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We study the vortex lattice dynamics in presence of single impurity as well as random impurities
or disorder. We show that in presence of a single impurity the vortex lattice gets distorted and the
distortion depends on the position of the single impurity with respect to the positions of the vortices
in the impurity free Abrikosov vortex lattice and also the strength of the impurity potential. We then
show that a new type of giant hole with hidden vortices inside it can be created in the vortex lattice
by a cluster of impurities. In presence of random impurity potential or disorder the vortex lattice
melts. We show that the vortex lattice also melts in presence of pseudorandom potential generated
by the superposition of two optical lattices. The absence of long-range order in the melted vortex
lattice is demonstrated from the structure factor profile and the histogram of the distances between
each pair of the vortices.
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The study of Bose-Einstein Condensates (BEC) in ran-
dom potential has got much attention because in this
system it is possible to display in a controlled way the
interplay between interaction and disorder. In real-life
systems random impurities are unavoidable and contrary
to expectation, strong effects survive averaging over the
disorder. Recently it has been shown that long-range
correlations can be enhanced when disorder breaks the
continuous symmetry of a system. Such a random-
field-induced-order can be realized in ultracold atoms
in optical lattice [1]. Random potential in BEC can
be created by optical speckles [2–4]. Bose-Einstein con-
densates in random potential has emerged as an ideal
ground for studying several problems such as Anderson
localization [5], superfluid behavior [6], superfluid-Mott-
insulator transition [7, 8], Bose glass and their micro-
scopic properties [9, 10], superconductivity and quantum
magnetism etc [11].

A rapidly rotating BEC creates highly ordered quan-
tized triangular vortex lattice [12] which mimics the
Abrikosov vortex lattice in a type II superconductors
placed in magnetic fields [13]. For a review on the exper-
imental and theoretical studies of vortex lattices in rotat-
ing BEC, see [14]. When the rotating BEC is placed in a
co-rotating optical lattice the vortex lattice gets pinned
to the optical lattice [15]. Recently, we have shown that
the hidden vortices can also be pinned by the optical
lattice [16]. The study of melting of vortex lattice in
BEC is an important problem as it provide an ideal sys-
tem for understanding the mechanism of lattice melting
of the two-dimensional systems in general. In presence
of significant thermal fluctuation, in particular for high-
temperature superconductors, the vortex lattice melts
into vortex liquid and in presence of disorder the vortex
lattice undergoes a transition to a vortex glass state [17].
This transition has been investigated in details for type II
superconductors [17–19]. In an interesting recent paper a
direct observation of melting in a two-dimensional super-
conducting vortex lattice using scanning tunneling spec-
troscopy is reported [20]. Even though the superfluids

(BEC and liquid helium) and superconductors are very
different systems, the vortex dynamics in these systems
show similar behaviour. For example, the equilibrium
vortex lattice configuration in both the rotating BEC
and type-II superconductors in applied magnetic field is
Abrikosov triangular lattice. Similarly, the dynamics of
vortices in presence of impurity (pinning of vortices) in
both the systems also show similar behaviour. The simi-
larity in the vortex dynamics between the superfluid and
the type-II superconductors is due to the fact that the
transverse force or the Magnus force acting on a quan-
tized vortex in a superfluid and type-II superconductor
has the same form f = ρK × V where ρ is the mass
density, K is the quantized circulation vector and V is
the vortex velocity [21, 22]. Studying vortex dynamics in
superconductor is difficult because of the presence of nat-
ural impurities in the system. Therefore BEC provides a
system where it is possible to display in a controlled way
the interplay between interaction and disorder on the vor-
tex dynamics. In reference [23] the dislocation-mediated
thermal melting of the two-dimensional superfluid vor-
tex lattice is well explored theoretically, while in [24–27]
melting due to quantum fluctuations are reported. It has
been shown that the melting of vortex lattice in BEC can
take place due to fast rotation of the condensate [28].
The anisotropic compression have also been used to melt
vortex lattice in BEC [29]. The investigation of vortex
lattice melting in BEC trapped in quartic radial potential
shows that vortex liquid can form in the center of BEC
instead of at the outer edge of the pancake BECs [30].
The quantum melting of the vortex lattice in a rapidly
rotating quasi-two-dimensional BEC due to the cooper-
ative ring exchange mechanism is studied in [31]. The
understanding of melting of the two-dimensional systems
have impact across several research fields [20] and vortex
lattices are considered as ideal systems where mechanism
of such processes can be investigated.

In this article we present a new mechanism of vortex
lattice melting in BEC which is induced by the presence
of random impurities or disorder in the system. For this
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we study numerically the effects of random potential on
the vortex lattice of a rotating BEC. Disorder is intro-
duced in the system by the external potential associated
with the random impurities. In order to understand the
role played by the impurities we also study the effect of
a single impurity on the vortex lattice in BEC. Our nu-
merical calculations based on the Gross-Pitaevskii equa-
tion (GPE) show that a single vortex can be trapped by
a single impurity. The vortex lattice gets distorted in
presence of a single impurity. The extent of the vortex
lattice distortion depends on the position of the impu-
rity (commensurate or incommensurate with respect to
the undistorted Abrikosov vortex lattice) as well as the
strength of the impurity potential. We also show that a
cluster of impurities can create a giant hole containing
hidden vortices in the vortex lattice. Finally, we show
the disorder induced vortex lattice melting in presence of
random impurity potential and also the pseudorandom
potential generated by the superposition of two optical
lattices.
The dynamics of the system is described by the two-

dimensional (2D) dimensionless time-dependent Gross-
Pitaevskii Equation (2DGPE)

(i− γ)ψt = [−
1

2
(∂2

x + ∂
2

y)+ V (x, y)− µ+ p|ψ|2 −ΩLz ]ψ (1)

where V (x, y) = Vtrap + Vimp, Ω is the rotational fre-
quency and Lz is the angular momentum in z direction.
We consider the condensate is trapped in a harmonic
plus quartic trap potential Vtrap = 1

2
(r2 + λr4). The ad-

vantage of harmonic plus quartic trap potential over the
harmonic potential is that in the former case the con-
densate can be rotated with rotational frequency larger
than the trap frequency (Ω > 1) [32, 33]. However we
show that the impurity-mediated vortex lattice melting
is possible even for Ω < 1. Further we have shown that
the vortex lattice melting is also possible for harmonic
trap potential. Vimp is the impurity potential. For a
single nonmagnetic impurity at position (x0, y0) we take
the impurity potential as Vimp = V0 exp[−

(

(x − x0)
2 +

(y − y0)
2
)

/(σ/2)2] where V0 is the strength of the im-
purity potential and σ is width of the potential. Such a
single defect can be created experimentally [2]. For ran-
dom nonmagnetic impurities the impurity potential or
disorder is defined by an independent random variable
uniformly distributed over [−V0, V0] at each spatial posi-
tion r, where V0 denotes the strength of the disorder [34].
Experimentally it is possible to create random impurities
using laser speckle method [11]. Another way to create
such disorder or pseudorandom potential is by superpos-
ing two optical lattices of incommensurate periods. The
disorder in this case is represented by the bichromatic
potential Vimp = V0[cos(2πβx + φ) + cos(2πβy + φ)],
where β = k2/k1 is the irrational ratio of the wave
vectors of the two optical lattices and φ is their phase
differences. Although the potential is deterministic, it
mimics disorder in finite-size system [11]. Pseudoan-
dom potential can also be created by adding a second

additional lattice to the main optical lattice Vimp =
V0[cos

2(kx)+cos2(ky)]+V1[cos
2(k1.r)+cos2(k2.r)] [35].

The randomness of the potential is determined by the ra-
tio of the wavelengths of the main and additional optical
lattice. The origin of the dissipation term (γ) in Eq. (1)
is due to the presence of thermal component present in
the trap or in other words it is related to the collision
of the noncondensed atoms with the condensate atoms.
To include dissipation, the dynamical equation given by
the Gross-Pitaevskii equation (GPE) is modified by in-
cluding the γ-term in the equation. For the derivation of
the modified GPE see [36]. The value of the parameter
γ has been obtained by fitting theoretical results with
experiments to be γ = 0.03 [36]. Thereafter this particu-
lar value of the parameter (γ = 0.03) have been used by
several authors [16, 28, 37–39] etc. for studying vortex
dynamics in BEC. The damping term helps faster con-
vergence to the equilibrium state. The small variation of
γ value only effects the convergence time. In our system
this term is introduced for faster convergence of the sys-
tem to the equilibrium vortex lattice state. In Eq. (1),
the spatial coordinates, time, condensate wave function,
rotational frequency and energies are in units of a0, ω

−1

⊥
,

a
−3/2
0

, ω⊥ and h̄ω⊥ respectively, where a0 =
√

h̄/mω⊥.
The 2DGPE (Eq. (1)) is solved numerically using the

split-step Crank-Nicolson method. In our simulation, we
set small spatial step ∆x = ∆y = 0.08 and time step
∆t = 0.001 for Fig. 1, while ∆x = ∆y = 0.04 and ∆t =
0.0005 for Figs. 2-8. The parameters are chosen from the
experiments on 87Rb [37, 40]. The dissipation parameter
is set to γ = 0.03 and λ = 0.01. Eq. (1) is propagated in
imaginary time by replacing t as t→ −it until the ground
state solution is achieved and thereafter it is propagated
in real-time. In order to conserve the norm of the wave
function for nonzero value of γ, the chemical potential is
treated as time-dependent and is adjusted at each time
step.
We characterize the distortion of the vortex lattice in

presence of impurity in terms of (i) the structure factor

S(k) =
∫

dr|ψ(r, t)|2eik.r (ii) the impurity potential en-
ergy 〈Vimp〉 [15, 20] and (iii) the histograms of distances
between each pair of vortices [29]. We calculate the varia-
tion of these quantities with the strength of the impurity
potential.
To show the pinning of the single vortex by an im-

purity we study the dynamical evolution of the rotating
condensate in presence of an impurity or pinning center.
We track the positions of the single vortex at different
times of the dynamical evolution. Fig. 1 shows the po-
sitions of the single vortex at different times in presence
of a single impurity at (0,−0.8). From the figures in the
two panels we can see that the single vortex enters the
condensate at the top and finally gets pinned to the im-
purity by following a spiral path. The pinning potential
prevents the vortex movement to other places by provid-
ing the increased effective potential as discussed in [41].
Similar pinning of a single vortex (flux line) by a pinning
center also takes place in type-II superconducting films
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FIG. 1: (Color online) (a)-(i) Condensate density |ψ|2 showing the time evolution of the single vortex position. The vortex gets pinned

to the single impurity placed at the position (0,−0.8) following a spiral path. Here V0 = 20 and Ω = 0.479.
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FIG. 2: (Color online) Condensate density |ψ|2 depicted in upper panel shows the vortex lattice, while the lower panel shows the structure

factor profile of each vortex lattice situating above its top. Here (a) and (f) are |ψ|2 and its structure factor without impurity, while (b)-(e)

show |ψ|2 for single impurity which is kept at the positions (x0 = 1.8, y0 = 0.12),(x0 = 0.4, y0 = 0.023), (x0 = 0.9, y0 = 0.06), and

(x0 = 1.5, y0 = 0.1) respectively, and (g)-(j) are the corresponding structure factor profile. Angles α1 and α2 are measured as marked in

(f). Here V0 = 5 and Ω = 1.1.

[42]. We now show how the vortex lattice gets distorted
as the position of the single impurity is varied. In ab-
sence of impurity the vortex lattice in rotating BEC is
a triangular Abrikosov lattice where the vortex lattice
positions have translational periodicity or long-range or-
der as shown in Fig. 2(a). In addition to condensate
density profile we have also plotted the density structure
factor profile. The structure factor provide us informa-
tion about the periodicity of the condensate density. For
Abrikosov triangular lattice, the structure factor profile

shows periodic peaks of regular hexagonal lattice [15].
The structure factor profile for Fig. 2(a) is shown in
Fig. 2(f) where we can see periodic peaks of regular
hexagonal structure. Figs. 2(b-e) show the vortex lattice
pattern when a single impurity position is varied from
a commensurate position (Fig. 2(b)) to various incom-
mensurate positions (Figs. 2(c-e)). Here commensurate
position of the single impurity means it coincides with a
vortex position of the undistorted Abrikosov lattice Fig.
2(a). In presence of impurity the vortex lattice gets dis-
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FIG. 3: (Color online) Variation of the angular distortion |α1 −

α2|max (red line) and the lattice energy (green dots) with V0, where

V0 is the strength of the single defect for Ω = 1.1. Single defect is

at the position (0.9, 0). Here Eimpurity0 is the impurity potential

energy when Ω = 0.

ordered and the long-range order or lattice translational
invariance is lost. This is reflected in the corresponding
structure factor profiles shown in Figs. 2(g-j) respec-
tively. From these figures we can see that the distortion
of the vortex lattice depends on the position of the im-
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FIG. 4: (Color online) (a) The potential of a cluster of 6 impurities

placed in the harmonic plus quartic trap potential, and (b) the

condensate density |ψ|2 in absence of rotation. Here V0 = 20.

purity and the distortion is minimum when the impurity
position commensurate with the undistorted vortex lat-
tice positions. The vortex lattice distortion is maximum
when the impurity is placed in the center of the two vor-
tices of the Abrikosov vortex lattice (Fig. 2(d)). From
the corresponding structure factor profile (Fig. 2(i)) we
can see that there are no periodic peaks and no regular
hexagonal lattice structure. Fig. 3 shows the variation of
the angular difference |α1−α2|max and the impurity po-
tential energy Eimpurity = 〈Vimp〉 of the distorted vortex

lattice with the strength of the single impurity potential.
The angles are defined in Fig. 2(f). Here |α1 − α2|max
represents the maximum of the difference in angles. The
increase in the angular difference |α1−α2|max show that
the vortex lattice gets increasingly distorted with the
strength of the impurity potential V0 (red line). Sim-
ilarly the impurity potential energy Eimpurity initially

decreases quite rapidly with increasing V0 (green dots)
and finally it attains nearly a constant value showing
that the vortex lattice has got pinned to the impurity
[16].
It is known that a ‘giant hole’ created in BEC can

be used to study controlled circular superflow and phase
slippage in superfluids and also the transverse Tkachenko
modes in the vortex lattice [43]. Kasamatsu et al created
a giant hole in the condensate density of a BEC trapped
in a harmonic plus quadratic potential [33] by rotating
the condensate with a frequency Ω > 1. Engels et al

created a giant hole in a rapidly rotating dilute BEC
by removing atoms from the rotating condensate using
a tightly focused resonant laser [12]. We, on the other
hand, show that a giant hole can be created in the con-
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FIG. 5: (Color online) (a) Giant hole in the condensate density

|ψ|2 for a cluster of impurities kept at the center for Ω = 1.1, (b)

corresponding phase profile, (c) giant hole for a cluster of impurities

placed away from the center for Ω = 1.1, and (d) giant hole for

cluster of impurities kept at the center for Ω = 0.95. Here V0 = 20.



5

 0

 0.002

 0.004

 0.006

 0.008

 0.01(a)

x

y

−4.0 0.0 4.0

−
4

.0
0

.0
4

.0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014
(b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018(c)

 0

 0.005

 0.01

 0.015

 0.02

 0.025(d)

FIG. 6: (Color online) Condensate density |ψ|2 for various strength

V0 of the random impurity potential. (a) V0 = 10, (b) V0 = 30 ,

(c) V0 = 50, and (d) V0 = 80. Here Ω = 1.1.

−5.0 0.0 5.0
kx

−5.0

0.0

5.0

k
y

 0

 0.001

 0.002

 0.003

 0.004

 0.005(a)

0.0

10.0

20.0

30.0

40.0

co
un

ts

(b)

0.0

10.0

20.0

0.0 4.0 8.0 12.0

co
un

ts

distance

(c)
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degree of distortion of the melted vortex lattice of Fig. 6(d), (b)

the histogram plot for Fig. 2(a), and (c) histogram plot for Fig. 6

(d).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03(a)

x

y

−8.0 −4.0 0.0 4.0 8.0

−
8.0

−
4.0

0.0
4.0

8.0

 0

 0.005

 0.01

 0.015

 0.02
(b)

FIG. 8: (Color online) Condensate density |ψ|2 showing melted
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the harmonic trap potential. Here Ω = 0.9 and V0 = 80
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FIG. 9: (Color online) Condensate density |ψ|2 showing melted

vortex lattice (a) for biochromatic potential, and (b) for combined

potential (main lattice+secondary lattice), (c) histogram plot for

Fig. (a), and (d) histogram plot for Fig. (b).

densate by a cluster of impurities. For this we place a
cluster of impurities, a central impurity surrounded by
five other impurities, at the center of the system. The
effective potential (trap + impurity) is shown in Fig.
4(a). It may be noted that in contrast to the case in
[33] where the trap potential is a ‘Mexican hat’, in our
case the effective potential is a ‘Mexican hat’ together
with five peaks along the circular ring at the bottom of
the hat. The condensate density in this effective poten-
tial in absence of rotation is shown in Fig. 4(b). Fig.
5(a) shows a giant hole at the center of the rotating con-
densate. On comparison of Fig. 5(a) with Fig. 2(a)
(the undistorted vortex lattice) we see that in Fig. 5(a)
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three visible vortices are missing. However the average
angular momentum of these two vortex lattices remains
almost same, namely, < Lz >= 21.4 for lattice in Fig.
5(a) and < Lz >= 20.8 for lattice in Fig. 2(a). It
may be mentioned here that according to Feynman rule
< Lz >∼ N/2 where N is the number of vortices in the
system. If there are both visible and hidden vortices in
the condensate then < Lz >∼ (Nv+Nh)/2 where Nv and
Nh denote the total number of visible and hidden vortices
respectively in the system [16]. On careful examination
we observed that there are three hidden vortices inside
the giant hole. The presence of three hidden vortices at
the center of the giant hole can be seen from the phase
profile of the condensate density as shown in Fig. 5(b).
Fig. 5(b) shows that there are Nv = 34 visible vortices
and Nh = 3 hidden vortices and therefore the total num-
ber of vortices (Nv + Nh = 37) in Fig. 5(a) is same as
the number of visible vortices Nv = 37 in Fig. 2(a). Fig.
5(c) shows that a giant hole can be created at off center
positions with similar phase singularities. This is similar
to the experimentally observed off center giant vortices
[12]. It may be noted that in contrast to [33] in our case
the giant hole can be created even for Ω < 1 (Fig. 5(d)).
Our calculations show that the size of the giant hole in-
creases with increasing strength of the impurity potential
and also with increasing size of the impurity cluster.
In order to see the effect of random impurities on

the vortex lattice we generate random potential at each
spatial grid points uniformly distributed over [−V0, V0],
where V0 is the strength of the random potential [34].
Fig. 6(a-d) shows the vortex lattice configuration for
various strength of the random potential for a particular
realization of the disorder. From the figures we can see
that the vortex lattice structure gets increasingly disor-
dered with increasing strength of the impurity potential
eventually leading to the melting of the lattice structure
(Figs. 6(d)). The vortex lattice in Fig. 6(d) has reached
almost random disorder. To show that the long-range or-
der or translational periodicity is destroyed we calculate
the structure factor and the histogram of the distances
between each pair of vortices of the melted vortex lat-
tice in Fig. 6(d). The results are shown in Fig. 7. The
diffused structure factor profile in Fig. 7(a) shows that
there is no regular structure of the vortex lattice in Fig.
6(d). Figs. 7(b) and 7(c) shows the histogram plot for
the undistorted vortex lattice (Fig. 2(a)) and the melted
vortex lattice (Fig. 6(d)) respectively. The visibility of
well separate peaks in Fig. 7(b) reveals the high degree of
long-range order of the corresponding undistorted vortex
lattice in Fig. 2(a). Similarly, the bare visibility of the
well separated peaks of the histogram plot in Fig. 7(c)
shows that there is no long range-order in the melted
vortex lattice in Fig. 6(d). Fig. 8(a) shows the melted
vortex lattice for Ω < 1. Similarly, the melted vortex lat-
tice for the harmonic trap potential is shown in 8(b). We
now show that the vortex lattice can also be melted by

disorder or the pseudorandom potential created by the
superposition of two optical lattices as mentioned above.
Fig. 9(a) shows the melted vortex lattice in presence of
the pseudorandom bichromatic optical lattice potential
Vimp = V0[cos(2πβx+ φ) + cos(2πβy + φ)] and Fig. 9(c)
shows its corresponding histogram plot. Similarly, Fig.
9(b) shows the melted vortex lattice in presence of the
pseudorandom potential Vimp = V0[cos

2(kx)+cos2(ky)]+
V1[cos

2(k1.r) + cos2(k2.r)] obtained by adding an addi-
tional optical lattice to the main optical lattice as men-
tioned above and Fig. 9(d) shows its corresponding his-
togram plot. Again, the absence of non-separated peaks
in the histogram plots show the melting of the vortex lat-
tice in presence of the pseudorandom potential created
by the superposition of optical lattices. If the disorder
is removed, then the system goes back to the Abrikosov
triangular lattice with long range order or tanslational
periodicity.

In conclusion, we have demonstrated the disorder in-
duced vortex lattice melting in a rotating Bose-Einstein
condensate. The origin of the melting of vortex lattice
is the pinning of vortices by the impurity as demon-
strated above. We have shown that even a single impurity
can distort the vortex lattice and the vortex lattice gets
pinned to the impurity for sufficient strength of the im-
purity potential. The distortion of the vortex lattice also
depends on whether the impurity position is commensu-
rate or incommensurate with the positions of the vortices
in the undistorted (Abrikosov) vortex lattice. The vor-
tex lattice distortion is maximum when the impurity is
placed in the center of the two vortices of the Abrikosov
vortex lattice. There is however a small distortion of the
vortex lattice even if the impurity is placed exactly on
the Abrikosov vortex lattice position (commensurate po-
sition). This is due to the mismatch between the sizes
of the impurity and the Abrikosov vortices. We further
show that a new type of giant hole with hidden vortices
inside can be created in the vortex lattice by a cluster
of impurities. In presence of random impurities or disor-
der the vortices gets pinned at random positions leading
to melting of the vortex lattice. Similarly, in presence of
pseudorandom potential or disorder created by the super-
position of two optical lattices, the vortices get pinned to
the random optical lattice sites resulting in the melting
of the vortex lattice. Since the random potential in BEC
can be realized with available experimental techniques,
we feel that the disorder induced vortex lattice melting
and other results presented in the manuscript can be ob-
served experimentally.

B. D thanks DST and BCUD-SPPU for the finan-
cial support through research projects. K.P. thanks the
NBHM, IFCPAR, DST-FCT and CSIR, Government of
India, for the financial support through major projects.
BD would like to thank M. Karmakar for useful discus-
sions.



7
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