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ON A POISSON STRUCTURE ON BOTT-SAMELSON VARIETIES:
COMPUTATIONS IN COORDINATES

BALAZS ELEK AND JIANG-HUA LU

ABSTRACT. For a connected complex semi-simple Lie group G, we consider the Poisson struc-
ture 7, on an n-dimensional Bott-Samelson variety Z, of G defined by a standard multiplica-
tive Poisson structure ms; on G, where u is any sequence of length n of simple reflections in
the Weyl group of G. We explicitly express 7, on each of the 2™ affine coordinate charts, one
for every subexpression of u, in terms of the root strings and the structure constants of the
Lie algebra of G. We show that the restriction of 7, to each affine coordinate chart gives rise
to a Poisson structure on the polynomial algebra Clz1,..., zn] which is a Poisson-Ore exten-
sion of C compatible with a rational action by a maximal torus of G. For canonically chosen
mst, we show that the induced Poisson structure on Clz1, ..., zn] for every affine coordinate
chart is in fact defined over Z, thus giving rise to a Poisson-Ore extension of any field k of
arbitrary characteristic. The special case of 7, on the affine chart corresponding to the full
subexpression of u yields an explicit formula for the standard Poisson structures on extended
Bruhat cells in Bott-Samelson coordinates.

1. INTRODUCTION

1.1. Introduction. Let G be a connected complex semi-simple Lie group with a fixed Borel
subgroup B and a maximal torus T' C B, and let g, b, and h be the respective Lie algebras of
G, B, and T. Let A C b* be the set of roots and I' C A the set of simple roots determined by
b. Let W = Ng(T)/T be the Weyl group, where Ng(T') is the normalizer of T in G.

Let u = (s1, 82, -+, $n) be any sequence of simple reflections in W, and for 1 < i < n, let
P;, = B U Bs;B be the parabolic subgroup of G associated s; that contains B. Consider the
product manifold Py, X ... x P, with the right action of B" (the n-fold product of B) by

(p1,p2---pn) - (b1, b2y ... by) = (prby, by 'paba, ..., b pubn),  pi € Ps,, bi € B, 1 <i<n.

The quotient space, denoted by Z, = Ps, Xp ... xp Ps, /B, is the Bott-Samelson variety as-
sociated to u. For (p1,...,pn) € Ps, X ... X Py, let [p1,...,pn] € Zy denote the image of
(p1,.-.,Pn) in Zy. Multiplication in the group G gives a well-defined map

,UJ:Zu —>G/B /L([plvl)?a apn]) :p1p2pn/B

When u is a reduced word, u is a resolution of singularities of the Schubert variety BuB/B in
G/B, where u = $182- - 8, € W. Bott-Samelson varieties have been studied extensively in the
literature and play an important role in geometric representation theory. See, for example, [11 2]
and the references therein.

It is well known (see, for example, [5, §1.5] or [8, §4.4]) that the choice of the pair (B,T),
together with that of a symmetric non-degenerate invariant bilinear form (, ) on g, give rise to
a multiplicative holomorphic Poisson structure mg on G (see §2.11), and the Poisson-Lie group
(G, st ), referred to as a standard complex semi-simple Poisson Lie group, is the semi-classical
limit of the much studied quantum group associated to G (see [0l 6, 8]). Every parabolic
subgroup of G containing B is a Poisson submanifold of (G, 7). Consequently, for any sequence
u = (s1,...,8,) of simple reflections in W, the restriction to Ps;, X ... x P;, C G™ of the n-
fold product Poisson structure 7} = mg X ... X mgy on G™ projects to a well-defined Poisson
structure, denoted by m,, on the Bott-Samelson variety Z,, (see §2.2 for details). We refer to m,
as a standard Poisson structure on Z.


http://arxiv.org/abs/1601.00047v1

2 BALAZS ELEK AND JIANG-HUA LU

The Bott-Samelson variety Z,, where u = (s1,...,$,), has 2" affine charts {O7 : v € T},
where T is the set of all subexpressions of u, and the choice of a set {e,, : & € '} of root vectors
for the simple roots gives rise to coordinates (z1, ..., z,) on each affine chart O7 (see §3.1)). In
432 we give our first formula (Lemma [B.]) of the Poisson structure m,, in each coordinate chart
in terms of certain vector fields on Bott-Samelson subvarieties of Z,. It is also shown in §3.3|
that m, is log-canonical in some affine charts. The first main result of the paper is Theorem
[A14) which further expresses the vector fields in Lemma [3.] in terms of root strings and the
structure constants of g. Identify the algebra of regular functions on O7 with the polynomial
algebra C|z1, . .., z,] using the coordinates (21, ..., 2z,) and denote by 7, the Poisson structure on
Clz1, - . ., 2n] defined by m,,. As consequences of Theorem LT4, we prove the following prominent
features of the Poisson polynomial algebras (Clz1, ..., 2n], my), where v € Ty

1) For each v € Ty, the Poisson structure 7, on C[z1,. .., 2,] is independent of the re-scalings
of the coordinates (z1,...,2,) resulted from different choices of root vectors for the simple
roots (Proposition [5.2]), and the Poisson polynomial algebra (C[zy, ..., 2], my) is a Poisson-Ore
extension of C compatible with a natural action by the maximal torus T (Proposition 5.12).
When v = u is the full subexpression of u, the Poisson-Ore extension (C[z1, ..., z,],7,) of C
is symmetric and nilpotent in the sense of [12, Definition 4] (Remark [5.9] and Proposition [5.12]).
The pairs of derivations at each step of the Poisson-Ore extension are expressed in terms of the
action of Borel subgroups on Bott-Samelson varieties (see, in particular, §5.3)).

2) Choose the bilinear form (, ) on g such that <O‘é°‘> € Z for each root o. Then for any
v € Ty and 1 < i < k < n, the polynomial {z;, 21} € C|z1,...,2,] have integer coefficients,

so m, defines a Poisson structure on Z[z1,...,2,|. Consequently, each v € T gives rise to a
Poisson-Ore extension (k[z1,...,2y],m,) of any field k of arbitrary characteristic. See §6.1l

Parts of the paper, notably § and 6, are from the first author’s Mphil thesis. Based on
Theorem .14 the first author has also written a computer program in the GAP language [9]
to compute the Poisson structures 7, on polynomial algebras for any simple Lie algebra g, any
sequence u of simple reflections, and any v € T,. Some examples are given in §6.2

Poisson-Ore extensions of fields with compatible torus actions are the semi-classical analogs
of quantum CGL extensions (see [12], [13] and references therein) and have been studied in the
context of Dixmier-Moeglin equivalences of Poisson algebras and quantum cluster algebras (see
[3, 10, 1L 12, 18]). We have shown in this paper that the Bott-Samelson Poisson manifolds
(Zu, my) provide a rich source of systematic and concrete examples for such algebras. In light of
their geometrical setting, it is thus interesting to work out for these Bott-Samelson examples some
of the general theories on Poisson-Ore extensions, such as their 7-Poisson prime ideals [3] [T1] and
higher Poisson derivations in prime characteristics [18]. These will be done in separate papers.

Our motivation for studying the Bott-Samelson Poisson manifolds (Zy, 7, ) also comes from
their relations to naturally defined Poisson structures on the so-called extended Bruhat cells,
which we explain in 1.2

1.2. The standard Poisson structures on extended Bruhat cells. With the notation as
in §I.7] for any integer n > 1, let the product group B™ act on the product manifold G™ by

(91,92 - gn) - (br,b2, .., bn) = (guby, by 'gaba, ..., byl ignbn), g€ G, b€ B,1<i<n,
and denote the quotient manifold of G™ by B"™ by
(1) Fn:GXB-~-XBG/B.

It is shown in [19, §7] (see also §2.2)) that the n-fold product Poisson structure w7 on G"
projects to a well-defined Poisson structure on F,,, which will also be denoted by 7,,. Note that
for any sequence u = (s1,...,s,) of simple reflections in W, the Bott-Samelson variety Z, can
be regarded as a closed submanifold of F,, under the embedding P;, X --- x Ps, C G". As
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Py, x---x P, is a Poisson submanifold of G™ with respect to 7%, it follows from the definitions
that Z,, with the Poisson structure 7,, defined in §I.11 is a Poisson submanifold of (F,, ).

For a sequence u = (uq,...,u,) of elements in the Weyl group W, where the wu;’s are not
necessarily simple reflections, the image of Bui B X - - - x Bu, B C G" in F,,, denoted by BuB/ B,
is called an extended Bruhat cell in [20]. The Bruhat decomposition G = | |,y BuB of G then
gives rise to the decomposition

(2) F,= | | BuB/B

ucWn
of F, into the disjoint union of extended Bruhat cells. As each BuB, where u € W, is a Poisson
submanifold of G with respect to 7y, the decomposition in (2) is a decomposition of the Poisson
manifold (F),, m,) into Poisson submanifolds.

An extended Bruhat cell B(sy,...,s,)B/B C F,, where each s; is a simple reflection, is said
to be of Bott-Samelson type [20]. In the notation of the current paper, an extended Bruhat cell
B(s1,...,s,)B/B in F, of Bott-Samelson type is nothing but the open affine chart O(*1>--%n) in
the Bott-Samelson variety Z(,, ..y C Fn. Given an arbitrary u = (uy,...,u,) € W", choose
any reduced decomposition u; = $;18i2 " S 1(u;) for each u;, where [ : W — N is the length
function of W, and consider the sequence

u = (5171, ey Sl,l(ul)a 82,1y «- -+, 52,l(u2)7 ey Snly -y Sn,l(un))

of simple reflections of length I(u) = I(u1) + - -+ + l(up). Then the multiplication map on G
induces a Poisson isomorphism

(3) (Za, Tiw)) D (0%, mwy) = (BUB/B, m)) — (BuB/B, m,) C (Fy, m,)

(see [20, §1.3]). Referring to the coordinates (21, . . ., 2j(w)) on O* = BuB/B introduced in §3I]of
the present paper as Bott-Samelson coordinates on BuB/B via the isomorphism in (3], Theorem
[A14 then computes explicitly the Poisson structure ,, on BuB/B in these coordinates, and the
discussions in §5] show that the corresponding Poisson polynomial algebra Clzy, ..., zjw)] is a
symmetric nilpotent semi-quadratic Poisson-Ore extension of C in the sense of [12].

The study of the Poisson manifolds (F,,,7,), n > 1, together with that of some other holo-
morphic Poisson structures on spaces related to flag varieties of G, was initiated in [19], where
they were identified as mized product Poisson structures defined by quasitriangular r-matrices.
The study was continued in [20], where the orbits of their symplectic leaves under the action
of the maximal torus 7T, also called T-leaves, were described explicitly in terms of extended
Bruhat cells and extended double Bruhat cells associated to conjugacy classes. Together with
[19] and [20], the current paper belongs to a series of papers devoted to a detailed study of the
Poisson manifolds (F,, 7 ,) and related Poisson structures, as the results in the current paper
show that the Poisson manifold (F,, 7, ) is paved (in the sense of being a disjoint union) by affine
Poisson spaces with the corresponding Poisson polynomial algebras being symmetric nilpotent
semi-quadratic Poisson-Ore extensions of C.

1.3. Acknowledgments. The authors would like to thank Allen Knutson and Victor Mouquin
for helpful discussions. This work was partially supported by a University of Hong Kong Post-
graduate Studentship and by the Research Grants Council of the Hong Kong SAR, China (GRF
HKU 704310 and 703712).

1.4. Notation. Continuing with the notation from §I1l let g = b + >°_ . A 8o be the root
decomposition of g with respect to h. For a € A, let h,, be the unique element in (g, g—o] such
that a(ha) = 2, and let a¥ : C* — T be the co-character of T' defined by h,. Let AL C A be
the set of positive roots determined by b, and let b_ = § + ZaeA+ g—o- The Borel subgroup of
G with Lie algebra b_ is denoted by B_.
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Let « € Ay. If ey € go and e_,, € g_, are such that [eq,e_o] = hqa, we call {hqa,eq,e-0}
an sl(2,C)-triple for a. Clearly, any non-zero e, € g, uniquely determines an sl(2, C)-triple
{ha,€a,e_qo}, and every other s[(2, C)-triple for « is of the form {hg, Aeq, A\~ te_,} for a unique
A € C. Given an sl(2,C)-triple {hqa,eq,€e—q}, denote by 0, : sl(2,C) — g the Lie algebra
homomorphism defined by

O, : 1 0 — h 0 1 — 00 —
« O _1 @ O O eou 1 O 6_0“

and denote also by 0, : SL(2,C) — G the corresponding Lie group homomorphism, so that

0¥ (t) = 0, (<é tﬂ)) . tecCx.

An sl(2,C)-triple {ha,e€q,e—q} for a € Ay also gives rise to the one-parameter subgroups
Uty : C— G via

te(2) = O <<(1) j)) — exp(zea),  U_a(2) = Oa <<i ?)) — exp(ze_a), z€C.

Let W = Ng(T)/T be again the Weyl group of (G,T). For a € Ay, let s € W be the reflection
in W determined by «, and if {hq, €4, e_q} is an sl(2, C)-triple for «, let $, be the representative
of s, in Ng(T') given by

(4) S0 = ta(—1)u_a (1) ta (~1) € N (T).

For a complex algebraic torus T with Lie algebra t, we use the same notation for an element
A € Hom(T, C*) and its differential at the identity element of T, which is an element in t*. The
values of A on ¢t € T and on x € t are respectively denoted as t* € C* and \(z) € C.

2. DEFINITION OF THE POISSON STRUCTURE 7, ON Zy

2.1. The standard semi-simple Poisson Lie group (G, ws). Recall from [5 [§] that if L is
a Lie group, a Poisson bivector field 7, on L is said to be multiplicative if the map

(LX L, 7, xm,) — (L, 7)) (1, o) —> lhla,  Ui,la €L,

is Poisson, where 7, X 7, is the product Poisson structure on L x L. A Poisson Lie group is
a pair (L,m,), where L is a Lie group and 7, is a multiplicative Poisson bivector field on L.
A Poisson Lie subgroup of a Poisson Lie group (L, ) is a Lie subgroup L; of L which is also
a Poisson submanifold with respect to 7., and in this case (L1, 7,|.,), or simply denoted as
(L1, 7.,), is a Poisson Lie group.

Let G be a connected complex semi-simple Lie group and let the notation be as in 1.4l Fix,
furthermore, a symmetric non-degenerate invariant bilinear form (, ) on g, and denote also by
(, ) the induced bilinear form on h*. Define A € A%g by

(a, )
A= Z 9 e,a/\eae/\Qg,

aEA 4

where for each a@ € Ay, {ha,€a,e—a} is an sl(2,C)-triple for . Note that for any o € A,
the element e_, A e, € A%g stays the same if the sl(2,C)-triple {hq,e€q,€e_o} is changed to
{has Aeq, %e,a} for A € C*. Consequently, the element A € A?g depends on (, ) but not on the
choices of the sl(2, C)-triples for the positive roots. Let 7 be the bivector field on G given by

Tst(g) = lg(A) —1g(A), g €G,
where for g € G, l; and r4 respectively denote the left and right translations on G by g. Then
(G, st ) is a Poisson Lie group, called a standard complex semi-simple Poisson Lie group [8), §4.4].

Moreover, the Poisson structure my is invariant under the action of T by left translation, and
the T-orbits of symplectic leaves, also called T-leaves, of 7y are precisely the so-called double
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Bruhat cells (BuB) N (B_vB_), where u,v € W (see [14} [16]). In particular, every BuB, where
u € W, is a Poisson submanifold of (G, m), and every parabolic subgroup P of G containing
B, being a union of (B, B)-double cosets in G, is a Poisson Lie subgroup of (G, 7). Similar
statements hold if B is replaced by B_.

We state another important property of (G,7s): let @ be a simple root and consider the
group homomorphism 6, : SL(2,C) — G defined in §I.4 corresponding to any choice of an
sl(2, C)-triple {ha, €q,e—q} for a. Equip SL(2,C) with the multiplicative Poisson structure

(5) Tsreo(9) =lg(Ao) —19(Mo), g € SL(2,C),
(00 0 1 )

where Ag = ( 1 0 > A < 0 0 ) € A%sl(2,C). Then [17]

©) s (522,00 B2nis0) — (6 m)

is a Poisson map. It follows that 6,(SL(2,C)) is a Poisson Lie subgroup of (G, 7). Moreover,
let g = u_n(2) and ¢’ = un(2)$a, where z € C. Then

(7) Tt (9) =

(o, a)

ly(zha Ne_a),

(8) ms(g') = <a,2a> ly(zha Ne—oq —2eq Ne_y) = <a,2a> Tg(z€a Ao + 24 N e_q).

2.2. The definition of the Poisson structure m, on Z,. Recall that given a Poisson Lie
group (L,7,) and a Poisson manifold (Y, ), a left Lie group action o : L XY — Y of L
on Y is said to be a Poisson action if ¢ is a Poisson map from the product Poisson manifold

(LxY, m, xmy) to (Y, my). Right Poisson actions of Poisson Lie groups are similarly defined.

Let (Q,mg) be a Poisson Lie group, let (X, 7x) be a Poisson manifold with a right Poisson
action by (Q, ), and let (Y, ) a Poisson submanifold with a left Poisson action by (Q, 7).
Define the right action of @ on X x Y by

(@, y) a=(zq.q7'y), 2E€X yeY,qeqQ,
and assume that the quotient space of X XY by @, denoted by X xg Y, is a smooth manifold.
Then (see [19], §7] and [22]) the direct product Poisson structure myx X my on X x Y projects to
a well-defined Poisson structure on X xq Y.

Example 2.1. Let (@, 7,) be a closed Poisson Lie subgroup of a Poisson Lie group (L, 7, ), and
let (Y, 7y) be a Poisson manifold with a left Poisson action by (@, 7). Consider the quotient
manifold Z = L xqQY, where @ acts on L by right translation. Then Z has the Poisson structure
7, that is the projection to Z of the direct product Poisson structure 7, x 7y on L xY. Denoting
the image in Z of (I,y) € L X Y by [l,y], it follows from the multiplicativity of 7, that the left
action of L on Z given by

(9) l'[llu y]:[lllu y]7 l7 lleLaKJEYa

is a Poisson action of the Poisson Lie group (L, 7, ) on the Poisson manifold (Z, 7). Moreover,
since 7, (e) = 0, where e is the identity element of L, the inclusion Y < Lx Y,y — (e,y),y €Y,
is a Poisson embedding of (Y, 7y ) into (L x Y, m, x my). Consequently,

Y2, yr—le,yl, yevy,

is a Poisson embedding of (Y, 7y ) into the Poisson manifold (Z, 7). o

Consider now the standard semi-simple Poisson Lie group (G, mst ) in 211 Let u = (s1,...,8,)
be any sequence of simple reflections in the Weyl group W. Then for each 1 < ¢ < n, the parabolic
subgroup P;, = B U Bs;B is a Poisson Lie subgroup of (G, ms). By taking (L,7,) = (Ps,, Tst)
and Q = B in Example 2Tl and repeat the construction therein, one sees that the direct product
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Poisson structure 7,
projects to a well-defined Poisson structure, denoted by 7,, on the Bott-Samelson variety Z,.
It also follows from Example 2.1] that the left action of Ps, on Z, given by

regarded as a Poisson structure on the product manifold Py, x - x P,

Sn

(10) p'[plap25"'apn]:[pp17p27"'7pn]7 pEPsl,ijPs].,lﬁan,

is a Poisson action of the Poisson group (Ps, , 7st) on the Poisson manifold (Zy, 7). In particular,
since 7y, (t) = 0 for t € T, the action of T on Z,, via ([I0Q) is by Poisson isomorphisms of 7,,.

2.3. P'-extensions. To prepare for the calculation of the Poisson structure 7, in coordinates,
we first look at a special case of Example [ZT} let (Y, 7, ) be a Poisson manifold with a left
Poisson action o by the Poisson Lie subgroup (B, st ) of (G, 7st), and let a be a simple root.
One then has the quotient manifold Z = Ps, xp Y, which fibers over Ps_ /B = P! with fibers
diffeomorphic to Y. Let 7, denote the projection to Z of the product Poisson structure 7y X 7y
on Ps, x Y. Choose any non-zero e, € gq, giving rise to the sl(2, C)-triple {hq, €q,e—q} for a,
and let the notation be as in §I.4l Consider the two open subsets

Z_={lu—o(2),y]: 2€C,yeY} and Z;={[ua(2)$a, y|:2z2€C,yeY}
of Z with parametrization
bt CXY 2, b (29) = [u_alz), 4]
v CXY — Z4, Yy (2,y) = [ua(2)$a; yl-

We will compute ¢~"(7,) and ¢ ' (7,) as bi-vector fields on C x Y. For z € b, let 1, be the
vector field on Y given by n,(y) = %|t:0 exp(tz)y for y € Y. In the statement of the following
Lemma [2:2] we use the obvious way of viewing vector fields on C and on Y as that on C x Y.

Lemma 2.2. With the notation as above, one has

(1) v ) e =~ ) 4w )
(12) V7)) = S 1) - 20, ) + 7 )

Proof. For g€ P;, and y €Y, let

Nt Z—Z: [,y l—lop ¥, pEP Y EY,

py: Ps, —Z: p—[p,yl, peP,.
Fix ze€ Candy € Y, and let g = u_o(2) € Ps, and ¢ = [u—a(2), y] = A¢([e, y]) € Z. By
Example 21 7, (q) = A\g(75([e,y])) + py(7s(g)). Using (@), one has

<a,2a> (pylg)(Zha A e—a) = )‘Q(FZ([e’ y])) +

(o, a)
2

m2(q) = Ag(ms([e; y])) +

and thus
(o, a)

W= (m2))(2,y) = ¥= 1 (m2(0)) = (2" 0 Xg) (2 ([e, y])) + 5 (W= Ngpy) (zha Ae—a).

Since the inclusion (Y, 7y ) < (Z,7,) : ¢ = [e,y'] is Poisson, ("' o X)) (7, ([e,y])) = 7y (y).
Direct calculations give
d

(W= Agpy)(ha) = ma(y)  and  (¥= Agpy)(e—a) = -
One thus has (). Similarly, for z € C and y € Y, letting ¢’ = ua(2)$4 and using (&), one has
PN (zy) = 7 (y) + (7 Agrpy) (2ha — 260) Ae_a).

2
Since (V' Agrpy)(ha) = Mhes (V3 Agrpy)(€a) = Te,, and (¥ Agrpy)(e—a) = — 2%, one has [[2).
Q.E.D.

()‘gpy)(Zha Ne_a),

(o, a)
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3. THE POISSON STRUCTURE T, IN AFFINE COORDINATE CHARTS, I

Throughout §3] we fix a sequence u = (s1,...,s,) of simple reflections in W, and let Z, be
the Bott-Samelson variety associated to u. Recall that I" denotes the set of all simple roots. For
1 <7 <n,let aj €' be such that s; = Sa;- To define local coordinates on Z,, we also fix a
root vector e, for each « € T and let e_,, € g_,, be the unique element such that [eq, e_o] = hq.-
One then (see §I.4)) has the one-parameter subgroups ui, : C — G for each a € T' and the
representative $o, € Ng(T') for the simple reflection s, € W.

3.1. Affine coordinate charts on Z,. Let
Tu={e,s1} x{e,s2} x---{e,sn},

where e denotes the identity element of W. Elements in T, will be called subexpressions of u.
When v = u, we say that v is the full subezpression of u. For v = (y1,72,...,7) € Yu, let
YW=cand ' =vyyo---y €W for1 <i<n.

As a subgroup of Ps,, the maximal torus T of G acts on Z,, via ([[{), with the fixed point set

(Zo)T = {[F1,%2, s ¥n] : (71,725 -+, Yn) € Tu}, where é = e. For each v = (y1,72,---,7n) €
Ty, let O7 C Z, be the image of the embedding ®. : C" — Z, given by

(13) Doy (21, 00y 2n) = [Uery (a) (21T, U—ryp(an) (22) Y25 -+ o5 Uy, (a) (20) Vn)-

The parametrization ®., of OY by C™ depends on the choice of the root vectors {e, : @ € '}
for the simple roots, but different choices of such root vectors only result in re-scalings of the
coordinate functions. In particular, the affine chart O7 is canonically defined. It is also easy to
see that each OV is T-invariant with

(14) t-®y(21,22,...,2n) = By (tf'yl(o‘l)zl, t772(0‘2)22, ce t”’n(o‘")zn) ,

where t € T and (21, 22, ..., 2,) € C". Note also that UveTw O7 = Zy, i.e., Zy is covered by the
2" T-invariant affine charts {O7 : vy € Ty }.

3.2. The Poisson structure m, in coordinates, I. For each v € T, we now give our first
formula for the Poisson structure 7, on Z, in the coordinates (z1, 22,...,2,) on O7 given in
([@3). A more detailed formula, expressing each Poisson bracket {z;, z;}, where 1 < i < k < n,
as a polynomial with coefficients explicitly given in terms of the structure constants of the Lie
algebra g, will be given in §4l

For 1 <4 < n—1, let g; be the holomorphic vector field on the Bott-Samelson variety
Z ..,sn) glven by

Sit1;-

d
(15) Ul(p) = E|t20((exp(tea1)) p)? p E Z(Si+1 ..... Sn)7
where - denotes the left action of B C Py, on Z(,, ., . s,) by left translation (see (I0)).

Lemma 3.1. Let v € Ty. In the coordinates (z1,...2n) on the affine chart OV given in (I3),
the Poisson structure w, on Zy is given by,

1<i<k<n

— — )

—Wi(ai)a 'Vk(ak»zizk — (g, ai)oi(z)  if vi = s ’

(16)  {z ) = {W(‘“)’ o () e

where 0;(zx) denotes the action of the vector field o; on z as a local function on Z(sit1iysn)-

Proof. Identify O =~ C x @', where 4/ = (v2,-+-s7n) € Tw and 0’ = (s, ..., $,). Equip o'
with the Poisson structure 7,1 on Z,, One has, by Lemma [2.2]

7~~~;Sn)'
_%ﬂzld;jl /\771 + -1, if Nn=e
(17) n =

(a1,01)

) d;il/\(zl’lh—Qal)—Fﬂ'n,l, if Y1 = S1,
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where 7, is the holomorphic vector field on Z,, .

d 3
mig) = Zl=1(@(t) @), €€ Z(s,0)-

given by

+5n)

By (), the vector field 7, is given in the coordinates (22, ..., z,) on O7 by

n n 1 k
m = Z(—Wz o Ye(ok)) (hay ) i = —Z 26 (<a1),7 (ak)>zki-

2k
0z a1, Qo 0z
k=2 k o 15 1> k

Lemma B.1]) now follows by repeatedly using (IT).
Q.E.D.
Example 3.2. Consider G = SL(3,C) with the standard choices of B and B_ consisting

respectively of upper triangular and lower triangular matrices in SL(3,C), and let the bilinear
form (, ) on sl(3,C) be given by (X,Y) = tr(XY) for X,Y € s((3,C). Denote the two simple
roots by oy and s choose root vectors e,, = E12 and e,, = Fa3, where E;; has 1 at the (4, j)-
entry and 0 everywhere else. Let u = (Sqy, Sags Sa, ). Using Lemma[3] one can compute directly
the Poisson structure 73 on Z, in any of the eight affine coordinate charts with coordinates
(21, 22, 23). For example, for v = u, one has
(18) {21, 20} = —2122, {z1,23} = 2123 — 2, {22,23} = —2223,
and for v = (sq,,€,¢e) € Ty, one has
(19) {z1,22} = 2120, {21,238} = —2z123+ 225, {22,23} = —222s.

o
3.3. Some log-canonical charts for m,. Let v € T,. We say that the affine coordinate
chart 07 of Z, is log-canonical for the Poisson structure 7, or that the Poisson structure ,, is
log-canonical in the affine coordinate chart O7, if the Poisson brackets between the coordinate
functions (z1, 22, ..., 2,) on O7 have the form {z;, 2z} = A\igzizi for some A, € C for each pair
1 <i <k <n. By Lemma[31] , is log-canonical in O7 if and only if

{zi, 21} = ey (i), v (o)) zizk, 1<i<k<n,

where ¢; = 1 if 9, = e and ¢; = —1 if ; = s;. The following Lemma [3.3] which follows trivially

from Lemma [BI] says that 7, is log-canonical in the affine chart Q€€+,

Lemma 3.3. In the coordinates (z1, 22, ...,2n) ON O©e€) one has
{zi, zi} = (o, ag)zizg, V1<i<k<n.

To exhibit other log-canonical affine coordinate charts for m,,, we make the following observa-
tion on the functions o;(2x), 1 < i < k < n, in Lemma B1]
Lemma 3.4. Let v = (y1,..,7) € Tu, and let 1 <i <n. Ifv; = s; and if k > i is such that
sj#s; foralli+1<j <k, then o;(z) = 0.
Proof. Fori+1<j<mn,let z; € Cand p; = u_,,(q,)(2;) V. For t € C, consider

[Ua, ()Pit1, Piv2s s Pl € Z(siir,isn)-

For each i +1 < j < k, since p;11piy2 - - - pj lies in the Levi subgroup of the parabolic subgroup
of G determined by the set of simple roots in {@;41,...,a;} which does not contain «;, one has
(Pis1piv2 - Pj) " o, (Opiy1piva - -pj € N,
where N is the unipotent subgroup of G with Lie algebran = 3" _ A, Ba- It thus follows from

the definition of the vector field o; that o;(zx) = 0, where 2y, is now regarded as a local function

on Z(5i+17~~~;5n)'
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Q.E.D.

The next Lemma B35 which follows directly from Lemma [3.I] and Lemma 4] exhibits a
log-canonical affine chart for m,, associated to each s € {s1,...,s,}.
Lemma 3.5. Let s € {s1,82,...,8n} and let ip = max{i : 1 < i < n,s; = s}. Let vy =
(71,72, ---,7Yn) be such that v, = s and v; = e for all i # i9. Then in the coordinates
(21,22, -+,2n) on O7 and for all 1 <1i < k <n, one has

is i2ks 1<i<k <t o <1<k <n,
(20) (2021} = (v, o) zi 2, z . ig or 20. i n
(o, s(ag))zize, 1<i<ig<k<n,i#k.

The following Corollary [B.6] also follows directly from Lemma 3.1l and Lemma 3.4

Corollary 3.6. If u = (s1,52,...,5p) s such that s; # s; for all i # j, then the Poisson
structure 7, on Zy is log-canonical in every one of the 2™ affine coordinate charts {O7 : v € Ty }.

4. THE POISSON STRUCTURE 7,, IN AFFINE COORDINATES CHARTS, II

Throughout § fix a sequence u = (s1,...,8,) of simple reflections, and let Z, be the
corresponding Bott-Samelson variety. To better understand the Poisson structure , in the
coordinates (z1,22,...,2,) on the affine chart O7 defined in §8.I] where v € T, one needs
to compute more explicitly the vector field o; in Lemma [3I] on the Bott-Samelson variety
Z( ) for 1 <i<n—1. For x € b, define the vector field o, on Z, by

Sit+1s:++98n

(21) 02(p) = Zli—o((exptz) -p), P € Zu,

where - denotes the left action of B C Ps, on 7, given in (I0)). Using some facts on root strings
of the root system of g reviewed in §4.1] for any 5 € AL and eg € gg, we give in §42] an
explicit formula for o., in the coordinates (21, 22, ..., 2,) one each affine chart O of Z,. The
formula for o.,, given in Theorem .10 is expressed explicitly in terms of the root strings and
the structure constants of g. As a consequence (see Theorem .14]), the Poisson structure 7, can
also be expressed in each affine coordinate chart OV in terms of root strings and the structure
constants of g. We believe that our formula for the vector fields o., is of interest irrespective of
the Poisson structure m,,.

4.1. Some lemmas on root strings. In §4.1] let

(22) {ha}aEF U {eia S gia}a6A+

be any basis of g such that [en,e_o] = hq for each @ € A;. One then has the Lie group
homomorphism 6, : SL(2,C) — G for each o € A;. Let the notation be as in §L4 For «,
B € A such that o+ 8 € A, let N, g # 0 be such that [eq, eg] = N geats-

Lemma 4.1. For a € A4, one has

(23) U (D) e (2)$a = Ua(t + 2)8aq, t,z € C,

(24) U ()u_a(2) = U_a (@) Ua(t(1 +t2))a (1 + t2), t,z€C,1+1tz#0,
(25) U_q(t) = Uqg (%) Sata(t)a (1), teC*.

For a,B €T and a # 3, one has .

(26) us (B (Du—alz) = u_a (tﬁz) us(t)B¥(t), teC*, zeC.

Proof. Identities (24]) and (28] follow from computations in SL(2,C), and (26]) follows from the
fact that the two root subgroups corresponding to —« and 8 commute.
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Q.E.D.

Let o and S8 be two linearly independent roots, « € A, and let {3+ ja : —p < j < ¢}, where
p and g are non-negative integers, be the a-string through . Then the subspace

q
L= Z 9B+jo
Jj=-p

of g becomes an SL(2,C)-module via the group homomorphism 6, : SL(2,C) — G and the
adjoint representation of G on g. On the other hand, let LPT4 be the vector space of homogeneous
polynomials in (z,y) of degree p 4+ ¢ with the (left) action of SL(2,C) by

(B I R O B

Let {ug,...,up+q} be the basis of LPT? given by
(27) Ui = €01 €1 (p - q) PPt 0<i<ptg,
i

where for 0 < j <p+q—1, ¢; € C is defined by
j+1

(28) ej=—JT
7 Nap—(p—j)a

)

and it is understood that egeq -+ ;-1 = 1 when ¢ = 0 in 27]).

Lemma 4.2. With the notation as above, the linear map

(29) X L— L x(eprja) = upryy, —P<j<q,

is an SL(2, C)-equivariant isomorphism.

Proof. The two irreducible representations of SL(2,C) on L and on LP%¢ being of the same
dimension, must be isomorphic, and by Schur’s lemma, there is a unique SL(2,C)-equivariant

isomorphism x : L — LPT% such that x(eg_pa) = uo. Straightforward calculations show that x
must be given as in (29). See also [4, Lemma 6.2.2].

Q.E.D.

The following Lemma is the key to the proof of Theorem [£10]in §4.2

Lemma 4.3. Let « € Ay and 8 € A be linearly independent, and let {8+ ja : —p < j < q} be
the a-string through B. Then for any t € C, one has

q .
E0E1 " Ep—1 p—|—j> -
30 Ad(u, (51 (eg) = D _(-1)P——= (" " )e, (4)jas
(30) (ua(t)sa) -1 (€8) 0( ) 5051"'5q—j—1< ; NG

<.
Il

(31) Ad(u,a(t))*l(eﬁ) =

M-

Il
=)

(=1 ep—jep—j+1-"€p-1 ( j >tﬂ€ﬁja-
J
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Proof. By Lemma .2 one has
X (Ad g, (1)s0)-1 (€)) = <_01 1) up
—oer g (P70 (o o

q
= 01 eyt (p ; q) o [ (j) 7 1=

=0

I E0EL - € p+J\,;
_Z(_l)pM< ,J)M”,
J

= EOEL " - Eq—j—l

It follows that

q .
€0E1- " €Ep—1 [P+ I\,
Ad(u, (t)s)-1(ep) = Y _(-1)P— L < : >t”6ﬂ+<q—p—j>a-

) €0€1 """ Eg—j—1 J
L 2(8,0) _ ,
As (see for example, [I5] Proposition 25.1]) e p — @, one has, for any j € Z,
a,
2(8, @)

sa(f) —ja=p- o CTIO=B (@ —p—Ja,
from which (B0) follows. One proves (B1]) similarly (see also Lemma 6.2.1 in [4]).
Q.E.D.
To unify the two formulas in (30) and BI)), for « € Ay, k € {Sa, e}, and t € C, let
(32) Pra(t) = u_p(a)(t)i € Ps,,
and for 8 € A, 8 # *+a, as in Lemma 3] let

; €01 Ep—1 [P+ ] .
33 = —1p—p< , ), =0,...,q and Kk = $,,
B) = (e (0 J .
. . +7 .
(34) oy = (=1 ep—jep—jt1--Ep-1 <q ; ]), j=0,...,pand Kk =e.

Lemma can now be reformulated as follows.

Lemma 4.4. Let « € Ay and 8 € A be linearly independent. Then for any k € {s4,e} and
teC,

(35) Ad(pma(t))*l (eﬁ) = Z CZ’)JB tj €r(B)—jo-
w(B)=jaeA
Proof. Let j € Z and j > 0. When k = ¢, k() — ja € A if and only if 8 — ja € A, which is the

same as 0 < j < p. When k = s,, k(8) — ja € A if and only if s,(8 + ja) € A, which is the
same as 3 + ja € A, which, in turn, is the same as 0 < j < q.

Q.E.D.

Remark 4.5. Recall that a basis {hg}aer U {€a € Ga}taca of g is said to be a Chevalley
basis if [eq,e—a] = hq for all @ € A, and if for all o, 8 € A such that o+ S € A, one has
Nopg=—N_o_p. If {ha}aer U{ea € gataca is a Chevalley basis of g, by [4, Theorem 4.1.2]
and [I5, Theorem 25.2], N, g = £(p + 1) for any roots o and § such that o + 8 € A, where p
is the largest non-negative integer such that 8 — pa € A. Thus, for @ and 8 as in Lemma (3]
R

and for every 0 < j < p+¢q — 1, one has ¢; = £1, and consequently all the coeflicients ¢ 5'S

a1

appearing in (Bh]) are integers. o
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4.2. The vector field 0., in coordinates. Fix again u = (s1,...,5,) = (Sa;,.--,5q,) be
a sequence of simple reflections, and let Z,, be the corresponding Bott-Samelson variety. Let
{ea € 9o : @ € T} be a set of root vectors for the simple roots, and extend it to a basis
{ha}aer U{ea € gataca of g such that [eq,e_o] = hy for all @ € A. Recall from (2I)) that for
any x € b, o, is the vector field on Z,, generating the action of B on Z, in the direction of z.
For 8 € A, we then have the vector field 0., on Zy given by

(36) 00, (0) = limol(expies) -p). € Z

On the other hand, the choice {e, : o € T'} gives rise to coordinates (z1,...,z,) on the affine
chart @7 for each v € T. In this section, for every v € Ty, we use the results in §4.1]to compute
the vector fields oc,, # € A, in the coordinates (21, ...,2,) on O7 in terms of root strings and
structure constants of g in the basis {hq }aer U {€a € gataca of g.

For x € b and 1 < k < n, consider also the vector field og(gk) on the Bott-Samelson variety
Z( defined by

Sk7~~~;sn)
d
(37) o (p) = E|t:0((eXP tr) - p)y P E Zgy,...sn)s

where again - denotes the left action of B on Z,, . s,.) (see (I0)). Note that o, = otV for x € b.
Fixy=(v,...,7) € Ty and let (z1,..., z,) be the coordinates on O C Z,. For 1 <k <mn,

we also regard (zx, . . ., zn) as coordinates on the affine chart O ~¥n) of Z(sp.,...n)s 80 for € b

and k < j <n, o) (z;) is the action of o™ on zj as a function on OWkrvm) Z(sprrrsn)-
The following Lemma gives a recursive formula for o, regarded as a vector field on O7.

Lemma 4.6. Let € Ay and vy = (y1,---,7Vn) € Tu.
1) B = a1 and vy = s1. In this case, 0c,(21) = 1 and oc,(2x) = 0 for all k > 2;
2) B=ai and v1 = e. In this case, 0.,(21) = —22 and for k > 2,

0es(21) = 02 (21) + 21012 (0);

8) B # aq. In this case, oc,(21) = 0 and for k> 2,
Ocy(2k) = Z clll’i? 2o (zk).

€y1(B)—jer
320,
11 (B)—jar€AL
Proof. Cases 1) and 2) follow from ([23) and (24]) respectively. Case 3) follows from Lemma
4] and the fact that, as § € A} and 8 # aq, all the roots in the «a;-string through ~(8) are
positive.

Q.E.D.
To combine the cases in Lemma [£.6] we note that when 8 = aq,

. . (Z)u if Y1 = S1,
>0: — c AL} =
{71 20: n(B) —jion € Ay} {{0}, = e

For a € T'; also set

(38) &0 =1.

a,a

We can now reformulate Lemma as follows.
Lemma 4.7. Let S € Ay and vy = (71,-..,V) € Tu. Then

1, if 8=a1 andy, = s1,
(39) Oey(21) = =21, if B=0oq andm =e,
07 /Lf B 7& ay,
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and for 2 <k <n,
(40)
o (2) T d~ =
Te, (zk) = Z 071:]5 Z.{l o2 2) + {Zlahal (zr), fB=a1 andy =e,

(6% € . .
= ! Fri(®)=iren , otherwise.

m(B)—jrar€A4

To obtain a closed formula for the vector field o, on Zy, we introduce more notation. Let N
denote the set of non-negative integers.

Notation 4.8. For 8 € Ay and (j1,...,7,) € N*, let f(;,) = 1(8) — jicx € b*, and for
2<k<mn,let
Bl = VB, .miir)) = TuC
= Y Yk—1 Y271 (B) = Ve Ve—1 - Ye(@r) — ... = Je—17k (k1) — Jrak € B,
Je={01s- s gh1) ENFTL By oy EALVISI<Ek—1, and By, j ) =0k}
For 2 < k <nand for (j1,...,jk-1) € Jg, let
(41) cl YLIL L T tTk #0

J1oeendio1 — Con,B k1,801, i)
Here is it understood that 3(;, .. ;. ,) = B if k = 2. Also note that for k > 2 and 1 < < k-1,
el , is defined in (33) and B4) when B;,,...j,_,) # ai, and if B, . j,_,) = c, then

@isBy,dio

Yi(Bijr,.jor)) — Jici € Ay only if y; = e and j; = 0, and in this case cl"i’ﬁ(jl lllll = 1 as
defined in (31).
For each 1 < k < n, introduce two functions gbg(zl, ..., 2p—1) and 1/)} (21,...,2K_1) as follows:

for k=1, let
1 ifﬁzal,

d Uz, ze) =0,
0 Bt 4 VelroEmen)

(42) (b’ﬁy(zlv"'azkfl) - {
and for 2 < k < n, let

o
() R D DR T et
(J1sesdr—1) €Tk

(o) ~* (o
(44) V(21,0 26-1) = — Z 2<7.( Z)’W. ( k)>zi¢g(zl, e Zil1),s

L<i<h T yime SUCHILUCH)

where recall that 4% = y172---7; for 1 < i < n, and the function (bg (#1,...,2k—1) (resp.
¥5(21,.. ., 21-1)) is defined to be 0 if the index set for the summation on the right hand side of

@3) (resp. (@) is empty.

Remark 4.9. Since a root string can have length at most 4, it follows from ({@3)) and {@4]) that
the powers of any coordinate z; in the polynomials (bg (#1,...,25—1) and @[Jg(zl, ..., 2k—1) can be
at most 3 (and 1 when g is simply-laced). o

The following Theorem .10 gives a purely combinatorial formula for the vector field o, .

Theorem 4.10. Let 3 € Ay and let v = (71,...,7) € Tu. The vector field oc, acts on the

coordinate functions (z1,...,z,) on the affine chart OV as follows: for 1 <k <mn,
ol ot : _
(45) UEB(Zk) — ¢5(517'-'72k—1)+12b5(21’;"'7zk7—1)zk7 Zf Yk Sk,
—5(21, s 2k—1)2) F (21, zem1)2k, i e =e

Proof. When k = 1, Theorem .10 holds by ([@2) and by Lemma [£7 Let k > 2. Let
Je={01, - jr—1) eNFTLL By AL VI<I<k—1},
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and define ¢ € C* for (ji,...,jx-1) € Ji as in (@I). Then by Lemma H.T

.....

(46) Oc

5 (2k)

2 .
V171 01 210}(1(31 (26), i B=0a1 and 1 =e,
Coq B 1 0.85( D (Zk) + th .
e , otherwise.
By repeatedly using (G]), one has
j Je-1 _(k
Tep (21) = Z C.’jylw“;jk 1"7"{1 a 'Zkk—ll Uéﬁ?n j (2)

(J1seedk—1)€J},

+ Z (bg(zl, e zi,l)ziaéil)(zk).

1<i<k—1,v;=e

Let z;, = 1 if v, = sx and z, = —z7 if v, = e. By Lemma L0 for (j1,...,jk—1) € Jj, one has

(k) (k ) /
o 2z ) = 0 unless [; ; o, in which case oe, zi) = z,.. Thus
Bl jk—l)( k) ﬁ(h """ Jr—1) = ko WL WHIELL CASE Teg s jk—l)( k) k
Oey(21) = E P RS SN L v E (2 2 )ZO'(+)(Z)
ep\k/) = J1sesdk—171 k—1 ~k g 21,y Zim1)Zi0p k
(J1seesdr—1)€Jx 1<i<k—1,vi=e

:¢g(21,...72k71)2;€+ Z gbg(zl,.. y Zi— 1)Z,Lo'}(L+1)(Zk)

1<i<k—1,v;=e

On the other hand, for each 1 <1¢ < k — 1 with v; = e,

(i+1) _ 2(as, Vi1 e(ar)) _ 2<’Yi(04i)77k(04k)>
o, (a) = — — Bk = TN iy Gk
’ (i, i) (vi(as), v (ag))
It follows that
Tes(2k) = Oh(215 s 2—1)2), + V3215 oy 28-1) 20

Q.E.D.

Remark 4.11. In the context of Theorem 10, for a given v = (y1,...,7) € Ty and 1 <
k< mn,let v = (y1, s Y—1,%5k Vi1 V) € Tu, where 7, € {e,s;} are arbitrary for
kE+1<j<mn,andlet (z],...,2,) be the coordinates on O"". Then zp=zpfor 1 <j<k-1,
and z;, = 1/z,. By (3) and (4),

bz, 2h-1) = 94 (21, zi-1)  and Ph(21, .., z6m1) = =g (21,00 26m1).

One can thus derive one case of the formula (45) from the other case using the change of
coordinates zj, = 1/zj. o

Example 4.12. Let 8 be a simple root and let v = (e, e,...,e) € Ty. Then in the affine chart
O with coordinates (21, ... ,2,) given in (I3), the vector field o, is given by

0 if
(47) 065(21@) <Buak> Z zi | 2n + ’ , 1 o‘k#ﬂa 1<k<n.
<[3 B) <i<hoT. ai=p —zj, if ap =p,
Indeed, let 1 < k < n. By Theorem [£10] one has,
Oes(2) = —¢p(21, .-, Zk—1)2% + V21, 2k—1) 2k

As B is a simple root, one sees from the definition of (bg that (bg (z1,...,2k-1) = 1if ap = 8 and
¢p(z1,. .y 26-1) = 0 if oy, # B. Tt follows from the definition of ¢} that

2(6, «
7,/}%(21,...,2161)——% Z Zi

1<i<k—1, a; =P
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This proves [@7). Applying Lemma 3.1 and @T), one sees that in the affine chart O(1:¢:€),
the Poisson structure I is given by

{ziy 2z} = (i, ap)zizg, i 2<i<k<n,
o) = —(on,am) (21 =23 9cici 1 aimen zz) 2k, if 2 <k <nand o # o,
b —(ar,01) (21 =23 0cici 1 aymay % — zk) 2z, if2<k<nanda=a;.

On the other hand, by Lemma B3] in the coordinates (1,...,&,) on O(&e€) given by
(517 527 s 7571) — [u*al (51)5 U—qy (52)5 vy U—qy, (fn)],

the Poisson structure m, is given by {&, &k} = (qg, ar)&&, for all 1 < i < k < n. It is easy
to see that on the intersection O(&€~€) N O51.€-€)  the changes between the coordinates

(&1,&2,...,&,) on O(ee-¢) and the coordinates (21,22, ..,2,) ON Os1:6:€) are given by z; =
1/&, and for 2 < k < n,
—2(ay,a2)
(a1,a1)
2k = Z & if a # a1, and z = & if ap =oa;.
1<i<k (Elgkzll fz‘) (Zf&'ig}c fz‘)
It is remarkable (see [7] for some details of the calculations) that these changes of coordinates
indeed change the quadratic Poisson structure expressed in the coordinates (z1,..., z,) to the
log-canonical one in the coordinates (&1, ...,&,). o

4.3. The Poisson structure m, in coordinates, II. Let again {e, € g, : @ € T'} be a set of
root vectors for the simple roots, which gives rise to the coordinates (z1,...,2,) on each affine
chart O7 via ([3)). Recall from Lemma 3T that the Poisson structure m, can be expressed in the
coordinates (z1, ..., z,) on O7 in terms of the vector fields ¢;, 1 < i < n—1 on the Bott-Samelson
variety Z(Si+1:2%) given in ([H). We now apply Theorem EI0 to the vector fields o;.

To this end, extend the set {e, € gq : @ € T'} to a basis {ha}tacr U {€a € gataca of g such
that [eq,e—q] = hq for all @ € A, Fix v = (71,...,7) € Tu. For 1 <i < k < n, define two
polynomials in the variables (z;41,...,25—1) by

def )

(48) O e (zig1, s zhm) = B (2, zke),
def )

(49) 1/)Zk(2’i+1, . ,Zkfl) = U)g:“rl """ ’Y")(Zlqu, ey Zkfl)

by taking 8 = «; and replacing u by (S;4+1,...,5,) and v by (Vit1,.-.,7n) in @3) and @).
Here recall that when k =i + 1, it is understood that C[z;11,...,2k-1] =C. Let 1 <i<n—1.
By Theorem [£10] the vector field o; is given in the coordinates (z;11, ..., z,) on the affine chart
OWit15m07m) of Z(siirrnsn) by

(50) U(Zk) _ d)Zk(ziJrlv"'?Zkfl)+¢Zk(zi+17"'azkfl)zk7 if Yk = Sk, i<k<n
K2 - . —_ M
—¢Zk(zi+1, cees Zk71)213 + 1/)Zk(2i+17 cees Zkfl)zkv if Yk = €,
Lemma 4.13. The polynomials ¢Zk(2i+1, ey 2k—1) and ¢Zk(2i+la ey 2k-1), wherey € Ty and

1 <i <k <n, are independent of the extension of {eq : @ € T'} to the basis {ha}aer U {eq €
gataca of 9.

Proof. The coordinates (21, . ..,2,) on O7 and the definition of the vector fields 0;, 1 <i <n—1,
on Z(si+1:557) depend only on the choice of {e, : @ € T'} and not on its extension to the basis

{ha}ael" U {ea S ga}aGA of g.

Q.E.D.
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The following Theorem T4l which expresses more explicitly the formula for the Poisson
structure m, on Zy in the affine coordinates given in Lemma [3.T] is a combination of Lemma [B.1]
and Theorem 410

Theorem 4.14. Let {e, : a € T'} be any choice of a set of root vectors for the simple roots and
let v € Ty. Then in the coordinates (z1,...,2,) on the affine chart OV of Z, determined by
{eq : € T'}, the Poisson structure m, is given by

oy (@) ez, if v =e Z_ .
61 1o 2k = {_<’7i(ai)v 'Vk(ak»zizk — (i, i)oi(z) if vi = si y 1si<kzn,

where for 1 <i <k <n, o;(z) € Clzig1,-...,2k] is gwen in [50). In particular, when v = u is
the full subexpression, o;(zx) € Clzit1, ..., 2k-1] for all 1 <i <k <n.
5. THE POLYNOMIAL POISSON ALGEBRAS (Clz1,..., 2], ™)

Throughout §5l fix a Bott-Samelson variety Z,,, where with u = (s1,...,8n) = (Say,- -+, Sa, ),
with a; € T for 1 <i < n,

Definition 5.1. Given a set {e, : @ € T'} of root vectors for the simple roots, for each v € Ty,

let m, denote the Poisson structure on the polynomial algebra Clz1,..., z,] given by (&) in
Theorem .14
The coordinates (z1,...,2,) on the affine charts O of Z, depend on the choice of the set

{eq : @ € T'} of root vectors for the simple roots. A different choice of such a set gives rise to re-
scalings of the coordinates and thus may result in a different Poisson bracket on the polynomial
algebra of the coordinate functions. We show in §5.0] that this is not the case. In §5.2] we show
that each (Clz1,...,2z,),my), where v € Ty, is a Poisson-Ore extension of C compatible with
the T-action given in ([I4]). When ~ = u is the full expression of u, we show in §5.3] that the
Poisson-Ore extension is nilpotent and symmetric in the sense of [12 Definition 4].

5.1. Re-scaling of coordinates. Let {e, : @ € I'} and {e], : & € I'} be two sets of choices of
root vectors for the simple roots, and let {e_o € g_o : @ € T'} and {€¢’_, € g_o : @ € T'} be the
corresponding root vectors such that [eq,e_q] = [e,,€",] = hq for each o € T.

Fora € T', let utq, /s, : C — G be the one-parameter subgroups of G respectively determined

by the sl(2)-triples {eq,e_q, ho} and {e/,, €, ha} (see §L4), and let
S0 = Ua(—1)u—q () uq (=1) € Na(T) and &, =ul (—1)u’, (1) ul, (—1) € Na(T).

For z € C, and & € {e, 54}, let

Pra(?) =u_na)(2)k € P, and  p, o(2) =ul ) (2)& € Py,

where recall that ¢ = ¢/ = e € G. For each v = (71,...,7) € Tu, one then has two sets of
coordinates (z1,...,2y,) and (21,...,2,) on O7, respectively by

(52) (Cn B (217 e Zﬂ) — [p’)’lqal (Zl)v R p’ymﬂcn (Zn)]a

(53) C" 3 (21,5 20) = [Pl 00 (21)s - Dy (20)]-

The main result of §5.1]is the following Proposition 5.2

Proposition 5.2. Let v = (71,...,7) € Yu and let the two sets of coordinates (z1,...,2n)
and (z1,...,20) on O be given as in (B2) and B3). For 1 < i < k < n, let {z;,2x} =
fir(z1y.- o 2n) € Clz1,...,25). Then

{2 2} = fik(21s oy 2), 1<i<k<n
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Remark 5.3. It is easy to see that the two sets of coordinates are related by re-scalings, i.e.,

there exist d1,...,0, € C* such that 2z} = §;z; for each 1 < i <n. One thus has
{20, 21} = 60wz, 2} = Oidk fin (21, -y 2n) = 00k fin (67 21, -y 6,0 20),  1<i<k<n.

n n

Proposition [(.2] states that the polynomials f;; for 1 <1i < k < n satisfy
5i5kfi,k(5l_lzia B 57:12:;1) = fi,k(ziv sy Z’:I)
o

We first prove two lemmas which show that the re-scalings between the two sets of coordinates
are not arbitrary.

Lemma 5.4. For a €T, k € {e, 8o}, and z € C, one has

'’ ) - Dr.a(Aa2)a¥ (1/Aa), &
64) e {pw(z/m o

Sas

Proof. Let 04,6, : SL(2,C) — G be the Lie group homomorphisms respectively determined by
the sl(2)-triples {eq,e_q,ha} and {e,, €’ ., ha} (see §LA). Then
9:1 = Adav(m) 090”
where Ada\/(m) : G — G denotes conjugation by oV (v/A,) € T. It follows that
(55) S:l = Adav(m)(s'a) = Sa Oév(l//\a),
and thus
Aa2)aY(1/Ae), K=s
/ :Adv .o — pn,a(a a)s ay
Prol8) = M) {pn,au/xa), K.

Q.E.D.

For a € T, let e/, = A\yeq, and choose either one of the two square roots of A, in C* and
denote it by v/A,. Note that €/, = A\;'e_, for each a € T'. Choose any t € T such that
(56) t“=Xo, Vael.

Such an element indeed exists, as it can be taken to be any of the preimages in T" C G of the

unique such element in the maximal torus T/Z(G) of Gaq def G/Z(Q), where Z(G) is the center

of G. Recall from (I0) that - denotes the left action of B on Zj,.
Lemma 5.5. For any t € T satisfying (20) and for any v = (y1,...,%) €L, one has
(57) t- [p'717(11(21)5 R} p'Ynyan(Zn)] = [piyl,al(zl)a sty piyn,an(zn)]v (Zla"'azn) GCH

Proof. We prove Lemma by induction on n. When n = 1, t=71(®1) = ¢ = X if 4y = 51
and t~7(@1) = ¢=er = 1 /), if 4, = e, so by Lemma [5.4]
t- [p'Yhal (Zl)] = [p'Yhal (t_%(al)z)] = [pi)’hﬂtl (2)]

Let n > 2 and assume that Lemma [5.5] holds for n — 1. Then

t'[p’Yhal (Zl)7 Tt p’Yman (Zn)] = [p’Yhal (t_%(al)zl)v ga! (t)pV%Olz (22)7 p'YS)aS (23)7 T p'Yn;an (Zn)]
If v = e, then py, o, (771D 21) = poyar (21/May) = P .0, (21), s0 (B1) holds by the induction
assumption. Assume that v; = s;. Then by Lemma [5.4]

t'[p’n,al (Zl)v sy Pynsan (Zn)] = [pfyl,al (Zl)a o‘}/(/\al)sl(t)p’m,az (22)7 Prys a3 (23)a sy Dynsan (Zn)]
Consider now the element oy (Ay, )s1(t) € T. For every o € T, one has

2(o,aq) 2(o, 1)

(0 ()1 (£)° = MG 49200 = ot @) —ye
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By the induction assumption, one then has

a}/()\al)sl(t)[p’YQ;QQ (22)7 p'737a3 ('23)7 trt p'Yn;an (Zn)] = [pi)?,az ('22)7 trt piyn,an (Zn)] € Z(Sl »»»»» Sn)7
and hence (51) holds.

Proof of Proposition Let t be any element in T satisfying (B0). By setting

[p'Yhal (21)7 R p'7n7an (Zn)] = [p’lyl,oq (21)7 R p/vn,an (Z’:I)] € (977
and by Lemma [5.5] one has
[Py1,01 (21)s s Py an (2n)] = =t [Py1,01(21)5 + o5 Do, (20)]-
It follows from (I4) that
Zz/ = (til)*zi = t’yi(ai)zi, 1 S ) S n,

where (t71)* : Reg(O7) — Reg(O") is given by ((t71)*f)(q) = f(t~! - q) for f € Reg(O7) and
g € 07, and Reg(O7) is the algebra of regular functions on O7. As the action of T' on (Zy, 7, )
is by Poisson isomorphisms (see §2.2)), one has, for any 1 <i, k <mn,

{Zzl’v Z;c} = {(til)*ziv (til)*zk} = (til)*{ziv Zk} = ((til)*fﬁk)(zlv SRR Zn) = fl}k(ziv R Z;z)
This finishes the proof of Proposition

5.2. The Poisson algebra (Clzi,...,z,],7,) as a T-Poisson-Ore extension of C. Recall
[11, 8} [21] that a Poisson polynomial algebra A = (C|z1, ..., z,],{, }) is said to be a Poisson-Ore
extension of C if the Poisson bracket {, } satisfies

{2, Clzit1, - - 2n)} C 2iClzig1, - -+ 2n] + Clzig1, - -+, 20, 1<i<n-1.

In such a case, define

(58) {Zluf}zzzal(f)+bz(f)7 1§z§n—1, fe(c[zl-‘rluuzn]

Then [21] for each 1 <4 < mn — 1, a; is a Poisson derivation, and b; an a;-Poisson derivation, of
the Poisson subalgebra C[z; 11, ..., 2] of the Poisson algebra A, i.e.,

(59) ai{f, g} = {ai(f), g} +{f, ai(9)},

(60) bi{f, g} ={bi(f), g} +{f, bi(9)} + ai(f)bi(g) — bi(f)ai(g)

for f,g9 € Clzi41,...,2n]. In this case, the Poisson algebra A is also denoted as

(61) A = Clzn] [2n-1; @n-1, bu_1] -+ [22; a2, ba2][21; a1, bi].

A Poisson-Ore extension of C as in (61)) is said to be nilpotent [12, Definition 4] if b; is a locally
nilpotent derivation of Clz;11,...,2y,] for each 1 <i<n — 1.
The following Definition follows [12] Definition 4] but emphasizes on the torus actions.

Definition 5.6. Let A = (C[z1,...,2x),{, }) be a polynomial Poisson algebra and T a complex
algebraic torus with Lie algebra t acting on A rationally [T1] by Poisson algebra automorphisms.
A is said to be a T-Poisson-Ore extension of C (with respect to the given T-action) if each z;,
1 <i < n, is a weight vector for the T-action with weight \; € Hom(T,C*), and if

A =Clzn] [2n-1; @n—1, bn—1] - -+ [22; a2, b2][21; a1, bi]

is a Poisson-Ore extension of C such that there exist hyq, ..., h,—1 € t satisfying X;(h;) # 0 and

a; = hi|(C[ . for each 1 < i < n — 1. Such a T-Poisson-Ore extension of C is said to be

Zit1,-
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symmetric if b;(zx) € Clzit1,...,2k—1] for 1 <i < k < n, and if, in addition to hy,..., h,—1 €t
as above, there exists h,, € t such that A\, (h,) # 0 and
(62) Ae(hw) = Ae(ho), 1<i, k<n.

Remark 5.7. For a T-Poisson-Ore extension of C as in Definition [5.6] one has

{zi, 2k} = a;(2k) + bi(2k) = Me(hi)zizi +bi(28) € M (hi)zizg + Clzig1, -y 2n),  1<i<k<n,
a property referred to as semi-quadratic in [12, Definition 4]. o
Remark 5.8. Let A be a T-Poisson-Ore extension of C as in Definition Then

(63) (Plctzip,za]s D] = Xi(R)bi, 1<i<n—1, het,

where the left hand side is the commutator bracket between the two derivations hlcz,,,,... z,]
and b; of Clziy1,...,2,). In fact, (63)) is equivalent to [hlc[z,,,,....z.]> bil(2k) = Ai(R)bi(2) for
all 1 <i < k <nandh € t, which, by the fact the z; is a T-weight vector with weight A; for
each 1 < j < n, is in turn equivalent to h({z;,zx}) = {h(2:), zk} + {2, h(zx)} for all h € t and
1 <i < k <n, which is equivalent to T acting on A by Poisson automorphisms. In particular,

[ai, bl] :)\i(hi)bi7 1 S’LS?’L—l
Let 1 <7 <n—1 and consider the 2-dimensional Lie bialgebra by = Cx 4+ Cy with Lie bracket
[z,y9] = —Xi(hi)y and Lie co-bracket § : by — A2by given by d(z) = 0 and §(y) = = A y.

Consider the Poisson subalgebra A;11 = C[zi41,...,2,] of A and let Derc(A4;11) be the Lie
algebra of derivations (for the commutative algebra structure) of A;;1. Define the Lie algebra
anti-homomorphism ¢ : ba — Derc(Ai+1) by o(x) = a; and o(y) = —b;. Then (B9) and (G0
are equivalent to o being a left Poisson action of the Lie bialgebra (b3, d) on the Poisson algebra
Ait1 (see [19] §2]). Let z* and y* be the dual basis of b3 which is a Lie bialgebra with Lie bracket
[z*,y*] = y* and Lie co-bracket z* — 0 and y* — —A;(h;)z* Ay*. Let p : b5 — DercClz;] be
the Lie algebra homomorphism given by p(x*) = —2;0/9z; and p(y*) = 9/9z;. Then p is a right
Poisson action of the Lie bialgebra b on C[z;] with the trivial Poisson bracket. The Poisson-Ore

extension A; := Clz;, Zi11,...,2n] of A;y1 with the Poisson bracket given in (B8) can now be
interpreted as the mized product Poisson structure on A; = Clz;] ® A;y1 defined by the pair
(p, o) of Poisson actions of Lie bialgebras introduced in [19]. o

Remark 5.9. A symmetric T-Poisson-Ore extension of C is automatically nilpotent. Indeed,
let 1 < i < n —1 and let the notation be as in Definition To show that b; is lo-
cally nilpotent as a derivation of Clz;41,..., 2], observe first that for integers m, N > 1 and
fisfoseoos fm € Clziga, ..y 2zn), BN (fifa-+- fm) is a linear combination of terms of the form
bfvl (fl)bZN2 (f1)-- -bfv’" (fm) with Ny + No+---4+ N, = N. Thus b; is locally nilpotent if for each
1< k<n, bﬁv" (21) = 0 for some integer Ny > 1. As b;(2;4+1) € C, one has b?(z;+1) = 0. Assume
that there exist IN; > 1 such that bfvj (zj) =0fori+1<j<k-—1. Asb(zx) € Clzit1,- -, 2k—1],
the above observation shows that there is an integer Ny > 1 such that bf-v *(bx) = 0. Induction
on k now shows that b; is locally nilpotent. Observe also that if A is a symmetric T-Poisson-Ore
extension of C, then for 1 <i < k < n,

(64) {Zi, Zk} = /\k(hl)zzzk =+ bz(zk) € M\, (hl)zlzk —+ C[Zi+1, - ,Zkfl] C (C[ZZ, - ,Zk].

Consequently, C[z;, ..., 2] is a Poisson subalgebra of A for all 1 <i < k < n. o
Lemma 5.10. Suppose that A = (Clz1,...,2n),{, }) is a symmetric T-Poisson-Ore extension
of C. Then, with respect to the same T-action, A is a T-Poisson-Ore extension of C in the

reversed order of the variables. More precisely, with the notation as in Definition [5.0, for each
2<k<n, Clz,...,2k-1] is a Poisson subalgebra of A, and

(65) {f, 2} = ap(Hze +0,(f),  fE€Clar,... 2],
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where aj, = hi|c[z,,....z,_,) @5 a derivation of Clz1,...,2x_1] and b} is the unique derivation of
Clz1, ..., zk—1] such that bj(z) = bi(zk) € Clzig1,. .., 26-1]) for 1 <i < k —1. Moreover, for
any h € 4, [hlcpzy .z 4]0 U] = M (h)by, as derivations of Clzy, ..., zk—1].

Proof. Tt follows from (4] that C[z1, ..., zx—1] is a Poisson subalgebra of A for every 2 < k < n.
The assumption that X;(hr) = Ax(h;) for all 1 < 4,k < n and the definition of the b}’s imply
that (65]) holds for f = z; for each i < k, so it holds for all f € Clz1,...,25-1]. Let h € t and
2 <k < n. Then for each 1 < i < k — 1, using (63)), one has h(b;(zx)) — b;(h(zx)) = Xi(h)b;(2k),
from which one has h(b;(zx)) — Xi(h)b;i(2k) = bi(h(zk)) = Me(h)b;i(2k), and it follows that

h(b.(2:)) = by (h(2:)) = h(bi(2x)) — Ni(h)bi(2k) = Ak (R)bi(z1) = A (h)b.(2:)-

This proves that [h|c[z,,....z,_,]> bi] = A (h)b), as derivations of Clzy, ..., 25 1].
Q.E.D.

Notation 5.11. In the context of Lemma [5.10, we also write
(66) A =Cla] [225 ag, o] -+ [zn—15 g1, b_1] 203 ap, B

Returning to the Bott-Samelson variety (Zy,m,), where u = (81,...,81) = (Says---)Sa,)s
choose again any set {e, : @ € '} of root vectors for the simple roots, so that one has coordinates
(#1,...,2n) on O7 for each v € Ty. Fix v € O7 and consider the Poisson polynomial algebra
(Clz1, .., 2n],my). Recall again that the maximal torus T acts on O by (I4)), which gives rise
to a rational action of T on (Clz1, ..., z,), my) by Poisson automorphisms. More precisely,

For h € ) = Lie(T'), denote by 95 the Poisson derivation of (Clz1,..., 2], 7y) generating the
T-action in the direction of h, i.e,

(68) On(z) = =y (w)(R)z;, 1<i<mn, heb.

Note that both the T-action and the derivations 9, on C|z1,..., z,] depend on =, but for no-
tational simplicity we do not include the dependence on v in the notation. For 1 <7 <n —1,
recall also the vector field o; on the Bott-Samelson variety Z,, , .. ,,) defined in (I5]), and recall
that the induced derivation on Clz;11, ..., 2], identified with the algebra of regular functions
on Oittrsn) Z s,) 18 also denoted by o;.

Sidlyeees

Proposition 5.12. For each vy € Ty, (Clz1,. .., 2], my) is a T-Poisson-Ore extension of C with
respect to the T-action on Clzy, ..., z,] giwen in (GT). More explicitly,

(69) (Cler, -y zn),my) = Clzn] [2n—1; @n-1, bu—1] -+ [22; az, ba] [21; a1, b1,
where for 1 <i<n-—1,

R R 2

When v = u, the extension is symmetric. More explicitly, for v =u, one also has

(71) A =Clz] [225 ay, by] -+ [2n—15 ap_1, b 1] [0} ap, by,

where for 2 < k < mn, aj = —%ﬂaﬁ,k—l(huk)|C[Zl).”7zk71], and b, is the unique derivation of

Clz1, ..., 26—1] such that b} (z;) = —(ay, a)oi(zx) for 1 <i<k—1.

Proof. Let v = (71,...,7) € Ty and let \; = —v' () for 1 < i < n. By 1), 2; is a weight
vector for the T-action on Clz1, ..., z,] with weight ;. For 1 < i < n, define h; € b = Lie(T) by
(i, o) i 3 —
0y OG) -V 7 (hoti)a if Vi =6
(72) hi:—%”y Yhy,) = v .
=5y (hay), if 4 = s;.
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Then for 1 <i < k < n,
O (z1) = Me(hi)zi = —v* (ar) (i) ze = (Y7 Hew), Y*(an)) 2k

It now follows from Theorem [£14] that (69) holds with the a;’s and b;’s given by ([Z0). Moreover,
for each 1 < i < n, A;(h;) #0, as

Xi(hi) = (7" Hew), 7' (aa)) = {ai, vi(aq)) = {<ai’ %) W=

_<ai7 ai>7 Yi = Si-
Thus (Clz1, ..., 2s), my) is a T-Poisson-Ore extension of C with respect to the T-action in (G7).
Assume now that v = u is the full subexpression of u. In this case,
<Oéi, a7,> 1—1 <Oéi, a7,>
hy = — 2 L,y = A2
5 (ha) 5
With \; = —v%(a;) = s182- -+ s;_1(c), one has, for 1 < i,k < n,
Xi(hi) = = (7" (i), 7" (ar)) = —(s152- - si1(w), sisa---sp—1(ar)) = Ax(hi).
By Theorem T4, one also has b;(z;) € Clziq1,...,2k-1] for 1 < i < k < n. This shows that

(Clz1, ...y 2n], my), for v = u, is a symmetric T-Poisson-Ore extension of C with respect to the
T-action given in (67). By Lemma BETI0, (7T holds.

8182'~-Si,1(hm)€f), 1<t <n.

Q.E.D.

Remark 5.13. We already know from Remark that for h € tand 1 < i < n — 1, the two
_____ 2,] and b; on Clziy1,...,2,] in Proposition satisfy [ap,b;] =
Ai(h)b;. This can also be checked directly: it clearly holds when 7; = e. Assume that v; = s;. In

the notation of (37) and by Lemma [2Z2] one has aj, = agif)l,)l(h) and b; = —(ay, aﬂaéf:l). Thus

derivations ap, := Ohnlc[z,,,

i+1 i i+1
[ah, bi] = —(ai,ai> [Ugvj),)l(h), 06(3:;1) = <ai’ai>a[((';))*1(h),eai] = )\i(h)bi.

o
Remark 5.14. For an arbitrary v € Ty, the derivations b; on C[z;41,...,2,] in Proposition

[5.12] are not necessarily locally nilpotent: in Example for v = (sq,, €, €), the derivation b; on
Clz2, 23] is given by b1(z2) = 0 and by (23) = 223 which is not locally nilpotent. o

5.3. The Poisson structure 7, in O". We now look in more detail at the Poisson polynomial
algebra (Clz1, ..., z,), my), where v = u is the full subexpression of u. In this case, the action of
T on C|z1,. .., 2,] is given by
(73) tez =tosesiclad e T 1 <<,
and the Poisson structure 7, on Clz1, ..., 2,] is given by
(74) {zi, 21} = cigzize — (i, )0 (2x) = cipzizi + 0(2:), 1<i<k<n,
where for 1 <1,k <n,
(75) ik = — (7 (), ¥ (aw)) = —(s182 - si1 (), s182... 551 (o)),
o; is the derivation on C[z;11, ..., zx—1] corresponding to the vector field on the Bott-Samelson
variety Z(%i+15n) generating the B-action on Z(*#+1%n) in the direction of e,, (see (I5)), and
b}, is the unique derivation on C[zy, ..., zx—1] such that b} (z;) = —(a;, ;)0 (2k).

In §5.3 we give the geometric meaning of the derivation b, on Clz1,. .., zx_1].

To this end, consider the quotient manifold

F',=B\Gxp_Gx---xp_G
of G™ by (B_)", where (B_)™ acts on G™ from the left by
(76) (bl,bQ,...,bn)'(91,92,...,gn):(blglbgl, ngQb;l,...,bngn), bj GBf,gj cG.
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Let p_ : G™ — F’, be the natural projection. Similar to the case of the quotient manifold F,, in
(@), the product Poisson structure 7% on G™ projects by p_ to a well-defined Poisson structure
on F’ . which will be denoted by n’_,,. Let P_s, = B_UB_s;B_ for 1 <i <n. Aseach P_g,

is a Poisson submanifold of (G, 7 ), the closed submanifold
7' =B \P_s, xp_ P_g, x---xp P,

of F’ a Bott-Samelson

variety. Note that for each 1 <4 < n, one has

» is a Poisson submanifold with respect to «’,,. We will also call Z’

Ua; (2)8; = Siu_q,(—2), z€C.
Setting p—(g1,92,---,9n) = [91,92,---,gn]— € F",, for (g1,92,...,9n) € G", it follows that one
has the open affine chart
O"":=B \(B_s;B_) xp_ (B_ssB_) x ---xp_(B_s,B_)

of Z" ,, with the parametrization by C" via
(77) C™ 3 (21,22, 1 2n) = [Uay (21)801> Uas(22)3any « s Ua, (2n)5a,]— € OO
The restriction of the Poisson structure 7/, to ©"" will also be denoted by 7’_,.
Proposition 5.15. The map I : (O%, 7r,) — (O"%, ©'_) given by

[Uay (21)8ays Uas(22)8a0s -y Ua, (Zn)Sa,] — [Uay (21)Says Uas(22)8ass - -5 Ua, (2n)Sa,]—,
where (z1,22,...,2,) € C", is a Poisson anti-isomorphism.
Proof. Let p : G™ — F,, be the natural projection, so that m, = p(n%). It is proved in [I9] §8]
that the pair

p: (G", «}) — (F,, ™) and p_: (G", 7}) — (Fin, wln)

of Poisson submersions is a weak Poisson pair (see §A]the Appendix), i.e., the map

(P p=): (G, 7y) — (B x FL, mp x @), (9, 9') — (p(9), p-(9'), 9,9' € G",

is a Poisson map. For a € T', let X, be the symplectic leaf of 7y in G through the point s, € G.
To describe the two-dimensional symplectic manifold (X, 7s|x, ), consider the surface

2 ={(p,q.t) € C*: £*(1 —pg) = 1}
in C? and equip ¥ with the Poisson structure 7 given by
(78) {p.at=2(1-pg), {p.t}=pt, {g.t}=—qt
A calculation in SL(2,C) shows that the embedding

J: Y — SL(2,(C), (p,q,t) — < ptt —_qtt > 5 (paqvt) S Ea

-1
0
Tsree o SL(2,C) in ([@). Using the Poisson homomorphism 6, in (@), one sees [16] that

Yo ={ga(p,q:1) : (pg,t) € 3},
and mgt|x, = @(ﬁa o J)(m), where for (p,q,t) € %,
—t

_ pt
@ salpa0=0.( % )

Consider now the product manifold ¥, = ¥,, X ¥4, X -+ X ¥4, and denote the restriction of
the product Poisson structure 77 to 3, still by 77%. It follows from (79) that

p(Ea) = 0% and  p_(Sa) = O,

identifies (X, 7) as the symplectic leaf through < (1) € SL(2,C) of the Poisson structure

) = ta)saci)a(=0) = -0 D501~
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and, denoting again by p (resp. p_) the induced map from ¥, to O" (resp. to O""),
(80) p: (Zu, ™) — (O, m,) and  p_: (T, 7%) — (O™, 7))

—n
are Poisson submersions and form a weak Poisson pair (in fact a symplectic dual pair). Moreover,
the submanifold
L= {(uﬂtl (21)5.0117 Uy (22)5.0127 sy Uay, (Zn)San) : (Zlv R2y -y Zn) € Cn}

of ¥, is Lagrangian with respect to 7%, and it is clear that p|r, : L — O™ is a diffeomorphism. It
now follows from Lemma [A]in the Appendix that I = p_ o (p|z)~!: (O%, m,) — (O"%, «',)
is a Poisson anti-isomorphism.

Q.E.D.

We now prove a fact similar to that in Lemma 2.2} let (X, 7y) be a Poisson manifold with a
right Poisson action by the Poisson Lie group (B_, 7st), let « be a simple root, and consider the
quotient manifold Z = X xp_ P_;_ (see notation in §2.2) equipped with Poisson structure m,
which is the projection to Z of the product Poisson structure mx x mgy on X x P_,_. Denote by
[z, p] the image of (x,p) € X x P_,_ in Z. Fix any sl(2, C)-triple {eq, €_q, ho} and consider

p: X xC—Zy, (z,2)— [z, ua(2)$a), z€X,zeC.

Then ¢ is an embedding, and we regard ¢ as a diffeomorphism from X x C to Zy = ¢(X x C).
For € € b, let oé be the vector field on X defined by

d
o¢(z) = Eh:o(ﬂc exp(tf)), z€X.

Using the second part of (), the proof of the following Lemma [5.16 is similar to that of Lemma
and is omitted.

Lemma 5.16. With the notation as above, one has

a,a) d
¢71(7TZ)(13 z) = Tx(x) + < 2 : dz 4 (ZU;M (z) + 2‘7@7@(33)) ’
Returning now to the Bott-Samelson variety Z’ , for u = (s1,...,8n) = (Says---)Sa, ), let
2 < k < n, and consider
/—(51,...,sk71) =B_\P_s, xg_ P_g, x---xp_ P_g .
Denote again by [p1, ..., px—1]— the image of (p1,...,pr—1) € P—s, XX P_g,_, In Z’_(Sl R
and let B_ act on Zi(sl sk1) from the right by
[plu <oy Pk—2, pk—l]— b= [plu -y Pk—2, pk—lb—]a b_ € B—u pi € P—Sm 1<:< k—1.
For £ € b_, denote by Ug(kfl) the vector field on ZL(SI k1) given by
_ d
(81) Ué’(k 1)([1717 ooy Ph—2,PK—1]) = Eh:o[pl, <+ Ph—2, Pk—1 €xp(t§)] -,
where p; € P_,, for 1 <i< k-1, so ag’(k_l) generates the action of B_ on Z’_(Sl sh1) in the
direction of £. Let
(82) o, = Jé’fi_l).
Consider the coordinates (z1,22,...,2,) on O"" given in (T7). Then (z1,...,2,_1) can be
considered as coordinates on the open submanifold
O"1s-1) B \(B_s;B_) xp_ (B_s3B_) x -+ xp_ (B_sp_1B_)
= {[ual (Zl)s.au ) uak71(zk*1)éak71]* : (Zlv SRR Zkfl) € (Ckil}

of Z'

, o
L (1rrsn 1)’ and o}, can be regarded as a derivation on Clz1, ..., zx—1].
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Lemma 5.17. In the coordinates (21,22, ..., 2,) on O™ given in (1), the Poisson structure
7', is given by
(83) {zi, 21} = —cigzize — (g, ag)op(z), 1<i<k<n,

where for 1 <i.k <mn, ¢; ) is given in (T3).

Proof. By repeatedly applying Lemma [5.16] to the Poisson manifold (O"", 7’ ), one sees that

r Tt —n

. . . . ! . .
7!, is given in the coordinates (21, 22, ..., 2,) on O”" by (see notation in (8T]))

{2, 2k} = —WL;wsz;;ii_l)(zi) —{ag, ag)or(zi), 1<i<k<n,

For h € t, one checks directly from the definition of the vector field o;l’(kfl)

that
(84) o T (2) = (sp_1sh_a -+ siv1 () (B)) 2, 1<i<k—1.
[B3) now follows from

AL, O J(k—
<’72>0;Lik V(z) = (sho1su—z - siva(aq), aw)z = —(s182- - sio1(qw), 182+ spo1 ()2

= Ci,k%i-
Q.E.D.

Corollary 5.18. In the notation in Proposition [2.12 for the case of v = u, one has
. = {ag, ag)op., 2<k<n.
Proof. By PropositionB.I5and Lemma [5.17, the Poisson structure 7, is given in the coordinates
(21, ..., 2n) on the affine chart O" by
{zi, 21} = Cipzizi + (g, ar)or(zi), 1<i<k<n.
It follows from the definition of b} that b}, = (o, ax)o}, for 2 <k < n.

Q.E.D.

Remark 5.19. We already know from Lemma [5I0 that for any h € tand 2 < k <n, [a},, b}] =
Ak (h)by,, as derivations of Clz1, ..., zx—1], where aj, = Ohlcz, ...z, _,) and A\x = s182 - - sp_1 ().

This fact can also be checked directly from Corollary [5.I8 Indeed, that in the notation of (&Il),
1,(k—1)

it follows from (84) that a}, = —Og, L sysi(n) A0 b, = (ax, a@oﬁ;ﬁill), o
[ag 0] = — (o, @) [o2570, s otE0] = ()b
3
6. THE POLYNOMIAL RINGS (Z[z1, ..., zn], Ty)

6.1. m, is defined over Z. Recall from §2] that once the Borel subgroup B and the maximal
torus T' C B of G are fixed, the definition of the Poisson structure ,, on Z, depends only on the
choice of a symmetric non-degenerate invariant bilinear form (, ) on g and not on the choices
of root vectors e, for a € A. Although a choice of the set {e, : @ € T'} of root vectors for
the simple roots is needed to define the coordinates (z1,...,2,) on O for v € T, we proved
in Proposition that the polynomials f;r := {z, 2k} € Clz1,...,2,] for 1 < i,k < n are
independent on the choices of the root vectors for the simple roots. For each v € Ty, one thus
has a well-defined Poisson polynomial algebra (Clz1,. .., z,], 7).

Theorem 6.1. Suppose that the symmetric non-degenerate invariant bilinear form (,) on g is
chosen such that %(a, a) € Z for each o € A. Then for any v € Yy, the Poisson structure m, on
Clz1,- .., 2n] has the property that {z;, zx} € Z[zi, ..., 25) C Zlz1, ..., 2s] for all 1 <i <k <mn.
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Proof. Choose any set {e, : @ € T'} of root vectors for the simple roots and extend it to a
Chevalley basis of g. Theorem now follows from Remark and the fact that for any
a, B €A,

2(a, ) (@, @)

€ Z.
a, ) 2

(o, B) =

Q.E.D.

Note that a canonical choice of the bilinear form (, ) on g is such that («, «) = 2 for the short
roots for each of the simple factors of g.

Remark 6.2. By Theorem [G.I] each v € T, gives rise to a Poisson algebra (k[z1,..., 2], 7)
over any field k of arbitrary characteristic. In particular, it follows from (&I)) in Theorem (414
that the Poisson structure 7, on k[z1, ..., 2,] is log-canonical for every v € Ty, if char(k) = 2. ¢

6.2. Examples. Assume that g is simple and let (, ) be such that (a,«a) = 2 for the short
roots of g. Based on Theorem .14l the first author has written a computer program in the
GAP language [9] which allows one to compute the Poisson structure 7, on Z[z1, . .., z,] for any
u=(s1,...,8,) and any v € T,,. We given some examples.

Example 6.3. Consider G2 with the two simple roots a7 and a9 satisfying (a9, ag) = 3(a1,a1) =
3. Let = (Say, Sazs Sars Sass Sars Saz) and note that Sa, Sa,Sa; SasSa; Sa, 1S the longest element
in the Weyl group of Gs. For v = u, one has

{z1,20} = =32120, {21,253} = —z123 — 229, {z1,24} = —62§,

{z1,25} = 2125 — 423, {z1,26} = 32126 — 625, {22,23} = —32223

{2,24} = =625 — 32024, {20,235} = —623,  {20,26} = 32026 — 182325 + 624
{23,24} = —32324, {23,25} = —2325 — 221, {23,26} = —6232

{24,25} = —32425, {24,26} = —625 — 32426, {25,26} = —325%.

For the same u but v = (S4,, Sas, €, €, Says Sas ), ONe has

{21, 22} = =32122, {21, 23} = 22022 + 2123,

{z1,24} = —6202324 + 62325 — 32124, {21, 25} = —42a2325 + 6232425 — 2125 — 220 + 224,
{21, 26} = 6232822 + 62222 + 6202326 — 6232426, {22, 23} = 32223,

{29,24} = —62024 + 623, {20,235} = —32025 + 62425,

{22,26} = 62322 + 32026 — 62426, {23,24} = —32324, {23,235} = —22325,

{#3,26} = 32326,  {24,25} = 32425, {2a,26} = —32426, {25,26} = 325%.

&

Example 6.4. Consider G = SL(2) with the only simple root denoted by o and s = s,. Let
u=(s,s,s,s,8). For v =u, one has

{z1, 22} = 22120 — 2,  {z1,23} = —22123, {21, 24} = 22124, {21,25} = —2212s,
{22, 23} = 22023 — 2,  {22,24} = —22021, {22,235} = 22025, {23,24} = 22324 — 2,
{2’3, 25} = —22’325, {24, 25} = 22’425 — 2.

For v = (s,e,€,€, ), one has

{z1,22} = —22120 + 22%, {z1,23} = —22125 + 42225 + 2232,,
{z1,24} = —22124 + 42024 + 42324 + 222, {21, 25} = 22125 — d2ozs — 42325 — 42425 — 2,
{22, 23} = 22023,  {22,24} = 22024, {22,25} = —22225,

{23, 24} = 22324,  {23,25} = 22325, {24,25} = —22425.
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In general, it is easy to see from Theorem [£14] that for the sequence u = (s, s,...,s) of length
n, and v = u, the Poisson structure 7, on Z[z1, ..., z,] is given by

{Zi,zi+1} :2Zizi+1 —2, 1 S ZS?’L—L

{zi, 21} = 2(—1)k7j+lzizk, 1<i<k<n, k—i>2.

The coefficient 2 in all the Poisson brackets results from that fact that (o, a) = 2.

APPENDIX A. WEAK POISSON PAIRS
In [19, §8], a weak Poisson dual pair is defined to be a pair of surjective Poisson submersions
(85) py: (X,7mx) — Y, 7)) and  py: (X, 7x) — (Z, 7z)
between Poisson manifolds such that the map
(py,pz): (X, 7mx) — (Y X Z, my x7y), x+— (py(x), pz(2)), =z€X,

is Poisson. When (X, 7y ) is symplectic and when the tangent spaces to the fibers of p, and p,
are the symplectic orthogonals of each other, the pair (py, pz) is a symplectic dual pair.

If (Y,7y) and (Z,7,) are two Poisson manifolds, the projections from the product Poisson
manifold (Y x Z, my X 7;) to the two factors clearly form a Poisson dual pair. Moreover, for a
differentiable map ¢ : Y — Z, it is well-known [23] that ¢ : (Y, 7y ) — (Z,7,) is anti-Poisson if
and only if the graph of ¢, i.e.,

Graph(¢) = {(y, #(y) : y €Y} CY x Z,

is a coisotropic submanifold of (Y x Z, my X 7). The following Lemma [A] is a (partial)
generalization of this fact to the case of weak Poisson dual pairs.

Lemma A.1. Let (py,pz) be a weak Poisson dual pair as in BH). Suppose that X' is a
coisotropic submanifold of (X, mx) such that py|x : X' =Y is a diffeomorphism. Then

¢=pzo(pylx)™: (YVimy) — (Z,72)
is an anti-Poisson map.
Proof. Fix x € X' and let py(z) =y and z = p,(x) € Z. Let
Pyz: TpX — T, Y and  pg.: T X —T1.7
be respectively the differentials of py, and p, at . Lemma [AT] now follows from the following
Lemma [A.2 by taking (V,7) = (T. X, 7x(2)), Vi = ker py o, Vo = kerp, 5, and U = T, X"
Q.E.D.

In the following Lemma[A.2] for a finite dimensional vector space V and a subspace U; C V,
set U = {€ € V* : €]y, =0} C V*, and Uy is said to be coisotropic with respect to m € A2V if
m € Uy AV, where for any subspace Uy of V,

Ui AUy = (NV)N (U @ Uz + Us @ Uy) C A?V.

Lemma A.2. Let V be a finite dimensional vector space, let @ € A2V, and let Vi and Vs,
be two vector subspaces of V such that w(VY,Vy) = 0. For j = 1,2, let p; : V. — V/V; be
the projections so that pj(m) € A*(V/V;). Assume that U is a coisotropic subspace of V and
that p1ly : U — V/Vi is an isomorphism. Let ¢ = pyo (p1]y)~' : V/Vi — V/Va. Then
Y(p1(m)) = —p2(m).
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Proof. For m' = 3 . v; AV} € A?V and € € V*, let ¢|n’ = > ((€vi)v) — (&, v))vy), where

(,) denotes the pairing between V and V*. Then the condition 7(V} ,V2) = 0 is equivalent
to &]m € Vi for all £ € V. By assumption, V = U + V; is a direct sum. As U is coisotropic
with respect to 7, one can uniquely write 7 = 7w, + 71, where 7, € A2U and m € U A V4.
Let {u1,...,uy} be a basis of U and let & € VP, 1 < i < m, be such that (u;,&;) = §; ; for
1<14,57 <m. Then

Zul (&lmy) and  m = Zuz (& |m).

For 1 <i<m,let x; =& |m =&]|(my +m1). Then

W:—Zuz (&lmo) Zul [y + 1)) Zul (&lmo)
=——Zul (& ]mu —i—Zul/\xl —7TU+Zui/\xi.
i=1

=1
As z; € Vo for each 1 < i <m, pa(Y it ui Axi) =0, s0 (p1(m)) = —pa(m).

Q.E.D.
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