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We propose a model of Dark Energy in which the field currently dominating the energy density
of the universe is an “axion field” linearly coupled to the Pontryagin density, tr(F ∧ F ), (i.e., the
exterior derivative of the Chern-Simons form) of a massive gauge field. We assume that the axion
has self-interactions corresponding to a non-trivial (exponential) potential. We argue that a non-
vanishing magnetic helicity of the gauge field triggers slow-rolling of the axion at field values far
below the Planck scale. Our proposal leads to a “Tracking Dark Energy Scenario” in which the
contribution of the axion energy density to the total energy density is constant (and small) during
the early radiation phase, until a secular growth term proportional to the Pontryagin density of the
gauge field becomes dominant. The initially small contribution of the axion field to the total energy
density is related to the observed small baryon-to-entropy ratio. Some speculations concerning the
nature of the gauge field are offered.

I. INTRODUCTION

As is well known, the Strong CP Problem associated
with the vacuum structure of QCD, as described by the
θ-angle, can be solved by promoting the vacuum angle
to a pseudo-scalar field, the axion [1], which gives rise
to a new light particle. This field can also be viewed
as the phase of a complex scalar field related to a U(1)-
symmetry [2]. A non-trivial vacuum expectation value
of the scalar field then leads to the spontaneous break-
ing of this symmetry. The particles associated with the
axion acquire a mass through instanton effects and can
be made “invisible” by choosing the symmetry breaking
scale to be sufficiently high [3]. The axion can then be
a candidate for dark matter; (see e.g. [4]). Some time
ago, it has been suggested [5] that, besides the QCD ax-
ion, there could exist an effective axion field conjugate to
the anomalous axial vector current in QED that would
give rise to an instability triggering the growth of low-
frequency magnetic fields. The time derivative of this
axion field would then play the role of a space-time de-
pendent chemical potential for the axial charge density in
QED and, through the chiral anomaly, would give rise to
a magnetic instability; see also [6]. Possible applications
of this suggestion to early universe cosmology, in partic-
ular to the issue of the generation of primordial magnetic
fields, have been discussed in [7]; (see also [8], [6]).

In this paper, we explore the possibility that an ax-
ion field, φ, linearly coupled to the Pontryagin density,
tr(F ∧ F ), of a massive gauge field (possibly identified
with the weak SU(2)-gauge field, see [9]) could contribute
to the dark energy of the universe. We assume that this
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new axion field acquires a non-trivial potential term V (φ)
describing self-interactions. As was realized in the con-
text of inflationary models in [10, 11] (see also [12]), this
coupling can lead to slow-rolling of φ even for field values
much smaller than the Planck mass. We show that this
slow-rolling leads to a tracking solution in which the en-
ergy density of φ tracks that of the radiation-dominated
background of the early universe until a time tc when the
secular growth term in the magnetic helicity of the gauge
field starts to dominate. From that time onwards the con-
tribution of φ to the energy density of the universe starts
to grow and can begin to dominate it at some late time.
Given parameter values motivated by the observed small
baryon-to-entropy ratio, we arrive at a scenario in which
φ explains the currently observed dark energy. Thus, our
mechanism could lead to an implementation of the track-
ing dark energy scenario previously discussed in [13]; (see
also [14]).

In the following section we introduce key features of
our scenario. One of them is related to a secular growth
of the electric component of the gauge field tensor, as
time increases. This feature is discussed in more detail
in Section III, where we derive the gauge field equations
of motion in the presence of a term coupling the Pon-
tryagin density, i.e., the derivative of the Chern-Simons
3-form, to the axion field. We then attempt to find ho-
mogeneous and isotropic solutions of these equations. In
Section IV we consider an exponential potential for φ
and try to find out under what conditions it is possible
to obtain tracking dark energy. In Section V we discuss
particle physics connections of our scenario. Some con-
clusions are discussed in Section VI. An interesting vari-
ant of our scenario involving a complex scalar field whose
phase plays the role the new axion field introduced in the
present paper will be discussed in forthcoming work.

A word on our notation: Our space-time metric has
signature (−,+,+,+). We work in units in which the
speed of light, Planck’s constant and Boltzmann’s con-
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stant are all set to 1. The cosmological scale factor is
denoted by a(t), where t is physical time. The Hubble
expansion rate is H(t) = ȧ

a (t).

II. KEY FEATURES OF OUR SCENARIO

In this section we introduce our dark energy model,
postponing a discussion of its origins in particle physics
to Section V.

The first basic feature of our model is the presence of a
pseudo-scalar axion field, φ, that couples linearly to the
Pontryagin density, tr(F ∧ F ), of a massive gauge field.
Specifically, we consider the following action functional
for the cosmological dynamics of the field φ:

S =

∫
d4x
√
−g
[

R

16πG
+ Lm

]
, (1)

where the matter Lagrangian is given by

Lm =
1

2
∂µφ∂

µφ− V (φ) (2)

−1

4
FaµνF

µν
a −

λ

f
φFaµν F̃

µν
a + mass terms ,

and the second but last term, henceforth called “Chern-
Simons- (or magnetic helicity) term”, can sometimes be
understood as arising from coupling the gradient of φ to
an anomalous axial vector current (via the chiral anomaly
[15]). We discuss possible particle physics origins of the
field φ, of an anomalous axial vector current, and of a
heavy gauge field (with field strength denoted by F ) in
Section V. In Eq. (2), the index a is a gauge group in-
dex, µ and ν are space-time indices, λ is a dimensionless
coupling constant, and f is a reference field value enter-
ing the expression for the axion potential V (φ). In this
paper we consider an exponential potential

V (φ) = µ4eφ/f , (3)

where µ sets the energy scale of the potential. This
choice of V (φ) leads to an explicit breaking of parity and
time-reversal invariance. To avoid this, one may replace
exp(φ/f) by cosh(φ/f)−1 in Eq. (3). A more natural
choice of self-interactions not breaking these symmetries
explicitly will be considered in forthcoming work.

The second basic feature of our model is related to the
assumption that φ is very slowly rolling at sub-Planckian
field values, due to its coupling to the gauge field. The
scalar field equation of motion is

φ̈+ 3Hφ̇+ V ′(φ) =
λ

8f
~Ea · ~Ba , (4)

where the prime denotes a derivative of V with respect
to φ. Following a hypothesis introduced in the context
of inflationary models in [10] and in [11], we assume that
the term proportional to the Pontryagin density gener-
ates slow-rolling of φ, in the sense that the terms in (4)

proportional to first and second time derivatives of φ are
negligible as compared to the two remaining terms. If
this assumption is justified the equation of motion for φ
reduces to

V ′(φ) ' λ

8f
~Ea · ~Ba , (5)

an equation that determines the time-dependence of φ,

once we know the time-dependence of ~Ea · ~Ba. We note
that slow rolling can happen for sub-Planckian field val-
ues, [10], in contrast to the usual slow-roll in large-field
inflationary scenarios, which requires super-Planckian
values. In the context of inflation, a scenario based on the
two basic features introduced so far is sometimes called
chromo-natural inflation [11].

The third key feature of our scenario is related to sec-
ular growth of the electric field Ea, in excess of its usual
dynamics. This growth is induced by the coupling of the
gauge field to the axion field φ, as in (2). As we will see,
the secular growth of Ea, when combined with Eq. (5),
is responsible for the axion field φ to give rise to tracking
dark energy.

The main point is that a non-vanishing magnetic helic-
ity, which originates from the coupling of the gauge field
to the axion as expressed by the “Chern-Simons term,”
acts as an extra friction term that ensures that φ will
slowly roll down its potential – even for sub-Planckian
field values. Thus, the resulting equation of state for
the field energy of the axion is dominated by the poten-
tial energy term, which can thus act as a contribution to
dark energy. Equations (3) and (5) then tell us that if

the Pontryagin density ~Ea · ~Ba exhibits secular growth,
the contribution of φ to the total energy density of the
universe can become important at late times.

The last key feature of our scenario is related to the
circumstance that the initial value of the energy den-
sity of φ is proportional to a small number in cosmology,
such as the baryon to entropy ratio nb/s, (nb and s being
the baryon and photon number densities, respectively).
As far as relating a late-time cosmological observable to
the small baryon to entropy ratio (via a term in the La-
grangian coupling the axion to an anomalous current) is
concerned there are similarities of our work to the one
in [16], where the tensor-to-scalar ratio, (i.e., the ratio
of the strength of gravitational waves to that of scalar
cosmological fluctuations), is related to nb/s.

III. GAUGE FIELD DYNAMICS IN THE
PRESENCE OF THE “ANOMALY TERM”

The equation of motion for the field strength tensor of
the gauge field in the presence of a Chern-Simons term
(but neglecting mass terms, which will turn out to be
unimportant) is given by

Dab
α F

bβα − 4λ

f
εµναβ∂abα (φF bµν) = 0 , (6)
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where the operator D is defined by

Dab
α ≡ δab∇α + gfacbAcα (7)

with ∇α the space-time covariant derivative.
We write the equation of motion for the gauge field in

terms of the “electric” and “magnetic” fields,

Eaµ = F aµνu
ν , (8)

Baµ = −1

2
εµνρσF

aρσuν

where uµ = (1, 0, 0, 0) is the four-velocity of a comoving
observer in an FRW spacetime. In manifestly covariant
form, the equations of motion are

uαDab
α E

bσ + 2HEaσ − uµεµσαβDab
α B

b
β

= −8λ

f

(
uµε

µσαβ∂αφB
a + uα∂αφB

aσ
)
,

Dab
α E

bα =
8λ

f
∂αφB

aα (9)

In contravariant three-vector form, the equations are

Dab
0 Eb + 2HEa − 1

a
Dab ×Bb (10)

= −8λ

f

(
1

a
∇φ×Ea + φ̇Ba

)
Dab ·Eb =

8λ

f
∇φ ·B (11)

where Dab is the spatial part of Dab
α .

Using the general definition of the electric and mag-
netic fields,

Eai = ∂0A
a −Dab

i (A)Ab0 (12)

and

Bai = εijk(∂jA
a
k −

g

2
εabcAbjA

c
k) (13)

we get:

∂

∂t
Eia +

g

2
εabcAc0E

i
b + 2HEia −∇jBia (14)

= −λ
f

[φ̇Bia −∇φ× Eia]

and

∇iEia = −λ
f
~∇φ∇jBia, (15)

with

∇× Eia = − ∂

∂t
Bia (16)

We seek homogenous and isotropic solutions of these
equations. An ansatz of curl-free electric and magnetic
fields and of a background field φ only depending on time

is then appropriate. We assume that, at an initial time
when we start to study the time evolution of our system,
the gauge field configuration is described by some spa-
tially constant electric and magnetic fields, E0a and B0a.
The above equations of motion then simplify to:

∂

∂t
Eia + 2HEia = −λ

f
[φ̇Bia] (17)

and

∂

∂t
Bia + 2HBia = 0 (18)

In the absence of the Chern-Simons term, these equations
lead to the scaling (from now on we will drop the gauge
index a which amounts to considering the group to be
U(1))

E(t) ∼ a−2(t) (19)

B(t) ∼ a−2(t) , (20)

which implies that the energy density scales as radiation,
namely ∝ a(t)−4.

The equations discussed above would be valid at all
times for an unbroken U(1)-gauge symmetry. We are
interested, however, in a gauge symmetry that is spon-
taneously broken at a large mass scale m. The gauge
field then acquires its mass after the symmetry break-
ing phase transition, a transition which occurs when the
temperature, T (t), of the Universe is of the order of m.
The energy density of the gauge field will then scale as
matter, i.e., ρgauge ∼ a(t)−3, for times greater than tm,
where tm is determined by

H(tm) ' m (21)

This corresponds to the scaling

E(t), B(t) ∼ a(t)−3/2 (22)

Next, we explain why, due to its coupling to the axion
field φ, the electric field decays less fast than it would
without the presence of φ. This effect will lead to an
energy density in the E- and B- fields that initially scales
as that of radiation, but, at late times, grows relative to
the energy density of radiation.

First, we study the equations of motion for the E- and
B- fields in the early (high-temperature) phase, where
the gauge field is effectively massless, i.e., for t < tm.
For homogeneous and isotropic field configurations, the
equations of motion for the electric and magnetic fields
are (suppressing the gauge group index a)

Ėi + 2HEi = −λ
f
φ̇Bi ,

Ḃi + 2HBi = 0 (23)

In the absence of the “Chern-Simons term” proportional
to φ̇ (or if the φ-field is at rest), these equations lead
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to the behavior Ei ∼ a−2 and Bi ∼ a−2 and thus to
an energy density in the E- and B- fields that scales as
radiation. However, when φ is slowly rolling down its
potential hill (i.e., if φ̇ < 0) then the E- field decays less
fast.

Once the mass of the gauge field becomes important,
i.e., for t > tm, the energy density in the E- and B- fields
decays like that of ordinary matter. This corresponds to
a scaling of the fields proportional to a−3/2.

We can determine the effects of the “Chern-Simons
term” with the help of the Green function method. The
magnetic field Bi continues to scale as a(t)−2. Hence,
the equation for Ei can be written as

Ėi + 2HEi = S(t)i , (24)

with a source S(t)i scaling as a(t)−2, for t < tm, and as
a(t)−3/2, for t > tm, and given by

Si(t) =
λ

f
|φ̇|a2(ti)a

−2(t)B(ti)
i , (25)

where ti is the initial time.
During the radiation period and for t < tm, the funda-

mental solution of (24) scales as t−1. Hence, the solution
of (24) becomes

E(t) =

∫ t

ti

dt′
t′

t
S(t′) + E(ti)

ti
t
, (26)

where we are suppressing the superscript on the E- field.
Inserting the form of the source S(t′) and assuming (in
the spirit of the slow-roll approximation, which we will
justify later) that φ̇ is constant in time we obtain

E(t) = E(ti)
ti
t

[
1 +

λ

f
|φ̇|B(ti)

E(ti
(t− ti)

]
(27)

It can be checked easily that, for t > tm, too, the source
term S(t) induces a secular growth linear in t. Thus, for
t > tm, we obtain

E(t) = E(tm)
(a(tm)

a(t)

)3/2[
1+

λ

f
|φ̇|B(tm)

E(tm)
(t− tm)

]
(28)

For t > teq, where teq is the time of equal matter
and radiation, the fundamental solution of (24) scales
as a(t)−3/2 ∼ t−1. The further evolution of E(t) is then
given by

E(t) =

∫ t

teq

dt′
(a(t′)

a(t)

)3/2
S(t′) + E(teq)

(a(teq)

a(t)

)3/2
,

(29)
where now

S(t) =
λ

f
|φ̇|a−3/2(t)B(teq) (30)

Inserting the solution for E(teq) from (27), we find that,
for t� teq,

E(t) ' E(ti)
( a(ti)

a(tm)

)2(a(tm)

a(t)

)3/2[
1 +

λ

f
|φ̇|B(ti)

E(ti)
t
]
.

(31)

The second term in the parentheses in (27), (28) and
(31) corresponds to a secular growth term caused by the
coupling of the gauge field to the axion. There will be
a critical time tc below which the secular growth term is
negligible. Its value is

tc =
f

λ

E(ti)

B(ti)

1

|φ̇|
. (32)

Based on the above analysis we are able to determine
the scaling of the magnetic helicity term. Taking into
account the fact that B(t) scales as a(t)−2, for t < tm,
and as a(t)−3/2, for t > tm, we find that

~E · ~B ∼ a(t)−4 (33)

for t < tm, as

~E · ~B ∼ a(t)−3 (34)

for tm < t < tc, and as

~E · ~B ∼ a(t)−3t (35)

for t > tc. Here we should emphasize, once again, that
the linear scaling in t is a consequence of our assumption
that φ̇ is constant in time. Later on, we will consider the
corrections arising from a relaxation of this assumption.

IV. LATE TIME ACCELERATION FOR AN
EXPONENTIAL POTENTIAL

Next, we turn to analyzing what a gauge field config-
uration with non-vanishing magnetic helicity implies for
the dynamics of the axion φ. We recall that the equation
of motion of φ is given by

φ̈+ 3Hφ̇+ V ′(φ) =
λ

8f
~E · ~B , (36)

where the prime indicates a derivative of V with respect
to φ. As in the context of inflationary models in [10], we
assume that the term on the right side of (36) generates

slow-rolling of φ, in the sense that the terms φ̈ and 3Hφ̇
in (36) are negligible as compared to the two remaining
terms. We will check the self-consistency of this assump-
tion below. The evolution of φ is then determined by

V ′(φ) =
λ

8f
~E · ~B (37)

For an exponential potential,

V (φ) = µ4eφ/f , (38)

Eq. (37) yields

V (φ) =
λ

8
~E · ~B (39)
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The proportionality of V (φ) to ~E · ~B is a special feature
of the exponential potential. For power-law and periodic
potentials, V (φ) ends up being proportional to a power

of ~E · ~B greater than 1, and hence decays faster in time
in an expanding universe. This would appear to make it
harder to interpret φ as a dark energy candidate. We will
study these types of potentials in the context of a slightly
different, more general model in a follow-up paper.

Under the assumption that the slow-rolling conditions
are indeed satisfied, Eq. (39) immediately leads to an
expression for the contribution, Ωφ, of the φ- field to the
total energy density of the universe. From the above dis-
cussion it follows that, for t < tm, the energy density of
φ scales like that of radiation and hence leads to a con-
stant contribution to Ωφ. For tm < t < teq, the potential
energy of φ decreases less fast than the background radi-
ation density, leading to a contribution to Ωφ that grows
linearly in a(t). Once t > teq, but before t = tc, both
the background density and the energy density of φ scale
as a(t)−3, and hence the contribution of φ to Ω is con-
stant. Finally, once t > tc, Ωφ increases linearly in time.
Specifically, for late times t > teq, we obtain that

Ωφ(t) ' V (φ(t))

ρ0(t)
(40)

=
λ

8

( ~E · ~B)(ti)

ρr(ti)

(a(teq)

a(tm)

)[
1 +

λ

f
|φ̇|B(ti)

E(ti)
t
]
,

where ρ0(t) is the background energy density at time t,
and ρr(ti) is the energy density of radiation at the initial
time ti, (which is approximately equal to the total energy
density at that time, since we have assumed that ti is in
the radiation period). Figure 1 presents a sketch of the
time evolution of Ωφ.

In the above formula for the energy density of φ we
have assumed that the slow-roll conditions

φ̈� V ′(φ) and 3Hφ̇� V ′(φ) (41)

are satisfied, and that the equation of state of φ leads
to acceleration. To check the self-consistency of these
conditions, note that from (38), (39) and (31) the value
of φ for t > teq and t > tc is given by

φ(t) ' f log(κt−1) (42)

with

κ =
λ

8

( ~E · ~B)(ti)

µ4
(
a(ti)

a(tm)
)4 λ

f
|φ̇|B(ti)

E(ti)
t20 . (43)

Hence

φ̇2(t) ' f2

t2
(44)

and

φ̈ ' f

t2
. (45)

It then immediately follows that the slow-roll conditions
are satisfied provided that

f � mpl . (46)

It is also easy to check that the equation of state for
φ is dominated by the potential energy if the condition
(46) is satisfied. Thus, the field φ is indeed a candidate
for tracking dark energy.

Finally, we study the magnitude of the contribution
of φ to the dark energy budget. Evaluating (40) at the
present time t0 and assuming t > tc we obtain

Ωφ(t0) ' λ

8

( ~E · ~B)(ti)

ρr(ti)

(a(teq)

a(tm)

)λ
f
|φ̇|B(ti)

E(ti)
t0 (47)

If the gauge field appears in the anomaly equation of an
anomalous matter current then

( ~E · ~B)(ti)

ρr(ti)
∼ nB

s
(ti), (48)

where nB is the baryon number density and s the entropy
density. Hence, the smallness of the initial contribution
of φ to dark energy is guaranteed by the observed small
baryon to entropy ratio. This factor is believed to be of
the order 10−10.

The third factor on the right hand side of (47) is given
by the ratio of the mass of the weak gauge bosons and
the current temperature. Assuming, as before, that tm
is the time when H(tm) = m we have that(a(teq)

a(tm)

)
∼
[ m
Teq

mpl

Teq

]1/2
(49)

(where Teq is the temperature at the time of equal matter
and radiation) which is of the order of 1018 if the mass m
of the gauge field is taken to be of the order of the mass
of the weak gauge field.

Inserting these two factors into (47) we see that if we

take |φ̇| to be given by its late time value, then a value

λ ∼ 10−4 (50)

is required in order to explain the currently observed
value of the dark energy density. This still constitutes
a small hierarchy problem, but a much smaller one than
the usual hierarchy problem one faces.

As seen from Eq. (44), φ̇ is not constant in time but
scales as t−1. This means that it is not self-consistent
to neglect the time-dependence of φ̇ in the derivation
of the secular growth term in E(t). Inserting the time-

dependence of φ̇ we see that the time-dependence of the
secular growth term changes from being linear in t to
being logarithmic. This does, however, not change the
qualitative features of our analysis.

V. PARTICLE PHYSICS CONNECTIONS

A) An axion coupling to an anomalous matter
current:
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Ω"

t𝑚 t𝑒𝑞 t𝐶 t0
t

~	  𝑎(𝑡)

~	  𝑡

FIG. 1: Sketch of the time evolution of the fractional contribution Ωφ of the φ field to energy density of the Universe. The
horizontal axis is time, the vertical axis is the value of Ωφ. The contribution is constant until the time tm when the gauge field
mass becomes important. It then rises as the scale factor, to become constant again for t > teq. Once the secular growth of
the E field becomes dominant at the time tc the contribution of φ to Ω once again begins to rise, this time linearly in time.
Note that t0 is the present time.

The standard axion field, a(x, t), along with the Peccei-
Quinn symmetry has been introduced to solve the strong
CP problem of QCD; see [2]. The mechanism leading to
the spontaneous breaking of the Peccei-Quinn symmetry
involves a complex scalar field with a standard symme-
try breaking potential whose angular variable is the ax-
ion field a [1]. The coefficient of the Pontryagin density,
tr(F ∧ F ), in the QCD Lagrangian then becomes a dy-
namical variable. At the perturbative level, the axion
has a flat potential. Non-perturbative instanton effects
create however a non-trivial potential, V (a), for the ax-
ion. This potential is periodic in a, which is an “angular
variable.” The periodicity of the potential is not unprob-
lematic, since it could give rise to an axion domain-wall
problem.

The axion of QCD is a candidate for dark matter [4],
but cannot be a candidate for dark energy, since it in-
teracts too strongly with electromagnetism. Any viable
candidate scalar field for dark energy needs to couple very
weakly to standard model matter [17].

The idea underlying our proposal is that the field φ
responsible for dark energy could be a new axion field

conjugate to an anomalous matter current [15]. It is well
known, see, e.g., [18], that B−L, where B and L stand for
baryon- and lepton number, can be coupled to a neutral
vector boson, Z ′, somewhat heavier than the Z0- boson
in an anomaly-free gauge theory extending the standard
model. Introducing such a gauge field would again lead
to a CP problem that can be solved by introducing a new
axion field, which we tentatively identify with the axion
field φ considered in previous sections. The gradient of φ
can then be linearly coupled to the anomalous (B − L)-
axial vector current, introducing a term proportional to

∂µφ · Jµ5,B−L (51)

in the Lagrangian of the theory. Apparently, the time
derivative of φ then plays the role of a space-time de-
pendent axial chemical potential for the pseudo-scalar
(B − L)-density [5]. This may furnish an ingredient in
a mechanism leading to matter-antimatter asymmetry.
Thanks to the anomaly equation [15], the term (51) is
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equivalent to a term proportional to

φ(F ∧ F +
1

f

∑
j

mjψ̄jγ5ψj) , (52)

where F is the field strength of Z ′, j labels fermion
species, and species j has mass mj and is described by a
spinor field ψj .

Instanton effects are usually expected to lead to a po-
tential for φ that is periodic in φ, and this possibility is
studied in forthcoming work. One may imagine, how-
ever, that axion shift-symmetry breaking effects might
generate an exponential potential. The value of the pa-
rameter f is related to the symmetry breaking scale, and
the energy-scale parameter µ is set by the strength of the
instanton effects.

B) Universal axion of string theory:
Axions arise naturally in superstring theory [19].

Specifically, string compactifications generate Peccei-
Quinn type symmetries often broken at the string scale
[20]. For example [21], there is an axion field a that is
in the same chiral superfield S as the four dimensional
dilaton ϕ

S = e−ϕ + ia . (53)

In addition, there is an axion field ã in the superfield S̃
of the volume scalar ρ:

S̃ = eρ + iã . (54)

The Peccei-Quinn symmetries of string theory are al-
ways broken by stringy instanton effects, leading to a
coupling of the axion to some tr(F ∧ F )- term. This can
be shown explicitly by reducing the ten-dimensional su-
pergravity action to four space-time dimensions via com-
pactification on some internal Calabi-Yau manifold; (see
e.g. [21]). Such a compactification also generates po-
tentials for the superfields to which the axions belong.
These potentials are typically exponential in the radial
direction, but a remnant of the exponential potential may
also affect the potential in the axion direction; especially
if stringy effects lead to a breaking of the shift symmetry
in the axion direction, as happens in axion-monodromy
models [22, 23]. For some explicit constructions of expo-
nential potentials see [24].

C) Axion monodromy:
Indeed, it has recently been realized that stringy effects

break the shift symmetry of the axion. The axion ceases
to be an angular variable and, instead, has an infinite
range of values. Monodromy induces an axion potential
rising without bound, as φ increases to ∞; see, e.g., [23].
At large field values, the axion potential may be linear.
To make contact with our scenario we need to assume
that the potential is exponential at small field values.

We are not the first to connect an axion with a po-
tential induced by stringy monodromy effects with dark

energy. In [25] it was in fact suggested that a stringy
axion may play the role of a quintessence field. The con-
struction in [25] makes use of standard slow-roll inflation
and thus requires super-Planckian field values, that is
field values that, even in the case of axion monodromy
models, may not be consistent from the point of view of
string theory [26]. In our construction, the axion field
values are sub-Planckian, because slow-rolling is induced
by the coupling of the axion to the Chern-Simons term
of a gauge field.

VI. CONCLUSIONS AND DISCUSSION

We have studied a model of tracking dark energy in
which dark energy arises from an axion field φ linearly
coupled to the Pontryagin density of a gauge field, i.e.,
to a term tr(F ∧ F ). Thanks to this coupling, the axion
is rolling slowly even for sub-Planckian field values, It
thus has the right equation of state to account for dark
energy. We have considered the example of an exponen-
tial potential for the axion. The coupling between the
axion and the gauge fields leads to a secular growth term
in the electric field. At early times, the energy density
in φ tracks that of the background; but when the secu-
lar growth term becomes important the contribution of
φ to the density parameter Ω starts to increase. We have
studied the evolution of Ωφ (the fraction of the total en-
ergy density required for a spatially flat universe due to
the axion field φ) as a function of time and found that it
is constant for early times t < tm, where tm is the time
when the mass of the gauge field becomes important. It
grows linearly in the scale factor between time tm and
the time, teq, of equal matter and radiation. After time
teq, the value of Ωφ ceases to grow until the time when
the secular growth term becomes dominant, after which
it will start to grow again.

In order for φ to be a successful candidate for dark
energy, the time when Ω(φ) approaches Ω = 1 has to be
close to the present time t0. This is only the case if, at the
initial time, the φ- field energy is a small contribution to
the total energy density. Our proposal is that this small
initial value of Ω(φ) is linked to the small value of the
lepton to entropy ratio. This would imply that the sec-
ular growth term becomes important only at rather late
times. Thus, our model represents an implementation
of the “tracking quintessence” scenario of [13]. We have
shown that, in order to obtain the currently observed
value of dark energy in our model, it suffices to require a
fairly mild tuning of dimensionless coupling constants.

In this paper we have neglected the coupling of the
axion field φ to pseudo-scalar mass terms, mjψ̄jγ5ψj ,
of fermionic matter fields; see Eq. (52). Taking such
couplings into account would lead to extra terms on
the right side of the axion equation of motion (36).
For H > maxjmj , these terms will decay as radia-
tion, and, for H < minjmj , they decay as matter. If
m̄ ≡ maxjmj < m, there is a time interval tm < t < tm̄
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when the contribution due to the mass terms on the right
side of Eq. (52) decays rapidly, relative to the one of the
F ∧ F term. Hence, as long as m > m̄, the extra terms
in (52) will not change our conclusions.

It has been pointed out that if the field responsible for
dark energy is a pseudo-scalar field then it could cou-
ple to visible matter, and this leads to rather stringent
constraints. The earliest discussion of the coupling of an
axion to visible matter has been given in [17], where it

has been assumed that the axion couples to the ~E · ~B-
term of electromagnetism. This would lead to a rotation
of the direction of polarization of light emitted by distant
radio sources. The constraints resulting from this effect
are quite restrictive and would potentially rule out our
model if our axion were to couple to the electromagnetic
field. However, we have assumed that our axion does not
interact with the photon and thus evades the bounds pre-
sented in [17] and in related work. In a future paper, we

will investigate collider signals due to a possible coupling
of the axion field φ to W- and Z- bosons.
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