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EXPONENTIAL MIXING FOR
GENERIC VOLUME-PRESERVING ANOSOV FLOWS

IN DIMENSION THREE

MASATO TSUJII

Abstract. Let M be a closed 3-dimensional Riemann manifold and let 3≤ r ≤ ∞. We
prove that there exists an open dense subset in the space ofCr volume-preserving Anosov
flows onM such that all the flows in it are exponentially mixing.

1. Introduction

We consider mixing property of volume-preserving Anosov flows on a 3-dimensional
closedC∞ Riemann manifoldM. LetFr

A be the space ofCr Anosov flows onM preserving
the Riemann volumemand suppose that it is equipped with theCr compact-open topology
as a subspace ofCr (M × R,M). A flow f t ∈ Fr

A is said to beexponentially mixingwith
respect to the volumem if

(1)
∫

ϕ · (ψ ◦ f t) dm≤ Cα‖ϕ‖Cα‖ψ‖Cα exp(−cαt)

for any ϕ, ψ ∈ Cα(M) with1 α > 0 satisfying
∫
ϕdm = 0, wherecα andCα > 0 are

constants independent ofϕ andψ. In this paper, we prove the following theorem:

Theorem 1.1. For 3 ≤ r ≤ ∞, there exists a C3-open and Cr -dense subsetU ⊂ Fr
A such

that all the flows inU are exponentially mixing. Further, for each flow ft in U, there exists
a C3-open neighborhood of ft such that the decay estimate (1) holds true for all the flows
in it with uniform constants Cα and cα.

By Anosov alternative[1, 15], any volume-preserving Anosov flow is either mixing or
topologically conjugate to a suspension flow of an Anosov diffeomorphism with a constant
roof function. And the former alternate holds for an open dense subset in the space of
volume-preserving Anosov flows. In this paper, we study a related problem: whether
exponential mixing is an open dense property for volume-preserving Anosov flows. A
few important progresses related this problem (in more general context) were made by
Chernov[4] and Dolgopyat[6, 7, 8] in late 1990’s. In [6], Dolgopyat proved that a volume-
preserving Anosov flow is exponentially mixing if the stableand unstable foliations are
C1 and are not jointly integrable. In particular, it is proved in [6] that the geodesic flows
on negatively curved surfaces are exponentially mixing. (Later Liverani[12] extended this
result to general contact Anosov flows. See also [18, 19].) In[7] and [8], he also studied
exponential and rapid (i.e. super-polynomial) mixing for suspension flows of subshiftsof

Date: January 5, 2016.
Key words and phrases.Anosov flow, decay of correlations.
1Once the decay estimate (1) holds for someα > 0, we can prove (1) for anyα > 0 by approximation,

possibly with different constants. See [8, p.1046]. It is therefore enough to consider (1) for some fixedα > 0, say
α = 1.
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2 M. TSUJII

finite type, which abstracts Axiom A flow, and gave several criteria for such flows to be
rapid and exponential mixing. Based on the argument in [7], Field, Melbourne and Török
proved more recently in [11] that rapid mixing is an open dense property for Axiom A
flows and consequently for volume-preserving Anosov flows. However, to the author’s
knowledge, the problem on exponential mixing mentioned above remains open. The aim
of this paper is to study the problem in the simplest possiblesetting of dimension 3 and
present an affirmative answer in Theorem 1.1. Theorem 1.1 also provides an example of a
non-empty open set of volume-preserving Anosov flows which stably exhibit exponential
mixing. (Rather surprisingly, no such example has been known. But see [2] for such an
example for Axiom A flow.)

In the following, we first investigate the geometry of the stable and unstable foliation
and introduce the notion ofs-templatewhich describes how the stable subbundle twists
along unstable manifolds. We then formulate, in Definition 2.9, the non-integrability con-
dition (NI)ρ for ρ > 0 in terms ofs-templates. We show, in Theorem 2.12, that the con-
dition (NI)ρ for sufficiently smallρ > 0 holds for aCr dense subset inFr

A for any r ≥ 3.
Then we prove Theorem 1.1 by showing in Theorem 2.13 that, iff t

0 ∈ F
3
A satisfies the non-

integrability condition (NI)ρ for someρ > 0, then there exists aC3 open neighborhoodV
of f t

0 in F3
A in which all the flows are exponentially mixing with uniform constantscα and

Cα in the decay estimate (1).
The main novelty in this paper is in the argument related tos-template presented in

Section 2. Also the argument in the proof of Theorem 2.12, presented in Section 3, may
be somewhat new, where we consider deformation families of aflow with huge number
of parameters and apply large deviation argument in the parameter spaces. The outline of
the proof of Theorem 2.13 is parallel to those in the previouspapers[18, 19], but for a few
points where we use the non-integrability condition (NI)ρ and show quasi-compactness of
the transfer operators on some Hilbert space of distributions. It occupies almost two thirds
of this paper in length. This is mainly because some objects we consider is not smooth and
require careful treatment when we apply analytic tools.

Remark 1.2. The argument presented in this paper depends crucially on the assumption
thatM is three dimensional and we do not expect that it will extend to more general cases
directly. But the author would like to emphasize that our argument is based on the fol-
lowing observation which may be useful in much more general cases of partially hyper-
bolic dynamical systems:Twist of the stable subbundle along a piece of unstable manifold
viewed in the unit scale will be “random” and “rough” in generic cases and such twist will
not be cancelled completely in the process where the flow ft contracts the piece of unstable
manifold to microscopic scale as t→ −∞ (if we view things in an appropriate scaling);
this leads to a kind of joint non-integrability between the stable and unstable foliations,
which is uniform in microscopic scales and is somewhat stable in perturbation. See also
Remark 2.16.

2. The non-integrability condition

Below we suppose 3≤ r ≤ ∞ and consider aCr Anosov flow f t : M → M preserving
a Cr volumeµ on M, which may not be the Riemann volumem. Let v be theCr−1 vector
field generating the flowf t. Since the argument below does not depend on the choice of
the Riemann metric‖ · ‖ on M essentially, we may and do assume that‖v‖ ≡ 1 without loss
of generality.

In some parts of our argument, we will need to check that some constants can be taken
uniformly for the flows in a sufficiently smallCr open neighborhood off t that preserveCr
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volume forms sufficiently close toµ. To this end, we put the subscript∗ to the symbols
of them and useC∗ as a generic symbol for such constants. Also we will writeO∗(·) for a
term which is bounded in absolute value by the quantity inside the parenthesis multiplied
by some constantC∗.

2.1. Anosov flows. From the definition of Anosov flow, there is anf t-invariant continuous
decomposition of the tangent bundle

(2) T M = E0 ⊕ Es ⊕ Eu with dimE0 = dimEs = dimEu = 1

such thatE0 = 〈v〉 and, for some positive constantsC∗ > 0 andχ∗ > 0,

(3) |D f t
x|Es | ≤ C∗e

−χ∗t, |D f t
x|Eu | ≥ C−1

∗ eχ∗t for all t ≥ 0.

The decomposition dual to (2) isT∗M = E∗0 ⊕ E∗s ⊕ E∗u where

E∗0 = (Es ⊕ Eu)⊥, E∗s = (Eu ⊕ E0)⊥, E∗u = (Es ⊕ E0)⊥.

The distributionE0 is Cr−1, but Es andEu are not evenC1 in general. Note however that
we have

(4) ∠(Es(p),Es(q)) ≤ C∗|p− q| · 〈log〈|p− q|〉〉

in local charts2. This is same forEu andE∗0.

Remark 2.1. The non-smoothness ofEs andEu mentioned above is caused by their vari-
ation in the flow direction. Indeed, the subbundlesE∗u = (Es ⊕ E0)⊥ andE∗s = (Eu ⊕ E0)⊥

areC1 and we have

(5) ∠(E∗u(p),E∗u(q)) ≤ C∗|p− q|

in local charts and the same forE∗s.

2.2. The intrinsic metric on stable and unstable manifolds.Let Ws(p) andWu(p) be
the stable and unstable manifolds passing through a pointp ∈ M. Below we discuss about
twist of the stable subbundleEs along the unstable manifoldWu(p). Note that we can
develop the parallel argument about twist of the unstable subbundleEu along the stable
manifoldWs(p) by considering the time-reversal of the flowf t.

We define aCr−1 metric onWu(p) by

(6) |v|Wu(p) = lim
t→−∞

log
‖D f t

q(v)‖

‖D f t
p|Eu‖

for v ∈ TqWu(p) at q ∈Wu(p)

where‖ · ‖ denotes the Riemann metric.

Lemma 2.2. If f t sends Wu(p) to Wu(p′), it brings the metric| · |Wu(p) to | · |Wu(p′) up to
multiplication by a positive constant. If ft(p) = p′, the multiplier is just‖D f t(p)|Eu‖.

Let wu
p : R → M be theCr parametrization ofWu(p) by the arc length with respect

to the metric| · |Wu(p) such thatwu
p(0) = p. (We do not care about the direction of the

parametrization.) For an open intervalJ ⊂ R, let Wu
J(p) := wu

p(J) ⊂Wu(p).

2It is of course possible to formulate (4) without using localcharts by introducing a parallel transport.
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2.3. Sections of normal bundle of stable manifolds.For a pointp ∈ M and an interval
J ⊂ R, letΓu(p, J) be the space of continuous sectionsγ : Wu

J(p)→ T∗M of the cotangent
bundleπ : T∗M → M on Wu

J(p) such thatγ(q) ∈ T∗qM is normal to the tangent space
TqWu(p) at eachq ∈ Wu

J(p). Let Γu
1(p, J) ⊂ Γu(p, J) be the subset that consists ofγ ∈

Γ
u(p, J) satisfying〈γ(q), v(q)〉 = 1 at eachq ∈Wu

J(p).
Let γ⊥p,J ∈ Γ

u(p, J) be either of the twoCr−1 sections such that

〈γ⊥p,J(q), u〉 = ±µ(v(q), (wu
p)
′(τ), u) for anyu ∈ T∗qM at eachq = wu

p(τ) ∈Wu
J(p).

Also we tentatively3 fix a Cr−1 sectionγ0
p,J ∈ Γ

u
1(p, J). At this moment we assume only

that the sectionsγ0
p,J are bounded inCr−1 sense uniformly forp andJ with J ⊂ (−1, 1).

We may then express each sectionγ ∈ Γu
1(p, J) as

(7) γ(q) = γ0
p,J(q) + ψγ(τ) · γ

⊥
p,J(q) for τ ∈ J with q = wu

p(τ)

whereψγ : J→ R is a continuous section. The last functionψγ is called the representation
function ofγ ∈ Γu

1(p, J). We define the (maximum) curvatureκ(γ) of γ ∈ Γu
1(p, J) by

κ(γ) = sup{|ψ′′γ (τ)| | τ ∈ J}.

This definition depends on the choice of the sectionsγ0
p,J and hence the value ofκ(γ) itself

does not make good sense.
For aCr−1 sectionγ ∈ Γu

1(p, J) andt ∈ R, there is a unique sectionγt ∈ Γ
u
1( f t(p), J(t))

with J(t) = ±|D f t |Eu(p)| · J such thatf t(Wu
J(p)) =Wu

J(t)( f t(p)) andγ(q) = (D f t)∗γt( f t(q)).
The curvatureκ(γt) of γt tends to infinity ast → −∞ in most cases, but may be bounded
for someγ.

Definition 2.3. A Cr−1 sectionγ ∈ Γu
1(p, J) is said to bestraight if κ(γt) is bounded for

∀t ≤ 0.

Notice that this definition does not depend on the choice of the sectionsγ0
p,J, by virtue

of the boundedness assumption we made on their choice. To describe the space of straight
sections, we introduce the following definition.

Definition 2.4. Cr−1 functionsψ0, ψ1 : J→ R are said to beA-equivalentif (ψ0−ψ1)′′(τ) =
0 for all τ ∈ J. Cr−1 sectionsγ0, γ1 ∈ Γ

u
1(p, J) are said to beA-equivalentif their represen-

tation functionsψγ0 andψγ1 (defined above in (7)) areA-equivalent.

Lemma 2.5. For any point p∈ M and any interval J⊂ R, there exists a straight section
γ0 ∈ Γ

u
1(p, J). A Cr−1 sectionγ ∈ Γu

1(p, J) is straight if and only if it is A-equivalent toγ0.
If a Cr−1 sectionγ ∈ Γu

1(p, J) is straight, thenγt ∈ Γ
u
1( f t(p), J(t)) is again straight.

Proof. If f t sends aCr−1 sectionγ ∈ Γu
1(p, J) toγt ∈ Γ

u
1(p(t), J(t)), the expression functions

of γt is related to that ofγ as

(8) ψγt (τ) = a(t)ψγ(a(t)−1τ) + ψ̃p,t(τ), a(t) = ±|D f t |Eu(p)|

whereψ̃p,t is aCr−1 function. For anyt0 > 0, theCr−1 norm of the functioñψp,t is bounded
uniformly for p ∈ M and t ∈ R with |t| ≤ t0. Differentiating the both sides of (8) with
respect toτ twice and changing the variableτ, we obtain

(9) ψ′′γ (τ) = a(t)ψ′′γt
(a(t)τ) + a(t)ψ̃′′p,t(a(t)τ).

Note thata(t)→ 0 exponentially ast → −∞. By recursive application of (9) for 0≤ t ≤ t0,
we see that the right hand side of (9) converges to a uniqueCr−3 functionϕ as t → −∞

3Later we will choose it more carefully at the end of this section.
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provided thatκ(γt) = ‖ψ′′γt
‖∞ is bounded fort ≤ 0. Hence aCr−1 sectionγ ∈ Γu

1(p, J) is
straight if and only ifψ′′γ = ϕ. This implies the former two statements. The last statement
is an immediate consequence of the definition. �

Since the choice of the sectionsγ0
p,J of reference was rather arbitrary, we henceforth

assume without loss of generality that the sectionsγ0
p,J are straight sections. (This is just

for avoiding to introduce a new notation.) Further, in the caseJ = (−1, 1), we specifyγ0
p,J

as the unique straight section satisfying the condition

(10) γ0
p,(−1,1)(w

u
p(τ)) = E∗0(wu

p(τ)) for τ = ±1.

2.4. The definition of s-templates. Let γs
p,J ∈ Γ

u
1(p, J) be the unique continuous section

such thatγs
p,J(q) ∈ E∗0(q) for q ∈Wu

J(p) and letψs
p,J : J→ R be its representation function.

(The superscripts in γs
p,J indicates that it represents the direction ofEs.) Note thatψs

p,J is

not evenC1 in general but satisfies

(11) |ψs
p,J(τ

′) − ψs
p,J(τ)| ≤ C∗|τ

′ − τ| · 〈log |τ′ − τ|〉 for τ, τ′ ∈ J

as a consequence of (4).

Definition 2.6. The functionsψs
p,(−1,1) for p ∈ M are called thes-templatesfor the flow f t.

We writeT = T( f t) = {ψs
p,(−1,1) | p ∈ M} for the set ofs-templates for the flowf t.

The reason for the name “template” can be found in the next lemma.

Lemma 2.7. For any q∈ M and anyδ ∈ (0, 1), there exists t> 0 such that

(12) ψs
q,(−δ,δ)(τ) = δ · ψ

s
p,(−1,1)(δ

−1τ) + ατ + β with p= f t(q)

where |α| ≤ C∗(| logδ| + 1) and |β| ≤ C∗. In particular, ψs
q,(−δ,δ) is A-equivalent to the

functionτ 7→ δ · ψs
p,(−1,1)(δτ) obtained fromψs

p,(−1,1) by a scaling.

Proof. Let δ < δ′ ≤ 1 and taket > 0 such thatf t(Wu
(−δ,δ)(q)) = Wu

(−δ′ ,δ′)(p) with p = f t(q).
Let γ̃0

q,(−δ,δ) be the pull-back ofγ0
p,(−1,1) by f t and letψ̃0

q,(−δ,δ) be its representation function.
Then, from (8), we have

(13) ψs
q,(−δ,δ)(τ) = (δ/δ′) · ψs

p,(−δ′ ,δ′)((δ
′/δ)τ) + ψ̃0

q,(−δ,δ)(τ).

Sinceγ̃0
q,(−δ,δ) is straight,ψ̃0

q,(−δ,δ)(τ) is an affine function ofτ. We therefore obtain (12) as
the caseδ′ = 1. The estimates onα andβ are obtained by recursive application of (13) and
the fact thatψ̃0

q,(−δ,δ) is bounded if the ratioδ′/δ is bounded. �

Remark 2.8. As we noted in the beginning of Subsection 2.2, we can developthe argument
above for the time-reversal off t in parallel. The objects corresponding to

| · |Wu(p), Wu
J(p), wu

p(·), Γ
u(p, J), Γu

1(p, J), γ⊥p,J, γ0
p,J, γs

p,J, ψs
p,J

in such argument will be denoted respectively by

| · |Ws(p), Ws
J(p), ws

p(·), Γs(p, J), Γs
1(p, J), γ̂⊥p,J, γ̂0

p,J, γu
p,J, ψu

p,J.
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2.5. The non-integrability condition. Now we put the following definition.

Definition 2.9. Let 0< ρ < 1. We say that aC3 Anosov flow f t on M preserving a smooth
volumeµ satisfies the non-integrability condition (NI)ρ if, for sufficiently largeb > 0, it
holds

(14)

∣∣∣∣∣∣

∫ 1

−1
exp(ib (ψ(τ) + ατ)) dτ

∣∣∣∣∣∣ < b−ρ

for all s-templatesψ ∈ T andα ∈ R.

Remark 2.10. From (4), thes-templatesψ ∈ T are Hölder continuous with any exponent
0 < β < 1 and the Hölder coefficients are bounded by some constantCβ,∗. Hence, for each
δ > 0, the condition (14) holds for free ifα > b1+δ andb is sufficiently large. (For instance,
we can check this by using “regularized” integration by parts given in Lemma 6.12.)

Remark 2.11. From Lemma 2.7, we can see that the non-integrability condition (NI)ρ
remains unchanged if we replace the Riemann metric onM by another Riemann metric
and the volumeµ by its scalar multiple.

The main theorem, Theorem 1.1, follows if we prove the following two theorems.

Theorem 2.12.Let 3 ≤ r < ∞. If we let0 < ρ < 1 be sufficiently small depending only on
r, the subset of flows that satisfy the non-integrability condition (NI)ρ is dense inFr

A.

Theorem 2.13. If f t
0 ∈ F

3
A satisfies the non-integrability condition(NI)ρ for some0 < ρ <

1, there exists an open neighborhoodV of f t
0 in F3

A such that all ft ∈ V are exponentially
mixing and further that the decay estimate (1) holds for all ft ∈ V with uniform constants
Cα and cα.

We prove Theorem 2.12 in the next section, Section 3. We proveTheorem 2.13 in
Section 6, after preparation in Section 4 and Section 5.

2.6. Approximate infinitesimal non-integrability. We finish this section by a discussion
on another idea about joint non-integrability of the stableand unstable foliation, which is
related closer to the idea of uniform non-integrability condition introduced by Chernov[4].
Let us consider how the flowf t twists the tangent bundle along local unstable (resp. stable)
manifolds. Consider a pointq ∈ M and a positive number 0< δ < 1. Note that we have
specified the straight sectionsγ0

q,J whenJ = (−1, 1), but not yet for the caseJ = (−δ, δ)
with 0 < δ < 1. There are two different but natural ways to choose a straight section in
Γ

u
1(q, (−δ, δ)):

(a) we take it as a restriction ofγ0
q,(−1,1) to Wu

(−δ,δ)(q) ⊂Wu
(−1,1)(q), or

(b) recalling Lemma 2.7, we taket > 0 such thatf t(Wu
(−δ,δ)(q)) = Wu

(−1,1)(p) with

p = f t(q) and let it be the pull-back ofγ0
p,(−1,1) ∈ Γ

u
1(p, (−1, 1)) by f t.

We denote the straight sections obtained in (a) and (b) byγ0
q,(−δ,δ) andγ†q,(−δ,δ) respectively.

They are both straight sections and henceA-equivalent. The difference between their ex-
pression functions are affine function and the coefficient of its linear part can be understood
as the torsion thatf t (with t in (b) above) makes alongWu

(−δ,δ)(q). For this reason, let us
write

(15) γ†q,(−δ,δ)(τ) = γ
0
q,(−δ,δ)(τ) + ψ

†

q,(−δ,δ)(τ) · γ
⊥
q,(−δ,δ)(τ)

with an affine functionψ†q,δ(τ) and set

Tors(q, δ) := (ψ†q,δ)
′(0) = (ψ†q,δ)

′(τ) for τ ∈ (−δ, δ).
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Applying the parallel argument to the time-reversal off t, we introduce the section ˆγ†q,(−δ,δ),

the functionψ̂†q,δ and Toru(q, δ) which correspond toγ†q,(−δ,δ), ψ
†

q,δ and Tors(q, δ) respec-
tively. In the next definition, we assume

〈γ⊥q,(−δ,δ)(0), (ws
q,(−δ,δ))

′(0)〉 > 0, 〈γ̂⊥q,(−δ,δ)(0), (wu
q,(−δ,δ))

′(0)〉 > 0.

Definition 2.14. Forq ∈ M and 0< δ < 1, we set

∆(q, δ) = Toru(q, δ) − Tors(q, δ)(16)

and call it theinfinitesimal approximate non-integrabilityat q ∈ M in the scaleδ.

Lemma 2.15. For σ = s, u, 0 < δ, δ′ < 1, q ∈ M and t∈ R, we have

|Torσ(q, δ) − Torσ(q, δ′)| < C∗〈log(δ′/δ)〉 and hence |Torσ(q, δ)| < C∗〈logδ〉,(17)

|Torσ( f t(q), δ) − Torσ(q, δ)| ≤ C∗〈t〉, and hence|∆( f t(q), δ) − ∆(q, δ)| ≤ C∗〈t〉(18)

and

|Torσ(q′, δ) − Torσ(q, δ)| ≤ C∗ if d(q, q′) < δ(19)

where (and henceforth)〈s〉 denotes some fixed C∞ function of s such that〈s〉 = |s| if |s| ≥ 1
and〈s〉 ≥ 1 for any s.

Proof. Below we prove the claims in the caseσ = s. We can prove the claims in the case
σ = u in parallel manner considering the time reversal of the flowf t. Note first of all that
Tors(q, 1) = 0 by definition. For anyt0 > 0, we have

|Tors(q, δ) − Tors( f t(q), |D f t
q|Eu | · δ)| ≤ C∗ for 0 ≤ t ≤ t0 and 0< δ < |D f t

q|Eu |
−1.

By recursive application of this estimate, we see that, for any t > 0,

(20) |Tors(q, δ) − Tors( f t(q), |D f t
q|Eu | · δ)| ≤ C∗〈t〉 for 0 < δ < |D f t

q|Eu |
−1.

Also we have that, for 0< δ ≤ δ′ ≤ 1,

(21) |Tors(q, δ) − Tors(q, δ′)| = |Tors( f t(q), δ/δ′) − Tors( f t(q), 1)| = |Tors( f t(q), δ/δ′)|

wheret ≥ 0 is such that|D f t
q|Eu | · δ

′
= 1. The last two estimates yield (17). Then (18)

follows from (17) and (20). Ifq′ ∈Wu
(−δ,δ)( f t(q)) for somet ∈ (−1, 1), we have

|Tors(q′, δ) − Tors(q, δ)| = |Tors( f t(q′), δ′) − Tors( f t(q), 1)| +C∗ < C∗

wheret > 0 is such that|D f t
q|Eu | · δ = 1 and we setδ′ = |D f t

q′ |Eu | · δ so thatC−1
∗ < δ′/δ < C∗.

Hence, for the proof of (19), we may assume thatq′ ∈ Ws
(−2δ,2δ)(p). But, under such

assumption, we can prove the claim easily because the distance betweenf t(q) and f t(q′)
is exponentially small with respect tot > 0. �

Remark 2.16. In the case of contact Anosov flows, the setT of s-templates consists of
a single trivialA-equivalence class [0]. Therefore our non-integrability condition (NI)ρ
excludes the case of contact Anosov flows (together with the suspension flows of Anosov
diffeomorphism with constant roof function!). For contact Anosov flows, we can set up
the straight sectionsγ0

p,J appropriately (and a bit differently from what we have done) so
that the approximate infinitesimal non-integrablility∆(q, δ) is constant and bounded away
from 0 for allq ∈ M andδ > 0, and this is sufficient for proving exponential mixing. In our
argument below, we will see that, if the absolute value of∆(q, δ) is sufficiently large at any
pointq ∈ M and at any small scaleδ > 0, the geometry of the stable and unstable foliations
is comparable to the case of contact Anosov flows and we can indeed show exponential
mixing. However the problem with the quantity∆(q, δ) is that it is not uniform in the
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scaleδ and this makes it difficult to control in perturbation. On the other hand, our non-
integrability condition (NI)ρ is formulated in terms ofs-templates, which do not involve
the scaleδ, and therefore are stable and also can be controlled in perturbation to some
extent, as we will see in the proof of Theorem 2.12 in Section 3. Note that we will make
use of the non-integrability condition (NI)ρ only in the situation where the approximate
infinitesimal non-integrablity∆(q, δ) is not sufficiently large in absolute value.

3. Proof of Theorem 2.12

In this section, we prove Theorem 2.12. Let 3≤ r < ∞. We are going to perturb the
flows inFr

A by time-changes and deform thes-templates. We fix someR > 0 depending
only on r and show that we can change the values ofs-templates on each of many small
disjoint intervals in (−1, 1) of sizeb−1/R almost independently. This enables us to show
by the large deviation argument that the condition (14) is violated only with very small
possibility. As usual in perturbation argument in dynamical system theory, we will face
problems caused by interference between perturbations. But, one because the dynamics is
uniformly hyperbolic, the problem is fortunately not too difficult.

3.1. A probability measure on the space of functions.Let Cr (M) be the Banach space
of Cr functions. The translation onCr (M) by ϕ ∈ Cr (M) is written

τϕ : Cr (M)→ Cr (M), τϕ(u) = u+ ϕ.

In the argument below, we fix a Borel probability measureµ onCr (M) such thatµ(U) > 0
for any non-empty open subsetU ⊂ Cr (M), thatµ is quasi-invariant with respect to the
translationτϕ for anyϕ ∈ CR(M) with some largeR and further

(22) exp(−‖ϕ‖CR) ≤

∣∣∣∣∣∣
d((τϕ)∗µ)

dµ

∣∣∣∣∣∣ ≤ exp(‖ϕ‖CR) for anyϕ ∈ CR(M).

We refer [17, Lemma E] for existence of such measureµ andR> r.
In what follows, we consider an arbitraryf t ∈ F∞A and writev for the vector field that

generatesf t. We suppose thatW is a small neighborhood of the origin 0 inCr (M) and
will let it smaller if necessary. Letf t

ϕ for ϕ ∈ W be the flow generated by the vector field
vϕ = (1+ ϕ) · v. Notice that the flowf t

ϕ preserves the volumemϕ = (1+ ϕ)−1 ·m. Hence we
can apply the argument in Section 2 to the flowf t

ϕ with settingµ = mϕ.
For p ∈ M, α ∈ R andb > 0, let Xρ(p, α; b) ⊂ W be the set of functionsϕ ∈ W such

that the condition (14) for thisα andb fails for the s-template atp for the flow f t
ϕ. In the

following, we are going to estimate the measureµ(Xρ(p, α; b)) for p ∈ M, α ∈ R andb > 0
in order to prove Theorem 2.12.

Because of technical problems caused by interference of perturbations, we treat some
set of pointsp ∈ M as exceptions. Letτ∗ > 0 be constant defined for the flowf t such that,
for every periodic pointw ∈ M of the flow f t, its prime periodT(w) is larger than 10τ∗.
Then the modulus of hyperbolicity‖D f T(w) |Eu(w)‖ is greater thanλ∗ := e10χ∗τ∗ . Forb > 1
andp ∈ M, we set

(23) T(p, b) = inf {t ≥ 0 | |D f −t|Eu(p)| ≤ b−1/(4R)}.

Then let E(b) ⊂ M be the open set of pointsp ∈ M such that there exits a periodic
orbit with prime period less thanT(p, b) whose minimum distance fromWu

(−c∗ ,c∗)
(p) with

c∗ = 2(1− λ−1
∗ )−1 is less thanb−1/(2R).

For sufficiently smallρ > 0, we show the following proposition.
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Proposition 3.1. For sufficiently large b> 0, we have

µ(Xρ(p, α; b)) < exp(−bρ)

for p ∈ M \ E(b) andα ∈ R.

The proof of this proposition will be given in the following subsections. Below we
deduce Theorem 2.12 from this proposition. Note thatXρ(p, α; b) = ∅ for α with |α| ≥ b2

from Remark 2.10, provided thatb is sufficiently large. Letρ′ be a real number such that
0 < ρ′ < ρ.

Corollary 3.2. For sufficiently large b> 0, we have

µ


⋃

p∈M\E(b)

⋃

α∈R

Xρ′(p, α; b)

 < exp(−bρ/2).

Proof. If we take a finite but sufficiently dense subset of points{(pi , αi)}Ii=1 in

(M \ E(b)) × {α ∈ R | |α| < b2}

depending onb, then, by approximation, the union of the subsetsXρ(pi , αi ; b) will cover⋃
p∈M\E(b)

⋃
α∈R Xρ′(p, α; b). By crude estimate, we can see that the cardinalityI of the

finite set necessary for this to be true is bounded by a polynomial order inb. Therefore we
obtain the conclusion from Proposition 3.1. �

Next we prove the following lemma which tells basically thatif the condition (14) holds
for all p < E(b), it also holds forp ∈ E(b). We say that a flowf t

ϕ satisfies the condition
(NI)ρ,b for b > 0 if the condition (14) for thisb holds for all thes-templates (forf t

ϕ) and
α ∈ R. Let us writeWu

J(p;ϕ) andwu
p(τ;ϕ) for the (piece of) unstable manifoldWu

J(p) and
its intrinsic parametrizationwu

p(τ) defined for the flowf t
ϕ. Let ρ′′ be a real number such

that
0 < ρ′′ < ρ′(1− ρ′) < ρ′.

Lemma 3.3. If b > 0 is sufficiently large and ifϕ ∈ W does not belong to the subset⋃
p∈M\E(b′ )

⋃
α∈R Xρ′ (p, α; b′) for any integer b′ with b1−ρ′ ≤ b′ ≤ ⌈b⌉, then the flow ftϕ

satisfies the condition(NI)ρ′′,b.

Proof. Suppose thatb is a sufficiently large integer. (The case whereb is not an integer
will be considered at the end.) From the assumption, the condition (14) withρ replaced by
ρ′′ (for anyα) holds for thes-templates at the points inM \ E(b). It is therefore enough to
prove the estimate (14) withρ replaced byρ′′ for the s-templates atp ∈ E(b) andα ∈ R
with |α| < b2. To show this, we will use the following simple fact: forq ∈ M and 0< δ < 1,
we taket > 0 such that|D f t |Eu(q)| = δ−1; then we have

(24)
1
2δ

∣∣∣∣∣∣

∫ δ

−δ

exp(ib(ψs
q,(δ,δ)(τ) + ατ))dτ

∣∣∣∣∣∣ =
1
2

∣∣∣∣∣∣

∫ 1

−1
exp(iδb(ψs

p,(−1,1)(τ) + α
′τ))dτ

∣∣∣∣∣∣
for p = f t(q) and someα′ ∈ R. Of course this is true also for the flowf t

ϕ.
Suppose thatp ∈ E(b). From the definition of the setE(b), there exists a unique periodic

orbit γ with prime period less thanT(p, b) whose distance fromWu
(−c∗ ,c∗)

(p) is less than

b−1/(2R). We can take4 an isolating neighborhoodU of γ so that it includes theb−1/(3R)-
neighborhood ofWu

(−c∗ ,c∗)
(p) and that the flowf t

ϕ in U exhibits simple hyperbolic behavior

4 If λ∗ > 1 is close to 1 andc∗ is large, the picture of the flow in Figure 1 will be much distorted in reality. But
this does not make essential problems provided thatb is large. If one likes, one can change the Riemann metric
in order to reduce the distortion.
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b
b

p
Intersection withγ

Wu
(−c∗ ,c∗)

(p)

Intersection withU

Figure 1. A picture of the flowf t in a section transversal to the flow that
contains the unstable manifoldWu

(−c∗ ,c∗)
(p). The dashed curve indicate

the move of points by the return map to the section. There are afew
different cases for the relative position ofp to the intersection withγ.

as depicted in Figure 1. In particular, we may and do suppose thatγ is the unique periodic
orbit of f t that is contained entirely inU.

We divideWu
[−1,1](p;ϕ) into finitely many pieces

Wk =Wu
[−δ(k),δ(k)] (qk;ϕ) with qk ∈Wu

(−1,1)(p;ϕ)

for 0 ≤ k ≤ k(p), and apply (24) to each of the pieces. Letq be the point inWu
[−1,1](p;ϕ)

closest to the periodic orbitγ. We can and do take the piecesWk so that

• for k = 0, we takeb−ρ
′

/8 ≤ δ(0) ≤ b−ρ
′

/4 andq0 so thatW0 = Wu
[−δ(0),δ(0)](q0;ϕ)

contains theδ(0)-neighborhood of the pointq in Wu
[−1,1](p;ϕ), and

• for 1 ≤ k ≤ k(p), we takeb−ρ
′

≤ δ(k) ≤ 1 andqk so thatδ(k)b is an integer and
thatC−1

∗ d(qk, q) ≤ δ(k) ≤ C∗d(qk, q).

We regard the pieceW0 as an exception. But this does not make any problem because its
length is 2δ(0) ≤ b−ρ

′′

/2. Each of the piecesWk for 1 ≤ k ≤ k(p) will eventually goes out
of the isolating neighborhoodU by the flow f t

ϕ (at some positive time) and its length will
grow to the unit size. Let us taketk > 0 so that|D f tk

ϕ |Eu(qk)| = δ(k)−1, that is,

f tk
ϕ (Wu

(−δ(k),δ(k))(qk;ϕ)) =Wu
(−1,1)( f tk

ϕ (qk);ϕ).

We claim thatf tk
ϕ (qk) for 1 ≤ k ≤ k(p) does not belong toE(δ(k)b). We can prove this by

contradiction. Suppose that this were not the case. Then, bydefinition, there would be a pe-
riodic orbitγ′ with period less thanT( f tk

ϕ (qk), δ(k)b) whose distance fromWu
(−c∗ ,c∗)

( f tk
ϕ (qk))

is bounded by (δ(k)b)−1/(2R). Since we are assuming thatρ is small, we may suppose that
tk/T(p, b) is close to 0 andT( f tk

ϕ (qk), δ(k)b)/T(p, b) is close to 1. Noting thatf −tk
ϕ sendsγ′

to itself (of course) and thatf t
ϕ is a time-change off t, we see that the distance betweenγ′

andWu
(−c∗ ,c∗)

(p) is less thanb−1/(3R). Further, tracing the orbitγ′ backward, we see from the
definition ofT(p, b) that the periodic orbitγ′ must be entirely contained inU and therefore
γ′ = γ. But this is impossible from the construction of the piecesWk, provided thatδ(k) is
sufficiently small according toc∗.
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Now we can apply (24) to the piecesWk for 1 ≤ k ≤ k(p) and use the assumption of the
lemma to bound the integral in (14) for thes-template atp on eachWk. Then we obtain
the required estimate (14) withρ replaced byρ′′.

Finally we consider the case whereb is not an integer. From the argument above, we
see thatf t

ϕ satisfies the condition (NI)ρ̃,⌈b⌉ for someρ′′ < ρ̃ < ρ′(1 − ρ′). Then we can
deduce thatf t

ϕ satisfies the condition (NI)ρ′′,b by using (24). This finishes the proof of
Lemma 3.3. �

From Lemma 3.3, we see that, ifϕ ∈W does not belong to the subset

⋃

L

∞⋂

ℓ=L


⋃

p∈M\E(ℓ)

⋃

α∈R

Xρ(p, α; ℓ)

 ,

the flow f t
ϕ satisfies the condition (NI)ρ′ for ρ′ < ρ(1 − ρ). Since theµ-measure of the

set above is 0 from Corollary 3.2 and Borel-Cantelli lemma, we can find arbitrarily small
ϕ ∈ Cr (M) such that the flowf t

ϕ satisfies the non-integrability condition (NI)ρ/2. By a
theorem of Moser[14], there is aCr diffeomorphismΦϕ : M → M which transfers the
volumemϕ = (1+ ϕ)−1m to m, andΦϕ converges to the identity inCr sense asϕ converges
to 0. Therefore, taking conjugation off t

ϕ by such diffeomorphismΦϕ and recalling Remark
2.11, we obtain aCr flow in Fr

A which is arbitrarily close tof t in theCr sense and satisfies
the non-integrability condition (NI)ρ/2. We have finished the proof of Theorem 2.12.

3.2. Perturbation family. In this subsection, we explain the scheme of perturbation for
the proof of Proposition 3.1. Suppose thatb > 0 is large and that a pointp ∈ M \ E(b)
andα ∈ R with |α| < b2 are given arbitrarily. Below we set up functionsϕ j ∈ C∞(M) for
1 ≤ j ≤ ⌈b1/R⌉ and then, for arbitraryϕ0 ∈ W and a setJ of integers 1≤ j ≤ ⌈b1/R⌉, we
consider the family of vector fields

(25) vt = (1+ ϕt) · v where ϕt = ϕ0 +

∑

j∈J

t j · ϕ j and t = (t j) ∈ [−2, 2]J.

Once we fix such family of vector fields, we writef t
t = f t

ϕt
for the flow generated byvt.

Let us setq = f 4τ∗ (p) and recall the intrinsic parameterizationwu
q : R → M of the

unstable manifoldWu(q) of q ∈ M for the flow f t so that we havef 4τ∗ (wu
p(τ)) = wu

q(λτ)
with λ = ‖D f 4τ∗ |Eu(p)‖. For 1≤ j ≤ ⌈b1/R⌉, let

s( j) = −1+ 2 j · b−1/R ∈ [−1, 1+ 2b−1/R]

and then put
p( j) = wu

p(s( j)), q( j) = f 4τ∗ (p( j)) = wu
q(λs( j)).

Also we take a local coordinate chart

κ j = κp, j : U j → B(0, r∗) × [−τ∗, 6τ∗],

on a neighborhoodU j of p( j) ∈ M, so that it provides flow box coordinates5 for the flow
f t satisfyingκ j(p( j)) = (0, 0) andκ j(q( j)) = (0, 4τ∗). We may and do assume that these
coordinates are bounded inCr sense uniformly inj (and also inb andp), that they transfer
the volumem to the standard volumedxdydzonR3 and further that

κ j(w
u
q( j)(λτ)) = κ j( f 4τ∗ (wu

p( j)(τ))) = (τ, 0, 0) for τ ∈ [−2b−1/R, 2b−1/R].

5By “flow box coordinates”, we mean aCr local coordinates (x, y, z) on M in which f t moves (x, y, z) to
(x, y, z+ t) whent is small.
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b

b

The support ofϕ j

qq( j)

p( j) pWu
(−1,1)(p)

Figure 2. A picture of the flowf t in a section parallel to the flow that
contains the unstable manifoldWu

(−1,1)(p).

See Figure 2. We take and fix aC∞ functionsh0 : R2 → [0, 1] supported on the disk
|(x, y)| ≤ 3/2 such thath0(x, y) = y if |(x, y)| ≤ 1. Letχ : R→ [0, 1] be aC∞ function such
thatχ(s) = 1 if |s| ≤ 1 andχ(s) = 0 if |s| ≥ 3/2. Then we define

ϕ j : M → [0, 1] for 1 ≤ j ≤ ⌈b1/R⌉

by
ϕ j(m) = −a−1

0 b−1−1/R · χ
(
(z− 4τ∗)/τ∗

)
· h0

(
b1/Rx, b1/Ry

)

for m ∈ M with κ j(m) = (x, y, z), wherea0 = π
∫
χ(z/τ∗)dz.

Remark 3.4. The motivation for the choice of functionsϕ j above is explained as follows.
Suppose thatj ∈ J, ϕ0 = 0 andti = 0 for i , j in t = (ti). Then, in the local chartκ j ,
the vector fieldvt will look (κ j)∗vt = (1 + t jϕ j)∂z and hence, ifw = (x, y) ∈ R2 satisfies
|w| ≤ b−1/R, the mapf −4τ∗

t takes a point (w, 4τ∗) to (w, b−1πyt j+O(t2j )). Hence, by changing
the parametert j , we will be able to rotate the stable subspaceEs(p( j)) around the unstable
manifoldWu

(−1,1)(p) by the rate proportional tob−1π provided that|t j | is sufficiently small.
Of course we will have to consider the influence of the perturbation from further future.
Also, sinceϕ0 may not be 0, we will have to introduce a slight adjustment related to the
coefficienta−1

0 .

The family of functionsϕ j satisfies

(26) ‖Dkϕ j‖∞ ≤ C∗b
((k−1)/R)−1 for 0 ≤ k ≤ R.

The intersection multiplicity of suppϕ j for 1 ≤ j ≤ ⌈b−1/R⌉ is bounded by 2. Hence,
regardless of the choice ofJ, we will have

(27) ‖ϕt‖CR < C∗b
−1/R, ‖∂tϕt‖C1 ≤ C∗b

−1, ‖ϕt − ϕ0‖C1 < C∗b
−1 whent ∈ [−2, 2]J.

As we noted in Remark 3.4, we would like to modify thes-templateψp,(−1,1) on the
intervals

J( j) := [s( j) − b−1/R, s( j) + b−1/R] ∩ [−1, 1]

almost independently by varying the parametert j in the family (25). To this end, we have
to choose the setJ a little carefully. First we observe that

(I1) f t(suppϕi) ∩ suppϕ j = ∅ for 1 ≤ i, j ≤ ⌈b1/R⌉ and 4τ∗ ≤ t ≤ T(p, b) − 4τ∗.



EXPONENTIAL MIXING 13

Indeed, if (I1) was violated, we could find a periodic orbitγ in theC∗b−1/R-neighborhood
of Ws

(−c∗ ,c∗)
(p) by the pseudo-orbit tracing property and the conditions inthe definition of

E(b) would hold for thisγ.
Next we make the following observation from the fact that thepre-imagef −t(Wu

(−1,1)(p))
of Wu

(−1,1)(p) shrink exponentially ast increases:

(I2) There is a subsetE(p, b) of integers 1≤ i ≤ ⌈b1/R⌉ with ♯E(p, b) ≤ C∗b3/(4R) such
that, if 1 ≤ j ≤ ⌈b1/R⌉ does not belong toE(p, b), the subsetf −t(Wu

(−1,1)(p)) does

not meet suppϕ j for t ≥ 0 satisfying|D f −t|Eu(p)| ≥ b−1.

Indeed, from (I1), the subsetf −t(Wu
(−1,1)(p)) for 0 ≤ t ≤ T(p, b)−4τ∗ does not meet suppϕ j

for any 1≤ j ≤ ⌈b1/R⌉. Since the length off −t(Wu
(−1,1)(p)) is bounded byC∗b−1/(4R) when

t = T(p, b) − 4τ∗ and shrink exponentially ast increases, we can find the exceptional set
E(p, b) in (I2).

Below we consider two subsetsJevenandJodd asJ, that consist of even and odd integers
1 ≤ j ≤ ⌈b−1/R⌉ respectively, but we exclude those inE(p, b) in (I2) above and also thosej
for which J( j − 1)∪ J( j)∪ J( j + 1) contains either of−1 or 1. Then, forJ = Jeven, Jodd, we
have obviously

(I3) suppϕi ∩ suppϕ j = ∅ if i , j ∈ J.
(I4) J( j − 1)∩ J( j) ∩ J( j + 1) does not contain−1 nor 1 for j ∈ J.

Note that the number of integers 1≤ i ≤ ⌈b−1/R⌉ that does not belongJeven∪Jodd is bounded
by C∗b3/(4R) and hence the Lebesgue measure of the union ofJ(i) for suchi’s is bounded
by C∗b−1/(4R). So these exceptions are negligible when we consider the estimate (14) in the
following subsections.

3.3. Deformation of s-templates. In this subsection, we suppose thatJ is either of the
subsetsJeven andJodd and observe how thes-template at the pointp is deformed in the
perturbation family (25) with arbitraryϕ0 ∈W.

For each parametert ∈ [−2, 2]J, we writeWu
(−1,1)(p; t) = Wu

(−1,1)(p;ϕt) andwu
p(τ; t) =

wu(τ;ϕt) for brevity. LetTqM = E0(q; t) ⊕ Es(q; t) ⊕ Eu(q; t) be the hyperbolic decompo-
sition for the flow f t

t corresponding to (2) forf t. Let

γ0
p,t , γ

⊥
p,t , γ

s
p,t : Wu

(−1,1)(p; t)→ T∗M

be the sectionsγ0
p,(−1,1), γ

⊥
p,(−1,1), γ

s
p,(−1,1) considered in Section 2 but now defined for the

perturbed flowf t
t . Then thes-template for the flowf t

t at p ∈ M is the continuous function
ψs

p,(−1,1)(·; t) : (−1, 1)→ R satisfying

γs
p,t(w) = ψs

p,(−1,1)(τ; t) · γ⊥p,t(w) + γ0
p,t(w) for w = wu

p(τ; t).

Actually it is not a very simple task to observe how the functionψs
p,(−1,1)(·; t) varies, because

the framesγ⊥p,t andγ0
p,t will also vary. In order to simplify the argument, we consider an

approximation ofψs
p,(−1,1)(·; t). Let γ̃s

p,t : Wu
(−1,1)(p; 0) → T∗M be the unique continuous

section inΓu
1(p, (−1, 1)) for the flow f t

0 (!) such that ˜γs
p,t(q) is normal toEu(q; 0) ⊕ Es(q; t)

for q ∈Wu
(−1,1)(p; 0). Then we express ˜γs

p,t as

(28) γ̃s
p,t(w) = ψ̃s

p,(−1,1)(τ; t) · γ⊥p,0(w) + γ0
p,0(w) for w = wu

p(τ; 0)

using a unique continuous functioñψs
p,(−1,1)(·; t) : (−1, 1) → R. In the next lemma, we

show that the last functioñψs
p,(−1,1)(·; t) is a sufficiently good approximation ofψs

p,(−1,1)(·; t).
Before stating the lemma, we note that there exist functions

h : [−2, 2]J → R and T : (−1, 1)× [−2, 2]J → R
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such thath(0) = 0 andT(0, 0) = 0 and that

wu
p(h(t) · τ; t) = fT(τ,t)(wu(τ; 0)).

This is a consequence of the definition of the intrinsic metric (6) and the fact that our
perturbation does not change the flow lines.

Lemma 3.5. For t ∈ [−2, 2]I , we have|h(t) − 1| ≤ C∗b−2 and

|ψ̃s
p,(−1,1)(τ; t) − ψs

p,(−1,1)(h(t) · τ; t)| < C∗b
−1−(1/(4R)) for τ ∈ (−1, 1).

Proof. From the observation (I2), it is not difficult to see that theC1 distance between
Wu

(−1,1)(p; t) andWu
(−1,1)(p; 0) is bounded byC∗b−2 and therefore we have

(29) |h(t) − 1| ≤ C∗b
−2 and ‖∂τT(τ; t)‖∞ ≤ C∗b

−2.

Next we consider the sectionsγs
p,(−1,1)(·; t), γ⊥p,(−1,1)(·; t) andγ0

p,(−1,1)(·; t). For convenience,
we look them in flow box coordinates for the flowf t

0 aroundWu
(−1,1)(p; 0), which are

also flow box coordinates forf t
t for t ∈ [−2, 2]J. (Accordingly we regardγs

p,(−1,1)(·; t),
γ⊥p,(−1,1)(·; t) andγ0

p,(−1,1)(·; t) as mappings from (−1, 1) toR3.) Then, from (29), we have

(30) γ⊥p,(−1,1)(w
u
p(h(t) · τ; t); t) = γ⊥p,(−1,1)(w

u
p(τ; 0); 0) + O∗(b

−2)

and

(31) γs
p,(−1,1)(w

u
p(h(t) · τ; t); t) = γs

p,(−1,1)(w
u
p(τ; 0); t) + O∗(b−2).

Recall thatγ0
p,(−1,1)(·; t) is defined as the unique straight section satisfying (10), that is,

γ0
p,(−1,1)(w

u
p(±1; t); t) = γs

p,(−1,1)(w
u
p(±1; t); t).

And, for the quantities on the right-hand side, we have

‖γs
p,(−1,1)(w

u
p(±h(t); t); t)− γs

p,(−1,1)(w
u
p(±1;0); 0)‖ < C∗b

−1−(1/(4R)).

from the condition (I4). Therefore we have

‖γ0
p,(−1,1)(w

u
p(±1; t); t) − γ0

p,(−1,1)(w
u
p(±1;0); 0)‖ < C∗b

−1−(1/(4R))

from C2 boundedness of the sectionsγ0
p,(−1,1)(·; t) and (29). Now we recall from the proof

of Lemma 2.5 how the straight sections are determined as a limit in terms of the time
evolution along the orbit ofWu

(−1,1)(p; t) in thenegativetime direction. It is then easy to
see from (I2) and the last estimate above for the end points that

(32) ‖γ0
p,(−1,1)(w

u
p(h(t) · τ; t); t) − γ0

p,(−1,1)(w
u
p(τ; 0); 0)‖ < C∗b

−1−(1/(4R)) for τ ∈ (−1, 1).

The latter claim of the lemma follows from (30), (31) and (32). �

From Lemma 3.5, we have∣∣∣∣∣
∫

I
exp

(
ib

(
ψ̃s

p,(−1,1)(τ; t) + ατ
))

dτ −
∫

I
exp

(
ib

(
ψs

p,(−1,1)(τ; t) + ατ
))

dτ
∣∣∣∣∣ < C∗b

−1/(4R)

for any Borel subsetI ⊂ [−1, 1]. Therefore, in proving (14) forψ(τ) = ψs
p,(−1,1)(τ; t), we

may consider̃ψs
p,(−1,1)(τ; t) in the place ofψs

p,(−1,1)(τ; t).
To proceed, we introduce the mapping

Ψτ = Ψτ,p,α,b : [−2, 2]J → RJ

for eachτ ∈ (−b−1/R, b−1/R), defined by

Ψτ(t) = b ·
(
ψ̃s

p,(−1,1)(s( j) + τ; t) + α(s( j) + τ)
)

j∈J
.
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Let A(ϕ0) be the diagonal matrix of size♯J with diagonal elements

ã j(ϕ0) =

∫
(1+ ϕ0( f t(q( j))))−2 · χ(t/τ∗)dt

∫
χ(t/τ∗)dt

for j ∈ J.

This matrix is introduced for the adjustment mentioned at the end of Remark 3.4 and close
to identity forϕ0 ∈ W, provided that we letW be small. Later we will use the following
simple estimate:

(33) |ã j(ϕ̃0) − ã j(ϕ0)| < C∗‖ϕ̃0 − ϕ0‖∞ for ϕ̃0, ϕ0 ∈W.

The next lemma realize the idea in the construction of the perturbation family.

Proposition 3.6. If b > 0 is sufficiently large, we have
∥∥∥DΨτ(t) − π · A(ϕ0) : (RJ, ‖ · ‖max)→ (RJ, ‖ · ‖max)

∥∥∥ ≤ C∗b
−(1/(4R))

for t ∈ [−2, 2]J, p ∈ M \ E(b), α ∈ R and τ ∈ (−b−1/R, b−1/R), where we consider the
maximal norm‖(sj)‖max = maxj |sj | onRJ. Further, for the Jacobian, we have

| log detDΨτ(t) − log det
(
π · A(ϕ0)

)
| ≤ C∗ · ♯J · b

−(1/(4R)).

Proof. Note that the stable subspace at a pointw ∈ M for the flow f t
t can be expressed as

the limit

Es(w; t) = lim
t→∞

D f −t
t (E( f t

t (w)))

whereE(w) is, for instance, the one dimensional subbundle inTwM which is orthogonal
to Eu ⊕ E0 for f t. Hence, we can compute the differentials ofEs(w; t) and ψ̃s

p,(−1,1)(w; t)
with respect to the parametert as an integral of the infinitesimal contribution of the per-
turbation at timet ≥ 0. Since our perturbation preserves the flow lines, the differential of
ψ̃s

p,(−1,1)(w; t) is given in the form

∂t j ψ̃
s
p,(−1,1)(τ; t) =

∫ ∞

0
|D f t

0|Eu(wu
p(τ; 0))|−1 · X j(p, t, t) dt

whereX j(p, t, t) satisfies|X j(p, t, t)| < C∗b−1 and is non-zero only iff t
t (wu

p(τ; t)) ∈ suppϕ j .
(Though we can expressX j(p, t, t) in a explicit form by preparing some notation, this is not
necessary.) From the construction ofϕ j and the condition (I3), we have that

∫ 6τ∗

0
|D f t

0|Eu(w
u
p(τ; 0))|−1·X j(p, t, t) dt =


b−1π · ã j(ϕ0) + O∗(b−2), if τ ∈ J( j);

0, if τ ∈ J(i) for j , i ∈ J.

Also from (I3), we have

(34)
∫ ∞

6τ∗

|D f t
0|Eu(wu

p(τ; 0))|−1 · X j(p, t, t) dt ≤ C∗b
−1−(1/(4R)) for all τ ∈ (−1, 1).

Further, from (I1) and (I3), we make the following observations:

• each pointw ∈ M belongs to the support ofϕ j for at most onej ∈ J,
• if w ∈ suppϕ j for somej ∈ J, the orbit f t

t (w) for t ∈ [4τ∗,T(p, b) − 4τ∗] does not
meet

⋃
i∈J suppϕi , and

• if w ∈ suppϕ j and if f t
t (w) ∈ suppϕ j′ for some j′ ∈ J andt ≥ T(p, b) − 4τ∗, we

have|D f t
0|Eu(w)| ≥ C−1

∗ b−1/(4R).
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From these, we see that, forτ ∈ ∪ j∈JJ( j), we have

(35)
∫ ∞

6τ∗

|D f t
0|Eu(wu

p(τ; 0))|−1 · X j(p, t, t)dt ≤ C∗b
−2

except for a set ofj ∈ J (depending onτ) whose cardinality is bounded by 5R. This
together with the estimates above implies the first claim of the proposition. Also we can
prove the second claim using the formula det(I + X) = exp(

∑∞
k=1(−1)k+1(1/k)Tr Xk). �

3.4. Proof of Proposition 3.1. Let J be either ofJevenandJodd. Below we follow a stan-
dard argument in the large deviation theory[5]. First, using the fact that exp(s) ≤ 1+ s+ s2

when|s| ≪ 1 and that
∫ π

−π
Re (exp(is))ds= 0, we see

∫

[−π,π]J
exp

(
b−1/(8R) · Re

(∑

j∈J

exp(ix j)
))∏

j∈J

dxj

=

(∫ π

−π

exp
(
b−1/(8R) · Re

(
exp(ix)

))
dx

)♯J
≤ (1+ πb−1/(4R))♯J < exp(2πb−1/(4R) · ♯J).

From the former assertion of Proposition 3.6, we take a constantK∗ > 0 so that the subset

Y = {(x j) j∈J ∈ [−2, 2]J | ã j(ϕ0) · |x j | + K∗b
−1/(4R) < 1, ∀ j ∈ J}

satisfiesΨτ(Y) ⊂ [−π, π]J for τ ∈ (−b−1/R, b−1/R). Also, from the latter assertion, we see∫

Y
exp

(
b−1/(8R) · Re

∑

j∈J

exp
(
i Ψτ(t) j

) )
dt < exp

(
C∗♯J · b

−1/(4R)) · Leb(Y)

whereΨτ(t) j denotes thej-th component ofΨτ(t). We integrate the both sides with respect
to τ on [−b−1/R, b−1/R]. Then, noting that♯J ≤ b1/R, we find

1
2b−1/R

∫ b1/R

−b−1/R

∫

Y
exp

(
b−1/(8R) ·

∑

j∈J

Re exp
(
i
(
ψ̃s

p,(−1,1)(s( j) + τ; t) + α(s( j) + τ)
))

dτ
)
dt

<
1

2b−1/R
· exp

(
C∗b

3/(4R)) · Leb(Y).

By Jensen’s inequality applied to the exponential function, we deduce
∫

Y
exp

(b7/(8R)

2

∫

I
Re exp

(
i
(
ψ̃s

p,(−1,1)(τ; t) + ατ
))

dτ
)
dt <

1
2b−1/R

exp
(
C∗b

3/(4R)) · Leb(Y)

whereI = ∪ j∈JJ( j). This implies

Leb

{
t ∈ Y

∣∣∣∣∣Re
∫

I
exp

(
i
(
ψ̃s

p,(−1,1)(τ; t) + ατ
))

dτ > b−1/(16R)

}

< b1/R · exp
(
C∗b

3/(4R) − (1/2)b13/(16R))) · Leb(Y) < exp(−b3/(4R))

provided thatb is large.
In the argument above, we consider the real part of the function ψ̃s

p,(−1,1)(τ; t) + ατ. But
we can consider the imaginary part and also change the sign init. Therefore we conclude

1
Leb(Y)

· Leb

{
t ∈ Y

∣∣∣∣∣
∣∣∣∣∣
∫

I
exp

(
i
(
ψ̃s

p,(−1,1)(τ; t) + ατ
))

dτ
∣∣∣∣∣ > b−1/(16R)

}
≤ exp(−b−3/(4R))

provided thatb is sufficiently large. Finally, from the property (22) of the measureµ and
(33), we can now deduce the estimate

µ

{
ϕ ∈W

∣∣∣∣∣
∫

I
exp

(
i
(
ψ̃s

p,(−1,1)(τ;ϕ) + ατ
))

dτ > b−1/(16R)

}
≤ exp(−b−1/(2R))
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and obtain the conclusion of Proposition 3.1 from this estimate for the casesJ = Jeven, Jodd

and the remark at the end of Subsection 3.2. We have finished the proof of Theorem 2.12.

4. Local charts

This section and the next are devoted to preparatory argument for the proof of Theorem
2.13. We will consider a flowf t ∈ F3

A satisfying the non-integrablity condition (NI)ρ for
someρ > 0 and study the transfer operator (or Perron-Frobenius operator)

Lt : L2(M)→ L2(M), Ltu = u ◦ f −t

associated to it. To analyze the transfer operatorLt, we will introduce a decomposition of
functions onM with respect to the frequency in the flow direction and then consider the
action ofLt on each of the components. SinceLt virtually preserves the frequency in the
flow direction, this method is natural and works efficiently. (See [18, 19].) The analysis of
the action ofLt on high frequency components is particularly important in our argument.

In this subsection, we begin with setting up systems of localcharts depending on an
integerω ∈ Z, which we will use when we analyze the components of functions that have
frequency aroundω in the flow direction. Some of the constructions below dependon a
large constantt♯ > 0, which will be specified later. Roughlyt♯ > 0 is the time to wait until
hyperbolicity of the flow takes sufficiently strong effect and suppresses non-linearity of the
flow. We set

κ♯ = exp(t♯
2)

so that‖D f t♯‖∞ ≤ C∗ exp(C∗t♯) ≪ κ♯.

Remark 4.1. We will see that the constantt♯ (as well as the constantsω♯ andm♯ which
will be introduced later) can be taken as the kind of constantthat are denoted by symbols
with the subscript∗. (See the beginning of Section 2.) But we use this symbolt♯ with the
subscript♯ instead of the subscript∗, because the choice is made much later.

4.1. Local charts depending onω ∈ Z. We write B(w, r) for the open disk inR2 with
radiusr > 0 centered atw ∈ R2. Let r∗ > 0 be a small real number. To begin with, we take
a finite system ofC3 local charts

κa : Ua→ B(0, 2r∗) × (−1, 1)⊂ R3 for a ∈ A with #A < ∞

on open subsetsUa ⊂ M, which are flow box coordinates for the flowf t in the sense that

κa( f t(p)) = κa(p) + (0, 0, t) provided thatf s(p) ∈ Ua for all sbetween 0 andt.

Letρa : R3→ [0, 1] for a ∈ A beC3 functions such that suppρa ⊂ B(0, r∗)×(−1, 1) and that
the family of functionsρa ◦ κa for a ∈ A is a partition of unity onM, i.e.

∑
a∈A ρa ◦ κa = 1.

Let ρ̃a for a ∈ A be aCr function such that ˜ρa ≡ 1 on suppρa and that supp ˜ρa ⊂ B(0, r∗) ×
(−1, 1). By applying a mollifier along the flow line, we can and do assume thatρa are
infinitely differentiable with respect to the variablez and each of the partial derivatives
∂k

x∂
ℓ
y∂

m
z ρa and∂k

x∂
ℓ
y∂

m
z ρ̃a with k+ ℓ ≤ 3 are continuous and therefore bounded.

Based on the system of local chartsκa, we construct finer systems of local charts and
associated partition of unity for eachω ∈ Z. The construction is given in two steps as
follows. For the first step, we take a finite subsetN(a, ω) ⊂ B(0, r∗) and, for eachn ∈ N(ω),
we take a neighborhoodVa,ω,n ⊂ B(0, 2r∗) of n and aC3 diffeomorphism

ga,ω,n : Va,ω,n × R→ Da,ω,n × R ⊂ B(0, 2κ♯〈ω〉
−1/2) × R

of the form
ga,ω,n(x, y, z) = (ĝa,ω,n(x, y), z+ ǧa,ω,n(x, y)).
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We suppose thatVa,ω,n for n ∈ N(a, ω) coverB(0, r∗). For the diffeomorphismsga,ω,n, we
may and do assume the following conditions:

(G0) theC3 norms ofga,ω,n and those of their inverses are bounded byC∗,
(G1) ga,ω,n(n, 0) = (0, 0, 0) and the differentialD(ga,ω,n ◦ κa) at pa,ω,n := κ−1

a (n, 0) sends
Eu(pa,ω,n), Es(pa,ω,n), E0(pa,ω,n) to thex-axis,y-axis,z-axis respectively,

(G2) there existsω0 > 0 such that, if|ω| ≥ ω0, we haveDa,ω,n = B(0, 2κ♯〈ω〉−1/2) and

ga,ω,n ◦ κa(ws
pa,ω,n

(τ)) = (τ, 0, 0), ga,ω,n ◦ κa(wu
pa,ω,n

(τ)) = (0, τ, 0)

for τ ∈ [−2κ♯〈ω〉−1/2, 2κ♯〈ω〉−1/2], wherews
pa,ω,n

(·) andwu
pa,ω,n

(·) are the intrinsic
parametrization of the stable and unstable manifolds introduced in Section 2.2.

(G3) ((ga,ω,n ◦ κa)−1)∗µ = ca,ω,n · dxdydzfor some constantca,ω,n.

For the second step, we let

ba,ω,n : R3 → R3, ba,ω,n(x, y, z) = (x, y, β(a, ω, n) · xy)

where we define

β(a, ω, n) =


ca,ω,n · Tors(pa,ω,n, κ♯〈ω〉

−1/2), if |ω| > ω0;

0, otherwise.

Then we setUa,ω,n = Ua ∩ κ
−1
a (Va,ω,n × R) and regard

κa,ω,n := ba,ω,n ◦ ga,ω,n ◦ κa : Ua,ω,n→ Da,ω,n × R, for (a, n) ∈ A× N(a, ω)

the system of local charts onM defined forω ∈ Z. Note that these gives flow box coordi-
nates satisfyingκa,ω,n(pa,ω,n) = 0 and

κa,ω,n(w
s
pa,ω,n

(τ)) = (τ, 0, 0), κa,ω,n(wu
pa,ω,n

(τ)) = (0, τ, 0)

and also
(κ−1

a,ω,n)
∗µ = ca,ω,n · dxdydz

from (G2) and (G3) above.
In order to see the meaning of the post-composition ofba,ω,n in the second step, let us

recall the argument in Subsection 2.6. Suppose that|ω| ≥ ω0. From (G2), we can express
the sectionsγ†p,(−δ,δ) andγ̂†p,(−δ,δ) for p = pa,ω,n andδ = κ♯〈ω〉−1/2 as

(κ−1
a,ω,n)∗ ◦ γ†p,(−δ,δ)(w

u
p(τ)) = (0, ϕ(τ), 1), (κ−1

a,ω,n)
∗ ◦ γ†p,(−δ,δ)(w

s
p(τ)) = (ϕ̂(τ), 0, 1)

usingC2 functionsϕ, ϕ̂ : (−δ, δ)→ R. Also note that we have

(κ−1
a,ω,n)

∗ ◦ γ⊥p,(−δ,δ)(w
u
p(τ)) = (0, ca,ω,n, 1), (κ−1

a,ω,n)∗ ◦ γ̂†p,(−δ,δ)(w
s
p(τ)) = (ca,ω,n, 0, 1).

If we did not have the post-composition ofba,ω,n in the second step of the construction of
κa,ω,n, we would have

|ϕ′(τ) − ca,ω,n · Tors(p, κ♯〈ω〉
−1/2)| < C∗, |ϕ̂′(τ) − ca,ω,n · Toru(p, κ♯〈ω〉

−1/2)| < C∗

because theC2 norm of γ0
p,(−δ,δ) is bounded by a uniform constantC∗. Hence, with the

post-composition ofba,ω,n, we have actually

(36) |ϕ′(τ)| < C∗ and |ϕ̂′(τ) − ca,ω,n · ∆(p, κ♯〈ω〉
−1/2)| < C∗.

That is, by the post-composition ofba,ω,n, the subbundleEs along Wu
(−δ,δ)(p) will look

stabilized in the local chartκa,ω,n and, instead,Eu will look rotating alongWs
(−δ,δ)(p) by a

rate proportional to∆(p, κ♯〈ω〉−1/2).
We next construct partitions of unity associated to the systems of local charts{κa,ω,n}a,n

for ω ∈ Z. Let ̺a,ω,n, ˜̺a,ω,n : R2 → [0, 1] for n ∈ N(ω) beC3 functions such that
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(1) supp̺ a,ω,n ⊂ supp ˜̺a,ω,n ⊂ Va,ω,n,
(2)

∑
n∈N(ω) ̺a,ω,n = 1 onB(0, r∗), and ˜̺a,ω,n ≡ 1 on supp̺ a,ω,n,

(3) max{‖∂α̺a,ω,n‖∞, ‖∂
α ˜̺a,ω,n‖∞} ≤ C∗(α)(κ−1

♯
〈ω〉1/2)|α| for any multi-indexα with

|α| ≤ 3.

For eachω ∈ Z, we consider the family of functions

ρa,ω,n = (ρa · ̺a,ω,n) ◦ g−1
a,ω,n for a ∈ A, n ∈ N(ω)

where we regard̺ω,n as functions onR3 by setting̺ω,n(x, y, z) := ̺ω,n(x, y). Similarly we
set

ρ̃a,ω,n = (ρ̃a · ˜̺a,ω,n) ◦ g−1
a,ω,n for a ∈ A, n ∈ N(ω).

The set of functionsρa,ω,n ◦ κa,ω,n for a ∈ A andn ∈ N(ω) is a partition of unity associated
to the system of local charts{κa,ω,n} and we have ˜ρa,ω,n ◦ κa,ω,n ≡ 1 on supp (ρa,ω,n ◦ κa,ω,n).

Remark 4.2. We may and do assume without loss of generality that, for eachω, the
intersection multiplicity of the subsets

⋃

t∈[−1,1]

f t(suppρ̃a,ω,n) for a ∈ A andn ∈ N(a, ω)

is bounded by an absolute constant.

4.2. The central bundle E∗0 viewed in the local charts. In this subsection, we consider
how the central subspaceE∗0 = (Es ⊕ Eu)⊥ in the cotangent bundle looks in the local
chartsκa,ω,n. Note that, sinceE∗0 is invariant with respect to the flowf t, there is a unique
continuous mapping

ea,ω,n : Da,ω,n→ R
2, ea,ω,n(w) = (θu

a,ω,n(w), θs
a,ω,n(w))

be the unique continuous function such that

(Dκa,ω,n)∗p(ea,ω,n(w), 1) ∈ E∗0(p) when κa,ω,n(p) = (w, z) andp ∈ Ua,ω,n.

From the assumption (G2) on the choice ofga,ω,n, we have

θu
a,ω,n(τ, 0) = θs

a,ω,n(0, τ) = 0 for τ ∈ [−2κ♯〈ω〉
−1/2, 2κ♯〈ω〉

−1/2]

By slight abuse of notation, we will sometimes regard the functionsea,ω,n, θu
a,ω,n andθs

a,ω,n

above as functions onR3 by lettingea,ω,n(x, y, z) = ea,ω,n(x, y) and so on.

Remark 4.3. The functionea,ω,n is not smooth in general, but satisfies

(37) ‖ea,ω,n(w′) − ea,ω,n(w)‖ ≤ C∗|w
′ − w| ·

(〈
log |w′ − w|

〉
+ log〈ω〉

)
for w,w′ ∈ Da,ω,n

from (4) and the fact|β(a, ω, n)| < C∗ log〈ω〉. In particular, we have that

‖ea,ω,n(w)‖ = ‖ea,ω,n(w) − ea,ω,n(0)‖ ≤ C∗κ♯〈ω〉
−1/2〈log〈ω〉〉 for w ∈ Da,ω,n.

For a technical reason to be explained in Remark 5.5, we extend the functionsea,ω,n so that
they are defined onR2. The choice of the extension is rather arbitrary provided that (37)
holds.

In the next lemma, we take and fix a constant 0< θ∗ < 1/2.

Lemma 4.4. For 〈ω〉−1+θ∗ ≤ h ≤ κ♯〈ω〉−1/2 and a point w∈ Da,ω,n, let

ℓ, ℓ̂ : (−h, h)→ R2, ℓ(τ) = w+ (τ, 0), ℓ̂(τ) = w+ (0, τ).
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Then, for−h ≤ τ ≤ h, we have
∣∣∣θu

a,ω,n ◦ ℓ̂(τ) − θ
u
a,ω,n ◦ ℓ̂(0)− ca,ω,n∆(pa,ω,n, κ♯〈ω〉

−1/2) · τ
∣∣∣ < C∗h〈log(κ♯〈ω〉

−1/2/h)〉,(38)
∣∣∣θs

a,ω,n ◦ ℓ̂(τ) − θ
s
a,ω,n ◦ ℓ̂(0)

∣∣∣ < C∗κ
2
♯ 〈ω〉

−1 · 〈log〈ω〉〉2(39)

and similarly that
∣∣∣θs

a,ω,n ◦ ℓ(τ) − θ
s
a,ω,n ◦ ℓ(0)

∣∣∣ < C∗h · 〈log(κ♯〈ω〉
−1/2/h)〉,(40)

∣∣∣(θu
a,ω,n ◦ ℓ(τ) − θ

u
a,ω,n ◦ ℓ(0))

∣∣∣ < C∗κ
2
♯ 〈ω〉

−1 · 〈log〈ω〉〉2.(41)

If the non-integrability condition(NI)ρ holds, we have, for sufficiently large b0 > 0, that

(42)
1
2h

∣∣∣∣∣∣

∫ h

−h
exp

(
ibh−1

(
θs

a,ω,n(ℓ(τ)) + ατ
))

dτ

∣∣∣∣∣∣ < b−ρ/2

for any b0 ≤ b ≤ κ♯, α ∈ R and any h,w as above, provided that|ω| is sufficiently large.

Proof. Below we prove (38) and (39). We can prove (40) and (41) similarly by considering
the time-reversal of the flow. Letq = κ−1

a,ω,n(w, 0). From (4) and (G1), we have

(43) |(κa,ω,n ◦ ws
q)′(τ) − (0, 1, 0)| ≤ C∗κ♯〈ω〉

−1/2〈log〈ω〉〉 for − h < τ < h.

For continuity of the second derivative of the local stable manifold, we can argue in parallel
to the proof of (4) and, using the condition (G2), we obtain

(44) |(κa,ω,n ◦ws
q)′′(τ)| < C∗κ♯〈ω〉

−1/2〈log〈ω〉〉 for − h < τ < h.

From (37) and (43), we see that, for−h < τ < h,

|ea,ω,n(ℓ(τ)) − ea,ω,n(κa,ω,n ◦ ws
q(τ))| ≤ C∗|ℓ(τ) − κa,ω,n ◦ws

q(τ))| · 〈log |ℓ(τ) − κa,ω,n ◦ ws
q(τ))|〉

≤ C∗κ
2
♯ 〈ω〉

−1〈log〈ω〉〉2.

Since the right hand side is small enough, the claims of the lemma follows if we prove
them with the term̂ℓ replaced byκa,ω,n ◦ ws

q.
Let ex be the vector field onUa,ω,n defined byex = (κ−1

a,ω,n)∗(∂x). Then, for−h < τ < h,

θu
a,ω,n(κa,ω,n(w

s
q(τ))) = 〈γu

q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))〉(45)

=

〈(
γ̂†q,(−h,h)(w

s
q(τ)) − γ̂0

p,(−h,h)(w
s
q(τ))

)
+ γ̂0

q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))

〉
+ O∗(h)

= Toru(q, h)τ · 〈γ̂⊥q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))〉 + 〈γ̂0

q,(−h,h)(w
s
q(τ)), ex(w

s
q(τ))〉 + O∗(h)

where the second equality follows from the fact that

‖γu
q,(−h,h)(w

s
q(τ)) − γ̂†q,(−h,h)(w

s
q(τ))‖∞ = h · ‖γu

q′ ,(−1,1)(w
s
q′ (τ)) − γ̂

†

q′ ,(−1,1)(τ)‖∞ < C∗h

for t > 0 satisfying|D f t
q|Eu | = 1/h andq′ = f t(q). From the construction of the local charts

κa,ω,n, we have

(46) 〈γ̂0
q,(−h,h)(w

s
q(τ)), ex(w

s(τ))〉 − 〈γ̂0
q,(−h,h)(w

s
q(0)), ex(w

s(0))〉 = β(a, ω, n)τ + O∗(h).

Also, recalling the definition of the section ˆγ⊥ (or that ofγ⊥ for the time reversal of the
flow), we see, from the condition (G3) and (43), that

(47) 〈γ̂⊥q,(−h,h)(w
s
q(τ)), ex(ws

q(τ))〉 = ca,ω,n + O∗(κ♯〈ω〉
−1/2〈log〈ω〉〉).

Since we have

|Toru(q, h) − Toru(pa,ω,n, κ♯〈ω〉
−1/2)| < C∗ log〈κ♯〈ω〉

−1/2/h〉
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from Lemma 2.15, we obtain the first claim (38) withℓ̂ replaced byκa,ω,n ◦ ws
q from (45),

(46) and (47). The claim (39) is obtained by using (37), (43) and (44) in the relation

(θu(κa,ω,n ◦ ws
q(τ)), θs(κa,ω,n ◦ ws

q(τ)), 1) · (κa,ω,n ◦ ws
q)′(τ) ≡ 0.

To prove the last claim (42), we note that, from the non-integrability condition (NI)ρ,
there exists someb0 > 0 such that the estimate (14) holds for all the templatesψ ∈ T, for
all α ∈ R and for allb ≥ b0. Then, from (12), we have that

(48)
1
2h

∣∣∣∣∣∣

∫ h

−h
exp(ibh−1(ψs

q,(−h,h) + ατ))dτ

∣∣∣∣∣∣ < b−ρ for anyq ∈ M, α ∈ R andb ≥ b0.

Finally we estimate the difference betweenψs
q,(−h,h)(τ) andθs

a,ω,n(ℓ(τ)). Similarly to the

argument above, we letey = (κ−1
a,ω,n)∗(∂y) and find

θs
a,ω,n(κa,ω,n(w

u
q(τ))) = 〈γs

q,(−h,h)(w
u
q(τ)), ey(w

u
q(τ))〉

= ψs
q,(−h,h)(τ) · 〈γ

⊥
q,(−h,h)(w

u
q(τ)), ey(w

u
q(τ))〉 + 〈γ0

q,(−h,h)(w
u
q(τ)), ey(w

u
q(τ))〉.

Applying the approximation parallel to (47) to the first termand the approximation of
〈γ0

q,(−h,h)(w
u
q(τ)), ey(wu

q(τ))〉 by its linear partτ 7→ α′τ + β′ to the second term, we see that

|θs
a,ω,n(ℓ(τ)) − ca,ω,n · ψ

s
q,(−h,h)(τ) − α

′τ − β′| < C∗κ
2
♯ 〈ω〉

−1〈log〈ω〉〉.

The right hand side is small enough to conclude the third claim (42) from (48). �

4.3. The flow f t viewed in the local charts. In this subsection, we consider how the flow
f t looks in the local chartsκa,ω,n. Suppose thatt♯ ≤ t ≤ 2t♯ and thatU = f t(Ua,ω,n) ∩
Ua′,ω′,n′ , ∅. Then the flowf t viewed in the local chartsκa,ω,n in the source andκa′ ,ω′,n′ in
the target will be

f := κa′,ω′ ,n′ ◦ f t ◦ κa,ω,n : V × R→ V′ × R

where
V := Va,ω,n = π ◦ κa,ω,n(U), V′ := Va′,ω′,n′ = π ◦ κa′ ,ω,n( f (U)).

Note that we droppeda, ω, n, a′, ω′, n′ from the notation above for brevity. The diffeomor-
phism f is written in the form

(49) f (x, y) = ( f̂ (x, y), z+ f̌ (x, y)).

Letting t♯ be large, lettingχ∗ in (3) be slightly smaller and also choosing the local chartsκa

a little more carefully, we may and do assume that the diffeomorphismf given as above is
uniformly hyperbolic in the sense that

D f ∗p(C(2)) ⊂ C(1/2) for p ∈ V × R

whereC(θ) = {(ξx, ξy, 0) ∈ R3 | |ξx| ≤ θ|ξy|} and that

|D f ∗p(v)| ≥ eχ∗t |v| if v ∈ C(2) and |(D f −1)∗f (p)(v)| ≥ eχ∗t|v| if v < C(1/2).

For the higher order derivatives, we have a crude estimate

(50) ‖Dk f ‖∞ ≤ C∗ exp(C∗t♯) · 〈log max{〈ω〉, 〈ω′〉}〉2 for k = 2, 3

where the last factor stems from the post-composition ofba,ω,n andba′,ω′ ,n′ in the construc-
tion of the local chartsκa,ω,n andκa′,ω′ ,n′ .

If |ω| and |ω′| are large, the domainV of f is small in the directions transversal to the
flow and thereforef is well approximated by its linearization at least in such directions.
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In the next lemma, we make this idea more precise. LetA : R3 → R3 be the mappings
defined by6

(51) A(x, y, z) =
(
λx, λ̃y, z+ b · (x, y) + βxy

)
+ f (0, 0, 0).

where
(52)
λ = ±‖D f̂ (∂x)‖, λ̃ = ±‖D f̂ (∂y)‖, b = (∂x f̌ (0, 0), ∂y f̌ (0, 0)), β = ∂xy f̌ (0, 0)

and the signs ofλ and λ̃ are chosen so thatA approximatef better. Then, settingG =
A−1 ◦ f , we write the diffeomorphismf as the composition

f = A ◦G.

The diffeomorphismG is again written in the form

G(x, y, z) =
(
Ĝ(x, y), z+ Ǧ(x, y)

)
.

In the next lemma, we suppose that 0< θ∗ < 1/2 is a constant that we can take and fix
arbitrarily, as in the last lemma.

Lemma 4.5. There exist constantω♯ > 0, depending on the choice of t♯, such that, for any
t♯ ≤ t ≤ 2t♯ and any combination of(a, ω, n) and (a′, ω′, n′) as above satisfying|ω| > ω♯
and1/2 ≤ 〈ω′〉/〈ω〉 ≤ 2 , we have the following estimates:

(G) for the diffeomorphism G: V → G(V) ⊂ R3, we have G(0) = 0 and

‖Id − DG‖∞ < 〈ω〉
−1/2+θ∗ and ‖DkG‖∞ < 〈ω〉

θ∗ for k = 2, 3,(53)

and also

‖DǦ‖∞ < 〈ω〉
−1+θ∗ and ‖D2Ǧ‖∞ < 〈ω〉

−1/2+θ∗ .(54)

(A) for the diffeomorphism A, we have

(55) |b| < 〈ω〉−1/2+θ∗ and |β| < C∗t♯.

Consequently we have

(56) ‖D f̌ ‖∞ < 〈ω〉
−1+θ∗ , ‖D2 f̌ ‖∞ < C∗t♯

Remark 4.6. We will observe the functions on local chartsκa,ω,n in the scale〈ω〉−1 in z-
axis while in the scale〈ω〉−1/2 in the xy-plane. In such scale, the diffeomorphismG will
look

(x̃, ỹ, z̃) 7→
(
〈ω〉1/2Ĝ(〈ω〉−1/2x̃, 〈ω〉−1/2ỹ, 〈ω〉−1z̃), 〈ω〉Ǧ(〈ω〉−1/2x̃, 〈ω〉−1/2ỹ

)
.

The estimates above implies that this rescaled map tends to identity as|ω| → ∞, uniformly
in a andn.

Proof. Note that we will choose largeω♯ depending onθ∗ andt♯ and also that we will use
arbitrariness ofθ∗ implicitly in a few places below. The claim‖DkG‖∞ < 〈ω〉θ∗ for k = 2, 3
is obvious from (50). Since the vectors

(D f )0(∂x) = ((D f̂ )0(1, 0), ∂x f̌ (0, 0)), (D f )0(∂y) = ((D f̂ )0(0, 1), ∂y f̌ (0, 0))

points the direction of unstable and stable subspaces atf (0) in the local chartκa′ ,ω′,n′ re-
spectively, the estimate onb in (55) follows from (4). Also, from the choice ofA, we see
that DG0 preserves the vectors∂x, ∂y, ∂y up to error terms bounded by〈ω〉−1/2+θ∗ . Hence

6Since we will consider the case where|ω| is large, we may and do suppose thatf is actually defined much
larger domain thanV and thereforef (0, 0, 0) is well defined.
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we obtain the former estimate in (53) from the latter (for a slightly smallerθ∗). From (44)
and the condition (G2) in the construction of the local chartsκa,ω,n, we have

|(κa,ω,n ◦ wσ
p)′′(τ)| < C∗κ♯〈ω〉

−1/2〈log〈ω〉〉 for τ ∈ [−2κ♯〈ω〉
−1/2, 2κ♯〈ω〉

−1/2]

for p ∈ Ua,ω,n andσ = s, u. Also we have the same estimates for the local chartκa′ ,ω′,n.
Since the stable and unstable manifolds are preserved byf , we obtain that

‖∂xx f̌ ‖∞ < 〈ω〉
−1/2+θ∗ , ‖∂yy f̌ ‖∞ < 〈ω〉

−1/2+θ∗ .

This implies the same estimates forǦ because∂xxA = ∂yyA = 0. From the choice ofβ,
we have that‖∂xyǦ‖∞ < 〈ω〉−1/2+θ∗ . We have therefore obtained the latter claim in (54).
SinceDǦ(0, 0) = 0 from the choice ofb, the former claim then follows. To prove the
last claim onβ, we recall the construction of the local chartκa,ω,n. If we did not have the
post-composition ofba,ω,n in the second step of the construction of the local chartκa,ω,n,
the claim is obtained by a standard argument using the chain rule. The post-composition
of the mapba,ω,n results in the addition of

(β(a′, ω′, n′) − (λλ̃) · β(a, ω, n)) = ca′ ,ω′,n′ ·

(
β(a′, ω′, n′)

ca′ ,ω′,n′
−
β(a, ω, n)

ca,ω,n

)

to β up to an error term bounded byC∗. From (18) and (19), this additional term is bounded
by C∗t♯. We have completed the proof. �

We finish this subsection with the following simple estimate.

Lemma 4.7. If 0 ≤ t ≤ 2t♯, we have, for integers k, ℓ,m≥ 0 with k+ ℓ ≤ 3, that

‖∂k
x∂

ℓ
y∂

m
z (ρa,ω,n · (ρa′ ,ω′,n′ ◦ f ))‖∞ ≤ C∗ · (e

C∗t♯ · κ−1
♯ max{〈ω〉, 〈ω′〉}1/2)(k+ℓ).

We omit the proof since it is straightforward. But note that,in the casek = ℓ = 0,
the right hand side above is justC∗. This is because the function̺a,ω,n in the definition of
ρa,ω,n is the functions of (x, y) and does not depend onz. (Recall also thatρa areC∞ in the
variablez.)

5. The anisotropic Sobolev space

As the next step towards the proof of Theorem 2.13, we introduce the Hilbert spaceH,
called the anisotropic Sobolev space, and consider the action of the transfer operatorLt on
it. The argument in this subsection is a modification of that in the previous papers[9, 19].

5.1. Partial Bargmann transform. Our basic idea in analyzing the transfer operatorLt

is to consider its action in the frequency space. But, one because the direction ofE∗0
depends on the base point sensitively, we also need to consider the action in the real space.
The partial Bargmann transform, introduced below, meets these demands. We refer [19,
Section 4-5], [9, Section 4.2-3] and [10, Section 3-4] and the references therein for more
detailed accounts on the (partial) Bargmann transform.

For (w, ξ, η) ∈ R2+2+1, defineφw,ξ,η : R3→ C by

φw,ξ,η(w′, z′) = 2−3/2π−2 · 〈η〉1/2 · exp
(
iη · z+ iξ · (w′ − (w/2))− 〈η〉 · |w′ − w|2/2

)
.

The partial Bargmann transformB : L2(R2+1)→ L2(R2+2+1) is defined by

(57) Bu(w, ξ, η) =
∫

φw,ξ,η(w′, z′) · u(w′, z′) dw′dz′.
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Remark 5.1. In the above and also henceforth, we writeR2+1 (resp.R2+2+1) for the Eu-
clidean space of dimension 3 (resp. 5) equipped with the standard coordinate (w, z) =
(x, y, z) (resp. (w, ξ, η) = (x, y, ξx, ξy, η)) wherew = (x, y) ∈ R2 andξ = (ξx, ξy) ∈ R2. We
regardξ = (ξx, ξy) andη the dual variables ofw = (x, y) andz respectively.

TheL2-adjointB∗ : L2(R2+2+1)→ L2(R2+1) of the partial Bargmann transformB is

(58) B∗v(w′, z′) =
∫

φw,ξ,η(w′, z′) · v(w, ξ, η)dwdξdη.

Lemma 5.2. [19, Proposition 5.1]The partial Bargmann transformB is an L2-isometric
injection andB∗ is a bounded operator such thatB∗ ◦B = Id. The composition

(59) P := B ◦B∗ : L2(R2+2+1)→ L2(R2+2+1)

is the L2 orthogonal projection onto the image ofB.

5.2. Decomposition of functions in the phase space.We introduce a fewC∞ partitions
of unity. Recall the functionχ : R→ [0, 1] defined in Subsection 3.2.

(1) a partition of unity on the projective space:{χσ : P1 → [0, 1] | σ = +,−} such
that

χ+([(x, y)]) =


1, if |x| ≥ 2|y|;

0, if |y| ≥ 2|x|,
and χ+([(x, y)]) + χ−([(x, y)]) ≡ 1.

(2) a periodic partition of unity on the real lineR: {qω : R→ [0, 1] | ω ∈ Z} such that

suppqω ⊂ [ω − 1, ω + 1], qω(s) = q0(s− ω),

(3) a Littlewood-Paley type partition of unity:{ψm : R2 → [0, 1] | m ∈ Z+} defined
by

χm(w) =


χ(|w|), if m= 0;

χ(e−m|w|) − χ(e−m+1|w|), if m> 0.

We define also the (anisotropic) partition of unity{ψm : R2→ [0, 1] | m ∈ Z} by

χm(x, y) = χsgn(m)([(x, y)]) · χ|m|(x, y)

but we ignore the first term on the right-hand side whenm= 0.
We next introduce partitions of unity on the phase space. Fora ∈ A, ω ∈ Z, n ∈ N(ω)

andm ∈ Z, we define the functionψa,ω,n,m : R2+2+1 → [0, 1] by

(60) ψa,ω,n,m(w, ξ, η) = qω(η) · χm

(
〈ω〉−1/2 · ∆−1

a,ω,n(ξ − η · ea,ω,n(w))
)

where

∆a,ω,n =

(
∆a,ω,n 0

0 1

)
, ∆a,ω,n := 〈∆(pa,ω,n, κ♯〈ω〉

−1/2)〉 + t2♯ .

Then we have, for eacha ∈ A andn ∈ N(a, ω), that∑

m

ψa,ω,n,m(w, ξ, η) = qω(η) and hence
∑

ω

∑

m

ψa,ω,n,m(w, ξ, η) ≡ 1.

Remark 5.3. Notice that we have the factor∆−1
a,ω,n in (60). (This factor did not appear when

we consider contact Anosov flows in [18, 19, 9] in a parallel manner.) In the present case,
the factor∆(pa,ω,n, κ♯〈ω〉

−1/2) is not uniform ina, ω, n: it can be zero and also can be as
large asO(log〈ω〉) in absolute value. As we observed in Lemma 4.4, the functionea,ω,n(w),
which indicates the direction ofE∗0 in the local chartκa,ω,n, varies at a rate proportional to
∆(pa,ω,n, κ♯〈ω〉

−1/2) in theξy direction. We therefore need the factor∆a,ω,n in (60) in order
to do with the case where∆(pa,ω,n, κ♯〈ω〉

−1/2) is large.
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Remark 5.4. For the argument in the proofs in the next section, we define the family of
functionsψ̃a,ω,n,m : R2+2+1→ [0, 1] by

(61) ψ̃a,ω,n,m(w, ξ, η) = q̃ω+1(η) · χ̃m

(
〈ω〉−1/2 · Am · ∆

−1
a,ω,n(ξ − η · ea,ω,n(w))

)

where

(62) q̃ω = qω−1 + qω + qω+1, χ̃m = χm−1 + χm+ χm+1

and

Am(ξx, ξy) =



(2ξx, ξy/2), if m> 0;

(ξx, ξy), if m= 0;

(ξx/2, 2ξy), if m> 0.

Then we have ˜χa,ω,n,m = 1 on the support ofχa,ω,n,m.

For eachCr functionu on M, we define a family of functions ˆua,ω,n,m : R2+2+1 → C for
a ∈ A, ω ∈ Z, n ∈ N(ω) andm ∈ Z, by

ûa,ω,n,m(w, ξ, η) = ψa,ω,n,m(w, ξ, η) ·B(ρa,ω,n · (u ◦ κ−1
a,ω,n))(w, ξ, η).

We regard this correspondenceu 7→ (ua,ω,n,m) as an operator

I : Cr (M)→
∏

a,ω,n,m

C∞0 (suppψa,ω,n,m), I (u) = (ûa,ω,n,m)a∈A,ω∈Z,n∈N(ω),m∈Z.

Remark 5.5. The support ofB(ρa,ω,n ·(u◦κ−1
a,ω,n)) must beR2⊕R3 unlessua,ω,n = 0 because

they are real-analytic. But the functionsB(ρa,ω,n · (u ◦ κ−1
a,ω,n)) decays extremely fast on the

outside of suppρa,ω,n × R
3. More precisely, the decay is exponential with respect to the

distance from suppρa,ω,n × R
3 in the scale〈ω〉−1/2. Therefore we can basically neglect the

part of the functionB(ρa,ω,n · (u ◦ κ−1
a,ω,n)) on the outside ofDa,ω,n × R

3.

The next lemma tells that the operatorI ∗ :
⊕

a,ω,n,mC∞0 (suppψa,ω,n,m)→ Cr (M) defined
by

I ∗((ua,ω,n,m)a∈A,ω∈Z,n∈N(ω),m∈Z) =
∑

a,ω,n,m

(
ρ̃a,ω,n ·B

∗ua,ω,n,m
)
◦ κa,ω,n,

gives a construction reverse to the decomposition inI .

Lemma 5.6. I∗ ◦ I = Id on Cr (M).

Proof. The claim is not trivial but can be checked by simple computations using (60) and
the commutative relation

(B ◦M(qω) ◦B∗) ◦M(̺a,ω,n) =M(̺a,ω,n) ◦ (B ◦M(qω) ◦B∗)

whereM(ϕ) denotes the multiplication operator byϕ. (The last commutative relation is
a consequence of the fact that the operatorB ◦M(qω) ◦ B∗ is a convolution operator that
involves only thez-variable, while̺ a,ω,n does not depend onz.) We refer [9, Section 4 and
Lemma 6.5] for the details. �

We can now define the Hilbert spaceH of distributions. We henceforth fixα ∈ (0, 1/6).
To simplify notation, we set

J = {(a, ω, n,m) | a ∈ A, ω ∈ Z, n ∈ N(ω),m∈ Z}

and refer the components ofj = (a, ω, n,m) ∈ J asa(j ) = a, ω(j ) = ω and so on. Accord-
ingly, we will write

(63) κj := κa,ω,n, ρj := ρa,ω,n, ψj := ψa,ω,n,m
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and so on. It will be useful to remember that the componentsa andn are related to the
position,ω to the frequency in the flow direction andm to the frequency in the directions
normal to the flow direction viewed from the central subspaceE∗0.

Definition 5.7. We defineH as the Hilbert space obtained as the completion of the direct
sum

⊕
j∈J L2(suppψj ) with respect to the norm

(64) ‖(uj )j∈J‖H =


∑

j∈J

eα·m(j )‖uj ‖
2
L2

 .

We defineH as the Hilbert space of distributions onM that is obtained as the completion
of C∞(M) with respect to the norm‖u‖H = ‖I (u)‖H. Then we have

(65) Cα(M) ⊂ H ⊂ (Cα(M))′ and Cα(M) ⊂ H′ ⊂ (Cα(M))′.

By definition, the operatorI extends to an isometric injectionI : H → H.

Remark 5.8. In order to check the inclusion (65), we use the characterization of Hölder
spaceCα(Rd) in terms of the Littlewood-Paley decomposition. (See [16,Appendix A] for
instance.)

We define the operatorLt formally by Lt
= I ◦ Lt ◦ I ∗, so that the following diagram

commutes:

H
L

t

−−−−−−→ H

I

x I

x

H
Lt

−−−−−−→ H

Remark 5.9. At this moment, we only know that the operatorLt is defined as an op-
erator from

⊕
j C∞0 (suppψj ) to

∏
j C∞0 (suppψj ). We will see that it extends naturally to

a bounded operator onH and consequently thatLt extends to a bounded operator onH
whent is sufficiently large.

6. Proof of Theorem 2.13

We now give a proof of Theorem 2.13, making use of the definitions and propositions
prepared in the previous two sections. We henceforth assumethat f t ∈ F3

A satisfies the
non-integrability condition (NI)ρ for someρ > 0 and supposet♯ ≤ t ≤ 2t♯. Below we first
show thatf t is exponentially mixing. We will use the non-integrabilitycondition (NI)ρ in
the proof of Proposition 6.7 or, more specifically, in the estimate of the integral (85). Then,
in the last subsection, we complete the proof of Theorem 2.13by examining dependence of
the argument on the flow. For this last part of the argument, weemphasize at this moment
that, in proving exponential mixing forf t below, we actually need the estimate (14) in the
non-integrability condition (NI)ρ only for b in some bounded range. (See Remark 6.11.)
This is crucial when we prove stability of exponential mixing.

In the following, letω♯ > 0 be the large constant in Lemma 4.5, but we will let it be
larger if necessary. We will also introduce a large constantm♯ > 0 depending ont♯ and
ω♯. Beware that we will ignore some absolute constants, such as2π, that appear in Fourier
transform, partial Bargmann transform and Gaussian integrals, which are not essential at
all.
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6.1. Estimates on the components ofLt. We writeLt
j→j ′ : C∞0 (suppψj ) → C∞0 (suppψj ′ )

for the component ofLt that sends thej -component to thej ′-component. We can write it
as

L
t
j→j ′u = ψj ′ ·B ◦ L

t
j→j ′ ◦B

∗u(66)

where

Lt
j→j ′v = (ρt

j→j ′ · v) ◦ ( f t
j→j ′ )

−1(67)

with settingρt
j→j ′ = (ρj ′ ◦ f t

j→j ′ ) · ρ̃j and f t
j→j ′ = κj ′ ◦ f t ◦ κ−1

j . (Recall (63) and that we have
studiedf t

j→j ′ andρt
j→j ′ in Subsection 4.3.) This is an integral operator with smoothkernel

(68) K(w, ξ, η; w′, ξ′, η′) = ψj ′ (w
′, ξ′, η′) ·

∫
(ρj→j ′ · φw,ξ,η) ◦ ( f t

j→j ′ )
−1(z) · φw′,ξ′,η′(z) dz

and in particular defines a compact operator fromL2(suppψj ) to L2(suppψj ′ ).
We suppose that the constantsω♯ andm♯ mentioned above are given and letK : H→ H

be the part of the operatorLt that consists of the componentsLt
j→j ′ with

max{|ω(j )|, ω(j ′)|} ≤ ω♯ and max{|m(j )|, |m(j ′)|} ≤ m♯.

This operatorK consists of finitely many components and therefore compact regardless
of ω♯ andm♯. Let Πω : H → H be the projection operator that extract the components
with ω(j ) = ω. We are going to prove that the following proposition hold true if we lett♯
sufficiently large.

Proposition 6.1. There exists a constant c> 0 (independent of the choice of t♯) such that

‖Πω′ ◦ (Lt − K) ◦ Πω : H→ H‖ ≤ exp(−ct) · 〈ω′ − ω〉−1 for ω,ω′ ∈ Z and t♯ ≤ t ≤ 2t♯.

This proposition implies thatf t is exponentially mixing. Indeed, from the proposition,
we have that‖Lt − K : H → H‖ < e−(c/2)t for t♯ ≤ t ≤ 2t♯, letting t♯ be larger if necessary.
SinceK is compact as we noted above, the essential spectral radius of Lt is bounded by
e−(c/2)t and so is that ofLt : H → H. Sincef t is mixing7, there is a unique eigenvalue 1 on
the region|z| ≥ 1, which is simple and for which the the spectral projector isthe averaging
with respect to the volumem, and the other part of the spectrum is contained in the region
|z| < e−c′t for somec′ > 0. Therefore, if we setH0 = {u ∈ H |

∫
u dm= 0}, we have

‖Lt : H0 → H0‖ ≤ Ce−c′t for t ≥ 0.

Now, from (65), we conclude

(69)
∫

ϕ · (ψ ◦ f t) dm=
∫

ψ · Ltϕdm≤ ‖ψ‖H′ · ‖Ltϕ‖H ≤ Ce−c′t · ‖ψ‖Cα(M) · ‖ϕ‖Cα(M)

for ϕ, ψ ∈ Cα(M) with
∫
ϕdm= 0.

7It is easy to see that (NI)ρ implies joint non-integrability of the stable and unstablefoliations and hencef t

is stably mixing. See the argument in the proof of Proposition 6.1 for instance.
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6.2. Estimates on componentsLt
j→j ′ . Below we present a few estimates on the compo-

nentsLt
j→j ′ with respect to the L2 normand prove that Proposition 6.1 follows from them.

The proofs of the estimates are deferred to the succeeding two subsections.
To begin with, note that we have

(70) ‖Lt
j→j ′‖L2 ≤ 1 for anyt ≥ 0 andj , j ′ ∈ J

because neither ofB, B∗ andLt increases theL2 norm. From the expression (68) of the
kernel, we observe thatLt

j→j ′ is localized in the space. To state a consequence of this
observation, let

Uj→j ′ = {wR
2 | ‖w− w′‖ < κ1/2

♯
〈ω(j )〉−1/2 for some (w′, z′) ∈ suppρj→j ′ }

and similarly

Ũj→j ′ = {w ∈ R
2 | ‖w− w′‖ < κ1/2

♯
〈ω(j ′)〉−1/2 for some (w′, z′) ∈ f t

j→j ′ (suppρj→j ′ )}.

Also we put

Vj→j ′ = Uj→j ′ × R
3
= {(w, ξ, η) ∈ R2+2+1 | w ∈ Uj→j ′ }, Ṽj→j ′ = Ũj→j ′ × R

3

(Note thatUj→j ′ andŨj→j ′ do not depend onm(j ) andm(j ′).) Then, for the operator

(71) L̂
t
j→j ′ : L2(suppψj )→ L2(suppψj ′ ), L̂

t
j→j ′u = 1Ṽj→j ′

· Lt
j→j ′ (1Vj→j ′ · u),

we have that, for anyν > 0,

(72) ‖Lt
j→j ′ − L̂

t
j→j ′‖L2 ≤ C∗(ν) · κ−ν♯ for t♯ ≤ t ≤ 2t♯ andj , j ′ ∈ J.

Remark 6.2. From Remark 4.2, we see that, for anyω,ω′ ∈ Z andm,m′ ∈ Z and for each
j ∈ J with ω(j ) = ω (resp.j ′ ∈ J with ω(j ′) = ω′), the intersection multiplicity of

{Uj→j ′ | j ′ ∈ J, ω(j ′) = ω′,m(j ′) = m′} ( resp.{Ũj→j ′ | j ∈ J, ω(j ) = ω,m(j ) = m})

is bounded by an absolute constant.

We next consider the localized property of the operatorL
t in the phase space. The next

lemma is a consequence of the fact that flowf t is just a translation in each of the flow lines.

Lemma 6.3. For anyν > 0, there exists a constant C∗(ν) > 0 such that

‖Lt
j→j ′‖L2 ≤ C∗(ν) · 〈ω(j ) − ω(j ′)〉−ν

and further
‖Lt

j→j ′ − L̂
t
j→j ′‖L2 ≤ C∗(ν) · κ−ν♯ · 〈ω(j ) − ω(j ′)〉−ν

for t♯ ≤ t ≤ 2t♯ andj , j ′ ∈ J.

We omit the proof of this lemma because the required estimates are obtained without
difficulty if one notes that the partial Bargmann transformB is just the Fourier transform in
thez variable combined with the Bargmann transform[13] inw = (x, y) with some scaling
depending on the frequency inz. (We refer [9, Proof of Lemma 9.8] for more detail, where
a slightly different estimates are proved but the argument is completely parallel.)

Below we give another estimate on the localized property ofL
t on the phase space,

which is based on hyperbolicity of the flowf t. We first introduce the following definition.
Let 0< δ∗ < ρ∗ be small constants, independent oft♯, which we will specify later.

Definition 6.4. We write j →֒t j ′ for j , j ′ ∈ J andt ≥ 0 if either

(1) m(j ) ≥ 0 andm(j ′) ≤ 0, or
(2) m(j ) ·m(j ′) > 0 andm(j ′) ≤ m(j ) − [(δ∗/2)t] + 10.
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Otherwise we writej 6 →֒t j ′.

To understand the meaning of this definition, we make the following observation.

Lemma 6.5. Suppose that t♯ ≤ t ≤ 2t♯ and thatj 6 →֒t j ′ for j , j ′ ∈ J. If

(73) max{|m(j )|, |m(j ′)|} ≥ δ∗t♯

and

(74) max{|ω(j )|, |ω(j ′)|} ≥ ω♯, 〈ω(j ′) − ω(j )〉 ≤ 〈ω(j )〉1/2,

then(D f t
j→j ′ )

∗(suppψj ′ ) is separated fromsuppψj in the following sense:
for any(w, ξ, η) ∈ suppψj with w ∈ Uj→j ′ and for any(w′, ξ′, η′) ∈ suppψj ′ , we have

(75) 〈〈ω(j )〉1/2|w′ − w|〉 · 〈〈ω(j )〉−1/2|∆−1
j ((D f̂ t

j→j ′ )
∗
w(ξ′) − ξ)|〉 ≥ C−1

∗ emax{|m(j )|,|m(j ′)|}/2

where f̂ t
j→j ′ is the diffeomorphism that appears in the expression (49) of ft

j→j ′ .

Proof. From (18), we have|∆j ′ − ∆j | ≤ C∗t♯ and hence the ratio between〈∆j ′〉 and〈∆j 〉 is
bounded byC∗t♯. (Note that this is much smaller than the factore(χ∗/2)t ≤ e(χ∗/2)t♯ .) From
Lemma 4.4 and the definition of∆j , we have

|∆−1
j · ej (w′) − ∆−1

j · ej (w)| ≤ C∗〈ω(j )〉1/2 · 〈〈ω(j )〉−1/2|w′ − w|〉.

Hence, provided thatω(j ′) = ω(j ), we obtain the conclusion of the lemma by simple
geometric consideration on hyperbolicity off t

j→j ′ and the position of the supports ofψj and
ψj ′ . For the caseω(j ′) , ω(j ), we note that, if we replace (w′, ξ′, η′) by (w′, ξ′′, η) with
setting

ξ′′ = (〈ω(j )〉/〈ω(j ′)〉)1/2(ξ′ − η′ej ′ (w
′)) + ηej ′ (w

′),

we can apply the argument in the caseω(j ′) = ω(j ) to show the required estimate. But, for
the difference betweenξ′′ andξ′, we have

|∆−1
j ′ (ξ′′ − ξ′)| ≤

∣∣∣1− (〈ω(j )〉/〈ω(j ′)〉)1/2
∣∣∣ ·

∣∣∣∆−1
j ′ (ξ′ − η′ · ej ′ (w

′)
)
| + |η − η′| · |∆−1

j ′ · ej ′ (w
′)|

and, from (74), we see that the right-hand side is much smaller than e|m(j ′)|〈ω(j ′)〉1/2.
Therefore, regarding this as an error term, we obtain the required estimate in the case
ω(j ′) , ω(j ). �

Since (D∗ f t
j→j ′ )

−1 is the canonical map associated to the transfer operatorLt
j→j ′ regarded

as a Fourier integral operator8, the last lemma provides intuition to the next lemma.

Lemma 6.6. For anyν > 0, there exists a constant C∗(ν) > 0 such that, for t♯ ≤ t ≤ 2t♯
andj , j ′ ∈ J satisfyingj 6 →֒t j ′ and (73), we have

‖Lt
j→j ′‖L2 ≤ C∗(ν) · e−max{|m(j )|,|m(j ′)|}/2 · 〈ω(j ′) − ω(j )〉−ν

and further

‖Lt
j→j ′ − L̂

t
j→j ′‖L2 ≤ C∗(ν) · e

−max{|m(j )|,|m(j ′)|}/2 · κ−ν
♯
·max{〈ω(j )〉, 〈ω(j ′)〉}−ν.

This lemma together with Lemma 6.3 and the definition of the Hilbert spaceH works
efficiently for the componentsLt

j→j ′ for which max{|m(j )|, |m(j ′)|} is sufficiently large. But
our main concern in the proof of Proposition 6.1 is the remaining cases. Such cases are
dealt with in the following key proposition.

8See [10, Remark 2.5] for an account on this viewpoint.
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Proposition 6.7. There exist constants0 < δ∗ < ρ∗, which are independent of the choice
of t♯ such that, ifj , j ′ ∈ J satisfy

(76) max{|m(j )|, |m(j ′)|} ≤ δ∗t♯, |ω(j )| ≥ ω♯ and 〈ω(j ′) − ω(j )〉 ≤ exp(ρ∗t♯/10),

we have
‖L̂t

j→j ′‖L2 ≤ exp(−ρ∗t♯) for t♯ ≤ t ≤ 2t♯.

Below we deduce Proposition 6.1 (and hence Theorem 2.13) from Lemma 6.3, Lemma
6.6 and Proposition 6.7.

Proof of Proposition 6.1.Let 0 < δ∗ < ρ∗ be those constants in Proposition 6.7, which
does not depend on the choice oft♯. We may and do suppose thatδ∗ is much smaller than
ρ∗. Letω,ω′ ∈ Z be those in the statement of Proposition 6.1. Below we proceed with the
assumption that

(77) |ω| ≥ ω♯/2 and |ω′ − ω| < exp(αδ∗t♯/10).

In the case where this assumption does not hold, the proof is much simpler. We will
consider such case at the end of this proof.

Let us takem,m′ ∈ Z and consider the componentsLt
j→j ′ for j , j ′ ∈ J satisfying

(78) ω(j ) = ω, m(j ) = m, ω(j ′) = ω′, m(j ′) = m′.

Note at this moment that, since the operatorΠω′ ◦ (Lt −K)◦Πω decompose one component
of H into many parts and send each of them to different component. Also parts of many
components are sent to one component. Indeed, even with the restriction (78), for eachj
(resp.j ′ ∈ J), the cardinality of the set

(79) {j ′ | ρt
j→j ′ , 0} ( resp.{j | ρt

j→j ′ , 0} )

may be large (i.e. grow exponentially with respect tot) and this is not be negligible.
We therefore face the problem that the decomposition and superposition of functions may
increase theL2 norm. Our idea to do with this problem is that

• if we consider the operator̂Lt
j→j ′ defined in (71) instead ofLt

j→j ′ , we will not have
this problem by virtue of the property noted in Remark 6.2, and
• the norm‖L̂t

j→j ′ − L
t
j→j ′‖L2 of the difference is very small and dominates the cardi-

nality of (79) which is bounded byC∗ exp(C∗t♯) uniformly inω,ω′,m,m′.

Below we proceed with this idea in mind. We consider the following three cases for the
combination (m,m′) ∈ Z2:

(i) those satisfying max{|m|, |m′|} ≤ δ∗t♯,
(ii) those not in (i), but satisfying the assumption of Lemma6.6,
(iii) those not either in (i) and (ii).

Let us first consider the case (i). If we considerL̂t
j→j ′ in the place ofLt

j→j ′ , then, by Propo-
sition 6.7 and the idea mentioned above, the operator norm (with respect to the norm on
H) of the totality of components satisfying (78) is bounded byC∗e2αδ∗t♯ · e−ρ∗t, where the
first factore2αδ∗t♯ appears because of the weight in the definition ofH. For the differences
betweenL̂t

j→j ′ andLt
j→j ′ , we can apply the second claim of Lemma 6.3 to see that they are

indeed negligible.
Next we consider the case (ii). Again, if we considerL̂t

j→j ′ in the place ofLt
j→j ′ , then,

from the first claim of Lemma 6.6 and the idea mentioned above,the operator norm of
the totality of components satisfying (78) is bounded byC∗e−((1/2)−2α) max{|m|,|m′|}. For the
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differences between̂Lt
j→j ′ andLt

j→j ′ , we can apply the second claim of Lemma 6.6 to see
that they are negligible.

Finally we consider the case (iii). The weight in the definition on the Hilbert spaceH
plays its roll in this case. Like the two cases above, we first suppose thatLt

j→j ′ are re-

placed byL̂t
j→j ′ . Then we could apply the first claim of Lemma 6.3 to each component.

By the idea mentioned above (again), we see that the the operator norm (onH) of the to-
tality of components satisfying (78) is bounded byC∗eα(m′−m). For the differences between
L̂

t
j→j ′ andLt

j→j ′ , we apply the second claim of Lemma 6.3 to see that they are negligible.

Note that, from the definition of the relationj →֒t j ′, we have thateα(m′−m) is bounded by
C∗max{e−α(χ∗/2), e−αδ∗t♯ } in this case.

Collecting the estimates in the cases (i), (ii) and (iii) above and taking sum with respect
to the combinations (m,m′) ∈ Z2, we obtain that the operator norm of the operatorΠω′ ◦
(Lt − K) ◦ Πω onH is bounded by

C∗(α) max{δ∗t♯e
(2αδ∗−ρ∗)t♯ , e−((1/2)−2α)δ∗ t♯ , δ∗t♯e

−αδ∗t♯ , e−α(χ∗/2)t♯ }.

Since we are assuming|ω′ − ω| < exp(αδ∗t♯/10), this gives the conclusion of Proposition
6.1, provided thatδ∗ is sufficiently small andt♯ is sufficiently large.

In the case where the assumption (77) does not hold, the proofis parallel to the argument
above but it becomes much simpler. Indeed,

• In the case where|ω| ≤ ω♯/2 and|ω′| ≤ ω♯, we may assume max{|m|, |m′|} ≥ m♯

since we subtract the compact partK from Lt. Since we can choose largem♯

depending ont♯ andω♯, we need not consider the case (i). Then the proof goes as
well as the argument above.
• In the case where|ω| ≤ ω♯/2 and|ω′| ≥ ω♯, we have|ω′ − ω| ≥ ω♯/2. In this case

and also in the case|ω′ −ω| ≥ eαδ∗t/10, we may suppose that the factors〈ω′ −ω〉−ν

that appear in Lemma 6.3 and Lemma 6.6 are small enough by letting ω♯ andν
large. Then we need not distinguish the case (i) from the others and we can go
through the argument above.

In particular, we do not have to invoke Proposition 6.7 in either of these remaining cases.
We have finished the proof of Proposition 6.1. �

In the following subsections, we prove Lemma 6.3, Lemma 6.6 and Proposition 6.7.
We present the proof of Proposition 6.7 first in the next subsection, since this is the most
important.

6.3. Proof of Proposition 6.7. Let us consider the operatorL̂t
j→j ′ for j , j ′ ∈ J satisfying

(76). We use the notation (78) for brevity. By Lemma 4.5, we write f t
j→j ′ = At

j→j ′ ◦Gt
j→j ′

and then write

L̂
t
j→j ′ = (1Ṽj→j ′

· ψj ) · A ◦ G

with setting

G : L2(suppψj )→ L2(R2+2+1), Gu = B
(
(ρt

j→j ′ ·B
∗(1Vj→j ′ · u)) ◦ (Gt

j→j ′ )
−1

)

and

A : L2(R2+2+1)→ L2(R2+2+1), Au = B((B∗u) ◦ (At
j→j ′)

−1).

Remark 6.8. SinceAt
j→j ′ is of a special form, we can compute the kernel ofA explicitly.

See [13, Chapter 3] for instance. But we will not use this in the following.
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Remark 6.9. Since we have multiplication byρt
j→j ′ in G, it is clear that the term1Ṽj→j ′

in the definition ofL̂t
j→j ′ hardly do harm in estimate the operator norm ofL̂t

j→j ′ . For this
reason, we will ignore this term in some places below to avoidtedious detailed argument.

To proceed, let us set

ej (w) = (θu(w), θs(w)) := ea(j ),ω(j ),n(j )(w)

and define

Ψj : R2+2+1 → R, Ψj (w, ξ, η) = q̃ω(j )(η) · χ
(
e−δ∗t♯ 〈ω〉−1/2 · ∆−1

j (ξ − η · ej (w))
)
.

Remark 6.10. The functionΨj is of similar nature asψj , though its support is much larger
in ξ direction. Below we considerΨj instead ofψj because we will later consider the
pre-composition ofG.

As the main step of the proof, we prove

(80) ‖(1Ṽj→j ′
Ψj ′ ) ◦ A : L2(suppΨj ∩ Vj→j ′ )→ L2(suppΨj ′ ∩ Ṽj→j ′ )‖ ≤ e−ρ∗t♯

where1Ṽj→j ′
Ψj ′ denotes the multiplication operator by1Vj→j ′Ψj ′ . To this end, we are going

to estimate the operator norm of

(81) 1suppΨj∩Vj→j ′ ◦ A
∗ ◦ (1Ṽj→j ′

Ψj ′ )2 ◦ A : L2(suppΨj ∩ Vj→j ′ )→ L2(suppΨj ∩ Vj→j ′ ),

which equals the square of the left-hand side of (80). Let us recall the expression (51) of
the diffeomorphismAt

j→j ′ . Below we supposeAt
j→j ′ (0) = 0 by shifting the coordinates,

hence

At
j→j ′ (x, y, z) =

(
λx, λ̃y, z+ b · (x, y) + βxy

)

whereλ, λ̃, b andσ are those given in (52) withf = f t
j→j ′ . The inverse ofAt

j→j ′ is then
written

(At
j→j ′ )

−1(x, y, z) =
(
Λ
−1

(
x
y

)
, z− b · Λ−1

(
x
y

)
− σ(x, y)

)

where

Λ =

(
λ 0
0 λ̃

)
and σ(x, y) = βλ−1λ̃−1xy.

We write the operatorA as an integral operator

Au(w′′, ξ′′, η) =
∫

KA(w, ξ; w′′, ξ′′; η) u(w, ξ, η) dwdξ

with the kernel

KA(w, ξ; w′′, ξ′′; η) = eiξw/2−iξ′′w′′/2 · kA(w, ξ; w′′, ξ′′; η)

where9

(82) kA(w, ξ; w′′, ξ′′; η) = e−iξw/2+iξ′′w′′/2 ·

∫
φw′′ ,ξ′′,η(w̃, z) · φw,ξ,η((At

j→j ′ )
−1(w̃, z)) dw̃.

9The right hand side of (82) does not depend onz. Also note that we separate the terme−iξw/2+iξ′′w′′/2 on
purpose.
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Using the expression of (At
j→j ′ )

−1 above and changing the variable ˜w to w̃+w′′, we rewrite
the last expression as

kA(w, ξ; w′′, ξ′′; η) =

〈η〉

∫
dw̃ exp(i(ξ(Λ−1(w̃+ w′′) − w) − ξ′′(w̃+ w′′) − ηb · Λ−1(w̃+ w′′) − η · σ(w̃+ w′′)))

· exp(−〈η〉|Λ−1(w̃+ w′′) − w|2/2− 〈η〉|w̃|2/2).

Then we can write

(83) (A∗ ◦ (1Ṽj→j ′
Ψj ′ )2◦A)u(w′, ξ′, η) =

∫
e−iξw/2+iξ′w′/2 ·K(w′, ξ′; w, ξ; η) u(w, ξ, η) dwdξ

where, introducing the variableζ = ξ′′ − ηej (w′′), we set

(84) K(w′, ξ′; w, ξ; η) = qω(η)2 ·

∫
dζ

∫

Ũj→j ′

dw′′ · χ
(
e−δ∗t♯〈ω〉−1/2 · ∆−1

j ′ ζ
)2

× kA(w, ξ; w′′, ζ + ηej ′ (w
′′); η) · kA(w′, ξ′; w′′, ζ + ηej ′ (w′′); η).

In the integral on the right-hand side of (84), we are going tocompute the integration with
respect to the variablew′′ = (x′′, y′′). If we extract the part in (84) that is related to the
variablew′′ = (x′′, y′′), we find

I (w, ξ; w′, ξ′; w̃, w̃′; η) :=(85)
∫

Ũj→j ′

dx′′dy′′ exp(−iη(ỹ− ỹ′) · θs(x′′, y′′) + i(ξx − ξ
′
x)λ
−1x′′ − iβλ−1λ̃−1η(ỹ− ỹ′)x′′)

· exp(−iη(x̃− x̃′) · θu(x′′, y′′)) × exp(i(ξy − ξ
′
y)λ̃
−1y′′ − iηβλ−1λ̃−1(x̃− x̃′)y′′)

· exp(−〈η〉|λ−1(x̃+ x′′) − x|2/2− 〈η〉|λ−1(x̃′ + x′′) − x′|2/2)

· exp(−〈η〉|λ̃−1(ỹ+ y′′) − y|2/2− 〈η〉|λ̃−1(ỹ′ + y′′) − y′|2/2)

where we understand that ˜w = (x̃, ỹ) is that in (82) and ˜w′ = (x̃′, ỹ′) is the corresponding
one that appears when we express the last term of (84) using (82). And we can write (84)
as

K(w′, ξ′; w, ξ; η) =(86)

qω(η)2〈η〉2 ·

∫
dζdw̃dw̃′ · χ

(
e−δ∗t♯ 〈ω〉−1/2 · ∆−1

j ′ ζ
)2
· exp(−〈η〉(|w̃|2 + |w̃′|2)/2)

· exp(i(ξ · Λ−1(w̃− w̃′) − ζ(w̃− w̃′) − ηbΛ−1(w̃− w̃′) − η(σ(w̃) − σ(w̃′))))

· I (w, ξ; w′, ξ′; w̃, w̃′; η).

Below we consider the following two cases separately:

(I) ∆j < e3δ∗t♯ , (II) ∆j ≥ e3δ∗t♯ .

In the case (I), we use the non-integrability condition (NI)ρ to deduce the required estimate.
In the case (II), we use the fact that the approximate infinitesimal non-integrability∆j =

∆(p, κ♯〈ω(j )〉) is sufficiently large. (The argument in the case (II) is somewhat similar
to the argument for contact Anosov flows in [18].) In the following, we suppose that
(w, ξ, η), (w′, ξ′, η) ∈ suppΨj ∩ Vj→j ′ .
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Case (I). We consider the integration in (85) with respect to the variable x′′. Note that the
factor on the second line of (85) is of the form to which we can apply (42) in Lemma 4.4.
From the estimate (41), the factor on the third line is almostconstant as a function ofx′′.
The factor on the fifth line does not depend onx′′. And the derivative the factor on the
fourth line with respect tox′′ is bounded byC∗〈ω〉1/2λ−1 in absolute value. We therefore
divide the real line into intervalsI with lengthλ1/2〈ω〉−1/2 and apply the estimate (42) to
the integral (85) restricted to each of the intervals, approximating the factors on the third
to fifth lines by their average. Note that, ifλ1/2〈ω〉1/2|ỹ′ − ỹ| ≥ 2b0, the estimate (42) for
h = λ−1/2〈ω〉−1/2 andb = ηh|ỹ′ − ỹ| gives
∫

I
exp(−iη(ỹ−ỹ′)·θs(x′′, y′′)+i(ξx−ξ

′
x)λ
−1x′′−iβλ−1λ̃−1η(ỹ−ỹ′)x′′)dx′′ ≤ (λ1/2〈ω〉|ỹ′−ỹ|)−ρ.

Therefore, calculating the integration with respect toy′′ also, we obtain

|I (w, ξ; w′, ξ′; w̃, w̃′; η)|

≤ C∗(ν) · (〈λ1/2〈ω〉1/2|ỹ− ỹ′|〉−ρ + λ−1/2)

· λλ̃〈ω〉−1 · 〈〈ω〉1/2|λ−1(x̃− x̃′) − (x− x′)|〉−ν · 〈〈ω〉1/2|λ̃−1(ỹ− ỹ′) − (y− y′)|〉−ν

for arbitrarily largeν.

Remark 6.11. Note that, in order to get the estimate above, we actually need the (42) for
b (which equalsb in the non-integrability condition (NI)ρ) only in a bounded interval, say,
[b0, λ], because the factor exp(−〈η〉|w̃|2/2 − 〈η〉|w̃′|2/2) in (86) becomes very small when
λ1/2〈ω〉1/2|ỹ′ − ỹ| ≥ λ and we do not need (42). This is important when we prove local
uniformity of exponential mixing in Subsection 6.5.

For the integration with respect toζ, we can show by integration by parts that

(87)
∣∣∣∣∣
∫

χ
(
2−1〈ω〉−1/2 · e−δ∗t♯ · ∆−1

j ′ ζ
)2

exp(−iζ(w̃− w̃′))dζ
∣∣∣∣∣ ≤

C∗(ν) · e2δ∗t♯ · ∆j ′ · 〈ω〉

〈eδ∗t♯〈ω〉1/2∆j ′ (w̃′ − w̃)〉ν

for arbitrarily largeν > 0. ThereforeK(w′, ξ′; w, ξ; η) in (84) is bounded by

C∗(ν) · e
2δ∗t♯ · ∆j ′ ·

∫
dw̃dw̃′ (〈λ−1/2〈ω〉1/2|ỹ− ỹ′|〉−ρ + λ−1/2) · 〈〈ω〉1/2w̃〉−ν · 〈〈ω〉1/2w̃′〉−ν

· 〈〈ω〉1/2|(Λ−1(w̃′ − w̃) − (w′ − w)|〉−ν · 〈eδ∗t♯ 〈ω〉1/2∆j ′ (w̃
′ − w̃)〉−ν

in absolute value. Inspecting the integration with respectto w̃ andw̃′, we obtain

K(w′, ξ′; w, ξ; η) ≤
C∗(ν)eδ∗t♯λ−1 · (〈λ−1/2〈ω〉1/2|y− y′|〉−ρ + λ−1/2)

〈〈ω〉1/2(Λ−2 + 1)−1/2(w− w′)〉ν
.(88)

Finally note that (80) is an operator onL2(suppΨj ∩ Vj→j ′ ) and that the 2d-dimensional
Lebesgue measure of suppΨj ∩ ({x} × R2 × {η}) is bounded byC∗e2δ∗t♯∆j · 〈ω〉. Hence, by
Schur test, we conclude that the operator norm of (81) is bounded by

C∗e
2δ∗t♯∆j · λ

−ρ/2 ≤ C∗e
−ρχ∗t♯/3

provided that we letδ∗ be sufficiently small. This gives the required estimate (80).

Case (II). Before starting the proof in the case (II), we make a preliminary discussion.
The key fact in the proof below is that, from (38) in Lemma 4.4,the unstable subspaceEu

varies (or rotates) fast along the stable manifolds in the local chartκj in the case (II). More
precisely, we can find a constantK∗ ≥ 1 such that, if〈ω〉1/2|y− y′| ≥ K∗, we have

|ξx − ξ
′
x| ≥ C−1

∗ ∆j 〈ω〉|y− y′| for (w, ξ, η), (w′, ξ′, η′) ∈ suppΨj .
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From this fact, we regard the integral (85) with respect tox′′ as an oscillatory integral with
the oscillating term exp(i(ξx − ξ

′
x)λ
−1x′′) and estimate it by using integration by parts. But,

since the functionej ′ (w′′) = (θu(w′′), θs(w′′)) is not smooth, we have to use the following
formula of “regularized” integration by parts.

Lemma 6.12([3, p.137]). Letρ : R→ R be a C∞ function supported on[−1, 1] such that∫
ρ(s)ds= 1. If f ∈ C2(R) and g∈ C0

0(R) and if f′(s) , 0 on a neighborhood ofsuppg,
then we have, for sufficiently smallε > 0, that

∫
ei f (s)g(s)ds= −i

∫
ei f (s) · (gε/ f ′)′(s)ds+

∫
ei f (s)(g(s) − gε(s))ds

where gε = ρε ∗ g withρε(s) = ε−1ρ(ε−1s).

Proof. The first term on the right-hand side equals
∫

ei f (s)gε(s)dsby integration by parts.
�

Now we start the proof in the case (II). Let us set

Ψ̃j : R2+2+1 → R, Ψ̃j (w, ξ, η) = q̃ω(j )(η) · χ
(
3−1〈ω〉−1/2 · e−δ∗t♯ · ∆−1

j (ξ − η · ej (w))
)
,

by inserting the factor 3−1 in the definition ofΨj . We are going to prove

Lemma 6.13. We have

(89) ‖B∗ ◦ Ψ̃j ◦A
∗ ◦ (1Ṽj→j ′

Ψj ′ )2 ◦A◦ Ψ̃j ◦B : L2(Uj→j ′ )→ L2(R2+1)‖ ≤ C∗min{λ,∆j }
−1/2

whereΨ̃j denotes the multiplication by the functioñΨj .

The required estimate (80) follows from this lemma. To see this, let us write

1suppΨj ◦ A
∗ ◦ (1Ṽj→j ′

Ψj ′ )
2 ◦ A ◦ 1suppΨj

− 1suppΨj ◦B ◦ (B∗ ◦ Ψ̃j ◦A
∗ ◦ (1Ṽj→j ′

Ψj ′ )
2 ◦ A ◦ Ψ̃j ◦B) ◦B∗ ◦ 1suppΨj

= D∗ ◦ A∗ ◦ A ◦ 1suppψj +B ◦B
∗ ◦ Ψ̃j ◦ A

∗ ◦A ◦ D

with settingD = (1− Ψ̃ ◦B ◦B∗) ◦ 1suppΨj andD∗ = 1suppΨj ◦ (1− Ψ̃j ◦B ◦B
∗). Since the

kernel ofB ◦ B∗ is localized in the variableξ in the scale〈ω〉1/2 on suppΨj , the operator
norm ofD andD∗ is bounded byC∗(ν)e−νδ∗t♯ for arbitrarily largeν and so is the difference
above because the operatorsA,B andB∗ do not increase theL2 norm. Therefore we obtain
the required estimate (80) from (89).

Proof of Lemma 6.13.We are going to estimate kernel of the operator in (89). From now
to the last part of this proof, we suppose thatw,w′ ∈ Uj→j ′ satisfy

(90) 〈ω〉1/2|y− y′| ≥ max{λ/∆j ,K∗}.

We fist estimate the integral (85) with respect tox′′ by using the formula in Lemma 6.12.
Let us assume

(91)
1
2
≤
λ̃−1|ỹ− ỹ′|
|y− y′|

≤ 2

in addition for a while. We set

f (x′′) = (ξx − ξ
′
x)λ
−1x′′, ε =

1
∆j · 〈ω〉1/2|y− y′|

· 〈ω〉−1/2



36 M. TSUJII

and letg(x′′) be the integrand of (85) other than the factorei f (x′′)
= exp(i(ξx−ξ

′
x)λ
−1x′′), but

we suppose that the factor on the third line of (85) is approximated by a constant, making
a negligible error term. Then, from (40) in Lemma 4.4, we havethat

|gε(x
′′) − g′′(x′′)| ≤ C∗e

δ∗t♯ · ε and |g′ε(x
′′)| ≤ C∗e

δ∗t♯

provided thatt♯ is sufficiently large. Hence, under the condition (91), we obtain

|I (w, ξ; w′, ξ′; w̃, w̃′; η)|(92)

≤
C∗(ν)eδ∗t♯ · 〈ω〉−1 ·max{λ/∆j ,K∗} · 〈〈ω〉1/2|y− y′|〉−1

〈〈ω〉−1/2|λ−1(x̃− x̃′) − (x− x′)|〉ν · 〈〈ω〉1/2|λ̃−1(ỹ− ỹ′) − (y− y′)|〉ν

for anyν > 0. If the condition (91) does not hold (while (90) holds), we still have

|I (w, ξ; w′, ξ′; w̃, w̃′; η)| ≤
C∗(ν) · 〈ω〉−1

〈〈ω〉1/2|λ−1(x̃− x̃′) − (x− x′)|〉ν · 〈〈ω〉1/2|λ̃−1(ỹ− ỹ′) − (y− y′)|〉ν

by plain estimate without using integration by parts and, onthe other hand, the factor
exp(−〈η〉|w̃|2/2− 〈η〉|w̃′|2/2) in (86) is very small. Hence, under the assumption (90), we
obtain

|K(w′, ξ′; w, ξ; η)| ≤C∗(ν) · eδ∗t♯λ−2 ·max{λ/∆j ,K∗} · 〈〈ω〉
1/2|y− y′|〉−1(93)

· 〈〈ω〉1/2|(Λ−2
+ 1)−1/2(w− w′)|〉−ν.

Remark 6.14. The estimate above corresponds to (88). But, since∆j is large, we can not
follow the last part of the argument in the case (I) with this estimate. Indeed, when we
apply Schur test, the factor∆j appears10 which is not bounded in the case (II).

To proceed, observe that we can actually strengthen the estimate (92) as

|∂αξ∂
β
ξ′ I (w̃, w̃

′, ξ, ξ′; η)|

≤

Cα,β,γ,∗(ν, b0) · 〈ω〉
〈
(max{λ/∆j ,K∗})−1 · 〈〈ω〉1/2|ỹ− ỹ′|〉

〉−1

〈|(Λ2
+ 1)−1/2(ξ − ξ′)|〉−|α|−|β|

〈〈ω〉−1/2|λ−1(x̃− x̃′) − (x− x′)|〉ν · 〈〈ω〉1/2|λ̃−1(ỹ− ỹ′) − (y− y′)|〉ν

for any multi-indicesα andβ, by examining the result of integration by parts. Note that,
from the assumption (91), we have

〈|(Λ2
+ 1)−1/2(ξ − ξ′)|〉 ≥ C−1

∗ ∆j 〈ω〉
1/2.

Hence, the estimate above in (86), we obtain

|∂αξ∂
β
ξ′K(w′, ξ′; w, ξ; η)|(94)

≤ Cα,β,∗(ν, b0) · (∆j 〈ω〉
1/2)−|α|−|β| ·

〈
max{λ/∆j ,K∗}

−1 · 〈〈ω〉1/2|y− y′|〉
〉−1

· λ−1〈〈ω〉1/2|(Λ−2
+ 1)−1/2(w− w′)|〉−ν.

Now we write the operator above as an integral operator

(B∗ ◦ Ψ̃j ◦ A
∗ ◦ A ◦ Ψ̃j ◦B)u(w′†, z

′) =
∫

K̃(w′†, z
′; w†, z)u(w†, z)dw†dz

10But this problem is rather superficial. We would not find this problem if we introduced some additional
scaling in thex-variable in the construction of the local chartsκj .
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with setting

K̃(w′†, z
′; w†, z) =

∫
dwdξdw′dξ′dη · eiξw/2−iξ′w′/2 ·K(w′, ξ′; w, ξ; η)

· Ψ̃j (w, ξ, η) · Ψ̃j (w′, ξ′, η′) · φw,ξ,η(w†, z) · φw′,ξ′ ,η(w′†, z
′).

We estimate the integral with respect toξ, ξ′ andη above in the same manner as (87), but
using (94). Then we find

|K̃(w′†, z
′; w†, z)| ≤ C∗(ν) · 〈z′ − z〉−ν ·

∫
dwdw′ ·

〈
max{λ/∆j ,K∗}

−1 · 〈〈ω〉1/2|y− y′|〉
〉−1

· λ−1 · 〈〈ω〉1/2|(Λ−2
+ 1)−1/2(w− w′)|〉−ν

· e2δ∗t♯ · 〈ω〉∆j · 〈e
δ∗t♯ · 〈ω〉1/2∆−1

j (w† − w)〉−ν

· e2δ∗t♯ · 〈ω〉∆j · 〈e
δ∗t♯ · 〈ω〉1/2∆−1

j (w′† − w′)〉−ν.

Notice that we have proved this estimate only under the condition (90). But we can check
without difficulty that, following the argument above without using integration by parts,
we obtain the same estimate without the term〈max{λ/∆j ,K∗}−1 · 〈〈ω〉1/2|y− y′|〉〉−1 on the
right hand side even when (90) does not holds. Therefore we obtain the required estimate
(89) by Young inequality. �

We have done with the main step of the proof. To finish the proofof Proposition 6.7,
we consider11 the effect of the pre-composition of the operatorG. Let ρ̂t

j→j ′ : R2+1 → C be
the function obtained as the Fourier transform ofρt

j→j ′ in the variablez, that is, we set

ρ̂t
j→j ′ (w, η) =

∫
e−iηz · ρt

j→j ′ (w, z)dz.

In the next lemma, we compareG with the operator

P : L2(suppψj )→ L2(R2+2+1), Pu =
∫

ρ̂t
j→j ′ (w, η

′) · Pu(w, ξ, η − η′)dη′

whereP = B ◦B∗ is the projection operator in (59).

Lemma 6.15. ‖G − P : L2(suppψj )→ L2(R2+2+1)‖ ≤ κ−1/2
♯

.

Proof. As an intermediate approximation, we consider the operator

P̃ := B ◦ ρt
j→j ′ ◦B

∗ : L2(suppψj )→ L2(R2+2+1).

The operator norm ofG − P̃ : L2(suppψj )→ L2(R2+2+1) is bounded by that of

B∗ ◦ (G − P̃) : L2(suppψj )→ L2(R2+1)

becauseB∗ ◦ B = Id andB is an isometric embedding with respect to theL2 norms. We
may write this operator as an integral operator with kernelK(w, ξ, η; w′, z′) and find

|K(w, ξ, η; w′, z′)| =
∣∣∣∣∣(ρ

t
j→j ′ · φw,ξ,η)((Gt

j→j ′)
−1(w′, z′)) − (ρt

j→j ′ · φw,ξ,η)(w′, z′)
∣∣∣∣∣

≤ C∗(ν)〈ω〉
−1/2+2θ∗ ·

(
〈ω〉1/2 ·

〈
〈ω〉1/2(w− w′)

〉−ν)
· 〈z′〉−ν

from Lemma 4.5 and Lemma 4.7. (See also Remark 4.6.) It is theneasy to check that

sup
w,ξ,η

∫
|K(w, ξ, η; w′, z′)|dw′dz′ < C∗〈ω〉

−1+2θ∗

11In the following, we take seemingly a bit roundabout way because the flow is assume to be onlyC3.
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and that

sup
w′ ,z′

∫

suppψj

|K(w, ξ, η; w′, z′)|dwdξdη < C∗e
2|m|
∆j 〈ω〉

2θ∗ .

Therefore, by Schur test, we see that the operator norm ofB∗ ◦ (G − P̃) is bounded by

C∗e
|m|
∆

1/2
b j 〈ω〉

−1/2+2θ∗ ≤ C∗e
δ∗t♯ · ∆

1/2
j · ω

−1/2+2θ∗
♯

≤ C∗e
δ∗t♯ · ω−1/2+3θ∗

♯

and consequently so is the operator norm ofG − P̃ : L2(suppψj )→ L2(R2+2+1).
Next we consider the differenceP − P̃ whose kernelK′(w, ξ, η; w′, ξ′, η′) is written

ei(ξw−ξ′w′)/2〈η〉1/2〈η′〉1/2

·

∫
ei(ξ−ξ′)w′′−〈η′〉|w′−w′′ |2/2−〈η〉|w−w′ |2/2(ρ̂t

j→j ′ (w
′, η′ − η) − ρ̂t

j→j ′ (w
′′, η′ − η))dw′′.

Estimating the integral above using Lemma 4.7 and integration by parts, we obtain that

|K′(w, ξ, η; w′, ξ′, η′)| ≤ C∗(ν) · (e
C∗t♯ ·κ−1

♯ ) · 〈〈ω〉1/2|w−w′|〉−ν · 〈〈ω〉−1/2|ξ− ξ′|〉−ν · 〈η′ − η〉−ν

for arbitrarily largeν > 0. Therefore the operator norm ofP−P̃ : L2(suppψj )→ L2(R2+2+1)

is bounded byC∗(eC∗t♯ · κ−1
♯

) = C∗(eC∗t♯ · e−t2
♯ ).

From the estimates above onG − P̃ andP − P̃, we obtain the conclusion of the lemma,
provided that we take sufficiently larget♯ and then take sufficiently largeω♯ according to
the choice oft♯. �

Since the operatorA does not increase theL2 norm of functions, the last lemma tells
that

‖A ◦G − A ◦ P : L2(suppψj )→ L2(suppψj ′ )‖ ≤ κ
−1/2
♯

.

Therefore, for the proof of Proposition 6.1, it is enough to show that

‖A ◦ P : L2(suppψj )→ L2(suppψj ′ )‖ ≤ e−ρ∗t.

But, becauseP is a simple operator whose kernelKP satisfies

(95) |KP(w, ξ, η; w′, ξ′, η′)| ≤ C∗(ν) · 〈〈ω〉1/2|w− w′|〉−ν · 〈〈ω〉−1/2|ξ − ξ′|〉−ν · 〈η′ − η〉−ν,

it is clear that pre-composition ofP hardly affects the argument on the operatorA in the
former part of this proof to give the required estimate. (We omit the tedious details about
the part of functions which go out of suppψj by P.)

6.4. Proof of Lemma 6.3 and Lemma 6.6.The proofs of Lemma 6.3 and Lemma 6.6
below are based on estimates of the kernel ofL

t
j→j ′ using integration by parts. One because

these claims have nothing to do with the non-integrability condition (NI)ρ and one because
the estimates are straightforward, we will omit the detail of the proofs. (We refer [18] for
more details.)

Proof of Lemma 6.3.Let us regard the operatorLt
j→j ′ as the composition of the multipli-

cation operator byρt
j→j ′ with the operatoru 7→ u ◦ f t

j→j ′ . If we did not have the latter,
we could deduce the claims immediately from the estimates inLemma 4.7. But, since the
latter transfer operator is a unitary operator inL2 norm and preserves the frequency in the
z-direction, it does not do any harm for validity of the conclusion. �
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Proof of Lemma 6.6.Let j , j ′ ∈ J be those in the statement of Lemma 6.6. For the proof of
Lemma 6.6, we may assume

|ω(j ′) − ω(j )| ≤ emax{|m(j )|,|m(j ′)|}/10 · 〈ω(j )〉1/10

because the claims follows from Lemma 6.3 otherwise. We consider the operators

Ľ
t
j→j ′ := (B∗ ◦ ψ̃j ′ ◦B) ◦ Lt

i→i′ ◦ (B∗ ◦ ψ̃j ◦B) : L2(R2+1)→ L2(R2+1)

whereψ̃j andψ̃j ′ are those in Remark 5.4. We may write its kernel as

〈η′〉2〈η〉2
∫

dw′′dw̃dη̃dξ̃dw̃′dη̃′dξ̃′ · ρt
j→j ′ (w

′′, z′′) · ψj ′ (w̃, ξ̃, η̃) · ψj (w̃′, ξ̃′, η̃′)

· exp(i(ξ̃′, η̃′) · ((w′, z′) − f t
j→j ′ (w

′′, z′′)) + i(ξ̃, η̃) · ((w, z) − (w′′, z′′)))

· exp(−(1/2)(〈η〉(|w′ − w̃|2 + |w̃− f̂ t
j→j ′ (w

′′, z′′)|2) + 〈η′〉(|w′ − w̃′|2 + |w̃′ − w′′|2))).

To integral with respect tow′′ above, we apply integration by parts using the differential
operator

L =
1+ i〈ω〉−1

∆
−2
j ((ξ, η) − (D f t)∗w′′(ξ

′, η′)) · (∂w′′ , ∂z′′)

1+ 〈ω〉−1|∆−1
j (ξ, η) − (D f t)∗w′′(ξ

′, η′)|2

once and then integration by parts with respectz for several times. Then, by crude estimate
on the resulting terms, we see that

|K(w, z; w′, z′)| ≤ C∗(ν, t♯)·e
−max{|m(j )|,|m(j ′)|} · 〈ω(j ) − ω(j ′)〉−ν · 〈z′ − z〉−ν ·

∫
dw′′

· e2m(j ′)
∆j ′ · 〈ω(j ′)〉 · 〈em(j ′)〈ω(i′)〉1/2|∆j ′(w

′ − f̂j→j ′ (w
′′))|〉−ν

· e2m(j )
∆j · 〈ω(j )〉 · 〈em(j )〈ω(j )〉1/2 · 〈|∆j (w′′ − w)|〉−ν.

And, in the case where|ω(j )| ≥ ω♯ and|ω(j ′)| ≥ ω♯, we use the estimates (56) to check that
the constantC∗(ν, t♯) is actually bounded byC∗(ν)t♯. By Young inequality, we obtain

(96) ‖Ľt
j→j ′‖L2 ≤ C∗(t♯, ν) · e

−max{|m(j )|,|m(j ′)|} · 〈ω(j ′) − ω(j )〉−ν

To finish the proof, note that, from the localized property ofthe kernel of the Bargmann
projectorB ◦B∗, we have

(97)
∥∥∥(1− ψ̃j ) ◦B ◦B∗ · 1suppψj : L2(R2+2+1)→ L2(R2+2+1)

∥∥∥ ≤ C∗(ν) · e−ν|m(j )|

and the parallel estimate withj replaced byj ′. Let us write

L
t
j→j ′ = B ◦B

∗ ◦ ((1− ψ̃j ′ ) + ψ̃j ′ ) ◦ Lt
j→j ′ ◦ ((1− ψ̃j ′ ) + ψ̃j ′ ) ◦B ◦B∗

If 2
3 ≤ |m(j )|/|m(j ′)| ≤ 3

2 and min{|ω(j )|, |ω(j ′)|} ≥ ω♯, the required estimate follows imme-
diately from the estimates above. If2

3 ≤ |m(j )|/|m(j ′)| ≤ 3
2 and min{|ω(j )|, |ω(j ′)|} ≤ ω♯,

we may assume that min{|m(j )|, |m(j ′)|} ≥ m♯ and obtain the required estimate by letting
m♯ large depending ont♯. In the case where23 ≤ |m(j )|/|m(j ′)| ≤ 3

2 is not true, we have to
modify the argument a little. In the case, from the assumption (73) and the definition of
the relation֒→t, we have either

m(j ) < 0 < m(j ′) or 0< m(j ) < m(j ′) or m(j ) < m(j ′) < 0.

If |m(j )| < |m(j ′)| (in the first or second case above), we can and do modifyψ̃j so that its
support is of size comparable with that ofψ̃j ′ , that (96) remains true and (97) holds with
e−ν|m(j )| on the right hand side replaced bye−ν|m(j ′)|

= e−νmax{|m(j )|,|m(j ′)|}. Then we obtain
the required estimate in the same manner as above. We can argue similarly in the case
|m(j )| > |m(j ′)|. �
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6.5. Local uniformity of exponential mixing. Finally we prove the conclusion of The-
orem 2.13 to finish the proof. Let us writef t

0 for the flow f t that we have considered in
the argument in the previous subsections, which satisfies the non-integrability condition
(NI)ρ. We first show that, if we take a sufficiently smallC3 neighborhoodV of f t

0 in F3
A,

all the flows inV are exponentially mixing. To this end, we recall the argument in the
previous subsections and check dependence of objects on theflow. Clearly we can con-
struct the local chartsκa,ω,n and the functionsρa,ω,n so thateachof them depend on the
flow continuously inC3 sense. Then we can define the Hilbert spaceH andH and also
the operatorLt : H → H in parallel manner so that each of the componentsL

t
j→j ′ depend

on the flow continuously. We can check that all the estimates remains valid with uniform
constants that are denoted by the symbols with the subscript∗ and alsot♯, ω♯, m♯. The
most important point is that, in the proof of Proposition 6.7, we have used the estimate
(14) in the non-integrability condition (NI)ρ only for b in a bounded interval, as we noted
in Remark 6.11. And the condition (14) forα with |α| > b2 follows from (4) as we noted
in Remark 2.10. Hence Proposition 6.1 remains true foreachof the flows inV (provided
that we letV be sufficiently small). We can therefore conclude that each of the flows inV

are exponentially mixing.
We next consider uniformity of the constantscα andCα in the decay estimate (1). For

this point, we have to beware that continuity in dependence of the local chartsκa,ω,n and
the operatorsLt

j→j ′ on the flow inV is not uniform (especially inω) and consequently the
Hilbert spacesH and the operatorLt will not depend on the flow inV continuously. For
a flow f = { f t} ∈ V, we writeH(f ) for the Hilbert spaceH constructed forf and set
H0(f ) = {u ∈ H(f ) |

∫
udm= 0}. Also letLt

f be the transfer operatorLt defined forf ∈ V.
To obtain the conclusion, it is enough to show that, for someT > 0 andδ > 0, we have

‖LT
f : H0(f )→ H0(f )‖ < 1− δ for all f ∈ V.

Suppose that this assertion is not true. Then, for anyT > 0, we can find a sequence of flows
fk which converges tof0 = { f t

0} in C3 sense and a sequence of functionsuk ∈ H0(fk) such
that‖uk‖H(fk) = 1 and‖LT

fk
uk‖H(fk) ≥ 1− (1/k). Now we recall from Proposition 6.1, which

is valid uniformly for f ∈ V, that, if T is sufficiently large, the operatorsLT
fk

contracts the
high frequency part of functions (i.e. the componentsua,ω,n,m with |ω| ≥ ω♯ or |m| ≥ m♯) by
a uniform rate. Hence, for the assumption onuk to be true, the high frequency part ofuk

must be relatively small (uniformly ink). Therefore we can find a subsequenceuk(ℓ) of uk

which converges to someu0 ∈ H0(f0) (as a distribution at least) and see thatu0 satisfies

‖u0‖H(f0) = lim
ℓ→∞
‖uk(ℓ)‖H(fk) = 1, ‖LT

f0
u∞‖H(f0) = lim

ℓ→∞
‖LT

fk
uk(ℓ)‖H(fk) ≥ 1.

Clearly this conclusion for arbitrarily largeT > 0 contradicts what we have proved forf0.
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