X,Mk), all depending on n.

(2) We say that A is a locally AH algebra if for every finite set F ⊂ A and every
ε > 0, there exist a compact Hausdorff space X , k ∈ Z>0, a projection
p ∈ C(X,Mk), and a unital homomorphism ϕ : pC(X,Mk)p→ A such that
for all a ∈ F there is b ∈ pC(X,Mk)p with ‖ϕ(b)− a‖ < ε.

In particular, AH algebras are locally AH algebras.

Definition 6.6. Let A be a C*-algebra.

(1) We say that A is standard (Definition 2.7 of [5]) if A is unital and whenever
B is a simple unital C*-algebra and J ⊂ A ⊗min B is an ideal which is
generated as an ideal by its projections, then there is an ideal I ⊂ A which
is generated as an ideal by its projections and such that J = I ⊗min B.

(2) We say that A is an LS algebra (Definition 2.13 of [5]) if for every finite
set F ⊂ A and every ε > 0, there exist a standard C*-algebra D and an
injective homomorphism ϕ : D → A such that for all a ∈ F there is b ∈ D
with ‖ϕ(b)− a‖ < ε.

Lemma 6.7. Let A be a C*-algebra.

(1) If A ∼= pC(X,Mk)p for a compact Hausdorff space X , k ∈ Z>0, and a
projection p ∈ C(X,Mk), then A is standard.

(2) If A is a locally AH algebra, then A is an LS algebra.

Proof. Part (1) is a special case of Remark 2.9(2) of [5]. Part (2) is immediate from
part (1). �

There are many more standard C*-algebras than in Lemma 6.7(1), and therefore
many more LS algebras than in Lemma 6.7(2). For example, in Definition 6.5(2)
replace pC(X,Mk)p by a finite direct sum of C*-algebras of the form pC(X,D)p
for connected compact Hausdorff spaces X , simple unital C*-algebras D, and pro-
jections p ∈ C(X,D). Such a C*-algebra is standard by Remark 2.9(2) of [5], so
a direct limit of such algebras is an LS algebra. (When all the algebras D which
occur are exact, such a direct limit is called an exceptional GAH algebra in [19].
See Definitions 2.9 and 2.7 there.)

Lemma 6.8. Let A be a separable LS algebra (Definition 6.6(2)). Then A ∈ P .

Proof. As usual, we use Lemma 6.2. Assume A has topological dimension zero. By
the implication from (1) to (3) in Theorem 1.10, the algebra O2 ⊗ A has the ideal
property. Apply Lemma 2.11 of [5] with B = O2 to conclude that A has the ideal
property. �
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Extending the list of properties in the discussion of type I C*-algebras in Remark
2.12 of [21] (and using essentially the same proof as there), we get the following
longer list of equivalent conditions on a separable type I C*-algebra.

Proposition 6.9. Let A be a separable type I C*-algebra. Then the following are
equivalent:

(1) A has topological dimension zero.
(2) A has the weak ideal property.
(3) A has the ideal property.
(4) A has the projection property (every ideal in A has an increasing approxi-

mate identity consisting of projections; Definition 1 of [18]).
(5) A has real rank zero.
(6) A is an AF algebra.

Proof. It is clear that every condition on the list implies the previous one. So we
need only show that (1) implies (6). Use Lemma 3.6 of [23] to see that Prim(A)
has a base for its topology consisting of compact open sets. Then the theorem in
Section 7 of [2] implies that A is AF. �

Lemma 6.10. Every separable purely infinite C*-algebra is in P .

Proof. By Lemma 6.2, we need to show that if A is separable, purely infinite, and
has topological dimension zero, then A has the ideal property. Use Lemma 3.6
of [23] to see that Prim(A) has a base for its topology consisting of compact open
sets. Then apply Proposition 2.11 of [26]. �

Theorem 6.11. Let W the smallest class of separable C*-algebras which contains
the separable LS algebras (including the separable locally AH algebras), the separa-
ble type I C*-algebras, and the separable purely infinite C*-algebras, and is closed
under finite and countable direct sums and under minimal tensor products when
one tensor factor is exact. Then for any C*-algebra in W , topological dimension
zero, the weak ideal property, and the ideal property are all equivalent.

Proof. Combine Lemma 6.3, Lemma 6.4, Lemma 6.8, Lemma 6.7(2), Proposi-
tion 6.9, and Lemma 6.10. �

Let Z be the Jiang-Su algebra. It is unfortunately not true that the weak ideal
property implies the ideal property for Z-stable C*-algebras.

Example 6.12. We give a separable C*-algebra A such that A and Z ⊗ A have
the weak ideal property but such that neither A nor Z ⊗A has the ideal property.

Let D be a Bunce-Deddens algebra, and let the extension

0 −→ K ⊗D −→ A −→ C −→ 0

be as in the proof of Theorem 5.1 of [17]. (The extension is as in the first paragraph
of that proof, using the choices suggested in the second paragraph.) In particular, A
does not have the ideal property, and the connecting homomorphism exp: K0(C)→
K1(K⊗D) is injective. Since K⊗D and C have the weak ideal property (for trivial
reasons), it follows from Theorem 8.5(5) of [24] that A has the weak ideal property.
Clearly Z ⊗K ⊗D and Z ⊗C have the ideal property. However, it is shown in the
proof of Theorem 2.9 of [22] that Z ⊗A does not have the ideal property.
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Question 6.13. Let A be a separable C*-algebra which is a direct limit of recursive
subhomogeneous C*-algebras. If A has the weak ideal property, does A have the
ideal property?

We suspect that the answer is no, but we don’t have a counterexample.
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