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In this work we obtain bounds on topological Abelian string-vortex in six dimensions using a
new measure of configurational complexity known as configurational entropy. In this way, the
information-theoretical measure of six dimensional braneworlds scenarios are capable to probe situa-
tions where the parameters responsible for the thickness are arbitrary. The so-called Configurational
Entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimiz-
ing the CE, namely, by selecting the most appropriate parameters in the model that correspond to
the most organized system, based upon Shannon information theory. This information-theoretical
measure of complexity provides a complementary perspective to situations where strictly energy-
based arguments are inconclusive. We show that the higher the energy the higher the configurational
entropy, what shows an important correlation between the energy of the a localized field configura-
tion and its associated entropic measure.
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I. INTRODUCTION

In 1948, in a beautiful and seminal work, Shannon [1]
described what it was called “A mathematical theory of
communication”, which is currently known as “informa-
tion theory”. In that work, Shannon introduced a frame-
work capable of solving the most fundamental problem
of communication: the information transmission. The
main goal of the information theory in Ref. [1] was to
introduce the concepts of entropy and mutual informa-
tion using the communication theory. In this context,
the entropy was defined as a measure of “randomness” of
a random phenomenon. Thus, if a little deal of informa-
tion concerning a random variable is received, the uncer-
tainty decreases. Hence we can measure the decrement
in the uncertainty, that can be related to the quantity of
transmitted information. This quantity is the so-called
mutual information. After that work, a large number of
communication systems have been comprehensively an-
alyzed from the information theory, where the various
types of information transmission can be studied in the
same framework.

Inspired by Shannon, Gleiser and Stamatopoulos (GS)
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latterly introduced a measure of complexity of a local-
ized mathematical function [2]. GS proposed that the
Fourier modes of square-integrable, bounded mathemat-
ical functions can be used to construct a measure of what
they called configurational entropy (CE): a configuration
consisting of a single mode has zero CE (a single wave in
space), whereas that one where all modes contribute with
equal weight has maximal CE. In order to apply such
ideas to physical models, GS used the energy density
of a given spatially-localized field configuration, found
from the solution of the related partial differential equa-
tion (PDE). GS pointed out that the CE can be used to
choose the best-fitting trial function in situations where
their energies are degenerate.

Although it was recently proposed, the CE has been
already employed to acquire the stability bound for com-
pact objects [4], to investigate the non-equilibrium dy-
namics of spontaneous symmetry breaking [3], to study
the emergence of localized objects during inflationary
preheating [5] and to discern configurations with energy-
degenerate spatial profiles [6]. Moreover, solitons were
studied in a Lorentz symmetry violating (LV) framework
with the aid of CE [7–10]. The CE for travelling solitons
evinces that the most appropriate value of the parame-
ter responsible for breaking the Lorentz symmetry is that
one corresponding to the energy density distributed sym-
metrically with respect to the origin. In this context, the
CE associated to travelling solitons in LV frameworks
plays a prominent role in probing systems wherein the
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parameters are somehow arbitrary. Hence the CE deter-
mines the value of the parameter in models that present
the best physical consistency, providing an additional
physical constraint in a physical system. Furthermore, an
additional interesting work [11] showed that the CE iden-
tified the critical point in the context of continuous phase
transitions. Moreover, the CE can be used to measure the
informational organization in the structure of the system
configuration for some five-dimensional (5D) thick sce-
narios. In particular, the CE played an important role to
decide the most appropriate intrinsic parameters of sine-
Gordon braneworld models [12]. Quite interestingly, CE
has been studied both in f(R) [13] and f(R, T ) [14] the-
ories of gravity. In next, we present a brief discussion of
5D braneworld models to treat the CE in six-dimensional
(6D) scenarios.

On the other hand, Randall-Sundrum (RS) models
[15, 16] propose a warped braneworld model, wherein the
gauge hierarchy problem is explained and the gravity zero
mode is localized as well, reproducing four-dimensional
(4D) gravity on the brane. The 5D bulk gravitons pro-
vide a small correction in the Newton law [16]. However,
this thin model presents singularities and drawbacks con-
cerning the non localization of spin 1 gauge fields and
fermions of spin 1/2 and 3/2 as well [17]. To solve these
problems some thick models were proposed. For a com-
prehensive review, see Ref. [18].

Soon after the works of RS and thick 5D models,
an axially symmetric warped 6D model was proposed
by Gergheta-Shaposhnikov [19], called string-like defect.
This model represents a local string defect constructed
as a warped product between a 3-brane placed at ori-
gin and a 2-cycle representing the transverse space. This
scenario further provides the resolution of the mass hier-
archy. Moreover, it has some advantages, like a smaller
correction to the Newtonian potential [19] and the non
requirement of fine tuning between the bulk cosmologi-
cal constant and the brane tension, for the cancellation
of the 4D cosmological constant [19]. Besides, the local-
ization of gauge zero modes is spontaneous even in the
thin brane case if any scalar field interaction is required
[20, 21]. On the other hand, fermions fields are trapped
through a minimal coupling with an U(1) gauge back-
ground field [22, 23]. Later, other 6D models, spherically
symmetric, were employed to explain the generations of
fundamental fermions [24, 25] and the resolution of the
mass hierarchy of neutrinos as well [26].

Nevertheless, the Gergheta-Shaposhnikov model is a
thin model based on a exterior solution of a string. The
regularity conditions in the thin core limit leads to a non-
dominant energy condition on the stress-energy tensor
[27]. Due to it, some 6D thick models were proposed to
handle these energy conditions [28–41]. In Ref. [28], a
topological abelian Higgs vortex was used to construct a
regular scenario in which the dominant energy conditions
hold, however solely numerical solutions have been found.
Similarly, Ref. [31, 32], looking for an exact vortex so-
lution, shows that the energy density and the angular

pressure are similar. The weak energy condition is like-
wise verified for the Resolved Conifold scenario [37–39],
when the resolution parameter is larger. For the String-
Cigar [33–36], the transverse space is represented by a
cigar soliton, which is a stationary solution for the Ricci
flow [43–45]. In this String-Cigar scenario the dominant
energy condition holds still and the maxima of energy
and pressures are displaced from the origin, as further
numerically observed in Ref. [28].

Therefore, in this paper we investigate the entropic
measure both in the Torrealba topological Abelian string
(TA) [31, 32] and String-Cigar (HC) [33–36] in 6D sce-
narios, due to analytic properties of these scenarios. In
particular, one of the main aims of our work is to find
bounds for 6D string defects based upon the CE concept.
In this way, we can establish a value for the thickness of
the configuration responsible for minimizing the CE. As
a consequence, we have a structure with minimal energy,
and the field configuration has a more ordered state in
an informational sense, in analogy with the Shannon in-
formation theory.

This paper is organized as follows: in Section II a
briefly review string-like defects is present, whereas in
Section III the CE bounds the parameters of TA and HC
scenarios. We expose the conclusions and perspectives in
Section IV.

II. STRING-LIKE DEFECT IN WARPED SIX
DIMENSIONS

In succinct form, the string-like spacetime is composed
by a 3-brane (M4) and a 2-dimensional (2D) transverse
cycle (M2), whereM6 =M4×M2 [35]. We work in this
letter with asymptotically anti-de Sitter (AdS6) spaces.

The 6D Einstein equation is expressed by [19, 20]

RMN −
R

2
gMN = κ (ΛgMN + TMN ) , (1)

where RMN represents the Ricci tensor, R denotes the
scalar curvature, gMN is the metric tensor, Λ denotes the
6D (negative) cosmological constant and TMN stands for
the 6D energy-momentum tensor. The 6D gravitational
constant κ = 8π

M4
6

is related to the bulk 6D Planck scale.

A metric ansatz for 6D string-like models reads [19, 20]

ds2
6 = σ(r)ηµνdx

µdxν − dr2 − γ(r)dθ2 (2)

where the signature for theM4 Minkowski metric ηµν =
diag(+1,−1,−1,−1) is adopted hereupon. The radial
coordinate is limited to r ∈ [0,∞), whereas the angular
coordinate is restricted to θ ∈ [0, 2π). The σ(r) repre-
sents the dimensionless warp factor and γ(r) has length
squared dimension.

The 4D Planck mass (M4) and the bulk Planck mass
(M6) are related through the volume of the transverse of
space as [19, 33, 35, 36]:

M2
P = 2πM4

6

∫ ∞
0

σ(r)
√
γ(r)dr . (3)
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In addition, the energy-momentum tensor TNM =
diag (t0, t0, t0, t0, tr, tθ) components are given by [19, 33]

t0(r) = − 1

κ

(
3σ′′

2σ
+

3σ′γ′

4σγ
+
γ′′

2γ
− γ′2

4γ2

)
− Λ, (4a)

tr(r) = − 1

κ

(
3σ′2

2σ2
+
σ′γ′

σγ

)
− Λ, (4b)

tθ(r) = − 1

κ

(
2σ′′

σ
+
σ′2

2σ2

)
− Λ, (4c)

where the prime denotes the derivative with respect to
the radial coordinate r.

To obtain a regular geometry we have the conditions
[19, 28, 33, 42]

σ(r)
∣∣∣
r=0

= cte, σ′(r)
∣∣∣
r=0

= 0,

γ(r)
∣∣∣
r=0

= 0,
(√

γ(r)
)′ ∣∣∣

r=0
= 1 . (5)

Theses conditions are also correlated to the energy con-
ditions.

For the vacuum solution, the warp factor for the String
Like Defect (SD) is proposed as [19–23]:

σ
SD

(r) = e−cr, γ
SD

(r) = R2
0σSD

(r) (6)

where the parameters c =
√

2κ
5 (−Λ) > 0 connects the

Newtonian constants and the cosmological constant in
6D. And R0 is the radius of compactification of the an-
gular coordinate. Hence in the limit that r → 0, only
the first condition of Eq. (5) holds. Besides, the mass
hierarchy of Eq. (3) in this model yields

M2
P =

4πR0

3c
M4

6 . (7)

The result of Mp �M6 is verified when c→ 0.
Following the perspective pointed by Ref. [19], Gio-

vannini in Ref. [28] adopts a 6D action where the mat-
ter Lagrangian is an Abelian-Higgs model and the trans-
verse space obeys the Abrikosov-Nielsen-Olesen ansatz
[28, 31, 32]:

φ(r, θ) = vf(r) e−ilθ l ∈ Z , (8)

Aθ(r) =
1

q
[l − P (r)] , Aµ = Ar = 0 , (9)

where φ and AM are scalar and gauge fields, respectively.
The condition v = 1 is a length dimension L−2 constant.
The functions f(r) and P (r) are such that f(r → 0) = 0,
f(r → ∞) = 1 whereas P (r → 0) = l and P (r → ∞) =
0.

From constraints by this ansatz and the regular condi-
tions in the Eq. (5), the solutions of fields and warp fac-
tors are numerically obtained in Ref. [28]. On the other
hand, by imposing conditions on the function P (r) ≡ 0,

Torrealba [31, 32] obtained an analytical solution, named
Topological Abelian Higgs string (TA):

σ
TA

(r) = cosh−2δ

(
βr

δ

)
, γ

TA
(r) = R2

0σTA
(r) , (10)

where β = c
2 =

√
(−Λ)κ

10 , being δ a thickness param-

eter which, for small values, reproduces the Gergheta-
Shaposhnikov model in Eq. (6). Moreover, Ref. [31]
concludes that for the localization of gauge fields zero
mode the thickness of the model can not exceed the value

δ <
5β

4π
q2v2 . (11)

Now, in the TA (10) string, two of the conditions (5) are
verified.

In another approach, the transverse space can also be
built for a cigar soliton solution of Ricci flow [33–36]

∂

∂λ
gMN (λ) = −2RMN (λ) , (12)

with λ being a metric parameter Ref. [33–36] constructed
the geometry named Hamilton String Cigar (HC) where
the warp factors read

σ
HC

(r) = e−cr+tanh(cr), γ
HC

(r) =
tanh2 cr

c2
σ

HC
(r) . (13)

In this case, all conditions of Eq. (5) do hold. The re-
lation present in Eq. (3) that c → 0 is also valid in HC
model.

To observe the correspondence between the regular
condition in Eq. (5) and the energy momentum tensor we
plot the σ(r) the warp factors (6), (10) and (13) in Fig. 1
and γ(r) in Fig. 2, whereas the energy momentum tensor
in Fig. II for TA and HC in Fig. 4. Concerning the HC
scenario, wherein all metric conditions (5) hold, the dom-
inant energy condition t0 ≥ |ti| , (i = r, θ) [29, 30, 40] is
satisfied.

HC

TA

SD

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

r

σ
(r
)

FIG. 1. σ(r) warp-factors with c = 2β = 0.5 and δ = 0.5. In
the TA (dashed lines) and HC model (thick lines) the regu-
larity conditions (5) are satisfied for this factor.

In the next section, we shall analyze the vortex-string
models from the CE point of view.
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HC

TA

SD

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

r

γ
(r
)

FIG. 2. γ(r) angular factors with c = 2β = 0.5, R0 = 1 and
δ = 0.5. Only in the HC model (thick lines) the regularity
conditions (5) hold still.

t0

tr

tθ

0 1 2 3 4 5 6 7
0.0
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r

t
M

TA string

FIG. 3. tM (r) energy-momentum tensor in TA model with
β = 0.25, R0 = 1 and δ = 0.5. The energy and angular
component are identical.

t0

tr

tθ

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

r

t
M

HC string

FIG. 4. tM (r) energy-momentum tensor in HC model with
c = 0.5. The dominant energy condition is satisfied and the
maxima of tM are displaced from origin as also observed in
Ref. [28].

III. CONFIGURATIONAL ENTROPY IN THE
VORTEX-STRING SCENARIO

As previously argued in the Introduction, the so-called
Configurational Entropy (CE) [2] represents an original

concept employed to quantify the existence of non-trivial
spatially localized solutions in field configuration space.
The CE allows to set up prominent correlations on the
parameters of several models. For instance, in a very
recent work by Gleiser and Jiang [47], bounds on the
stability of various self-gravitating astrophysical objects
were obtained. The information-entropic measure more-
over states bounds in LV scenarios [7], in compact objects
like Q-balls [4], and in modified theories of gravity as well
[13].

Here, it is worth to emphasize that the CE corresponds
to an extension of Shannon’s information entropy [1] to
localized energy configurations based upon their respec-
tive Fourier transforms. In fact, by considering a set of
fields modes, it is possible to acquire information regard-
ing the system configuration. Hence the system informa-
tional content can be quantified. As showed in Ref. [2],
there is an important correspondence between CE and
the energy of a localized field configuration, where low
energy systems are correlated with small entropic mea-
sures.

Thus, armed with the ideas introduced by GS [2] re-
garding information-entropic measure, in this section we
apply the concept of CE to refine the values of thickness
parameters δ in the analytic string vortex model.

The CE can be obtained [2] by the Fourier transform
of the energy density t0(r) [12, 13], yielding

F(ω) = − 1√
2π

∫ ∞
0

t0(r) eiωr dr.

At this point, it is important to remark that we will
consider structures with spatially localized energy den-
sities, which are square-integrable bounded functions
t0(r) ∈ L2(R). Hence, using the Plancherel theorem,
it follows that∫ ∞

0

|F(ω)|2dω =

∫ ∞
0

|t0(r)|2 dr. (14)

Now, the so-called modal fraction [2–4, 6, 7, 12, 13] is
given by the following expression

f(ω) =
|F(ω)|2∫∞

0
dω|F(ω)|2

.

Next, the normalized modal fraction is defined as the
ratio of the normalized Fourier transformed function and
its maximum value fmax:

f̃(ω) =
f(ω)

fmax
.

Now, the CE was motivated by the Shannon’s infor-
mation theory [2]. Indeed, the CE was originally defined
by SC [f ] = −

∑
fn ln(fn), describing an absolute limit

of the best lossless compression of any communication
[1]. Hence the CE originally provides the informational
content of configurations compatible to bounds on any
physical system. A number N of modes having equal
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weight yields fn = 1/N and hence the discrete CE has a
maximum at SC = lnN . Instead, if the system is con-
stituted by just one mode, then SC = 0 [2]. Thus, a

localized and continuous function f̃(ω) yields the follow-
ing definition for the CE:

S(f̃) = −
∫ ∞

0

dωf̃(ω)ln
[
f̃(ω)

]
. (15)

Therefore, we now use this concept to obtain the CE in
the Abelian string-vortex and the string-cigar contexts.
By substituting the warp factor (10) in the energy density
given by Eq. (4a), it yields

t0(r) =

(
5

2
+

1

β

)[
2β sech

(
βr

δ

)]2

. (16)

It represents a localized density of energy, as can be ver-
ified in Fig. II. Now, the Fourier transform of Eq. (16)
reads

F(ω) =
√

2πδω(5δ + 2)csch

(
πδω

2β

)
, (17)

which is also a localized function and has the normalized
modal fraction:

f̃(ω) =

[
πδω

2β
csch

(
πδω

2β

)]2

. (18)

Hence the profile of CE in Eq. (15) for the function
in Eq. (18) is presented in Fig. 5. It is verified that
the maximum of CE occurs for δcrit ≈ 0.09β. The in-
trinsic braneworld models parameters have been further
constrained by analyzing the experimental, phenomeno-
logical and observational aspects in, e. g., [12, 46]. In
particular, Ref. [12] provides a refined analysis wherein
the CE further restricts the range parameters of a 5D
sine-Gordon thick braneworld model, namely, the AdS
bulk curvature and the braneworld thickness. Here this
procedure is applied to the 6D braneworld models and
the constraint Eq. (19) below can be obtained for the
case here studied:

0.09β < δ < 0.40β. (19)

Moreover, the maximum CE – corresponding to the best
information organization of the analogue system corre-
sponding to this braneworld model – imposes a critical
thickness δcrit ≈ 0.09β. Thus, we have the lower bounds
of the thickness parameter provided by δcrit, whereas an
upper bound provided Eq. (11) is depicted in Eq. (19).

For the HC model, the density of energy of Eq. (4a)
yields

t0(r) =
c2

κ

[
7sech2(cr) +

13

2
tanh(cr)sech2(cr) ,

−5

2
sech4(cr)

]
. (20)

β=0.10

β=0.25

β=0.50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

δ

S
(δ
)

TA string

FIG. 5. S(δ) Configurational entropy for different values of
the parameter β, as a function of the thickness parameter δ.

Again, the energy density is localized as can be verified in
the Fig. 4. The Fourier transforms of the warp factors in
Eq. (13) is moreover localized and its normalized modal
fraction reads

f̃(ω)=
π2ω2

(
4096c4+881c2ω2+25ω4

)
16384c6

csch2
(πω

2c

)
, (21)

The plot of S(c) is present in Figure 6, where the relation
of c → 0 that solves the hierarchy problem in Eq. (3) is
verified.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

S
(c
)

HC string

FIG. 6. S(δ) Configurational entropy of the HC string model,
as a function of the parameter c.

IV. DISCUSSION AND CONCLUSIONS

In this work we have investigated the CE in the con-
text of the topological abelian string-vortex and string-
cigar scenarios. We have shown that the information-
theoretical measure of 6D dimensional braneworld mod-
els opens new possibilities to physically constrain, for
example, parameters that are related to the brane thick-
ness. The CE provides the most appropriate value of this
parameter that is consistent with the best organizational
structure, from the Shannon information theory point of
view. The information measure regarding the system or-
ganization is related to modes regarding the braneworld
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model. Hence the constraints of the parameters that we
obtained for the TA and the HC string models provide
the range of the parameters associated to the most or-
ganized braneworld models, with respect to the informa-
tion content of these models, in the context of Shannon
information theory. It provides further physical aspects
to models where strictly energy-based arguments do not
provide further conclusions of the physical parameters.
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