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Abstract

Multiple analogues of certain families of combinatorial numbers are recently
constructed by the author in terms of well poised Macdonald functions, and
some of their fundamental properties are developed. In this paper, we present
combinatorial formulas for the well poised Macdonald functions, the multiple
binomial coefficients, the multiple bracket function, and the multiple Catalan
and Lah numbers.
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1. Introduction

The author has recently constructed multiple qt-analogues of several se-
quences of classical combinatorial numbers including the factorial function,
the binomial coefficients, Stirling, Lah, Fibonacci, Bernoulli, Catalan, and
Bell number sequences [12]. We have also developed certain analytic and
algebraic properties of these sequences including their generating functions
and recurrence relations [13]. In this paper, we focus on another important
aspect of these sequences, namely the combinatorial formulas that they sat-
isfy. More specifically, we write combinatorial formulas in terms of reversed
Young tableau for the well poised Macdonald functions wλ, and the mul-
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tiple analogues of the factorial function, the binomial coefficients, the Lah
numbers and the Catalan numbers.

Our multiple extensions of these sequences are written in terms of limiting
cases of the well poised Macdonald functions [11], which are equivalent to
the shifted Macdonald polynomials P ∗

λ developed by Sahi and Knop [35, 27].
Besides studying other properties, Okounkov had developed a combinatorial
formula for these polynomials [33] which may be written as follows:

P ∗
λ (x; q, t) =

∑

T

ψT (q, t)
∏

s∈λ

t1−T (s)(xT (s) − qa
′(s)t−l′(s)) (1)

where the sum is over all reversed Young tableau on λ (that are semistandard,
decreases strictly down the columns, and weakly in rows) with entries T (s)
for each square s = (i, j) of λ from the set N := {1, 2, . . .}. Here, the ψT (q, t)
is the same weight factor (26) for each tableaux T used in the ordinary
Macdonald polynomials [30], and the arm colength a′(s) = j − 1 and leg
colength l′(s) = i− 1 are defined as usual.

The main ingredient in his construction is the recurrence formula (branch-
ing rule) for the P ∗

λ functions. Using the recurrence relation for our wλ func-
tions in a similar manner, we first write down a combinatorial formula for the
well poised Macdonald functions. This allows us to construct combinatorial
formulas for several sequences of numbers listed above in terms of wλ func-
tions. For example, with the same notation as above, we write the formula
for the bracket function as

[z, s]λ =
∏

s∈λ

1

(1− qtn−1−l′(s))

∏

s∈λ

(

1− qaλ(s)tlλ(s)+1

1− qa
′

λ(s)t−l′λ(s)+n

)

·
∑

T

ψT (q, t)
∏

s∈λ

t−l′(s)+n−T (s)(1− sT (s)q
zT (s)−a′(s)tl

′(s))

where z, s ∈ Cn are n-tuples of complex numbers, and the index partition λ
is of length at most n (i.e., ℓ(λ) ≤ n). Note [z, s, n, q, t]λ = 0 if ℓ(λ) > n, and
[z, s, n, q, t]λ 6= 0 otherwise.

2. Background

The multiple generalizations of combinatorial number sequences devel-
oped in [12] are written in terms of the rational Macdonald functions. We
therefore start with a quick review of these functions.
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The (basic) q-Pochhammer symbol (a; q)α may be defined formally for
complex parameters q, α ∈ C as

(a)α = (a; q)α :=
(a; q)∞
(aqα; q)∞

(2)

where the infinite product (a; q)∞ is defined by (a; q)∞ :=
∏∞

i=0(1 − aqi).
Note that when α = m is a positive integer, the definition reduces to the
finite product (a; q)m =

∏m−1
k=0 (1 − aqk). For any partition λ = (λ1, . . . , λn)

and t ∈ C, define [39]

(a)λ = (a; q, t)λ :=
n
∏

i=1

(at1−i; q)λi
. (3)

Note that when λ = (λ1) = λ1 is a single part partition, then (a; q, t)λ =
(a; q)λ1 = (a)λ1 .

2.1. Well–poised Macdonald functions

The construction of our multiple number sequences involve the (basic)
well–poised Macdonald functions Wλ/µ on BCn [11]. This remarkable family
of symmetric rational functions appeared in [10] in the most general elliptic
form.

Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be partitions of at most n parts
for a positive integer n such that the skew partition λ/µ is a horizontal strip;
i.e. λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . λn ≥ µn ≥ λn+1 = µn+1 = 0. Following [11], we
define

Hλ/µ(q, t, b) :=
∏

1≤i<j≤n

{

(qµi−µj−1tj−i)µj−1−λj
(qλi+λj t3−j−ib)µj−1−λj

(qµi−µj−1+1tj−i−1)µj−1−λj
(qλi+λj+1t2−j−ib)µj−1−λj

·
(qλi−µj−1+1tj−i−1)µj−1−λj

(qλi−µj−1tj−i)µj−1−λj

}

·
∏

1≤i<(j−1)≤n

(qµi+λj+1t1−j−ib)µj−1−λj

(qµi+λj t2−j−ib)µj−1−λj

(4)

and

Wλ/µ(x; q, t, a, b) := Hλ/µ(q, p, t, b) ·
(x−1, ax)λ(qbx/t, qb/(axt))µ
(x−1, ax)µ(qbx, qb/(ax))λ

·
n
∏

i=1

{

(1− bt1−2iq2µi)

(1− bt1−2i)

(bt1−2i)µi+λi+1

(bqt−2i)µi+λi+1

· ti(µi−λi+1)

}

(5)
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where q, t, x, a, b ∈ C. Note that Wλ/µ(x; q, t, a, b) vanishes unless λ/µ is a
horizontal strip. The functionWλ/µ(y, x1, . . . , xℓ; q, t, a, b) is extended to ℓ+1
variables y, x1, . . . , xℓ ∈ C through the following recursion formula

Wλ/µ(y, x1, x2, . . . , xℓ; q, t, a, b)

=
∑

µ≺ν≺λ

Wλ/ν(yt
−ℓ; q, t, at2ℓ, btℓ)Wν/µ(x1, . . . , xℓ; q, t, a, b). (6)

2.2. The Limiting wλ/µ Function

The Macdonald functions Wλ are essentially equivalent to BCn abelian
functions constructed independently in [34]. Likewise, the limiting cases
defined below are equivalent to shifted Macdonald polynomials [35, 27, 33]
which are themselves extensions of the Macdonald polynomials [30].

The following limiting the basic (the p = 0 case of the elliptic) Wλ/µ

functions will be used in our constructions below. The existence of these
limits can be seen from the definition (5), the recursion formula (6) and the
limit rule

lim
a→0

a|µ|(x/a)µ = (−1)|µ| x|µ|t−n(µ)qn(µ
′) (7)

where |µ| =
∑n

i=1 µi and n(µ) =
∑n

i=1(i − 1)µi, and n(µ
′) =

∑n
i=1

(

µi

2

)

. We
denote Hλ/µ(q, t) := Hλ/µ(q, t, 0), and for x ∈ C define

wλ/µ(x; q, t) := lim
s→∞

(

s|λ|−|µ| lim
a→0

Wλ/µ(x; q, t, a, as)
)

= (−q/x)−|λ|+|µ|q−n(λ′)+n(µ′)Hλ/µ(q, t)
(x−1)λ
(x−1)µ

(8)

The recurrence formula for wλ/µ function turns out to be

wλ/µ(y, z; q, t) =
∑

ν≺λ

tℓ(|λ|−|ν|)wλ/ν(yt
−ℓ; q, t)wν/µ(z; q, t) (9)

Remark 1. We will need the following properties from [12] in what follows.
Let µ be a partition of at most n part, and z = (x1, . . . , xn) ∈ Cn. Then

(3) Let z = x̄ = (x, x, . . . , x) ∈ C
n for x ∈ C, then we have

wµ(x̄t
δ(n); q, t) = (−1)|µ|x|µ|tn(µ)q−|µ|−n(µ′)(x−1)µ

∏

1≤i<j≤n

(tj−i+1)µi−µj

(tj−i)µi−µj

(10)
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which, after flipping q and t and using the flip rule,

x|µ|(x−1, q, t)µ = (−1)|µ|qn(µ
′)t−n(µ)(x; q−1, t−1)µ (11)

may be written as

wµ(x̄t
δ(n); q, t) = q−|µ|(x; q−1, t−1)µ

∏

1≤i<j≤n

(tj−i+1)µi−µj

(tj−i)µi−µj

(12)

(4) The vanishing property of Wλ functions implies that

wµ(q
λtδ; q, t) = 0 (13)

when µ 6⊆ λ, where ⊆ denotes the partial inclusion ordering.

(5) Let λ be an n-part partition with λn 6= 0 and 0 ≤ k ≤ λn for some integer
k, and let z = (x1, . . . , xn) ∈ Cn. It was shown in [12] that

wk̄(z; q, t) = q−nk
n
∏

i=1

(q1−kxi)k (14)

where k̄ = (k, . . . , k) ∈ Cn.

(6) With the same notation as above, we also have

wµ(q
µtδ(n); q, t) = q−|µ| t(n−1)|µ|−2n(µ) (qtn−1)µ

∏

1≤i<j≤n

(qtj−i−1)µi−µj

(qtj−i)µi−µj

(15)

2.3. The Multiple qt-Binomial Coefficients

Recall that the multiple qt-binomial coefficient is defined in [12] as follows.

Definition 1. Let z = (x1, . . . , xn) ∈ Cn, and µ be a partition of at most
n-parts. Then the multiple qt-binomial coefficient is defined by

(

z

µ

)

q,t

:=
q|µ|t2n(µ)+(1−n)|µ|

(qtn−1)µ

∏

1≤i<j≤n

{

(qtj−i)µi−µj

(qtj−i−1)µi−µj

}

wµ(q
ztδ(n); q, t) (16)

where q, t ∈ C. It should be noted that this definition makes sense even for
µ ∈ Cn.
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Many interesting properties of the multiple binomial coefficients are ob-
tained in [12]. We will need below a special case when µ is a rectangular
partition, that is µ = k̄. Using (14) we get

(

z

k̄

)

q,t

=
n
∏

i=1

(q1−kqxitn−i)k
(qtn−i)k

(17)

In the particular case for k = 1, the definition reduces to

(

z

1̄

)

q,t

=
n
∏

i=1

(qxitn−i)1
(qtn−i)1

=
n
∏

i=1

(1− qxitn−i)

(1− qtn−i)
(18)

2.4. The Multiple qt-Factorial Function

We now recall another important extension from [12] that generalizes the
one dimensional q-brackets and q-factorial polynomials to the multiple case.

Definition 2. Let µ be a partition of at most n parts, z = (x1, . . . , xn) ∈ Cn

and s ∈ C
n. Then

[z, s]µ = [z, s, n, q, t]µ

:= q|µ|
n
∏

i=1

{

1

(1− qtn−i)µi

}

∏

1≤i<j≤n

{

(tj−i)µi−µj

(tj−i+1)µi−µj

}

wµ(sq
ztδ(n); q, t) (19)

is called the qt-factorial (bracket) function. Note that the definition involves
a multiplicative variable s, and an exponential variable z. Depending on the
application we often set z = 0̄ and write 〈s〉µ = [0̄, s]µ, or set s = 1̄ and write
[z]µ = [z, 1̄]µ. Using the identity (14) in the special case when µ = 1̄, we
define the qt-bracket as

[z] = [z, 1̄, n, q, t]1̄ =
n
∏

i=1

(1− qxitn−i)

(1− qtn−i)
(20)

which is a multiple analogue of the classical q-number or q-bracket.

Remark 2. The qt-factorial function satisfies the following properties:

(a) Note [z, s, n, q, t]λ = 0 if ℓ(λ) > n, and [z, s, n, q, t]λ 6= 0 otherwise.
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(b) Let z = (x, . . . , x) = x̄ ∈ Cn for a single variable x ∈ C, then the
qt-factorial function [x̄]µ may be written as

[x̄]µ =
n
∏

i=1

{

1

(1− qtn−i)µi

}

(qx; q−1, t−1)µ =
n
∏

i=1

{

(qxti−1; q−1)µi

(1− qtn−i)µi

}

(21)

This definition reduces to the classical q-bracket in the one variable case.

(c) Note that (x; 1/q, 1/t)µ, with the reciprocals of q and t, corresponds to a
multiple basic qt-analogue of the falling factorial xn := x(x−1) · · · (x−(n−1))
as opposed to the rising factorial or the Pochhammer symbol.

(d) Setting z = µ, and substituting the evaluation (15) in (??) above gives

[µ]µ = t−2n(µ)−(1−n)|µ|
n
∏

i=1

{

(qtn−i)µi

(1− qtn−i)µi

}

·
∏

1≤i<j≤n

{

(tj−i)µi−µj

(tj−i+1)µi−µj

(qtj−i−1)µi−µj

(qtj−i)µi−µj

}

(22)

Similar to the classical case, we may use the notation µ! = [µ]µ and write

[z]µ = µ!

(

z

µ

)

q,t

(23)

Note that in the particular case when µ = k̄ is a rectangular partition, the
µ! reduces to a product of one dimensional quotients for each part.

k̄! =
n
∏

i=1

{

(qtn−i)k
(1− qtn−i)k

}

(24)

3. A combinatorial formula for the wλ functions

Recall that µ 4 λ means that, for each i ∈ [n]

λi ≥ µi, and µi ≥ λi+1.

For a tableux T of at most n rows (whose shape is a partition λ with at most
n parts), we have

ψT =

n
∏

i=1

ψλ(i)/λ(i−1)

7



where ∅ = λ(0) 4 · · · 4 λ(n) = λ is the decomposition sequence for T , and
ψλ/µ is defined combinatorially as

ψλ/µ =
∏

s∈Rλ/µ−Cλ/µ

bµ(s)

bλ(s)

where Rλ/µ and Cλ/µ denotes the rows and columns that intersect the horizan-
tal strip λ/µ in the Young diagram, and for each square s = (i, j) ∈ λ

bλ(s) =
1− qaλ(s)tlλ(s)+1

1− qaλ(s)+1tlλ(s)
(25)

Alternatively, an algebraic definition is given by

ψλ/µ =
∏

1≤i≤j≤ℓ(µ)

f(qµi−µj tj−i)f(qλi−λj+1tj−i)

f(qλi−µj tj−i)f(qµi−λj+1tj−i)
(26)

where f(a) = (at)∞/(aq)∞.
As pointed out in the Introduction, Okounkov gives a combinatorial for-

mula for the interpolation Macdonald polynomials P ∗
λ in terms of the branch-

ing rule

P ∗
λ (x1, . . . , xn; q, t)

=
∑

µ≺λ

ψλ/µ(q, t) t
−|µ|

∏

s∈λ/µ

(x1 − qa
′(s)t−l′(s))P ∗

µ(x2, . . . , xn; q, t) (27)

where the sum is over all partitions that gives horizontal strips. Iteration of
this result proves the combinatorial formula. It is clear that iterating this
formula we obtain the semistandard tableaux sum formula (1) for P ∗

λ .
We take a similar approach, and write a combinatorial formula for the wλ

functions. First we write combinatorial representations for certain products
that occur often.

Lemma 1. The algebraic products on the left hand sides can be represented
by combinatorial products on the right hand sides as follows:

(a) (x; q, t)λ =
∏

s∈λ

(1− xqa
′(s)t−l′(s)) (28)
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and

(b)
n
∏

i=1

(xit
1−i)λi

=
∏

s∈λ

(1− x1+l′(s)q
a′(s)t−l′(s)) (29)

and

(c) xn(λ
′) =

∏

s∈λ

xa
′(s) (d) xn(λ) =

∏

s∈λ

xl
′(s) (e) x|λ| =

∏

s∈λ

x (30)

and

(f)

n
∏

i=1

(1− yxn−i)λi =
∏

s∈λ

(1− yxn−1−l′(s)) (31)

We also have
(g) x|λ

(n)|+···+|λ(1)| =
∏

s∈λ

xT (s) (32)

where ∅ = λ(0) ≺ · · · ≺ λ(n) = λ is the decomposition sequence for the
tableaux T , and T (s) represents the filling in the square s in T as usual.

Proof. Proof follows from direct calculations. For example,

∏

s∈λ

xa
′(s) =

n
∏

i=1

x0 · · ·x(λi−1) =
n
∏

i=1

x(
λi
2 ) = x

∑n
i=1 (

λi
2 ) = xn(λ

′) (33)

and
∏

s∈λ

xl
′(s) =

n
∏

i=1

(

xi−1
)λi = x

∑n
i=1(i−1)λi = xn(λ) (34)

and, in particular
∏

s∈λ

x =
n
∏

i=1

xλi = x
∑n

i=1 λi = x|λ| (35)

Note that (a) is simply a special case of (b). Other properties can be verified
similarly.

Now we are ready to write the combinatorial formula for the symmetric
wλ/µ functions.
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Theorem 2. Let λ and µ be partitions of at most n parts. The function
wλ/µ(x; q, t) of a single variable x ∈ C may be written combinatorially as

wλ/µ(x; q, t) = ψλ/µ(q, t)
∏

s∈λ/µ

q−1t−l′(s)(1− xq−a′(s)tl
′(s)) (36)

In the multivariable case for z = (x1, x2, . . . , xn) ∈ Cn, we have

wλ(z; q, t) =
∑

T

ψT (q, t)
∏

s∈λ

(−xT (s)q
−1−a′(s) + q−1tn−l′(s)−T (s)) (37)

where the sum is over all semistandard reversed Young tableau of shape λ.

Proof. First use the identity

x|µ|(x−1, q, t)µ = (−1)|µ|qn(µ
′)t−n(µ)(x; q−1, t−1)µ (38)

to write the definition (8) of wλ/µ in the form

wλ/µ(x; q, t) = q−|λ|+|µ|t−n(λ)+n(µ)Hλ/µ(q, t)
(x; q−1, t−1)λ
(x; q−1, t−1)µ

(39)

for x ∈ C. It is easy to see by some algebraic manipulations that the
Hλ/µ(q, t) factor in the definition of wλ/µ function

Hλ/µ(q, t) =
∏

1≤i<j≤n

{

(qµi−µj−1tj−i)µj−1−λj

(qµi−µj−1+1tj−i−1)µj−1−λj

(qλi−µj−1+1tj−i−1)µj−1−λj

(qλi−µj−1tj−i)µj−1−λj

}

is the same as the ψλ/µ factor (26) above. That is, Hλ/µ(q, t) = ψλ/µ(q, t).
We now use Lemma 1 to write

wλ/µ(x; q, t) = ψλ/µ(q, t)
∏

s∈λ/µ

q−1t−l′(s)(1− xq−a′(s)tl
′(s)) (40)

which gives the first part of the Theorem.
The recurrence formula for wλ/µ function (9) maybe written as

wλ/µ(x1, x2, . . . , xn; q, t)

=
∑

µ≺ν≺λ

t(n−1)(|λ|−|ν|)wλ/ν(x1t
1−n; q, t)wν/µ(x2, . . . , xn; q, t) (41)

10



Set µ = 0 and substitute the formula (40) into this recurrence to write

wλ(x1, x2, . . . , xn; q, t) =
∑

ν≺λ

ψλ/ν(q, t)
∏

s∈λ/ν

(−q−1)(x1q
−a′(s) − tn−1−l′(s))

· wν(x2, . . . , xℓ+1; q, t) (42)

Applying this argument to the wν function inside the sum on the right hand
side repeatedly until all variables are decomposed, and simplifying gives the
second part of the Theorem.

4. Combinatorial formulas for multiple combinatorial numbers

We need combinatorial representations of certain double products that
turn out to be special evaluations of the ordinary Macdonald polynomials in
the following. The next lemma carries out these calculations.

Lemma 3. The double product factors on the left may be written combina-
torially as

(a)
∏

1≤i<j≤n

(qtj−i)λi−λj

(qtj−i−1)λi−λj

=
∏

s∈λ

(

1− qa
′

λ(s)+1t−l′λ(s)+n−1

1− qaλ(s)+1tlλ(s)

)

(43)

and

(b)
∏

1≤i<j≤n

(tj−i)λi−λj

(tj−i+1)λi−λj

=
∏

s∈λ

(

1− qaλ(s)tlλ(s)+1

1− qa
′

λ(s)t−l′λ(s)+n

)

(44)

Proof. We use the algebra homomorphism εu,t of Macdonald, and the iden-
tity (6.17) in his book [30] for the ordinary Macdonald polynomials Pλ(q, t)
and its dual Qλ(q, t). Applying εqtn−1,t to both sides of the identity

Qλ(q, t) = bλ(q, t)Pλ(q, t) (45)

we get

∏

1≤i<j≤n

(qtj−i)λi−λj

(qtj−i−1)λi−λj

= bλ(q, t)
∏

s∈λ

1− qa
′

λ(s)+1t−l′λ(s)+n−1

1− qaλ(s)tlλ(s)+1

=
∏

s∈λ

1− qaλ(s)tlλ(s)+1

1− qaλ(s)+1tlλ(s)

∏

s∈λ

1− qa
′

λ(s)+1t−l′λ(s)+n−1

1− qaλ(s)tlλ(s)+1
(46)
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since
bλ(q, t) =

∏

s∈λ

bλ(s, q, t)

where bλ(s, q, t) is given in (25). We cancel the like factors to complete the
first part of the Theorem.

The second part of the Theorem is similar. It suffices to apply εtn,t to
Pλ(q, t) and use the identity (6.17) from [30] as above.

We are now ready to write a combinatorial formula for the the multiple
factorial function [z, s]λ.

Theorem 4. Let z, s ∈ Cn be n-tuples of complex numbers, and λ be a
partition of length at most n. Then we have

[z, s]λ =
∏

s∈λ

1

(1− qtn−1−l′(s))

∏

s∈λ

(

1− qaλ(s)tlλ(s)+1

1− qa
′

λ(s)t−l′λ(s)+n

)

∑

T

ψT (q, t)
∏

s∈λ

t−l′(s)+n−T (s)(1− sT (s)q
zT (s)−a′(s)tl

′(s)) (47)

Proof. Using the definition of the multiple factorial (19), and Lemma 1,
Lemma 3, and Theorem 2, we write

[z, s]λ =
∏

s∈λ

q

(1− qtn−1−l′(s))

∏

s∈λ

(

1− qaλ(s)tlλ(s)+1

1− qa
′

λ(s)t−l′λ(s)+n

)

·
∑

T

ψT (q, t)
∏

s∈λ

(−q−1)(sT (s)q
zT (s)−a′(s)tn−T (s) − t−l′(s)+n−T (s)) (48)

Manipulating factors and simplifying yields the desired formula.

Next we write a combinatorial formula for the multiple qt-binomial coef-
ficients in terms of Young tableau as follows.

Theorem 5. With the notation as above, we have

(

z

µ

)

q,t

=
∏

s∈µ

1

(1− qaµ(s)+1tlµ(s))

·
∑

T

ψT (q, t)
∏

s∈µ

tl
′(s)+1−T (s)(1− qzT (s)−a′(s)tl

′(s)) (49)

where z ∈ Cn, and µ is a partition of at most n parts.
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Proof. We substitute qztδ(n) for z in Theorem 2, and use the definition of
the multiple binomial coefficients (1) together with Lemma 1 and Lemma 3
to write

(

z

µ

)

q,t

=
∏

s∈λ

qt2l
′(s)+1−n

(1− q1+a′(s)tn−1−l′(s))

∏

s∈λ

(

1− qa
′

λ(s)+1t−l′λ(s)+n−1

1− qaλ(s)+1tlλ(s)

)

·
∑

T

ψT (q, t)
∏

s∈λ

(−q−1)(qzT (s)−a′(s)tn−T (s) − t−l′(s)+n−T (s)) (50)

We now cancel common factors and simplify to obtain the formula above.

We study combinatorial formulas for two more sequences of combinato-
rial numbers, namely the multiple Catalan numbers, and the multiple Lah
numbers.

The classical Catalan numbers are defined by the relation

Cn :=
1

n+ 1

(

2n

n

)

(51)

A multiple qt-analogue of these numbers is defined in terms of the multiple
binomial coefficients and the factorial functions as follows (see [12]).

Definition 3. Let λ be an n-part partition. Then the multiple qt-Catalan
number Cλ is defined by

Cλ :=
1

[λ+ 1]q,t

(

2λ

λ

)

q,t

(52)

where 2λ = (2λ1, . . . , 2λn) and λ+ 1 = (λ1 + 1, . . . , λn + 1).

Therefore, using the identity (18), the definition may be written as

Cλ :=
n
∏

i=1

(1− qtn−i)

(1− qλi+1tn−i)

(

2λ

λ

)

q,t

(53)

In the special case when λ = k̄ = (k, . . . , k) is a rectangular n-part partition,
we get a simple product representation

Ck̄ :=

n
∏

i=1

(1− qtn−i)

(1− qk+1tn−i)

n
∏

i=1

(q1+ktn−i)k
(qtn−i)k

=

n
∏

i=1

(q2+ktn−i)k−1

(q2tn−i)k−1
(54)

13



using the evaluation (17) above. In the particular case when k = 1, we get
C1̄ = 1 in any dimension n.

We like to point out that our multiple qt-Catalan numbers appears to be
different from the qt-Catalan numbers defined in [18] and developed by [19,
24] and others. These numbers are one dimensional (i.e., is not a multiple
sequence) in the sense that they are indexed by positive integers (the weight
of the partitions) as seen in the definition

Cn(q, t) =
∑

µ⊢n

t2
∑

lq2
∑

a(1− t)(1− q)
∏0,0(1− qa

′

tl
′

)
∑

qa
′

tl
′

∏

(qa − tl+1)(tl − qa+1)
(55)

where
∏0,0 means the product skips the corner cell. To avoid any possible

confusion, we call our family of numbers above multiple qt-Catalan numbers.
The multiple qt-Catalan numbers reduce, for n = 1, to the one-dimensional
q-Catalan numbers that are defined in [7] and studied by [3, 4, 38, 15] and
others.

We next write a combinatorial formula for the multiple Catalan numbers.

Theorem 6. Let λ be an n-part partition, that is ℓ(λ) = n. With the nota-
tion as above, we have

Cλ =
∏

s∈1̄

(1− q1+a′(s)tn−1−l′(s))

(1− q1+λ1+l′(s)qa′(s)tn−1−l′(s))

∏

s∈λ

1

(1− qaλ(s)+1tlλ(s))

·
∑

T

ψT (q, t)
∏

s∈λ

tl
′(s)+1−T (s)(1− q2λT (s)−a′(s)tl

′(s)) (56)

Proof. Using Lemma 3, and setting xi = q1−k+xitn−1 in the identity (18),
we obtain

[λ+ 1]qt =

(

λ+ 1

1̄

)

q,t

=
∏

s∈1̄

(1− q1+λ1+l′(s)qa
′(s)tn−1−l′(s))

(1− q1+a′(s)tn−1−l′(s))
(57)

We also set z = 2λ and µ = λ in Theorem 5, and substitute both results into

14



the definition (52) of Cλ to write

Cλ =
1

[λ+ 1]q,t

(

2λ

λ

)

q,t

=
∏

s∈1̄

(1− q1+a′(s)tn−1−l′(s))

(1− q1+λ1+l′(s)qa′(s)tn−1−l′(s))

(

2λ

λ

)

qt

=
∏

s∈1̄

(1− q1+a′(s)tn−1−l′(s))

(1− q1+λ1+l′(s)qa′(s)tn−1−l′(s))

∏

s∈λ

1

(1− qaλ(s)+1tlλ(s))
∑

T

ψT (q, t)
∏

s∈λ

tl
′(s)+1−T (s)(1− q2λT (s)−a′(s)tl

′(s)) (58)

This is what we wanted to show.

The last sequence of combinatorial numbers we study in this paper is
the multiple Lah numbers. The classical Lah numbers are defined to be the
connection coefficients in the expansion

xn =

n
∑

k=0

L(n, k) xk (59)

where xn = x(x − 1) . . . (x − n + 1) denotes the falling factorial as before,
and xn = x(x+ 1) . . . (x+ n− 1) the rising factorial. Various q-analogues of
these numbers are developed in one dimensional case in [17, 41] and others.

We defined the multiple qt-Lah numbers in [13] in terms of the multiple
factorial function and its flipped version as follows:

Definition 4. Let [x̄]λ denote the multiple analogue of the rising factorial.
That is,

[x̄]λ = [x̄, q, t]λ := [x̄, q−1, t−1]λ (60)

For an n part partition λ, the qt-Lah numbers L(λ, µ) = L(λ, µ, q, t) are
defined by

[x̄]λ =
∑

µ⊆λ

(−1)|µ|q−|µ|+2n(µ′)t−n(µ)L(λ, µ, q, t) [x̄]µ (61)

where x ∈ C, and x̄ = {x, . . . , x} ∈ C
n as before.

Among many interesting properties obtained in [13], we review a funda-
mental result that, similar to the one dimensional case, the multiple qt-Lah
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numbers admit an explicit representation. More specifically, we have

L(λ, µ) = (−1)|λ|+|µ|q−|λ|+|µ|tn(λ)−n(µ)

·
n
∏

i=1

{

(1− qtn−i)−λi+µi
} (t2(n−1))λ
(t2(n−1))µ

(

λ

µ

)

q,t

(62)

We conclude this article by providing a combinatorial formula for the
multiple Lah numbers in the next result.

Theorem 7. Let λ and µ be partitions of length at most n. With the notation
as above, we have

L(λ, µ) =
∏

s∈λ/µ

tl
′(s)(1− qa

′(s)t2(n−1)−l′(s))

(−q)(1− qtn−1−l′(s))

∏

s∈µ

1

(1− qaµ(s)+1tlµ(s))

·
∑

T

ψT (q, t)
∏

s∈µ

tl
′(s)+1−T (s)(1− qλT (s)−a′(s)tl

′(s)) (63)

Proof. We use the explicit formula for the multiple Lah numbers (62) to-
gether with Lemma 1, Lemma 3, and Theorem 5 to write

L(λ, µ) = (−1)|λ|+|µ|q−|λ|+|µ|tn(λ)−n(µ)
n
∏

i=1

(1− qtn−i)−λi+µi
(t2(n−1))λ
(t2(n−1))µ

(

λ

µ

)

q,t

=

∏

s∈λ(1− qa
′

λ(s)t2(n−1)−l′λ(s))
∏

s∈µ(1− qtn−1−l′µ(s))
∏

s∈µ(1− qa
′

µ(s)t2(n−1)−l′µ(s))
∏

s∈λ(1− qtn−1−l′λ(s))

∏

s∈µ

1

(1− qaµ(s)+1tlµ(s))

·
∑

T

ψT (q, t)
∏

s∈µ

tl
′(s)+1−T (s)(1− qλT (s)−a′(s)tl

′(s)) (64)

which simplifies to the result above.

5. Conclusion

We derived explicit combinatorial formulas for the multiple qt-factorial
function, multiple qt-binomial coefficients, multiple qt-Catalan numbers, and
multiple qt-Lah numbers in terms of semistandard reversed Young tableau in
the present paper. We will construct combinatorial formulas for other number
sequences in a future publication, and investigate other possible combinato-
rial interpretations.
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