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Abstract. To understand the solution of a linear, time-invariant differential-algebraic equation,
one must analyze a matrix pencil (A,E) with singular E. Even when this pencil is stable (all its finite
eigenvalues fall in the left-half plane), the solution can exhibit transient growth before its inevitable
decay. When the equation results from the linearization of a nonlinear system, this transient growth
gives a mechanism that can promote nonlinear instability. One might hope to enrich the conventional
large-scale eigenvalue calculation used for linear stability analysis to signal the potential for such
transient growth. Toward this end, we introduce a new definition of the pseudospectrum of a matrix
pencil, use it to bound transient growth, explain how to incorporate a physically-relevant norm,
and derive approximate pseudospectra using the invariant subspace computed in conventional linear
stability analysis. We apply these tools to several canonical test problems in fluid mechanics, an
important source of differential-algebraic equations.
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1. Introduction. Consider a linear, time invariant differential-algebraic equa-
tion (DAE) of the general form

Ex′(t) = Ax(t),(1)

where A ∈ Cn×n, x(t) ∈ Cn, and the matrix E ∈ Cn×n is singular. The singularity
of E imposes an algebraic constraint that any solution x(t) must satisfy at all t. For
example, in the system 1 0 0

0 1 0
0 0 0

 x′1(t)
x′2(t)
x′3(t)

 =

 −1 −10 0
0 −1 0
1 1 1

 x1(t)
x2(t)
x3(t)

(2)

the third equation gives the algebraic constraint x1(t) + x2(t) + x3(t) = 0.
Substituting the usual ansatz x(t) = eλtv (for fixed λ ∈ C and v ∈ Cn) into (1)

yields the generalized eigenvalue problem

Av = λEv(3)

for the matrix pencil (A,E). It is possible that A − λE is singular for all λ ∈ C,
in which case the matrix pencil is singular. We are concerned here with the more
common case of regular (i.e., not singular) pencils, where A − µE is invertible for
some µ ∈ C. In this case one can find a nonzero vector v ∈ Ker(E) (the nullspace
of E) with Ev = 0 but Av 6= 0; in light of (3) we associate such v with the infinite
eigenvalue λ = ∞. This infinite eigenvalue is mapped to the zero eigenvalue of
Eµ := (A − µE)−1E. In the setting of equation (1), the dimension of the largest
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2 M. EMBREE AND B. KEELER

Jordan block of Eµ corresponding to a zero eigenvalue is the index of the differential-
algebraic equation; see [7, 28] for a more detailed discussion of index. (The examples
from fluid examples considered in Section 6 have index 2.)

Consider again the (A,E) pair in the example (2). The pencil has spectrum
σ(A,E) = {−1,∞}, where λ = −1 has algebraic multiplicity two. Any initial condi-
tion must be consistent with the algebraic constraint, i.e., x1(0) + x2(0) + x3(0) = 0,
and from that initial state the solution will evolve in the two-dimensional subspace
{x ∈ C3 : x1 + x2 + x3 = 0}. The left plot in Figure 1 shows the solution for
x(0) = [−1, 1, 0]T; the right plot shows the analogous solution for the same initial
condition and E, but now with

A =

 −1 −25 0
1 −1 0
1 1 1

 ;(4)

this modified pencil has the spectrum σ(A,E) = {−1 + 5i,−1 − 5i,∞}. In both
cases the finite eigenvalues of (A,E) are in the left-half plane, so the solutions are
asymptotically stable: x(t) → 0 for all initial conditions that satisfy the algebraic
constraint. (For the second example the complex eigenvalues cause solutions to spiral
toward the origin.) However, these examples have been designed so that x(t) exhibits
significant transient growth before eventually decaying: there exist times t > 0 for
which ‖x(t)‖ � ‖x(0)‖. This growth is relatively modest in Figure 1, compared to
an increase over orders of magnitude that can occur in some applications.

Simple eigenvalue computations alone cannot reveal the potential for transient
growth, yet such growth plays a pivotal role in dynamics. Many DAEs of the form (1)
derive from the linear stability analysis of nonlinear dynamical systems, especially
in fluid dynamics; see, e.g., [10],[23, chap. 15]. Transient growth in the linearized
system has been advanced as a mechanism for transition to turbulence at subcritical
Reynolds numbers; see, e.g., [3, 6, 8, 37, 45]. Given this possibility, classical linear
stability analysis should be supplemented with information about transient growth,

x1 x2

x3

x1 x2

x3

Fig. 1. Solutions to the DAE (2) and the same equation with A replaced by (4), both with
x(0) = [−1, 1, 0]T. The gray region indicates the plane {x ∈ R3 : x1 + x2 + x3 = 0} on which
the solution is constrained to evolve. Though both systems are asymptotically stable, they exhibit
significant transient growth: ‖x(t)‖ � ‖x(0)‖ for some values of t > 0.
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in the same way that Gaussian elimination algorithms routinely warn when a matrix
is severely ill-conditioned.

A variety of techniques help identify transient growth in the standard linear sys-
tem x′(t) = Ax(t), including the numerical range, pseudospectra, and the condition-
ing of a basis of eigenvectors of A; see [44, Part IV] for a survey. These tools do
not immediately translate to the DAE setting. We aim to provide such a generaliza-
tion, obtaining a definition of the pseudospectrum of a matrix pencil that preserves
the algebraic structure of the problem, and hence is more suitable for the analysis
of DAEs than earlier proposals in the literature. Section 2 discusses these earlier
definitions, and Section 3 describes our alternative. This new definition is applied
to derive upper and lower bounds on the transient growth of solutions to (1) in Sec-
tion 4. The cost of computing pseudospectra can be a deterrent to their widespread
adoption; thus in Section 5 we show how one can readily obtain lower bounds on the
proposed pseudospectra as a byproduct of the standard eigenvalue computation in
linear stability analysis. Section 6 applies these techniques to several model problems
in incompressible fluid flow.

Our primary concern here is the potential transient growth of exact solutions of
the DAE (1), the question most relevant to linear stability analysis. Other definitions
of pseudospectra are more appropriate when one is concerned with uncertain systems,
as we discuss in the next section. We do not address other important issues, such as
the challenge of numerically generating a solution that is faithful to the constraints [4],
or understanding how the nature of the DAE changes under perturbations to A and
E, which can be particularly challenging for higher index DAEs.

2. Earlier definitions of pseudospectra of matrix pencils. Throughout,
we let σ(·) and σ(·, ·) denote the spectrum of a matrix and matrix pencil. For any
ε > 0, the ε-pseudospectrum σε(A) of a matrix A ∈ Cn×n is the set

σε(A) := {z ∈ C : ‖(zI−A)−1‖ > 1/ε}(5)

= {z ∈ C : there exists ∆ ∈ Cn×n with ‖∆‖ < ε and z ∈ σ(A + ∆)},(6)

with the convention that ‖X−1‖ =∞ when X ∈ Cn×n is not invertible. Throughout,
we use the notation σε(·) with a single argument to denote this standard set. The
equivalence of definitions (5) and (6) is fundamental to pseudospectral theory (see,
e.g., [44, chap. 2] for a proof), and the cause for ambiguity when pseudospectra
are generalized beyond the standard eigenvalue problem. Unlike the spectrum, the
pseudospectrum σε(A) depends on the norm. We let ‖ · ‖ denote a norm induced by
an inner product, and the associated operator norm. (Later we will emphasize the
importance of using physically relevant norms in our definitions.)

Since 1994 various generalizations of the ε-pseudospectrum have been proposed
for matrix pencils, e.g., [16, 25, 29, 35, 36, 46]; see [44, chap. 45] for a comparison of
these definitions. For example, one can generalize (5) to the pencil (A,E) as

σε(A,E) = {z ∈ C : ‖(zE−A)−1‖ > 1/ε}.(7)

Alternatively, one can generalize (6) to

σε(A,E) = {z ∈ C : there exists ∆0,∆1 ∈ Cn×n(8)

with ‖∆0‖ < εC0, ‖∆1‖ < εC1 and z ∈ σ(A + ∆0,E + ∆1)},
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Fig. 2. On the left, boundaries of ε-pseudospectra of the pencil (A,E) from (2) for ε = 10−1,
10−2, 10−3, according to definition (7), with the single eigenvalue λ = −1. The middle and right
plots show the same ε-pseudospectra for (TA,TE) for the two T matrices in (10). Though these
pseudospectra are rather different, all three pencils give DAEs with identical dynamics.

where C0, C1 ≥ 0 are scaling factors that distinctly control the size of the pertur-
bations to each coefficient matrix.∗ Common choices include C0 = C1 = 1, and
C0 = ‖A‖ and C1 = ‖E‖. In fact, definition (8) subsumes definition (7), since the
sets are the same when C0 = 1 and C1 = 0; see, e.g., [46].

Definition (8) provides a convenient tool for assessing the asymptotic stability
of the solution of a DAE when the entries of A and E are only known within some
(bounded) uncertainty. This definition also gives insight into the accuracy of eigenval-
ues of a matrix pencil that have been numerically computed with a backward-stable
algorithm, and has been applied to understand the distance of a pencil to one with
a multiple eigenvalue (“Wilkinson’s Problem”) [1]. However, as pointed out in [44],
this definition is unsuitable for analyzing the transient growth of solutions to DAEs.
To see why, premultiply equation (1) by any invertible T ∈ Cn×n to get

TEx′(t) = TAx(t).(9)

The pencil (TA,TE) has the same spectrum as (A,E) but potentially very different
pseudospectra according to definitions (7) and (8). However, since T has no effect
on the solution x(t), it has no influence on transient dynamics. Figure 2 illustrates
this shortcoming of definition (7) for the matrix pencil in equation (2), comparing the
ε-pseudospectra of (A,E) with those of (TA,TE) for

T =

 1 −4 16
0 1 −1
0 0 1

 and T =

 1 −10 0
0 1 0
0 0 1

 .(10)

When dealing with standard matrix pseudospectra, the rightmost extent of σε(A) in
the complex plane gives crucial information about the transient behavior of solutions
of x′(t) = Ax(t). (Specifics are discussed in Section 4.) In each plot in Figure 2, the
outermost curve is the boundary of the ε = 10−1 pseudospectrum. The rightmost
extent of this set varies considerably across the three plots, even though the three
pencils define the same dynamical system, and thus give identical transient behavior.

To properly handle dynamics when E is invertible, [44] instead recommends

∗The indexing of these perturbations reflects the degree of the coefficients A and E in the linear
matrix pencil; this definition further generalizes to arbitrary degree matrix polynomials [42].
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Ruhe’s definition [36]

σε(A,E) = σε(E
−1A)(11)

= {z ∈ C : ‖(z −E−1A)−1‖ > 1/ε}
= {z ∈ C : ‖(zE−A)−1E‖ > 1/ε},

emphasizing that one should use a physically relevant norm, rather than the usual
two-norm, in the definition. (In the proper norm, (11) can reduce to a definition
advocated by Riedel for positive definite E [35].) Notice that the definition (11) is
immune to the effects of premultiplication by invertible T, since

σε(TA,TE) = σε((TE)−1(TA)) = σε(E
−1A) = σε(A,E),

and, since in this case the solution of Ex′(t) = Ax(t) is given by

x(t) = et(E
−1A)x(0),(12)

one can understand the transient dynamics of (12) from standard results about the
pseudospectra of E−1A. However, this definition is clearly insufficient for differential-
algebraic equations, where E is not invertible.†

3. Pseudospectra for matrix pencils derived from DAEs. To begin this
section let ‖·‖ denote the vector 2-norm and the matrix norm it induces; more general
norms will be addressed in Section 3.3.

Our definition of pseudospectra for matrix pencils derived from DAEs follows from
a simple strategy: to gain insight into the transient dynamics, we should base our
definition on the roles that A and E play in the solution formula for the DAE.‡ These
solutions are typically expressed using the Drazin inverse (see, e.g., [7, chap. 9],[28]).
While this approach gives an algebraically elegant, compact formula, its use of the
Jordan form is computationally unappealing. We shall essentially recapitulate the
derivation from [7], but instead use the Schur factorization.

Suppose (A,E) is a regular pencil, so there exists some µ ∈ C such that A− µE
is invertible. For such a µ define

Aµ := (A− µE)−1A, Eµ := (A− µE)−1E,

and premultiply the DAE (1) by (A− µE)−1 to obtain

Eµx′(t) = Aµx(t).(13)

Now since Aµ = (A− µE)−1(A− µE + µE) = I + µEµ, (13) can be written as

Eµx′(t) = (I + µEµ)x(t).(14)

Compute the Schur factorization

Eµ =
[
Qµ Q̃µ

] [Gµ Dµ

0 Nµ

] [
Q∗µ
Q̃∗µ

]
,(15)

†For singular E, [44, pp. 428–429] tentatively suggests a regularization approach that proves to
be insufficient for describing DAE dynamics.
‡This approach amounts to defining pseudospectra in terms of the infinitesimal generator in the

the semigroup formula for the solution x(t). Green and Wagenknecht briefly mention the analogous
definition for delay differential equations in [20, sect. 4]. The decomposition we use here is commonly
applied in reduced order modeling for descriptor systems; see, e.g., [24, 41].
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where [Qµ Q̃µ] ∈ Cn×n is unitary and the diagonal of the Schur factor has been
ordered so that Nµ ∈ Cd×d is nilpotent, containing all the zero eigenvalues of Eµ,
and hence 0 6∈ σ(Gµ). Expand the solution of the DAE (14) in the Schur basis as

x(t) = Qµy(t) + Q̃µz(t).

Substitute this form for x(t) and the Schur decomposition into (14) to arrive at the
apparently coupled equations

Gµy′(t) + Dµz′(t) = (I + µGµ)y(t) + Dµz(t)(16)

Nµz′(t) = (I + µNµ)z(t).(17)

Since Nµ is nilpotent, Nd
µ = 0, premultiplying (17) by Nd−1

µ implies that, for all t,

0 = Nd
µz′(t) = (Nd−1

µ + µNd
µ)z(t) = Nd−1

µ z(t),

and hence 0 = Nd−1
µ z′(t). Thus 0 = Nd−1

µ z′(t) = (Nd−2
µ + µNd−1

µ )z(t) = Nd−2
µ z(t).

Iterating this logic eventually leads to z(t) = 0 for all t. Consequently equation (16)
becomes

Gµy′(t) = (I + µGµ)y(t).

Inverting Gµ, we arrive at the solution

x(t) = Qµet(G
−1
µ +µI)Q∗µx(0),(18)

with the stipulation that x(0) ∈ Ran(Qµ) to have consistent initial conditions. (Oth-
erwise x(0) violates the algebraic constraints implicit in the DAE.)

Since ‖x(t)‖ = ‖et(G
−1
µ +µI)(Q∗µx(0))‖, the solution (18) suggests a definition for

the ε-pseudospectrum of the pencil (A,E) that is appropriate for analyzing the tran-
sient behavior of DAEs, a direct generalization of the approach commonly used for
standard dynamical systems. We propose to define

σε(A,E) := {z ∈ C : ‖(zI− (G−1
µ + µI))−1‖ > 1/ε}.

It appears this σε(A,E) depends on µ, but since µ was just a device introduced to
arrive at a solution formula, it should have no influence on the dynamics. Does µ
affect these pseudospectra?

3.1. Independence from µ. Suppose for µ, ν ∈ C both A − µE and A − νE
are invertible. The spectra of Eµ := (A−µE)−1E and Eν := (A−νE)−1E are closely
related. Suppose λ ∈ σ(Eµ), so for some nonzero x ∈ Cn, (A−µE)−1Ex = λx. Thus

Ex = λ(A− µE)x

= λ(A− νE)(I + (ν − µ)(A− νE)−1E)x.

Premultiply by (A− νE)−1 to get

Eνx = λ(I + (ν − µ)Eν)x,

which is equivalent to

(1 + λ(µ− ν))Eνx = λx.
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Notice that 1 + λ(µ− ν) = 0 would imply both λ 6= 0 and 0 = λx; since x 6= 0, this
is impossible. Thus we have

Eνx =
λ

1 + λ(µ− ν)
x,

proving the following lemma.

Lemma 3.1. Suppose for µ, ν ∈ C both A − µE and A − νE are invertible. If
λ ∈ σ(Eµ), then

λ

1 + λ(µ− ν)
∈ σ(Eν).

Now consider the Schur factorization Eµ = QTQ∗, which is equivalent to

EQ = (A− µE)QT

= (A− νE)QT + (ν − µ)EQT.

Since 1 + (µ − ν)λ 6= 0 for all eigenvalues λ of Eµ, I + (µ − ν)T is invertible. Using
this fact and the invertibility of A− µE, we have

(A− νE)−1EQ = QT(I + (µ− ν)T)−1.

Note that T(I + (µ − ν)T)−1, the product of triangular matrices, must itself be
triangular, and Eν := (A− νE)−1E has the same Schur basis Q as Eµ. Partition Q
and T as in (15), so that

Q∗EνQ = T(I + (µ− ν)T)−1 =

[
Gµ Dµ

0 Nµ

] [
I + (µ− ν)Gµ (µ− ν)Dµ

0 I + (µ− ν)Nµ

]−1

has (1, 1) block equal to

Gν := Gµ(I + (µ− ν)Gµ)−1(19)

and (2, 2) block equal to

Nν := Nµ(I + (µ− ν)Nµ)−1.

Since the eigenvalues of Gµ are nonzero, so too are those of Gν . Notice that Nd
ν =

Nd
µ(I+(µ−ν)Nµ)−d (as a function of Nµ commutes with Nµ), so Nν is also nilpotent.

Inverting both sides of (19) gives G−1
ν = (I + (µ− ν)Gµ)G−1

µ , which simplifies to

G−1
ν + νI = G−1

µ + µI.(20)

It follows that G−1
µ + µI is independent of µ (provided that A − µE is invertible),

allowing us to sharpen up our definition of the ε-pseudospectrum of a matrix pencil.

Definition 3.2. Suppose (A,E) is a regular matrix pencil, and µ ∈ C is any
value for which A−µE is invertible. Let Gµ be the submatrix in the Schur factoriza-
tion (15) corresponding to the nonzero eigenvalues of (A− µE)−1E. For any ε > 0,
the ε-pseudospectrum of (A,E) is defined to be

σε(A,E) := {z ∈ C : ‖(zI− (G−1
µ + µI))−1‖ > 1/ε}(21)

= {z ∈ C : ‖((z − µ)Gµ − I)−1Gµ‖ > 1/ε}

= σε(G
−1
µ ) + µ,
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Fig. 3. Boundaries of ε-pseudospectra for (A,E) using Definition 3.2 for ε = 100, 10−1, and
10−2 (solid curves) and W (A,E) using Definition 3.3 (dashed curves); (A,E) are the same as for
the left and right plots in Figure 1.

where σε(G
−1
µ ) refers to the standard matrix ε-pseudospectrum (5). The set σε(A,E)

is independent of µ.

Figure 3 shows pseudospectra, as defined by Definition 3.2, for the pairs (A,E)
used in Figure 1. In both cases the ε = 1 pseudospectrum contains points z for which
Re z > ε, which, as shall see in the next section, guarantees the solution x(t) to
the DAE (1) exhibits transient growth for some (valid) initial condition x(0). More
sophisticated examples appear in Section 6.

Remark 3.1. We collect several observations about this definition.
1. In the Schur decomposition (15), the nonzero eigenvalues can be rearranged

in any order on the diagonal of Gµ; this reordering effectively replaces Gµ with some
unitary similarity transformation, U∗GµU. By the unitary invariance of the 2-norm,
this transformation will not affect the definition of σε(A,E). Beware, though, that if
one independently computes Schur decompositions of Eµ and Eν for µ 6= ν, one will
likely find G−1

µ + µI 6= G−1
ν + νI due to such a unitary similarity transformation.

2. Definition 3.2 reduces to Ruhe’s definition (11) in the case that E is invertible.
(Take µ = 0 in the definition, and again use unitary invariance of the 2-norm.)

3. Since σε(A,E) = σε(G
−1
µ + µI) is just a standard pseudospectrum, one can

compute these sets using the algorithms and software packages designed for standard
pseudospectra; see, e.g., [44, chaps. 39–42],[50, 51].

4. Note that the angle between the invariant subspaces associated with the finite
and infinite eigenvalues (controlled by the off-diagonal block D) does not influence
this definition of pseudospectra. Were E perturbed slightly to become invertible (say,
E→ E + δI), D would certainly influence the pseudospectra σε(E

−1A).

3.2. Numerical range. We can similarly generalize the definition of the nu-
merical range (field of values) of a matrix A ∈ Cn×n,

W (A) := {x∗Ax : x ∈ Cn, ‖x‖ = 1} .

Definition 3.3. The numerical range (or field of values) of the regular matrix
pencil (A,E) is

W (A,E) :=
{
y∗G−1

µ y + µ : y ∈ Cn−d, ‖y‖ = 1
}

= W (G−1
µ ) + µ,
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where µ ∈ C is any value for which A− µE is invertible.

Figure 3 shows W (A,E) for the same matrices used in the earlier examples. Like
our proposal for pseudospectra, this definition for the numerical range differs from the
conventional approach for matrix pencils [26, 31, 34], but, as we will see in section 4,
it gives important insight into transient dynamics. With our definitions, σε(A,E) can
be bounded in terms of W (A,E).

Theorem 3.4. Let (A,E) be a regular pencil. For all ε > 0,

σε(A,E) ⊆W (A,E) + {z ∈ C : |z| < ε}.(22)

Proof. Let µ ∈ C be any value for which A− µE is invertible. Then σε(A,E) =
σε(G

−1
µ )+µ and W (A,E) = W (G−1

µ )+µ. The inclusion (22) then follows by applying
the analogous bound for matrices: σε(G

−1
µ ) ⊆ W (G−1

µ ) + {z ∈ C : |z| < ε}; see [40,
thm. 4.20], [44, p. 169].

3.3. Other norms. For clarity, in this section we use the notation ‖ · ‖2 and
σε,2(·), which is implicit in the notation ‖·‖ and σε(·) everywhere else. Let H ∈ Cn×n
be a Hermitian positive definite matrix factored as H = R∗R for some R ∈ Cn×n
(e.g., R is a Cholesky factor or Hermitian square root of H). Consider the inner
product 〈·, ·〉H defined for x,y ∈ Cn by

〈x,y〉H := y∗Hx = (Ry)∗(Rx).

This inner product induces the vector norm

‖x‖H := 〈x,x〉1/2H = ‖Rx‖2,(23)

with which we associate, for any M ∈ Cn×n, the matrix norm

‖M‖H := max
x6=0

‖Mx‖H
‖x‖H

= max
x6=0

‖RMx‖2
‖Rx‖2

= max
x 6=0

‖RMR−1(Rx)‖2
‖Rx‖2

= ‖RMR−1‖2.(24)

The H-norm of M is just the 2-norm of the similar matrix RMR−1, giving a simple
way to compute ‖M‖H.

The conventional definition of the ε-pseudospectrum easily accommodates norms
induced by a general inner product: simply use ‖ · ‖H for the norm in (5)–(6). Via
the calculation (24), one can use software for computing 2-norm pseudospectra (e.g.,
EigTool [51]) to compute H-norm pseudospectra, since σε,H(A) = σε,2(RAR−1).
Accommodating different norms in Definition 3.2 requires more care.§ We discuss
two equivalent approaches.

3.3.1. Approach 1: Transform state vector coordinates. We seek to mea-
sure transient behavior of the DAE solution x(t) in the H-norm. By (23), ‖x(t)‖H =
‖Rx(t)‖2. Substituting s(t) := Rx(t) into (1) leads to the DAE

ER−1s′(t) = AR−1s(t),

§Theoretically the matter is trivial: require [Qµ Q̃µ] in the Schur decomposition (15) to be

unitary with respect to the H-inner product, and replace [Qµ Q̃µ]∗ in the analysis with the H-

adjoint of [Qµ Q̃µ]. We provide a more concrete discussion for computational convenience.
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suggesting that one simply define

σε,H(A,E) := σε,2(AR−1,ER−1).(25)

This definition behaves as expected when E is invertible: σε,H(A,E), as given in (25),
reduces to the H-norm pseudospectrum of E−1A:

σε,H(A,E) = σε,2(AR−1,ER−1)

= σε,2((ER−1)−1(AR−1)) = σε,2(RE−1AR−1) = σε,H(E−1A).

For singular E, definition (25) invokes a Schur factorization of

Eµ,H := (AR−1 − µER−1)−1ER−1 = R(A− µE)−1ER−1,(26)

which can be partitioned in the form (15). The (1, 1) block of the central factor in
this decomposition, denoted Gµ in (15), generally depends on R.

3.3.2. Approach 2: Transform the Schur factorization (15). Suppose one
has a Schur factorization (15) in the Euclidean inner product for Eµ = (A−µE)−1E.
How does Gµ, key to Definition 3.2, change with the inner product? Using (15),

Eµ,H = REµR−1 = R
[
Qµ Q̃µ

] [Gµ Dµ

0 Nµ

] [
Q∗µ
Q̃∗µ

]
R−1.(27)

Compute a QR factorization

R
[
Qµ Q̃µ

]
=
[
Zµ Z̃µ

] [Sµ ×
0 S̃µ

]
,

where the first matrix on the right is unitary, and × is a generic placeholder for a
submatrix that does not factor into our discussion. Note that the columns of Zµ
form an orthonormal basis for the range of RQµ. Substituting the QR factorization
into (27) gives

Eµ,H =
[
Zµ Z̃µ

] [SµGµS−1
µ ×

0 S̃µNµS̃−1
µ

] [
Z∗µ
Z̃∗µ

]
.(28)

This analogue of (15), reveals how the H-inner product affects the pseudospectra:

2-norm ε-pseudospectrum: σε,2(A,E) = σε,2(G−1
µ ) + µ

H-norm ε-pseudospectrum: σε,H(A,E) = σε,2(SµG−1
µ S−1

µ ) + µ.

The situation perfectly parallels the case of invertible E: in that case, the H-norm
pseudospectra of E−1A are the 2-norm pseudospectra of a similarity transformation
with R. For singular E, this similarity transformation is not with R, but with R
filtered through the subspace Ran(Qµ) in which the solution evolves.

In summary, to compute σε,H(A,E):

1. Compute the Schur factorization (15) of Eµ := (A−µE)−1E to get Gµ, Qµ.
2. Compute the economy-sized QR factorization RQµ = ZµSµ.
3. Compute σε,H(A,E) = σε,2(SµG−1

µ S−1
µ ) + µ.
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3.3.3. Norms not induced by inner products. We shall not dwell long on
norms that are not induced by inner products. The solution formula (18) still holds,

so ‖x(t)‖ = ‖Qµet(G
−1
µ +µI)Q∗µx(0)‖. Given a system of submultiplicative norms,

‖x(t)‖ ≤ ‖Qµ‖‖Q∗µ‖‖et(G
−1
µ +µI)‖‖x0‖.(29)

For example, for the matrix 1-norm, ‖Qµ‖ ≤
√
n and ‖Q∗µ‖ ≤

√
n− d. Thus Defini-

tion 3.2 can still be justified (for example, Dµ in (15) plays no role in ‖x(t)‖, and so
should not factor in σε(A,E)), but the additional constants in (29) make the resulting
bounds less satisfying than those for norms induced by inner products.

4. Transient behavior. Throughout this section we assume that (A,E) is
asymptotically stable, i.e., all finite eigenvalues of the pencil fall strictly in the left-half
plane, and hence x(t)→ 0 as t→∞ for all x(0) that satisfy the algebraic constraints
imposed by the DAE. We seek to identify situations where ‖x(t)‖ grows before its
asymptotic decay (or converges more slowly than would be predicted from the pen-
cil’s rightmost finite eigenvalue), as shown in Figure 1. Definitions 3.2 and 3.3 were
designed to illuminate this transient behavior.

As usual, let µ ∈ C be such that A− µE is invertible. Using the notation of the
last section, any valid initial condition for the DAE must satisfy x(0) ∈ Ran(Qµ),
and hence can be written as x(0) = Qµy0 for some y0 ∈ Cn−d. Using the unitary
invariance of the norm,

‖x(t)‖ = ‖Qµet(G
−1
µ +µI)Q∗µx(0)‖

= ‖et(G
−1
µ +µI)y0‖.

Similarly, since for any y0 ∈ Cn−d, Qµy0 is a valid initial condition for the DAE,
the definition of the matrix norm implies that for any t, there exists some unit vector
x(0) ∈ Ran(Qµ) such that

‖x(t)‖ = ‖et(G
−1
µ +µI)‖.

We thus have available the wealth of results characterizing the transient behavior of
x(t) based on spectral properties of G−1

µ +µI. We state a number of bounds that now
follow as easy corollaries of results for standard dynamical systems. For conventional
pseudospectra, proofs of these results can be found in [44, part IV]. We first define the
key quantities that connect pseudospectra and the numerical range to the transient
behavior of continuous time systems.

Definition 4.1. The ε-pseudospectral abscissa of the regular pencil (A,E) is

αε(A,E) := sup
z∈σε(A,E)

Re z.

Definition 4.2. The numerical abscissa of the regular pencil (A,E) is

ω(A,E) := sup
z∈W (A,E)

Re z.

The analogue of ω(A,E) in the standard matrix case is sometimes called the
logarithmic norm [39]. Note that αε(A,E) and ω(A,E) can be computed from their
standard matrix analogues:

αε(A,E) = αε(G
−1
µ ) + µ, ω(A,E) = ω(G−1

µ ) + µ,(30)
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with both quantities independent of µ. The latter equality implies

ω(A,E) = µ+ λmax

(G−1
µ + G−∗µ

2

)
,

where λmax(·) denotes the rightmost eigenvalue of a Hermitian matrix.

4.1. Behavior at t = 0. The numerical range describes the early behavior of
a dynamical system, limiting the rate at which ‖x(t)‖ can initially grow.

Theorem 4.3. Let (A,E) be a regular pencil with A− µE invertible. Then

d

dt

∥∥et(G
−1
µ +µI)

∥∥∣∣∣∣
t=0

= ω(A,E).

For any unit vector x(0) ∈ Ran(Qµ), the solution x(t) to Ex′(t) = Ax(t) thus satisfies

d

dt
‖x(t)‖

∣∣∣∣
t=0

≤ ω(A,E),

with equality attained for some unit vector x(0) ∈ Ran(Qµ).
See [44, chap. 17] for a proof in the standard matrix case, which can be applied

to G−1
µ + µI to obtain Theorem 4.3. This result is connected to the Lumer–Phillips

theorem, which relates dissipative operators to contraction semigroups [33, sect. 1.4].
If ω(A,E) > 0, the system must exhibit transient growth for some initial con-

ditions. The maximum growth rate is attained for x(0) = Qµy, where y is a unit
eigenvector associated with the rightmost eigenvalue of G−1

µ + G−∗µ .

4.2. Lower bounds on maximal growth. When ω(A,E) > 0, the numerical
range captures the initial growth of ‖x(t)‖, but it does not address the extent of
that growth at times t > 0. Pseudospectra are more useful for this task. The next
theorem implies that if σε(A,E) extends more than ε into the right-half plane, then
there exists some x(0) for which x(t) grows by at least a factor of αε(A,E)/ε.

Theorem 4.4. Let (A,E) be a regular pencil with A− µE invertible. Then

sup
t≥0

∥∥et(G
−1
µ +µI)

∥∥ ≥ αε(A,E)

ε
(31)

for all ε > 0, and there exists some x(0) ∈ Ran(Qµ) such that the solution x(t) to
Ex′(t) = Ax(t) realizes this transient growth:

sup
t≥0

‖x(t)‖
‖x(0)‖

≥ αε(A,E)

ε
.

The proof is a simple consequence of the identity equating the resolvent to the
Laplace transform of the exponential of a matrix; see, e.g., [14, thm. 11ε]. Figure 4
shows αε(A,E)/ε as a function of ε for the pencil in (2) whose pseudospectra were
shown in Figure 3.

The ε that gives the greatest lower bound in Theorem 4.4 is of special interest.
Definition 4.5. The Kreiss constant (with respect to the left-half plane) of the

regular pencil (A,E) is

K(A,E) := sup
ε>0

αε(A,E)

ε
.
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Fig. 4. The ratio αε(A,E)/ε as a function of ε for the example in (2) for which σε(A,E) was
plotted on the left side of Figure 3. By Theorem 4.4 there exists an initial condition x(0) ∈ Ran(Q0)
such that ‖x(t)‖ grows at least by a factor of nearly 3 (since K(A,E), the maximum of αε(A,E)/ε,
is nearly 3).

Theorem 4.4 is the most useful lower bound on transient growth, but it does not
mark the time at which that growth is realized. Some sense of time scale follows by
adapting a bound of Trefethen for the standard case [44, eq. (14.13)].

Theorem 4.6. Let (A,E) be a regular pencil with A−µE invertible, and suppose
that αε(A,E) > 0 for some given ε > 0. Then for all τ > 0,

max
t∈[0,τ ]

‖et(G
−1
µ +µI)‖ ≥ eταε(A,E)

(
1

1 + ε
(
eταε(A,E) − 1

)
/αε(A,E)

)
,(32)

and for some initial condition x(0) ∈ Ran(Qµ), ‖x(t)‖/‖x(0)‖ attains this growth.

4.3. Upper bounds on transient growth. We now turn to upper bounds on
‖x(t)‖. The simplest bound, sometimes called Coppell’s inequality in the standard
matrix case [17, sect. 4.2.1], uses the numerical abscissa to limit the extent of growth
at any given t ≥ 0.

Theorem 4.7. Let (A,E) be a regular pencil with A− µE invertible. Then∥∥et(G
−1
µ +µI)

∥∥ ≤ etω(A,E)

for all t ≥ 0, and all solutions of the DAE Ex′(t) = Ax(t) satisfy

‖x(t)‖
‖x(0)‖

≤ etω(A,E).(33)

This bound suffers from a major limitation: if (A,E) is stable but ω(A,E) > 0
(as with the examples in Figure 1), (33) fails to capture ‖x(t)‖ → 0 as t → ∞. To
describe that convergence, suppose one could diagonalize G−1

µ = VΛµV−1, so that

‖x(t)‖
‖x(0)‖

≤ ‖et(G
−1
µ +µI)‖ ≤ ‖V‖‖V−1‖ etα(A,E),(34)

where α(A,E) is the spectral abscissa of (A,E), i.e., the real part of the rightmost
(finite) eigenvalue of (A,E). If (A,E) is stable, then α(A,E) < 0 and (34) describes



14 M. EMBREE AND B. KEELER

‖x(t)‖ → 0. However, ‖V‖‖V−1‖ can be very large (or G−1
µ may not be diagonaliz-

able), and this quantity is difficult to estimate when the pencil has large dimension.
Pseudospectra give more flexible bounds that are better suited to approximation (as
addressed in the next section).

Theorem 4.8. Let (A,E) be a regular pencil with A − µE invertible. For all
ε > 0 and t > 0,

‖et(G
−1
µ +µI)‖ ≤ Lεe

tαε(A,E)

2πε
,(35)

where Lε is the contour length of a Jordan curve that contains σε(A,B) in its interior.
For all t ≥ 0,

‖et(G
−1
µ +µI)‖ ≤ e(n− d)K(A,E),(36)

where n− d is the dimension of Gµ and K(A,E) denotes the Kreiss constant.
Varying ε > 0 in (35) leads to a family of upper bounds: as ε ↓ 0, αε(A,E) de-

creases monotonically to α(A,E) while Lε/(2πε) generally increases. The bound (35)
is derived by crudely estimating the norm of the Dunford–Taylor integral [27, p. 44]

et(G
−1
µ +µI) =

1

2πε

∫
Γε

etz(zI− (G−1
µ + µI))−1 dz,(37)

where Γε is a finite union of Jordan curves enclosing σε(A,E) in their collective
interior. When Lε is large because Γε must capture portions of σε(A,E) far in the
left-half plane, more careful estimates of the integral (37) could yield tighter bounds.

For stable (A,E), since α(A,E) < 0 one can take ε > 0 sufficiently small that
αε(A,E) < 0. For such ε, (35) implies ‖x(t)‖ → 0 as t → ∞. The leading con-
stant Lε/(2πε) then limits the extent of transient growth. The bound (36), the
Kreiss Matrix Theorem, has a nontrivial proof with an interesting history behind the
dimension-dependent factor; see [44, chap. 18],[49].

Any bound on ‖etA‖ leads to a similar bounds for DAEs by simply replacing A
with G−1

µ + µI. The sampling of bounds above is not meant to be exhaustive. For
example, one can obtain more refined (but complicated) bounds using pseudospec-
tra [44, chap. 15], or by decomposing G−1

µ using spectral projectors. A rather different
class of bounds involves the solution of an associated Lyapunov equation; see, e.g.,
[19, sect. 11.4], [47], [48, thm. 13.6].

5. Approximation of pseudospectra for large scale problems. When A
and E are large, as occurs for linear stability analysis problems derived from partial
differential equations, it is impractical to compute the sets σε(A,E) in Definition 3.2.
For example, fluid dynamics applications give DAEs with coefficients of the form

A =

[
K B∗

B 0

]
, E =

[
M 0
0 0

]
,(38)

with K ∈ Rnv×nv invertible, B ∈ Rnp×nv full rank, and M ∈ Rnv×nv Hermitian
positive definite. The pencil (A,E) has nv − np finite eigenvalues and 2np infinite
eigenvalues (associated with np Jordan blocks of size 2×2), so the corresponding DAE
has index 2; see [9] for a discussion of this eigenvalue problem. Given this spectral
structure, Gµ ∈ C(nv−np)×(nv−np); in engineering computations nv−np can easily be
104 or much larger. Our proposed definition of pseudospectra will only be useful if
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there is a practical way to compute approximations that require little effort beyond
the standard eigenvalue computation already used for linear stability analysis.

Wright and Trefethen proposed a technique for approximating conventional pseu-
dospectra by restricting the matrix to an invariant subspace [52] computed using
ARPACK [30] (perhaps via MATLAB’s eigs interface). This approach provides in-
terior estimates of the pseudospectra; i.e., if the columns of V ∈ Cn×k form an
orthonormal basis for a k-dimensional invariant subspace of A, then for all ε > 0,

σε(V
∗AV) ⊆ σε(A).(39)

(The EigTool software offers a modified projection method, where the invariant sub-
space is augmented by a Krylov subspace [51].) If the invariant subspace corresponds
to all eigenvalues in some region of the complex plane (e.g., the rightmost eigenval-
ues), then the approximation (39) is typically quite accurate near those eigenvalues.
(See [44, chap. 40], which also explains when this approximation fails to be accurate.)
The matrix V∗AV ∈ Ck×k is generally much smaller than A, so its pseudospectra
can be computed using standard dense techniques [43] in a fraction of the time it
took to compute V. Thus approximate pseudospectra can be generated as a simple
byproduct of a large-scale eigenvalue computation, providing a simple way to perform
a pseudospectral sensitivity analysis.

We seek a similar approximation strategy for the pseudospectra of the matrix
pencil, σε(A,E). To assess the asymptotic stability of solutions of the DAE (1), one
seeks the rightmost (finite) eigenvalues of the pencil (A,E); these are typically found
by computing the largest-magnitude eigenvalues of the shift-invert transformation
(A− µE)−1E or Cayley transformation (A− µ1E)−1(A− µ2E); see, e.g., [32].

Suppose that for µ ∈ C, the matrix A − µE is invertible, and let the columns
of V ∈ Cn×k give an orthonormal basis for a k-dimensional invariant subspace of
(A,E) associated with finite eigenvalues. (Equivalently, Ran(V) is an invariant sub-
space of Eν := (A − νE)−1E associated with nonzero eigenvalues for any ν ∈ C
for which A− νE is invertible, following essentially the same argument that showed
µ-independence of Definition 3.2. Thus V can be computed using any desired shift-
invert transformation.) Now σ(V∗EµV) ⊆ σ(Eµ); in particular, consider the Schur
factorization of the k × k matrix

V∗EµV = UĜU∗,

where Ĝ ∈ Ck×k is an invertible upper-triangular matrix with σ(Ĝ) ⊆ σ(Eµ) and
U ∈ Ck×k is unitary. This decomposition is a partial Schur factorization of Eµ: since
the eigenvalues can be ordered arbitrarily on the diagonal of the Schur factor, we can
compute some unitary [Q Q⊥] ∈ Cn×n such that

Eµ = [ Q Q⊥ ]

[
G D
0 N

] [
Q∗

Q∗⊥

]
with

G =

[
Ĝ X
0 G̃

]
(40)

for Ĝ ∈ Ck×k and G̃ ∈ C(n−d−k)×(n−d−k) both invertible. To compute σε(A,E) in
Definition 3.2, we must compute level sets of ‖((z − µ)I−G−1)−1‖. Note that

G−1 =

[
Ĝ−1 −Ĝ−1XG̃−1

0 G̃−1

]
,
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and

((z − µ)I−G−1)−1 =

[
((z − µ)I− Ĝ−1)−1 Z

0 ((z − µ)I− G̃−1)−1

]

for Z = ((z − µ)I − Ĝ−1)−1Ĝ−1XG̃−1((z − µ)I − G̃−1)−1. The norm of the (1, 1)

block of ((z − µ)I− Ĝ−1)−1 cannot exceed the norm of the entire matrix, so

‖((z − µ)I−G−1)−1‖ ≥ ‖((z − µ)I− Ĝ−1)−1‖

= ‖(zI− (Ĝ−1 + µI))−1‖.

Applying this bound to Definition 3.2 shows that the computed invariant subspace
gives an interior bound on the pseudospectra of (A,E). (For simplicity of formulation,

we omit the unitary similarity transformation with U from the definition of Ĝ, as it
does not alter the pseudospectra.)

Theorem 5.1. Let the columns of V ∈ Cn×k form an orthonormal basis for a
k-dimensional invariant subspace of (A,E) associated with finite eigenvalues, and let
µ ∈ C be any number for which A− µE is invertible. Then for all ε > 0,

σε(Ĝ
−1 + µI) ⊆ σε(A,E),

where Ĝ = V∗(A− µE)−1EV.

This theorem implies that lower bounds on σε(A,E) can be obtained as a byprod-
uct of the usual eigenvalue calculation performed for linear stability analysis. Two
caveats are in order. (1) To obtain pseudospectral estimates in the norm most rel-
evant for the physical problem, one should first transform A and E as described in
Section 3.3, so that the Euclidean norm on Cn gives an accurate measure of the
physically-motivated norm. The basis vectors for the invariant subspace in V are
thus orthogonal in the Euclidean norm. (2) To accurately approximate σε(A,E), one
often needs a large invariant subspace, i.e., k might be taken larger than one would use
if only computing the rightmost eigenvalue. However, larger subspaces bolster one’s
confidence that a rightmost eigenvalue with large imaginary part has not been missed,
and further reveal the role of subordinate eigenvalues on the transient behavior. The
next section shows several illustrations for problems from fluid dynamics.

The accuracy of the approximation in Theorem 5.1 depends on several factors,
such as the location of the computed eigenvalues, the dimension of the associated
invariant subspace, and the angle between that subspace and the complementary in-
variant subspace associated with the other finite eigenvalues (related to the matrix X
in (40)). We cannot expect the approximation to be accurate throughout C, particu-
larly when k � n−d. Rather, we hope it is accurate in a region of C most relevant to
the application at hand. For example, for linear stability analysis of a continuous-time
dynamical system, we hope σε(Ĝ

−1 +µI) ≈ σε(A,E) in the intersection of the right-
half plane with W (G−1 + µI), which will lead to accurate estimates of the positive
values of αε(A,E). In any case, since Theorem 5.1 gives interior estimates, we always

have αε(Ĝ
−1 +µI) ≤ αε(A,E). Thus Theorem 4.4 implies the following lower bound

on transient growth.
Corollary 5.2. Using the notation of Theorem 5.1, for any ε > 0 there exists

some initial condition x(0) ∈ Ran(Qµ) such that the solution x(t) to (1) satisfies

sup
t≥0

‖x(t)‖
‖x(0)‖

≥ αε(Ĝ
−1) + µ

ε
.
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5.1. Alternative Norms. Suppose the matrix pencil is derived from a physical
problem that is associated with some inner product; for example, in many cases
the square of the norm of the solution corresponds to energy. Practical eigenvalue
computations for linear stability analysis usually make no special effort to compute
with this physically relevant inner product: the inner product does not affect the
eigenvalues of the matrix pencil, and use of a different inner product would incur
additional arithmetic beyond that needed for the standard 2-norm calculation.

Suppose we have a matrix V ∈ Cn×k whose columns form a basis for an invariant
subspace associated with nonzero eigenvalues of (A−µE)−1E that is orthonormal in

the 2-norm, so there exists some Ĝ ∈ Ck×k such that

(A− µE)−1EV = VĜ.(41)

Using the notation of Section 3.3, we wish to approximate σε,H(A,E), where H is
a positive definite matrix with the factorization H = R∗R. To approximate these
H-norm pseudospectra using the approach outlined in this section, it will suffice to
transform V to obtain a 2-norm orthonormal basis for the corresponding invariant
subspace of R(A− µE)−1ER−1 (see (26)).

Now (41) is equivalent to

R(A− µE)−1ER−1RV = RVĜ.

Compute an economy-sized QR factorization RV = ZS, so that Z∗Z = I ∈ Ck×k,
and

Z∗
(
R(A− µE)−1ER−1

)
Z = SĜS−1.

Using the same arguments behind Theorem 5.1 and Corollary 5.2, we have

σε,2(SĜ−1S + µI) ⊆ σε,H(A,E)(42)

and

sup
t≥0

‖x(t)‖H
‖x(0)‖H

≥ αε,2(SĜ−1S−1) + µ

ε
.(43)

Thus, pseudospectra can be readily approximated in physically relevant norms using
the invariant subspace V deriving from a standard 2-norm linear stability analysis.

Related ideas for approximating standard pseudospectra in weighted norms are
described by Astudillo and Castillo [2]. We also note that the new reduced basis
techniques for standard pseudospectra of Sirković [38] also hold great promise for
estimating σε(A,E).

6. Computational examples. Figure 3 showed pseudospectra for two matrix
pencils of size n = 3. In this section we study pseudospectra for much larger problems
that arise from linear stability analysis for several incompressible fluid flows in two
physical dimensions. These examples were generated using the IFISS software pack-
age [12].¶ (Note the recent work of Emmrich and Mehrmann [15], which compares

¶We are grateful to Howard Elman for considerable guidance with this software, and for sharing
code to generate and extract the requisite matrices from within IFISS.
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the spatial discretization approach used here to direct analysis of infinite dimensional
fluid DAEs.) Given a domain Ω ⊂ R2, the velocity field u : Ω × (0,∞) → R2 and
pressure field p : Ω× (0,∞)→ R satisfy the incompressible Navier–Stokes equations

ut(x, t) = −ν∆u(x, t) + u(x, t) · ∇u(x, t) +∇p(x, t)

0 = ∇ · u(x, t)

for x ∈ Ω ⊂ R2, with proper boundary conditions for the flow. Here ν > 0 denotes
the viscosity, which is inversely proportional to the Reynolds number. We first seek a
steady-state solution (û(x), p̂(x)) for which −ν∆û(x) + û(x) · ∇û(x) +∇p̂(x) = 0 and
∇· û(x) = 0. Is this stationary solution stable when subjected to small perturbations?
Linear stability analysis (see, e.g., [23, chap. 15–16]) inserts u(x, t) := û(x) + w(x, t)
and p(x, t) := p̂(x) + s(x, t) into the incompressible Navier–Stokes equations and ne-
glects the quadratic term w · ∇w (since ‖w‖ � 1) to approximate evolution of the
perturbation as

wt(x, t) = −ν∆w(x, t) + û(x) · ∇w(x, t) + w(x, t) · ∇û(x) +∇s(x, t)
0 = ∇ ·w(x, t).

Common finite element discretizations of this equation yield a DAE of the form[
M 0
0 0

] [
w′(t)
s′(t)

]
=

[
K B∗

B 0

] [
w(t)
s(t)

]
,(44)

where M,K ∈ Rnv×nv are invertible and B ∈ Rnp×nv has full rank. (Here nv
and np denote the number of discretized velocity and pressure variables, with nv >
2np: w(t) ∈ Rnv , s(t) ∈ Rnp .) Spectral properties of the associated pencil (A,E)
are discussed in [9]. The structure ensures that (A,E) has an infinite eigenvalue of
multiplicity 2np associated with np Jordan blocks, each of dimension 2. Hence, the
DAE has index 2, and in the notation of (15), we know a priori that the block Nµ

has dimension d = 2np.
It is customary to measure the perturbations w and s via

|w(·, t)|H1 =

(∫
Ω

‖∇w1(x, t)‖2 + ‖∇w2(x, t)‖2 dx

)1/2

,

‖s(·, t)‖L2
=

(∫
Ω

|s(x, t)|2 dx

)1/2

,

where the norms on the right-hand side of the definition of |w(x, t)|H1
are standard

Euclidean vector norms in R2; see, e.g., [13, sect. 8.4], [18, sect. IV.2]. We thus
analyze the discretization (44) using a discrete approximation to the norm∥∥∥∥[w(·, t)

s(·, t)

]∥∥∥∥ :=

(
|w(·, t)|2H1

+ ‖s(·, t)‖2L2

)1/2

.(45)

All our examples use a uniform grid with Q2–Q1 finite elements [12].

6.1. Backward facing step. Our first example is the well-studied case of flow
over a backward facing step; see, e.g., [21]. Flow enters through the leftmost part
of boundary and exits out the right end. The step should be sufficiently long to
resolve a dip in the streamlines near the top wall that moves further downstream as



PSEUDOSPECTRA OF MATRIX PENCILS 19

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Fig. 5. Some (nonuniform) streamlines for the steady-state solution of the backward facing
step problem with viscosity ν = 1/400 with grid parameter nc = 6 (nv = 85442, np = 10865).

the viscosity ν decreases; see Figure 5. Indeed, to obtain satisfactory steady state
flows as ν decreases, one must (a) increase step length; (b) refine the grid; (c) exercise
greater care with the Picard and Newton nonlinear iterations used to find the steady
state. For all values of ν we have studied, the linearization is eigenvalue stable, i.e.,
all finite eigenvalues of (A,E) are in the left-half plane, though the spectral abscissa
decreases with ν.

After using IFISS to find the steady state flow for a given flow configuration, we
approximate the pseudospectra of the pencil in (44) as described in Theorem 5.1: use
the eigs command to compute the invariant subspace associated with the largest mag-
nitude eigenvalues of A−1E (all calculations in this section use µ = 0.25), orthonor-

malize these eigenvectors to obtain some V ∈ Cn×k, and compute σε(Ĝ
−1 + µI) ⊆

σε(A,E) for Ĝ = V∗(A− µE)−1EV (in a discretization of the norm (45).)
Figure 6 shows various approximations to σε(A,E) to illustrate several issues

that arise when computing pseudospectra of large problems. Three of the plots show
estimates to σε(A,E) using projection onto computed invariant subspaces of dimen-
sion k = 400, based on original discretizations of size nc = 4 (n = 6,367), nc = 6
(n = 96,307), and nc = 7 (n = 381,539). The results change noticeably from nc = 4
to nc = 6, but much less so from nc = 6 to nc = 7.

Four of the plots fix nc = 7, but project onto computed invariant subspaces of
varying dimension: k = 100, 400, 800, and 1600. To gain insight into the physical
problem, one cares about the extent of the pseudospectra into the right-half plane.
For example, since the boundary of the ε = 100 pseudospectrum extends beyond
1 in the real direction, Corollary 5.2 ensures that, for some valid initial conditions,
the differential algebraic equation will experience transient growth. Note that even
though the rightmost eigenvalue is real, the rightmost extent of the pseudospectra in
these plots occurs at a non-real value.

Another wrinkle emerges in these practical computations. The eigs command
in MATLAB (which calls the ARPACK software [30]) returns a basis of eigenvectors
that is highly ill-conditioned. (This is no surprise, given the significance of the ε =
10−10 pseudospectrum in the bottom plots of Figure 6.) One could respond to this
ill-conditioning by projecting only onto the dominant component of this subspace,
or by generating a orthonormal basis for all k of the ill-conditioned vectors. All
the computations shown here use the latter option, projecting onto an approximate
invariant subspace.

6.2. Flow around an obstacle. Our second example concerns flow about a
square obstacle; see [11, sect. 5.2] for further details about this example. As the
viscosity decreases, a pair of complex conjugate eigenvalues crosses the imaginary
axis at ν ≈ 0.00537 [11, sect. 5.2]. Figure 7 shows approximations to σε(A,E) for
this example with viscosity ν = 1/175, just on the stable side of the transition to
instability. (On grid nc = 7, the spectral abscissa is approximately −0.0310469.)
Grid nc = 4 leaves the problem underresolved, and the rightmost eigenvalue is real.
For grids nc = 6 and 7, the rightmost eigenvalues form a conjugate pair, as expected
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nc = 4, k = 400 nc = 6, k = 400

nc = 7, k = 100 nc = 7, k = 400
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Fig. 6. Approximations of the pseudospectra σε(A,E) for ε = 100, 10−0.5, . . . , 10−10 for the
backward facing step with viscosity ν = 1/400. The top two plots use projection onto an invariant
subspace of dimension k = 400 for discretizations of dimension n = 6,367 (nc = 4) and n = 96,307
(nc = 6). The bottom four plots project a discretization of size n = 381,539 (nc = 7) onto subspaces
of dimension k = 100, 400, 800, and 1600. The labels on the color bar show log10 ε, so, e.g., the
orange contour on the right corresponds to ε = 100.
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Fig. 7. Approximations of the pseudospectra σε(A,E) for ε = 100, 10−0.5, . . . , 10−10 for flow
around an obstacle with viscosity ν = 1/175. The top two plots use projection onto an invariant
subspace of dimension k = 800 for discretizations of dimension n = 2,488 (nc = 4) and n = 37,168
(nc = 6). The bottom four plots project a discretization of size n = 146,912 (nc = 7) onto subspaces
of dimension k = 100, 200, 800, and 1600. The labels on the color bar show log10 ε, so, e.g., the
orange contour on the right corresponds to ε = 100.
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Fig. 8. Approximations of αε(A,E)/ε as a function of ε for the obstacle problems, indicating
the presence of transient growth. The viscosity and projection subspace dimension are fixed (ν =
1/175 and projection subspace dimension k = 800) while the discretization parameter is varied
(nc = 4, 5, 6, 7).

for this problem [11]. Comparing nc = 6 and nc = 7, the exterior eigenvalues on the
right of the spectrum appear well converged. For nc = 7, the eigenvalues in the left
of the plots change quite a bit as the subspace dimension k increases, suggesting that
the associated component of the computed invariant subspace is inaccurate.

6.3. Pseudospectral abscissa computations. While Figures 6 and 7 confirm
that both flow examples experience transient growth, the extent of this growth is
difficult to ascertain from plots of the pseudospectra. Figure 8 quantifies this growth
by plotting the critical ratio αε(A,E)/ε for a range of ε values for the obstacle flow
problem. By Theorem 4.4, this ratio provides a lower bound on the factor by which
solutions to Ex′(t) = Ax(t) can grow. To make these plots, we computed αε(A,E)
via (30) at hundreds of ε values using the criss-cross algorithm of Burke, Lewis, and
Overton [5], as implemented by Mengi, Mitchell, and Overton in EigTool [51]. (For
large-scale problems, one might prefer the algorithm of Guglielmi and Overton [22].)

For the example in Figure 8, we fix the dimension of the projection subspace at
k = 800, and show how αε(A,E) depends on the quality of the discretization (for
the fixed subspace dimension k = 800). For nc = 4, the plot suggests only mild
transient growth; larger values of nc show more pronounced growth, and appear to
be converging toward a limit: some initial conditions can grow by a factor of nearly
six (at least) before decaying.

7. Conclusions. What role should structure play in perturbation theory? This
question can be quite delicate, with its answer depending on the particular insight
one seeks about a given system. Here we have proposed a definition of the pseu-
dospectrum of a matrix pencil that accounts for the structure induced by a related
differential–algebraic equation, a definition that, by design, gives insight into the
transient dynamics of solutions to the DAE. The proposed pseudospectra can be
approximated using the standard tools for computing rightmost eigenvalues in linear
stability analysis, though the fluid examples shown in the last section illustrate that
many rightmost eigenvalues might be required to fully capture the nonnormal dynam-
ics of a complicated large-scale system. Further work is needed to understand how
inaccuracies in the computed invariant subspaces affect the approximate pseudospec-
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tra, and the extent to which reduced order models for descriptor systems preserve
these pseudospectra and the associated transient dynamics.
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