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6 Closures and generating sets related

to combinations of structures∗

Sergey V. Sudoplatov†

Abstract

We investigate closure operators and describe their properties for
E-combinations and P -combinations of structures and their theories.
We prove, for E-combinations, that the existence of a minimal generat-
ing set of theories is equivalent to the existence of the least generating
set, and characterize syntactically and semantically the property of the
existence of the least generating set. For the class of linearly ordered
language uniform theories we solve the problem of the existence of
least generating set with respect to E-combinations and characterize
that existence in terms of orders.

Key words: E-combination, P -combination, closure operator,
generating set, language uniform theory.

1 Introduction and preliminaries

We continue to study structural properties of E-combinations and P -combin-
ations of structures and their theories [1].

In Section 2, using the E-operators and P -operators we introduce topolo-
gies (related to topologies in [2]) and investigate their properties.

In Section 3, we prove, for E-combinations, that the existence of a min-
imal generating set of theories is equivalent to the existence of the least
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generating set, and characterize syntactically and semantically the property
of the existence of the least generating set.

In Section 4, for the class of linearly ordered language uniform theories,
we solve the problem of the existence of least generating set with respect to
E-combinations and characterize that existence in terms of orders.

In Section 5 we describe some properties of e-spectra for E-combinations
of linearly ordered language uniform theories.

Throughout the paper we use the following terminology in [1].
Let P = (Pi)i∈I , be a family of nonempty unary predicates, (Ai)i∈I be

a family of structures such that Pi is the universe of Ai, i ∈ I, and the
symbols Pi are disjoint with languages for the structures Aj, j ∈ I. The
structure AP ⇋

⋃
i∈I

Ai expanded by the predicates Pi is the P -union of the

structuresAi, and the operator mapping (Ai)i∈I toAP is the P -operator. The
structure AP is called the P -combination of the structures Ai and denoted
by CombP (Ai)i∈I if Ai = (AP ↾ Ai) ↾ Σ(Ai), i ∈ I. Structures A′, which
are elementary equivalent to CombP (Ai)i∈I , will be also considered as P -
combinations.

Clearly, all structures A′ ≡ CombP (Ai)i∈I are represented as unions of
their restrictions A′

i = (A′ ↾ Pi) ↾ Σ(Ai) if and only if the set p∞(x) =
{¬Pi(x) | i ∈ I} is inconsistent. If A′ 6= CombP (A

′
i)i∈I , we write A′ =

CombP (A
′
i)i∈I∪{∞}, where A′

∞ = A′ ↾
⋂
i∈I

Pi, maybe applying Morleyzation.

Moreover, we write CombP (Ai)i∈I∪{∞} for CombP (Ai)i∈I with the empty
structure A∞.

Note that if all predicates Pi are disjoint, a structureAP is a P -combination
and a disjoint union of structures Ai. In this case the P -combination AP

is called disjoint. Clearly, for any disjoint P -combination AP , Th(AP ) =
Th(A′

P ), where A′
P is obtained from AP replacing Ai by pairwise disjoint

A′
i ≡ Ai, i ∈ I. Thus, in this case, similar to structures the P -operator

works for the theories Ti = Th(Ai) producing the theory TP = Th(AP ),
which is denoted by CombP (Ti)i∈I .

For an equivalence relation E replacing disjoint predicates Pi by E-classes
we get the structure AE being the E-union of the structures Ai. In this
case the operator mapping (Ai)i∈I to AE is the E-operator. The structure
AE is also called the E-combination of the structures Ai and denoted by
CombE(Ai)i∈I ; hereAi = (AE ↾ Ai) ↾ Σ(Ai), i ∈ I. Similar above, structures
A′, which are elementary equivalent to AE, are denoted by CombE(A

′
j)j∈J ,
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where A′
j are restrictions of A′ to its E-classes.

Clearly, A′ ≡ AP realizing p∞(x) is not elementary embeddable into AP

and can not be represented as a disjoint P -combination of A′
i ≡ Ai, i ∈ I.

At the same time, there are E-combinations such that all A′ ≡ AE can be
represented as E-combinations of someA′

j ≡ Ai. We call this representability
of A′ to be the E-representability.

If there is A′ ≡ AE which is not E-representable, we have the E ′-
representability replacing E by E ′ such that E ′ is obtained from E adding
equivalence classes with models for all theories T , where T is a theory of a
restriction B of a structure A′ ≡ AE to some E-class and B is not elementary
equivalent to the structures Ai. The resulting structure AE′ (with the E ′-
representability) is a e-completion, or a e-saturation, of AE. The structure
AE′ itself is called e-complete, or e-saturated, or e-universal, or e-largest.

For a structure AE the number of new structures with respect to the
structures Ai, i. e., of the structures B which are pairwise elementary non-
equivalent and elementary non-equivalent to the structures Ai, is called the
e-spectrum of AE and denoted by e-Sp(AE). The value sup{e-Sp(A′)) |
A′ ≡ AE} is called the e-spectrum of the theory Th(AE) and denoted by
e-Sp(Th(AE)).

If AE does not have E-classes Ai, which can be removed, with all E-
classes Aj ≡ Ai, preserving the theory Th(AE), then AE is called e-prime,
or e-minimal.

For a structure A′ ≡ AE we denote by TH(A′) the set of all theories
Th(Ai) of E-classes Ai in A′.

By the definition, an e-minimal structure A′ consists of E-classes with a
minimal set TH(A′). If TH(A′) is the least for models of Th(A′) then A′ is
called e-least.

2 Closure operators

Definition. Let T be the class of all complete elementary theories of re-
lational languages. For a set T ⊂ T we denote by ClE(T ) the set of
all theories Th(A), where A is a structure of some E-class in A′ ≡ AE ,
AE = CombE(Ai)i∈I , Th(Ai) ∈ T . As usual, if T = ClE(T ) then T is said
to be E-closed.

By the definition,
ClE(T ) = TH(A′

E′), (1)
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where A′
E′ is an e-largest model of Th(AE), AE consists of E-classes repre-

senting models of all theories in T .
Note that the equality (1) does not depend on the choice of e-largest

model of Th(AE).
The following proposition is obvious.

Proposition 2.1. (1) If T0, T1 are sets of theories, T0 ⊆ T1 ⊂ T , then
T0 ⊆ ClE(T0) ⊆ ClE(T1).

(2) For any set T ⊂ T , T ⊂ ClE(T ) if and only if the structure composed
by E-classes of models of theories in T is not e-largest.

(3) Every finite set T ⊂ T is E-closed.

(4) (Negation of finite character) For any T ∈ ClE(T ) \ T there are no
finite T0 ⊂ T such that T ∈ ClE(T0).

(5) Any intersection of E-closed sets is E-closed.

For a set T ⊂ T of theories in a language Σ and for a sentence ϕ with
Σ(ϕ) ⊆ Σ we denote by Tϕ the set {T ∈ T | ϕ ∈ T}. Denote by TF the
family of all sets Tϕ.

Clearly, the partially ordered set 〈TF ;⊆〉 forms a Boolean algebra with the
least element ∅ = T¬(x≈x), the greatest element T = T(x≈x), and operations
∧, ∨, ¯ satisfying the following equalities: Tϕ∧Tψ = T(ϕ∧ψ), Tϕ∨Tψ = T(ϕ∨ψ),
Tϕ = T¬ϕ.

By the definition, Tϕ ⊆ Tψ if and only if for any model M of a theory in
T satisfying ϕ we have M |= ψ.

Proposition 2.2. If T ⊂ T is an infinite set and T ∈ T \ T then
T ∈ ClE(T ) (i.e., T is an accumulation point for T with respect to E-closure
ClE) if and only if for any formula ϕ ∈ T the set Tϕ is infinite.

Proof. Assume that there is a formula ϕ ∈ T such that only finitely
many theories in T , say T1, . . . , Tn, satisfy ϕ. Since T /∈ T then there is
ψ ∈ T such that ψ /∈ T1 ∪ . . . ∪ Tn. Then (ϕ ∧ ψ) ∈ T does not belong
to all theories in T . Since (ϕ ∧ ψ) does not satisfy E-classes in models of
TE = CombE(Ti)i∈I , where T = {Ti | i ∈ I}, we have T /∈ ClE(T ).

If for any formula ϕ ∈ T , Tϕ is infinite then {ϕE | ϕ ∈ T}∪TE (where ϕE

are E-relativizations of the formulas ϕ) is locally satisfied and so satisfied.
Since TE is a complete theory then {ϕE | ϕ ∈ T} ⊂ TE and hence T ∈
ClE(T ). ✷
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Proposition 2.2 shows that the closure ClE corresponds to the closure
with respect to the ultraproduct operator [3, 4, 5, 6].

Theorem 2.3. For any sets T0, T1 ⊂ T , ClE(T0∪T1) = ClE(T0)∪ClE(T1).

Proof. We have ClE(T0) ∪ ClE(T1) ⊆ ClE(T0 ∪ T1) by Proposition 2.1
(1).

Let T ∈ ClE(T0 ∪ T1) and we argue to show that T ∈ ClE(T0) ∪ ClE(T1).
Without loss of generality we assume that T /∈ T0∪T1 and by Proposition 2.1
(3), T0 ∪ T1 is infinite. Define a function f : T → P({0, 1}) by the following
rule: f(ϕ) is the set of indexes k ∈ {0, 1} such that ϕ belongs to infinitely
many theories in Tk. Note that f(ϕ) is always nonempty since by Proposition
2.2, ϕ belong to infinitely many theories in T0 ∪ T1 and so to infinitely many
theories in T0 or to infinitely many theories in T1. Again by Proposition 2.2
we have to prove that 0 ∈ f(ϕ) for each formula ϕ ∈ T or 1 ∈ f(ϕ) for each
formula ϕ ∈ T . Assuming on contrary, there are formulas ϕ, ψ ∈ T such that
f(ϕ) = {0} and f(ψ) = {1}. Since (ϕ ∧ ψ) ∈ T and f(ϕ ∧ ψ) is nonempty
we have 0 ∈ f(ϕ ∧ ψ) or 1 ∈ f(ϕ ∧ ψ). In the first case, since Tϕ∧ψ ⊆ Tψ we
get 0 ∈ f(ψ). In the second case, since Tϕ∧ψ ⊆ Tϕ we get 1 ∈ f(ϕ). Both
cases contradict the assumption. Thus, T ∈ ClE(T0) ∪ ClE(T1). ✷

Corollary 2.4. (Exchange property) If T1 ∈ ClE(T ∪ {T2}) \ ClE(T )
then T2 ∈ ClE(T ∪ {T1}).

Proof. Since T1 ∈ ClE(T ∪{T2}) = ClE(T )∪{T2} by Proposition 2.1 (3)
and Theorem 2.3, and T1 /∈ ClE(T ), then T1 = T2 and T2 ∈ ClE(T ∪ {T1})
in view of Proposition 2.1 (1). ✷

Definition [7]. A topological space is a pair (X,O) consisting of a set X
and a family O of open subsets of X satisfying the following conditions:

(O1) ∅ ∈ O and X ∈ O;
(O2) If U1 ∈ O and U2 ∈ O then U1 ∩ U2 ∈ O;
(O3) If O′ ⊆ O then ∪O′ ∈ O.

Definition [7]. A topological space (X,O) is a T0-space if for any pair of
distinct elements x1, x2 ∈ X there is an open set U ∈ O containing exactly
one of these elements.

Definition [7]. A topological space (X,O) is Hausdorff if for any pair of
distinct points x1, x2 ∈ X there are open sets U1, U2 ∈ O such that x1 ∈ U1,
x2 ∈ U2, and U1 ∩ U2 = ∅.
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Let T ⊂ T be a set, OE(T ) = {T \ ClE(T
′) | T ′ ⊆ T }. Proposition 2.1

and Theorem 2.3 imply that the axioms (O1)–(O3) are satisfied. Moreover,
since for any theory T ∈ T , ClE({T}) = {T} and hence, T \ ClE({T}) =
T {T} is an open set containing all theories in T , which are not equal to T ,
then (T ,OE(T )) is a T0-space. Moreover, it is Hausdorff. Indeed, taking
two distinct theories T1, T2 ∈ T we have a formula ϕ such that ϕ ∈ T1 and
¬ϕ ∈ T2. By Proposition 2.2 we have that Tϕ and T¬ϕ are closed containing
T1 and T2 respectively; at the same time Tϕ and T¬ϕ form a partition of T ,
so Tϕ and T¬ϕ are disjoint open sets. Thus we have

Theorem 2.5. For any set T ⊂ T the pair (T ,OE(T )) is a Hausdorff
topological space.

Similarly to the operator ClE(T ) we define the operator ClP (T ) for fam-
ilies P of predicates Pi as follows.

Definition. For a set T ⊂ T we denote by ClP (T ) the set of all theories
Th(A) such that Th(A) ∈ T or A is a structure of type p∞(x) in A′ ≡ AP ,
where AP = CombP (Ai)i∈I and Th(Ai) ∈ T are pairwise distinct. As above,
if T = ClP (T ) then T is said to be P -closed.

Using above only disjoint P -combinations AP we get the closure CldP (T )
being a subset of ClP (T ).

The following example illustrates the difference between ClP (T ) and
CldP (T ).

Example 2.7. Taking disjoint copies of predicates Pi = {a ∈ M0 | a <
ci} with their <-structures as in [1, Example 4.8], CldP (T )\T produces models
of the Ehrenfeucht example and unboundedly many connected components
each of which is a copy of a model of the Ehrenfeucht example. At the same
time ClP (T ) produces two new structures: densely ordered structures with
and without the least element.

The following proposition is obvious.

Proposition 2.8. (1) If T0, T1 are sets of theories, T0 ⊆ T1 ⊂ T , then
T0 ⊆ ClP (T0) ⊆ ClP (T1).

(2) Every finite set T ⊂ T is P -closed.

(3) (Negation of finite character) For any T ∈ ClP (T ) \ T there are no
finite T0 ⊂ T such that T ∈ ClP (T0).

(4) Any intersection of P -closed sets is P -closed.
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Remark 2.9. Note that an analogue of Proposition 2.8 for P -combinations
fails. Indeed, taking disjoint predicates Pi, i ∈ ω, with 2i + 1 elements and
with structures Ai of the empty language, we get, for the set T of theories
Ti = Th(Ai), that ClP (T ) consists of the theories whose models have cardi-
nalities witnessing all ordinals in ω + 1. Thus, for instance, theories in T do
not contain the formula

∃x, y(¬(x ≈ y) ∧ ∀z((z ≈ x) ∨ (z ≈ y))) (2)

whereas ClP (T ) (which is equal to CldP (T )) contains a theory with the for-
mula (2).

More generally, for CldP (T ) with infinite T , we have the following.
Since there are no links between distinct Pi, the structures of p∞(x) are de-

fined as disjoint unions of connected components C(a), for a realizing p∞(x),
where each C(a) consists of a set of realizations of p∞-preserving formulas
ψ(a, x) (i.e., of formulas ϕ(a, x) with ψ(a, x) ⊢ p∞(x)). Similar to Proposition
2.2 theories T∞,C(a) of C(a)-restrictions of A∞ coincide and are characterized

by the following property: T∞,C(a) ∈ CldP (T ) if and only if T∞,C(a) ∈ T or for
any formula ϕ ∈ T∞,C(a), there are infinitely many theories T in T such that
ϕ satisfies all structures approximating C(a)-restrictions of models of T .

Thus similarly to 2.3–2.5 we get the following three assertions for disjoint
P -combinations.

Theorem 2.10. For any sets T0, T1 ⊂ T , CldP (T0 ∪ T1) = CldP (T0) ∪
CldP (T1).

Corollary 2.11. (Exchange property) If T1 ∈ CldP (T ∪ {T2}) \ CldP (T )
then T2 ∈ CldP (T ∪ {T1}).

Let T ⊂ T be a set, Od
P (T ) = {T \ CldP (T

′) | T ′ ⊆ T }.

Theorem 2.12. For any set T ⊂ T the pair (T ,Od
P (T )) is a topological

T0-space.

Remark 2.13. By Proposition 2.8 (2), for any finite T the spaces
(T ,OP (T )) and (T ,Od

P (T )) are Hausdorff, moreover, here OP (T ) = Od
P (T )

consisting of all subsets of T . However, in general, the spaces (T ,OP (T ))
and (T ,Od

P (T )) are not Hausdorff.
Indeed, consider structures Ai, i ∈ I, where I = (ω+1)\{0}, of the empty

language and such that |Ai| = i. Let Ti = Th(Ai), i ∈ I, T = {Ti | i ∈ I}.
Coding the theories Ti by their indexes we have the following. For any
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finite set F ⊂ I, ClP (F ) = CldP (F ) = F , and for any infinite set INF ⊆ I,
ClP (INF) = CldP (INF) = I. So any open set U is either cofinite or empty.
Thus any two nonempty open sets are not disjoint.

Notice that we get a similar effect replacing elements in Ai by equivalence
classes with pairwise isomorphic finite structures, may be with additional
classes having arbitrary structures.

Remark 2.14. If the closure operator Cld,rP is obtained from CldP permit-
ting repetitions of structures for predicates Pi, we can lose both the property
of T0-space and the identical closure for finite sets of theories. Indeed, for
the example in Remark 2.13, Cld,rP (T ) is equal to the Cld,rP -closure of any sin-
gleton {T} ∈ Cld,rP (T ) since the type p∞(x) has arbitrarily many realizations
producing models for each element in T . Thus there are only two possibilities
for open sets U : either U = ∅ or U = T .

Remark 2.15. Let Tfin be the class of all theories for finite structures.
By compactness, for a set T ⊂ Tfin, ClE(T ) is a subset of Tfin if and only
if models of T have bounded cardinalities, whereas ClP (T ) is a subset of
Tfin if and only if T is finite. Proposition 2.2 and its P -analogue allows to
describe both ClE(T ) and ClP (T ), in particular, the sets ClE(T ) \ Tfin and
ClP (T ) \ Tfin. Clearly, there is a broad class of theories in T which do not
lay in ⋃

T ⊂Tfin

ClE(T ) ∪
⋃

T ⊂Tfin

CldP (T ).

For instance, finitely axiomatizable theories with infinite models can not be
approximated by theories in Tfin in such way.

3 Generating subsets of E-closed sets

Definition. Let T0 be a closed set in a topological space (T ,OE(T )). A
subset T ′

0 ⊆ T0 is said to be generating if T0 = ClE(T
′
0 ). The generating set

T ′
0 (for T0) is minimal if T ′

0 does not contain proper generating subsets. A
minimal generating set T ′

0 is the least is T ′
0 is contained in each generating

set for T0.

Remark 3.1. Each set T0 has a generating subset T ′
0 with a cardinality

≤ max{|Σ|, ω}, where Σ is the union of the languages for the theories in T0.
Indeed, the theory T = Th(AE), whose E-classes are models for theories in
ClE(T0), has a model M with |M | ≤ max{|Σ|, ω}. The E-classes of M are
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models of theories in ClE(T0) and the set of these theories is the required
generating set.

Theorem 3.2. If T ′
0 is a generating set for a E-closed set T0 then the

following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) T ′

0 is a minimal generating set for T0;
(3) any theory in T ′

0 is isolated by some set (T ′
0 )ϕ, i.e., for any T ∈ T ′

0

there is ϕ ∈ T such that (T ′
0 )ϕ = {T};

(4) any theory in T ′
0 is isolated by some set (T0)ϕ, i.e., for any T ∈ T ′

0

there is ϕ ∈ T such that (T0)ϕ = {T}.

Proof. (1) ⇒ (2) and (4) ⇒ (3) are obvious.
(2) ⇒ (1). Assume that T ′

0 is minimal but not least. Then there is a
generating set T ′′

0 such that T ′
0 \T

′′
0 6= ∅ and T ′′

0 \T ′
0 6= ∅. Take T ∈ T ′

0 \T
′′
0 .

We assert that T ∈ ClE(T
′
0 \ {T}), i.e., T is an accumulation point of

T ′
0 \ {T}. Indeed, since T ′′

0 \ T ′
0 6= ∅ and T ′′

0 ⊂ ClE(T
′
0 ), then by Proposition

2.1, (3), T ′
0 is infinite and by Proposition 2.2 it suffices to prove that for any

ϕ ∈ T , (T ′
0 \ {T})ϕ is infinite. Assume on contrary that for some ϕ ∈ T ,

(T ′
0 \ {T})ϕ is finite. Then (T ′

0 )ϕ is finite and, moreover, as T ′
0 is generating

for T0, by Proposition 2.2, (T0)ϕ is finite, too. So (T ′′
0 )ϕ is finite and, again by

Proposition 2.2, T does not belong to ClE(T
′′
0 ) contradicting to ClE(T

′′
0 ) = T0.

Since T ∈ ClE(T
′
0 \{T}) and T ′

0 is generating for T0, then T ′
0 \{T} is also

generating for T0 contradicting the minimality of T ′
0 .

(2) ⇒ (3). If T ′
0 is finite then by Proposition 2.1 (3), T ′

0 = T0. Since T0

is finite then for any T ∈ T0 there is a formula ϕ ∈ T negating all theories
in T0 \ {T}. Therefore, (T0)ϕ = (T ′

0 )ϕ is a singleton containing T and thus,
(T ′

0 )ϕ isolates T .
Now let T ′

0 be infinite. Assume that some T ∈ T ′
0 is not isolated by the

sets (T ′
0 )ϕ. It implies that for any ϕ ∈ T , (T ′

0 \ {T})ϕ is infinite. Using
Proposition 2.2 we obtain T ∈ ClE(T

′
0 \ {T}) contradicting the minimality

of T ′
0 .
(3) ⇒ (2). Assume that any theory T in T ′

0 is isolated by some set (T ′
0 )ϕ.

By Proposition 2.2 it implies that T /∈ ClE(T
′
0 \ {T}). Thus, T

′
0 is a minimal

generating set for T0.
(3) ⇒ (4) is obvious for finite T ′

0 . If T ′
0 is infinite and any theory T in

T ′
0 is isolated by some set (T ′

0 )ϕ then T is isolated by the set (T0)ϕ, since
otherwise using Proposition 2.2 and the property that T ′

0 generates T0, there
are infinitely many theories in T ′

0 containing ϕ contradicting |(T ′
0 )ϕ| = 1. ✷
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The equivalences (2) ⇔ (3) ⇔ (4) in Theorem 3.2 were noticed by
E.A. Palyutin.

Theorem 3.2 immediately implies

Corollary 3.3. For any structure AE, AE is e-minimal if and only if
AE is e-least.

Definition. Let T be the theory Th(AE), where AE = CombE(Ai)i∈I ,
{Th(Ai) | i ∈ I} = T0. We say that T has a minimal/least generating set if
ClE(T0) has a minimal/least generating set.

Since by Theorem 3.2 the notions of minimality and to be least coincide
in the context, below we shall consider least generating sets as well as e-least
structures in cases of minimal generating sets.

Proposition 3.4. For any closed nonempty set T0 in a topological space
(T ,OE(T )) and for any T ′

0 ⊆ T0, the following conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =

T ′
0 , is an e-least model of the theory Th(AE) and E-classes of each/some
e-largest model of Th(AE) form models of all theories in T0;

(3) any/some structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} =
T ′
0 , Ai 6≡ Aj for i 6= j, is an e-least model of the theory Th(AE), where
E-classes of AE form models of the least set of theories and E-classes of
each/some e-largest model of Th(AE) form models of all theories in T0.

Proof. (1) ⇒ (2). Let T ′
0 be the least generating set for T0. Consider the

structure AE = CombE(Ai)i∈I , where {Th(Ai) | i ∈ I} = T ′
0 . Since T

′
0 is the

least generating set for T0, then AE is an e-least model of the theory Th(AE).
Moreover, by Proposition 2.2, E-classes of models of Th(AE) form models
of all theories in T0. Thus, E-classes of AE form models of the least set T ′

0

of theories such that E-classes of each/some e-largest model of Th(AE) form
models of all theories in T0.

Similarly, constructing AE with Ai 6≡ Aj for i 6= j, we obtain (1) ⇒ (3).
Since (3) is a particular case of (2), we have (2) ⇒ (3).
(3) ⇒ (1). Let AE be an e-least model of the theory Th(AE) and E-

classes of each/some e-largest model of Th(AE) form models of all theories
in T0. Then by the definition of ClE , T

′
0 is the least generating set for T0. ✷

Note that any prime structure AE (or a structure with finitely many
E-classes, or a prime structure extended by finitely many E-classes), is e-
minimal forming, by its E-classes, the least generating set T ′

0 of theories
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for the set T0 of theories corresponding to E-classes of e-largest A′
E ≡ AE .

Indeed, if a set T ′′
0 is generating for T0 then by Proposition 2.2 there is

a model M of T consisting of E-classes with the set of models such that
their theories form the set T ′′

0 . Since AE prime (or with finitely many E-
classes, or a prime structure extended by finitely many E-classes), then AE

is elementary embeddable into M (respectively, has E-classes with theories
forming T ′′

0 , or elementary embeddable to a restriction without finitely many
E-classes), then T ′

0 ⊆ T ′′
0 , and so T ′

0 is the least generating set for T0. Thus,
Proposition 3.4 implies

Corollary 3.5. Any theory Th(AE) with a prime model M, or with a
finite set {Th(Ai) | i ∈ I}, or both with E-classes for M and Ai, has the
least generating set.

Clearly, the converse for prime models does not hold, since finite sets T0

are least generating whereas theories in T0 can be arbitrary, in particular,
without prime models. Again the converse for finite sets does not hold since
there are prime models with infinite T0. Finally the general converse is not
true since we can combine a theory T having a prime model with infinite
T0 and a theory T ′ with infinitely many E-classes of disjoint languages and
without prime models for these classes. Denoting by T ′

0 the set of theories
for these E-classes, we get the least infinite generating set T0 ∪ T ′

0 for the
combination of T and T ′, which does not have a prime model.

Replacing E-combinations by P -combinations we obtain the notions of
(minimal/least) generating set for ClP (T0).

The following example shows that Corollary 3.5 does not hold even for
disjoint P -combinations.

Example 3.6. Take structures Ai, i ∈ (ω+1) \ {0}, in Remark 2.13 and
the theories Ti = Th(Ai) forming the CldP -closed set T . Since T is generated
by any its infinite subset, we get that having prime models of Th(AP ), the
closure CldP (T ) does not have minimal generating sets.

For the example above, with the empty language, Cld,rP (T ) is generated
by any singleton {T} ∈ Cld,rP (T ) since the type p∞(x) has arbitrarily many
realizations producing models for each Ti, i ∈ (ω + 1) \ {0}. Thus, each
element of Cld,rP (T ) forms a minimal generating set.

Adding to the language Σ countably many unary predicate symbols R
(1)
i ,

i ∈ ω \ {0}, for constants and putting each singleton Ri into Ai, i ∈ ω \ {0},
we get examples of CldP (T ) and Cld,rP (T ) with the least (infinite) generating
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sets. Thus, the property of the non-existence of minimal/least generating
sets is not preserved under expansions of theories.

We again obtain the non-existence of minimal/least generating sets for
CldP and Cld,rP , respectively, expanding theories Ti in the previous example by
singletons Rj, j 6= i, which are equal to Ri.

Natural questions arise concerning minimal generating sets:

Question 1. What is a characterization for the existence of least gener-
ating sets?

Question 2. Is there exists a theory Th(AE) without the least generating
set?

Obviously, for E-combinations, Question 1 has an answer in terms of
Proposition 2.2 (clarified in Theorem 3.2) taking the least, under inclusion,
set T ′

0 generating the set ClE(T
′
0 ). It means that T ′

0 does not have accumu-
lation points inside T ′

0 (with respect to the sets (T ′
0 )ϕ), i.e., any element in

T ′
0 is isolated by some formula, whereas each element T in ClE(T

′
0 ) \ T

′
0 is an

accumulation point of T ′
0 (again with respect to (T ′

0 )ϕ), i.e., T
′
0 is dense in

its E-closure.
Note that a positive answer to Question 2 for ClP is obtained in Remark

2.13.
Below we will give a more precise formulation for this answer related to

E-combinations and answer Question 2 for special cases with languages.

4 Language uniform theories and related E-

closures

Definition. A theory T in a predicate language Σ is called language uniform,
or a LU-theory if for each arity n any substitution on the set of non-empty
n-ary predicates preserves T . The LU-theory T is called IILU-theory if it has
non-empty predicates and as soon as there is a non-empty n-ary predicate
then there are infinitely many non-empty n-ary predicates and there are
infinitely many empty n-ary predicates.

Below we point out some basic examples of LU-theories:

• Any theory T0 of infinitely many independent unary predicates Rk is
a LU-theory; expanding T0 by infinitely many empty predicates Rl we get a
IILU-theory T1.

12



• Replacing independent predicates Rk for T0 and T1 by disjoint unary
predicates R′

k with a cardinality λ ∈ (ω + 1) \ {0} such that each R′
k has λ

elements; the obtained theories are denoted by T λ0 and T λ1 respectively; here,
T λ0 and T λ1 are LU-theories, and, moreover, T λ1 is a IILU-theory; we denote
T 1
0 and T 1

1 by T c0 and T c1 ; in this case nonempty predicates R′
k are singletons

symbolizing constants which are replaced by the predicate languages.

• Any theory T of equal nonempty unary predicates Rk is a LU-theory;

• Similarly, LU-theories and IILU-theories can be constructed using n-ary
predicate symbols of arbitrary arity n.

• The notion of language uniform theory can be extended for an arbitrary
language taking graphs for language functions; for instance, theories of free
algebras can be considered as LU-theories.

• Acyclic graphs with colored edges (arcs), for which all vertices have same
degree with respect to each color, has LU-theories. If there are infinitely many
colors and infinitely many empty binary relations then the colored graph has
a IILU-theory.

• Generic arc-colored graphs without colors for vertices [8, 9], free poly-
gonometries of free groups [10], and cube graphs with coordinated colorings
of edges [11] have LU-theories.

The simplest example of a theory, which is not language uniform, can
be constructed taking two nonempty unary predicates R1 and R2, where
R1 ⊂ R2. More generally, if a theory T , with nonempty predicates Ri, i ∈ I,
of a fixed arity, is language uniform then cardinalities of Rδ1

i1
(x̄)∧ . . .∧Rδ1

ij
(x̄)

do not depend on pairwise distinct i1, . . . , ij .

Remark 4.1. Any countable theory T of a predicate language Σ can
be transformed to a LU-theory T ′. Indeed, since without loss of general-
ity Σ is countable consisting of predicate symbols R

(kn)
n , n ∈ ω, then we

can step-by-step replace predicates Rn by predicates R′
n in the following

way. We put R′
0 ⇋ R0. If predicates R′

0, . . . , R
′
n of arities r0 < . . . < rn,

respectively, are already defined, we take for R′
n+1 a predicate of an arity

rn+1 > max{rn, kn+1}, which is obtained from R′
n+1 adding rn+1 − kn+1 ficti-

tious variables corresponding to the formula

R′(x1, . . . , xkn+1
) ∧ (xkn+2

≈ xkn+2
) ∧ (xrn+1

≈ xrn+1
).
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If the resulted LU-theory T ′ has non-empty predicates, it can be trans-
formed to a countable IILU-theory T ′′ copying these non-empty predicated
with same domains countably many times and adding countably many empty
predicates for each arity rn.

Clearly, the process of the transformation of T to T ′ do not hold for for
uncountable languages, whereas any LU-theory can be transformed to an
IILU-theory as above.

Definition. Recall that theories T0 and T1 of languages Σ0 and Σ1 re-
spectively are said to be similar if for any models Mi |= Ti, i = 0, 1, there
are formulas of Ti, defining in Mi predicates, functions and constants of
language Σ1−i such that the corresponding structure of Σ1−i is a model of
T1−i.

Theories T0 and T1 of languages Σ0 and Σ1 respectively are said to be
language similar if T0 can be obtained from T1 by some bijective replacement
of language symbols in Σ1 by language symbols in Σ0 (and vice versa).

Clearly, any language similar theories are similar, but not vice versa. Note
also that, by the definition, any LU-theory T is language similar to any theory
T σ which is obtained from T replacing predicate symbols R by σ(R), where
σ is a substitution on the set of predicate symbols in Σ(T ) corresponding to
nonempty predicates for T as well as a substitution on the set of predicate
symbols in Σ(T ) corresponding to empty predicates for T . Thus we have

Proposition 4.2. Let T1 and T2 be LU-theories of same language such
that T2 is obtained from T1 by a bijection f1 (respectively f2) mapping (non)empty
predicates for T1 to (non)empty predicates for T2. Then T1 and T2 are lan-
guage similar.

Corollary 4.3. Let T1 and T2 be countable IILU-theories of same lan-
guage such that the restriction T ′

1 of T1 to non-empty predicates is language
similar to the restriction T ′

2 of T2 to non-empty predicates. Then T1 and T2
are language similar.

Proof. By the hypothesis, there is a bijection f2 for non-empty predicates
of T1 and T2. Since T1 and T2 be countable IILU-theories then T1 and T2 have
countably many empty predicates of each arity with non-empty predicates,
there is a bijection f1 for empty predicates of T1 and T2. Now Corollary is
implied by Proposition 4.2. ✷

Definition. For a theory T in a predicate language Σ, we denote by
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SuppΣ(T ) the support of Σ for T , i. e., the set of all arities n such that some
n-ary predicate R for T is not empty.

Clearly, if T1 and T2 are language similar theories, in predicate languages
Σ1 and Σ2 respectively, then SuppΣ1

(T1) = SuppΣ2
(T2).

Definition. Let T1 and T2 be language similar theories of same language
Σ. We say that T2 language dominates T1 and write T1 ⊑L T2 if for any
symbol R ∈ Σ, if T1 ⊢ ∃x̄R(x̄) then T2 ⊢ ∃x̄R(x̄), i. e., all predicates, which
are non-empty for T1, are nonempty for T2. If T1 ⊑L T2 and T2 ⊑L T1, we
say that T1 and T2 are language domination-equivalent and write T1 ∼

L T2.

Proposition 4.4. The relation ⊑L is a partial order on any set of LU-
theories.

Proof. Since ⊑L is always reflexive and transitive, it suffices to note
that if T1 ⊑L T2 and T2 ⊑L T1 then T1 = T2. It follows as language similar
LU-theories coincide having the same set of nonempty predicates. ✷

Definition. We say that T2 infinitely language dominates T1 and write
T1 ❁

L
∞ T2 if T1 ⊑

L T2 and for some n, there are infinitely many new nonempty
predicates for T2 with respect to T1.

Since there are infinitely many elements between any distinct comparable
elements in a dense order, we have

Proposition 4.5. If a class of theories T has a dense order ⊑L then
T1 ❁

L
∞ T2 for any distinct T1, T2 ∈ T with T1 ⊑

L T2.

Clearly, if T1 ⊑
L T2 then SuppΣ(T1) ⊆ SuppΣ(T2) but not vice versa. In

particular, there are theories T1 and T2 with T1 ❁
L
∞ T2 and SuppΣ(T1) =

SuppΣ(T2).

Let T0 be a LU-theory with infinitely many nonempty predicate of some
arity n, and I0 be the set of indexes for the symbols of these predicates.

Now for each infinite I ⊆ I0 with |I| = |I0|, we denote by TI the theory
which is obtained from the complete subtheory of T0 in the language {Rk |
k ∈ I} united with symbols of all arities m 6= n and expanded by empty
predicates Rl for l ∈ I0 \ I, where |I0 \ I| is equal to the cardinality of the
set empty predicates for T0, of the arity n.

By the definition, each TI is language similar to T0: it suffices to take a
bijection f between languages of TI and T0 such that (non)empty predicates
of TI in the arity n correspond to (non)empty predicates of T0 in the arity n,
and f is identical for predicate symbols of the arities m 6= n. In particular,
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Let T be an infinite family of theories TI , and TJ be a theory of the form
above (with infinite J ⊆ I0 such that |J | = |I0|). The following proposition
modifies Proposition 2.2 for the E-closure ClE(T ).

Proposition 4.6. If TJ /∈ T then TJ ∈ ClE(T ) if and only if for any
finite set J0 ⊂ I0 there are infinitely many TI with J ∩ J0 = I ∩ J0.

Proof. By the definition each theory TJ is defined by formulas describing
Pk 6= ∅ ⇔ k ∈ J . Each such a formula ϕ asserts for a finite set J0 ⊂ I0 that
if k ∈ J0 then Rk 6= ∅ ⇔ k ∈ J . It means that {k ∈ J0 | Pk 6= ∅} = J ∩ J0.
On the other hand, by Proposition 2.2, TJ ∈ ClE(T ) if and only if each such
formula ϕ belongs to infinitely many theories TI in T , i.e., for infinitely many
indexes I we have I ∩ J0 = J ∩ J0. ✷

Now we take an infinite family F of infinite indexes I such that F is
linearly ordered by ⊆ and if I1 ⊂ I2 then I2 \ I1 is infinite. The set {TI | I ∈
F} is denoted by TF .

For any infinite F ′ ⊆ F we denote by limF ′ the union-set
⋃
F ′ and by

limF ′ intersection-set
⋂
F ′. If limF ′ (respectively limF ′) does not belong to

F ′ then it is called the upper (lower) accumulation point (for F ′). If J is an
upper or lower accumulation point we simply say that J is an accumulation
point.

Corollary 4.7. If TJ /∈ TF then TJ ∈ ClE(TF ) if and only if J is an
(upper or lower) accumulation point for some infinite F ′ ⊆ F .

Proof. If J = limF ′ or J = limF ′ then for any finite set J0 ⊂ I0 there
are infinitely many TI with J ∩ J0 = I ∩ J0. Indeed, if J =

⋃
F ′ then for

any finite J0 ⊂ I0 there are infinitely many I ∈ F ′ such that I ∩ J0 contains
exactly same elements as J ∩J0 since otherwise we have J ⊂

⋃
F ′. Similarly

the assertion holds for J =
⋂
F ′. By Proposition 4.6 we have TJ ∈ ClE(TF ).

Now let J 6= limF ′ and J 6= limF ′ for any infinite F ′ ⊆ F . In this case
for each F ′ ⊆ F , either J contains new index j for a nonempty predicate
with respect to

⋃
F ′ for each F ′ ⊆ F with

⋃
F ′ ⊆ J or

⋂
F ′ contains new

index j′ for a nonempty predicate with respect to J for each F ′ ⊆ F with⋂
F ′ ⊇ J . In the first case, for J0 = {j} there are no I ∈ F ′ such that

I ∩ J0 = J ∩ J0. In the second case, for J0 = {j′} there are no I ∈ F ′ such
that I ∩ J0 = J ∩ J0. By Proposition 4.6 we get TJ /∈ ClE(TF ). ✷

By Corollary 4.7 the action of the operator ClE for the families TF is
reduced to unions and intersections of index subsets of F .
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Now we consider possibilities for the linearly ordered sets F = 〈F ;⊆〉 and
their closures F = 〈F ;⊆〉 related to ClE.

The structure F is called discrete if F does not contain accumulation
points.

By Corollary 4.7, if F is discrete then for any J ∈ F , TJ /∈ ClE(TF\{J}).
Thus we get

Proposition 4.8. For any discrete F , TF is the least generating set for
ClE(TF ).

By Proposition 4.8, for any discrete F , TF can be reconstructed from
ClE(TF ) removing accumulation points, which always exist. For instance, if
〈F ;⊆〉 is isomorphic to 〈ω;≤〉 or 〈ω∗;≤〉 (respectively, isomorphic to 〈Z;≤〉)
then ClE(TF ) has exactly one (two) new element(s) limF or limF (both
limF and limF ).

Consider an opposite case: with dense F . Here, if F is countable then,
similarly to 〈Q;≤〉, taking cuts for F , i. e., partitions (F−, F+) of F with
F− < F+, we get the closure F with continuum many elements. Thus, the
following proposition holds.

Proposition 4.9. For any dense F , |F | ≥ 2ω.

Clearly, there are dense F with dense and non-dense F . If F is dense

then, since F = F , there are dense F1 with |F1| = |F1|. In particular, it is
followed by Dedekind theorem on completeness of R.

Answering Question 4 we have

Proposition 4.10. If F is dense then ClE(TF ) does not contain the least
generating set.

Proof. Assume on contrary that ClE(TF ) contains the least generating
set with a set F0 ⊆ F of indexes. By the minimality F0 does not contain both
the least element and the greatest element. Thus taking an arbitrary J ∈ F0

we have that for the cut (F−
0,J , F

+
0,J), where F

−
0,J = {J− ∈ F0 | J− ⊂ J}

and F+
0,J = {J+ ∈ F0 | J+ ⊃ J}, J = limF−

0,J and J = limF+
0,J . Thus,

F0 \ {J} is again a set of indexes for a generating set for ClE(TF ). Having a
contradiction we obtain the required assertion. ✷

Combining Proposition 3.4 and Proposition 4.10 we obtain

Corollary 4.11. If F is dense then Th(AE) does not have e-least models
and, in particular, it is not small.
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Remark 4.12. The condition of the density of F for Proposition 4.10 is
essential. Indeed, we can construct step-by step a countable dense structure
F without endpoints such that for each J ∈ F and for its cut (F−

J , F
+
J ),

where F−
J = {J− ∈ F | J− ⊂ J} and F+

J = {J+ ∈ F | J+ ⊃ J}, J ⊃ limF−
J

and J ⊂ limF+
J . In this case ClE(TF ) contains the least generating set

{TJ | J ∈ F}.

In general case, if an element J of F has a successor J ′ or a predecessor
J−1 then J defines a connected component with respect to the operations ·′

and ·−1. Indeed, taking closures of elements in F with respect to ·′ and ·−1 we
get a partition of F defining an equivalence relation such that two elements
J1 and J2 are equivalent if and only if J2 is obtained from J1 applying ·′ or
·−1 several (maybe zero) times.

Now for any connected component C we have one of the following possi-
bilities:

(i) C is a singleton consisting of an element J such that J 6= limF−
J and

J 6= limF+
J ; in this case J is not an accumulation point for F \ {J} and TJ

belongs to any generating set for ClE(TF );
(ii) C is a singleton consisting of an element J such that J = limF−

J or
J = limF+

J , and limF−
J 6= limF+

J ; in this case J is an accumulation point for
exactly one of F−

J and F+
J , J separates F−

J and F+
J , and TJ can be removed

from any generating set for ClE(TF ) preserving the generation of ClE(TF );
thus TJ does not belong to minimal generating sets;

(iii) C is a singleton consisting of an element J such that J = limF−
J =

limF+
J ; in this case J is a (unique) accumulation point for both F−

J and
F+
J , moreover, again TJ can be removed from any generating set for ClE(TF )

preserving the generation of ClE(TF ), and TJ does not belong to minimal
generating sets;

(iv) |C| > 1 (in this case, for any intermediate element J of C, TJ belongs
to any generating set for ClE(TF )), limC ⊃ limF−

limC and limC ⊂ limF+

limC
;

in this case, for the endpoint(s) J∗ of C, if it (they) exists, TJ∗ belongs to
any generating set for ClE(TF );

(v) |C| > 1, and limC = limF−
limC or limC = limF+

limC
; in this case, for

the endpoint J∗ = limC of C, if it exists, TJ∗ does not belong to minimal
generating sets of ClE(TF ), and for the endpoint J∗∗ = limC of C, if it exists,
TJ∗∗ does not belong to minimal generating sets of ClE(TF ).

Summarizing (i)–(v) we obtain the following assertions.

Proposition 4.13. A partition of F by the connected components forms
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discrete intervals or, in particular, singletons of F , where only endpoints J
of these intervals can be among elements J∗∗ such that TJ∗∗ does not belong
to minimal generating sets of ClE(TF ).

Proposition 4.14. If (F−, F+) is a cut of F with limF− = limF+

(respectively limF− ⊂ limF+) then any generating set T 0 for ClE(TF ) is
represented as a (disjoint) union of generating set T 0

F− for ClE(TF−) and of
generating set T 0

F+ for ClE(TF+), moreover, any (disjoint) union of a gener-
ating set for ClE(TF−) and of a generating set for ClE(TF+) is a generating
set T 0 for ClE(TF ).

Proposition 4.14 implies

Corollary 4.15. If (F−, F+) is a cut of F then ClE(TF ) has the least
generating set if and only if ClE(TF−) and ClE(TF+) have the least generating
sets.

Considering ⊂-ordered connected components we have that discretely or-
dered intervals in F , consisting of discrete connected components and their
limits lim and lim , are alternated with densely ordered intervals including
their limits. If F contains an (infinite) dense interval, then by Proposition
4.10, ClE(TF ) does not have the least generating set. Conversely, if F does
not contain dense intervals then ClE(TF ) contains the least generating set.
Thus, answering Questions 1 and 2 for ClE(TF ), we have

Theorem 4.16. For any linearly ordered set F , the following conditions
are equivalent:

(1) ClE(TF ) has the least generating set;
(2) F does not have dense intervals.

Remark 4.17. Theorem 4.16 does not hold for some non-linearly ordered
F . Indeed, taking countably many disjoint copies Fq, q ∈ Q, of linearly
ordered sets isomorphic to 〈ω,≤〉 and ordering limits Jq = limFq by the
ordinary dense order on Q such that {Jq | q ∈ Q} is densely ordered, we
obtain a dense interval {Jq | q ∈ Q} whereas the set ∪{Fq | q ∈ Q} forms
the least generating set T0 of theories for ClE(T0).

The above operation of extensions of theories for {Jq | q ∈ Q} by theories
for Fq as well as expansions of theories of the empty language to theories for
{Jq | q ∈ Q} confirm that the (non)existence of a least/minimal generating
set for ClE(T0) is not preserved under restrictions and expansions of theories.

Remark 4.18. Taking an arbitrary theory T with a non-empty predicate
R of an arity n, we can modify Theorem 4.16 in the following way. Extending
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the language Σ(T ) by infinitely many n-ary predicates interpreted exactly
as R and by infinitely many empty n-ary predicates we get a class TT,R of
theories R-generated by T . The class TT,R satisfies the following: any linearly
ordered F as above is isomorphic to some family F ′, under inclusion, sets of
indexes of non-empty predicates for theories in TT,R such that strict inclusions
J1 ⊂ J2 for elements in F ′ imply that cardinalities J2 \ J1 are infinite and do
not depend on choice of J1 and J2. Theorem 4.16 holds for linearly ordered
F ′ involving the given theory T .

5 On e-spectra for families of language uni-

form theories

Remark 5.1. Remind [1, Proposition 4.1, (7)] that if T = Th(AE) has an
e-least model M then e-Sp(T ) = e-Sp(M). Then, following [1, Proposition
4.1, (5)], e-Sp(T ) = |T0\T

′
0 |, where T

′
0 is the (least) generating set of theories

for E-classes of M, and T0 is the closed set of theories for E-classes of an
e-largest model of T . Note also that e-Sp(T ) is infinite if T0 does not have
the least generating set.

Remind that, as shown in [1, Propositions 4.3], for any cardinality λ
there is a theory T = Th(AE) of a language Σ such that |Σ| = |λ + 1| and
e-Sp(T ) = λ. Modifying this proposition for the class of LU-theories we
obtain

Proposition 5.2. (1) For any µ ≤ ω there is an E-combination T =
Th(AE) of IILU-theories in a language Σ of the cardinality ω such that T
has an e-least model and e-Sp(T ) = µ.

(2) For any uncountable cardinality λ there is an E-combination T =
Th(AE) of IILU-theories in a language Σ of the cardinality λ such that T
has an e-least model and e-Sp(T ) = λ.

Proof. In view of Propositions 3.4, 4.8, and Remark 5.1, it suffices to
take an E-combination of IILU-theories of a language Σ of the cardinality λ
and with a discrete linearly ordered set F having:

1) µ ≤ ω accumulation points if λ = ω;
2) λ accumulation points if λ > ω.
We get the required F for (1) taking:
(i) finite F for µ = 0;
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(ii) µ/2 discrete connected components, forming F , with the ordering
type 〈Z;≤〉 and having pairwise distinct accumulation points, if µ > 0 is
even natural;

(iii) (µ−1)/2 discrete connected components, forming F , with the order-
ing type 〈Z;≤〉 and one connected components with the ordering type 〈ω;≤〉
such that all accumulation points are distinct, if µ > 0 is odd natural;

(iv) ω discrete connected components, forming F , with the ordering type
〈Z;≤〉, if µ = ω.

The required F for (2) is formed by (uncountably many) λ discrete con-
nected components, forming F , with the ordering type 〈Z;≤〉. ✷

Combining Propositions 3.4, 4.10, Theorem 4.16, and Remark 5.1 with
F having dense intervals, we get

Proposition 5.3. For any infinite cardinality λ there is an E-combination
T = Th(AE) of IILU-theories in a language Σ of cardinality λ such that T
does not have e-least models and e-Sp(T ) ≥ max{2ω, λ}.
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