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THE CONICAL KAHLER-RICCI FLOW WITH WEAK INITIAL
DATA ON FANO MANIFOLD

JIAWEI LIU AND XI ZHANG

ABSTRACT. In this paper, we prove the long-time existence and uniqueness of
the conical Kéhler-Ricci flow with weak initial data which admits LP density
for some p > 1 on Fano manifold. Furthermore, we study the convergence
behavior of this kind of flow.

1. INTRODUCTION

Conical Kéhler-Einstein metric plays an important role in solving the Yau-Tian-
Donaldson’s conjecture (see [0 [7, [8 44]). There has been renewed interest in conical
Kéhler-Einstein metric recently, see references [1, [3] [4, 18, 24, 26] 30, 42]etc. On
the other hand, the conical Kéhler-Ricci flow was introduced to attack the exis-
tence problem of conical Kahler-Einstein metric. The long-time existence and limit
behaviour of the conical Kéhler-Ricci flow has been widely studied. In Riemann
surface case, Mazzeo-Rubinstein-Sesum [35] and H. Yin [47] [48] did it with differ-
ent function spaces. In higher dimension case, Chen-Wang [11] studied the strong
conical Kéhler-Ricci flow and obtained the short-time existence, Y.Q. Wang [40]
and the authors [34] got the long-time existence of the conical K&hler-Ricci flow
respectively. In [34], the authors also considered the convergence of this flow on
Fano manifold with positive twisted first Chern class, they proved that, for any cone
angle 0 < 2w < 2m, the conical K&hler-Ricci flow converges to a conical Kéhler-
Einstein metric if there exists one. Chen-Wang [12] obtained the convergence result
of this flow when the twisted first Chern class is negative or zero. Later, L.M. Shen
[38][39] studied the unnormalized conical Kéhler-Ricci flow, and G. Edwards [17]
obtained the uniform bound of the scalar curvature when the twisted first Chern
class is negative.

In [34], the authors studied the conical K&hler-Ricci flow which starts with a
model metric

(1.1) wp = wo + V—1kd|s|?”

on Fano manifold, where wg € ¢1 (M) is a smooth Kéahler metric, s is the defining
section of a smooth divisor D € | — AK /| and h is a smooth Hermitian metric on
—AK ) with curvature Awg. In [IT] 12] 46], Chen-Wang studied the existence of
the conical Kéahler-Ricci flow from initial («, 8) metric or weak («, 3) metric with
other assumptions.

In this paper, we mainly study the long-time existence, uniqueness and conver-
gence of the conical Kéhler-Ricci flow with some weak initial data which admits LP
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density with p > 1 on Fano manifold. We still consider the conical Kéahler-Ricci
flow by using smooth approximation of twisted Kéhler-Ricci flows as that in [34].

Let M be a Fano manifold with complex dimension n, wg € ¢1(M) be a smooth
Kéhler metric. For any p € (0, c0], we define the class

(wo + vV —185@)” c
il

(1.2)  &(M,wo) = { € E(M,wo)] LP(M, wg) },

where the class
(1.3) E(M,wo) ={p € PSH(M,w0)|/ (wo 4+ V—100p)™ = / wg }
M M

defined in [21] is the largest subclass of PSH (M, wg) on which the operator (wo +
v/—109-)" is well defined and the comparison principle is valid. When p > 1, by
S. Kolodziej’s L? estimate [29] and S. Dinew’s uniqueness theorem [14] (see also
Theorem B in [21]), we know that the functions in £,(M,wy) are Hélder continuous
with respect to wg on M.

Let D be a divisor on M. By saying a closed positive (1, 1)-current w € 2wei (M)
with locally bounded potential is a conical Kéhler metric with angle 274 (0 < 8 < 1
) along D, we mean that w is a smooth Kéhler metric on M\ D, and near each point
p € D, there exists local holomorphic coordinate (z%,---,2") in a neighborhood
U of p such that locally D = {2 = 0}, and w is asymptotically equivalent to the
model conical metric

n—1
(1.4) V=122 de NdE V1Y ded A dE on U.
j=1

Assume that D € | = AKy| A € Q), p =1 -1 -8\ v € aa(M) is a

Kahler current which admits L? density with respect to w( for some p > 1 and

= I} v wWo- We study the long-time existence, uniqueness and convergence of
the following conical Kahler-Ricci flow with weak initial data @

a‘git) = —Ric(w(t)) + pw(t) + (1 = B)[D].

(1.5)
w(t)li=0 =@

From now on, we denote the Kihler current & = wy + v/—190¢ = Wy, With
o € Ep(M,wp) for some p > 1.

Definition 1.1. We call w(t) a long-time solution to the conical Kdhler-Ricci flow
(L3 if it satisfies the following conditions.

e For any [0,T) (6,T > 0), there exist constant C' such that

Clws <w(t) < Cwg on [6,T] x (M\ D);
On (0,00) x (M \ D), w(t) satisfies the smooth Kdihler-Ricci flow;
On (0,00) x M, w(t) satisfies equation (I.3) in the sense of currents;
e There exists metric potential o(t) € C°([0,00) x M)NC*> ((0,00)x (M\D))
such that w(t) = wo + V/—100¢(t) and 11%1+ llo(t) — ol Loe (ary = 0;

t—

On [8,T], there exist constant « € (0,1) and C* such that the above metric

0 *
20 )| e (ar\py < C*.

petential ¢(t) is C* on M with respect to wy and ||
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In Definition [[IT] by saying w(t) satisfies equation (LX) in the sense of currents
on (0,00) x M := My, we mean that for any smooth (n — 1,n — 1)-form 7(t) with
compact support in (0,00) x M, we have

Ow(t) _
5 Anta)dt= | (=Ric(w(t) + pw(t) + (1 = B)ID]) An(t, )dt,

Moo

Moo

where the integral on the left side can be written as

/Moo &g—it) An(t,z)dt = — /Moo w(t) A %dt

it the sense of currents.
We study the conical Kéahler-Ricci flow (LH) by using the following twisted
Kahler-Ricci flow with weak initial data wy,.

Bel) — _ Ric(we(t)) + pwe (t) + 0.,

(1.6)

We (t) |t:0 = w«po 9

where 0. = (1 — 8)(Awo + v/—1901og(e? + |s|?)) is a smooth closed positive (1,1)-
form, s is the definition section of D and h is a smooth Hermitian metric on —AK s
with curvature Awg. The smooth case of the twisted Kéahler-Ricci flow was studied
in [13] (17, (19, 20, 32, 33, 34, 38, [46], etc.

There are some important results on the Kahler-Ricci flow (as well as its twisted
versions with smooth twisted form) from weak initial data, such as Chen-Ding
[5], Chen-Tian [9], Chen-Tian-Zhang [10], Guedj-Zeriahi [23], Nezza-Lu [36], Song-
Tian [41], Székelyhidi-Tosatti [43]. Here, we first obtain the long-time existence,
uniqueness and regularity of the flow (LGl by following Song-Tian’s arguments in
[41]. Then we study the long-time existence of the conical K&hler-Ricci flow (LH) by
approximating method. In this process, in addition to getting the locally uniform
regularity of the twisted Kahler-Ricci flow (L0)), the most important step is to prove
that ¢(t) converges to ¢g in L>®-norm as ¢ — 07 ( i.e the 4th property in Definition
1)), where ¢(t) is a metric potential of w(t) with respect to the metric wy. Here
we need a new idear because of Song-Tian’s method in [41] is invalid. At the same
time, we prove the uniqueness of the conical Kéhler-Ricci flow by Jeffres’ trick [25]
and an improvement of the arguments in [46]. In fact, we obtain the following
theorem.

Theorem 1.2. Let M be a Fano manifold with complex dimension n, wo € c1(M)
be a smooth Kdhler metric on M, divisor D € | = AKp| (A € Q) and & € ¢1(M) be
a Kdhler current which admits LP density with respect to wg for some p > 1. For
any B € (0,1), there exists a unique solution w(t,-) to the conical Kihler-Ricci flow
([CR) with weak initial data @.

Then we consider the convergence of the conical Kiahler-Ricei flow (LH). When
A > 0 and there is no nontrivial holomorphic field which is tangent to D along D,
Tian-Zhu [45] proved a Moser-Trudinger type inequality for conical Kahle-Einstein
manifold and gave a new proof of Donaldson’s openness theorem [I6]. Using the
Moser-Trudinger type inequality in [45] and following the arguments in [34], we
obtain the following convergence result of the conical Kéhler-Ricci flow ().
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Theorem 1.3. Assume that A > 0 and there is no nontrivial holomorphic field on
M tangent to D, if there exists a conical Kdhler-FEinstein metric with cone angle
218 (0 < B < 1) along D, then the conical Kdhler-Ricci flow (LB) must converge to
this conical Kdhler-Einstein metric in CLS. topology outside divisor D and globally
in the sense of currents on M.

Remark 1.4. In this paper, we only study the convergence with positive twisted
first Chern class, i.e. p=1—(1—p8)A> 0. When p < 0, one can also get the
convergence of the conical Kdahler-Ricci flow by following Chen-Wang’s argument
in [12].

The paper is organized as follows. In section 2, we prove the long-time exis-
tence and uniqueness of the twisted Kéahler-Ricci flow (L6) by adapting Song-Tian’s
methods in [41]. In section 3, we obtain the existence of a long-time solution to
the conical Kéahler-Ricci flow ([LH) by limiting the twisted Kahler-Ricci flows, and
prove that ((t) converges to po in L>®-norm as t — 01, where ¢(t) is a metric
potential of w(t) with respect to the metric wg. We also prove the uniqueness of
the conical Kahler-Ricci flow with weak initial data w,,. In section 4, by using the
uniform Perelman’s estimates along the twisted K&hler-Ricci flows obtained in [34],
we prove the convergence theorem under the assumptions in Theorem

Acknowledgement: The authors would like to thank Professor Jiayu Li for
providing many suggestions and encouragements. The first author also would like to
thank Professor Xiaohua Zhu for his constant help and encouragements. The second
author is partially supported by the NSFC Grants 11131007 and the Hundred
Talents Program of CAS.

2. THE LONG-TIME EXISTENCE OF THE TWISTED KAHLER-RICCI FLOW WITH
WEAK INITIAL DATA

In this section, we prove the long-time existence and uniqueness of the twisted
Kéhler-Ricci flow ([6) by following Song-Tian’s arguments in [41]. For further
consideration in the next section, we shall pay attention to the estimates which
are independent of €. In the following arguments, for the sake of brevity, we only
consider the flow (L) in the case of A = 1 (i.e. u = B), where 8 € (0,1). Our
arguments are also valid for any A, only if the coefficient 8 before w.(¢) in the case
of A =11is replaced by p=1— (1 — 5)\. We denote

(wo + v —185@0)”
wo

Recall that C*°(M) is dense in LP(M,w{). Therefore there exists a sequence of

positive functions F; € C°°(M) such that [, Fjwy = [,, wg and

F= € LP(M,w}).

Jim 155 = Fllzeary = 0.
By considering the complex Monge-Ampere equation
(2.1) (wo + V=100 ;)" = Fjwy
and using the stability theorem in [28] (see also [15] or [22]), we have

(2.2) lim {|po,; = oll Lo (ar) =0,
J—00
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where oo ; € PSH(M,wy) N C>(M) satisfy Sjl\zp(sﬁo —o,j) = S&D(‘POJ - ¢0)-

Let wy,,; = wo + V=100 ;. We prove the long-time existence of the twisted
Kaéhler-Ricci flow () by using a sequence of smooth twisted Kahler-Ricci flows

Boeg®) — _ Ric(we;(t)) + fuwe () + 0.

(2.3)
we,j(t)e=0 = Wy,

Since the twisted Kahler-Ricci flow preserves the Kéahler class, we can write the
flow [2.3) as the parabolic Monge-Ampére equation on potentials,

asagi(t) = log (w-‘rﬁfg?%,;‘(ﬂ) +F +5805,j(f) +10g(€2 + |S|I2z)1_'87
(2.
¢, (0) = o,

where Fy satisfies —Ric(wp) + wo = v/ —100Fy, % fM e FoqdVy = 1 and dVp = fl—‘?
By using the function

1[I (g2 4 p)8 — 28
(2.5) x(e2 +1s]7) = —/ ()—dr
B Jo r
which was given by F. Campana, H. Guenancia and M. Paun in [4], we can rewrite
the flow ([24) as
Qe — log (et BR0esl 1 . 4 B(gy (1) + k(e +|sf}),
(2.6)
¢e,5(0) = wo,; — kx(e® + [s[}) = ¢e 0,5
where ¢ ;(t) = @e;(t) — kx(e® + [s]2), we = wo + V—1k3Ix(? + |s|2), F. =
Fy + log(2% - (2 + |s]2)' 7). We know that x(e? + |s|?) and F. are uniformly
0
bounded (see (15) and (25) in [4]).

Proposition 2.1. For any T > 0, there exists constant C depending only on
llollLoe(ary, B, n, wo and T such that for any t € [0,T], € >0 and j € NT,

(2.7) 10,5 ()l Lo (ar) < C.

Furthermore, for any j,k, we have

(2.8) 16,5 (t) = G (Bl L o.11x 1) < €77 00,5 — @0kl Lo (a1)-
In particular, {p. ;(t)} satisfies

(2.9) dim e, (8) = e k(D) Loo(0,11x00) = 0.
j.k—o0

Proof: From equation (2.6, we have
oe Pl ;(t) _pt (e7Ptw. + /=100 Pto. ; (1))
¢ log (e=Blw,)n
e P(Fe + kBX(E + Is[7))
(e Ptw. +/—100e Pto. ; (1))

(e=Blw,)n

IN

e Ptlog + Ce™ P,
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which is equivalent to

0

(77 (9o () + %)) < ot 1o (W VTTO0T PG (1) + 5))

(e=Ptw.)n ’
where constant C' depends only on |[¢ol| L (ar), 8, n and wo.
For any 6 > 0, we denote o, ;(t) = e P(¢. ;(t) + %) — dt. Let (to,z0) be the

maximum point of J’s,j (t) on [0,T] x M. If t; > 0, by maximum principle, we have

ot

0 = (e 0us(0)+ D) (ton0)
“Pte +/—100¢. ;(t))"
S _67

which is impossible. Hence ty = 0, then
C
92(1) < € sup g ;(0) + 0T + (7" —1).
M

Let 6 — 0, we obtain

C
(2.10) e () < ePlsup p. j(0) + = (T —1).
M g
By the same arguments, we can get the lower bound of ¢. ;(¢)
. C
(2.11) De.(t) 2 € inf 62,3(0) = (™ - 1),

Combining (2I0) and ([2I1), we have
C

16,5 @)z (ary < €T llde (0| oe ar) + E(eﬂT -1)<C,

where constant C' depends only on |[¢o|| L (ar), B, 7, wo and T,
Let 1 k(t) = ¢e () — ¢e ks (t), then ¢, ;i satisfies the following equation

Oe 5. k() _ wWe+V=100e 1. (1) +/—108%e ; 1 (t) n
(2.12) o =l ( (@e v/ 1006, £ ()" ) + Bibe,jk (1)

Ve j.k(0) = o5 — Yok

By the same arguments as that in the first part, we have

[Ye, ik ()] oo (o, 00y < €T 0,5 — 0.kl oo (ar)-

Since {po,;} is a Cauchy in L°°-norm, we conclude

lim e j(t) — @e k()| Lo (0,7 01) = 0.

j.k—o0

O
We now prove the uniform equivalence of the volume forms along the complex
Monge-Ampere flow (2.6).
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Lemma 2.2. For anyT > 0, there exists constant C depending only on ||¢ol| Lo (ar)
n, B, wo and T such that for any t € (0,T], € >0 and j € NT,
(w000, _ e

. <
(2.13) G < o <e

Proof: Let A.; be the Laplacian operator associated to the Kahler form
we, j(t) = we + vV —190¢, ;(t). Straightforward calculations show that

9 . .
(2.14) (57 = Beui)@=(t) = e (2).

Let H:j(t) = t¢. j(t) — A¢. ;(t), where A is a sufficiently large number (for
example A = BT + 2). Then H;'j(O) = —A¢. ;(0) is uniformly bounded by a
constant C' depending only on |[¢o|| L (ar), B, 7, wo and T'.

a .
(E — A&j)H:j(t) = (14 Bt = A)ge,;(t) + AA: j¢c (1)

(2.15) < (14 pt— A (t) + An.
By the maximum principle, H j ;(t) is uniformly bounded from above by a constant
)

C depending only on ||| (), 7, B, wo and T
Let H_,(t) = be j(t) + ¢ j(t) —nlogt. Then H(t) tends to +oo ast — 07 and

0 n

((f% AEJ)H () (ﬂ"’l)(bsj()"’tTwsyj(t)wE—n—?,

Assume that (¢, zo) is the minimum point of H_(¢) on [0, T] x M. We conclude
that tg > 0 and there exists constant Cy, Cy and C3 such that

(2.16)

o _ w? w?, () Cs
(& - As,j)Ha,j (t)|(t0,10) 2 (Ol(ng (t)) +Cel #g B T)|(to,wo)
Cl w? 1 C
2.1 > (5 (m) ——
(2.17) > (3 (ng(t)) )l

where constant C; depends only on n, Cy depends only on 8 and C3 depends only
on n, wo, |[¢ollL=(n), # and T. In inequality @1, Without loss of generality, we
(t) > 0 at (to,Io). By the

assume that ?() > 1 and Cl( f?(t )w + Cs log ”

maximum pr1nc1ple we have
(218) w?)j (fo, LL‘Q) Z C@”w?(mo),

where Cj independent of € and j. Then it easily follows that H_ () is bounded
from below by a constant C' depending only on |0l e (ary, 7, 5, wo and T O

In the following lemma, we prove the uniform equivalence of the metrics along
the twisted Kéahler-Ricci flow (2.3).

Lemma 2.3. For anyT > 0, there exists constant C depending only on ||¢ol| Lo (a1,
n, B, wo and T such that for any t € (0,T], e >0 and j € NT,

(2.19) e Fw. < we,j(t) < et we.
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Proof: Let
1 sl7 (.2 p_ 2p
(2.20) 0., =B~ / [Calll il
P Jo r
be the uniform bound function introduced by H. Guenancia and M. Pgun in [24].

By choosing suitable B and p, and following the arguments in [34] (see section 2 in
[34]), we have

B)
(& — Acj)(tlogtry we ;(t) +tPe )
(2.21) < logtry,we ;(t) + Ctry, ;mwe + C,

where constant C' depends only on n, 8, wy and T'.

Let H. ;(t) = tlogtr,, we j(t)+tV. ,—Ap. ;(t), A be a sufficiently large constant
and (to, zo) be the maximum point of H, ;(¢) on [0,T] x M. We need only consider
to > 0. By the inequality

1 o we i (1)
(2.22) oo (1) < i (e sowe) " =0
we conclude that
a .
(57 = Beg)He(t) < logtre,we;(f) + Ctre, ;(ywe — Ade;(1)
+C + An — Atrws,j(t)wa
A w(t
< logtra,wej(t) — Stra, ;@we — Alog —wn( ) +C
15
A w? (t
S (n — 1) log tTws’j (t)wg — Etrws,j (t)WE - (A — 1) ].Og %n() + 07

€
where constant C' depends only on |[¢o|| L (ar), 1, B, wo and T'.
Without loss of generality, we assume that —%trws,j(t)wa—i-(n— 1)logtr,,  mwe <
0 at (to, o). Then at (tg, zo), by Lemma [Z2] we have
0 A
(a — A j)H: ;(t) < _Ztrwa,j(t)wa —Clogt+ C.

By the maximum principle, at (to, zo),

(2.23)

(2.24) tr, (pyws < Clog% +C.

By using inequality ([2.22)), at (to,xo),

(2.25) tro, we ;(t) < C’(log% +1) e < e,
where constant C' depends only on |[¢ol| L (ar), 7, B, wo and T'. Hence we have

(2.26) tro, we (1) < €7

for some constant C' depending only on | @ol| e (ar), 7, B, wo and T'.
Furthermore, by inequality ([222)) again, we know

(2.27) tro, ;(twe < e%,

where constant C' depends only on |@ol| < (ar), 7, B, wo and T. From (2.26) and
@27), we prove the lemma. O
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By Lemma and the fact that w. > ~wy for some uniform constant v (see
inequality (24) in [4]), we have
(2.28) e Fuwy < we,j(t) < C.e 7w,

on (0,T] x M, where C is a uniform constant and C. depends on e. We next prove
the Calabi’s C3-estimates. Denote

(2.29) Sej = |Vwows,j (t)|2 @ gé?gsljgfg'vm(gs,j)kQVOm(gs,j)pZ-

wng,j‘
Lemma 2.4. For any T > 0 and € > 0, there exist constants C. and C such that
for any t € (0,T] and j € NT,
(2.30) Sej < Cee?,

where constant C' depends only on ||po||L=r), n, B, wo and T, and constant C.
depends in addition on €.

Proof: By the similar arguments in [33] or [34] and choosing sufficiently large
«a and 3, we have

B 2 .
(231) (E —Asﬁj)(eiTS&j) S 05677;9513‘ +OE,
(2.32) (%—%Ma%m%ﬁpg C.—Cle 7S,

By choosing A. = C.(C: + 1) and « = 37,

a (3
@&n(&_Amxa%&J+AﬁjﬁmMm@»g_a?&d+@.
By the maximum principle, we have
(2.34) S.; < Cee® on (0,T)x M

for some constant C' depending only on |[¢o||(ar), 1, B, wo and T', and constant
C. depending in addition on &. ([l

By using the Schauder regularity theory and equation ([24]), we get the high

order estimates of ¢, ;(1).

Proposition 2.5. For any 0 < <T < 00, € >0 and k > 0, there exists constant
Ces,1,1 depending only on 6, T, e, k, n, B, wo and ||@ol| L (ar), such that for any
j€NT,

(235) ||s057.7 (t)Hck ([(5,T]><M) S CE,(;,T,]C'

By 239), for any T' > 0, ¢ ;(t) converges to . (t) € L>([0,T] x M) uniformly
in L>*([0,7] x M). Forany 0 < § < T < oo and ¢ > 0, ¢, ;(t) is uniformly
bounded (depends on ¢) in C*°([,T] x M). Therefore @, ;(t) converges to ¢.(t) in
C*>([6,T] x M). Hence for any € > 0, ¢.(t) € C*((0,00) x M).

Proposition 2.6. For any ¢ > 0, p.(t) € C°([0,00) x M) and
2.36 I t) — ol Le(ar) = 0.
(2.36) Jim {loe(t) = @oll e ary
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Proof: For any (¢,2) € (0,T] x M,

lpe(t:2) —po(2)| < fpe(t, 2) = et 2) + lpe (8 2) — o,5(2)]
(2.37) +lo,5(2) = wo(2)]-
Since e ;(t) is a Cauchy sequence in L>([0,T] x M),

(2.38) Jim {le(t, 2) = e, (t 2)l| Lo o, 71x 1) = 0.
From (Z2)), we have

(2.39) Jim fleo.3(2) = @o(2)ll =) =0,

For any € > 0, there exists N such that for any j > N,

sup |pe(t, 2) — e i(t,2)] <
[0,T]x M

€
57
€

sup [0,5(2) = ¢o(2)| <
M

w

On the other hand, fix such j, there exists 0 < § < T such that
€
(2.40) sup [ie 5 (t,2) — ol < 3.
[0,6]x M
Combining the above estimates together, for any ¢t € [0,4] and z € M,

(2.41) lpe(t, 2) — wo(2)] <e.
This completes the proof of the lemma. O

Proposition 2.7. . (t) is the unique solution to the parabolic Monge-Ampére equa-
tion

64/75t(t) = log (w0+¢?i§5¢5(t))" + Fy

(2.42) +B8p:(t) +log(® + |s|2)1 7, (0,00) x M
©<(0) = o

in the space of C°([0,00) x M) N C*>((0,00) x M).

Proof: By proposition [2.6] we only need to prove the uniqueness. Suppose
there exists another solution @.(t) € C°([0,00) x M) N C>((0,00) x M) to the
Monge-Ampere equation (2:42]).

Let ¥ (t) = @-(t) — < (t). Then

ov.(t) wo+v/ 100 (t)+v/ 1090 (1))
at( L= log ( (Wotv—100g. ()" ) + B9 (1)

(2.43)

¥:(0) =0
For any T > 0, by the same arguments as that in the proof of Proposition 21l we
have

[ ()| o= (0,175 a1y < €27 (|10 (0) | 10w (ar) = 0.
Hence 9. (t) = 0, that is @ (t) = e (¢). O

By the similar arguments as that in [41], we prove the uniqueness theorems of
the twisted Kéahler-Ricci flow.
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Theorem 2.8. Let M be a Fano manifold with complex dimension n, wy € ¢1(M)
be a smooth Kdhler metric on M and & € ¢1(M) be a Kdahler current which admits
L? density with respect to wy for some p > 1 and fM w" = fM wy. Then there
exists a unique solution we(t) € C*>((0,00) x M) to the twisted Kdhler-Ricci flow
([L0) with initial data @ in the following sense.

(1) awa;t(t) = —Ric(w:(t)) + Bwe(t) + 0 on (0,00) x M;
(2) There exists p-(t) € C°([0,00) x M) N C>((0,00) x M) such that w.(t) =
wo + v/ —100¢.(t) and
2.44 li t) — - =0
( ) HH(T; < (t) — wollz (M) )
where @o € Ep(M,wo) is a metric potential of @ with respect to wg. In particular,

we(t) converges in the sense of distribution to @ ast — 0.

Proof: From Proposition 27} we know that there exists a solution we(t) =
wo + V=190, (t) to the twisted Kéhler-Ricci flow (L8] with initial data &, where
@:(t) € CO([0,00) x M) (N C>((0,00) x M) satisfies

2.45 li t) — o =0
(2.45) [l (8) = ol e ary

for some metric potential ¢ € £,(M,wp) of & with respect to wy. Suppose that
there is another solution @, (t) = wo ++v/—100¢.(t) to the twisted Kihler-Ricci flow
(L6) with initial data &. Then @.(t) € C°([0,00) x M) (N C*>((0,00) x M) satisfies

8¢5t(t) = IOg (CUO + _;35358 (t))n o ﬁ@a (t) + 10g(€2 + |S|]21)1_'6 + fa(t)
0
(2.46)

on (0,00) x M for a smooth function f.(¢) on (0,00) and
li 2e(t) — @ollpeo(ary =0
ti%h | e (t) — PollL (M) )

where @g € E,(M,wp) is also a metric potential of & with respect to wp. At the
same time, we have pg = @o + C.

Let ¢(t) = ¢(t)+Ceft. Tt is obvious that ¢.(t) € C°([0,00) x M) N C=((0, 00) x
M) is a solution to equation (2.46) and satisfies
1. D t - oo - 0-
e+t [[6(t) = @oll oo (ar)
Now we consider the function 1. (t) = ¢ (t) — pe(t).

. wotV/ T80 (1) +V=T00%. (1)) "
Q) :1°g( s TR ) ) + Be(t) + fo(2).

(2.47)
Ve (O) =0

For any 0 < t; < t2 < 00, by the same arguments as that in the proof of Proposition

211 we have

IN

to
A1) sup i (1) + / A0 5 (1),
M

t1

ta
inf e (t2) > eﬁ(tz_tl)iﬁfwa(tl)—i— / P2t £ (1)dt.

ty

sup ¢c (t2)
M



12 JIAWEI LIU AND XI ZHANG

Therefore, we obtain
infe(t) > supte(ta) — 27 (supype(tr) — inf v (11)).
M M M M

Let t; — 0%, we have

i}\l/[f Ye(te) > supe(ta).
M
By equation Z47), 1. (t) = fg ePt=9) f_(s)ds. Hence @.(t) = we(t). O

3. THE LONG-TIME EXISTENCE OF THE CONICAL KAHLER-RICCI FLOW WITH
WEAK INITIAL DATA

In this section, we study the long-time existence of the conical Kéhler-Ricci flow
(T3) by the smooth approximation of the twisted Kéhler-Ricci flows. We also prove
the uniqueness of the conical Kahler-Ricci flow ([LH]).

By Proposition 2.1 Lemma and Proposition 2.5, we conclude that for any
T > 0, there exists constants C; and Cy depending only on |||z (ar), B, 1, wo
and T, such that for any ¢ > 0,

(3.1) |9 ()| Lo (jo, 77 a1y < Ch,s
(3.2) ef%ws <we(t) < e%ws on (0,T] x M.

We first prove the local uniform Calabi’s C3-estimate and curvature estimate
along the flow [23). Our proofs are similar as that in [34] (see section 2 in [34] or
section 3 in [40]), but we need some new arguments to handle the weak initial data
case.

Lemma 3.1. For any T > 0 and B.(p) CC M \ D, there exist constants C, C’
and C" such that for any ¢ > 0 and j € N,

C ¢

Sej < e

" ¢

2 =
|Rm5,j|wm (t) < 7“_46 t

on (0,T] x Bz (p), where constants C, C' and C" depend only on |@ollLe(ar), 7,
B, T, wo and dist,,,(B,(p), D).

Proof: By Lemma [2.3] there exists uniform constat C' depending only on
llvoll Lo (ary> 7y B, T, wo and dist,,, (Br(p), D), such that

(3.3) e Twy < we,j(t) < eTwy, on B, (p) x (0,T7.

Let r = 79 > r1 > 3 and % be a nonnegative C'°™° cut-off function that is

identically equal to 1 on B, (,) and vanishes outside B, (p). We may assume that

(34) U2, < G and VT, < G
:

2
r
Straightforward calculations show that

0
(3¢

<
t

C
(3.5) — D) (7Se) < et Se +Cet
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By choosing sufficiently large a, v and A, we get

9
ot
< %e—% Sej+C—Ae™ TS+ Ae 7

1 3y C

< —=e TS5+ =
= 7'2 €,] T27

— A ) (e F RS+ Aem T rgwe (1))

where o = 3y, A = C;gl, constat C' depends only on ||¢ol|zo(ar), 7, B, T wo and

disty, (Br(p), D). By the maximum principle, we conclude that

!
S.; < geﬁTv on (0,T] x Bz (p).

) — ,r2
Now we prove that |Rm51j|is 0 is uniformly bounded. Through computation,
there exist uniform constants C' such that
d
(5~
C|Rm ;[ + CeT|Rm. ;| Ce? |Rm. Ce®SZ | Rm.
Mejlwe (1) e m&]'(.us s T e |Rme jlo. ;) + Ce Rme o, )

Aa,j)|Rm€,j|i€,j(t)

IN

el
+O€t S51j|Rm51j|w5] |V5JRm5J| t) — |V5JRm5J| +C€t
1 - —
< C(|Rme, J| @ te T+ T_ge [ |Rm57j|w5,j(t)) - |Vsijm€1j|w€,j(t) - |V57ij51j|i€ 5 ()

Next, we show that |Rm. ;|2 ,(v) is uniformly bounded. We fix a smaller radius
ro satisfying r1 > ro > Z. Let p be a cut-off function identically equal to 1 on

B,,(p) and identically equal to 0 outside B,,. We also let p satisfy

|ap|gzoa |V —18(§p|w0 < 2

for some uniform constant C. From the former part we know that S; ; is bounded

by T%e% on B, (p). Let K; = 2 e’*, k and C be constants which are large enough
such that % <Ki—5.; < Kt. We consider

5 |Rm€,3|w€] ) _ 20
(36) F&j = p2€ W + Ae” ¢ S&j.
By computing, we have
d
(5 = Beg)Fe;
= e ((=beyp?) Rneilasn | plBmedlosy 4\ o —C'Rm”' OLa
=P )R, = 8., v’ (K — Soj)2 vt —=9/7%i v’ 12(K, — S.;)2 12
1 d Ve, ip
+P2W(% — A j)Rme 12 ) — 4R€<Pﬁ, Vel Bme 2 o)w. ;0
e,j
|Rm ,les (®) 92|Rma,j|is i (1) 9
—4R6<PWV5 35,55 Ve iP)e. ) QWWWS we 5 (t)
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Ve,iSe _20
—2Re(p? W el Bme 2 hoes)) + A (_ — D )Se;
20 _20 20 _2s |Rm€1j|w ()
A =TS 4+ e g Wi
e et e P K, -5
We only consider an inner point (to,zo) which is a maximum point of F ;
achieved on [0,7] x By, (p). We use the fact that V. ;F.; = 0 at this point,

then we get

e_%(2 v |Rm57j|i€’j(t) 2V57j|Rm57j|Z’5,j(t) n |Rmsg| )Vs JS>
PNeip Ky —Sc; P K;— 5. ; a (K — SEJ)Q

+A€72TU VEJ-SEJ- = 0.

Combining the above two equalities, we have

d
(dt Acj)Fe;
_ 6*276((—& . z)lng’”is,j(t) |Rm€’J|wsJ(t)(i_A )Se i + _ClRm‘fﬂ'ws (1) KT sz
- )R s, PR =S @ A% T g sy
1 d Ve jip
+p K, —S.. (dt syj)|Rmsyj|a2uE,j(t) - 4Re<pK_t‘57JS 5J|Rmsj|w5] t)>w5 J(t))
20 |v 7]S;]|w€] _20,d 20 _ 20
+24e” v Kt—Ssj + AT (o = Do ;)0 + AzeT T 5z
L
t2 Ky —S:;
Our goal is to show that at (to, xo) we have e™ |me| 0 < £ for some uni-

form constant C' and 6. Without loss of generality, we assurne that |Rme, j|is For=
et + %€%|Rms,j|ws,j(t) at (to, o).

d

(%~ Do so)IBmegla ) < ClRmeIE, o) = Ve gBme 2, o) — [VeRmel5 ),
d C -
(E = Do ;)8 < T—26f - |V€,jX|is -V, JX|w5 J(®

on By, (p). We also note that

|v5,j|Rmsj|i€ 4 t)|w5 j(t) < |R"nsj|w5 gl t)(|vs ijs j|w5 () + |vs,ijs,j|w5,j(t))a

IVeiSeilo sy S 280i(IVey X 0y + Ve X )
By using the above inequalities, at (to, zg), we have
d
(5 = Boes)Fe
AC _20 = _2 Cet|Rm5J|
< - (|V€JX| +|V€JX|w Jt)) — € terte t( Kor?
_p |Rms,j|i (|Vs JX|2 + |Vs JX| ) n OP2|Rm67j|im(t)

K? K,
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- <
p2(|vs,ijs,j|¢2usyj(t) + |Vs,ijs,j|isyj(t)) " Cer |Rm€,j|(_2uaj(t) " Op2|Rms,j|i&j(t)

[

B K, K2 K#r?
P*(|Ve ;]RmE;]|w5 T Ve 7]Rm€;]|w y t))) n BAe~ 7 Sei(IVe ,JX|2 o T Ve ,JX| )
K Kt
2C|Rme 12, ) & 2 45 |Rme 2,
9 25 €,J (t) KT kﬂ' g _ 20 25 o9 &7 lwe ;5 (t)
T g gt AR S e s

Let C be sufficiently large so that % < 49 where we denote Q = |V, jX|Z,E st

— 2 I
Ve XI2_ ). Then

CP |Rm57.7|w5 i (1) P2|Rma7j|im(t + Cp? R, 2
K, - 2K7? i lwe 5 (
|Rm57]|w (t Q
(3.7) < i 207 4 e p? | R )

Let k=1, =20 and 7 — 20 < 0, where o is sufficiently large. We conclude that
the evolution equation of F; ; can be controlled as follows,

d 77Q AC _20 T AC _ 20 T
(E —AjF; < - —5  tope et tgge tertle t|Rm€J|wsJ(t
Ae7Q  AC _» .  AC 2 -
< —eTQ T—2€_2T€?+W€_2T€T+C€_%Q+Ce_%.
Now we choose a sufficiently large A such that A = 2(C' + 1) and obtain
c
6_%Q < 2

at (to, zo). This implies that e~ |Rm87 il2, ) < £ at this point, where C' depends
only on |||z (ary, 1, B, T, disty, (B (p) D), HHHCZ(BT(p)) and wy. Following that
we conclude that F.; is bounded by & at (to,z). Hence on [0,T] x By, (p), we
obtain

C 264r
(3.8) |Rm6J|w5J(t) < —e by

where C, § and 7 depend only on H<p0||Loo(M), n, B8, T, dist,,(B,(p), D) and wy.O
By using the standard parabolic Schauder regularity theory [31], we obtain the
following proposition.

Proposition 3.2. For any0 < § <T < co, k € Nt and B.(p) CC M\ D, there ex-
ists constant Cs .1 k. p,r depends only on ||ollpenry, n, B, 0, k, T, dist.,(By(p), D)
and wg, such that for any e >0 and j € NT,

(3.9) 12250 o (157153, 57) < Commr

Through a further observation to equation (2.42)), we prove the monotonicity of
©e(t) with respect to e.

Proposition 3.3. For any (t,z) € [0,T] x M, (¢, z) is monotone decreasing as
e —0.
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Proof: For any €1 < €3, let 91 2(t) = e, (t) — @e, (). Then

Ourat) _ (wo+ﬁ66%2(t)+maéw1,2<t>)"
= Cotv-1005, O)"
(3.10) +ﬁw12< ) + (1 - B)log .
Y1a(
Since log (zjﬂ [) < 0, we have
J, _
prC Ppr o (1))

(e7Ptwg + /=100e P, (t) + /—100ePep1 5(t))"
(e=Ptwy + /—100e= P, ()"

Let b1 2(t) = e Plapy o(t) — 6t with § > 0 and (tg, zo) be the maximum point of
P1,2(t) on [0,T] x M. If ty > 0, by maximum principle, at this point, we have

0
— —pt — < —
(3.12) < aﬂ“() (€ Ti2(t) =6 < =6
which is impossible, hence ty = 0. So for any (¢,2) € [0,T] x M,

(3.13) P12t x) < ePsuppy o(0,x) + TePTs = TePTs.
M

(3.11) < e Pllog

Let § — 0, we conclude that ¢, (t,x) < @, (¢, ). O

For any [§,T] x K CC (0,00) x M\ D and k > 0, [l¢c; ()|l ok (s,7)x k) s uni-
formly bounded by Proposition Let j approximate to oo, we obtain that
e ()]l (15,1 x k) 18 uniformly bounded. Then let § approximate to 0, T approxi-
mate to oo and K approximate to M \ D, by diagonal rule, we get a sequence {¢;},
such that ¢, (t) converges in C72, topology on (0,00) x (M \ D) to a function ¢(t)
that is smooth on C°((0,00) x (M \ D)) and satisfies equation

96) _ (e + VIR
ot wl

(3.14) + Fo + Be(t) + log |s|,21(175)

n (0,00) x (M \ D). Since p.(t) is monotone decreasing as ¢ — 0, we conclude
that ¢, (t) converges in C7°, topology on (0,00) x (M \ D) to ¢(t). Combining the

loc
above arguments with (3] and (82), for any T > 0, we have
(3.16) e_%wlg <w(t) < e%wB on (0,T) x (M \ D),

where w(t) = wo + v/—=190¢(t), constants C; and C depend only on [[¢ol| £ (ar),
B, n, wy and T

Proposition 3.4. For any t > 0, ¢(t) is Holder continuous on M with respect to
the metric wg.

Proof: We assume that ¢ € [§,T] for some ¢ and T satisfying 0 < § < T < oc.
By (BI0) we have
(3.17) Clws <w(t) < Cws on [6,T) x (M \ D),
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where constant C' depends only on ||¢o||z(ar), B, T, n, wo and §. Combining this
wg‘sli(lfﬂ)

estimate and the fact that log is bounded uniformly on M \ D, we obtain

2
Wo

n 2(1—
W (B)]s)i Y

3.18 1 s¢
(3.18) [Ilog Wl ||L°°([6,T]><(M\D)) -

Op(t)
gt || e (18.71% (M\D))

is uniformly bounded by equation (BI4) and estimate [B.I5). We rewrite equation

BT s
(319) (wO + /_165¢(t))n _ e&git) —Fo-ﬂ‘ﬂ(t)

for some uniform constant C' independent of ¢. Therefore, ||

wo
2(1-8) "
|5|h

The function on the right side of equation [19) is L? integrable with respect to w{
for some p > 1. By S. Kolodziej’s L estimates [29], we know that ¢(t) is Holder
continuous on M with respect to wgp for any ¢ > 0. (|

Next, by using the monotonicity of ¢.(t) with respect to ¢ and constructing
auxiliary function, we prove the continuity of ¢(t) as t — 07.

Proposition 3.5. ¢(t) € C°([0,00) x M) and
3.20 li t) — % =0.
(3.20) Jm o) = @ollz= )
Proof: Through the above arguments, we only need prove limit (3:20). By the
monotonicity of ¢, (t) with respect to e, for any (¢, z) € (0,T] x M, we have

P(t,z) —po(2) < @ (t2) —po(z)
< e (8,2) = ey i (8 2)] + [0y, (2 2) — 0,5 (2)]
(3.21) +10,5(2) = ¢o(2)]-

Since @, ;(t) is a Cauchy sequence in L>([0,T] x M),
(3.22) Jlggo lpe, (t;2) = per,j(ts 2) | Los (0,77 x 01) = 0.
From (Z2), we have

(3.23) Jlggo ll¢0.5(2) = ¢o(2)llL> ) =0,

For any € > 0, there exists N such that for any j > N,

sup |<P€1 (t,Z) _wilyj(tvz” <
[0,T]x M

Wl Wl

sup [o,j(2) — po(2)] <
M

Fix such j, there exists 0 < §; < T such that

€
(3.24) sup e (1, 2) = ol < 3
[0,61]><M

Combining the above estimates together, for any ¢t € (0,41] and z € M,
(3.25) p(t, 2) — po(z) <e
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On the other hand, by S. Kolodziej’s results [27], there exists a smooth solution
U ; to the equation

0. )" — e~ Fo-Beo+C___ W0
(826)  (wo+V-100uey)" = e (&2 + [slZ)a-#)
and wu. ; satisfies

(3.27) [l ll Loeary < C,

where C is a uniform normalization constant, constant C depends only on || || Lo (ar),
B and Fp.
We define function

(3.28) e 5(t) = (1= te")po ;5 + te” uc ; + h(t)e”,
where
h(t) = —tlleollLeiary = tluellze(ar +n(tlogt —t)e "
t
(3.29) —|—[3n/ e P slogsds + Ct
0
and h(0) = 0. Straightforward calculations show that
9 Bt Bt st O
E%,j(t) = Bej(t) = —Bpo;—e " po;+ e ue+e ah(t)

= —Bwoy — oo+ euc g — o jll o ar) — € ue,jll Lo (ary
+nlogt — Bn(tlogt —t) + fntlogt + C
—Bypoj +nlogt +npt + C.

IN

Therefore, we have
eBe Ve ()=Bve(B)yn < nenBte—Beo+C .
When ¢ is sufficiently small,
wo + V=103, j(t) = (1 —te’)(wo +V—10dpy ;) + te! (wo + V—100u. ;)
> teﬁt(wo + \/—_165u€)j).
Combining the above inequalities,

(wo + V=100 ;(t))" > t"e" (wy + vV—=100u. ;)"

— tnenﬁte*FO*ﬁwo,j‘f’é

Y
CB‘
e
+
o
<
o
.
&
|
=)
<
o
.
&
€
o

This equation is equivalent to

%wa,j (t) < log (wwﬁfgws,j(t))" + Bpe (1)
(3.30) +Fp + log(e? + |s[2)1=A),
Ve,5(0) = o5
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Let z.j(t) = e j(t) = e,(t), then

.7 . (Wotv/=T00e (1) +v/=T00e ; (1))" D
arv=y(1) 2 log (ot /~1089< 5 ()" B ().

(3.31)
1e;(0) =0

By the similar arguments as that in the proof of Proposition B3] for any (¢, z) €
[0,T] x M,

(3.32) We,(t,2) 2 0,
That is, for any (¢,2) € [0,T] x M

pei(t:2) —poi(2) = —tepo; +teuc; + h(t)e
(3.33) > —Cte®' + h(t)e?,

where constant constant C' depends only on ||| (ar), B and Fy. Let j — oo and
then € — 0, we have

(3.34) o(t,z) — po(z) > —CteP! + h(t)e"".

There exists dy such that for any ¢ € [0, do],

(3.35) — CtePt + h(t)e’t > —e.

Let § = min(dy, §2), then for any t € (0,6] and z € M,

(3.36) —e<p(t,z) —po(z) <e.

This completes the proof of the proposition. O

Theorem 3.6. w,;) = wo + V—1809¢(t) is a long-time solution to the conical
Kahler-Ricci flow (3.

Proof: We should only prove that w(t) satisfies equation (L3)) in the sense of
currents on [0,00) x M.

Let n = n(t,x) be a smooth (n—1,n—1)-form with compact support in (0, co) x
M. Without loss of generality, we assume that its compact support included in
(0.7) (0 <6 <T < c0). On [5,T] x M, by @I) and (@), log - OEH 2
e are uniformly bounded by constants depending only on ||¢o|| L (ar), 7, B, 6 and
T. On [, T], we have

Owe(t) B — o5 Ope(t)
/M An= /M \/_18(9—8 An

and

ot 4

- (e 4 |s[2)1 8
/ \/—_188(10gw (¢ wa|h) + Fo + Bpe(t)) An
M 0

n(.2 2y1-5 -
= / log (log wele —:Jflh) + Fo + Be-(t)) V—190n
M 0

w —
=0 [ (og =5 4 Fu -+ p(t) + loglsf2 ")V =T0dy
M

0
_ w”
/M v —199(log % + Fy + Bep(t) + log |s|i(1_ﬂ)) A

(3.37) = /M(—Ric(w@(t)) + ﬁww(t) +27(1 = B)[D]) An.
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At the same time, there also holds

on dn 5 n
/Mw%(t)/\ 5t = /Mwo/\ 5t + /M V—=1900p.(t) A 5t

= /wo/\@Jr/ goa(t)\/—wé@
M ot

ﬂ /WQ/\%—F/ ()\/_88—

= /wo/\—-l-/ V=190 (t

In
(3.38) = /M Wty N 5

On the other hand, ¢.(t) and 8“"8;5’5) are uniformly bounded on [6,T] x M, ¢(t)
a“"(t) are uniformly bounded on [§,T] x (M \ D), therefore

0 B =0n
E/ngas(t)/\n = /M sﬁs(t)v—laaa

Dpe(t) 3 an
+/M 5 v 188n+/ wo/\at

=0 /gp(t)\/__wé@
M ot
+/ %\/—wénjt/ wo/\@

M Ot M

ot
3}
(3.39) = 5 /M Wy A 1.

Combining equality

Q/w /\:/a =) A +/w P
8t M e (t) n M 8t n pe(t) 8t

with equalities B37)-(339), on [d,T], we have

0
/ Wy AN = / ( — Ric(wy(t)) + Bwpy +2m(1 — B)[D]) AN
M M

)8t

and

at

In
3.40 + / N —
(3.40) [ w0 A -

Integrating form 0 to co on both sides,

a0 e Andt = — w
ot - @(t w‘P(t
M x(0,00) M x(0,00)

/ / — Ric(wy(r)) + Bwyy + 2m(1 = B)[D]) An dt

= / (= Ric(wy()) + Bwpr) + 2m(1 — B)[D]) An dt.
M x(0,00)
By the arbitrariness of 7, we prove that w, ;) satisfies the conical Kéhler-Ricci flow
(T3 in the sense of currents on (0,00) x M. O

Now we are ready to prove the uniqueness of the parabolic Monge-Ampere equa-
tion (B.I4) starting with g € &,(M, wp) for some p > 1.
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Theorem 3.7. Let ¢;(t) € C°([0,00) x M) [ C>((0,00) x (M \ D)) (i =1,2) be

two long-time solutions to the parabolic Monge-Ampére equation

i(t V—=100yp; (t))"
ot w§
n (0,00) x (M \ D). If ¢; (i =1,2) satisfy
e Forany 0 <0 <T < oo, there exists uniform constant C such that
C_lwﬁ < wp+ V —185901'(15) < Cwg

on [6,T] x (M \ D);

e On [0,T), there exist constant o > 0 and C* such that ¢;(t) is C* on M
with respect to wy and || &gt(t) | Loe(an\py < C*;

e lim [lpi(t) — @ollLe(ar) = 0.
t—0+

2(1—

+ Fo + Bi(t) 4 log|sl;,

Then o1 = @s.

Proof: We apply Jeffres’ trick [25] in the parabolic case. For any 0 < t; < T <
oo and a > 0. Let ¢1(t) = ¢1(t) + als|}?, where 0 < ¢ < 1 is determined later. The
evolution of ¢ is

D1 (t + V=100¢1 (t))"
0010) _ 1o (02 VL0 |y 4 (1) — sl + o 20
t wg
Denote ¥(t) = ¢1(t) — ) and A = fl ;zalJr(l ) 52=ds, ¥(t) evolves along
the following equation

aw() = Ap(t) — aA|s2? + By(t) — afBls| 9.

By the equivalence of the metrics and the equation
V=100|s[;" = ¢*[s|3"v/=101og |s[;; A Dlog |s|}; + g|s|;"v 10 log|s|3,

we obtain the estimate

. 52
2 2
Alsl;* > q|s |h 9W1+<1 S)W(Wlog|5|h)
= _q| |h gs<p1+(1 5)50290 ij
> —C‘J|S|h 93 90,ij
> -C

on M\ D, where constant C' independent of a, and we apply the fact that wg > ywo
on M\ D for some constant . Then we obtain

0
2D < Aty + Btt) + aC.
Let o) = e A=ty 4 aC e~ Bt=t) _ ¢(t —t;). By choosing suitable 0 < ¢ < 1,
we can assume that the space maximum of ¢ on [t1,T] x M is attained away from
D. Let (tg, ) be the maximum point. If ¢y > t1, by the maximum principle, at
(to, o), we have

0< (5 —A)W() < -

SRS
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which is impossible, hence ty = ¢1. Then for (¢,z) € [t1,T] x M, we obtain

b(t,x) < Tloi(ts,z) — pa(ty, o)l oo (ar)
+aCePT + eTePT
Let @ — 0 and then ¢; — 07, we get
P1(t) — @a(t) < eTelT.

It shows that ¢1(t) < @o(t) after we let ¢ — 0. By the same reason we have
v2(t) < @1(t), then we prove that ¢1(t) = pa2(t). O

Theorem 3.8. w,;) = wo + V—100¢(t) is the unique long-time solution to the
conical Kdhler-Ricci flow (LH).

Proof: Suppose there is another solution wg ;) = wo + V=100 (t) to the conical
Kéhlre-Ricci flow ([LH). It is easy to see that
Oo(t V=100¢(t))" -
PO _ o (0 VEIO0OON 4 4 Bio(e) + tog 207 + £(1)

t wg
on (0,00) x (M \ D) for a smooth function f(¢) defined on (0,00), and ¢(t) €
C0([0,00) x M) C>((0,00) x (M \ D)) satisfies

e For any 0 < § < T < oo, there exists uniform constant C' such that
Clwg <wo+vV—100¢(t) < Cws  on  [6,T] x (M \ D);

e On [4,T], there exist constant a > 0 and C such that ¢(t) is C* on M with
)

respect to wg and ||%||LW(M\D) < G

o lm [l6(t) — gollze=(ar)

(3.42

For any 0 < t; < T < oo and a > 0. Let ¥(t) = ¢(t) + als[>? — o(t), where
0 < g < 1 is determined later. Then

—82/;?) = A(t) — aA|s[;7 + Bi(t) — aBls;? + f(b).

By the same arguments as that in the proof of Proposition B.1 for any (¢,x) €
[t1,T] x M, we have
P(t,z) < Pty x) — o(t1, )| Lo (ar)
+aCePt1) L e(t — t)ePt—0)
t
+65(t7t1)/ e Pl £(5)ds
t1

Let a — 0, we obtain
o) —(t) < P g(tr, ) — o(t1, )| L (ar)

¢
+e(t — tl)eﬁ(tftl) + Bt—t1) / eiﬁ(sftl)f(s)ds.

t1

By the similar arguments, we can obtain
p(t) —o(t) < PEg(tr, ) — @(tr, )] Lo (ar)

¢
+e(t — tl)e'@(t_tl) — Blt—t) / e_ﬂ(s_tl)f(s)ds.

t1
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Therefore, for any t > t; > 0, we have
inf(o(t) — (1)) = sbp(aﬁ(t) — (1)) = 262 g(t1, @) — p(t1, )| Lo (ar)

—2¢(t — ty)ePt=1)

> 811\1413((25(15) — (1)) — 2" p(t1, ) — p(t1, 2) || L (ary
—2eTePT,
Let t; — 07 and then € — 0, we conclude that ¢(t) = ¢(t) + e fg e P f(s)ds.
Then wgy(t)y = wy(t) on (0,00) x (M \ D). O

4. THE CONVERGENCE OF THE CONICAL KAHLER-RICCI FLOW WITH WEAK
INITIAL DATA

In this section, we study the convergence of the conical Kéhler-Ricci flow (L)
with positive twisted first Chern class. Our discussion is very similar as that in
[34], but we need new arguments on estimates of the twisted Ricci potential uc(t)
and the term |¢.| when we handle the weak initial data case.

Without loss of generality, we assume A = 1 (i.e. pu = ). We first prove the
uniform Perelman’s estimates along the twisted Kahler-Ricci flow

wel) — _ Ric(w. (1)) + Bwe(t) + 0.
(4.1)

we(t)|t=0 = we,
By the same argument as Proposition 4.1 in [34], we have
Proposition 4.1. t*(R(gc,;(t)) —tr,. 1 0:) is uniformly bounded from below along
the twisted Kahler-Ricci flow 23), i.e. there exists a uniform constant C, such that
(4.2) tz(R(ga,j(t)) - trga,j(t)ea) >-C

for anyt >0, j € N* and € > 0, while the constant C only depends on 3 and n.
In particular,

(4.3) R(ge (1) —try. ;b > —C
when t > %

Remark 4.2. By Proposition [2.3, we know that there exists constant C' only de-
pending on B and n, such that

(44) R(gs(t)) - trgg(t)ea > —C
along the twisted Kdihler-Ricci flow @) for any & > 0 when t > %.

Straightforward calculation shows that the twisted Ricci potential u.(t) with
respect to we(t) at t = 1 can be written as

1 w(2)(e2 + |s]2)1 P 1
(45) ug(—)zlog 5(2)( n| |h) +F0+ﬁ805(_)+cala
2 wg 2 2
. oo (L _
where C_ 1 is a normalization constant such that % Jue (2)dV57% = 1. By

BI) and B.2), we conclude that C, 1 and us(3) are uniformly bounded. Let
ac(t) = @ Jay ue(®)e <@V, ,, then by Lemma 4.4 in [34], we have
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Lemma 4.3. There exists a uniform constant C, such that
(4.6) lac(t)] < C
for any t > % and € > 0.

Now we consider the twisted Kéhler-Ricci flows (@) starting at ¢t = 1. Using
the estimates (£4), ([@8) and following the arguments in [34] (see section 4),
have the following uniform Perelman’s estimates.

we

Theorem 4.4. Let g.(t) be a solution of the twisted Kihler Ricci flow, i.e. the
corresponding form w.(t) satisfies the equation ([AJ) with initial metric wy,, u-(t) €
C*((0,00) x M) is the twisted Ricci potential satisfying

(4.7) — Ric(we(t)) + Bwe(t) + 0. = V/—100u.(t)

and L [, e WdV., = 1, where 6. = (1 — B)(wo + V=199 log(e? + |s3)). Then
for any B € (0,1), there exists a uniform constant C, such that

(4.8) |R(ge(t)) —trg. | < C,
(4.9) lue®)llcrg.ey < C,
(4.10) diam(M,g.(t)) < C

hold for any t > 1 and € > 0, where R(gc(t)) — try_ )0 and diam(M, g.(t)) are
the twisted scalar curvature and diameter of the manifold respectively with respect
to the metric g(t).

If < (t) is a solution to the Monge-Ampere equation
¢ V=100 (t))"
(a1 3eelt) _ g Lot ee()
ot w§
on (0,00) x M with initial value ¢.(0) = o, it is obvious that ¢.(t) = @ (t) + Ce’*
is a solution to equation (A.I1]) with initial value ¢-(0) = ¢o+C. At the same time,
We_(+) = wo + V—100¢.(t) is also a solution to the twisted Kéahler-Ricci flow (@)
with initial value wy, .
From (B)), we know that ¢.(¢) is uniformly bounded on [0, T] x M by a constant
C which depends only on |¢ol[ze(ar), 8 and T. Now, we consider the solution

Ve(t) = @ (t) + Co1€P to the equation
awgt(w = log (wo-‘r\/—_:)?@ws(t))" + Fy + B (t) + log(e® + |5|}21>1_B
(4.12 on (0,00) x M,
¢a(0) = %o + Ca,l

+ Fy + Bee(t) + log(e? + |s[7) ' 7

where
~ _61 Too _Bt 2 1
Coi=c _(/ e ||Vus(t)||L2dt——/ (F5,1+ﬂ<p5(1>)st,1)v
CAWE Vi u
F.,=F+ log(% . (52 + |s|]21)175) and dV;; = —W;;(!l)- By @I), B.2) and

the above uniform Perelman’s estimates ([@9), we know that the constant C. ; is
well-defined and uniformly bounded. Straightforward calculation shows that the
twisted Ricci potential u. (1) with respect to w.(1) can be written as

we(D)(e? +Js[3)' 7

(4.13) ue(1) = log
wo

+ Iy + ﬂ‘Ps(l) + Ca,l;
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where C.; is a normalization constant such that & [,, e"“<(MdV.; = 1. Then

1 —F _ﬂ (1 d‘/o
(414) Cs,l = 10g (V /Me 0= Bee( )W>

By 3I) and B.2]), we conclude that C. ; and u.(1) are uniformly bounded.
Let ue(t) = 1< (t) + c(t). By equation ({I2) and equality (£I3), we have

(4.15) c.(1)=C., — BePC. ;.
Proposition 4.5. There exists a uniform constant C such that

[e(®) o < C
foranye>0andt>1.

Proof: Asin [37], when t > 1, we let

1 [ . 1
(4.16) ac(t) = 7 / Ve(B)dVer = / u(t)dVe,y — co(t).
M M
Through computing, we have
) = Bac(t) = Vi 72,
t
A Naclt) = o) = [ e HIT s
(4.17) = 7w e - / A1) |7 | 2.ds.
Putting (@I3) and @IH) into [@IT), we have
1 ¢ .
e ac(t) = & / Fe + Bpe(DdVe + Cey — (1) = / e D[V Tads
M 1
1 - t ,
- V/ F€,1+ﬁ%(1)d1@,1+56605,1—/ e PV, ||2.ds
M 1
1 ¢ .
S A e A AR
M 1
1

“+oo
[PVt - 5 [ (B + B (0) Ve
1 v M

—+o00 .
= [ eI s,
t

By Theorem [£4] we conclude that
+oo .
(4.18) 0<a(t) = / B9V, ||2ads < C.
t

Then we conclude that 1 (¢) is uniformly bounded by the uniform Perelman’s
estimates when ¢ > 1. O
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We recall Aubin’s functionals, Ding’s functional and the twisted Mabuchi K-
energy functional.

(4.19) L) = — / o(dV — dV),

Té) = V//d% aVy — V)t
1=

where ¢; is a path with ¢g = ¢, ¢1 =

1
(4.20) FO (@) = Juy(d) — V/M odVo,

(421) Fasl@) = Ju(@) =5 [ v Sloe(; [ emomany),
(122) Mey, () = ~BLn(6) — Junl(6)) — /M s AV — V)

1 Wy
= [ log—dV,
+ % /M 0g wg @
where u,, is the twisted Ricci potential of wy, i.e. —Ric(wp)+ Bwo+60 = /—100u.,
and & [, e "odV,,, = 1.

Proposition 4.6. For any t > 1, the solution ¢.(t) to equation (E12) satisfies:
: 1 ;
() M, 0.(6:(0) = BES,(0:(0) — 5 [ (Vi =C.,
M
(15) My, 0. (¥e(1)) is uniformly bounded,
where C. in (i) can be bounded by a uniform constant C.

Proof: Following the argument in [34], since

(423)  GMaa, 0.0060) = BFE, W) = 5 [ (V) =0
we obtain that

My 0.(0:(0) = 7, 6.(0) = 5 [ (012
= M 0 (0e0) = BF, (00 = [ demav,

2 4 g2)1-p
= —/ log D sl ) d‘/a,l‘f'é/ Ye(1)dVe
M

—Fq
e Owo

1 .
. / By + log((sff + )2V~ 3 [ 9V,
Vi Vi
where the last equality can be bounded by a uniform constant. This gives a proof

of (¢). Furthermore, by the definition of M,,, 4., we have

D(lsli +e3)'7
M0, 00) = 5 [ 10g SEEREEEL Ve, - B, (0(1) + By (0-(1)

__/ Fo + log(|s[2 + €2)~8aVp.
Viu

Since I, (1=(1)) is uniformly bounded and 1 J,, < n}rlI < Ju,, we prove (ii).0
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Using Proposition and [0 by following the arguments in [34] (see section
5), we obtain the following uniform C° estimate of 9. (¢) along the equation ([EI2)
under the assumption that the twisted Mabuchi K-energy functional M., ¢, is
uniformly proper on the space

(4.24) H(wo) = {¢p € C®°(M)| wo + vV—100¢ > 0}.
Theorem 4.7. Let .(t) be a solution of the flow (ID). If the twisted Mabuchi K-

energy functional M, o. is uniformly proper on H(wo), i.e. there exists a uniform
function f such that

(425) Mwo, 0 ((b) > f(’]wo (¢))

for any € and ¢ € H(wo), where f(t) : RT — R is some monotone increasing
function satisfying . ligrn f(t) = +o0, then there exists a uniform constant C' such
—+00

that for any e >0 andt >0
(4.26) [e@)llco < C.

Since we study the flow @) start at ¢ = 1 and obtain

1
(4.27) Cilwagwa(? < Cw:. on M,
1
(4.28) [Wegller) < Crac on K CC M\D,

for some uniform constants C' and Cj g in section 3, after getting the uniform
bound of ¥.(t) and 1. (t), we can prove the uniform Laplacian C? estimates and
local high order uniform estimates for any ¢ > 1 and € > 0 by the arguments in [34]
(see Proposition 2.1 and 2.3 in [34]). In fact, we prove the following theorem.

Theorem 4.8. Under the assumption in Theorem[[.7, for any k € NT and K CC
M\ D, there exists constant Cy i depending only on ||po||L=(ry, 7, B, k, wo and
dist., (K, D), such that for any e >0 and t > 1, we have

(4.29) [ ()l cr(x) < Croic-

Now we assume that there exists a conical Kéhler-Einstein metric with cone
angle 273 along D. When A > 0 and there is no nontrivial holomorphic field
which is tangent to D along D, G.Tian and X.H. Zhu [45] obtained the following
Moser-Trudinger type inequality

(4.30) Foo1=pyp (@) = 0Ju, () — C, Vo € H(wo)
for some constants 6 and C, where
_ 1 L os (2 L -ro-ps
Fwo,(lfﬁ)D(¢) = Ju, (¢) v /M edVo — B log (V /M We dVb)

is defined in [45] (see also [30]).

Remark 4.9. When A > 1, R. Berman [1], C. Li and S. Sun [30] proved that
there is no montrivial holomorphic vector field on M tangent to divisor D, and
Li-Sun also proved that the existence of conical Kahler-Einstein metric can deduce
the properness of the Log Mabuchi KC-energy functional (see also J. Song and X. W.
Wang’s results in [42]).
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By the definition of F,,, g, and F,; (1_g)p, we have

1 1 e dV;
Foo0.(9) — Fuy,1-pyp(9) = Blog (V /Me Fo=Co ﬁ¢|s|2(71(iﬂ))
h
1 1 —Fo—C.—Bé dVo
(431) sl [ e ET )
2 _07

where Cy and C. are two normalized constants, and C is a constant independent
of . So the Ding’s functional F,, is uniform proper. By the normalization and
Jensen’s inequality, we have

1 1 [
(4.32) v /M —,,dVy < log (V /M e "edVy) =0.
Then we have the following inequalities by (4.21)), ([A22)) and ([@32]).

1 1
MWU) e ((b) = /BFW0705 ((b) + V/ uW¢dV¢ o V/ u(—d[)d‘/o
M

M

v

BP0 (6) = 3 | Fot Cot (1= B)log(e? +[sf)avy
(4.33) > BFue.(9) = C,

where constant C' independent of e. Hence we deduce the uniform properness of
the twisted Mabuchi K-energy functional by (£30), [@3T) and [@33), i.e.

(4.34) Mg, 0.(0) 2 Crtuy(¢) — Ca, Vo € H(wo)

for some uniform constants C; and C3. At the same time, we have the uniqueness
theorem of conical Kéhler-Einstein metric (proved by B. Berndtsson in [2]) under
the assumption that there is no nontrivial holomorphic field which is tangent to
D. Using the above C° estimate and the uniqueness theorem, we can apply the
arguments in [34] (see section 6) to obtain the convergence result of the conical
Kéhler-Ricci flow (), i.e. Theorem 1.3.
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