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EXPONENTIAL MIXING FOR
GENERIC VOLUME-PRESERVING ANOSOV FLOWS
IN DIMENSION THREE

MASATO TSUJII

AsstracT. Let M be a closed 3-dimensional Riemann manifold and let 8 < . We
prove that there exists an open dense subset in the sp&fevofume-preserving Anosov
flows onM such that all the flows in it are exponentially mixing.

1. INTRODUCTION

We consider mixing property of volume-preserving Anosowfmn a 3-dimensional
closedC* Riemann manifoldM. Let &, be the space &' Anosov flows orM preserving
the Riemann volumen and suppose that it is equipped with tbfecompact-open topology
as a subspace @'(M x R, M). A flow f' e &, is said to beexponentially mixingvith
respect to the volummn if

1) f o (W o 1Y dm= CalllorWller eXPEcat)

for any ¢,y € C*(M) witll @ > 0 satisfyingfcpdm = 0, wherec, andC, > 0 are
constants independentgfandy. In this paper, we prove the following theorem:

Theorem 1.1. For 3 < r < oo, there exists a &open and C-dense subsét c &), such
that all the flows il are exponentially mixing. Further, for each flowiri U, there exists
a C3-open neighborhood oft such that the decay estimafé (1) holds true for all the flows
in it with uniform constants Cand ¢,.

By Anosov alternativé]1, 15], any volume-preserving Anoflow is either mixing or
topologically conjugate to a suspension flow of an Anoséiedmorphism with a constant
roof function. And the former alternate holds for an opensgesubset in the space of
volume-preserving Anosov flows. In this paper, we study ateel problem: whether
exponential mixing is an open dense property for volumegméng Anosov flows. A
few important progresses related this problem (in more ggrontext) were made by
Chernovi4] and Dolgopyat[6, 7] 8] in late 1990's. [n [6], Bobyat proved that a volume-
preserving Anosov flow is exponentially mixing if the stallled unstable foliations are
C! and are not jointly integrable. In particular, it is proved[6] that the geodesic flows
on negatively curved surfaces are exponentially mixingték Liverani[12] extended this
result to general contact Anosov flows. See dls6([18, 19][¥liand (8], he also studied
exponential and rapid.€. super-polynomial) mixing for suspension flows of subshifts
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1once the decay estimatg] (1) holds for some- 0, we can prove[{1) for ang > 0 by approximation,
possibly with diferent constants. Se€ [8, p.1046]. It is therefore enougbrtsider[(1) for some fixed > 0, say
a=1.
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finite type, which abstracts Axiom A flow, and gave severaecia for such flows to be
rapid and exponential mixing. Based on the argumeritlin ilEJdF-Melbourne and Torok
proved more recently i [11] that rapid mixing is an open @epsoperty for Axiom A
flows and consequently for volume-preserving Anosov flowsawelver, to the author’s
knowledge, the problem on exponential mixing mentionedvalyemains open. The aim
of this paper is to study the problem in the simplest possbténg of dimension 3 and
present anfarmative answer in Theoren 1.1. Theorem 1.1 also providesamgle of a
non-empty open set of volume-preserving Anosov flows whiablg exhibit exponential
mixing. (Rather surprisingly, no such example has been kndut seel[2] for such an
example for Axiom A flow.)

In the following, we first investigate the geometry of thebdtsand unstable foliation
and introduce the notion f-templatewhich describes how the stable subbundle twists
along unstable manifolds. We then formulate, in Definifio8, 2he non-integrability con-
dition (NI), for p > 0 in terms ofstemplates. We show, in Theorém 2.12, that the con-
dition (N1), for sufficiently smallp > 0 holds for aC" dense subset i}, for anyr > 3.
Then we prove Theore 1.1 by showing in TheofemI2.13 th},4f &3 satisfies the non-
integrability condition N1), for somep > 0, then there exists @ open neighborhoot!
of fé in 8% in which all the flows are exponentially mixing with uniformmstants, and
C. in the decay estimatgl(1).

The main novelty in this paper is in the argument related-template presented in
Sectior 2. Also the argument in the proof of TheofemP.12semeed in Sectionl 3, may
be somewhat new, where we consider deformation familiesfvawith huge number
of parameters and apply large deviation argument in thenpetex spaces. The outline of
the proof of Theorem 2.13 is parallel to those in the previmysers[18, 19], but for a few
points where we use the non-integrability conditidH ), and show quasi-compactness of
the transfer operators on some Hilbert space of distribstitt occupies almost two thirds
of this paper in length. This is mainly because some objeetsamsider is not smooth and
require careful treatment when we apply analytic tools.

Remark 1.2. The argument presented in this paper depends crucially@agbtumption
thatM is three dimensional and we do not expect that it will extenchbre general cases
directly. But the author would like to emphasize that ouruangnt is based on the fol-
lowing observation which may be useful in much more geneaaés of partially hyper-
bolic dynamical system&wist of the stable subbundle along a piece of unstable molanif
viewed in the unit scale will be “random” and “rough” in gen&rcases and such twist will
not be cancelled completely in the process where the flmarftracts the piece of unstable
manifold to microscopic scale as-b —oo (if we view things in an appropriate scaling);
this leads to a kind of joint non-integrability between thabde and unstable foliations,
which is uniform in microscopic scales and is somewhat stabperturbation. See also
RemarkK2.76.

2. THE NON-INTEGRABILITY CONDITION

Below we suppose 3 r < oo and consider & Anosov flowf! : M — M preserving
aC' volumeu on M, which may not be the Riemann volume Let v be theC'* vector
field generating the flow'. Since the argument below does not depend on the choice of
the Riemann metrig- || on M essentially, we may and do assume tiwit= 1 without loss
of generality.

In some parts of our argument, we will need to check that samstants can be taken
uniformly for the flows in a sfiiciently smallC" open neighborhood df that preserve’
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volume forms sfhiciently close tau. To this end, we put the subscripto the symbols
of them and us€, as a generic symbol for such constants. Also we will w¢ité) for a
term which is bounded in absolute value by the quantity m#iet parenthesis multiplied
by some constarg..

2.1. Anosov flows. From the definition of Anosov flow, there is dkinvariant continuous
decomposition of the tangent bundle

(2) TM=Ey®Es®E, with dimE;=dimEs=dimE,=1
such thag = (v) and, for some positive constar@s > 0 andy.. > 0,
3) IDfyle,| < C.e*!, |Dfjlg,|>C e forallt>0.
The decomposition dual tb](2) &M = Ej @ E¢ @ E; where

E; = (Es®Ey)*, Ei=(Eu®Eog)*, E;=(Es®Eoy)".

The distributionEg is C'1, but Es andE, are not everC! in general. Note however that
we have

(4) L(Es(p), Es(q)) < C.lp—ql - {log(|p - ql))
in local char. This is same foE, andEy,.

Remark 2.1. The non-smoothness &; andE, mentioned above is caused by their vari-
ation in the flow direction. Indeed, the subbundigs= (Es @ Ep)* andE; = (E, @ Eo)*
areC! and we have

() £(Ey(n). Ey(@) < C.lp-ql
in local charts and the same f&t.

2.2. The intrinsic metric on stable and unstable manifolds. Let W3(p) andW"(p) be
the stable and unstable manifolds passing through a paintl. Below we discuss about
twist of the stable subbundlgs along the unstable manifol™(p). Note that we can
develop the parallel argument about twist of the unstabidgndleE, along the stable
manifoldWS(p) by considering the time-reversal of the fldv

We define &C"~ metric onW!(p) by

IDFW)I
IDFle,

(6) Mwu(p) = tﬂr_rlo log forve TWY(p) atq € W'(p)

where|| - || denotes the Riemann metric.

Lemma 2.2. If f' sends W(p) to WH(p’), it brings the metrid - jwu(p) tO | - lwu(y Up tO
multiplication by a positive constant. If(fp) = p’, the multiplier is just|D f'(p)|]l.

Letwy : R — M be theC' parametrization of\"(p) by the arc length with respect
to the metric| - lwu(p such thatwiy(0) = p. (We do not care about the direction of the
parametrization.) For an open intendat R, let Wj(p) := wi(J) € WH(p).

2ltis of course possible to formulafel (4) without using lochaarts by introducing a parallel transport.
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2.3. Sections of normal bundle of stable manifolds.For a pointp € M and an interval
J C R, letI™(p, J) be the space of continuous sectignsW;(p) — T*M of the cotangent
bundler : T*"M — M on Wj(p) such thaty(q) € T4M is normal to the tangent space
TqW!(p) at eachq € Wy(p). LetI}j(p,J) c I'(p,J) be the subset that consistspfe
I"(p, J) satisfying(y(a), v(q)) = 1 at eacty € Wj(p).

Lety,; € I'(p, J) be either of the tw&' ! sections such that

(7pa(@). Uy = £u(v(Q), (W) (r), u)  foranyu e TgM at eachy = wi(r) € Wy(p).

Also we tentativeIE fixaC't sectionyg’J € I'{(p, J). At this moment we assume only

that the section$g’J are bounded i€~ sense uniformly fop andJ with J ¢ (-1, 1).
We may then express each sectjoaI’(p, J) as

(7) (@) = 75.5(0) + ¥,(1) - ¥5,5(0)  for 7 € Jwith g = wi()
wherey, : J — R is a continuous section. The last functigpis called the representation
function ofy € I'}(p, J). We define the (maximum) curvatweéy) of y € I'{(p, J) by

«(y) = suplyy (D)l | 7 € J}.

This definition depends on the choice of the sectiyﬁjﬁand hence the value efy) itself
does not make good sense.

For aC'! sectiony ¢ I'!(p, J) andt € R, there is a unique section € I'(f'(p), J(1))
with J(t) = £|Df'|g,(p)| - I such thatf'(W5(p)) = W5, (f'(p)) andy(q) = (DF)n(f'(a)).
The curvature(y;) of y; tends to infinity ag — —oco In most cases, but may be bounded
for somey.

Definition 2.3. A C'! sectiony € I'}(p, J) is said to bestraightif «(y:) is bounded for
vt<0.

Notice that this definition does not depend on the choice@SEtctions/g,J, by virtue
of the boundedness assumption we made on their choice. Talolethe space of straight
sections, we introduce the following definition.

Definition 2.4. C'~* functionsyo, ¥1 : J — R are said to bé-equivalentf (yo—v1)" (1) =
0 forall T € J. C'~* sectionsyg, y; € I'}(p, J) are said to bé\-equivalentf their represen-
tation functionsy,, andy,, (defined above i (7)) ar&-equivalent.

Lemma 2.5. For any point pe M and any interval Jc R, there exists a straight section
Yo € T{(p,J). A C'-1 sectiony e I}(p, J) is straight if and only if it is A-equivalent tgy.

If a C"~* sectiony € I'/(p, J) is straight, theny; € I'(f'(p), J(1)) is again straight.

Proof. If f'sends &"~* sectiony € I')(p, J) toy; € IY(p(t), I(t)), the expression functions
of y; is related to that of as

(8) Uy, (1) = Aty (at) 1) + gpe(x),  a(t) = £DFg,(p)|

Where&p,t is aC'* function. For anytp > 0, theC'* norm of the functionﬁp,t is bounded
uniformly for p € M andt € R with [t| < to. Differentiating the both sides dfl(8) with
respect tar twice and changing the variabtewe obtain

) ¥y (x) = atyy (at)r) + at)dy(@M)7).

Note thata(t) — 0 exponentially as — —co. By recursive application of[9) for @ t < to,
we see that the right hand side bf (9) converges to a ur@juéfunctiong ast — —co

SLater we will choose it more carefully at the end of this satti
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provided that(y:) = Il |l is bounded fot < 0. Hence &' sectiony € I(p,J) is
straight if and only ify] = ¢. This implies the former two statements. The last statement
is an immediate consequence of the definition. O

Since the choice of the sectiom%’ ; of reference was rather arbitrary, we henceforth
assume without loss of generality that the sectipghsare straight sections. (This is just

for avoiding to introduce a new notation.) Further, in theeeh= (-1, 1), we specifyygJ
as the unique straight section satisfying the condition

(10) Yo 1y(Wa(1)) = Eg(wi(r))  fort = 1.
2.4. The definition of stemplates. Let yfw € I'{(p. J) be the unique continuous section

such thab/;J(q) € Ej(q) for g € W5(p) and Ietz,b;J : J — R be its representation function.
(The superscripsin yzyj indicates that it represents the directior&sf) Note thalz//;J is

not evenC? in general but satisfies
(11) WIISJ’J(T/) - z,bf),J(‘r)l <C.' —1|-{og|lr’ —7|) forr,7’ €
as a consequence 61 (4).

Definition 2.6. The functionsbgy(_lyl) for p € M are called thes-templatesor the flow f!.
We writeT = T(f!) = {5, 11y | P € M} for the set ofs-templates for the flowf!.

The reason for the name “template” can be found in the nextlam

Lemma 2.7. For any ge M and anys € (0, 1), there exists t 0 such that

12) Uaan@ =0 -Unin@ D) +ar+p  with p=f(q)
wherela| < C.(/logé| + 1) and || < C.. In particular, zp;’(_éﬁ) is A-equivalent to the
functiont - 6 - w[SJ,(—l,l)(&r) obtained frompf)’(fl’l) by a scaling.

Proof. Lets < & < 1 and take > 0 such thalf‘(\/\/(”_&d)(q)) = W5 5 (P) with p = fi(q).

Let 5/3 _ss) D€ the pull-back Oi’g,(_l,l) by ft and Ietﬁzgy(_m be its representation function.
Then, from[(8), we have

(13) 'ﬁg,(_aﬁ)(‘r) = (6/6/) : 'ﬁ;(_agy)((é,/é)"—) + lZg,(_(s,g) (T)

Sinceyg,(fd 5) is straight,&g,(fd 5)(7) is an dfine function ofr. We therefore obtain{12) as
the cas@’ = 1. The estimates om andg are obtained by recursive application[of](13) and

the fact thatﬁg’(fdﬁ) is bounded if the rati@’ /6 is bounded. O

Remark 2.8. As we noted in the beginning of Subsecfion 2.2, we can detbargument
above for the time-reversal df in parallel. The objects corresponding to

| N |W“(p), Waj(p)’ W[J)()’ I_‘u(p, ‘]), rli(p’ ‘]), ’}/;)_,.b ’}/g,.]’ ’}/ls),.]’ lﬁls),\]

in such argument will be denoted respectively by

| : |WS(p)’ W?(p)’ W;S)()’ FS( P, ‘])’ Fi(p’ ‘])’ i/:)_,J’ i’g,J’ YB,J’ l//l;J
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2.5. The non-integrability condition. Now we put the following definition.

Definition 2.9. Let 0 < p < 1. We say that &2 Anosov flowf! on M preserving a smooth
volumey satisfies the non-integrability conditiofl (), if, for sufficiently largeb > 0, it
holds

1
(14) 'f_l exp(ib (y(7) + 7)) dr| < b

for all stemplategy € T anda € R.

Remark 2.10. From [4), thestemplatesy € T are Holder continuous with any exponent
0 < B8 < 1 and the Holder cdicients are bounded by some const@gt. Hence, for each

§ > 0, the condition[(T) holds for freedf > b**° andb is sufficiently large. (For instance,
we can check this by using “regularized” integration by paitven in Lemma6.12.)

Remark 2.11. From Lemmd_2]7, we can see that the non-integrability camdiiN1),
remains unchanged if we replace the Riemann metritMoy another Riemann metric
and the volume: by its scalar multiple.

The main theorem, Theordm 1.1, follows if we prove the folloywwo theorems.

Theorem 2.12.Let3 <r < oo. If we let0 < p < 1 be syficiently small depending only on
r, the subset of flows that satisfy the non-integrabilityditan (N1),, is dense ir§),.

Theorem 2.13.1f f{ € Zf;i satisfies the non-integrability conditigiN 1), for some0 < p <
1, there exists an open neighborho¥af f} in Zf;i such that all f € V are exponentially
mixing and further that the decay estimdié (1) holds for ak f with uniform constants
C, and ¢,.

We prove Theorerh 2,12 in the next section, Sedfibn 3. We pitvoreni 2.13 in
Sectior 6, after preparation in Sectldn 4 and Se¢flon 5.

2.6. Approximate infinitesimal non-integrability. We finish this section by a discussion
on another idea about joint non-integrability of the stadole unstable foliation, which is
related closer to the idea of uniform non-integrability dition introduced by Chernov[4].
Let us consider how the flo twists the tangent bundle along local unstable (resp.aabl
manifolds. Consider a poimt € M and a positive number @ § < 1. Note that we have
specified the straight sectiom&J whenJ = (-1, 1), but not yet for the casé = (-6, 5)
with 0 < § < 1. There are two diierent but natural ways to choose a straight section in
Fg(q’ (_6’ 6))

(a) we take it as a restriction 97@,(71,1) to W(”_ 55)(@) C \/\/(”_M)(q), or

(b) recalling Lemma217, we take> 0 such thatft(\/\/({m(q)) = W(Ufl’l)(p) with

p = f'(g) and let it be the pull-back qu’(fl’l) eTIY(p, (-1,1)) by f'.

We denote the straight sections obtained in (a) and (bagpxs 5 andyg,(f 50) respectively.
They are both straight sections and heAeequivalent. The dierence between their ex-
pression functions ardfene function and the cdiécient of its linear part can be understood
as the torsion thaf' (with t in (b) above) makes aloﬁg/({&ﬁ)(q). For this reason, let us
write

(15) VA,(,ﬁ,g) (7) = 78,(7(5,5) (1) + lﬁ(‘],(,(s,ﬁ) (1) chi, (=6.0) (1)

with an dfine functiony{, ;(r) and set

Tor(q,8) := (¥},) (0) = (W} ;) (7) for T € (=6,9).
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Applying the parallel argument to the time-reversaf bfwe introduce the sectioyj;,(: 50)"
the functiony ; and Tok(q, 6) which correspond tqa(_m, yi s and Tof(q, 6) respec-
tively. In the next definition, we assume

Va65)(0): WG 56 (OO0 > 0. (Fg56)(0): Wy (55 (0)) > O.
Definition 2.14. Forg € M and 0< § < 1, we set
(16) A(q, 6) = Tor'(q, 6) — Tor(q, 6)
and call it theinfinitesimal approximate non-integrabilistg € M in the scale.

Lemma2.15.Foro =su,0< 6,8 <1,ge Mandte R, we have
(A7) |Tor’(q,8) — Tor’(g,8")| < C.{log(s’/6)y and hence [Tor’(q, 6)| < C.{log¥s),
(18) [Tor"(f'(q), ) — Tor"(q,8) < C.(t), and henceA(f'(g), 5) — A(g, 8)| < Cu(t)

and

(19) [Tor’(q,0) — Tor’(g,0)l < C. ifd(a.q) <d

where (and henceforti{}) denotes some fixedunction of s such that) = |gif |9 > 1
and(s) > 1forany s.

Proof. Below we prove the claims in the case= s. We can prove the claims in the case
o = uin parallel manner considering the time reversal of the fiéwNote first of all that
Tor%(qg, 1) = 0 by definition. For anyp > 0, we have

[Tor%(q, 6) — Tor%(f'(a), IDfgle,l - 6) < C. for0 <t <toand 0< 6 < |Dfyle, ™
By recursive application of this estimate, we see that, figrta> 0,
(20) [Tor(q, 6) — Tor*(f'(a). IDfgle,| - 6)l < Cut)  for 0< 6 < [Dffle, ™"
Also we have that, for &6 < ¢’ <1,
(21) [Tor(g,6) - Tor¥(q,d")| = [Tor*(f'(q), 6/6") — Tor*(f'(q), 1)| = [Tor*(f'(a), 6/¢")|

wheret > 0 is such thaiDflg,| - 6 = 1. The last two estimates yield (17). Thénl(18)

follows from (I7) and[(2D). I € W({M)(ft(q)) for somet € (-1, 1), we have

[Tor3(q', 6) — Tor’(q, )| = [Tor’(f(q), &) — Tor’(f(q), 1) + C. < C.

wheret > 0 is such thalD file,|-6 = 1 and we sef’ = |Df(§,|Eu|-6so thatC;* < 6/ < C,.
Hence, for the proof of_ {19), we may assume thate W(iza,%)(p). But, under such
assumption, we can prove the claim easily because the déstaatweerf'(q) and fi(q)
is exponentially small with respect to- 0. O

Remark 2.16. In the case of contact Anosov flows, the Sedf stemplates consists of
a single trivial A-equivalence class [0]. Therefore our non-integrabiliypdition (NI),
excludes the case of contact Anosov flows (together with tkpension flows of Anosov
diffeomorphism with constant roof function!). For contact Amo$lows, we can set up
the straight sectionysg, ; appropriately (and a bit fierently from what we have done) so
that the approximate infinitesimal non-integrablilit{g, 6) is constant and bounded away
from O for allq € M ands > 0, and this is sfficient for proving exponential mixing. In our
argument below, we will see that, if the absolute valua@f, 6) is suficiently large at any
pointq € M and at any small scate> 0, the geometry of the stable and unstable foliations
is comparable to the case of contact Anosov flows and we caethdhow exponential
mixing. However the problem with the quantity(q, ¢) is that it is not uniform in the
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scales and this makes it diicult to control in perturbation. On the other hand, our non-
integrability condition NI), is formulated in terms o-templates, which do not involve
the scales, and therefore are stable and also can be controlled inrpatian to some
extent, as we will see in the proof of Theorem 2.12 in SedtloN@te that we will make
use of the non-integrability conditioMN(), only in the situation where the approximate
infinitesimal non-integrablitp\(g, 6) is not suficiently large in absolute value.

3. ProoF oF THEOREM[Z.12

In this section, we prove Theordm 2112. Lek3 < oo. We are going to perturb the
flows in ), by time-changes and deform tiséemplates. We fix somR > 0 depending
only onr and show that we can change the values-tdmplates on each of many small
disjoint intervals in £1,1) of sizeb YR almost independently. This enables us to show
by the large deviation argument that the condition (14) @éated only with very small
possibility. As usual in perturbation argument in dynarh&gstem theory, we will face
problems caused by interference between perturbatiorisoBe because the dynamics is
uniformly hyperbolic, the problem is fortunately not todtdiult.

3.1. A probability measure on the space of functions.Let C"(M) be the Banach space
of C" functions. The translation d@' (M) by ¢ € C"(M) is written

7, : C'(M) —» C'(M), T,(U) = U+ ¢.

In the argument below, we fix a Borel probability measuien C'(M) such thau(U) > 0
for any non-empty open subsét c C'(M), thatu is quasi-invariant with respect to the
translationr, for anyy € CR(M) with some largeR and further

(22) exptliglicr) < <expliglicr)  foranyyp € CR(M).

d((7y)-4)
du

We refer[17, Lemma E] for existence of such meaguamdR > r.

In what follows, we consider an arbitrafy € &a and writev for the vector field that
generated!. We suppose thatV is a small neighborhood of the origin 0 @ (M) and
will let it smaller if necessary. Let; for ¢ € W be the flow generated by the vector field
V, = (1+¢) - v. Notice that the flowf; preserves the volunmg, = (1+¢)~*-m. Hence we
can apply the argument in Sectidn 2 to the ﬂtg;v\with settingu = m,.

Forpe M, @ € Randb > 0, let X,(p, ; b) ¢ W be the set of functiong € W such
that the condition[(14) for this andb fails for the s-template afp for the flow f;. In the
following, we are going to estimate the measu(¥,(p, «; b)) for pe M, o e Randb > 0
in order to prove Theorem 2.112.

Because of technical problems caused by interference @drpations, we treat some
set of pointsp € M as exceptions. Let, > 0 be constant defined for the floft such that,
for every periodic pointv € M of the flow f!, its prime periodT (w) is larger than 18..
Then the modulus of hyperbolicityp fT™|g (w)|| is greater than, := %™, Forb > 1
andp € M, we set

(23) T(p.b) =inf{t>0[|Df g, (p)l < b~1/(R)

Then letE(b) ¢ M be the open set of points € M such that there exits a periodic
orbit with prime period less thah(p, b) whose minimum distance froNV(Ufchc*)(p) with
c. =2(1-A;Htis less tharb /@R,

For suficiently smallp > 0, we show the following proposition.
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Proposition 3.1. For syficiently large b> 0, we have

u(X,(p, @; b)) < exp(=b”)
forpe M\ E(b) anda € R.

The proof of this proposition will be given in the followingissections. Below we
deduce Theoref 2112 from this proposition. Note #&p, a; b) = 0 for « with |a| > b?
from RemarK 2,70, provided thatis suficiently large. Lejp’ be a real number such that
O<p <p.

Corollary 3.2. For syficiently large b> 0, we have

nl U UXo(paib)| <expibry2)

peM\E(b) acR
Proof. If we take a finite but sfliciently dense subset of poinig;, ai)}i':1 in
(M\ E(b)) x {a €R | |a] < b%}

depending orb, then, by approximation, the union of the subs€iép;, ai; b) will cover
Upemew) Uaer X (P, @; b). By crude estimate, we can see that the cardinality the
finite set necessary for this to be true is bounded by a polyalarder inb. Therefore we
obtain the conclusion from PropositiobnB.1. O

Next we prove the following lemma which tells basically tifdlhe condition [1#4) holds
for all p ¢ E(b), it also holds forp € E(b). We say that a flowf; satisfies the condition
(N1), for b > 0O if the condition [I#) for thid holds for all thes-templates (forf;) and
@ € R. Let us writeWj(p; ) andwiy(r; ¢) for the (piece of) unstable manifoldj(p) and
its intrinsic parametrizatiow(7) defined for the flovvf;. Letp” be a real number such
that

0<p’ <p'(1-p)<p.
Lemma 3.3. If b > 0 is syficiently large and ifp € W does not belong to the subset
Upeme) Uaer X (p. @; bY) for any integer b with b#" < b’ < [b], then the flow f
satisfies the conditiofN1), p.

Proof. Suppose thab is a suficiently large integer. (The case whdryés not an integer
will be considered at the end.) From the assumption, theitionqI4) with p replaced by
" (for anya) holds for thes-templates at the points il \ E(b). It is therefore enough to
prove the estimaté {14) with replaced by” for the stemplates ap € E(b) anda € R
with || < b?. To show this, we will use the following simple fact: fge M and 0< 6 < 1,
we taket > 0 such thatD f'g, (q)| = §-1; then we have

(24) 1 z

1
26 f;exmb(‘”a,(a@(ﬂ+m))dr 5 [ xR () + @' D)dr

for p = f'(q) and somer’ € R. Of course this is true also for the flof/j!.

Suppose thap € E(b). From the definition of the sé&(b), there exists a unique periodic
orbit y with prime period less thaf(p, b) whose distance fromv(“_c*yc*)(p) is less than
b~V We can takéan isolating neighborhood of y so that it includes thé=/@R-
neighborhood oW(”_cwc*)(p) and that the flowf; in U exhibits simple hyperbolic behavior

4If A, > Lis close to 1 and, is large, the picture of the flow in Figuré 1 will be much diséakin reality. But
this does not make essential problems providedhsaiarge. If one likes, one can change the Riemann metric
in order to reduce the distortion.
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Intersection withy

Intersection withUJ

Ficure 1. A picture of the flowf! in a section transversal to the flow that
contains the unstable manifow(”_cwc*)(p). The dashed curve indicate
the move of points by the return map to the section. There desva
different cases for the relative positionpfo the intersection withy.

as depicted in Figuifg 1. In particular, we may and do suppgae is the unique periodic
orbit of f! that is contained entirely io.
We dIVIdeW[” 11] (p; ¢) into finitely many pieces

Wi = Wi 5005001 (G ) With a € WL 1)(P; ¢)

for 0 < k < k(p), and apply[(2K) to each of the pieces. ggte the point irW[”_lyll(p; ®)
closest to the periodic orbjt We can and do take the piedag so that
o fork = 0, we takeb™'/8 < 6(0) < b™'/4 andqo so thatWo = W' ;) 5.0y (Go; ¥)
contains th&(0)-neighborhood of the poirmgin W[Ufl’l](p; ¢), and
e for 1 < k < k(p), we takeb™" < §(k) < 1 andgx so thats(k)b is an integer and
thatC;d(ak, ) < 6(K) < C.d(qk, 9).
We regard the piec®), as an exception. But this does not make any problem because it
length is 2(0) < b*"/2. Each of the pieced for 1 < k < k(p) will eventually goes out
of the isolating neighborhodd by the flow f; (at some positive time) and its length will
grow to the unit size. Let us take> 0 so thaIlDf;klEu(qk)l = 6(K)L, that is,

f‘;k (Wi sty (i )) = Wil g 1( f;k (A); @)

We claim thatf;k(qk) for 1 < k < k(p) does not belong t&(5(k)b). We can prove this by
contradiction. Suppose that this were not the case. Theefiyition, there would be a pe-
riodic orbity’ with period less thaﬁ(f}k(qk), 6(k)b) whose distance froM/(”_cwc*)(f;k(qk))

is bounded by{(k)b)=Y@R. Since we are assuming thats small, we may suppose that
tx/T(p,b)is closeto 0 and‘(f;k(qk), 6(K)b)/T(p, b) is close to 1. Noting that/jtk sendsy’

to itself (of course) and thafg is a time-change of!, we see that the distance betwaén
andW( . . \(p) is less tharb- YER) Further, tracing the orbit’ backward, we see from the
def|n|t|on ofT(p, b) that the periodic orbif’ must be entirely contained It and therefore

v' =v. But this is impossible from the construction of the pieé&s provided that(k) is
suficiently small according to..
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Now we can apply{24) to the piec®é for 1 < k < k(p) and use the assumption of the
lemma to bound the integral if_(114) for tlsgemplate atp on eachW. Then we obtain
the required estimaté ([L4) withreplaced by .

Finally we consider the case whebreés not an integer. From the argument above, we
see thatf; satisfies the conditionN|); 5 for somep” < p < p’(1 - p’). Then we can
deduce thalf; satisfies the conditionN1),., by using [2#). This finishes the proof of
Lemmd33. ]

From Lemmd&313, we see thatgife W does not belong to the subset

UN[Y Unewaia,
L ¢=L \peM\E(¢() e€R

the flow f:, satisfies the conditionN(1),, for p’ < p(1 — p). Since theu-measure of the
set above is 0 from Corollafy 3.2 and Borel-Cantelli lemmae,can find arbitrarily small
¢ € C'(M) such that the flowf; satisfies the non-integrability conditioN(),>. By a
theorem of Moset[14], there is@" diffeomorphismd, : M — M which transfers the
volumem, = (1+ ¢)"'mto m, and®, converges to the identity i6" sense ag converges
to 0. Therefore, taking conjugation ijy such difeomorphisn®d, and recalling Remark
[2.13, we obtain £ flow in ), which is arbitrarily close tdt in theC' sense and satisfies
the non-integrability condition1),2. We have finished the proof of Theorém 2.12.

3.2. Perturbation family. In this subsection, we explain the scheme of perturbation fo
the proof of Propositioh 311. Suppose tat 0 is large and that a poimt € M \ E(b)
anda € R with || < b? are given arbitrarily. Below we set up functiops e C*(M) for

1 < j < [bYR] and then, for arbitrary, € W and a sef of integers 1< j < [bYR], we
consider the family of vector fields

(25) wi=(1+@)-v where gi=go+ y ti-g; and t=(t)e[-22].
jed
Once we fix such family of vector fields, we wrifg = f; for the flow generated by.
Let us setq = 4 (p) and recall the intrinsic parameterizatiof] : R — M of the

unstable manifold\(q) of g € M for the flow f' so that we have* (Wp(7)) = Wy(47)
with A = [|[Df%|g,(p)Il. For 1< j < [bYR], let

S(j)=-1+2j-bYRe[-1,1+2b7VR
and then put

P(J) = wi(s(i),  a() = 47 (p(i)) = wh(As()))-

Also we take a local coordinate chart

kj = kpj: Uj = B(O,r,) x [-7., 67.],

on a neighborhood; of p(j) € M, so that it provides flow box coordinaiésr the flow

ft satisfyingx;j(p(j)) = (0,0) andx;(q(j)) = (0,4r.). We may and do assume that these
coordinates are bounded@i sense uniformly irj (and also irb andp), that they transfer
the volumemto the standard volumexdydzon R3 and further that

ki (Wyy (A7) = ki (F7 (Wi, (1)) = (1, 0,0)  forT e [-2b7/R 267/,

5By “flow box coordinates”, we mean @' local coordinatesx y,z) on M in which f' moves &y, 2) to
(%Y, z+ t) whent is small.
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/ The support ob;

(i) q
] :
A A A A A A
W y(P) B(j) p
(=11 | °

Ficure 2. A picture of the flowf! in a section parallel to the flow that
contains the unstable manif(‘)lr‘(si({l l)(p).

See Figurél2. We take and fixGt° functionshy : R? — [0, 1] supported on the disk
(%, ¥)| < 3/2 such thahg(x,y) = yif [(x,¥)| < 1. Lety : R — [0, 1] be aC* function such
thaty(s) = 1if |9 < 1 andy(s) = 0if | > 3/2. Then we define

¢j:M—1[0,1 forl<j<[b"R
by
oj(m) = —ag" ™R (2 - 47.)/1.) - ho(b™Rx, bM/Ry)
forme M with «j(m) = (x,y, 2), whereag = nf)((z/r*)dz

Remark 3.4. The motivation for the choice of functiogg above is explained as follows.
Suppose that € J, o = 0O andt; = O fori # jint = (). Then, in the local cha;,
the vector fieldv; will look (kj).vt = (1 + tj¢;)d; and hence, ifv = (x,y) € R? satisfies
Wl < b~/R, the mapf,*"* takes a point, 47.) to (W, b~1xyt; + O(t§)). Hence, by changing
the parametet;;, we will be able to rotate the stable subsp&efo(j)) around the unstable
manifoIdVV(”_lyl)(p) by the rate proportional tb~'x provided thatt;| is suficiently small.
Of course we will have to consider the influence of the pegtiom from further future.
Also, sincepy may not be 0, we will have to introduce a slight adjustmerdtesl to the
coeficientay’.

The family of functionsp; satisfies
(26) ID%pjlleo < C.HEDRT foro<k <R

The intersection multiplicity of supp; for 1 < j < [b™Y/R] is bounded by 2. Hence,
regardless of the choice 6f we will have

7) llgtller < CO™YR Jlowgrllcs < C.b7Y  lgr — gollcr < C.b™* whent e [-2,2],

As we noted in Remark=3.4, we would like to modify teeemplatey, -1,y on the
intervals

3(j) = [s() - bR, s(j) + b YR N [-1,1]
almost independently by varying the paramefén the family [25). To this end, we have
to choose the s¢ta little carefully. First we observe that

(11) f'(suppgi) Nnsuppp; =0 forl<i,j <[bYRland &, <t < T(p,b) - 4r..
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Indeed, if (11) was violated, we could find a periodic orpin the C,b~*/R-neighborhood
of W (p) by the pseudo-orbit tracing property and the conditionthéndefinition of
E(b) would hold for thisy.

Next we make the following observation from the fact thatpm&imagef“(vv(“_lyl)(p))
of W(”fl,l)(p) shrink exponentially asincreases:

(12) There is a subséi(p, b) of integers 1< i < [bY/R] with #€(p, b) < C.b¥“R such
that, if 1 < j < [bY/R] does not belong té(p, b), the subsef (W', ;,(p)) does
not meet supp; for t > 0 satisfyingDf~'|g,(p)| > b~

Indeed, from (11), the subsétt(\/\/({l,l)(p)) for0 <t < T(p, b)—4r. does not meet supp
forany 1< j < [b"R]. Since the length of (W, ;,(p)) is bounded byC.b™/“® when

t = T(p, b) — 47, and shrink exponentially asincreases, we can find the exceptional set
E(p,b)in (12).

Below we consider two subsefs,enanddoqq asd, that consist of even and odd integers
1< j < [b~VR] respectively, but we exclude thosed(p, b) in (12) above and also thoge
for which J(j — 1)U J(j) U J(j + 1) contains either of1 or 1. Then, fod = Jeven dodd: WE
have obviously

(13) supppi Nsupppj =0ifi+ jed.

(14) I(j—1)nJ(j)n I(j + 1) does not contairl nor 1 forj € J.

Note that the number of integers<li < [b™'/R] that does not belor@eventdodq is bounded
by C.b¥“R and hence the Lebesgue measure of the unial{ipfor suchi’s is bounded
by C.b~Y“R). So these exceptions are negligible when we consider tmeagst{12) in the
following subsections.

3.3. Deformation of s-templates. In this subsection, we suppose tlfais either of the
subsetYeven and Joqq and observe how thetemplate at the poinp is deformed in the
perturbation family[(2b) with arbitrary, € W.

For each parametére [-2,2]9, we Wr|te\/\/u 1) (p;t) = ( 11) (p; @) andwi(z;t) =
WH(T; ) for brevity. LetTqM = Eq(g;t) @ Es(q, t) & Ey(q; t) be the hyperbolic decompo-
sition for the flowf! corresponding td {2) fof'. Let

)’g,t’ Yo Vpi P Wlign(pit) = T°M
be the section$g,(7l,l), 7’?,(—1,1)’ 7’;53,(71,1) considered in Sectidd 2 but now defined for the

perturbed flowf!. Then thestemplate for the flowf! at p € M is the continuous function
> 1p(it) 1 (-1,1) — R satisfying

YorW) = ¥h 10T ) - v W) +yp(W)  forw = wi(sit).
Actually it is not a very simple task to observe how the fuont&;(fl’l)(ﬁ t) varies, because
the framesyﬁt andygyt will also vary. In order to simplify the argument, we conside
approximation of,bs _11) (;1). Letys L ll)(p; 0) —» T*M be the unique continuous
section iny(p, (-1, 1)) forthe flowft (') such thaty} ,(q) is normal toE"(q; 0) & E(q; 1)
forge W, 1,1)(p’ 0). Then we expre ot L as

(28) Vo (W) = Y 2,(71,1)(7'; t)- Vé,o(W) + Yg,o(W) for w = wi(7; 0)
using a unique continuous functi(irg’(fl’l)(.;t) : (-1,1) - R. In the next lemma, we

show that the last functiofnf)’(_lyl)(-; t) is a suficiently good approximation qu;’(_lyl)(-; t).
Before stating the lemma, we note that there exist functions

h:[-2,2]? >R and T:(-1,1)x[-2,2)? >R
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such thah(0) = 0 andJ(0, 0) = 0 and that
wi(h(t) - 7;1) = 7O WA (; 0)).

This is a consequence of the definition of the intrinsic naef) and the fact that our
perturbation does not change the flow lines.

Lemma 3.5. Fort € [-2,2]', we haveh(t) - 1| < C.b? and
WS 1T ) = ¥ L1y (h() - T t)] < Cb™ = WER) for 7 € (-1, 1),

Proof. From the observation (12), it is notfiiicult to see that th€* distance between
VV(”_lyl)(p; t) andVV(”_lyl)(p; 0) is bounded byC,b~? and therefore we have

(29) Iht)-1 <C.b? and I0,T(r;t)ll <C.b™%

Next we consid-er the sectiomﬁ(fl’-l)(-; t), ya(_lyl)(-; t) andyg’(fl’l)(-; t). For convenience,
we look them in flow box coordinates for the floﬁg aroundW(Ufl’l)(p; 0), which are
also flow box coordinates fof} for t € [-2,2]7. (Accordingly we regard/;,(fl,l)(-;t),
7’3(—1,1)('? t) andyg’(_lyl)(-; t) as mappings from«1, 1) toR3.) Then, from[(ZD), we have

(30) Yoy We(n@®) - 7315 t) = ¥ 1.2y (Wh(7; 0); 0) + 0.(b7%)
and
(31) 5 canyWa(h(t) - 75 1);t) = 5 Ly 1y (Wa(7; 0); 1) + O.(b72).

Recall thatyg,(_lyl)(-; t) is defined as the unique straight section satisfylingy (h@y, is,
73,(71,1)(\/\/5&1;0; t) = ¥p 1 Wp(1:1); 1)
And, for the quantities on the right-hand side, we have
175, 1.y (Wa(2h(8); 1); 1) = ¥5, 1.1y (Wh(21; 0); )| < .o+ (HER),
from the condition (14). Therefore we have
||73,(_1,1)(V\f5(11;t)§ t) - 73,(_1,1)(“}5(11; 0);0)ll < C.o - (/ER)
from C2 boundedness of the sectioy%g(fl,l)(-; t) and [29). Now we recall from the proof
of Lemmal2.b how the straight sections are determined asititinlerms of the time

evolution along the orbit oWu "1 (p; t) in the negativetime direction. It is then easy to
see from (12) and the last estlmate above for the end poiats th

(32) o apyWh(h(t) - 51);t) = ¥p 11)Wp(7; 0); O)ll < C.b™ " ER)for 7 e (-1, 1),
The latter claim of the lemma follows froa (B0, (31) afdl(32) O

From Lemma& 35, we have

’ f exp(ib (5 1 5)(T:t) + a7)) dr - f exp(ib (45 _yp)(T:t) + a7)) dr

for any Borel subset c [-1,1]. Therefore, in proving(14) fog(r) = L//S( 11)(1 t), we
may conS|de|ps _11) (r;t) in the place of//p( 11)(7, t).
To proceed We mtroduce the mapping

‘PT = ‘P‘r,p,a,b . [_2, 2]3 - RH
for eachr € (-b~V/R b~/R), defined by

o) = b+ (55 oD + 0 + (sl + r))je5

<C.,bY (4R)
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Let A(po) be the diagonal matrix of sizi with diagonal elements

J @+ @o(F1(@(i)N) 2 - x(t/7.)dt
[ x(t/7.)dt

This matrix is introduced for the adjustment mentioned atehd of Remark314 and close
to identity forpp € W, provided that we 1eW be small. Later we will use the following
simple estimate:

aj(go) = forjed.

(33) [2j(%0) — &j(¥o)l < C.llgo — wollo  fOr o, 90 € W.
The next lemma realize the idea in the construction of theupeation family.
Proposition 3.6. If b > 0 is syficiently large, we have

[DW(t) - 7 - Algo) : R, 11 llma) = (R, I lmax) || < C.b~/ER)

fort € [-2,2)9, pe M\ E(b), « € Randt € (-b"¥R b~¥R), where we consider the
maximal norm|(s;)llmax = Max; |sj] onR?. Further, for the Jacobian, we have

|log detD¥,(t) — log det(r - A(go))| < C. - #J - b~ /@R,

Proof. Note that the stable subspace at a puirt M for the flow f! can be expressed as
the limit

Es(w;t) = t“_To D ftit(E(ftt(W)))

whereE(W) is, for instance, the one dimensional subbundl&j which is orthogonal
to E, @ Eo for f'. Hence, we can compute theffdirentials ofEg(w; t) andJ/;(_lyl)(w; t)
with respect to the parameteas an integral of the infinitesimal contribution of the per-
turbation at timg > 0. Since our perturbation preserves the flow lines, tiffedintial of

¥ 1.0)(W: 1) is given in the form

om0 = [ DB XLt

whereX;(p, t, t) satisfiegX;(p, t,t)| < C.b~* and is non-zero only iftt(vv‘;(r; t)) € suppy;.
(Though we can expre3§(p, t, t) in a explicit form by preparing some notation, this is not
necessary.) From the constructiongfand the condition (13), we have that

bir- &j(po) + 0.(062), if 7€ J(j);

67,
t . -1y -
fo 1D Tole, (Wp(r: O)I™"-X;(p. . ) dt {o, if e J(i)forj#icd.

Also from (13), we have
(34) f IDfSles(Wi(r; 0)I - Xj(p. t. t) dt < C.b™ R forall 7 € (-1,1).
67,

Further, from (11) and (13), we make the following obseroas:

e each pointv e M belongs to the support gf; for at most ong < g,

o if w e suppyp;j for somej € g, the orbitf!(w) for t € [47., T(p, b) — 47.] does not
meetl Jicg suppyi, and

e if w € suppy; and if f{(w) € suppypj for somej’ € g andt > T(p,b) — 47, we
have|D fllg, (w)| > C; bR
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From these, we see that, for Ujes J(j), we have

(35) | o opt X (pdts c.b?
6r.

except for a set of € J (depending orr) whose cardinality is bounded byR5 This
together with the estimates above implies the first claimhefgroposition. Also we can
prove the second claim using the formula det(X) = exp(Ci, (-1 Y(L/KTrXK). o

3.4. Proof of Proposition[3.1. Let J be either 0fJevenanddoqq. Below we follow a stan-
dard argumentin the large deviation thebty[5]. First, gshe fact that ex®) < 1+ s+ &
when|g <« 1 and thatfj; Re (exp(s))ds= 0, we see

f[ i eXp(b‘l/(BR) : Re( ; exp(x j))) g dx,

7T #d
_ ( f exp(b’l/(SR) : Re( exp@x)))dx) < (1+7b VORI ayp(2nb VAR . ygy.

U

From the former assertion of Propositlon]3.6, we take a emnkt. > 0 so that the subset
Y = {(%))jes € [-2.2)7 | &j(¢0) - Ixj] + Kb <1, vje )
satisfies¥,(Y) c [-x, 7]? for T € (-b~Y/R, b~/R). Also, from the latter assertion, we see
fexp(b‘l/(sR) -Re Z exp(i ‘I‘T(t)j) )dt < exp(C.4J - bR . Leb(Y)
Y n
jed

whereW¥,(t); denotes thg-th component o¥.(t). We integrate the both sides with respect
to 7 on [-b~Y/R b~V/R]. Then, noting thagJ < bR, we find

pl/R

Flm f e fY exp(b-1/<8R> -3 Re expli(F5,y1y(s(0) +7:1) + a(s() + 7)) d‘r) dt

jed
- . 3/(4R)y
< T exp(C.b ) - Leb(Y).
By Jensen’s inequality applied to the exponential fungtwoa deduce
b7/(8R) . 1
j; exp( > [ Re exr(l(zp;(fl’l)(r; t) + m)) dr) dt < pTT exp(C.b¥@R) . Leb(Y)

wherel = Ujeg J(j). This implies

'—eb{t € Y‘Re f exp(i(f5 1 p)(7: 1) + 7)) dr > b1/<16R>}
|

< bYR. exp(C,b¥“R) — (1/2)b*¥/18R)) . Leb(Y) < exp-b*“R)

provided thab is large.
In the argument above, we consider the real part of the funazlgy(_lyl)(r; t) + ar. But
we can consider the imaginary part and also change the sigrilinerefore we conclude

- Leb{ teyY ‘ ‘feXp(i('Z;(_l,l)(T; t) + a‘r)) dr| > b_l/(leR)} < exp(-b~3/4R)y
!

Leb(Y)

provided thab is suficiently large. Finally, from the properti (P2) of the measurand
(33), we can now deduce the estimate

ll{ peW ’ feXp(i((Z;,(,l,l)(T; @)+ m’)) dr > b‘l/(lsR)} < exp(-b V@R
|
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and obtain the conclusion of Propositfon]3.1 from this eatafor the case® = Jeven Jodd
and the remark at the end of Subseckion 3.2. We have finisleguttiof of Theorern 2.12.

4. LOCAL CHARTS

This section and the next are devoted to preparatory argiforethe proof of Theorem
[Z13. We will consider a flowf' € &3 satisfying the non-integrablity conditioiN(), for
somep > 0 and study the transfer operator (or Perron-Frobeniusstmgr

LU L2(M) - L2(M), Llu=uo f

associated to it. To analyze the transfer operétowe will introduce a decomposition of
functions onM with respect to the frequency in the flow direction and thensider the
action of £' on each of the components. Singevirtually preserves the frequency in the
flow direction, this method is natural and work@@ently. (Seel[18, 19].) The analysis of
the action of£! on high frequency components is particularly importantin argument.

In this subsection, we begin with setting up systems of laetarts depending on an
integerw € Z, which we will use when we analyze the components of funstibat have
frequency around in the flow direction. Some of the constructions below depama
large constan; > 0, which will be specified later. Roughty > O is the time to wait until
hyperbolicity of the flow takes gficiently strong &ect and suppresses non-linearity of the
flow. We set

g = expty’)
so that|D f%||, < C. expC.t;) < ;.

Remark 4.1. We will see that the constafy (as well as the constants; andm; which
will be introduced later) can be taken as the kind of condtaattare denoted by symbols
with the subscript. (See the beginning of Sectibh 2.) But we use this symjwelth the
subscript} instead of the subscript because the choice is made much later.

4.1. Local charts depending onw € Z. We write B(w, r) for the open disk irR? with
radiusr > 0 centered atv € R?. Letr, > 0 be a small real number. To begin with, we take
a finite system o€? local charts

ka:Ua— B(0,2r,) x (-1,1) c R® forae Awith #A <
on open subsetd, c M, which are flow box coordinates for the floi¥/in the sense that
ka(f(p)) = ka(p) + (0,0,t) provided thatf S(p) € U, for all sbetween 0 and

Letpa : R® — [0, 1] for a € AbeC? functions such that sugp c B(0, r.)x(-1, 1) and that
the family of functions, o k5 for a € Ais a partition of unity orM, i.e. Y scaopa © ka = 1.
Let g, for a € A be aC' function such thap; = 1 on supp, and that suppa’c B(0, r,) x
(-1,1). By applying a mollifier along the flow line, we can and dowsse thatp, are
infinitely differentiable with respect to the varialdeand each of the partial derivatives
050L 07 pa anddko9Tpa with k + £ < 3 are continuous and therefore bounded.

Based on the system of local chakts we construct finer systems of local charts and
associated partition of unity for eaeh € Z. The construction is given in two steps as
follows. For the first step, we take a finite subNéa, w) c B(0,r.) and, for eacim € N(w),
we take a neighborhood, ., ¢ B(0, 2r.) of n and aC? diffeomorphism

Oawn ' Vawn XR = Dayn xR c B(O, 27‘;1(60)_1/2) <R

of the form
Ga.wn(%Y:2) = (Gawn(XY), Z+ Gawn(X Y))-
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We suppose that, ,» for n € N(a, w) coverB(0,r.). For the difeomorphismg),, n, we
may and do assume the following conditions:

(G0) theC?® norms ofga,,.n and those of their inverses are boundedby
(G1) Gawn(n, 0) = (0,0,0) and the dierentialD(ga wn © ka) At Pawn := k31(N, 0) sends
Eu(Pawn), Es(Pawn), Eo(pPawn) to thex-axis,y-axis, z-axis respectively,
(G2) there existay > 0 such that, ifw| > wo, we haveD,, n = B(0, 2x¢xw)~Y/?) and
Gawn © ka(Wp,, (1)) = (1.0,0),  Gawn o ka(Wp,, (7)) = (0,7,0)

for v € [—2x¢y(w) 2, 2¢5(w) V], wherews, ~ (-) andwh () are the intrinsic
parametrization of the stable and unstable mamfoldsummed in Sectioh 2] 2.
(G3) ((@awn © ka) 1)*u = Cawn - dxdydZor some constart,,, .

For the second step, we let
bawn R >R baun(XY.2) = (XY, B@ w,N) - XY)
where we define
Cawn - TOFS(paw,n,%n<w>_1/2), if Jew| > wo;
9 n = .
pa.w.m {O, otherwise.
Then we seta,n = Ua N k31 (Vawn X R) and regard
Kawn := ba,m,n © Jawn © Ka - Ua,w,n - Da,w,n xR, for (a, n) € Ax N(a, a))
the system of local charts dvl defined forw € Z. Note that these gives flow box coordi-
nates satisfyinga ., n(Pawn) = 0 and
Kaw,n(WSwn (T)) = (T’ O, 0)’ Ka,w,n(V\/JMH (T)) = (0’ Ta 0)
and also
(Ka’w n) U = Caun - dxdydz
from (G2) and (G3) above.
In order to see the meaning of the post-compositiob,Qfy, in the second step, let us

recall the argument in Subsectionl2.6. Suppose|thiat wg. From (G2), we can express
the sectionsﬁ( 58 andﬂ)( _55) TOT P = Pawn ands = xy(w) ™2 as

(Kab ) © ¥ WD) = (0.0(2). 1), (Kb, © ¥} sy (WE(D)) = (8(2).0.2)
usingC? functionsy, ¢ : (-6, ) — R. Also note that we have

(K;L:(Lu,n)* ° )’ﬁ,(_a,ﬁ)("\/g(‘f)) = (0,Cawn 1), (K;,%u,n)* ° )A’L,(f(s,a)(wg(‘r)) = (Cawn: 0, 1).

If we did not have the post-compositionlof,, , in the second step of the construction of
Kawn, We would have

¢’ (7) = Cawn - TOP(P, xy(w) Y?) < C.. 1@ (1) = Cawn - TOM (P, 24(w) )| < C,
because th€? norm ofyg,(fm is bounded by a uniform consta@t. Hence, with the
post-composition o, ., n, we have actually
(36) ' (I <C. and I§'(r) - Cawn AP xz(w) %) < C..

That is, by the post-composition &, the subbundldg along W(“_M)(p) will look
stabilized in the local chaw,,,» and, insteadE, will look rotating anngW(im(p) by a
rate proportional ta\(p, xz(w)~/2).

We next construct partitions of unity associated to theesystof local chart$ca o.n}an
forw € Z. Letoawn, Oawn R? — [0, 1] for n € N(w) beC? functions such that
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(1) sUPRRa.w.n C SUPPGawn C Vawn,
(2) Ynen(w) Cawn =10nB(0,r.), andga »n = 1 ON SUPRawn,
(3) max|l0”0awnllco 10%0awnlle} < C*(a)(%a_l(a))l/z)lal for any multi-indexa with
la] < 3.
For eachw € Z, we consider the family of functions
Pawn = (Pa . Qa,w,n) o g;i,n forae A, ne N(OJ)

where we regard,,, as functions ofR3 by settingo,,n(X, Y, 2) := 0wn(X ). Similarly we
set

Pawn = (Pa-Bawn) © Gae,n  fOrae Ane N(w).
The set of functionpa,n © kawn for a € Aandn € N(w) is a partition of unity associated
to the system of local char{g,, n} and we havea,n © kawn = 1 0N SUPPOawn © Kawn)-

Remark 4.2. We may and do assume without loss of generality that, for eacthe
intersection multiplicity of the subsets

U f'(suppdawn) forae Aandne N(a w)
te[-1,1]

is bounded by an absolute constant.

4.2. The central bundle Ej viewed in the local charts. In this subsection, we consider
how the central subspadg; = (Es® Ey)* in the cotangent bundle looks in the local
chartska,,n. Note that, sinces] is invariant with respect to the flo, there is a unique
continuous mapping

€awn i Dawn = R% €aun(W) = (65,1(W), 63, 1(W))
be the unique continuous function such that
(Drawn)p(€awn(W), 1) € Eg(p) when kaun(p) = (W,2) andp € Uaun.
From the assumption (G2) on the choiceggf, », we have
Oan(1,0) = H;M’n(o, 7)=0 for te€ [_2%“0))71/2, Z%ﬁ(a))fl/z]

By slight abuse of notation, we will sometimes regard thecfiomse, ., n, 05, , andé; , ,
above as functions dR® by letting e, ,n(X, Y, 2) = €2.,.n(X y) and so on.

Remark 4.3. The functione,, » is not smooth in general, but satisfies
(37) lleawn(W) — €aun(W)| < Ciw =W - ((loglw —w]) + log{w)) for w,w € Dan
from (@) and the facs(a, w, n)| < C, log{w). In particular, we have that

lI€aw.n(W)II = lI€a0.n(W) — €awn(O)ll < Cuxeg(w) ™ Y2(loglw)) for w e Dagn.

For a technical reason to be explained in Rerhark 5.5, we éxtenfunction®, , » S0 that
they are defined oR?. The choice of the extension is rather arbitrary provided {B7)
holds.

In the next lemma, we take and fix a constart 8, < 1/2.
Lemma 4.4. For (w) 1% < h < xy(w) Y2 and a point we Dgn, let

6,0 (-h,h) > R%,  £(1)=w+(r,0), £&(1)=w+(0,7).
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Then, for-h < 7 < h, we have

(38) [6hn © £(1) = 65,0 © £(0) = CawnAM(Pacn, #¢w)Y?) - 7] < C.h(log(y(w)?/h)),
(39) 0300 © £(7) = 03,0 © £(0)] < Coreiw) ™" - log(w))?

and similarly that

(40) 65,0 © £(7) = 63, © €(0)] < C.h - (log ()™ 2 /),

(41) |04 n © €() = 040 © £(0))]| < Curtiw) ™ - log(w))?.

If the non-integrability conditiofN1), holds, we have, for gficiently large Iy > O, that

1 h
(42) o j: X exp(ibhfl (920,,”(5(7)) + m)) del < b2

forany by < b < x4, @ € R and any hw as above, provided thab| is syficiently large.

Proof. Below we provel(38) and (39). We can prolvel(40) andl (41) siygilay considering
the time-reversal of the flow. Let= K;t,n(w, 0). From[4) and (G1), we have

(43) |(kawn © W) (7) = (0,1,0) < Ceg(w) *(loglw)) for —h <7 <h.

For continuity of the second derivative of the local stabbmifold, we can argue in parallel
to the proof of [(#) and, using the condition (G2), we obtain

(44) I(Kawn © W) ()] < Curg(w) Y¥log(w)) for —h <z <h.
From [37) and[{43), we see that, feh < 7 < h,

|ea,wn(f(7)) - e’cl.w,n(Ka,w,n ° WS(T))l < C*lf(T) — Ka,w,n © W;(T))l . <|Og |£(T) — Ka,w,n © W;(T))D
< Cox ()~ Nlog(w))?.

Since the right hand side is small enough, the claims of therla follows if we prove

them with the tern? replaced byka o © WE.

Let e, be the vector field obJ,,, defined bye, = (K;]&J,n)*(ax). Then, for-h < 7 < h,
(45) eg,w,n("a,w,n(v\’a("'))) = <73,(7h,h)(W§(T)), ex(Wa(T)))
= (78 ME@) = 33, Cary (WD) + 79y (WE(D)), &W(D)) ) + O.(h)
= Tor'(a, )7 - (g nny W), &xWa(1)) + (Vg chp Wa(7)), edWg(7))) + O.(h)
where the second equality follows from the fact that
1Y iy (WE(D) = 74y WS = N+ Iy 1.0y (W5 (1)) = 7 L1 1)@l < C.

fort >0 satisfying|Df(§|Eu| = 1/handq = f!(g). From the construction of the local charts
Kawn, We have

(46) (3 (WS, &XOW(D)) = (52 iy WE(O)), WS (O) = B(a, w, )T + 0., ().

Also, recalling the definition of the sectiort {or that ofy* for the time reversal of the
flow), we see, from the condition (G3) aid143), that

(47) FachnyW5(D)), 8WG(1)) = Cawn + 0. (xg(w) (log(w))).
Since we have
[Tor(qt. h) = Tor!(Pa.n. #xw) %)l < C. logtg(w) */2/h)
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from Lemmd 2,15, we obtain the first claifi{38) witheplaced byan o wg from (43),
(48) and[[4¥). The claini(39) is obtained by usihgl (I7)] (48) &4) in the relation

(6 (an © WE(D), 05k © WE(D)), 1) - (Ko © WE) () = .

To prove the last claini(42), we note that, from the non-irabdgity condition (N1),,
there exists somigy > 0 such that the estimate(14) holds for all the templatesT, for
all « € R and for allb > by. Then, from[(IR), we have that

1
(48) o
Finally we estimate the ffierence betweema’(fh,h)(r) andé; , ,(¢(r)). Similarly to the
argument above, we lej = (K&%},n)*(ay) and find
03 n(Ka.wn(Wg(7))) = <7§,(_h,h)(v\/c;(7)), &y(Wo(7)
= U5 (D) - Vacnny WD), &/(Wa (D)) + (g iy (Wa(7)), B (W5 (D).

Applying the approximation parallel t§_(47) to the first teemd the approximation of
(ygy(_hyh)(mﬁ(‘r)), &(Wq(7))) by its linear partr - o’z + ' to the second term, we see that

h
f exp@bh‘l(wg (hpy T an))dr| <b™ foranyqe M, @ € R andb > by.
—_h o

105.,n(E()) = Cawn - Y5 (@) — @7 =B < Coxg{w) (log(w)).
The right hand side is small enough to conclude the thirarcdi2) from [48). m]
4.3. The flow f! viewed in the local charts. In this subsection, we consider how the flow
f* looks in the local charts,,n. Suppose that; < t < 2t; and thatU = f'(Ug,n) N

Ua v # 0. Then the flowf! viewed in the local chartg, , » in the source angy .,y in
the target will be

fi=kaywmoflokawn: VXR—V xR
where
V = Vaun = 10 Kaun(U), V' = Vg =10 kg wn(f(U)).

Note that we dropped, w, n, &, «’, ' from the notation above for brevity. Thefféiomor-
phismf is written in the form

(49) f(xy) = (f(xy). 2+ f(x y)).

Lettingty be large, letting.. in (3) be slightly smaller and also choosing the local charts
a little more carefully, we may and do assume that tfieedmorphisnt given as above is
uniformly hyperbolic in the sense that

Df;(C(2))c C(1/2) forpe VxR
whereC(6) = {(¢x, &,0) € R3 | &4 < 6l&,1} and that
IDfy(Ml = e“'M ifveC(2) and [(DfY)j,W)I=e" M if veC(1/2).
For the higher order derivatives, we have a crude estimate
(50) IDXf|l. < C. exp(C.t;) - (log maX(w), (w)}y? fork =2,3

where the last factor stems from the post-compositidn,gf, andby . v in the construc-
tion of the local chartg, , n andka o -

If |w| and|w’| are large, the domaid of f is small in the directions transversal to the
flow and therefore is well approximated by its linearization at least in suctediions.
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In the next lemma, we make this idea more precise. AetR® — R2 be the mappings
defined b}

(51) A(XY,2) = (Ax, Ay, z+ b - (x,y) + Bxy) + £(0,0,0).

where

(52) . N A 5 5 5
A==|IDf@QIl.  A==IDf@YI.  b=(0x(0,0),6,f(0,0)), B =0xF(0,0)

and the signs oft and .1 are chosen so thak approximatef better. Then, settinG =
Ao f, we write the difeomorphisnf as the composition
f=AoG.
The difeomorphisnG is again written in the form
G(xY,2) = (G(x.Y), 2+ G(X.Y)).
In the next lemma, we suppose thak0d,. < 1/2 is a constant that we can take and fix
arbitrarily, as in the last lemma.

Lemma 4.5. There exist constant; > 0, depending on the choice gf such that, for any
ty <t < 2ty and any combination df, w,n) and (&, w’, ') as above satisfyinf| > wy
andl/2 < (w')/{w) < 2, we have the following estimates:

(G) for the difeomorphism G V — G(V) c R3, we have ) = 0 and

(53) ld — DGllw < (w) Y2 and DGl < (w)* fork=2,3,
and also
(54) IDGlles < (w) ™% and |ID?Glle < (w) Y2+,
(A) for the djfeomorphism A, we have
(55) bl < (w)y™2*% and |B] < C.t;.
Consequently we have
(56) IDflle < (@)%, ID*fll. < Cuty

Remark 4.6. We will observe the functions on local chaktg,, in the scalgw)™ in z-
axis while in the scaléw)~'/? in the xy-plane. In such scale, theftiomorphisnG will
look

(%9,2) = ()2 G((w)y 2%, (@)%, ()12, (@)G((w) 2%, (w) M%)
The estimates above implies that this rescaled map tendsidity agw| — oo, uniformly
in aandn.

Proof. Note that we will choose large; depending o, andt; and also that we will use
arbitrariness of, implicitly in a few places below. The claiffD*G||., < (w)* fork = 2,3
is obvious from[(BD). Since the vectors

(Df)o(x) = (D)o(L,0),8xF(0,0)),  (Df)o(@y) = (DF)o(0, 1), 8,f(0,0))

points the direction of unstable and stable subspacé&gatn the local charky . v re-
spectively, the estimate dmin (&3) follows from [4). Also, from the choice &, we see
that DGg preserves the vectots, dy, dy up to error terms bounded Kyw)~Y2+%-. Hence

6since we will consider the case whedg is large, we may and do suppose tlidas actually defined much
larger domain thaV and thereforef (0, 0, 0) is well defined.



EXPONENTIAL MIXING 23

we obtain the former estimate in_{53) from the latter (forightly smallers.). From [44)
and the condition (G2) in the construction of the local chayt, », we have

|(kawn © W) (7)] < Coxg(w) ™2(log(w))  for T € [~2uey(w) ™2, 2y(w) ]

for p € Ugwn ando = s u. Also we have the same estimates for the local chayt n.
Since the stable and unstable manifolds are preservédd\g obtain that

”afoV”oo < <a)>*l/2+9*, ”ayyf\’”oo < <a)>—l/2+9*.

This implies the same estimates fBrbecause A = dyyA = 0. From the choice g8,

we have that|dx,Gll. < (w)~%?*%. We have therefore obtained the latter claim[in (54).
SinceDG(0,0) = 0 from the choice ob, the former claim then follows. To prove the
last claim ong, we recall the construction of the local chagt, . If we did not have the
post-composition ob,,,, in the second step of the construction of the local ckart,,

the claim is obtained by a standard argument using the chén The post-composition
of the mapb,, , results in the addition of

B, o', 1) B w.n)
Gcl’,w’,n’ Ca,w,n

(B@, &', M) = (A2) - A& w,M) = Ca -

to up to an error term bounded 8. From [I8) and{19), this additional term is bounded
by C.ty. We have completed the proof. O

We finish this subsection with the following simple estimate
Lemma4.7. If 0 <t < 2ty, we have, for integers K, m > O with k+ ¢ < 3, that
105005 (Pawn - (Parwrav © Flleo < Cu - (€5% - 2, max((w), (w WH2)®H.

We omit the proof since it is straightforward. But note thatthe case&k = ¢ = 0,
the right hand side above is just. This is because the functi@n,, , in the definition of
Pawn IS the functions of X, y) and does not depend an(Recall also thab, areC* in the
variablez.)

5. THE ANISOTROPIC SOBOLEV SPACE

As the next step towards the proof of Theofem .13, we initedhe Hilbert spacgf,
called the anisotropic Sobolev space, and consider thenaatithe transfer operatdi' on
it. The argument in this subsection is a modification of thahie previous papefs[9, [19].

5.1. Partial Bargmann transform. Our basic idea in analyzing the transfer operatbr
is to consider its action in the frequency space. But, onelr the direction oE;
depends on the base point sensitively, we also need to @ribilaction in the real space.
The partial Bargmann transform, introduced below, meatsdaldemands. We refér [19,
Section 4-5],[9, Section 4.2-3] and |10, Section 3-4] areléferences therein for more
detailed accounts on the (partial) Bargmann transform.

For (W, &, 77) € R?*2*1 definegw,, : R* — C by

PuzaW,Z) = 272772 ()2 - explin - z+1& - W = (W/2)) = () - W - w/2).

The partial Bargmann transfort : L2(R?*1) — L2(R?"2*1) is defined by

(57) BUW, &, 1) = f PunW.Z) - UW, Z) dWdZ.
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Remark 5.1. In the above and also henceforth, we wiit€? (resp. R>*?*1) for the Eu-
clidean space of dimension 3 (resp. 5) equipped with thedat@ncoordinatew, z) =

(XY, 2) (resp. W, &,1) = (XY, &x &, 1)) wherew = (x,y) € R? and¢ = (&, &) € R2. We
regardé = (&x, &y) andn the dual variables ol = (x, y) andzrespectively.

TheL2-adjointB* : L2(R%*?*1) — L?(R?*!) of the partial Bargmann transfor®is
(58) BUW.2) = [ g0 2) vl . r)iwccly
Lemma 5.2. [19, Proposition 5.1The partial Bargmann transforms is an L?-isometric
injection andB* is a bounded operator such th&t o 8 = Id. The composition
(59) gB = Bo B LZ(R2+2+1) - LZ(R2+2+1)
is the 12 orthogonal projection onto the image %t

5.2. Decomposition of functions in the phase spacélNe introduce a fevC™ partitions
of unity. Recall the functioly : R — [0, 1] defined in Subsectidn 3.2.

(1) a partition of unity on the projective spacé¢y, : P* — [0,1] | o = +, -} such

that
1 it > 2
ACIE {0’ 1> 2
(2) a periodic partition of unity on the real life {q,, : R — [0, 1] | w € Z} such that
suppdy C [w—-1Lw+1], qu(9) = Jo(S— w),
(3) a Littlewood-Paley type partition of unity{y,, : R? — [0,1] | m € Z,} defined

and . ([(x 9D +x-([((xY)]) = 1.

by
B (W), if m=0;
Xm(W) = {X(emlwl) — x(e™w), if m> 0.

We define also the (anisotropic) partition of unfi, : R — [0, 1] | me Z} by

Xm(%Y) = xsgner) ([(X W]) - xim(%, Y)
but we ignore the first term on the right-hand side whrea 0.

We next introduce partitions of unity on the phase space.aFoA, w € Z, n € N(w)
andm € Z, we define the functiotra, nm : R?*?*1 — [0, 1] by

(60) YawnmW: £1) = Gu() - xm (@) ™2 - AZL, o€ = 1+ €20n(W)))

where

Aawn O _
Aawn = ( a(,) N 1) s Aawn = (A(Pawn, xy{w) 1/2» + tf-

Then we have, for eache A andn € N(a, w), that
D Waonm(W,£,m) = u(n) andhence >3 Yaunm(wi£,7) = L.
m w m

Remark 5.3. Notice that we have the facmgjj,n in (&0). (This factor did not appear when
we consider contact Anosov flows (n |18, 19, 9] in a parallehnmex.) In the present case,
the factorA(pa.w.n, %u<w>—1/z) is not uniform ina, w, n: it can be zero and also can be as
large ag9(log{w)) in absolute value. As we observed in Lemimd 4.4, the fun&igm(w),
which indicates the direction d; in the local chark,,, n, varies at a rate proportional to
A(Pawn 25(w)~Y?) in the &, direction. We therefore need the facty,,, in (60) in order

to do with the case whem(pa ., n, #¢(w)Y/?) is large.
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Remark 5.4. For the argument in the proofs in the next section, we defiadamily of
functionsya ,.nm : R%>** — [0, 1] by

(61) 'Za,w,n,m(w’ &, 77) = q«»l(n) ')N(m (<w>71/2 -Am- A;Li)n(é: -n: %.wn(w)))

where

(62) 0o = 0v-1+ 0w+ 0usl,  ¥m=Xm-1+Xm+Xm1
and
(26x.£y/2), it m>0;
Am(éx, &) = (éx: &y), if m=0;
(6)(/2, ny)’ If m> 0
Then we havga,,nm = 1 on the support af ., nm.
For eachC' functionu on M, we define a family of functions,’, nm : R?*2*1 — C for
ac€A weZ,neN(w)andme Z, by
OaonmW, &€,1) = YawnmW, &, 1) - B(pawn - (Uo Ké_l,:}u,n))(w, £m).
We regard this correspondenee- (Ua,nm) &S an operator
1:C'M) > [ ] C5(suppbavnm).  1(U) = awnmacweznenw)mez-

a,w,nm
Remark 5.5. The support 0B (pa ..n- (Uokzy, ) must beR?&R? unlessu,,,n = 0 because
they are real-analytic. But the functiofi§oa ,n - (Uo K;}U’n)) decays extremely fast on the
outside of suppa.n x R3. More precisely, the decay is exponential with respect é th

distance from suppa.,n x R® in the scalgw)~*/2. Therefore we can basically neglect the
part of the functiorB(paen - (U o k35,,)) on the outside 0D, n x R3.

The next lemma tells that the operator H
by

C5 (suppyawnm) — C'(M) defined

a,w,nm

|*((Ua,a),n,m)aeA,weZ,neN(w),meZ) = Z (ﬁa,w,n - B Uawnm) © Kawns
a,w.n,m

gives a construction reverse to the decompositidn in
Lemma5.6. ol =Id on C(M).

Proof. The claim is not trivial but can be checked by simple compatatusing[(6D) and
the commutative relation

(B o M(Qw) © B") © M(0a.wn) = M(Qawn) © (B o M(du) 0 BY)

whereM(y) denotes the multiplication operator y (The last commutative relation is
a consequence of the fact that the oper&aerM(q,) o B* is a convolution operator that
involves only thez-variable, whileo, , » does not depend an) We refer[[9, Section 4 and
Lemma 6.5] for the detalils. O

We can now define the Hilbert spageof distributions. We henceforth fix € (0, 1/6).
To simplify notation, we set

Jd={(aw,nm|aeA weZne N(w),meZ}

and refer the components pfE (a, w,n,m) € J asa(j) = a, w(j) = w and so on. Accord-
ingly, we will write

(63) Kj ‘= Kawn Pj = Pawn  ¥j = Yawunm
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and so on. It will be useful to remember that the componaratadn are related to the
position,w to the frequency in the flow direction amdto the frequency in the directions
normal to the flow direction viewed from the central subspage

Definition 5.7. We defineH as the Hilbert space obtained as the completion of the direct
sum@jeg L2(suppy;) with respect to the norm

(64) Wjealls = {Z ¢ M|y ||fz].

j€d
We define as the Hilbert space of distributions dthat is obtained as the completion
of C*(M) with respect to the norrfu||s¢ = ||l (U)|lz- Then we have

(65) C*(M) c H c (C*(M))’ and C*(M)c H' c (CY(M))".
By definition, the operatdrextends to an isometric injection 3 — H.

Remark 5.8. In order to check the inclusiof(b5), we use the charactiéoizaf Holder
spaceC?(RY) in terms of the Littlewood-Paley decomposition. (Se€ [Appendix A] for
instance.)

We define the operatdr' formally by L' = | o £! o |*, so that the following diagram
commutes:

H— H

| |
t
H—— K
Remark 5.9. At this moment, we only know that the operaforis defined as an op-
erator fromEBj Cg (suppy) to [1; C3'(suppy;). We will see that it extends naturally to
a bounded operator dii and consequently thai' extends to a bounded operator h
whent is suficiently large.

6. Proor oF THEOREM[Z.13

We now give a proof of Theorem 2J13, making use of the defimitiand propositions
prepared in the previous two sections. We henceforth assoatd! < if;i satisfies the
non-integrability conditionl{1), for somep > 0 and supposg <t < 2t;. Below we first
show thatf! is exponentially mixing. We will use the non-integrabildgndition (N 1), in
the proof of Proposition 61 7 or, more specifically, in themaate of the integral(85). Then,
in the last subsection, we complete the proof of Thedrenil2ykkamining dependence of
the argument on the flow. For this last part of the argumengnvghasize at this moment
that, in proving exponential mixing foi* below, we actually need the estimdiel(14) in the
non-integrability conditionl{1), only for b in some bounded range. (See Renfarkl6.11.)
This is crucial when we prove stability of exponential mixin

In the following, letw; > 0 be the large constant in Lemmal4.5, but we will let it be
larger if necessary. We will also introduce a large constant 0 depending or; and
wy. Beware that we will ignore some absolute constants, su2h,abat appear in Fourier
transform, partial Bargmann transform and Gaussian iategwhich are not essential at
all.
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6.1. Estimates on the components of.!. We Writeth_)j, 1 C5(suppyj) — Cg(suppy;)
for the component of.! that sends thg-component to th¢-component. We can write it
as

(66) th_,j,u =yj-Bo L}—d’ o B*u
where

t _ ot t -1
(67) Ljﬁj/v = (Pjﬁj/ “V)o (fjﬁj/)

with settingpjtﬁj, = (pj © fj:j,) -pjandft . =k o ft oxlfl. (Recall [63) and that we have

1=y

studiedfjt_,j, andp}_)j, in Subsection 4]3.) This is an integral operator with smdettmel

(68) K(W&mw. &) = vy (W&, 7)) - f Oii’ - bwen) © (FL5) @ - ey D dz

and in particular defines a compact operator figi{suppy;) to L2(suppy;).
We suppose that the constanisandmy mentioned above are given and ket H — H
be the part of the operatf that consists of the componem'l%_)j, with

maxX|w(), w()} < wg  and  maxim()l, ImG’)} < my.

This operatoK consists of finitely many components and therefore compgrdless

of wy andm. LetIl, : H — H be the projection operator that extract the components
with w(j) = w. We are going to prove that the following proposition holagtif we lett;
suficiently large.

Proposition 6.1. There exists a constant€0 (independent of the choice @J such that
I, o (L' = K) oTl, : H — H|| < exp(ct) - (' — w)™ forw,w’ eZandt <t < 2t.

This proposition implies that' is exponentially mixing. Indeed, from the proposition,
we have thallL! - K : H — HJ| < e ©?! for t; < t < 2t,, lettingt be larger if necessary.
SinceK is compact as we noted above, the essential spectral rafitssbounded by
e (@2t and so is that of ' : 3 — K. Sincef! is mixingd], there is a unique eigenvalue 1 on
the regionz > 1, which is simple and for which the the spectral projectdhésaveraging
with respect to the volume, and the other part of the spectrum is contained in the region
|7 < e €t for somec’ > 0. Therefore, if we set(y = {u € K | fu dm= 0}, we have

1LY : Ho — Holl < Ce©t fort > 0.
Now, from (65%), we conclude
(69) f<P' (o fYdm= f‘ﬁ ~Llodm< [Wllse - 1L llse < CEC - [llce vy - llelicemy

for ¢,y € C*(M) with [ ¢dm=0.

MItis easy to see thai\(), implies joint non-integrability of the stable and unstafagations and hencéd!
is stably mixing. See the argument in the proof of Propasi@id] for instance.
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6.2. Estimates on componenti}_}j,. Below we present a few estimates on the compo-

nentsL}_d., with respect to the £normand prove that Propositian 6.1 follows from them.
The proofs of the estimates are deferred to the succeedmgutsections.
To begin with, note that we have

(70) I}

1=

Az <1 foranyt>0andj,j’ €

because neither @8, B* and L' increases th&? norm. From the expressioh (68) of the
kernel, we observe théljtﬁj, is localized in the space. To state a consequence of this
observation, let
Ujoj = (WR? | flw—w|| < %;/2<w(j)>‘1/2 for some ¢, Z) € suppoj_j}
and similarly
ULy = fweR? | w—-w| < %;/z(w(j )y"? for some W, 7) € £, (supppjj')}.

Also we put |

Vioj = Uy xR = (W, £,7) e R*Z jwe Ui}, Vioj = UjLj xR®
(Note thatU;_;- ande_ﬂ/ do not depend om(j) andm(j’).) Then, for the operator
(71) L : L*(suppy) — L(suppyy). Lf_u= 1y, - Lisp (v, -,
we have that, for any > 0,
(72) L5 — Ll <C.(v)-2”  forty <t <2t andj,j’ €.

I
Remark 6.2. From Remark4]2, we see that, for anyw’ € Z andm, ' € Z and for each
j € d with w(j) = w (resp.j” € J with w(j’) = «’), the intersection multiplicity of
Ui i €d ()= ,mi)y=m}  (resp.UjL |j € J, () = w,m() = m})
is bounded by an absolute constant.

We next consider the localized property of the operhtdn the phase space. The next
lemma is a consequence of the fact that fidus just a translation in each of the flow lines.

Lemma 6.3. For anyv > 0, there exists a constant.(’) > 0 such that
ILE e < Ca) - (@() - w( )™
and further A
Iy — Ll < Cuv) - 257 - () — (/)™
forty <t <2ty andj,j’ € d.

We omit the proof of this lemma because the required estsrate obtained without
difficulty if one notes that the partial Bargmann transf@ns just the Fourier transform in
thez variable combined with the Bargmann transform[13pi= (X, y) with some scaling
depending on the frequencyin(We refer|[9, Proof of Lemma 9.8] for more detail, where
a slightly diferent estimates are proved but the argument is completedyiqig

Below we give another estimate on the localized propertj.'odn the phase space,
which is based on hyperbolicity of the flofl. We first introduce the following definition.
Let 0 < 6. < p, be small constants, independentgfvhich we will specify later.

Definition 6.4. We writej <! j’ forj,j’ € J andt > 0 if either
(1) m() > 0andm(j") < 0, or
(2) m@()-m(”) > 0andm(j") < m(j) — [(6./2)t] + 10.
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Otherwise we writg ¢! j’.
To understand the meaning of this definition, we make thewotig observation.

Lemma 6.5. Suppose thatt< t < 2ty and thatj ' j’ forj,j’ € J. If

(73) maxim()l, Im( ")} > 6.4
and
(74) maxiw()L () > ws (W) - w()) < w()2,

then(ijt_}j,)*(supppj/) is separated fronsuppy; in the following sense:
for any(w, £, 1) € suppy; with we U;_j- and for any(w', &', 7’) € suppy;j-, we have

(75)  (w()MAW —wly - (w()) AT (D)) — ) = CIHemXmDHmII2

wheref!

[ is the dffeomorphism that appears in the expression (49)1(})} f
Proof. From [I18), we hav@\;: — Aj| < C.t; and hence the ratio betweesy ) and(A;) is
bounded byC.t;. (Note that this is much smaller than the facthr/?t < e-/2%.) From

Lemmd4.%4 and the definition af, we have

A7 g W) — ATt g (W)l < Clw()M? - (w()) AW — wi).
Hence, provided thab(j’) = «w(j), we obtain the conclusion of the lemma by simple
geometric consideration on hyperbolicityt?ij, and the position of the supportsfand
yj-. For the caseu(j’) # w(j), we note that, if we replacew,¢’,n") by (W, &”,n) with
setting

& = (WO (" MYAE ~ 1 W) +ng (W),

we can apply the argument in the cas§’) = w(j) to show the required estimate. But, for
the diference betweefi” and¢’, we have

IAGHE" =€) < 1= (@) /(MY |AME =1 - & W) 1+ In=7'1- 1A g (W)

and, from [7%), we see that the right-hand side is much smtidkn &™1)(w(j"))¥2.
Therefore, regarding this as an error term, we obtain theired estimate in the case
w(’) # (). O

Since O* fjt_}j,)*l is the canonical map associated to the transfer opefﬂ?,rregarded
as a Fourier integral operaﬁothe last lemma provides intuition to the next lemma.

Lemma 6.6. For anyv > 0, there exists a constant.(’) > 0 such that, forg <t < 2t
andj,j’ € g satisfyingj - j” and [Z3), we have

||L}4>j’||L2 <C.(v)- @ maxim()LImG /2 (W) - w()y™

and further
Lt

(i

— L)/l < Cu(v) - @ MHMOHPIN/Z 52 max(e(i)), (i)

This lemma together with Lemnia 6.3 and the definition of thibeétt spaceH works
efficiently for the componenﬁS}ﬁj, for which max|m(j)|, Im(j")|} is suficiently large. But
our main concern in the proof of Proposition]6.1 is the renngicases. Such cases are
dealt with in the following key proposition.

85ee [10, Remark 2.5] for an account on this viewpoint.
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Proposition 6.7. There exist constan < 6. < p., which are independent of the choice
of ty such that, if],j’ € J satisfy

(76)  ma{im()l, Im()} < 6.ty |w()zwy and (w(’) - w(j)) < explp.t;/10),

we have
L, lle < explpaty)  forty <t <2t

Below we deduce Proposition 6.1 (and hence Thedreni 2.18) iemmd 6.8, Lemma
[6.8 and Propositidn 6.7.

Proof of Propositioh 6Jl.Let 0 < 6. < p. be those constants in Proposition]6.7, which
does not depend on the choicetpfWe may and do suppose thatis much smaller than
ps. Letw, w’ € Z be those in the statement of Proposifiod 6.1. Below we pibedth the
assumption that

(77) lwl > wy/2 and | - w| < exp@éd.t;/10).

In the case where this assumption does not hold, the proofushmsimpler. We will
consider such case at the end of this proof.
Let us takem, nY € Z and consider the componem]gj, forj,j’ € J satisfying

(78) wi)=w, Mi)=m of)=e, m{)=n.

Note at this moment that, since the operaligro (L - K) o II,, decompose one component
of H into many parts and send each of them tfiestent component. Also parts of many
components are sent to one component. Indeed, even witleshéction [78), for each
(resp.j’ € ), the cardinality of the set

(79) 7100, #01  (resp.jlpl; #0})

may be largei(e. grow exponentially with respect tt) and this is not be negligible.
We therefore face the problem that the decomposition anerpopition of functions may
increase th&2 norm. Our idea to do with this problem is that

¢ if we consider the operat(ﬁr}_)j, defined in[[71) instead c]ﬁjt_)j,, we will not have
this problem by virtue of the property noted in RemiarK 6.2} an
o the norm||IE,}Hj, - L}Hj,HLz of the diference is very small and dominates the cardi-
nality of (79) which is bounded b§. exp(C.t;) uniformly in w, ', m .
Below we proceed with this idea in mind. We consider the foifgy three cases for the
combination (n, nY) € Z2:
(i) those satisfying mepm, [n7[} < 6.,
(i) those notin (i), but satisfying the assumption of Lenitn8,
(iii) those not either in (i) and (ii).
Let us first consider the case (i). If we consiﬁﬁ‘gj, in the place oIL}Hj,, then, by Propo-
sition[6.7 and the idea mentioned above, the operator noith (espect to the norm on
H) of the totality of components satisfying {78) is boundedhg?*>-% - e#-!, where the
first factore?*%-% appears because of the weight in the definitioiilofor the diferences
betweeriﬁ}ﬁj, andL}Hj,, we can apply the second claim of Lemma 6.3 to see that they are
indeed negligible.
Next we consider the case (ii). Again, if we consi(ﬁ%_r}j, in the place oﬁL}_)j,, then,
from the first claim of Lemm&Z®6l6 and the idea mentioned abthe poperator norm of
the totality of components satisfying{78) is boundedyg (/2-22)maXimiml} - For the
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differences betweell_, andL{_,,
that they are negligible.

Finally we consider the case (iii). The weight in the defonition the Hilbert spacH
plays its roll in this case. Like the two cases above, we fiigpsse thaL}ﬁj, are re-

placed bylﬁ}_}j,. Then we could apply the first claim of Lemral6.3 to each corepbn
By the idea mentioned above (again), we see that the thetopa@m (onH) of the to-
tality of components satisfying (V8) is bounded®ye*™-™. For the diferences between
]I:jtﬁj, andL}Hj,, we apply the second claim of Leminal6.3 to see that they arigiieg.
Note that, from the definition of the relatign—' j’, we have thae*™-" is bounded by
C. maxe /3 g .t} in this case.

Collecting the estimates in the cases (i), (ii) and (iii) @dand taking sum with respect
to the combinationsnf, nY) € Z?, we obtain that the operator norm of the operdigr o
(L' - K) o II,, onH is bounded by

C, (a,) ma)({(;*tﬂe(zms* Pty , e—((l/Z)—Za)d*tu, 6*tﬁe_“‘5*t“, e—a()(*/Z)tu 1.

we can apply the second claim of Lemmal 6.6 to see

Since we are assuming’ — w| < exp(d.ty/10), this gives the conclusion of Proposition
[6.1, provided thad, is suficiently small and; is suficiently large.

In the case where the assumptionl (77) does not hold, the isrpafallel to the argument
above but it becomes much simpler. Indeed,

e In the case wherf| < wy/2 and|w’| < wy, we may assume mgri, [n7[} > my
since we subtract the compact p#tfrom L'. Since we can choose large,
depending oy andwy, we need not consider the case (i). Then the proof goes as
well as the argument above.

e In the case wher| < wy/2 andjw’| > wy, we havdw’ — w| > wy/2. In this case
and also in the cage’ — w| > €19, we may suppose that the factdus — w)™
that appear in Lemma 6.3 and Lemmal 6.6 are small enough lygleif andy
large. Then we need not distinguish the case (i) from therstaed we can go
through the argument above.

In particular, we do not have to invoke Proposition] 6.7 imeitof these remaining cases.
We have finished the proof of Propositionl6.1. m|

In the following subsections, we prove Lemial6.3, Lenima @& Rropositio 6]7.
We present the proof of Propositibn .7 first in the next sotise, since this is the most
important.

6.3. Proof of Proposition[6.7. Let us consider the operatﬁLj, forj,j’ € J satisfying
(Z8). We use the notatioh {I78) for brevity. By Lemmal4.5, wdiewrjt_)j, = Aijf o Gjt_)j,
and then write

Ly =y, ¢) AcG
with setting

G 1 L(suppy) — L2RY), Gu=B (o] - ¥ Ly, - 1) o (G;) Y

-y -y
and
A LZ(R2+2+1) - LZ(R2+2+1), Au = %((%*U) ° (A}H],)_l)

Remark 6.8. Sinceﬁﬁ?_)j, is of a special form, we can compute the kernehoéxplicitly.
See[[13, Chapter 3] for instance. But we will not use this mfthlowing.
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Remark 6.9. Since we have multiplication byjt_)j, in G, it is clear that the termy,

in the definition ofL!_, hardly do harm in estimate the operator nornihf,. For this
reason, we will ignore this term in some places below to ateiiibus detailed argument.

To proceed, let us set
& (W) = (6"(W), 65(W)) := €ag)w(i).n) (W)
and define
YRR, W) = G e @) VP AT E - - g (W)

Remark 6.10. The function¥; is of similar nature ag;, though its support is much larger
in ¢ direction. Below we conside¥; instead ofy; because we will later consider the
pre-composition ofs.

As the main step of the proof, we prove
(80)  II(ly_, ¥y} o A L2(SUpPY; NVjop) — L2(supp¥y N V)il < e
wherely ¥} denotes the multiplication operator thy ‘¥ To this end, we are going
1=l
to estimate the operator norm of
(81) Lsuppy,nv,, © A" 0 (1v,q,»,‘Pj')2 o A1 L%(supp¥; N Vi_j) — L2(supp¥; N Vi),

which equals the square of the left-hand sidd of (80). Lekuall the expressioh (b1) of
the d'ffeomorphismﬁﬁ?_)j,. Below we supposéﬁ?_}j,(O) = 0 by shifting the coordinates,
hence

A (xY.2) = (1 dy.2+ b+ (xY) + Bxy)

wheren, 1, b ando are those given if(52) witti = fjt_)j,. The inverse Ofﬁ-t_)j, is then
written

() w2 = (33 2= a3 ) - o)
where

A= (é g) and o(xy) = A Ixy.

We write the operatof as an integral operator

AU 1) = [ Kul W &) o £.7)
with the kernel

KA(W, f: V\/’,f”; T]) — ei{W/Z—i{-’”W”/Z . kA(W’fy V\/,,f,,; Tl)
wher@

(82)  KulW,&sW',¢";) = e IW2HEW /2. f Gur e - duen(A;) (. 2) di

%The right hand side of (82) does not dependzorAlso note that we separate the teemW/2+i€"w’/2 on
purpose.
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Using the expression OP{_}j,)fl above and changing the variablg¢c'\Ww + w”’, we rewrite
the last expression as

Ka(w, &W, &7 ) =

(m) fd\Tv exp{(E(AT (W +w") —w) — &' (W + W) — b - A7 W+ W') = 77 - (W + W")))
- @XPEIATHW + W) — W/ 2 — I/ 2).

Then we can write

(83) (4" 01y, ¥) 2o A)UW, &' 1) = f e W2 (W, 3w, £ ) U(W, £, 7) e

where, introducing the variable= ¢” — ne(w”), we set

©4) K. &imen =0 [d [ dw (e w2t
U.

=i

X Ka(W, & W, + g (W)i 1) - Ka(W, & W7, £ + 1 (W), 7).

In the integral on the right-hand side £6f{84), we are goingdmpute the integration with
respect to the variabl” = (x”,y”). If we extract the part inf[(84) that is related to the
variablew” = (x”,y”), we find

(85) 1(W, & W, &5 W, W;n) =
fo dx’dy’ exp(in(y - ¥) - 65(X",y") +i(éx — £ X" —iBA A (T - §)X")

i-i

-explin(X— X) - (X", y")) x exp(&y — &)Y — inBA AN (%= X)y”)
- @XPEMIATH R+ X) = X272 = (lATH K + X7) = X[P/2)
-eXpEMITT +Y) = VP2 = AT +y") -y F/2)
where we understand that = (X, §) is that in [82) andv™ = (X, ¥) is the corresponding

one that appears when we express the last terfn_6f (84) UstgA8d we can write[(84)
as

(86) XK(W,& 5w, &m) =

~ e _ _ _1,)2 - -
SROROSE f dZaWa - y (€7 ()2 - AC)” - exp (W + [W7)/2)
-exp((& - AW = W) — {(W— W) = ibA™ (W = W) — (0 (W) — o(W))))
AW, EW,EWW 7).
Below we consider the following two cases separately:
() Aj < €28, (1) A > e¥t,
Inthe case (1), we use the non-integrability conditibi), to deduce the required estimate.
In the case (ll), we use the fact that the approximate infitital non-integrabilityy; =

A(p, 24¢w(j))) is suficiently large. (The argument in the case (Il) is somewhailaim
to the argument for contact Anosov flows [n [18].) In the fellng, we suppose that

(W, &, 1), (W, &, 1) € supp?; N V.
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Case (I) We consider the integration i (85) with respect to the \@dea”. Note that the
factor on the second line df(B5) is of the form to which we cpplg (42) in Lemma4.4.
From the estimaté (41), the factor on the third line is alnzosistant as a function of’.
The factor on the fifth line does not depend xsh And the derivative the factor on the
fourth line with respect toc” is bounded byC,(w)*?17! in absolute value. We therefore
divide the real line into intervalk with lengthAY/%(w)~1/? and apply the estimate{42) to
the integral[(8b) restricted to each of the intervals, apipnating the factors on the third
to fifth lines by their average. Note that,it/%(w)Y2[§ — §| > 2by, the estimate{42) for
h = A7Y%(w)=Y? andb = ph|y - | gives

f| expin(§-5)-6°(x", Y )+i(E—E)a X =B A (F-F )X )dX" < (AVHw)T -9) .
Therefore, calculating the integration with respecf'talso, we obtain
(W, & W, & W, W; )l
< C.00) - ((HYPPg = F > + A7)
S @) (@R = K) = (= XD (T T - F) - (=YD
for arbitrarily largev.

Remark 6.11. Note that, in order to get the estimate above, we actually tiee[42) for

b (which equals in the non-integrability condition1),) only in a bounded interval, say,
[bo, 1], because the factor exp@)|Wi?/2 — ()\W|%/2) in {88) becomes very small when
AY2(wy?|y - § > 2 and we do not need(#2). This is important when we prove local
uniformity of exponential mixing in Subsectign 6.5.

For the integration with respect to we can show by integration by parts that

1, o st a1 2 o - C.(v) - 2% - Ay - (w)
57 U X (22 AT ) expleig(i - W) < <eritu<a)>1/sz(\x; — W)’

for arbitrarily largev > 0. ThereforeK(w', &; w, & 1) in (84) is bounded by

C.(v)- €4 A - f AWAR (AT = T + 37Y2) - () ARY ™ - ()W)

(VPIATHW — ) — (W = wW)) ™ - (& H(w)2Ay (W~ )™
in absolute value. Inspecting the integration with respedét andv, we obtain
C.(Me ™ (A Xw)Ply -y + 7M7)
() 2(A2 + 1) 72 (w = w))”

Finally note that[(80) is an operator arf(supp¥; N Vj-;) and that the @dimensional
Lebesgue measure of suppn ({x} x R? x {n}) is bounded byC.e*-%A; - (w). Hence, by
Schur test, we conclude that the operator norniaf (81) is tediby

C.ekA - ¥ < C ek
provided that we les.. be suficiently small. This gives the required estimate] (80).

(88) KW, &5 w, & 1) <

Case (ll). Before starting the proof in the case (ll), we make a prelanyndiscussion.
The key fact in the proof below is that, froin {38) in Lemimal 4% unstable subspaég
varies (or rotates) fast along the stable manifolds in thallohart; in the case (). More
precisely, we can find a constafit > 1 such that, ikw)?ly — y'| > K., we have

lex — &1 > C Ay — Y| for (W,&,1), (W, &, 17') € supp¥;.
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From this fact, we regard the integral{85) with respectt@s an oscillatory integral with
the oscillating term exp(&x — £)171x”") and estimate it by using integration by parts. But,
since the functiorg, (w”) = (6“(w”), #5(w”)) is not smooth, we have to use the following
formula of “regularized” integration by parts.

Lemma 6.12([3] p.137]) Letp : R — R be a C° function supported oft-1, 1] such that
[p(s)ds= 1. If f € C2(R) and ge C)(R) and if f'(s) # 0 on a neighborhood asuppg,
then we have, for gficiently smalle > 0, that

\fé“$m$ds=—kfé”Q-@df31$d&+j}y©GX$—gd$Ns

where g = p, * g With p.(s) = e 2p(e719).

Proof. The first term on the right-hand side equ#le’®g,(s)ds by integration by parts.
O

Now we start the proof in the case (ll). Let us set
Y RPHL SR, W(W,En) = Gup() ')c(3_1<w>‘1/ Zoeth AT e Q(W))),
by inserting the factor 3 in the definition of¥;. We are going to prove
Lemma 6.13. We have
(89) IB* 0¥ 0 A0 (1y_ ¥j)?0 Ao® 0B : L2(Ujp) - LAR*Y)| < C.min{4, A2
where¥; denotes the multiplication by the functity.
The required estimatg (B0) follows from this lemma. To ség tht us write
Louppy © A" 0 (I, ¥jr)? 0 A o Louppy,
— Louppy 0 Bo (B" 0 W 0 Ao (1 W) 0 Ao ¥ 0 B) o B" o Lyyppy,
=D"0A" 0 Ao lgpy, +BoB oP oA 0AoD

with settingD = (1 - ¥ o B 0 B*) 0 Lyppy, andD* = Lgyppy, © (1 - ¥} o B o B*). Since the

kernel of B o B* is localized in the variablg in the scalgw)'/2 on supp¥;, the operator
norm of D andD* is bounded byC..(v)e™**% for arbitrarily largev and so is the dierence

above because the operatérsB and3* do not increase thie? norm. Therefore we obtain
the required estimatgé (B0) from {89).

Proof of Lemm&6.13We are going to estimate kernel of the operatofid (89). From n
to the last part of this proof, we suppose thew’ € U;_,;- satisfy
(90) (2ly - y'| = maxa/Aj, K.J.

We fist estimate the integral (B5) with respecktoby using the formula in Lemnia6.12.
Let us assume
1_A'g-y

91 < ———<2
®1) 2 ly—y]|

in addition for a while. We set
1
f(X) = (-7 e

=t ()
Aj - ()Ply -y
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and letg(x”) be the integrand of(85) other than the faddt”) = exp((£x—&,)A~1x"), but
we suppose that the factor on the third line[of| (85) is appnated by a constant, making
a negligible error term. Then, from (40) in Leminal4.4, we hiina

9:(X") - g’ (X)) < C.e"% - & and |g.(x")| < C.&""

provided thaty is sufficiently large. Hence, under the conditignl(91), we obtain
(92) 1w, & W, €W, W n)|

< C.(ne" - (w)™ - max{a/A, K.} - (w) 2y -y )

T (@) VAR = %) = (X=X (PG - ) - (Y- Y)Y
for anyv > 0. If the condition[(9l) does not hold (while{90) holds), vi#l have

C.(») - ()"

(@)Y K = %) = (x = X)) - ()Y HT - §) = (Y= Y)Y
by plain estimate without using integration by parts and tlos other hand, the factor

exp(mIW2/2 — (n)IW|?/2) in (88) is very small. Hence, under the assumption (90), we
obtain

(93) KW, €W, & )| <C.(v) - €272 - maxa/A), K.} - o)y -yt
(AT + 1) R (w - w7

(W, & W, & W, W; )| <

Remark 6.14. The estimate above corresponddid (88). But, sixjde large, we can not
follow the last part of the argument in the case (l) with thésiraate. Indeed, when we
apply Schur test, the factay; appea which is not bounded in the case (II).

To proceed, observe that we can actually strengthen theastf[92) as
02001 (W, W7, £,€"3 )
oy 020) - (6 (MY KLY L (V25— 7)) (A2 + 1) 12 — )y o0
(@) 21X = %) = (X = X)) - ()V2AHT - §) = (y = Y)Y

for any multi-indicesy andg, by examining the result of integration by parts. Note that,
from the assumptioh (91), we have

(A% + 1) Y2 - &)y > CIRA ()2

Hence, the estimate above [n{86), we obtain
(94)  1020LW &' w, &)l
< Cope (v o) - (Aj¢a) %)~ { max( /A, K™ - (@) 2ly -y |>>_l
ATH @A + )W - W)
Now we write the operator above as an integral operator

(B 0¥ oA" 0 Ao o B)uWw,,7) = f KW, Z; Wi, 2u(Wws, 2)dwsdz

108yt this problem is rather superficial. We would not find thiskgem if we introduced some additional
scaling in thex-variable in the construction of the local chatfs
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with setting
KW, Z; Wi, 2) = f dwdcdw d&’dn - EW/ZTIEWI2 g (w & w, € 1)

B W& ) - BW 1) - Puen(W D) - burer (W Z).
We estimate the integral with respect&a”’ andrn above in the same manner Asl(87), but
using [@4). Then we find
_ -1
KW, Z; Wi, 2) < C.0) - (Z -2 - f dwaw - maxd/ay, K. (@2l - y)

AT ()PATE + 1) TR (w - )y
. eZﬁ*tg . (a))AJ . <e(5*tu . <a)>1/2Aj_l(W1- _ W)>—v
€75 (W) (€% - (W)PATH W, - W)

Notice that we have proved this estimate only under the ¢immdf@0). But we can check
without difficulty that, following the argument above without using gregion by parts,
we obtain the same estimate without the témax1/A;, K.}71 - (w)2ly - y'|»)~! on the
right hand side even wheh (90) does not holds. Therefore wagrothe required estimate
(89) by Young inequality. m]

We have done with the main step of the proof. To finish the podd¥ropositiorl 6.17,
we considél the efect of the pre-composition of the operatar Let,é]?_)j, :R*1 - Cbe

the function obtained as the Fourier transformpof, in the variablez, that is, we set

1=y

Fytmn) = [e gl w2z
In the next lemma, we compagewith the operator
1 Li(suppy) - LG22, Pu= [ ) Suw.&n - )y
whereP = B o B* is the projection operator if (b9).
Lemma 6.15. (|G — P : L2(suppy;) — L2(RZ*21)]| <, /2,
Proof. As an intermediate approximation, we consider the operator
P:=% opj_j o B 1 LA(suppy;) — LA(R*).
The operator norm of — P : L%(suppy;) — L2(R%"2*1) is bounded by that of
B* o (G - P) : LX(suppy;) — L2(R*)

becauseés* o B = Id andB is an isometric embedding with respect to tifenorms. We
may write this operator as an integral operator with kek@¥, &, n; w', Z) and find

Ly Buea)(GLy) W 20) = (g bue)W. Z)

< C. @) V2 (@2 - ()P - w)) ) - (@)
from Lemmd4.b and Lemnia4.7. (See also Rerark 4.6.) It is¢hsp to check that

|K(W’ f’ 1, \N,’ Z')| =

sup | IKw, & m;w,Z)ldwdZ < Cw) 2

W&

5 the following, we take seemingly a bit roundabout way hiseathe flow is assume to be or@y.
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and that
sup IK(W, & 1; W, Z)|dwdédn < C.e2MAj(w)?.

w.Z Jsuppy

Therefore, by Schur test, we see that the operator norBt of(G — P) is bounded by

C.em Al:1)/1_2 (W) V242 < C . Aj1/2 ) w;1/2+29* <C.et 'w;1/2+39*

and consequently so is the operator norn®of P : L?(suppy;) — L2(RZ+2*1).
Next we consider the fferenceP — P whose kerneK’(w, &, n; W', £, 17') is written
ei(§W7§’W’)/2<77>1/2<n/>1/2

. f dE=& W =)W -w’ P/ 2=(plw-w 72 A}_,j/(V\/, n—n) - ﬁ}_}j,(\,\/g 7 —n))dw’.
Estimating the integral above using Lemima 4.7 and integmdiy parts, we obtain that
KW, &, W, &, 1) < C(v) - (€% -2, Y) - () AW =W )™ () MAE =€) - (o =)™

for arbitrarily largev > 0. Therefore the operator norm#P : L(suppy;) — L2(RZ2+1)
is bounded byC, (5% - ;1) = C, (€% - %),
From the estimates above Gn- P andP — P, we obtain the conclusion of the lemma,

provided that we take siiciently largety and then take dficiently largew; according to
the choice of;. o

Since the operatok does not increase tHe’ norm of functions, the last lemma tells
that

A oG- AoP: L%(suppy) — L2(suppyj)ll < z;“z.
Therefore, for the proof of Propositién 6.1, it is enoughhow that
lA o P : L3(suppy;) — L%(suppy; )|l < e,
But, becaus@ is a simple operator whose kernél satisfies
(95) IKe(W, &1 W, &', 17)] < C.(v) - ) AW = W)™ - () V2 = €D - (' =),

it is clear that pre-composition @ hardly dfects the argument on the operatoin the
former part of this proof to give the required estimate. (Watdhe tedious details about
the part of functions which go out of suppbyP.)

6.4. Proof of Lemmal[6.3 and Lemma[6.6.The proofs of Lemm&=6l3 and Lemrhal6.6
below are based on estimates of the kern@}g{, using integration by parts. One because
these claims have nothing to do with the non-integrabilitydition (N 1), and one because
the estimates are straightforward, we will omit the deththe proofs. (We refei [18] for
more details.)

Proof of Lemma®&l3Let us regard the operatmj‘_)j, as the composition of the multipli-
cation operator byo].tﬁj, with the operatou — uo fjtﬁj,. If we did not have the latter,
we could deduce the claims immediately from the estimatéemma4.y. But, since the
latter transfer operator is a unitary operatot.fnnorm and preserves the frequency in the

z-direction, it does not do any harm for validity of the corsttn. O
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Proof of Lemm&®&l6Letj,j’ € J be those in the statement of Lemmal 6.6. For the proof of
Lemmd6.6, we may assume
lw(’) - w(j)| < g@mnaximg)L.Im()1}/10 (w(j))l/lo
because the claims follows from Lemial6.3 otherwise. Weidenthe operators
IL}_}]., =(B* o lef o B)o Lit—ﬂf o(B*o le o B) : LAR*Y) = L2(R?MY)

wherey; andy;. are those in Remafk.4. We may write its kernel as
Y2y f AW didEd dif o - pf (W', 2") - wye (W&, 77) -y (W E 77)
-exp((.7) - (W, Z) = £, W', 2) +iE.7)) - (W.9) - (W', Z')))
- exp(-(1/2) (W = W + 1 — L (W7, Z')) + G YW = W2+ 1% — ).

-y
To integral with respect tas” above, we apply integration by parts using th&edential
operator

L+ i) A€ m) - (DT, (€.7) - (O, 0)

T L@ UANED - (DY, @)
once and then integration by parts with respectr several times. Then, by crude estimate
on the resulting terms, we see that

IK(W, Z W, Z)| < C.(v, ty)-& MO () — ()™ -(Z -7 - f dw”’

&N (")) - (@) 2IA W~ i (W)
- @MDA; - (w()) - (€W )M - AW = w))7.

And, in the case whetle(j)| > w; and|w(j’)| > wy, we use the estimatds (56) to check that
the constanC. (v, ty) is actually bounded bg. (v)t;. By Young inequality, we obtain

(96) ||]f_4jt_”,/||LZ < C.(ty, v) - € MMM (%) — w(j)y~

To finish the proof, note that, from the localized propertytaf kernel of the Bargmann
projector3 o B*, we have

97) @ =dj) 0B o B Ly, : LXR¥Z) - LR < C.(v) - &™)
and the parallel estimate wittreplaced by’. Let us write
L =808 o((L-d;)+d) oL, o ((L-dj) +dj) o Bo P

I
If 2 < |m(j)I/Im(")| < 2 and mirflw(j)I, lw(")l} > w;, the required estimate follows imme-
diately from the estimates above. §fs Im()1/Im(")| < % and miflw()l, lw( )} < wg,
we may assume that mfim(j)|, Im( ")} > my and obtain the required estimate by letting
my large depending ofy. In the case Wher§ < Im()I/ImG7)| < % is not true, we have to
modify the argument a little. In the case, from the assurmpf8) and the definition of
the relation—!, we have either

m(j) <0<m(’) or O<m()<m(’) or m()<m(’) <O.
If Im()I < Im(")I (in the first or second case above), we can and do mciqiiﬁ;o that its
support is of size comparable with thatyf, that [96) remains true and {97) holds with
el on the right hand side replaced byl = eMXIMOLMIO -~ Then we obtain
the required estimate in the same manner as above. We cam simgilarly in the case
ImG)I > Im(’). o
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6.5. Local uniformity of exponential mixing. Finally we prove the conclusion of The-
orem[Z.IB to finish the proof. Let us wrifé for the flow f' that we have considered in
the argument in the previous subsections, which satisfeesdm-integrability condition
(NI),. We first show that, if we take a iciently smallC*® neighborhood of f! in 3,
all the flows in'V are exponentially mixing. To this end, we recall the argunierthe
previous subsections and check dependence of objects dlowheClearly we can con-
struct the local charts,,,» and the functiong,,» S0 thateachof them depend on the
flow continuously inC2 sense. Then we can define the Hilbert spicand H and also
the operatof.! : H — H in parallel manner so that each of the compon@g]s depend
on the flow continuously. We can check that all the estimaesains valid with uniform
constants that are denoted by the symbols with the subscept alsoty, wy, my. The
most important point is that, in the proof of Proposition8x4& have used the estimate
(14) in the non-integrability conditiorN1), only for b in a bounded interval, as we noted
in RemarK6.11. And the condition {14) farwith |a| > b? follows from () as we noted
in RemarkKZ2.10. Hence Proposition6.1 remains trueefmrhof the flows inV (provided
that we letV be suficiently small). We can therefore conclude that each of thedlio vV
are exponentially mixing.

We next consider uniformity of the constamtsandC, in the decay estimat€l(1). For
this point, we have to beware that continuity in dependeti¢belocal chartx,,,, and
the operatorﬁ,}ﬁj, on the flow inV is not uniform (especially inw) and consequently the
Hilbert space$ and the operatdr! will notdepend on the flow i¥ continuously. For
aflowf = {f'} € V, we write }(f) for the Hilbert spacé constructed fof and set
Ho(f) = {u e H(f) | [udm= 0}. Also letL! be the transfer operatdr defined forf € V.
To obtain the conclusion, it is enough to show that, for sdme0 ands > 0, we have

ILF 2 Ho(f) —» Ho(f)ll <1-6 forallfeV.

Suppose that this assertion is not true. Then, forlany0, we can find a sequence of flows
fx which converges tf, = {fé} in C2 sense and a sequence of functiops Ho(fx) such
that||ugllscgy = 1 and||Lkauk||g{(fk) > 1-(1/k). Now we recall from Propositidn 8.1, which
is valid uniformly forf € V, that, if T is suficiently large, the operator&ka contracts the
high frequency part of functions €. the components, o, nm With |w| > wy or|m| > my) by

a uniform rate. Hence, for the assumptionwgrto be true, the high frequency part af
must be relatively small (uniformly ik). Therefore we can find a subsequengg of uy
which converges to somg € Hy(fo) (as a distribution at least) and see thabatisfies

luolls(re) = [!m”uk(f)”%(fk) =1 IILfTOUooIIrH(fO) = {!mllﬁkaUk(f)llﬂLf(fk) >1

Clearly this conclusion for arbitrarily large > 0 contradicts what we have proved fgr
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