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Abstract
We investigate proper affine symmetry for the Kantowski- Sachs and Bianchi type
Il space-times by using holonomy and decomposability, the rank of the 6" 6
Riemann matrix and direct integration techniques. It is shown that the very specia

classes of the above space-times admit proper affine vector fields.
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1. INTRODUCTION

The aim of this paper is to find the existence of proper affine vector fields in
Kantowski-Sachs and Bianchi type Il spacetimes by using holonomy and
decomposability, the rank of the 6° 6 Riemann matrix and direct integration
techinques. The affine vector field which preserves the geodesic structure and
affine parameter of a space-time carries significant information and interest in the
Einstein's theory of genera relativity. It is therefor important to study this
symmetry. Let (M, g) be a space-time with M a smooth connected Hausdorff

four dimensional manifold and g a smooth metric of Lorentz signature (-, +, +,

+) on M. The curvature tensor associated with g, through Levi-Civita connection,

is denoted in component formby R®x4. The usual covariant, partia and Lie

derivatives are denoted by a semicolon, a comma and the symbol L, respectively.

Round and sguare brackets denote the usual symmetrization and skew-

symmetrization, respectively. The space-time M will be assumed nonflat in the



sense that the Riemann tensor does not vanish over any non-empty open subset of
M.
A vector field X on M iscalled an affine vector field if it satisfies

Xape = Rape X @)
or equivaently,
Xape = GeXip = GeXap - GpXee + GG X - (GL) X - G, GI X,

+Gi, Gu X + G Go X, = Rypeg X .
If one decomposes X, on M into its symmetric and skew-symmetric parts

1
Xa:b :Ehab + Fab (hab = hoa’ Fab =- Fba) (2)

then equation (1) is equivalent to

(i) Nye =0 (i) Fape = Rypog X© (iii) Fpe X =0. ®))
If h,, =2cg,,,cl R, then the vector field X is called homothetic (and Killing if
c=0). The vector field X is said to be proper affine if it is not homothetic
vector field and also X is said to be proper homothetic vector field if it is not
Killing vector field on M [2]. Define the subspace S, of the tangent space T,M
to M a p asthose ki T M satisfying

Rk =0. (4)

2. AffineVector Fields

Suppose that M is a smple connected space-time. Then the holonomy
groupof M isaconnected Lie subgroup of the idenity component of the Lorentz
group and is thus characterized by its subalgebra in the Lorentz algebra. These
have been labeled into fifteen types R, - R [1]. It follows from [2] that the only
such space-times which could admit proper affine vector fields are those which
admit nowhere zero covariantly constant second order symmetric tensor field h,, .

This forces the holonomy type to be either R,, R, R,, R;, R,, R, R, R;

or R [6]. A study of the affine vector fields for the above holonomy types can

be found in [2]. It follows from [3] that the rank of the 6° 6 Riemann matrix of



the above space-times which have holonomy type R,, R, R,, Ry, R;, R,
R, Ry or R, isamost three. Hence for studying affine vector fields we are

interested in those cases when the rank of the 6° 6 Riemann matrix is less than or
equal to three.
3.MAINRESULTS

Consider the space-times in the usual coordinate system (t,r,q,f ) with
line element [4]

ds? = - dt® + Alt)dr2 + B(t)|dg + f 2(q) df 2 (5)

where A and B are no where zero functiorsof t only. For f(q) =snq or
f (@) =snh g the above space-time (5) become Kantowski-Sachs or Bianchi type
Il space-times, respectively. The above space-time admits four independent
Killing fields which are [5]

1, l cosf l ﬂsnf l anf i+£cosf 1

I 9 g f i q f W

where prime denotes the derivative with respect to g. The non-zero independent

(6)

components of the Riemann tensor are

A 2AA B ZBB

I:\)0101 T al' Rozoz T 21

82 2882 AB
Rosos = f? ()é B 3 °a,, R1212:Toa4' (7)

9

AB B2+ 4B—

R1313_f @ )é 1= as, R2323_f @ )é + ag,
Q

where dot denotes the derivative with respect to t. One can write the curvature
tensor with components R, & p asa 6’ 6 symmetric matrix

Rabed :diag(al’az’asiamas’ae)’ )
where a,,a,,a;,a,,a;and a, are real functionsof t on M. As mentioned in
section 2, the space-times which can admit proper affine vector fields have

holonomy type R,, R;, R,, Ry, R,, R, R,, R; or R; and the rank of the



6~ 6 Riemann matrix is atmost three. Hence, we are only interested in those cases
when the rank of the 6° 6 Riemann matrix is less than or equal to three

(excluding the flat cases). Thus there exist the following possibilities:

(A1) Rank =3, Al 0, B! 0, A’>- 2AA! 0, B2- 2BB=0, B2+4B=0.

(A2) Rank=3, A=0, B! 0, B>- 2BB! 0, B2+4B1 0.

(A3) Rank=3, Al 0, B1 0, A>- 2AA=0, B2- 2BB=0, B2+4B1 0.

(A4 Rank=2, A0, B=0, A>- 2AAL 0.
(A5) Rank =2, A0, B0, A>- 2AA=0, B2- 2BB=0, B2+4B=0.

(A6) Rank =1, A=0, B=0.

(A7) Rank =1, A=0, B1 0, B2- 2BB=0, B?+4B1 0.

(A8) Rank=1, Al 0, B=0, A>- 2AA=0.
We consider each casein turn.
Case Al

Inthiscase Al 0, B1 0, A2- 2AA1 0, B%- 2BB=0, B2+4B =0,

the rank of the 6° 6 Riemann matrix is three and there exist no nontrivial
solutiors of equation (4). Equations B?- 2BB=0 and B2+4B=0P

B(t)=-t>+cyt- %012, where ¢, T R. The line element can be written in the form

s’ =- ot + Al + E 0 vot- 207 Jea "+ @] @
e (]

Substituting the above information in (1) and after some calculation one finds that
in this case affine vector fields are Killing which are given in equation (6).

Case A2

Inthiscase A=0, B* 0, B2- 2BB 0, B?+4B* 0 and the rank of the

6" 6 Riemann matrix is three. Equation A=0b A=c,, where c,1 R\{G}.



Here, there exists a covariantly constant vector field r_., which is a unique

solution (up to a multiple) of equation (4) i.e. r,,, =0 and consequently the Ricci
identity impliesthat R, r® =0. The line element can, after a suitable rescaling
of r be written in the form

ds? =dr? +|- dt? + B(t)(dq? + f (@) df 2)} (10)
The space-time is clearly 1+3 decomposable. Affine vector fields in this case [2]

are of theform
X :(rcl+c2)ﬂ1+ X', (12)
r

where ¢;,c,1 R and X' is a homothetic vector field in the induced geometry on

each of the three dimensional submanifolds of constant r. The completion of case

A2 requires to find the homothetic vector fields in the induced geometry on the

submanifolds of constant r. The induced metric g,, (where a,b =0,23) has

non zero components given by

0o=-1  9,=B{) gs=B{t)f*@: (12)

A vector field X' is called a homothetic vector field if it satisfies
L Gy =200, cl R (13)

One can expand (13) and using (12) to get

X% =c¢, (14)
X%, - B(t)X 20 =0, (15
X°s- B(t) f2(@) X 30 =0, (16)
B(t)X ° +2B(t)X 2 > = 2cB(t), (17)
X%3+ f2(q)X3,2 =0, (18)

B(t) f(q) X° +2B(t) f4q) X 2+ 2B(t) f (q) X°s =2cB{t) f@).  (19)
Equations (14), (15) and (16) to give



X0 = ct+Cq,f ), X2=C£(q,f)(‘)%+cl(q,f),

1
f*@)
where C°(q,f), C'(g.f), and C2(q,f) are functions of integration. If ore

(20)

qO(q,f)oB—d‘@wZ(q,f )

proceeds further, after a straightforward calculation one can find that the proper
homothetic vector field exists if and only if B(t)=(ct+c,)?, where
c,,c,1 R(c, ! 0). Substituting the above information into (7), one finds that the

rank of the 6° 6 Riemann matrix is reduced to two, thus giving a contradiction.
So the only homothetic vector fields n the induced geometry are the Killing
vector fields which are given by

X% =0, X?=c,cosf +c,dnf,

21
X3 :-c4¥sinf +cs$cosf +C,, (21)

where ¢,,c,,c,1 R. Affine vector fields in this case are given by use of (11) and
(21) as
X°=0, X'=(rc,+c,) X2=c,cosf +c,snf,

22
X3 :-c4ﬁs'nf +C5Hcosf +C,. (22)
f f

One can write the above equation (22) after subtracting Killing vector fields as
X =(0,r,0,0). (23)

Clearly, the above space-time admits proper affine vector field.
Case A3

In this case we have A! 0, Bt 0, A%- 2AA=0 B2- 2BB=0 ad

B2+ 4B 1 0. Equations A?- 2AA=0 and B2?-2BB=0 implies
Alt)=(at+b)’ and B(t)=(ct +d)’, where a,b,c,dl R(a,c! 0). We first
supposethat a® cand bt d. Therank of the 6° 6 Riemann matrix is three, and
there exists a unique solution (up to a multiple) t, =t of equation (4) but t_ is

not covariantly constant. The line element is



ds® = - dt? +(at +b)?dr? +(ct + d)2(dg > + f °(q)df ?) (24)
Substituting the above information into affine equations (1) and after some

calculationone finds that affine vector fields in this case are

X°%=0, X*=c,, X?=c,cosf +c,snf,
(25)

X3 :-c4ﬁs'nf +05¥cosf +C,,
provided that ad - bc® 0 and c,,c;,c,,c, I R. Affine vector fields in this case
are Killing vector fields.

Now consider the case if ad - bc =0 than affine vector fields in this case

are
X% =c,t+c,, X'=c,, X*=c,cosf +c,anf,
X3:-c4¥:s'nf +c5$cosf +C,, (26)
where ¢,,C,,C,,Cs,C;,C, 1 R One can write the above equation (26) after
subtracting Killing vector fields as
X = (c,t +¢,,0,0,0). (27)
Clearly, the above space-time admits proper affine vector fields
Now consider the case a = ¢ and b = d. The line element takes the form

ds? = - dt? +(at +b)*(dr 2 +dq % + f2(q )df 2). (28)
The above space-time (28) admits proper affine vector fields which are given in
equation (27).
Case A4

In this case we have Al 0, A%- 2AA1 0, B=0 and the rank of the

6" 6 Riemann matrix is two. Equation B=0 implies that B(t)=c,, where
c,1 R\{0}. There exists no non trivial solution of equation (4). The line element
takes the form

ds? =- dt? + Alt)dr? +c,(dg” + f 2(q) df ?). (29)
The above space-time is clearly 2+2 decomposable ard affine vector fields in this
case [2] take the form



X=X, +X,, (30)
where X, and X, are homothetic vector fields in the induced geometry on each
of the two dimensional non flat submanifolds of constant q, f and t, r,

respectively. Now we interested to find homothetic vector fields in the induced
geometry on each of the two dimensional non flat submanifolds of constant q, f

and t, r. One can easly check that each of the two dimensional non flat

submanifolds of constant t and r isof constant curvature. It follows from [7] that
homothetic vector fields in the induced geometry on each of the two dimensional

non flat submanifolds of constant t and r are

I cosf I ﬂs’nf l anf i+£cosf l (3D

" Tq f 1 1q f 1
which are Killing vector fields. It aso follows from [7] that Fomothetic vector
fidd in the induced geometry on each of the two dimensiona non flat

submanifolds of constant g and f is 1, which is Killing vector field. Hence

I
affine vector fields in the above space-time (29) are Killing vector fields which
aregivenin (6).
Case A5

In this case we have A0, B10, A2-2AA=0, B’- 2BB=0,
B2+4B =0 and the rank of the 6" 6 Riemann matrix is two. Equations
A2- 2AA=0, B2- 2BB=0 and B2+4B =0 imply that Alt)=(ct+c,)* and
B(t)=-t? +c,t- %032, where ¢;,c,,c,1 R(c, * 0). Here there exists a unique
solution (up to a multiple) t, =t of equation (4) but t, is not covariantly

constant. The line e ement takes the form

ds” =t + (Gt +6, ) + (17 ret- Ze)(dq” + @) 7) (32)



Using the above information into the affine equations and after some calculation
one find that affine vector fields in this case are Killing vector fields which are
given in equation (6).

Case A6

Here we have A=0, B =0 and the rank of the 6 6 Riemann matrix is

one. Equations A=0 and B=0 imply tha Alt)=c, B(t)=a where
c,,al R\{0}. Here there exist two linearly independent solutions to (4), namely
t, and r,, which are covariantly constant. The line element (after a suitable
rescaling of r ) takesthe form

ds® =- dt? +dr? +aldq? + £ 2(q)df 2) (33)
Clearly, the above space-time is seen to be 1+1+2 decomposable and the affine
vector fieldsin this case take the form [2]

X :(clt+czr+cg)l+(c4t+csr+cs)l+X', (34
fit 1Ir

where ¢,,c,,C,,C,,C,C,1 R and X' is a homothetic vector field in each of the

two-dimensional submanifolds of constant t and r. Now we are interested to find
homothetic vector field in the induced geometry on the two-dimensional

submanifolds of constant t and r, which are given in equation (31). Affine vector
fieldsin this case are
X% =(ct+c,r+c,), X'=(ct+cr+c),

. ¢. ¢ 35
X? =c,cosf +c,sdnf, X3 :-c7fTsnf +cngcosf +C,, (39)

where c,,c,,c, T R One can write the above equation (35) after subtracting
Killing vector fields as

X =(ct+c,r+c,, ct+c.r+cg, 0,0). (36)
Clearly, the above space-time (33) admits proper affine vector fields.

Case A7
In this case the rank of the Riemann matrix is one and we have the

conditions A=0, B 0, B2- 2BB=0 and B?+4B 1 0. Equations A=0 and



B?- 2BB=0p Alt)=c, ad B(t)=(c,t+c,)’, where c,c,,c1 R(
¢, ! 0,c,t 0). Here there exist two independent solutions t, and r, to equation
(4). The vector field r, is covariantly constant whereas t, is not covariantly
constant. The line element after a suitable rescaling of r takes the form

ds? =- dt? +dr 2 + (gt +c,)7(dg ? + 7 2(q) o 2) 37)

Substituting the above information into affine equations, and after lengthy
calculation one find that affine vector fields in this case are given in equation

(36).
Case A8

In this case we have A 0, B=0 A%- 2AA=0 and the rank of the

6~ 6 Riemann matrix is one. Equations B=0 and A- 2AA=0 imply that
Alt)=(ct+c,)” and B(t)=c,, where c,,c,,c,T (¢, * 0,c, * 0). Here equation
(4) has two linearly independent solutions t, and r,. The vector fields t, and r,
are not covariantly constant and the line element is given by

ds? =- dt? + (gt +c,)dr 2+, (dg 2 + £2(q) o 2) (39)
Substituting the above information into affine equations, one finds affine vector

fieldsin this case are given in equation (36).

SUMMARY

In this paper a study of Kantowski-Sachs and Bianchi type 111 space-times
according to their proper affine symmetry is given. An approach is adopted to
study the above space-times by using the ank of the 6" 6 Riemann matrix,
holonomy and decomposability and direct integration techniques. From the above
study we obtain the following results:

() The case when the rank of the 6” 6 Riemann matrix is three and there

exists a nowhere zero independent spacelike vector field whichis the solution of

10



equation (4) and also covariantly constant. This is the space-time (10) and it
admits proper affine vector field (see case A2).

(i)  The case when the rank of the 6~ 6 Riemann matrix is three or two and
there exists a unique nowhere zero independent timelike vector field which is a
solution of equation (4) and is not covariantly constant. These are the space-times
(24) and (32) and it admits affine vector fields which are Killing vector fields (for
details see cases A3 and A5).

(i)  The case when the rank of the 6° 6 Riemann matrix is three and there
exists a nowhere zero independent vector field whichis the solution of equation
(4) and is not covariantly constant. This is the space-time (24) and it admits
proper affine vector fields (for details see equation (27)).

(iv)  The case when the rank of the 6” 6 Riemann matrix is two and there
exists no solution of equation (4). This is the gace-time (29) and it admits affine
vector fieldswhich are Killing vector fields (see for details Case A4).

(v) In the case when the rank of the 6” 6 Riemann matrix is one there exist
two nowhere zero independent vector fields which are solutions of equation (4)
and are covariantly constant. This is the space-time (33) and it admits proper
affine vector fields (see case A6).

(vi)  The case when the rank of the 6 6 Riemann matrix is one and there exist
two nowhere zero independent solution of equation (4) but only one independent
covariantly constant vector field. This is the space-time (37) and it admits proper
affine vector fields (see case A7).

(vii)  The case when the rank of the 6° 6 Riemann matrix is one and there exist
two nowhere zero independent solution of equation (4) but no covariantly
constant vector field. Thisis the space-time (38) and it admits proper affine vector
fields (see case A8).

(viii) The case when the rank of the 6° 6 Riemann matrix is three and there
exists no nontrivia solution of equation (4). This is the space-time (9) and it
admits affine vector fields which are Killing vector fields (for details see case
Al).
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