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Abstract—Many patch-based image denoising algorithms can
be formulated as applying a smoothing filter to the noisy
image. Expressed as matrices, the smoothing filters must be row
normalized so that each row sums to unity. Surprisingly, if we
apply a column normalization before the row normalization, the
performance of the smoothing filter can often be significantly
improved. Prior works showed that such performance gain is
related to the Sinkhorn-Knopp balancing algorithm, an iterative
procedure that symmetrizes a row-stochastic matrix to a doubly-
stochastic matrix. However, a complete understanding of the
performance gain phenomenon is still lacking.

In this paper, we study the performance gain phenomenon
from a statistical learning perspective. We show that Sinkhorn-
Knopp is equivalent to an Expectation-Maximization (EM) al-
gorithm of learning a Product of Gaussians (PoG) prior of the
image patches. By establishing the correspondence betweenthe
steps of Sinkhorn-Knopp and the EM algorithm, we provide a
geometrical interpretation of the symmetrization process. The
new PoG model also allows us to develop a new denoising
algorithm called Product of Gaussian Non-Local-Means (PoG-
NLM). PoG-NLM is an extension of the Sinkhorn-Knopp and is a
generalization of the classical non-local means. Despite its simple
formulation, PoG-NLM outperforms many existing smoothing
filters and has a similar performance compared to BM3D.

Index Terms—Non-local means, patch-based filtering, patch
prior, Expectation-Maximization, doubly-stochastic matrix, sym-
metric smoothing filter

I. I NTRODUCTION

A. Motivation: A Surprising Phenomenon

Consider a noisy observationy ∈ R
n of a clean image

z ∈ R
n corrupted by additive i.i.d. Gaussian noise. We would

like to denoisey using a linear operatorW ∈ R
n×n and

estimate the denoised imagêz as

ẑ = D−1Wy, (1)

whereD
def
= diag {W1} is a diagonal matrix for normaliza-

tion so that each row ofD−1W sums to unity. The linear
operatorW is referred to as thesmoothing filter.

The smoothing filter described by (1) is a general expression
for many popular denoising algorithms, e.g., Gaussian fil-
ter [1], bilateral filter [2], non-local means (NLM) [3], locally
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adaptive regression kernel (LARK) [4], etc. Recently, it has
been shown that these smoothing filters are closely related to
the operations of graph Laplacians formed from image patches
[5]–[7]. Moreover, fast computations of smoothing filters have
been proposed [8]–[13].

While smoothing filters work well for many denoising
problems, it has been observed in [14], [15] and [16] that
their performance can be improved by modifying (1) as

ẑ = D−1
r WD−1

c y, (2)

whereDc
def
= diag

{
W T

1

}
is a diagonal matrix that normal-

izes thecolumnsof W , and Dr
def
= diag

{
WD−1

c 1
}

is a
diagonal matrix that normalizes therows of WD−1

c . In other
words, we modify (1) by introducing a column normalization
before applying the row normalization.

Before we proceed to discuss the technical properties of
(1) and (2), we first provide some numerical simulations to
demonstrate an interesting phenomenon. In Figure 1, we show
10 clean images (each of size100×100) consisting of various
content and textures. We generate the noisy images by adding
i.i.d. Gaussian noise of standard deviationσ = 20/255. Then,
we denoise the noisy images using the non-local mean [3] for
(1) and (2), respectively.

The results of this experiment are shown in the bottom of
Figure 1. It is perhaps a surprise to see that (2), which is a
simple modification of (1), improves the PSNR by more than
1.6 dB on average. Another puzzling observation is that if we
repeatedly apply the column-row normalization, the PSNR can
drop after a certain number of iterations. Figure 2 presentsthis
result. For 6 out of the 10 images we have tested, the PSNR
values actually drop after the first column-row normalization.

The above experiment piqued our curiosity and led us to
a basic question: Why would the column-row normalization
improve the denoising performance? If we can answer this
question, then perhaps we can develop a systematic procedure
that can generalize the operations in (2) and further improve
the denoising performance. The goal of this paper is to address
this issue and propose a new algorithm.

B. Sinkhorn-Knopp Balancing Algorithm

To the best of our knowledge, the above performance
gain phenomenon was first discussed by Milanfar in [14],
where it was shown that if we repeatedly apply the column-
row normalization we would obtain an iterative procedure
called the Sinkhorn-Knopp balancing algorithm [17], [18]
(or Sinkhorn-Knopp, in short). As illustrated in Algorithm1,
Sinkhorn-Knopp is a simple algorithm that repeatedly applies
the column and row normalizations until the smoothing filter
converges. For example, the smoothing filter defined by (2) is
the result of applying Sinkhorn-Knopp for one iteration.

http://arxiv.org/abs/1601.00088v1
http://engineering.purdue.edu/ChanGroup/
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Image No.
Smoothing Filter 1 2 3 4 5 6 7 8 9 10

D−1W 34.12 31.60 32.59 25.64 26.36 25.63 22.31 24.98 26.25 22.47
D−1

r WD−1
c 34.56 33.49 36.44 26.50 29.37 27.71 22.92 26.49 27.85 23.52

PSNR Improvement +0.44 +1.89 +3.85 +0.86 +3.01 +2.08 +0.61 +1.51 +1.60 +1.05

Fig. 1: [Top]100×100 testing images. Each image is corrupted by i.i.d Gaussian noise ofσ = 20/255. [Bottom] PSNR values
of the denoised image usingD−1W andD−1

r WD−1
c .
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Fig. 2: Extension of the experiment in Figure 1. The PSNR
values does not always increase as more Sinkhorn-Knopp iter-
ations are used. The curves are averaged over 16 independent
trials of different noise realizations.

Algorithm 1 Sinkhorn-Knopp Balancing Algorithm

Input: W (0)

while ‖W (m+1) −W (m)‖F > tol do
Dc = diag

{
(W (m))T1

}
% Column Normalize

Dr = diag
{
W (m)D−1

c 1

}
% Row Normalize

W (m+1) = D−1
r W (m)D−1

c

end while

Sinkhorn-Knopp has many interesting properties. First,
when Sinkhorn-Knopp converges, the converging limit is a
doubly-stochastic matrix — a symmetric non-negative matrix
with unit columns and rows (also called asymmetricsmooth-
ing filter). Symmetric smoothing filters are admissible [19]
and are stable in the sense that all eigenvalues are bounded in
the unit interval [20]. Also, symmetric smoothing filters can
be used to form a graph Laplacian in some recently proposed
denoising algorithms, e.g., [9].

To explain the performance gain, Milanfar showed in [14]
that the symmetric smoothing filters often have higher “effec-

tive degrees of freedom”, and so the reduction in the bias of
ẑ is greater than the gain in the variance ofẑ. As a result, the
overall mean squared error, which is the sum of the bias and
the variance, is reduced. However, this notion of “effective
degrees of freedom” is not easy to interpret intuitively. In
particular, it would be significantly more useful if we can
geometrically describe the actions under which the column-
row normalization are applying to the noisy image.

C. Contributions

The goal of this paper is to provide an explanation to
the performance gain phenomenon and to propose a new
denoising algorithm. Our approach is to study an Expectation-
Maximization (EM) algorithm for learning a special prior
which will be discussed shortly. By analyzing the E-step and
the M-step of the EM algorithm, we found that the actions of
the symmetrization is a type of dataclustering. This observa-
tion echoes with a number of recent work that shows ordering
and grouping of non-local patches are key for superior image
denoising [21]–[23]. The two major contributions of the paper
are summarized as follows.

First, we generalize the symmetrization process by refor-
mulating the denoising problem as a maximum-a-posteriori
(MAP) estimation with a new patch prior in the form of
a product of Gaussians (PoG). We show that the original
smoothing filter in (1), the one-step Sinkhorn-Knopp in (2),
and the full Sinkhorn-Knopp (i.e., iterate Sinkhorn-Knopp
until convergence) are all sub-routines of the EM algorithm
to learn the PoG prior. By showing that each of methods su-
persedes its previous counterpart, we explain the performance
gain phenomenon.

Second, based on the analysis of the PoG patch prior,
we propose a new denoising algorithm called the PoG Non-
local Means (PoG-NLM). We show that PoG-NLM does
not only subsumes a number of smoothing filters, but also
has a performance similar to some state-of-the-art denoising
algorithms. We will discuss implementation and parameter
selections for the PoG-NLM algorithm.

The PoG model discussed in this paper is an improved
version of our earlier work in [16] which used a classical
Gaussian mixture model (GMM). The problem of the GMM is
that the mixture weights are not used for the actual denoising.
This causes a gap between the clustering model and the
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denoising step. The new PoG model resolves the issue by
ensuring that the clustering model is used in the denoising
step. As a result, clustering is now an integral part of the
algorithm.

The rest of the paper is organized as follows. First, we
provide a brief introduction to PoG and the EM algorithm
in Section II. In Section III we discuss the generalization of
different symmetrizations using the EM algorithm. The new
PoG-NLM is discussed in Section IV and experimental results
are shown in Section V. We conclude in Section VI.

II. PRODUCT OFGAUSSIANS PATCH PRIOR

A. Notations

Throughout this paper, we usen to denote the number
of pixels to be denoised, andk to denote the number of
components of the PoG model. To avoid ambiguity, we shall
call each component of the PoG a cluster. The running index
j ∈ {1, . . . , n} tracks the pixels, andi ∈ {1, . . . , k} tracks the
clusters. Vectors are represented by bold letters, and 1 denotes
a constant vector of which all entries are one. We designate
the vectorxj ∈ R

2 to represent the two-dimensional spatial
coordinate of thejth pixel, the vectoryj ∈ R

d to represent ad-
dimensional patch centered at thejth pixel of the noisy image,
and the scalaryj ∈ R to represent the value of the center
pixel of jth patch. Without loss of generality, we assume that
all pixel intensity values have been normalized to the range
[0, 1].

The results presented in this paper are applicable to a wide
range of smoothing filters. However, for simplicity we shall
focus on smoothing filtersW of the following general form
(See Table I for examples):

Wij = κi N (pj | qi,Σi), (3)

whereκi
def
=
√
(2π)p|Σi| is a normalization constant, andN (·)

denotes ap-dimensional Gaussian:

N (pj | qi,Σi)
def
=

1

κi

exp

{
−1

2
(pj − qi)

T
Σ

−1
i (pj − qi)

}
,

(4)

with meanqi ∈ R
p and covariance matrixΣi ∈ R

p×p. The
vectorpj ∈ R

p is a p-dimensional feature vector of thejth
pixel of the noisy image.

Example 1:For non-local means [3], the feature vector
pj is a concatenation of the spatial coordinatesxj and the
intensity values of thejth patchyj :

pj =
[
xT
j , y

T
j

]T
. (5)

The ith mean vector and theith covariance matrix are

qi =

[
xi

yi

]
, and Σi =

[
h2
sI 0
0 h2

rI

]
def
= ΣNLM, (6)

respectively, wherehs and hr are parameters. Note that for
NLM, the covariance matrices are identical.

B. Product of Gaussians (PoG) Model

Consider a set ofn data pointsP def
= {p1, . . . ,pn} where

pj ∈ R
p, we say thatP is generated from a PoG ofk

TABLE I: Popular choices of the smoothing filterW .

Filter Wij

Gaussian Filter [1] exp
{
− ‖xj−xi‖

2

2h2
s

}

Bilateral Filter [2] exp
{
−
(

‖xj−xi‖
2

2h2
s

+
(yj−yi)

2

2h2
r

)}

Non-local Means [3] exp
{
−
(

‖xj−xi‖
2

2h2
s

+
‖yj−yi‖

2

2h2
r

)}

LARK [4] exp
{
−(xj − xi)

T
Σ

−1
i (xj − xi)

}

clusters if the distribution ofpj is a product ofk Gaussians
with means{µi}ki=1 and covariance matrices{Cij}ki=1. Math-
ematically, by denoting the PoG parameters collectively as
Θ = {(µi,Cij) | i = 1, . . . , k, j = 1, . . . , n}, the conditional
distribution ofpj givenΘ is

f(pj |Θ) ∝
k∏

i=1

exp

{
−1

2
(pj − µi)

TC−1
ij (pj − µi)

}
, (7)

where the proportionality accounts for the normalization con-
stant which depends onCij .

In general, both{µi}ki=1 and{Cij}k,ni,j=1 have to be learned
from the dataP . However, for the purpose of this paper, which
is to analyze the performance gain phenomenon, we assume
thatCij takes a special form as follows.

Assumption 1:For any j, we assume thatC−1
ij = γijI

where

γij
def
=

N (pj |µi,Σi)
∑k

i=1N (pj |µi,Σi)
, (8)

and Σi is the covariance matrix defined according to the
smoothing filter, e.g., (6) for non-local means.

If we apply assumption 1 to (7), it becomes clear that

f(pj |Θ) ∝
k∏

i=1

exp
(
−γij‖pj − µi‖2

)
. (9)

The reason of definingγij as in (8) is to ensure thatγij
is a function ofµi. If γij is independent ofµi, then one
can show that learning the pair(µi, γij) in (9) is equivalent
to solving a non-negative matrix factorization problem1. Of
course, solving such a matrix factorization problem is a valid
step to learnΘ. However, the associated EM algorithm can
no longer be used to study the symmetrization effect — which
will defeat the goal of this paper. Therefore, in the rest of the
paper we assume (8) holds.

Since EM algorithm is a known method, we refer interested
readers to the tutorial by Gupta and Chen [24] for a gentle
introduction. We now present the EM algorithm to learnΘ

def
=

{µi}ki=1 from P .

1For any fixedpj , the norm-square‖pj − µi‖
2 is a scalar indexed byi.

Let vi = ‖pj − µi‖
2 be such scalar. Then, the sum

∑
i γijvi is a matrix-

vector multiplication ofΓ = (γij ) and v = (vi). Since γij and vi are
non-negative, findingγij and vi simultaneously is equivalent to solving a
non-negative matrix factorization.
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Proposition 1: Under Assumption 1, the E-step and the M-
step of learningΘ = {µi}ki=1 from P = {pj}nj=1 are

E-Step:

π
(t)
ij =

N (pj |µ(t)
i ,Σi)

∑k

i=1N (pj |µ(t)
i ,Σi)

, (10)

M-Step:

µ
(t+1)
i =

∑n
j=1 π

(t)
ij pj

∑n
j=1 π

(t)
ij

, (11)

respectively, where the superscript(·)(t) denotes thet-th
iteration of the EM algorithm.

Proof: See Appendix A.

C. Patch-based Denoising Algorithm

The PoG model specified by (9) allows us to derive various
image denoising algorithms by solving a maximum-a-posterior
(MAP) estimation problem. In particular, since (9) is a prior
model ofpj , we can consider the following MAP formulation:

ẑ = argmin
z

λ‖z − y‖2 −
n∑

j=1

log f(pj |Θ), (12)

whereλ is a parameter, and the summation overj follows
from the independence ofpj . Substituting (9) into (12) yields

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij‖P jz − µi‖2, (13)

whereP j is a matrix which extracts thejth feature vector
from the imagez, i.e.,P jz = pj .

Example 2: If we use P j to extract thejth pixel of z
instead of extracting a feature vector, thenP jz = zj.
Moreover, if we letλ = 0 and µi = yi, then (13) can be
simplified as

ẑ = argmin
z

n∑

j=1

k∑

i=1

γij(zj − yi)
2. (14)

Letting γij = Wij (with k = n), the ith entry of ẑ becomes

ẑi =

∑n

j=1 Wijyj∑n

j=1 Wij

, (15)

which is exactly the non-local means.
Example 3: If we substitute f(pj |Θ) in (12) with the

standard Gaussian mixture model (GMM) instead of the PoG
model, then we will obtain an MAP estimation with an
expected patch log-likelihood prior (EPLL) [22]:

ẑ = argmin
z

λ‖z − y‖2 −
n∑

j=1

log

(
k∑

i=1

wiN (pi|µi,Ci)

)
,

(16)

wherewi is the weight of theith Gaussian mixture,µi is
the ith mean, andCi is the ith covariance matrix. We will
compare the difference between EPLL and PoG in Section V.

III. G ENERALIZATION OF SYMMETRIC FILTERS

In this section, we discuss how various symmetric smooth-
ing filters can be generalized by the EM algorithm.

A. Standard Non-Local Means

We first study the non-local means (NLM) smoothing filter.
To establish the relationship between PoG and NLM, we
initialize the EM algorithm withµ

(0)
i = pi and choose

Σi = ΣNLM. However, instead of definingπ(0)
ij using (10),

we initializeπ
(0)
ij as

π
(0)
ij = N (pj |µ(0)

i ,ΣNLM). (17)

Letting γij = π
(0)
ij , and using (3) together with the condi-

tions in Example 2, we observe that the denoised image of
this (zero-iteration) EM algorithm is

ẑi = argmin
zi

n∑

j=1

π
(0)
ij (zi − yj)

2 =

∑n

j=1 Wijyj∑n

j=1 Wij

, (18)

which is identical to (15), i.e., it is the NLM solution.
The PoG perspective of NLM provides a way to understand

the underlying principles of NLM. The variableπ(0)
ij =

N (pj |pi,ΣNLM) is an un-normalized conditional probability
that thejth patchpj belongs to theith Gaussian component.
Note thatN (pj |pi,ΣNLM) is not a legitimate probability

because summing overi is not equal to 1. The action ofπ(0)
ij

is to implicitly group patches according to their distance to
the centers of the Gaussians. However, such grouping has only
limited effectiveness because the centerµ

(0)
i = pi is the noisy

data itself. Moreover, the grouping is performed only once
because there is no EM iteration. Therefore, it is reasonable
to expect a limited performance of NLM.

B. One-step Sinkhorn-Knopp

To analyze the one-step Sinkhorn-Knopp, we first express
(2) as two consecutive steps:

[WD−1
c ]ij =

Wij∑n
i=1 Wij

=
N (pj |pi,ΣNLM)∑n
i=1N (pj |pi,ΣNLM)

, (19)

[D−1
r WD−1

c ]ij =
[WD−1

c ]ij∑n

j=1[WD−1
c ]ij

. (20)

Inspecting the equations, we observe that (19) is equivalent to
the E-step with the initializationsµ(0)

i = pi. In this case,

π
(0)
ij =

N (pj |pi,ΣNLM)∑n
i=1N (pj |pi,ΣNLM)

= [WD−1
c ]ij . (21)

Substituting (21) into (14), theith pixel of the denoised image
is

ẑi =

∑n

j=1 π
(0)
ij yj

∑n

j=1 π
(0)
ij

=

∑n

j=1[WD−1
c ]ijyj∑n

j=1[WD−1
c ]ij

. (22)

By identifying (21) with (10), and (22) with (11), it becomes
clear that the column normalization (19) is the E-step, and the
row normalization (20) is the M-step.
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The column normalization ensures thatπij is a legitimate
conditional probability, and hence the EM algorithm of learn-
ing the PoG model is valid. To demonstrate the difference
between standard NLM and one-step Sinkhorn-Knopp, we
consider the following example.

Example 4:Smoothing filters can equivalently be consid-
ered as graphs [5]. In Figure 3, we consider a cluster of 4
data points{p1, . . . ,p4} and two cluster centers{µ1,µ2}.
Without loss of generality let us assume that all these 4 data
points belong to the first cluster. The weight of the edge linking
µi andpj is denoted asWij (See Figure 3(a)). In this example,
we assume that

(Wij) =

[
0.9 0.9 0.9 0.3
0.1 0.1 0.1 0.1

]
.

Thus, {p1,p2,p3} have strong connections withµ1 but p4

only has a weak connection. For the other clusterµ2, all
{p1,p2,p3,p4} have a weak connection.

Now, if we apply column normalization toWij we can
obtain a column-normalized graphπij = Wij/

∑
i Wij , i.e.,

(πij) =

[
0.9 0.9 0.9 0.75
0.1 0.1 0.1 0.25

]
.

The difference between(Wij) and (πij) can be seen from

the new empirical meanŝµi

def
=
∑

j Wijpj/
∑

j Wij . In the
case of(Wij), we observe that̂µ1 is a point located near to
p1, p2 and p3 because of the relatively small edge ofW14

compared toW11, W12 and W13. However, for the case of
(πij), we observe that̂µ1 is shifted towardsp4 becauseπ14

has a similar value compared toπ11, π12 andπ13. Putting this
in a more qualitative description, the column normalization
tries to increase the influence of less popular units in the graph,
or to “balance out” the influence of the minority.

+ +p1

p2

p3
p4µ1 µ2

0.90.9

0.9
0.3 0.1

(a) Standard NLM.

+ +
p1

p2

p3
p4µ1 µ2

0.90.9

0.9
0.75 0.25

+
(b) One-step Sinkhorn-Knopp.

Fig. 3: Comparison between standard NLM and one-step
Sinkhorn-Knopp. The red cross represents the new position
of the updated mean.

C. Full Sinkhorn-Knopp

The full Sinkhorn-Knopp (Algorithm 1) is an iterative
algorithm that repeatedly applies the one-step Sinkhorn-Knopp
until convergence. To establish its link to the EM algorithm,
we first consider a modification to the EM algorithm.

In the M-step, instead of computing the actual meanµ
(t+1)
i ,

we define an intermediate variableβ(t+1)
ij as

M-step:

β
(t+1)
ij =

π
(t)
ij∑n

j=1 π
(t)
ij

. (23)

Consequently, the E-step becomes
E-step:

π
(t+1)
ij =

β
(t+1)
ij∑n

i=1 β
(t+1)
ij

. (24)

Clearly, (23)-(24) is equivalent to the full Sinkhorn-Knopp
iteration. However, as (23) require an intermediate variable
β
(t)
ij , the modified EM steps do not correspond to a valid EM

algorithm for learning the PoG model.
To understand the difference between the modified EM

algorithm and the original EM algorithm, we note from (24)
and (11) thatβ(t+1)

ij is an approximation of the likelihood

N (pj |µ(t)
i ,Σi). In fact, if we compute the actual mean

µ
(t+1)
i (which is never explicitly calculated in the modified

EM), we can show that

µ
(t+1)
i =

∑n

j=1 π
(t)
ij pj

∑n

j=1 π
(t)
ij

(a)
=

n∑

j=1

β
(t+1)
ij pj , (25)

where (a) follows from (23). (25) indicates thatµ(t+1)
i is

a linear combination of{pj}nj=1, with {β(t+1)
ij }nj=1 being

the combination weights. Therefore, while the modified EM
algorithm does not explicitly the new meansµ(t+1)

i , there is
an implicit grouping of pixels performed via the interactions
betweenβ(t)

ij andπ(t)
ij .

The fact that the full Sinkhorn-Knopp is not a valid EM
algorithm for learning the PoG offers some insights into the
performance gain phenomenon. Recall from the results in
Figure 2, we observe that not all images have increasing PSNR
when more Sinkhorn-Knopp iterations are performed. In fact,
the PSNRs increase monotonically only for images 1-3, which
are artificial images. These images are common in that there
are only a few distinctive clusters. Therefore, theβ(t)

ij ’s are

good approximations to the true likelihoodN (pj |µ(t)
i ,Σi).

However, for other images where the clusters are not so
distinctive, theβ(t)

ij ’s have worse approximation and so the
PSNR would drop.

D. Summary

To summarize our findings, we observe that the perfor-
mance of the normalization is directly related tohow the EM
algorithm is being implemented. For standard NLM, there
is no EM iteration and the weights are not the legitimate
probabilities. Thus its performance is the worst. The situation
improves when we apply a column normalization in Sinkhorn-
Knopp, because the one-step Sinkhorn-Knopp is equivalent
to one iteration of the EM. However, when extending to full
Sinkhorn-Knopp, the performance drops again because the full
Sinkhorn-Knopp is only an approximated EM algorithm.

We summarize our results in Table II. Besides the perfor-
mance gain phenomenon, we have two additional observations.
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TABLE II: Generalization and comparisons using EM algorithm for learning GMM with knownΣ.

Standard One-Step Full PoG-NLM
NLM [3] Sinkhorn-Knopp [15] Sinkhorn-Knopp [18] (generalization)

No. Clusters k = n k = n k = n k < n
(cross-validation)

Initialization π
(0)
ij N (pj |µ(0)

i ,ΣNLM)
N (pj |µ

(0)
i

,ΣNLM)
∑

k
i=1 N (pj |µ

(0)
i

,ΣNLM)

N (pj |µ
(0)
i

,ΣNLM)
∑

k
i=1 N (pj |µ

(0)
i

,ΣNLM)

N (pj |µ
(0)
i

,ΣNLM)
∑

k
i=1 N (pj |µ

(0)
i

,ΣNLM)

µ
(0)
i pi pi pi randomly pickedpi

E-step Updateπ(t)
ij × X X (via β

(t)
ij ) X

M-step Updateµ(t)
i × × X (implicitly) X

No. Iterations 0 1 Many Many

Denoising λ 0 0 0 by SURE
Parameters P jz zj zj zj pj

γij π
(0)
ij π

(0)
ij π

(t)
ij π

(t)
ij

First, in all three symmetrization schemes, the number of
clusters k is equal to the number of data pointsn. This
setting is suboptimal because ideally we would like to group
multiple pixels into one cluster, and hence we like to have
k < n. Second, since none of the three symmetrization
schemes is the complete EM algorithm, it is natural that
a new denoising algorithm can be designed based on the
complete EM algorithm. As a preview we show and compare
the proposed method in the right most column of Table II.

IV. PRODUCT OFGAUSSIAN NON-LOCAL MEANS

The proposed denoising algorithm is called the Product of
Gaussian Non-local Means (PoG-NLM). The idea of PoG-
NLM is to run the full EM algorithm (10)-(11) for the NLM
filter defined in Example 2 and solve the MAP optimziation
(13). In the following subsections we will discuss how the
PoG-NLM is designed.

A. PoG-NLM

First of all, because the non-local means feature vector
contains a spatial component and an intensity component, (13)
can be written as

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij

∥∥∥∥∥

[
xj

zj

]
−
[
µ

(s)
i

µ
(r)
i

]∥∥∥∥∥

2

,

(26)

whereλ is a parameter,xj is the spatial coordinate of the
jth pixel, zj is the jth patch of the denoised image,µ(s)

i is
the spatial component of theith cluster centerµi, andµ

(r)
i

is the intensity component ofµi. Sincexj is independent of
the optimization and thus can be eliminated without changing
the objective function. Moreover, if we define a matrixP j ∈
R

d×n as a patch-extract operator that extracts thejth patch of
the image, i.e.,P jz = zj , then (26) becomes

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij

∥∥∥P jz − µ
(r)
i

∥∥∥
2

. (27)

The optimization in (27) is a quadratic minimization and
so closed-form solution exists. By considering the first order

optimality condition we obtain a normal equation



n∑

j=1

P T
j P j + λI


 ẑ =

n∑

j=1

P T
j wj + λy, (28)

of which the solution is the minimizer of (27). In (28), the
vectorwj is defined as

wj
def
=

n∑

i=1

γijµ
(r)
i . (29)

To interpret (28)-(29), we note that̂z is a weighted average of
{µ(r)

i }ki=1. The operation ofP j ’s represents an aggregation
of the spatially overlapping estimates (c.f., [25]). The addition
of λy regulates the cluster centers by adding a small amount
of fine features, depending on the magnitude ofλ.

In order to use (28), two technical issues must be resolved:
(i) Determineλ; (ii) Determinek.

B. Parameter Estimation

We now discuss how to chooseλ. Ideally, λ should be
chosen as the one that minimizes the mean squared error
(MSE) of the denoised image. However, in the absence of the
ground truth, MSE cannot be calculated directly. To alleviate
this difficulty, we consider the Stein’s Unbiased Risk Estima-
tor (SURE) [26], [27]. SURE is a consistent and unbiased
estimator of the MSE. That is, SURE converges to the true
MSE as the number of observations. Therefore, when there are
sufficient number of observed pixels (which is typically true
for images), minimizing the SURE is equivalent to minimizing
the true MSE.

In order to derive SURE for our problem, we first make the
following assumption.

Assumption 2:We assume that the patch-extract operator
{P j}nj=1 satisfies the following approximation:

n∑

j=1

P T
j P j = dI. (30)

We note that Assumption 2 only affects the boundary pixels
and not the interior pixels. Intuitively, what Assumption 2
does is to require that the boundary pixels of the image
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are periodically padded instead of zero-padded. In image
restoration literature, periodic boundary pad is common when
analyzing deblurring methods, e.g., [28].

Under Assumption 2, we can substitute (30) into (28) and
take the matrix inverse. This would yield

ẑ(λ) =
d

d+ λ
u+

λ

d+ λ
y, (31)

where

u
def
=

1

d

n∑

j=1

P T
j wj . (32)

Then, we can derive the SURE of̂z as follows.
Proposition 2: Under Assumption 2, the SURE of̂z(λ) is

SURE(λ) = −σ2 + σ̂2

(
d

d+ λ

)2

+
2σ2

n

(
div(u)d+ nλ

d+ λ

)
,

(33)
whereσ̂2 def

= 1
n
‖u− y‖2, and

div(u)
def
= 1

T
n×1


1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n
j=1 γijej∑n
j=1 γij

))
 ,

(34)

whereej ∈ R
d is the jth standard basis.

Proof: See Appendix B.
The SURE given in (33) is a one-dimensional function in

λ. The minimizer can be determined in closed-form.
Corollary 1: The optimalλ that minimizesSURE(λ) is

λ∗ = max

(
d

((
σ̂2

σ2

)(
n

n− div(u)

)
− 1

)
, 0

)
. (35)

Proof: (33) is a differentiable function inλ. Therefore,
the minimizer can be determined by considering the first order
optimality and set the derivative ofSURE(λ) to zero. The
projection operatormax(·, 0) is placed to ensure thatλ∗ ≥ 0.

Example 5:To demonstrate the effectiveness of SURE, we
show a typical MSE and a typical SURE curve of a denoising
problem. In this example, we consider a128 × 128 image
“Baboon”, with noise standard deviation ofσ = 30/255. The
non-local means parameters arehr = σ and hs = 10. The
number of clusters isk = 50, and the patch size is5 × 5.
The results are shown in Figure 4, where we observe that the
SURE curve and the true MSE curve are very similar. In fact,
the minimizer of the true MSE isλ = 8.0080 with a PSNR
of 24.5143dB whereas the minimizer of SURE isλ = 7.9145
with a PSNR of24.5141dB.

Remark 1:Careful readers may notice that in (34), we
implicitly assume thatγij is independent ofyj . This implicit
assumption is generally not valid ifγij is learned fromy.
However, in practice, we find that if we feed the EM algorithm
with some initial estimate (e.g., by running the algorithm
with λ = 0), then the dependence ofγij from yj becomes
negligible.

C. Number of Clustersk

The number of clustersk is another important parameter.
We estimatek based on the concept of cross validation [29].

0 20 40 60 80 100
3

4

5

6

7

8

9

10
x 10

−3

λ

 

 

MSE

SURE

Fig. 4: Comparison between SURE and the ground truth MSE
of a denoising problem.

Our proposed cross-validation method is based on compar-
ing the estimated covariance withΣNLM. More specifically,
we compute the estimated covariance

Σ̂i =

∑n
j=1 γij

(
pj − µi

) (
pj − µi

)T
∑n

j=1 γij
, (36)

whereµi = [µ
(s)
i , µ

(r)
i ]T is the mean returned by the EM

algorithm, andγij = π
(∞)
ij is the converged weight. Then, we

compute the ratio of the deviation

δi(k) =
1

d
Tr
{
Σ

−1
NLMΣ̂i

}
. (37)

Ideally, if Σ̂i = ΣNLM, then by (37) we haveδi(k) = 1.
However, if the ith estimated Gaussian component has a
radius significantly larger thanhr (or, hs for the spatial
components), then the covariancêΣi would deviate from
ΣNLM and henceδi(k) > 1. Conversely, if theith estimated
Gaussian component has a radius significantly smaller than
hr, then we will haveδi(k) < 1. Therefore, the goal of the
cross validation is to find ak such thatδi(k) is close to 1.

To complete the cross-validation setup, we averageδi(k)
over all k clusters to obtain an averaged ratio

δ(k) =
1

k

k∑

i=1

δi(k). (38)

The parenthesis(k) in (38) emphasizes that bothδ(k) and
δi(k) are functions ofk. With (38), we seek the rootk of the
equationδ(k) = 1.

The root finding process forδ(k) = 1 can be performed
using the secant method. Secant method is an extension of
the bisection method in which the bisection step size (i.e.,
1/2) is now replaced by an adaptive step size determined by
the local derivative of the function. Letk(a) andk(b) be two
number of clusters, andδ(a) and δ(b) be the corresponding
cross-validation scores, i.e.,δ(a) = δ(k(a)). If δ(a) > 1 and
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k(a) k(b)

δ(a)

δ(b)

k(c)

δ(c)

Fig. 5: Illustration of the secant method. Givenk(a) andk(b),
we computek(c) according to the slope defined by the line
linking δ(a) andδ(b).

Algorithm 2 Cross Validation to Determinek

Input: k(a) andk(b) such thatδ(a) > 1 andδ(b) < 1.
Output:k(c).

while |k(a) − k(c)| > tol and |k(b) − k(c)| > tol do
Computek(c) according to (39).
Computeδ(c)

def
= δ(k(c)) according to (38).

if δ(k(c)) > 1 then
k(a) ← k(c); δ(a) ← δ(c).

else
k(b) ← k(c); δ(b) ← δ(c).

end if
end while

δ(b) < 1, the secant method computes the newk as

k(c) =
k(a)(δ(b) − 1)− k(b)(δ(a) − 1)

δ(b) − δ(a)
. (39)

If δ(k(c)) > 1, then we replacek(a) by k(c); Otherwise, we
replacek(b) by k(c). The process repeats until the|k(a) −
k(c)| < tol and |k(b) − k(c)| < tol. A pictorial illustration
of the secant method is shown in Figure 5. A pseudo code is
given in Algorithm 2.

Example 6:To verify the effectiveness of the proposed
cross validation scheme, we consider a128 × 128 “House”
image with noiseσ = 60/255. The patch size is5×5, hr = σ,
andhs = 10. Figure 6 shows the PSNR value of the denoised
image and the corresponding cross validation scoreδ(k) as
a function ofk. For this experiment, the maximum PSNR is
achieved atk = 144, wherePSNR = 26.0257dB. Using the
cross-validation scoreδ(k), we find thatδ(k) is closest to1
whenk = 130. The corresponding PSNR value is 25.9896dB,
which is very similar to the true maximum PSNR.

V. EXPERIMENTS

In this section, we present additional simulation results to
evaluate the proposed PoG-NLM.

A. Experiment Settings

We consider 10 testing images, each of which has size
128 × 128 (so n = 16384). The noise standard deviations
are set asσ ∈ {20/255, 40/255, 60/255, 80/255, 100/255}.

50 100 150 200 250
0.9

0.95

1

1.05

1.1

δ
(k
)
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25.6
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26

26.2

k

P
S
N
R

δ(k)

PSNR

Fig. 6: Comparison between the cross validation scoreδ(k)
and the true PSNR value as a function ofk. The horizontal
dashed line indicates the intersection atδ(k) = 1.

TABLE III: Configurations of Methods

Method Configuration
NLM [3] Patch size5× 5, hs = 10, hr = σ

√
d

One-step [15] Patch size5× 5, hs = 10, hr = σ
√
d

PoG-NLM Patch size5× 5, hs = 10, hr = σ
GLIDE [9] Default settings. Pilot estimate uses NLM.
BM3D [25] Default settings.
EPLL [22] Default settings. External Database.

Several existing denoising algorithms are studied, namelythe
standard NLM [3], One-step Sinkhorn-Knopp [15], BM3D
[25], EPLL [22], and Global image denoising (GLIDE) [9].
The parameters of the methods are configured as shown in
Table III. For NLM and Sinkhorn, we implement the algorithm
by setting the patch size as5 × 5 (i.e., d = 25). The
parameters arehs = 10 and hr = σ

√
d. For the proposed

PoG-NLM, we keep the same settings as NLM and Sinkhorn
except for the intensity parameterhr where we sethr = σ.
The omission of the factor

√
d is due to the fact that each

Gaussian component is already ad-dimensional multivariate
distribution. It is therefore not necessary to normalize the
distance‖yi − yj‖2 by the factord. For BM3D, EPLL and
GLIDE, we downloaded the original MATLAB code from the
author’s website2,3,4. Default settings of these algorithms
are used. Among these methods, we remark that EPLL is
an external denoising algorithm where a Gaussian mixture is
learned from a collection of 2 million clean patches. All other
methods (including PoG-NLM) are single image denoising
algorithms.

B. Comparison with NLM and One-step Sinkhorn-Knopp

The overall results of the experiment are shown in Table IV.
We first compare the PSNR values of the proposed method

2BM3D: http://www.cs.tut.fi/∼foi/GCF-BM3D/
3EPLL: http://people.csail.mit.edu/danielzoran/
4GLIDE: https://users.soe.ucsc.edu/∼htalebi/GLIDE.php

http://www.cs.tut.fi/~foi/GCF-BM3D/
http://people.csail.mit.edu/danielzoran/
https://users.soe.ucsc.edu/~htalebi/GLIDE.php
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TABLE IV: Denoising results of Standard NLM [3], One-step Sinkhorn-Knopp [15], BM3D [25], EPLL [22], Global image
denoising [9], and the proposed PoG-NLM.

NLM Sinkhorn Ours GLIDE BM3D EPLL NLM Sinkhorn Ours GLIDE BM3D EPLL

[3] [15] [9] [25] [22] [3] [15] [9] [25] [22]

σ Baboon Barbara

20 24.53 25.01 26.84 26.51 26.96 27.1926.05 27.02 29.43 28.64 29.42 29.40

40 22.32 22.55 24.49 24.04 24.57 24.5621.48 21.91 25.41 24.83 25.35 25.79

60 21.31 21.46 23.32 22.87 23.53 23.4419.31 19.55 23.28 22.33 23.55 23.64

80 20.76 20.87 22.51 22.22 22.77 22.6618.25 18.38 21.83 20.92 22.30 22.11

100 20.43 20.52 21.98 20.68 22.14 22.0917.68 17.76 20.77 19.82 21.30 21.00

σ Boat Bridge

20 24.88 26.05 28.43 27.55 28.58 28.7623.99 24.95 26.90 26.34 27.09 27.25

40 21.97 22.39 24.96 24.35 25.12 25.3220.87 21.35 23.85 23.18 23.88 24.19

60 20.46 20.70 23.19 22.59 23.47 23.5619.58 19.85 22.24 21.47 22.44 22.48

80 19.60 19.74 22.14 21.42 22.43 22.4118.83 19.01 21.20 20.44 21.45 21.42

100 19.09 19.18 21.34 20.50 21.74 21.5318.35 18.48 20.46 19.75 20.67 20.66

σ Couple Hill

20 24.54 25.62 28.20 27.25 28.42 28.6025.51 26.38 28.68 27.98 28.82 28.97

40 21.67 22.10 24.64 23.95 25.00 25.1122.58 23.11 25.55 24.79 25.70 25.85

60 20.35 20.60 23.07 22.32 23.36 23.3721.33 21.69 23.95 23.26 24.21 24.16

80 19.64 19.81 22.02 21.40 22.32 22.3020.68 20.93 22.90 22.42 23.19 23.12

100 19.24 19.35 21.23 19.80 21.56 21.5220.29 20.49 22.07 21.85 22.37 22.39

σ House Lena

20 28.20 30.02 32.92 31.82 32.73 32.4726.90 28.03 29.83 29.19 29.93 30.06

40 23.26 24.27 28.31 27.31 28.91 28.7722.40 23.11 26.40 25.96 26.23 26.70

60 21.40 21.79 26.05 24.72 26.68 26.5820.22 20.60 24.49 23.51 24.49 24.80

80 20.52 20.70 24.46 22.96 25.20 25.0419.09 19.32 23.10 22.00 23.22 23.45

100 20.04 20.13 23.21 20.80 23.96 23.8318.47 18.62 22.03 20.98 22.25 22.41

σ Man Pepper

20 25.14 26.09 28.12 27.37 28.13 28.4326.17 27.89 29.58 28.86 29.61 29.76

40 21.93 22.26 24.78 24.29 24.91 25.1921.19 22.23 25.43 24.61 25.44 26.02

60 20.26 20.45 23.12 22.24 23.26 23.4819.05 19.61 23.28 22.24 23.35 23.77

80 19.33 19.46 22.01 20.72 22.26 22.2717.92 18.22 21.71 20.58 21.93 22.16

100 18.78 18.87 21.07 20.42 21.48 21.3817.27 17.45 20.51 19.54 20.86 20.93

with NLM and One-step Sinkhorn.

In Table V we show the average PSNR over the 10 testing
images. In this table, we observe that on average One-step
Sinkhorn has a higher PSNR than NLM by 0.12dB to 1.12dB,
with more significant improvements at low noise levels. This
implies that the “grouping” action by the column normaliza-
tion becomes less influential when noise increases. Moreover,
if we compare PoG-NLM with NLM and One-step Sinkhorn,
we observe that the PSNR gain is even larger. Even at a high
noise level (e.g.,σ = 80/255 or σ = 100/255), the average
gain from NLM is 2.5dB or more.

Besides studying the trend of PSNR as a function ofσ, it
is also interesting to compare the PSNR when we increase
the spatial parameterhs. In Table VI, we show the PSNR
improvement when we use differenths ∈ {5, 10, 20, 50, 100}
for a 128 × 128 image. The results show that whenhs

increases, the PSNR improvement also increases. One reason
is that in (6), the spatial parameterhs controls the diagonal

bandwidth of the smoothing filterW . That is, a smallhs

leads to a banded diagonalW with small bandwidth. In the
limit when hs → 0, W will become a diagonal matrix, and
hence is immune to any column normalization. Therefore,
the effectiveness of the column normalization in the One-step
Sinkhorn-Knopp depends on how largehs is.

C. Comparison with GLIDE

GLIDE [9] is a recently proposed method that implements
a full Sinkhorn-Knopp iteration. In addition to Sinkhorn-
Knopp, GLIDE also incorporates an estimator to optimally
determine the number of non-zero eigenvalues and the power
of eigenvalues of the smoothing filter. GLIDE can use any
denoising result as its pilot estimate. For the fairness of
the experiment we follow the default setting of GLIDE and
use the standard NLM as the pilot estimate. The result in
Table VII shows that in general PoG-NLM has at least 0.65dB
improvement over GLIDE. This result is consistent with our
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TABLE V: PSNR comparison with different noise levelσ.
Averaged over 10 testing images.hs = 10.

NLM Sinkhorn Ours PSNR2 PSNR3

σ (PSNR1) (PSNR2) (PSNR3) −PSNR1 −PSNR1

20 25.59 26.71 28.89 +1.12 +3.30

40 21.97 22.53 25.38 +0.56 +3.41

60 20.33 20.63 23.60 +0.30 +3.27

80 19.46 19.64 22.39 +0.18 +2.92

100 18.97 19.09 21.47 +0.12 +2.50

TABLE VI: PSNR comparison with different parameterhs.
The testing image is “Man”.σ = 40/255.

NLM Sinkhorn Ours PSNR2 PSNR3

hs (PSNR1) (PSNR2) (PSNR3) −PSNR1 −PSNR2

5 22.82 23.08 24.76 +0.26 +1.68

10 21.83 22.24 24.83 +0.41 +2.60

20 21.25 21.66 24.79 +0.41 +3.13

50 20.92 21.59 24.74 +0.68 +3.15

100 20.53 21.38 24.73 +0.85 +3.36

observation that full Sinkhorn-Knopp is an incomplete EM
algorithm.

D. Comparison with EPLL

Our next experiment is to compare the Gaussian mixture
model (GMM) of EPLL [22] and the proposed PoG prior.
In this experiment, we feed the noisy patches to two EM
algorithms to learn a GMM and a PoG prior. The patch size is
fixed at5× 5, and the number of clusters is fixed ask = 100.
We repeat the experiment by inputting the denoised result of
BM3D and the oracle clean image into the EM algorithms.

From Table VIII, we observe that EPLL with a noisy input
performs poorly. The reason should be clear because the GMM
learned from the noisy patches isnot the prior distribution of
the clean patches. In contrast, while the PoG learned in the
proposed method is also not the prior of the clean patches, it
actually leads to better results.

Another observation from Table VIII is that the performance
of EPLL depends heavily on the quality of the GMM. For
example, if we use the result of BM3D as a pilot estimate for
learning the GMM, the performance of EPLL is similar to the
oracle case where we use the clean image. However, using
BM3D as a pilot estimate is not a plausible approach because
by running BM3D alone we can get an even higher PSNR
(See Table IV). This result further shows the effectivenessof
the proposed PoG-NLM for single image denoising.

E. Complexity and Limitations

Finally, we discuss the complexity and limitations of the
proposed PoG-NLM.

PoG-NLM is a one-step denoising algorithm provided the
PoG is given. However, learning the PoG using the EM
algorithm is time-consuming, and the complexity depends
on the number of clustersk. In addition, sincek needs to

TABLE VII: PSNR comparison between GLIDE and PoG-
NLM. Average over 10 testing images.hs = 10.

GLIDE Ours

σ (PSNR1) (PSNR2) PSNR2 − PSNR1

20 28.15 28.89 +0.74

40 24.73 25.38 +0.65

60 22.75 23.60 +0.85

80 21.51 22.39 +0.88

100 20.42 21.47 +1.05

TABLE VIII: Comparison with EPLL using different pilot esti-
mates: “Noisy” uses the noisy image; “BM3D” uses the BM3D
estimate; “Clean” uses the oracle clean image; “External” uses
an external database. Testing image is “House”.

EPLL EPLL EPLL EPLL Ours

σ (Noisy) (BM3D) (Clean) (External)

20 25.40 32.41 32.46 32.47 32.92

40 19.75 28.32 28.31 28.77 28.31

60 16.42 25.73 25.80 26.58 26.05

80 14.29 24.05 24.07 25.04 24.46

100 12.71 22.59 22.73 23.83 23.21

be estimated through a cross-validation scheme, the actual
complexity also depends on the number of cross-validation
steps. To provide readers an idea of howk changes with other
system parameters, we conduct two experiments.

In Table IX we show the number of clusters returned by
the cross-validation scheme as we increase the noise level.
As shown, the number of clusters increases when noise level
reduces. This result is consistent with our intuition: As noise
reduces, the grouping of patches becomes less important. In
the limit when the image is noise-free, every patch will become
its own cluster center. Therefore, one limitation of PoG-NLM
is that for low-noise images the computing time could be very
long. However, PoG-NLM is still a useful tool as its simple
structure offers new insights to denoising.

Now, if we fix the noise level but change the image size, the
complexity of PoG-NLM also varies. In Table X, we show the
number of clusters as a function of image size. As a reference
we also show the PSNR values of PoG-NLM and that of
BM3D. The result in Table X indicates that the number of
clusters increases with the image size. In the table, we also
observe that BM3D performs worse than PoG-NLM for small
images, but becomes better as image size increases.

At this point readers may perhaps ask whether it is possible
to take out the mean of the patches when learning the PoG,
as it could reduce the number of clusters. However, from our
experience, we find that this approach actually degrades the
denoising performance. Our observation is that if the PoG is
learned from a collection of zero-mean patches, the denoising
step in (27) can only be used to denoise zero-mean patches.
The mean values, which are also noisy, are never denoised.
This phenomenon does not appear in EPLL (in which the
PoG has a zero-mean) because the means are iteratively
updated. We followed the same approach to iteratively update
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TABLE IX: Number of clusters returned by cross-validation as
noise level increases. Test image is “Man”. Size is128× 128.

σ 20 30 40 50 60 70 80 90 100

k 1445 667 372 243 162 125 104 83 72

TABLE X: Number of clusters returned by cross-validation as
image size increases.σ = 40/255. Test image is “Man”.

Ours BM3D

Size k PSNR PSNR

50× 50 120 22.76 22.36

100 × 100 290 24.42 24.21

150 × 150 501 25.21 25.32

200 × 200 778 25.82 25.99

250 × 250 996 26.14 26.35

300 × 300 1322 26.58 26.83

350 × 350 1646 26.97 27.20

400 × 400 1966 27.26 27.49

the means. However, we find that in general the denoising
performance is still worse than the original PoG with means
included. Further exploration on this would likely provide
more insights into the complexity reduction issue.

VI. CONCLUSION

Motivated by the performance gain due to a column nor-
malization step in defining the smoothing filters, we study
the origin of the symmetrization process. Previous studies
have shown that the symmetrization process is related to
the Sinkhorn-Knopp balancing algorithm. In this paper, we
further showed that the symmetrization is equivalent to an EM
algorithm of learning a Product of Gaussians (PoG) model.
This observation allows us to generalize various symmetric
smoothing filters including the standard Non-Local Means
(NLM), the one-step Sinkhorn-Knopp and the full Sinkhorn-
Knopp, and allows us to geometrically interpret the perfor-
mance gain phenomenon.

Based on our findings, we proposed a new denoising al-
gorithm called the PoG non-local means (PoG-NLM). PoG-
NLM is a simple modification of the NLM optimization
framework by using the PoG prior for maximum-a-posteriori
estimation. Equipped with a cross-validation scheme which
can automatically determine the number of clusters, PoG-
NLM shows consistently better denoising results than NLM,
One-step Sinkhorn-Knopp and full Sinkhorn-Knopp. While
PoG-NLM has slightly worse performance than state-of-the-
art methods such as BM3D, its simple structure highlights the
importance of clustering in image denoising, which seems to
be a plausible direction for future research.

APPENDIX

A. Proof of Proposition 1

In order to derive the EM algorithm, we first need to specify
the missing data. Referring to (9), we letZij (with a realization
zij) be the hidden random variable denoting the weight of each

Gaussian component. The distribution ofZij given (pj ,µ
(t)
i )

is a delta function:

P(Zij = zij |pj ,µ
(t)
i ) =

{
1, if zij = π

(t)
ij ,

0, if zij 6= π
(t)
ij ,

where

π
(t)
ij

def
=

N (pj |µ(t)
i ,Σi)

∑k

i=1N (pj |µ(t)
i ,Σi)

.

DenotingΘ = {µi}, the complete data has a distribution

log f(zij ,pj |Θ(t)) = −
k∑

i=1

zij‖pj − µ
(t)
i ‖2.

At the t-th EM iteration, thejth Q-function is

Qj(Θ |Θ(t))
def
= EZij |pj ,Θ

(t)

[
log f(zij ,pj |Θ(t))

]

= EZij |pj ,Θ
(t)

[
−

k∑

i=1

zij‖pj − µ
(t)
i ‖2

]

= −
k∑

i=1

π
(t)
ij ‖pj − µ

(t)
i ‖2.

Therefore, the overallQ-function is

Q(Θ |Θ(t)) =
n∑

j=1

Qj(Θ |Θ(t))

= −
n∑

j=1

k∑

i=1

π
(t)
ij ‖pj − µ

(t)
i ‖2, (40)

and hence the(t+ 1)-th update ofΘ is

Θ
(t+1) = argmax

Θ

Q(Θ |Θ(t)). (41)

Since (40) is a sum of quadratic functions, eachµi in (41)
can be solved individually as

µ
(t+1)
i = argmin

µi

n∑

j=1

π
(t)
ij ‖pj − µi‖2 =

∑n

j=1 π
(t)
ij pj

∑n

j=1 π
(t)
ij

.

B. Proof of Proposition 2

Given an estimator̂z of some observationy, the SURE is
defined as

SURE
def
= −σ2 +

1

n
‖ẑ − y‖2 + 2σ2

n
div(ẑ). (42)

Substituting (31) into (42) yields

1

n
‖ẑ − y‖2 =

1

n

∥∥∥∥
d

d+ λ
u+

λ

d+ λ
y − y

∥∥∥∥
2

=
1

n

∥∥∥∥
d

d+ λ
(u− y)

∥∥∥∥
2

= σ̂2

(
d

d+ λ

)2

, (43)

whereσ̂2 def
= 1

n
‖u− y‖2. So it remains to determinediv(ẑ).
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From (31), the divergencediv(ẑ) is

div(ẑ) =
d

d+ λ
div(u) +

λ

d+ λ
div(y)

def
=

d

d+ λ

n∑

j=1

∂uj

∂yj
+

λ

d+ λ

n∑

j=1

∂yj
∂yj

.

To determine∂uj

∂yj
, we note from (32), (29) and (11) that

u =
1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n

j=1 γijyj∑n

j=1 γij

))
. (44)

Since

∂

∂yj
yj =

∂

∂yj




...

yj−1

yj

yj+1

...




=




...

0

1

0
...




= ej ,

it holds that

div(u) = 1
T
n×1


1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n

j=1 γijej∑n

j=1 γij

))
 .

and hence

div(ẑ) =

n∑

j=1

(
d

d+ λ
div(u) +

λn

d+ λ

)
. (45)

Substituting (45) and (43) into (42) completes the proof.
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