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Abstract
We present a rigorous study of the classical scattering for any two-body inter-particle potential of the form v(r) = g/rγ , with

γ > 0, for repulsive (g > 0) and attractive (g < 0) interactions. We give a derivation of the complete power series of the
deflection angle in terms of the impact factor for the weak scattering regime (large impact factors) as well as the asymptotic

expressions for the hard scattering regime (small impact factors). We see a very different qualitative and quantitative
behavior depending whether the interaction is repulsive or attractive. In the latter case, the families of trajectories depend

also strongly on the value of γ. We also study carefully the modifications of the results when a regularization is introduced in
the potential at small scales. We check and illustrate all the results with the exact integration of the equations of motion.

PACS numbers: 03.65.Nk,04.40.-b, 05.70.Ln, 05.70.-a

I. INTRODUCTION

Scattering of particles are present in many physical
processes in a broad area of Physics, as atomic (e.g. [1]),
plasma (e.g. [2]), astrophysics (e.g. [3]), active matter
(e.g. [4]), etc. A seminal paper was published by Ernest
Rutherford in 1911 [5], in which he studied the deflection
of α and β particles by an atom. He calculated analyt-
ically the angle of deflection of the (positively charged)
incident particles with the (charged) nucleus. His calcu-
lations, compared to experimental data (see [5] for refer-
ences), permitted to conclude that the atom is basically
“empty” with a charge concentrated in the center, sur-
rounded by the electron cloud, which lead to the “plane-
tary” model of the atom. These two-body collisions plays
also a central role in the collisional relaxation of Coulomb
plasmas (see e.g. [2]) and self-gravitating systems (or
more generally of systems of particles with long range
interactions), as pointed out by Chandrasekhar in a sem-
inal paper [6]. When studying the relaxation of system
of particles interacting with generalized power-law inter-
action (see e.g. [7, 8]), it is necessary to generalize the
Chandrasekhar approach.
This paper is devoted to the rigorous mathematical

study of the generalization of the classical scattering of
two particles interacting with the generic power-law in-
teraction

v(r) =
g

rγ
. (1)

Such process is well known only on the qualitative level
or in particular cases (see e.g. [1, 9–13]). For example, in
the case of a pure repulsive interaction, the angle of de-
flection χ (defined in Fig. 1) is always well defined for any
value γ and impact factor b (see also Fig. 1), and varies
between χ = 0 (the particle comes back in its original
direction with opposite velocity) and χ = π (the trajec-
tory of the particle suffers no perturbation). In the case
of attractive interactions, the angle of deflection varies in
the interval χ ∈ [π,∞[. In this case two different situ-
ations arise: if γ < 2, the angular momentum — which
scales with the distance as 1/r2 — produces an effective
repulsive interaction (the so-called centrifugal potential

barrier) which always dominates the potential for r → 0
and the angle of deflection is finite for any b. However,
for γ > 2, the attractive interaction is stronger at small
distances than the centrifugal barrier and particles can
crash for values of the impact factor smaller than a crit-
ical quantity. For impact factors larger than this critical
one, particles can make an arbitrarily large number of
revolutions one around the other. This phenomenon is
called in the literature orbiting (see e.g. [13] for a general
discussion).
In this paper, we will consider interacting potentials

of the form (1) with γ > 0. The coupling constant g is
positive for repulsive interactions and negative for attrac-
tive ones. Analytical simple calculations are not possible
except for some particular cases for integer γ in term
of circular functions (see [14]). In the other cases, only
asymptotic expansions can be performed. For this rea-
son, we will derive the asymptotic expressions for the
angle of deflection of the particles for the two limiting
cases which are determined by the value of the impact
factor b (defined in Fig. 1): the regime of soft scatter-
ing, in which the trajectories of the particles are weakly
perturbed, and the regime of strong scattering, in which
the particles suffer a large deflection. Moreover, we will
study in detail the introduction of a regularization (usu-
ally called softening in the astrophysical literature) at
small scales in the potential. This is of primarily interest
when studying the relaxation in systems of particles with
long range interaction, in which the effect of the regular-
ization at small scales can play a key role (see [7]).
The paper is organized as follows: in the next section,

we will review definitions and standard formulas of the
interaction of two particles in a central force field. In
the subsequent section, we will explain the analytically
tractable γ = 1 (Coulomb or gravitational) case. Then,
we will study mathematically the case γ 6= 1. We will
then first explain our general approach with the already
known (see e.g. [15, 16]) soft scattering regime, for which
we extend the domain of validity to arbitrary γ > 0.
Then, we will derive expressions for the hard scattering
regime, in which we will obtain different classes of solu-
tion as a function of γ. In the subsequent section we will
explain the physical implications of the mathematical re-
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FIG. 1: Collision in the center of mass frame. The black
dot represents the fictitious (reduced) particle, and the
white dot the center of mass of the particles, which is at

rest.

sults, compare them with the exact numerical integration
of the equation of motion and show typical trajectories
for the different regimes. Then, we will study how the
trajectories change when introducing a regularization at
small scales in the potential. We conclude the paper with
a summary of the results, conclusions and perspectives.

II. PRELIMINARIES

Let us consider the scattering of two isolated parti-
cles. It is convenient to use the center of mass frame to
transform the two-particle problem in a one-particle one.
Let us consider that particles have masses m1 and m2

and their position r1 and r2 respectively. We define their
relative position as

r = r1 − r2 (2)

and fix the origin of the frame at the center of mass, i.e.,

m1r1 +m2r2 = 0. (3)

The relation between the position of the particles in the
center of mass frame r and in the laboratory frame is,
using Eqs. (2) and (3):

r1 =
m

m1
r (4a)

r2 = − m

m2
r, (4b)

where we have defined the reduced mass

m =
m1m2

m1 +m2
. (5)

In the center of mass frame, the collision occurs as de-
picted in Fig. 1, in which appears the definition of the
impact factor b, the angle of closest approach φ and the
angle of deflection χ, which is χ = 2φ. In order to de-
fine the angles with the usual mathematical signs, the

incident particle comes from +∞. This picture assumes
that the two particles are far away from each other for
t→ −∞ and for t → +∞. The angle φ can be calculated,
as a function of the impact factor b, using the classical
formula [16]

φ(b) =

∫ ∞

rmin

(b/r2)dr
√

1− (b/r)2 − 2v(r)/(mu2)
, (6)

where u is the asymptotic velocity of the incident particle
at +∞ (u = |ṙ|). The quantity rmin is the largest positive
root of the denominator, i.e., of

W (r) = 1− (b/r)2 − 2v(r)/mu2. (7)

We consider the pure power law pair potential,

v(r) =
g

rγ
, 0 < γ < d, (8)

with g 6= 0, where g > 0 corresponds to a repulsive inter-
action and g < 0 to an attractive one. We introduce the
characteristic scale

b0 =

( |g|
mu2

)1/γ

, (9)

which allows us to rewrite Eq. (6) as

φ(b) =

∫ ∞

rmin

(b/r2)dr
√

1− (b/r)2 ∓ 2(b0/r)γ
. (10)

Now, the “minus” sign in the denominator corresponds
to a repulsive interaction while the “plus” sign to an at-
tractive one. By using the change of variables r = b/x it
is possible to rewrite Eq. (10) in the following form:

φ(b/b0) =

∫ xmax

0

dx
√

1− x2 ∓ 2(b0/b)γxγ
, (11)

where xmax is the smallest positive root of the denomi-
nator. Since xmax is a function of b/b0 depending only
on γ, Eq. (11) shows explicitly that φ is also a function
of b/b0 depending only on γ. Equation (10) can be solved
analytically only in few cases (e.g. gravity in d = 3 which
is given by γ = 1), for the general case approximations
or numerical computation of the integral should be used.

III. γ = 1 (COULOMB AND GRAVITATIONAL
CASE IN d = 3)

In this section, we will first review the well-known
Coulomb and gravitational case, which is analytically
solvable. It will give us some insight for the general so-
lution for γ 6= 1.
We start from Eq. (10), compute the value of rmin and

the integral φ explicitly. We obtain:

• for the repulsive case, rmin = b0 +
√

b2 + b20 and

φ(b/b0) = arctan

(

b

b0

)

; (12)
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FIG. 2: Graph of the angle φ as a function of b/b0 for
γ = 1 and for repulsive (in red) and attractive (in

green) interactions.

• for the attractive case rmin = −b0 +
√

b2 + b20 and

φ(b/b0) = π − arctan

(

b

b0

)

. (13)

We can identify two regimes in the collision process:
the one corresponding to b/b0 ≫ 1, which is called the
“weak” or “soft” collisions regime, in which the trajec-
tory is weakly perturbed; and the one corresponding to
b/b0 ≪ 1, which which is called the “strong” or “hard”
collision regime, in which the trajectory is strongly mod-
ified by the collision. From Eqs. (12) and (13) we obtain
the following asymptotic behaviors for the angle φ:

• For the repulsive case, for weak collisions (b/b0 ≫
1), we have φ(b/b0) = π/2 − b0/b + O((b0/b)

3),
and for strong ones (b/b0 ≪ 1), φ(b/b0) = b/b0 +
O((b/b0)

3).

• For the attractive case, for weak collisions (b/b0 ≫
1), we have φ(b/b0) = π/2+ b0/b+O((b0/b)

3), and
for strong ones (b/b0 ≪ 1), φ(b/b0) = π − b/b0 +
O((b/b0)

3).

In the next sections we will compute the analogous
asymptotic behaviors for the generalized case γ 6= 1.

IV. THE GENERAL CASE: γ 6= 1

For the general case γ 6= 1 it is not possible to derive
an analytical expression for the angle φ as a function of
b/b0, as we did for γ = 1 in Eqs. (12) and (13). However,
it is possible to compute the asymptotic behaviors of φ
for b/b0 ≪ 1 and b/b0 ≫ 1, which corresponds to hard
and soft scattering respectively.

As a first step, we perform the substitution r = rmin/x,

0 < x ≤ 1, in Eq. (10), yielding

φ(b/b0) =
b

rmin

∫ 1

0

dx
√

1− (bx/rmin)2 ∓ 2(b0x/rmin)γ
.

(14)
We recall that the “minus” sign in the denominator cor-
responds to a repulsive interaction while the “plus” sign
to an attractive one. Then will use use the following
procedure to compute the two limiting behaviors:

1. Determine, for the considered regime, an approx-
imation for rmin in Eq. (14), which is the largest
zero of the denominator.

2. Perform an expansion in the appropriately chosen
small parameter for each case of the denominator
of Eq. (14) and give an expression of the integrals
by means of the Γ function.

We will study first the regime of soft collisions (i.e.
b/b0 ≫ 1) for both attractive and repulsive interactions.
Then, we will present in two different subsections (be-
cause the mathematical treatment is completely differ-
ent), the case of hard scattering (b/b0 ≪ 1) for repulsive
interactions, and then for attractive ones.

A. The regime of soft collisions for attractive and
repulsive interactions

The regime of soft collisions corresponds to the case
in which the scale b0 is small compared to the impact
factor b. In this regime the trajectories of the particles are
weakly perturbed. In this Subsection, γ is any positive
number.
We first give an expansion of rmin, which is the positive

solution of 1 ∓ 2(b0/rmin)
γ = (b/rmin)

2. Recasting this

as b2 = r2min ∓ 2bγ0r
2−γ
min , we see that if b ≫ b0, we must

have rmin ≫ b0, hence b
2 = r2min(1∓2(b0/rmin)

γ) ≈ r2min

(since γ > 0) and then rmin ≈ b ≫ b0. We see therefore
that the value of rmin does not depend, at leading order,
on the sign of the interaction nor on the particular value
of γ. This is illustrated in Fig. 3.
Expanding further yields

b/rmin =
√

1∓ 2(b0/rmin)γ

= 1∓ (b0/b)
γ +O((b0/b)

2γ). (15)

Next, we introduce the small parameter δ =
2(b0/rmin)

γ = ∓[(b/rmin)
2 − 1] ≈ 2(b0/b)

γ ≪ 1 and
obtain

rmin

b
φ(b/b0) =

∫ 1

0

dx
√

1− x2 ∓ δ(xγ − x2)
.

We want an expansion of the above integral using that δ
is a small parameter. It is then natural to write it under
the form

∫ 1

0

dx
√
1− x2

√

1∓ δ xγ−x2

1−x2
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FIG. 3: Graph of W as a function of r/b0 for b/b0 = 100
and different values of γ for the repulsive (superscript
“+”) and attractive case (superscript “-”). Observe

that in all cases rmin ≈ b.

and to expand the second square root in power series.
This is possible since the expression (xγ − x2)/(1 − x2)
is bounded on [0, 1] (for γ > 0) and this implies that
(rmin/b)φ(b/b0) is actually a power series in δ. In partic-
ular, we obtain the first order expansion

rmin

b
φ(b/b0) =

∫ 1

0

dx√
1− x2

± δ

2

∫ 1

0

xγ − x2

(1− x2)3/2
dx+O(δ2). (16)

Combining this with Eq. (15) and using that
∫ 1

0
dx√
1−x2

=

π/2 and that

∫ 1

0

1− xγ

(1− x2)3/2
dx = A(γ) =

√
π
Γ
(

γ+1
2

)

Γ
(

γ
2

) (17)

(see Appendix A1), we deduce

φ(b/b0) =
π

2
∓A(γ)(b0/b)

γ +O((b0/b)
2γ). (18)

On the mathematical level, we shall use the above
strategy to give expansions with respect to some small
parameter δ of integrals of the form

∫ 1

0

dx
√

F (x) + δH(x)
, (19)

where F and H are non-negative functions. If
∫ 1

0
dx√
F (x)

< +∞ and if H/F is bounded on [0, 1], then

the above integral is an analytic function of δ around

δ = 0 and, for δ → 0,

∫ 1

0

dx
√

F (x) + δH(x)
=

∫ 1

0

dx
√

F (x)

− δ

2

∫ 1

0

H(x)

F (x)3/2
dx+O(δ2).

If H(x)/F (x) is not bounded on [0, 1], then it may hap-
pen (and this is indeed true in some of the cases we shall
study) that the above integral is not smooth with respect
to δ and thus the correction is possibly not of order δ but
much larger.
The angle φ is actually, for b large enough, the sum of

a power series in (b0/b)
γ , namely

φ(b/b0) =
√
π

+∞
∑

n=0

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
(∓2(b0/b)

γ)n.

(20)
This formula has been established in [15] for γ > 2 for
both attractive and repulsive potentials, and converges
for b > βb0, where

β = γ1/γ(1 − 2/γ)
2−γ
2γ . (21)

We have been able to extend (see Appendix A2) this

formula for any γ > 0 and b > βb0, where β(γ = 2) =
√
2

and, for 0 < γ < 2, β = γ1/γ(2/γ − 1)
2−γ
2γ .

B. The regime of hard collisions for repulsive
interactions

This corresponds to the minus sign in Eq. (14). In this
Subsection again, γ is any positive number. We first give
the leading order of rmin by writing that 1 = (b/rmin)

2+
2(b0/rmin)

γ . Thus b ≪ b0 implies that rmin → 21/γb0.
Then,

b/rmin ≈ 2−1/γb/b0,

and it follows that

b/rmin = 2−1/γb/b0 +O((b/b0)
3). (22)

In Fig. 4 we illustrate this behavior of rmin by plotting
W for different values of γ. Here, the small parameter we
consider is δ = (b/rmin)

2 ∼ (b/b0)
2 ≪ 1 and substitute

2(b0/rmin)
γ = 1− δ to obtain the expression

φ(b/b0) =
√
δ

∫ 1

0

dx
√

1− xγ + δ(xγ − x2)
,

which fits the form given in Eq. (19). Since the expression
(xγ−x2)/(1−xγ) is bounded on [0, 1], the above integral
is here again a power series in δ. In particular, we deduce
the expansion

∫ 1

0

dx
√

1− xγ + δ(xγ − x2)
=

∫ 1

0

dx√
1− xγ

+O((b/b0)
2).
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FIG. 4: Graph of W as a function of r/b0 for
b/b0 = 1/10 and different values of γ for the repulsive

case. Observe that rmin ∼ b0.

Using the expression

∫ 1

0

dx√
1− xγ

=

√
πΓ
(

1 + 1
γ

)

Γ
(

1
2 + 1

γ

) (23)

(see Appendix A3), we infer

φ(b/b0) = B(γ)(b/b0) +O((b/b0)
3), (24)

where we have set

B(γ) =
2−1/γ

√
πΓ
(

1 + 1
γ

)

Γ
(

1
2 + 1

γ

) .

C. The regime of hard collisions for attractive
interactions

We focus now on the plus sign in Eq. (14) in the regime
b ≪ b0. As we shall see, the situation is drastically dif-
ferent since the qualitative behavior strongly depends on
γ. We first give the leading order of rmin by writing that
1 + 2(b0/rmin)

γ = (b/rmin)
2. Thus, if b ≪ b0, we must

have rmin ≤ b ≪ b0 and then 2(b0/rmin)
γ ≈ (b/rmin)

2.
Consequently, when γ 6= 2,

b/rmin ≈ (2bγ0/b
γ)1/(2−γ) ≫ 1. (25)

For this regime, we shall consider the small parameter
δ = (rmin/b)

2 ≪ 1 and substitute 2(b0/rmin)
γ = δ−1 − 1

to obtain the expression

φ(b/b0) =

∫ 1

0

dx
√

xγ − x2 + δ(1− xγ)
, (26)
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FIG. 5: Graph of W as a function of r/b0 for
b/b0 = 1/10 and different values of γ for the attractive

case. Observe that in this case rmin ≪ b0.

which tends, as δ → 0, to
∫ 1

0
(xγ − x2)−1/2dx, which

is finite only for 0 < γ < 2. This already leads us to
study the case γ ≥ 2 separately (see §. IVC 5). The
expression on the right-hand side of Eq. (26) fits the form
in Eq. (19), but here, the situation is very different from
the cases studied in Subsect. IVA and IVB since now,
the expression (1− xγ)/(xγ − x2) is unbounded on (0, 1].
Consequently, in the naive expansion of the right-hand
side of Eq. (26)

∫ 1

0

dx√
xγ − x2

− δ

2

∫ 1

0

1− xγ

(xγ − x2)3/2
dx

+
3δ2

8

∫ 1

0

(1 − xγ)2

(xγ − x2)5/2
dx+ . . . ,

the first integral converges only for γ < 2, the second
one only for γ < 2/3, the third one only for γ < 2/5, etc.
This suggests that on the one hand, φ(b/b0) is probably
not a power series in δ and on the other hand that we
should separate the cases γ < 2/3 (see § IVC1) and
2/3 < γ < 2 (see § IVC2).
Before that, we may calculate, when 0 < γ < 2, the

leading order in δ of the integral Eq. (26)

α(γ) =

∫ 1

0

(xγ − x2)−1/2 dx =
π

2− γ
, (27)

We are going now to study the next order correction in
the approximation of Eq. (26) by Eq. (27).

1. 0 < γ < 2/3

If γ < 2/3, the integral Eq. (26) is indeed of class
C1 with respect to δ (but probably not C2 when 2/5 <
γ < 2/3) and the differentiation under the integral sign is
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legitimated by the fact that
∫ 1

0
1−xγ

2(xγ−x2)3/2
dx < ∞. We

then have

φ(b/b0) = α(γ)− δ

∫ 1

0

1− xγ

2(xγ − x2)3/2
dx+ o(δ).

Reporting Eq. (25) and using that

∫ 1

0

1− xγ

2(xγ − x2)3/2
dx =

γ

(2− γ)2

√
πΓ
(

2−3γ
2(2−γ)

)

Γ
(

2(1−γ)
2−γ

) (28)

(see Appendix A4), we deduce

φ(b/b0) = α(γ)− C1(γ)(b/b0)
2γ/(2−γ)

+ o((b/b0)
2γ/(2−γ)), (29)

where we have defined

C1(γ) =
γ

(2− γ)2
2−2/(2−γ)

√
πΓ
(

2−3γ
2(2−γ)

)

Γ
(

2(1−γ)
2−γ

) .

2. 2/3 < γ < 2

We now assume 2/3 ≤ γ < 2, for which Eq. (26) is no
longer expected to be of class C1 with respect to δ. We
then write the correction φ(b/b0)− α(γ) under the form
φ(b/b0)− α(γ) = −δQ(δ), that is we define

Q(δ) = −1

δ

(

φ(b/b0)−
∫ 1

0

(xγ − x2)−1/2 dx

)

=

∫ 1

0

ψδ(x) dx, (30)

where we have set

ψδ(x) =
(xγ − x2)−1/2(xγ − x2 + δ(1− xγ))−1/2(1 − xγ)√

xγ − x2 +
√

xγ − x2 + δ(1− xγ)
.

Clearly, as δ → 0, Q(δ) tends to

1

2

∫ 1

0

1− xγ

(xγ − x2)3/2
dx =

∫ 1

0

ψ0(x) dx = +∞,

for γ ≥ 2/3, due to the non integrable singularity at x = 0
(hence φ is indeed not differentiable with respect to δ at
the origin). We then wish to determine the divergence
speed in Q(δ) as δ → 0, and we shall show that actually
Q(δ) is of order δ1/γ−3/2 when 2/3 < γ < 2 and of order
|ln δ| if γ = 2/3.
As a first step, we may get rid of the contribution for

1/2 ≤ x ≤ 1 in the integral of ψδ since

∫ 1

1/2

ψδ(x) dx →
∫ 1

1/2

1− xγ

2(xγ − x2)3/2
dx < +∞,

whereas Q(δ) ≫ 1. Therefore,

Q(δ) =

∫ 1/2

0

ψδ(x) dx +O(1) ≈
∫ 1/2

0

ψδ(x) dx.

Now, the idea is that the expression xγ − x2 + δ(1− xγ)
appearing in the denominator of ψδ is of order δ if 0 ≤
x ≤ δ1/γ and of order xγ − x2 ∼ xγ if δ1/γ ≤ x ≤ 1/2,
which suggests to use the change of variable y = x/δ1/γ

in the integral. Therefore,

Q(δ) ≈
∫ 1/2

0

ψδ(x) dx = δ
1

γ− 3

2

∫ δ−1/γ/2

0

Ψδ(y) dy, (31)

where we have set

Ψδ(y) = (1− δyγ)×
(yγ − δ2/γ−1y2)−1/2(yγ − δ2/γ−1y2 + 1− δyγ)−1/2

√

yγ − δ2/γ−1y2 +
√

yγ − δ2/γ−1y2 + 1− δyγ
.

As δ → 0 and for 2/3 ≤ γ < 2, one can justify rigorously
that

∫ δ−1/γ/2

0

Ψδ(y) dy →
∫ +∞

0

Ψ0(y) dy

=

∫ +∞

0

y−γ/2(yγ + 1)−1/2

yγ/2 +
√
yγ + 1

dy,

which is finite as soon as 2/3 < γ < 2 since the integrand
is ≈ y−3γ/2/2 at infinity and ≈ y−γ/2 near the origin.
We obtain finally, in Appendix A5,

∫ +∞

0

Ψ0(y) dy =
23−2/γ

γ

Γ
(

3
2 − 1

γ

)

Γ
(

2
γ − 1

)

Γ
(

1
γ + 1

2

) , (32)

and using Eq. (25) then gives, for 2/3 < γ < 2 and
b≪ b0,

φ(b/b0) = α(γ)− C3(γ)(b/b0) + o(b/b0), (33)

with

C3(γ) =
22−3/γ

γ

Γ
(

3
2 − 1

γ

)

Γ
(

2
γ − 1

)

Γ
(

1
γ + 1

2

) .

3. γ = 2/3

It remains to study the case γ = 2/3, for which it is
natural to expect from Eq. (31) and the fact that

Ψ0(y) =
1

y1/3(y1/3 +
√

1 + y2/3)
√

1 + y2/3
≈ 1

2y

at infinity that

Q(δ) ≈
∫ δ−3/2/2

1

dy

2y
≃ 3

4
|ln δ|. (34)



7

The mathematical justification of this result is given in
Appendix A6. Reporting this into Eq. (30) and using

that δ ≈ b/(2
√
2b0) by Eq. (25) yields

φ(b/b0) =
3π

4
− C2(b/b0) ln(b0/b) + o((b/b0) ln(b0/b)),

(35)

with C2 =
3

8
√
2
.

4. γ = 2

The case γ = 2 allows explicit computation and we
see that it is a case where the attractive term is strong
enough to form pairs when b is small. Of course, this
will be also the case when γ > 2. This implies that
the function W in Eq. (7) may have no positive zero.
Actually, when γ = 2, the behavior of the expression

W (r) = 1− b2

r2
+ 2

b20
r2

= 1− b2 − 2b20
r2

depends whether b > b0
√
2 or b < b0

√
2. If b > b0

√
2,

then W possesses rmin =
√

b2 − 2b20 as unique positive
zero, and we have the exact value

φ(b/b0) =

∫ +∞

rmin

(b/r2) dr
√

1− r2min/r
2

=
bπ

2rmin
=

π

2
√

1− 2b20/b
2
. (36)

If b ≤ b0
√
2, then W ≥ 1 has no zero. This means that

the two particles will crash one onto the other in finite
time with a spiraling motion. The integral in the right-
hand side of Eq. (10) is then equal to +∞, but the angle
φ has then no geometrical meaning and the picture given
in Fig. 1 is then no longer the good one. There exists
then a threshold b0

√
2 with the property that particles

crash as soon as b ≤ b0
√
2.

5. γ > 2

If γ > 2, the attractive term is strong enough to form
pairs for sufficiently small b, and we shall explicit the
threshold. Notice first that when γ > 2, the function
W (r) = 1 − b2/r2 + 2bγ0/r

γ decreases on (0, r∗(b)] and
increases on [r∗(b),+∞), with

r∗(b) =

(

γbγ0
b2

)
1

γ−2

.

Since W (r∗(b)) = 1 − b2/r2∗(b) + 2bγ0/r
γ
∗ (b) = 1 −

(b0/b)
− 2γ

γ−2 [1−2/γ]γ−
2

γ−2 , we may then easily check that
if

b > βb0, (37)

-10

-5

 0

 5

 10

 0  2  4  6  8  10

b=βb0/2
b=βb0

b=2βb0

r/b0

W
(r
)

FIG. 6: Graph of W as a function of r/b0 for different
values of b for γ = 5/2 for the attractive case. Observe

that for b = βb0/2 there is no root, b = βb0 is the
limiting case with a double root and for b = 2βb0 there

is one root.

where

β = γ1/γ
(

1− 2

γ

)
2−γ
2γ

, (38)

which coincides with the expression Eq. (21) appearing in
the convergence radius of Eq. (20). Then W has a larger
positive zero rmin, whereas if b < βb0, the expression W
is positive on (0,+∞), and if b = βb0, the expression
W has a double root at r = r∗(βb0) = b0(γ − 2)1/γ >
0, where W (r∗(βb0)) = 0. These three behaviors are
illustrated in Fig. 6.
When γ → 2+, we have, as expected, β =

γ1/γ (1− 2/γ)
2−γ
2γ = γ1/γ exp((1/2) (1− 2/γ) ln(1 −

2/γ)) →
√
2. If b < βb0, the particles crash in finite

time and φ has here again no physical or geometrical
meaning, despite the fact that the integral

∫ +∞

0

(b/r2) dr
√

1− b2

r2 + 2
bγ
0

rγ

=

∫ +∞

0

dx
√

1− x2 + 2(b0/b)γxγ
,

where rmin has been replaced by 0, converges.
When b = βb0, the reduced particle remain asymptot-

ically trapped on a circular orbit of radius r∗(βb0) > 0.
This phenomenon is called in the atomic physics litera-
ture orbiting (see e.g. [13]). The angle φ has once again
no physical or geometrical meaning, and

∫ +∞

r∗(βb0)

(b/r2) dr
√

1− b2

r2 + 2
bγ
0

rγ

= +∞

in view of the fact that 1−b2/r2+2bγ0/r
γ ∼ (r−r∗(βb0))2

for r close to r∗(βb0).



8

Let us now consider the situation where we take γ >
2 and b slightly larger than βb0, so that one expect a
divergence in the integral φ. We have

φ(b/b0) =

∫ +∞

rmin

b dr

r2
√

Wb(r)
,

with Wb(r) = 1 − b2/r2 + 2bγ0/r
γ (we have stressed the

dependency on b since we are interested in the limit b→
βb0). We set R = r∗(βb0) = b0(γ − 2)1/γ > 0. As
b approaches βb0, we have both r∗(b) → R (r∗(b) is the
minimum forWb) and rmin → R (rmin is the largest zero
of Wb). In the integral φ, the contributions for r close
to R will make the integral diverge since we shall have
Wb(r) ∼ (r−R)2 (we have a double root when b = βb0),
whereas the contributions for r much larger than R will
remain of order one. As a consequence, for any small
length parameter ℓ > 0, we have

φ(b/b0) ≈
∫ rmin+ℓ

rmin

b dr

r2
√

Wb(r)
,

and we may then replaceWb(r) by its second order Taylor
expansion near r∗(b):

Wb(r) =Wb(r∗(b)) + (r − r∗(b))W
′
b(r∗(b))

+
1

2
(r − r∗(b))

2W ′′
b (r∗(b)) +O((r − r∗(b))

3).

Since W ′
b(r∗(b)) = 0 and

W ′′
b (r∗(b)) =

2γ(γ + 1)bγ0
rγ+2
∗ (b)

− 6b2

r4∗(b)
≈ 2(γ − 2)b2

R4
> 0,

(39)
this yields

φ(b/b0) ≈
∫ rmin+ℓ

rmin

br−2 dr/

√

Wb(r∗(b)) + (r − r∗(b))2(W ′′
b (r∗(b))/2 +O(r − r∗(b))).

We have Wb(r∗(b)) < 0 < W ′′
b (r∗(b)) with Wb(r∗(b))

small but W ′′
b (r∗(b)) of order one. The idea is then to

use the substitution

z
√

−Wb(r∗(b)) = (r−r∗(b))
√

W ′′
b (r∗(b))/2 +O(r − r∗(b)),

so that the expression in the square root in the integral
becomes simply −Wb(r∗(b))(z2 − 1). This yields

φ(b/b0) ≈
b

√

−Wb(r∗(b))

∫ zmax

1

r(z)−2 dr/dz√
z2 − 1

dz, (40)

where zmin = 1 and zmax ≈ Cte(ℓ)/
√

−Wb(r∗(b)) ≫ 1
are the corresponding values to rmin and rmin + ℓ. The
idea is now that, roughly speaking, r(z) ≈ r∗(b) ≈ R and

dr/dz ≈
√

−2Wb(r∗(b))/W ′′
b (r∗(b)), which implies

φ(b/b0) ≈
b

R2

√

2

W ′′
b (r∗(b))

∫ zmax

1

dz√
z2 − 1

≈
√

2b2

R4W ′′
b (R)

ln(zmax) ≈ − ln|Wb(r∗(b))|
2
√
γ − 2

,

(41)

in view of Eq. (39) and the fact that zmax ≈
Cte(ℓ)/

√

−Wb(r∗(b)) ≫ 1. Finally, Wb(r∗(b)) = 1 −
(βb0/b)

− 2γ
γ−2 , and we end up with

φ(b/b0) ≈ − ln(1− βb0/b)

2
√
γ − 2

. (42)

For the sake of simplicity, we have included the mathe-
matical details leading to Eq. (41) in Appendix A7.

V. PHYSICAL DISCUSSION

In this section we give a summary, a physical discus-
sion and a numerical checking of the mathematical results
derived in the previous section.

A. Summary of the results and numerical checking

We have summarized the results obtained in Sect. IV
in table I. In the first column, we make the difference
between the regime of soft collisions, for which the angle
φ ≈ π/2 (and hence the angle of deflection χ ≈ π) —
which means that the trajectories are weakly perturbed
— and the regime of strong collisions, in which the angle
φ is far from π/2, i.e., the trajectory is strongly per-
turbed. In the case of attractive potentials, different
cases arise depending on the value of γ:

• For 0 < γ < 2, the leading order value of φ is
π/(2−γ). The exponent of the first order correction
depends whether γ is smaller than 2/3 or not. If
we expand to higher order, we will see that the
exponent of the second order term depends whether
γ is smaller than 2/5 or not, the exponent of the
third order term whether γ is smaller than 2/7 or
not, and so on.

• For γ > 2, we have formation of pairs for impact
factors smaller than a critical one. For impact fac-
tors exactly at the critical one there is the phenom-
ena of orbiting and for larger impact factors the col-
lision is well behaved. We discuss these phenomena
in the subsection below.

In addition, for 0 < γ < 2, we have checked numeri-
cally the validity of the asymptotic expansions in Sect. IV
for both repulsive potentials (Fig. 7) and attractive po-
tentials (Fig. 8), in the soft collision regime (b/b0 ≫ 1)
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type of collision repulsive potential attractive potential

soft (b ≫ b0) φ− π
2
∼ −(b0/b)

γ φ− π
2
∼ +(b0/b)

γ

hard (b ≪ b0) φ ∼ b/b0

φ− π
2−γ

∼ −
(

b
b0

)2γ/(2−γ)

0 < γ < 2/3

φ− 3π
4

∼ − b
b0

ln
(

b0
b

)

γ = 2/3

φ− π
2−γ

∼ − b
b0

2/3 < γ < 2

particles crash when b ≤ βb0 2 = γ

particles crash when b < βb0

formation of a binary (orbiting) when b = βb0
2 < γ

TABLE I: Summary of the expansions of the angle φ.

where the trajectory is weakly perturbed (top of each
figure) and in the hard collision regime (bottom of each
figure). We see a perfect matching between the numerical
calculations and the analytical asymptotic calculations.
Finally, when γ ≥ 2, we illustrate in Fig. 9 the diver-

gence of φ when b approaches βb0 (b > βb0) obtained in
Eq. (36) for γ = 2 (top) and in Eq. (42) when γ = 5/2 > 2
(bottom).

B. Collisions with loops for attractive potentials

Collisions with loops may appear when the angle φ
becomes large. This happens for attractive potentials in
the two following cases:

• when γ is slightly smaller than 2 and b≪ b0, since
then φ(b/b0) ≈ α(γ) = π

2−γ (see Subsect. IVC).

• when γ ≥ 2 and b ≈ βb0 (b > βb0), with the ex-
pression for β given in Eq. (38), since (see § IVC5)

φ

(

b

b0

)

=
π

2
√

1− 2b20/b
2

if γ = 2, (43a)

φ

(

b

b0

)

≈ − ln(1− βb0/b)

2
√
γ − 2

if γ > 2. (43b)

It is interesting to study these trajectories, for which it
is numerically convenient to use for the first part of the
trajectory the implicit relation between the polar angle
θ ∈ [0, φ] and the distance to the origin r of the particle
(see e.g. [16]):

θ(b, b0, r) =

∫ ∞

r

(b/r′2)dr′
√

1− (b/r′)2 − 2(b0/r′)γ
. (44)

Note that θ(b, b0, rmin) = φ(b/b0). The first half of the
trajectory is therefore

x = r cos θ

y = r sin θ,

10-1

100

101

10-1 100 101 102

γ = 1/2
γ = 1

γ = 3/2

b/b0

π
/
2
−

φ
(b
/
b 0
)

10-1

100

101

10-1 100 101

γ = 1/2
γ = 1

γ = 3/2

b/b0

φ
(b
/
b 0
)

FIG. 7: Numerical computations for repulsive potentials
and several values of γ. Top: for soft scattering

(b/b0 ≫ 1), plot of π/2− φ (continuous line) and the
theoretical predictions (dotted line) Eq. (18) as a
function of b/b0. Bottom: for hard scattering
(b/b0 ≪ 1), plot of φ (continuous line) and the

theoretical predictions (dotted line) Eq. (24) as a
function of b/b0.
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φ
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FIG. 8: Numerical computations for attractive
potentials and several values of γ. Top: for soft

scattering (b/b0 ≫ 1), plot of π/2− φ (continuous line)
and the theoretical predictions (dotted line) Eq. (18) as

a function of b/b0. Bottom: for hard scattering
(b/b0 ≪ 1), plot of φ (continuous line) and the

theoretical predictions (dotted line) Eq. (29), (33) or
(35) (depending on the value of γ) as a function of b/b0.

and the second one

x = r cos(2φ− θ)

y = r sin(2φ− θ).

We see that the trajectory is symmetric about a straight
line which passes by the origin of coordinates (i.e. the
center of mass) and the point of closest approach (defined
by the angle φ). In the plot, the first half part of the
trajectory — from x = +∞ to the axis of symmetry —
is plotted in red, the other half of the trajectory in green.
The points of intersection of the trajectory lie on the axis
of symmetry.

100

101

10-2 10-1 100 101 102

b/b0 − β

φ
(b
/
b 0
)

 0
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 4
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10-2 10-1 100 101 102

b/b0 − β

φ
(b
/
b 0
)

FIG. 9: Divergence of φ when 0 < b/b0 − β ≪ 1. Top:
Graph of φ as a function of b for γ = 2 (continuous line)

given by Eq. (36) and by the numerical calculation
(circles). Bottom: same quantity for γ = 5/2

(continuous red line) and the leading order given in
Eq. (42) (dotted green line).

1. The case γ = 2− < 2 and b/b0 ≪ 1

In Subsect. IVC we have seen that, for the attractive
potential with γ < 2, we have

lim
b/b0→0

φ

(

b

b0

)

= α(γ) =
π

2− γ
(47)

and (see the beginning of that Subsect.)

rmin ≤ b≪ b0.

Therefore, in the limit γ → 2, the angle φ(0+) diverges.
Fixing γ < 2 but γ ≈ 2 (say γ = 1.95 for instance), we
have, for b/b0 ≪ 1, a collision where rmin ≪ b0 is very
small and φ very large, which corresponds to many loops
in a very small region close to the center of mass of the
two particles.
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FIG. 10: Top: A trajectory in the center of mass frame
for attractive hard interaction and γ = 4/3 and
b/b0 = 0.025. The pink dotted line represents the

prediction of Eq. (33) (with a small offset). Bottom:
zoom of the plot above, in which a loop is visible. The
first half part of the trajectory — from x = +∞ to the
axis of symmetry — is plotted in red, the other half of
the trajectory in green. The points of intersection of the

trajectory lie on the axis of symmetry.

The number of intersections between the first half of
the trajectories (red lines in the plots) and the symmetric
one (green lines in the plots) depends on the value of
φ. The number of intersections of the trajectories (and
hence the number of loops) is given by the floor function
of the angle of closest approach divided by π

nloops

(

b

b0

)

= floor

(

α(γ)

π

)

= floor

(

1

2− γ

)

. (48)

In the example showed in Fig. 10, γ = 4/3, φ ≈ 4.67,
and hence there is one loop. A more complex example
appears when choosing γ = 1.95 and b/b0 = 0.8. In this
case φ ≈ 39.3 and hence the numbers of loops is, using
Eq. (48), nloops = 12. This can be shown explicitly in

Fig. 11, where we show successive zooms in the trajec-
tory, in which appear smaller and smaller loops.
In Fig. 12, we show θ(b, b0, r) (in Eq. (44)) as a function

of r. Each horizontal line corresponds to φ = nπ, in
which n is an integer and with n such that φ(b/b0) > nπ.

2. The case γ ≥ 2 and b/b0 = β+

We have seen in Subsect. IVC5 that the angle φ di-
verges for b/b0 ≈ β, with the expression for β given in
Eq. (38), see the formulas recalled in Eq. (43).
When γ > 2, the angle φ diverges logarithmically for

b approaching βb0. If we compare to the case (γ = 2+

and b/b0 ≪ 1) previously studied, we see that the main
difference is that now, the distance of closest approach
rmin is no longer small but of order one since rmin(b) ≈
rmin(βb0) = R = b0(2 − γ)1/γ > 0 (see § IVC5). The
shape of the trajectories is therefore very different from
the case (γ = 2+ and b/b0 ≪ 1) since then, the particle
remains in a (close to circular) orbit of positive radius.
For the particular value b = βb0, the particle remains
asymptotically trapped on a closed circular orbit, that
is we have the formation of a binary. We illustrate this
behavior in Fig. 13.

VI. EFFECT OF A SHORT-SCALE
REGULARIZATION IN THE POTENTIAL

In many physical situations, the potential is not a pure
power-law as in Eq. (1) but there is a regularization at
small scales, which is commonly called softening e.g. in
the astrophysical literature. This is for example the case
in the dark–matter collisionless N-body cosmological sim-
ulations, in which a softening is introduced to minimize
as much as possible collisional effects. From a more fun-
damental point of view, we are interested in answering
the following questions:

1. Does a regularization in the potential modify the
results above presented?

2. If yes, up to what scale and how?

3. Is the formation of pairs (which appears for γ > 2
and b/b0 < β) suppressed when a regularization is
introduced, and in the affirmative case is there a
minimal softening case needed?

In this section we will answer these questions. In or-
der to be able to make explicit calculations, we will con-
sider two popular regularization used commonly in the
astrophysical literature (see e.g. [17, 18]), the Plummer
potential

vPl(r, ǫ) =
g

(r2 + ǫ2)γ/2
(49)
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FIG. 11: Collision in the center of mass frame for γ = 1.95 and b/b0 = 0.8. The dotted line is the axis of symmetry
of the trajectory. The square in each plot represents the frame of the next plot (which have to be read from left to
right and top to down). The first half part of the trajectory — from x = +∞ to the axis of symmetry — is plotted in
red, the other half of the trajectory in green. The points of intersection of the trajectory lie on the axis of symmetry.

and the compact softening

vco(r, ǫ) =







g

rγ
if r ≥ ǫ

g

ǫγ
v (r/ǫ) if 0 ≤ r ≤ ǫ,

(50)

where v is a function on [0, 1] such that v(1) = 1. The
Plummer softening gives rise to an interaction of the same
sign than the unsoftened one, whereas it is possible to
choose the form of the compact softening (typically v is a
polynomial in r/ǫ) in order to be indifferently attractive,

repulsive or both. A common feature for both of these
potentials is that they fulfill the relation

v(r, ǫ) =
g

ǫγ
V
(r

ǫ

)

, (51)

with

VPl(R) =
1

(R2 + 1)γ/2



13

100

101

102

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

r/b0

θ
(b
,b

0
,r
)

FIG. 12: Graph of θ(b, b0, r) as a function r/b0 for a
trajectory with γ = 1.95 and b/b0 = 0.8. Each

horizontal line corresponds to an intersection in the
trajectory.
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FIG. 13: A trajectory in the center of mass frame for
attractive interaction γ = 2.05 and b/b0 = β + 10−6

(only a portion of the trajectory is plotted). The first
half part of the trajectory — from x = +∞ to the axis
of symmetry — is plotted in red, the other half of the
trajectory in green. The points of intersection of the

trajectory lie on the axis of symmetry.

and

Vco(R) =







1

Rγ
if R ≥ 1

v(R) if 0 ≤ R ≤ 1.

We will show that the results presented below do not
depend qualitatively on the explicit form of the regular-
ization used. In what follow, we will study how the angle
φ is modified by the regularization in the potential, first
for repulsive interactions and then for attractive ones.

We introduce the angle φǫ corresponding to the regu-
larized potential:

φǫ(b, b0) =
b

rmin

∫ 1

0

dx
√

1− ( bx
rmin

)2 ± 2bγ
0

ǫγ V( rmin

ǫx )
. (52)

A. Repulsive interactions with Plummer softening

Here V(R) = VPl(R) = (R2 + 1)−γ/2. Then, the func-

tion r 7→ 1 − b2/r2 − 2bγ0/
(

r2 + ǫ2
)γ/2

increases from
−∞ to 1 as r increases from 0+ to +∞, hence has
a single positive zero rmin. It is easily checked that
rmin is an increasing function of b and that the func-

tion r 7→ 1 − 2bγ0/
(

r2 + ǫ2
)γ/2

possesses a positive zero

if and only if ǫ < b02
1/γ . Therefore, for small b,

rmin ≈ r0 = b02
1/γ
√

1− ǫ̂2, where ǫ̂ =
ǫ

21/γb0
,

if ǫ̂ ≤ 1, and

rmin ≈ b√
1− ǫ̂−γ

if ǫ̂ > 1. This naturally leads us to distinguish the case
ǫ < b02

1/γ and the case ǫ > b02
1/γ .

1. The case ǫ < b02
1/γ

We assume ǫ̂ < 1, so that r0 > 0, rmin = r0(1 +
O((b/b0)

2)), and consider here again the small parameter
δ = (b/rmin)

2 ≪ 1. Substituting

2bγ0
ǫγ

=
1− b2/r2min

V(rmin/ǫ)
=

1− δ

V(rmin/ǫ)

yields

φǫ(b, b0) =
√
δ

∫ 1

0

dx
√

1− δx2 − (1− δ)V(rmin/(ǫx))
V(rmin/ǫ)

=
√
δ

∫ 1

0

dx
√

F (x, rmin/ǫ) + δ(1− x2 − F (x, rmin/ǫ))
,

where we have set

F (x, rmin/ǫ) = 1− V(rmin/(ǫx))

V(rmin/ǫ)
.

We prove in App. A 8 that the function x 7→ 1−x2

F (x,rmin/ǫ)

is bounded on [0, 1] independently of b. This shows that
we may apply the argument for Eq. (19) and write

φǫ(b, b0) =
√
δ

∫ 1

0

dx
√

F (x, rmin/ǫ)
√

1 + δ( 1−x2

F (x,rmin/ǫ)
− 1)

=
√
δ

∫ 1

0

dx
√

F (x, rmin/ǫ)
+O(δ3/2).
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At this stage, since rmin = r0(1 +O((b/b0)
2)), one could

legitimate the expansion

∫ 1

0

dx
√

F (x, rmin/ǫ)
=

∫ 1

0

dx
√

F (x, r0/ǫ)
+O((b/b0)

2).

Since rmin = r0(1+O((b/b0)
2)),

√
δ = b/rmin = b/r0(1+

O((b/b0)
2)), and thus, when ǫ̂ < 1,

φPl
ǫ (b, b0) = BPl

ǫ̂ (γ)(b/b0) +O((b/b0)
3), (53)

where

BPl
ǫ̂ (γ) =

2−1/γ

√
1− ǫ̂2

∫ 1

0

dx
√

1− xγ

(1− ǫ̂2(1− x2))γ/2

.

Comparing Eq. (53) with the expression Eq. (24) of the
angle of closest approach without softening we observe
that the linear dependence of φ with respect to b/b0 is
not modified, only the pre-factor changes. It is also easy
to check that in the limit ǫ → 0 we have, as expected,
BPl

ǫ̂ (γ) → B(γ). As expected, the new introduced scale
is ǫ.

2. The case ǫ > b02
1/γ

In the case ǫ̂ > 1, that is ǫ > 21/γb0, we recall that

rmin ≈ b/
√
1− ǫ̂−γ (54)

and that

φǫ(b, b0) =
b

rmin

∫ 1

0

dx
√

1− ( bx
rmin

)2 − 2
bγ
0

ǫγ V( rmin

ǫx )
.

Substituting 1 = b2/r2min + ǫ̂−γV(rmin/ǫ) in the integral
and considering the small parameter δ = r2min/ǫ

2 ∼ b2/ǫ2

gives

φǫ(b, b0) =

∫ 1

0

dx
√

Gb(x)
,

where

Gb(x) = 1− x2 − r2min

b2ǫ̂γ

(

V(
√
δ/x)− V(

√
δ)
)

.

In view of the fact that r2min ≈ b2/(1 + ǫ̂−γ) and b0 . ǫ,
we expect

φǫ(b, b0) ≈
∫ 1

0

dx√
1− x2

=
π

2
.

We also see that the situation is similar to the form given
in Eq. (19), but the dependency on the small parameter δ
is more intricate. Actually, for the Plummer potential, we
have VPl(R) = (R2+1)−γ/2, thus, for small R, VPl(R) =

1 − γR2/2 +O(R4). Therefore, for fixed x and small δ,
we obtain

Gb(x) = 1− x2 − γδ

2(ǫ̂γ − 1)

(

1

x2
− 1

)

+O(δ2),

which is a situation very similar to the form given in
Eq. (19), but unfortunately the function x 7→ (1/x2 −
1)/(1 − x2) = −1/x2 being too singular near the origin,
the power series expansion trick used for Eq. (19) as in
Subsect. IVA and IVB breaks down.
Following the approach used in § IVC2, we divide the

correction φǫ(b, b0)−π/2 by δ and write it under the form

−1

δ

(

φǫ(b, b0)−
π

2

)

= 2
r2minb

γ
0ǫ

2

b2

∫ 1

0

g(x) dx

≈ 1

ǫ̂γ − 1

∫ 1

0

g(x) dx

by Eq. (54) and with

g(x) =
V(

√
δ)− V(

√
δ/x)

δ
√

Gb(x)
√
1− x2[

√

Gb(x) +
√
1− x2]

≥ 0.

Clearly, as b/ǫ goes to 0, δ ≪ 1, Gb(x) ≈ 1 − x2 and we
have

∫ 1

0

g(x) dx→ γ

4

∫ 1

0

1
x2 − 1

(1− x2)3/2
dx = +∞,

due to the non integrable singularity at the origin. We

shall prove that actually
∫ 1

0
g(x) dx ∼ δ−1/2. As a first

step, as in § IVC2, we get rid of the contribution for

1/2 ≤ x ≤ 1. Indeed,
∫ 1

0 g(x) dx→ +∞ whereas

∫ 1

1/2

g(x) dx→ γ

4

∫ 1

1/2

1
x2 − 1

(1− x2)3/2
dx < +∞.

As a consequence, using the natural substitution y =√
δ/x,

∫ 1

0

g(x) dx ≈
∫ 1/2

0

g(x) dx

=
1√
δ

∫ +∞

2
√
δ

V(
√
δ)− V(y)
Db(y)

dy

where we have denoted

Db(y) = y2

√

√

√

√Gb

(√
δ

y

)

(

1− δ

y2

)

×





√

√

√

√Gb

(√
δ

y

)

+

√

1− δ

y2



 .

When δ → 0, we have

Gb(
√
δ/y) → G−

ǫ̂ (y) = 1− 1

ǫ̂γ − 1
(V(y)− V(0))
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and one could rigorously justify that

∫ 1

0

g(x) dx ≈ 1√
δ

∫ +∞

0

V(0)− V(y)
y2
√

G−
ǫ̂ (y)[

√

G−
ǫ̂ (y) + 1]

dy

=
ǫ̂γ − 1√

δ

∫ +∞

0



1− 1
√

1 + 1
ǫ̂γ−1 (V(0)− V(y))





dy

y2
.

The last integral is indeed convergent since: for large y,
V(y) → 0, thus the integrand is ∼ 1/y2; for small y,
VPl(0) − VPl(y) = 1 − (1 + y2)−γ/2 ≈ γ/(2y2), thus the
integrand is continuous at the origin. It then follows that,
for b≪ ǫ:

φǫ(b, b0) =
π

2
− B̃Pl

ǫ̂ (γ)b/ǫ+ o(b/ǫ), (55)

with

B̃Pl
ǫ̂ (γ) =

1√
1− ǫ̂−γ

×
∫ +∞

0



1− 1
√

1 + 1
ǫ̂γ−1 (VPl(0)− VPl(y))





dy

y2
> 0.

If ǫ≫ b0, that is ǫ̂≫ 1, we justify in Appendix A9 that

B̃Pl
ǫ̂ (γ) ≈ ǫ̂−γ√πΓ

(

γ+1
2

)

4Γ
(

γ
2

) . (56)

We see here that, because ǫ ≫ b0, the value of φ is
completely different compared to the case ǫ → 0. As
expected, in the limit b→ 0, φ→ π/2, which means that
the particle trajectory is unperturbed.

B. Repulsive interactions with compact softening

In this Subsection, we give the few modifications ap-
pearing in the asymptotic expansions when we consider a
compact softening Eq. (50). The formula we shall obtain
are qualitatively comparable to those in Subsect. VIA
for the Plummer softening. The first step is to deter-
mine the asymptotic behavior of rmin, and here again,
we shall distinguish the cases where ǫ̂ = ǫ/(21/γb0) is
small or large.

1. The case ǫ < b02
1/γ

Assume that ǫ < b02
1/γ , that is ǫ̂ = ǫ/(b02

1/γ) < 1.
Then, the function r 7→ 1 − b2/r2 − 2bγ0/r

γ is increasing
on [ǫ,+∞). It follows that this function has a unique
zero rmin on [ǫ,+∞), which satisfies, for b/b0 ≪ 1,

rmin ≈ b02
1/γ > ǫ.

In view of the fact that rmin ≈ b02
1/γ > ǫ, the trajectory

never enters in the region {r ≤ ǫ} where the softening

has an effect, hence we obtain the same asymptotics as
in the case without softening (see Eq. (24)), namely

φǫ(b, b0) = B(γ)(b/b0) +O((b/b0)
3), (57)

where B(γ) is the same as in Eq. (24).

2. The case ǫ > b02
1/γ(maxR V)1/γ

Assume now that ǫ > b02
1/γ(maxR V)1/γ , that is ǫ̂γ =

ǫγ/(2bγ0) > maxR V = max[0,1] V ≥ 1. The function r 7→
1 − b2/r2 − 2bγ0/r

γ is then increasing on [ǫ,+∞) from
1 − b2/ǫ2 − ǫ̂−γ to 1. Since ǫ̂ > 1, we have, for b ≪ ǫ,
1− b2/ǫ2 − ǫ̂−γ ≈ 1− ǫ̂−γ > 0, hence 1− b2/r2 − 2bγ0/r

γ

is positive on [ǫ,+∞). On [0, ǫ], the function r 7→ 1 −
b2/r2 − ǫ̂−γV(r/ǫ) is > 0 for r = ǫ and tends to −∞ for
r → 0, thus has a largest root rmin ≤ ǫ. Moreover, since
b2/r2min = 1 − V(rmin/ǫ)ǫ̂

−γ ≥ 1 − ǫ̂−γ maxR V > 0 by
our hypothesis, we have rmin . b≪ ǫ, hence

rmin =
b

√

1− V(rmin/ǫ)ǫ̂−γ
≈ b
√

1− V(0)ǫ̂−γ

that is close to Eq. (54). We may then carry out compu-
tations very similar to those leading to Eq. (55), provided
v is C2 on [0, 1], positive on (0, 1] and v′(0) = 0. This
yields

φǫ(b, b0) =
π

2
− B̃co

ǫ̂ (γ)b/ǫ+ o(b/ǫ), (58)

with

B̃co
ǫ̂ (γ) =

1
√

1− Vco(0)ǫ̂−γ

×
∫ +∞

0



1− 1
√

1 + 1
ǫ̂γ−Vco(0) (Vco(0)− Vco(y))





dy

y2
.

Here, we do not claim that B̃co
ǫ̂ (γ) is a positive constant.

For instance, if v(0) = 0, then B̃co
ǫ̂ (γ) < 0, whereas if

v(x) = v(0) on [0, 1], then B̃co
ǫ̂ (γ) > 0. For a general

function v on [0, 1], it may happen exceptionally that

B̃co
ǫ̂ (γ) vanishes, and in this case, the correction φǫ−π/2

is not of order b/ǫ but smaller. This however does not
happen for generic functions v.

C. Attractive interactions with a softening

The function r 7→ 1− b2/r2 + ǫ̂−γV (r/ǫ) tends to 1 at
infinity and to −∞ at 0+, hence possesses a larger zero
rmin, but there may exist several zeros in general. We
shall prove that independently whether ǫ/b0 is small or
not, we have

rmin ≈ b
√

1 + V(0)ǫ̂−γ
(59)
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(whereas without softening, we had rmin ∼ b2/(2−γ)), and

φǫ(b, b0) =
π

2
+ Cǫ̂(γ)

b

ǫ
+ o(b/ǫ), (60)

where

Cǫ̂(γ) =
1

√

1 + V(0)ǫ̂−γ

×
∫ +∞

0





1
√

1− 1
ǫ̂γ+V(0)(V(0)− V(y))

− 1





dy

y2
.

If ǫ ≫ b0, that is ǫ̂ ≫ 1, we can show (as we have done
for Eq. (56)) that

Cǫ̂(γ) ≈ ǫ̂−γ
√
π
Γ
(

γ+1
2

)

4Γ
(

γ
2

) . (61)

On the other hand, if γ < 2 and ǫ ≪ b0, that is ǫ̂ ≪ 1,
we can show that

Cǫ̂(γ) ≈
ǫ̂γ/2
√

V(0)

∫ +∞

0

(
√

V(0)
V(y) − 1

)

dy

y2
.

We have then a big difference with the case of repulsive
interactions studied in Sect. VIB (and also in Sect. VIA),
where φǫ ∼ b/max(ǫ, 21/γb0), displaying the character-
istic length ǫ or b0 depending which one is the largest
one. Here, for attractive interactions, only the soften-
ing characteristic length ǫ appears in the first order term
φǫ − π/2 ∼ b/ǫ in Eq. (60). This point is not completely
surprising in view of the different cases appearing in Sub-
sect. IVC (for γ < 2/3, γ = 2/3, 2/3 < γ < 2, etc), which
correspond very roughly to the case ǫ = 0.
Since 1 ≤ 1 + ǫ̂−γV (rmin/ǫ) = b2/r2min, we must have

rmin ≤ b≪ ǫ, and this in turn implies Eq. (59).
Our small parameter here will be δ = r2min/ǫ

2 ≪ 1 (by
Eq. (59)). Substituting 1 = b2/r2min − ǫ̂−γV(rmin/ǫ) in
the integral gives

φǫ(b, b0) =

∫ 1

0

dx
√

Gb(x)
,

where

Gb(x) = 1− x2 +
r2min

b2ǫ̂γ

(

V(
√
δ/x)− V(

√
δ)
)

.

Comparing with § VIA2, the only difference is a change
of sign. Therefore, similar computations to those in that
paragraph yield Eq. (60).

D. Computation of a threshold in ǫ for attractive
potentials with γ > 2

When γ > 2 and without softening in the poten-
tial (formally, ǫ = 0), the deflection angle φ diverges

logarithmically to +∞ when b > βb0 approaches βb0
(see Eq. (42)). This divergence is due to the fact that
r∗ ≈ R = b0(2 − γ)1/γ becomes a double root of the
function W in this limit. The first paragraph of this
Subsection is devoted to the proof of the existence of
some threshold ǫ∗(b0, γ) > 0, for the Plummer softening,
such that if ǫ < ǫ∗(b0, γ), then the angle φǫ still diverges
for some specific value of r (depending on b0, γ and ǫ),
whereas for ǫ > ǫ∗(b0, γ), the angle φǫ no longer diverges
and is a smooth function of b/b0 for all positive values of
b/b0. This means that in order to remove the divergence
in φ, one has to use a sufficiently large softening. In the
first case, the divergence is here again due to the exis-
tence of some positive double root in r for the function

Wb,ǫ(r) = 1− b2

r2
+ ǫ̂−γV

(r

ǫ

)

,

whereas for ǫ > ǫ∗(b0, γ), the function Wb,ǫ(r) has no
double root. In the second paragraph we will discuss the
case of the compact softening.

1. The case of a Plummer softening

We now consider the Plummer softening V(R) =
VPl(R) = (1 + R2)−γ/2 and are interested in determin-
ing under which condition on ǫ the function Wb,ǫ has a
unique zero rmin for any b > 0. We have

W ′
b,ǫ(r) =

2γbγ0
r3

(

b2

γbγ0
− r4

(r2 + ǫ2)γ/2+1

)

and, denoting r = ǫR,

r4

(r2 + ǫ2)γ/2+1
= ǫ2−γ R4

(R2 + 1)γ/2+1
.

The function R 7→ R4/(R2 + 1)γ/2+1 is increasing on
[0, Rmax] and decreasing on [Rmax,+∞) (recall γ > 2),

where Rmax =
√

4/(γ − 2); its maximal value is M(γ) =

16(γ − 2)
γ
2
−1(γ + 2)−

γ
2
−1. Therefore, when b2/(γbγ0) <

ǫ2−γM(γ) (case 1), the function Wb,ǫ is increasing on
(0, r1], decreasing on [r1, r2] and increasing on [r2,+∞)
when b2/(γbγ0) > ǫ2−γM(γ) (case 2), the function Wb,ǫ

is increasing on (0,+∞). The two critical points r1 and
r2 merge for b2/(γbγ0) = ǫ2−γM(γ), and we shall see that
the threshold is determined by the sign of Wb,ǫ at this
merging point r1 = r2.
Let us now fix ǫ > 0. For b very small, we are

in case 1 and the two positive roots r1 and r2 of the
equation b2/(γbγ0) = r4/(r2 + ǫ2)γ/2+1 are r1 very small
and r2 very large. The function Wb,ǫ has then a lo-
cal minimum Wb,ǫ(r2) ≈ 1. When b increase, Wb,ǫ de-
crease, the two critical points r1 and r2 merge when
b2/(γbγ0) = ǫ2−γM(γ), and for larger b, Wb,ǫ is increasing
on (0,+∞).
Let us consider the special value of bcrit where

b2crit/(γb
γ
0) = ǫ2−γM(γ), for which the two critical points
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r1 and r2 merge: r1 = r2 = rcrit = ǫRmax. If
Wbcrit,ǫ(rcrit) > 0, then by monotonicity in b, for any
b > 0, the function Wbcrit,ǫ has a single positive zero
rmin. If now Wbcrit,ǫ(rcrit) < 0, then, still by monotonic-
ity in b, for b smaller, but close to bcrit, Wb,ǫ has two
critical points 0 < r1 < r2 with 0 > Wb,ǫ(r1) > Wb,ǫ(r2).
As b decreases, the critical value Wb,ǫ(r2) will be zero for
some particular value of b = b♯ for which r2 has become
a double root of Wb♯,ǫ, yielding a logarithmic divergence
in φǫ. As a consequence, we simply need to determine
the sign of

Wbcrit,ǫ(rcrit) = 1− b2crit
ǫ2R2

max

+
2bγ0

(ǫ2R2
max + ǫ2)γ/2

= 1− ǫ−γM(γ)γbγ0
R2

max

+
2bγ0ǫ

−γ

(R2
max + 1)γ/2

= 1− (ǫ∗(b0, γ)/ǫ)
γ ,

where the threshold is given by

ǫ∗(b0, γ) = 21/γb0

(

γ − 2

γ + 2

)
1

2
+ 1

γ

. (62)

It follows that if ǫ > ǫ∗(b0, γ), then φǫ is a smooth func-
tion of b see Fig. 17, whereas if ǫ < ǫ∗(b0, γ), then φǫ di-
verges as b approaches some value b♯ = b♯(ǫ) correspond-
ing to the case where Wb,ǫ has zero as a local minimum.
By computations very similar to those in Sect. IVC, we
see that the divergence is logarithmic. One may also
check that if ǫ = ǫ∗(b0, γ), then φǫ is a diverging func-
tion of b for some b♯ = b♯(ǫ). In other words, in order
to regularize the divergence in the case γ > 2, we have
to use a sufficiently large softening parameter, namely
ǫ > ǫ∗(b0, γ).
Let us finally consider the case γ = 2. Notice that

formally, ǫ∗(b0, γ) → 0 as γ → 2, hence we may think
that φǫ is a smooth function of b for any ǫ > 0, and
this is indeed the case. Actually, in the case γ = 2, the
function R 7→ R4/(R2 + 1)2 is increasing on [0,+∞),
and tends to 1 at infinity. Therefore, either b2/2b20 < 1
and then the function Wb,ǫ is increasing on (0, r1] and
decreasing on [r1,+∞); either b2/(2b20) ≥ 1 and then the
function Wb,ǫ is increasing on (0,+∞). In any case Wb,ǫ

has a single zero rmin and we never have a double root.
It follows that φǫ is a smooth function of b.

2. The case of a compact softening

For a general compact softening V = Vco, computa-
tions are much less explicit. We first have

W ′
b,ǫ(r = ǫR) =

2bγ0
R3ǫγ+1

(

b2ǫγ−2

bγ0
+R3V ′(R)

)

,

and we then need to know the behavior of the function
R 7→ −R3V ′(R), which certainly has a positive maximum
M = M(v) attained at some 0 < Rmax ≤ 1 since γ > 2.

If the function R 7→ −R3V ′(R) is increasing on [0, Rmax]
and then decreasing on [Rmax,+∞), the behavior is the
same as the one previously described for the Plummer
softening. Since

Wbcrit,ǫ(rcrit) = 1− bγ0M(v)

ǫγR2
max

+
2bγ0
ǫγ

V(Rmax)

= 1− bγ0
ǫγ

(

M(v)

R2
max

− 2V(Rmax)

)

= 1 +
bγ0
ǫγ

(RmaxV ′(Rmax) + 2V(Rmax)) ,

there exists a threshold if and only if M(v)/R2
max =

−RmaxV ′(Rmax) > 2V(Rmax), and otherwise, we never
have a double root for Wb,ǫ hence no divergence in φǫ.
The example below illustrate the first case.
If γ = 3 and v(R) = 21R2−35R3+15R4 for 0 ≤ R ≤ 1,

then R 7→ −R3V ′(R) is decreasing and negative on
[0,≈ 0.474], increasing on [≈ 0.474,≈ 0.984] and de-
creasing on [≈ 0.984,+∞), hence has maximum value
M(v) ≈ 3.023 attained at Rmax ≈ 0.984. Moreover,
M(v)/R2

max − 2V(Rmax) ≈ 1.023 > 0, thus the varia-
tions of Wb,ǫ are the same as for the Plummer softening,
with a threshold given by

ǫ∗(b0, γ) = b0

(

M(v)

R2
max

− 2V(Rmax)

)1/3

≈ 1.0077b0.

E. Summary of the results and numerical checking

We summarize in table II the results obtained in this
section. We have shown that the effect of the softening
does not depend strongly on the form of the softening,
obtaining the same qualitative results for the two soft-
ening considered — Plummer and compact one. There
is an exception for repulsive interactions and ǫ < b02

1/γ ,
in which case the compact softening does not modify the
trajectory of the particles because they do not visit the
region in which the potential is regularized.
In the case of repulsive interactions, we have seen that

two different behaviours are predicted depending whether
ǫ/b0 is larger than 21/γ or not. In the case ǫ/b0 < 21/γ ,
the softening does not modify strongly the angle φ: it
behaves linearly for b ≪ b0, only its slope is modified
with ǫ. In the case in which ǫ/b0 > 21/γ , hard collisions
are radically modified, obtaining limb/b0→0 φ = π/2. The

change of behaviour occurs sharply at ǫ/b0 = 21/γ as we
show in Fig. 14, in which φ is plotted as a function of ǫ
at fixed b, for some values of γ. The range of validity in
b of the linear correction is given by the largest value of
b0 and ǫ. In Fig. 15 we show the comparison between the
numerical integration of φǫ in Eq. (52) with the asymp-
totic predictions Eqs. (53) and (55). We see a very good
matching between the curves.
For the case of attractive interactions, the range of va-

lidity in b of the linear correction is always given by ǫ.
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repulsive potential attractive potential

φǫ ∼ b/b0 when b ≪ b0 if ǫ̂ = ǫ/(21/γb0) < 1

φǫ − π/2 ∼ −b/ǫ when b ≪ ǫ if ǫ̂ = ǫ/(21/γb0) > 1
φǫ − π/2 ∼ b/ǫ when b ≪ ǫ

TABLE II: Summary of the expansions of the angle φǫ with a Plummer softening in the potential for hard collisions
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0.5
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φ
ǫ
(ǫ
/
b 0
)

γ = 1/2
γ = 1

γ = 3/2

FIG. 14: Value of φ for b/b0 = 10−2. The vertical
curves correspond to ǫ/b0 = 21/γ .

In Fig. 16 we show a very good agreement matching be-
tween the exact integration Eq. (52) with the asymptotic
predictions Eqs. (53) and (60). We have also studied,
for γ > 2, for which value of the softening, there is no
formation of pairs for any value of b. We have seen that
introducing a softening ǫ > 0 automatically regularizes
the angle φ for any value b, except one, for which there is
orbiting, except for some particular softenings, in which
the divergences also disappear. It is necessary to intro-
duce a value of the softening larger than a critical value
(which we have calculated explicitly) to regularize com-
pletely the problem. In Fig. 17 we illustrate this behav-
ior. The continuous red curve corresponds to the case in
which ǫ > ǫ∗(b0, γ). In this case, φǫ is a regular function
of b, as it can be seen in the inset. The dashed green
curve corresponds to the case in which ǫ < ǫ∗(b0, γ), for
which φǫ diverges for b = b♯(ǫ).

VII. CONCLUSIONS

In this paper we have studied the scattering of two par-
ticles interacting with a central potential v(r) ∼ 1/rγ .
This is a generalization of the Rutherford formula of the
scattering of two particles interacting via a Coulomb or
gravitational force. Unlike the original case, it is not
possible to compute in general the deflection angle of the
particles analytically for general γ 6= 1. We have then
calculated the asymptotics of the angle of deflection for
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−
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b/b0

π
/
2
−

φ
ǫ
(b
,b

0
)

FIG. 15: Numerical computations for repulsive
potentials with Plummer softening. Top: Graph of φǫ

normalized to the angle without softening
φ0(continuous line) and of the leading order term

(dotted line) given in Eq. (53) as a function of b/b0 for
different values of γ and ǫ/b0 = 1/10. Bottom: Graph of
φǫ for ǫ/b0 = 10 and the leading order expansion given
in Eq. (55). The dotted blue lines corresponds to φ0.

the two limiting cases in which we are interested in: the
weak collisions regime, in which the particles trajectories
are weakly perturbed, and the strong collision regime, in
which they are strongly perturbed. Combining the ana-
lytical expressions and the numerical integration of the
equation of motion, we have derived the phenomenology
we detail as follows.
In the regime of soft collisions, attractive and repulsive
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FIG. 16: Numerical computations for attractive
potentials with Plummer softening (hard scattering).

Top: Graphs of φǫ (continuous line) and the theoretical
prediction Eq. (53) (dotted lines) as a function of b/b0
for different values of γ and ǫ/b0 = 1/10. Bottom: same
quantity for ǫ/b0 = 10 and the theoretical prediction

Eq. (55) (dotted lines). The dotted blue lines
corresponds to φ0.

interactions give a very similar result: the angle of closest
approach scales as

φ ∼ π/2∓A(γ)

(

b

b0

)γ

, (63)

where A(γ) > 0, b is the impact factor, and b0 a char-
acteristic scale which depends on the reduced mass, the
coupling constant and the relative asymptotic velocity of
the particles. The minus sign corresponds to the repul-
sive interaction and the positive sign to attractive inter-
actions. This is what it is expected: with no interac-
tion, the reduced particle suffers no deflection, and then
φ = π/2. If the interaction is repulsive, the reduced
particle will be deflected in the top left quadrant, which
implies that φ < π/2. If the interaction is attractive,
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FIG. 17: Plot of φǫ as a function of b for γ = 5/2 and
two different values of the softening. The red

continuous curve corresponds to a value of ǫ slightly
larger than ǫ∗(b0, γ) and the dashed green one to a

value of ǫ slightly smaller than ǫ∗(b0, γ).

it will be deflected to the bottom left quadrant, which
implies φ > π/2 (see Fig. 1).
In the regime of hard collisions, the situation is very

different between the repulsive and attractive case: (i)
for repulsive interactions, the angle of closest approach
scales as φ ∼ b/b0. This is what one expects for b → 0:
for vanishing impact factor, particle bounce one on each
other, coming back in their original directions and op-
posite sign of the velocity; (ii) for attractive interactions
with γ < 2, the leading contribution is

φ ∼ π

2− γ
. (64)

We see therefore, that for b/b0 → 0 the angle of deflection
depends on the exponent of the interaction potential γ.
Of course, the deflection angle is the same for Coulomb
(repulsive) and gravitational interaction (γ = 1)
Equation (64) implies that, when γ approaches the

value of 2, the angle φ increases, diverging in the limit
γ → 2. This is due to the effective potential created by
the angular momentum, which scales with the distance
as 1/r2. When the exponent γ of the attractive potential
is larger than 2, the angular momentum term cannot, in
general, prevent the system to collapse and the particles
crash. Studying the distance of closest approach rmin we
have found two different behaviors whether γ is smaller
or larger than 2:

• If γ < 2, in the limit γ → 2− (for any b smaller than
some critical value which we have calculated explic-
itly), the value of rmin tends to 0. The trajectories
in this limit is a succession of smaller and smaller
loops embedded one in the other. An example of
such trajectories was given in Fig. 11.



20

• If γ > 2, the particles do not crash if the impact
factor is larger than some critical value, which we
have calculated. For impact factor slightly larger
than this critical value, we have trajectories with
rmin ∼ b0. The particles then orbite with distance
rmin forming a binary, which will be destroyed in a
finite time. We gave an example of such trajectories
in Fig. 13.

We have also studied the effect of introducing a reg-
ularization at small scales in the potential. The conclu-
sions are detailed in Subsect. VIE.
A practical application appears naturally in the con-

text of astrophysics or plasma physics, when we are inter-
ested in calculating the average change of velocity due to
the collisions. It is usual (see e.g. [3]) to decompose the
relative velocity of the particles before the collisions V as
the sum of its component along the direction of the initial
relative velocity e‖ and the component perpendicular to
it e⊥, i.e.,

V = V⊥e⊥ + V‖e‖. (65)

It is possible to compute the average change of veloc-
ity ∆V⊥ and ∆V‖ after a collision has been completed
integrating over all the impact factors b:

∆V⊥
V

= sin(2φ) (66a)

∆V‖
V

= 1 + cos(2φ). (66b)

One quantity of interest is the average change velocity
square, which can be expressed by the integral over all
the impact factors, i.e.,

〈∆V 2
⊥〉 ∼

∫ R

0

dbbd−2 sin2
(

2φǫ

(

b

b0

))

(67a)

〈∆V 2
‖ 〉 ∼

∫ R

0

dbbd−2

[

1 + cos

(

2φǫ

(

b

b0

))]2

, (67b)

where d > 1 is the physical dimension and R the size of
the system, which is the maximal impact factor available.
In astrophysical or cosmological N-body simulations,

the goal is to simulate collisionless dynamics sampling
a continuous distribution with macro-particles (see e.g.
[19]). The softening used in these simulations is much
larger than b0 (in order to suppress collisional effects),
and hence (see Sect. VI), φ−π/2 ≪ 1. We can therefore
write

〈∆V 2
⊥〉 ∼ 4

∫ R

0

dbbd−2

[

φǫ

(

b

b0

)

− π

2

]2

(68)

and 〈∆V 2
‖ 〉 ≪ 〈∆V 2

⊥〉. We can estimate Eq. (68) using

the following approximate expression for the angle φǫ (we
will consider explicitly attractive interactions with Plum-
mer softening to simplify notations, the compact soften-
ing or repulsive case is analogous):

φǫ −
π

2
≃
{

Cǫ(γ)
b
ǫ if b < ǫ

A(γ)
(

b0
b

)γ
if b > ǫ

(69)

(see e.g. Fig. 16). Using Eq. (69) to compute integral
(68), considering softenings such that b0 ≪ ǫ ≪ R we
get the scaling, for γ > (d− 1)/2,

〈∆V 2
⊥〉 ∼ b2γ0 ǫd−1−2γ (70)

where we have used the asymptotic value of Cǫ(γ)
Eq. (61). Notice that impact factors smaller or larger
than ǫ contributes to the scaling (70). In the limiting
case γ = (d− 1)/2, we get

〈∆V 2
⊥〉 ∼ b20 ln

(

R

ǫ

)

. (71)

In this case contributions of collisions with b < ǫ are
negligible. For γ < (d − 1)/2, the effect of the softening
is negligible because the main contribution to the change
of velocity is given by impact factors b ∼ R.
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Appendix A: Mathematical details

In this appendix we give mathematical details of some
derivations given in the paper.
Some of the integrals appearing in the paper may be

expressed with the help of the Beta function (also called
Euler’s integral of the first kind) defined for x, y > 0 by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt

= 2

∫ π/2

0

sin2x−1(ϑ) cos2y−1(ϑ) dϑ

=
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ is Euler’s function.

1. Expression for the integral Eq. (17)

For the integral Eq. (17), we use the substitution x =
cosϑ and integration by parts:

∫ 1

0

1− xγ

(1− x2)3/2
dx =

∫ π/2

0

1− cosγ(ϑ)

sin2 ϑ
dϑ

=

[

cosγ(ϑ)− 1

tanϑ

]π/2

0

+ γ

∫ π/2

0

cosγ(ϑ) dϑ. (A1)

Notice that the bracket term vanishes. The right-hand
side of Eq. (A1) may also be expressed as (using that
Γ(1 + z) = zΓ(z))

γB

(

γ + 1

2
,
1

2

)

=
√
π
Γ
(

γ+1
2

)

Γ
(

γ
2

) . (A2)
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2. Extension of the expansion Eq. (20) for γ ∈ (0, 2]

We proceed in two steps: we first prove that φ is a
power series in (b0/b)

γ for b sufficiently large, and then
identify the coefficients in the expansion.
The argument used for Eq. (19) shows that (rmin/b)φ

is a power series of the variable δ (with positive radius)
provided δ is small enough. Moreover, since

b

rmin
=
√

1± 2(b0/rmin)γ =
√

1± 2(b0/b)γ(b/rmin)γ ,

it is easy to show that b/rmin, thus also δ =
±((b/rmin)

2 − 1), is itself a power series of the vari-
able 2(b0/b)

γ (with positive radius). By substitution and
Cauchy product, φ is a power series in 2(b0/b)

γ for b suffi-
ciently large, that is there exists some coefficients κn(γ),
n ∈ N, such that, for b large enough,

φ =

+∞
∑

n=0

κn(γ) (2(b0/b)
γ)

n
.

In addition, from the above computation, we know that
each coefficient κn(γ) is a finite sum of the type

n
∑

k=0

C(n, k)

∫ 1

0

(

xγ − x2

1− x2

)k
dx√
1− x2

,

the integrals coming from the expansion of the integral
(rmin/b)φ in powers of δ, and the coefficients C(n, k) of
the Cauchy products and the substitution. In particu-
lar, each coefficient κn(γ) is an analytic function of γ in
(0,+∞) (and even in the half-space {Re > 0}).
We now identify the coefficients κn(γ) by considering

the two expansions valid for γ > 2 and b large,

φ =
√
π

+∞
∑

n=0

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
(∓2(b0/b)

γ)n

=
+∞
∑

n=0

κn(γ) (2(b0/b)
γ)n .

By uniqueness of the power series expansions, we deduce
that if γ > 2, then for all n ∈ N,

κn(γ) = (∓1)n
√
π

Γ((nγ + 1)/2)

2n!Γ(1 + n(γ/2− 1))
.

Since κn is an analytic function in (0,+∞) and both γ 7→
Γ((nγ + 1)/2) and γ 7→ 1/Γ(1 + n(γ/2− 1)) are analytic
in (0,+∞), we deduce from the principle of permanence
for analytic functions that Eq. (20) holds true for any
γ > 0.
We may now compute the radius of convergence. If γ >

2, this has been carried out in [15] using the generalized

Stirling formula Γ(s + 1) ≈ (s/e)s
√
2πs when s → +∞.

The generalization to γ ≤ 2 follows from the same type of
computations, combined with Euler’s reflection formula
Γ(s)Γ(1 − s) = π/ sin(πs).

3. Expression for the integral Eq. (23)

Using the substitution xγ = cos2 ϑ provides

∫ 1

0

dx√
1− xγ

=
2

γ

∫ π/2

0

cos
2

γ −1 ϑ dϑ

=
1

γ
B

(

1

γ
,
1

2

)

=

√
πΓ
(

1 + 1
γ

)

Γ
(

1
2 + 1

γ

) ,

as claimed.

4. Expression for the integral Eq. (28)

In Eq. (28), we substitute x2−γ = cos2(ϑ) and then
integrate by parts

∫ 1

0

1− xγ

2(xγ − x2)3/2
dx

=
1

2− γ

∫ π/2

0

cos−2γ/(2−γ)(ϑ)− 1

sin2 ϑ
dϑ

=
1

2− γ

[

cos−2γ/(2−γ)(ϑ)− 1

tanϑ

]π/2

0

+
2γ

(2− γ)2

∫ π/2

0

cos−2γ/(2−γ)(ϑ) dϑ.

Since the bracket vanishes, we then obtain, as wished,
∫ 1

0

1− xγ

2(xγ − x2)3/2
dx =

γ

(2− γ)2
B

(

2− 3γ

2(2− γ)
,
1

2

)

=
γ

(2− γ)2

√
πΓ
(

2−3γ
2(2−γ)

)

Γ
(

2(1−γ)
2−γ

) .

5. Expression for the integral Eq. (32)

In the integral
∫ +∞
0

Ψ0(y) dy, we use successively the

substitutions yγ = sinh2 u and e
−u = sinϑ:

∫ +∞

0

Ψ0(y) dy =

∫ +∞

0

y−γ/2(1 + yγ)−1/2dy

yγ/2 + (1 + yγ)1/2

=
2

γ

∫ +∞

0

(sinhu)
2

γ −2
e
−u du

=
23−2/γ

γ

∫ π/2

0

(sinϑ)2−
2

γ (cosϑ)
4

γ −3 dϑ

=
23−2/γ

γ
B

(

3

2
− 1

γ
,
1

γ
− 1

)

=
23−2/γ

γ

Γ
(

3
2 − 1

γ

)

Γ
(

2
γ − 1

)

Γ
(

1
γ + 1

2

) ,

which establishes the equality Eq. (32).
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6. Justification of Eq. (34)

We may already get rid of the contribution for 0 ≤ y ≤
1 since we know that Q(δ) → +∞ whereas

∫ 1

0

Ψδ(y) dy →
∫ 1

0

Ψ0(y) dy <∞,

since the integrand is ≈ y−1/3 at the origin. Then, Eq.
(31) implies

Q(δ) ≈
∫ δ−3/2/2

1

Ψδ(y) dy.

To prove the asymptotics Eq. (34) rigorously, we have to
pay attention to the y’s close to δ−3/2/2. Indeed, when
γ = 2/3,

(yγ − δ2/γ−1y2)−1/2 = y−1/3(1− δ2y4/3)−1/2

but δ2y4/3 may be of order one when y ≈ δ−3/2. There-
fore, we split

Q(δ) ≈ Q1(δ) +Q2(δ) =

∫ δ−3/2/|ln δ|

0

Ψδ(y) dy

+

∫ δ−3/2/2

δ−3/2/|ln δ|
Ψδ(y) dy.

For Q1(δ), we may write, factorizing the dominant terms,

(yγ − δ2/γ−1y2)−1/2 = y−1/3(1− δ2y4/3)−1/2

= y−1/3(1 + o(1)), (A3)

since 0 ≤ δ2y4/3 ≤ |ln δ|−1 = o(1) and where o(1)
stands for a quantity which is uniformly small for y ∈
[0, δ−3/2/|ln δ|]. Similarly 1− δyγ = 1− δy2/3 = 1+ o(1)
and

(yγ − δ2/γ−1y2 + 1− δyγ)−1/2

= (y2/3 + 1)−1/2

(

1− δ2y4/3 + δy2/3

1 + y2/3

)−1/2

= (y2/3 + 1)−1/2(1 + o(1))

and we then infer

Q1(δ) =

∫ δ−3/2/|ln δ|

1

(1 + o(1))
y−1/3(y2/3 + 1)−1/2 dy

y1/3 +
√

y2/3 + 1

≈
∫ δ−3/2/|ln δ|

1

dy

2y
=

1

2
ln
(

δ−3/2/|ln δ|
)

≈ 3

4
|ln δ|,

since the first integrand is ≈ 1/(2y) at infinity.
We now consider Q2(δ), where 1 ≪ δ−3/2/|ln δ| ≤ y ≤

δ−3/2/2. Then, in Eq. (A3), we no longer have a o(1),
but we can write, since 0 ≤ δ2y4/3 ≤ 1/2,

(yγ − δ2/γ−1y2)−1/2 = y−1/3(1− δ2y4/3)−1/2 = O(y−1/3)

and similarly

(yγ − δ2/γ−1y2 + 1− δyγ)−1/2 = O(y−1/3).

As a consequence,

Q2(δ) = O
(

∫ δ−3/2/2

δ−3/2/|ln δ|

dy

y

)

= O (ln(|ln δ|)) ≪ |ln δ|.

Combining the estimates for Q1(δ) and Q2(δ), we have
justified Eq. (34).

7. Justification of the leading order expansion Eq.
(41)

To completely justify the expansion Eq. (41), we have
to pay attention to the z’s close to zmax. Notice first that

dr/dz =
√

−2Wb(r∗)/W ′′
b (r∗)(1 +O(z/zmax))

and that

r(z)−2 = (r∗ +O(z/zmax))
−2,

hence the asymptotics r(z) ≈ r∗ ≈ R and dr/dz ≈
√

−2Wb(r∗)/W ′′
b (r∗) are not completely true for z ∼

zmax. We therefore split the right-hand side of Eq. (40)
as

I1 + I2 =
b

√

−Wb(r∗)

∫ zmax/ ln(zmax)

1

r(z)−2 dr/dz√
z2 − 1

dz

+
b

√

−Wb(r∗)

∫ zmax

zmax/ ln(zmax)

r(z)−2 dr/dz√
z2 − 1

dz.

In I1, we have 0 ≤ z/zmax ≤ |ln zmax| = o(1), thus

dr/dz =
√

−2Wb(r∗)/W ′′
b (r∗)(1 + o(1))

and

r(z)−2 = (r∗ + o(1))−2 = R−2 + o(1),

which yields

I1 ≈ b

√

2

W ′′
b (R)

∫ zmax/ ln(zmax)

1

R−2 dz√
z2 − 1

≈
√

2

R4W ′′
b (R)

ln(zmax).

Turning back to I2, where 1 ≪ zmax/ ln(zmax) ≤ z ≤
zmax, we simply use that r(z)−2 = O(1) and that

dr/dz =
√

−2Wb(r∗)O(1), thus

I2 = O
(

∫ zmax

zmax/ ln(zmax)

dz

z

)

= O(ln(ln zmax)) ≪ ln(zmax).

This concludes the justification of Eq. (41).
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8. Bounding the function
1− x2

F (x, rmin/ǫ)

We prove here that the function x 7→ 1−x2

F (x,rmin/ǫ)
is

bounded on [0, 1], independently of b≪ b0 (for the Plum-
mer softening). We recall that for the regime (ǫ < b02

1/γ

and b≪ b0) we are studying, rmin ≈ b02
1/γ

√
1− ǫ̂2, thus

rmin/ǫ ≈ ǫ̂−1
√
1− ǫ̂2.

Let us first work on the interval [0, 1/2]. Then,
F (x, rmin/ǫ) = 1 − VPl(rmin/(ǫx))/VPl(rmin/ǫ) is de-
creasing with respect to x since VPl(R) = (1 + R2)−γ/2

is decreasing on [0,+∞), hence, for 0 ≤ x ≤ 1/2,

0 ≤ 1− x2

F (x, rmin/ǫ)
≤ 1

F (x, rmin/ǫ)
≤ 1

F (1/2, rmin/ǫ)
.

The right-hand side does not depend on x and is equal
to

(

1− VPl(2rmin/ǫ)

VPl(rmin/ǫ)

)−1

≈
(

1− VPl(2ǫ̂−1
√
1− ǫ̂2)

VPl(ǫ̂−1
√
1− ǫ̂2)

)−1

,

which gives the desired upper bound on [0, 1/2].
We now work on [1/2, 1], and use that

d
dxVPl(rmin/(ǫx)) = −(rmin/(ǫx

2))(VPl)′(rmin/(ǫx)) ≥
m for some positive constant m = m(ǫ̂) independent of
b, since VPl is decreasing on [0,+∞). As a consequence
of the mean value theorem we get

0 ≤ 1− x2

F (x, rmin/ǫ)
=

(1 + x)(1 − x)

F (x, rmin/ǫ)− F (1, rmin/ǫ)
≤ 2

m
.

This concludes the proof of the upper bound on [0, 1/2].

9. Justification of the relation Eq. (56)

If ǫ̂≫ 1, we may use for instance the Taylor expansion
of the square root to deduce

B̃ǫ̂(γ) ≈
∫ +∞

0



1− 1
√

1 + 1
ǫ̂γ−1 (VPl(0)− VPl(y))





dy

y2

≈ 1

ǫ̂γ − 1

∫ +∞

0

VPl(0)− VPl(y)

2y2
dy

≈ 1

ǫ̂γ

∫ +∞

0

1− (1 + y2)−γ/2

2y2
dy

=
γ

4

∫ +∞

0

(1 + y2)−γ/2−1 dy

=
γ

4

∫ π/2

0

cosγ(ϑ) dϑ =
√
π
Γ
(

γ+1
2

)

4Γ
(

γ
2

) ,

by first integration by parts and then the use of the sub-
stitution y = tanϑ.
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