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Abstract—Many patch-based image denoising algorithms can adaptive regression kernel (LARK])I[4], etc. Recently, isha
be formulated as applying a smoothing filter to the noisy peen shown that these smoothing filters are closely related t
image. Expressed as matrices, the smoothing filters must bew the operations of graph Laplacians formed from image patche

normalized so that each row sums to unity. Surprisingly, if vwe . . .
apply a column normalization before the row normalization, the [51-{7]. Moreover, fast computations of smoothing filteesk

performance of the smoothing filter can often be significany been _proposed [_8]—[1_3]- o
improved. Prior works showed that such performance gain is ~ While smoothing filters work well for many denoising

related to the Sinkhorn-Knopp balancing algorithm, an iterative  problems, it has been observed in1[14],1[15] and! [16] that

procedure that symmetrizes a row-stochastic matrix to a doblly-  hair performance can be improved by modifyifigy (1) as
stochastic matrix. However, a complete understanding of ta

performance gain phenomenon is still lacking. oy DT_IWDc_lya )
In this paper, we study the performance gain phenomenon

from a statistical learning perspective. We show that Sinkbm-  \yhere D def diag {WTl} is a diagonal matrix that normal-
Knopp is equivalent to an Expectation-Maximization (EM) al- c

_gorithm of learning a Proc_;luc_t of Gaussians (PoG) prior of the jzes thecolumnsof W, and D, def diag {WD(jll} is a
image patches. By establishing the correspondence betwedre diagonal matrix that normalizes thews of WDc_l. In other

steps of Sinkhorn-Knopp and the EM algorithm, we provide a . . . .
geometrical interpretation of the symmetrization process The words, we modify[() by introducing a column normalization

new PoG model also allows us to develop a new denoisingPefore applying the row normalization. _ _
algorithm called Product of Gaussian Non-Local-Means (PoG Before we proceed to discuss the technical properties of

NLM). PoG-NLM is an extension of the Sinkhorn-Knoppandisa () and [2), we first provide some numerical simulations to

?e”erla'i.zatiog Oéﬂlllelj/'lasgfa' ?0”"003' means. t[.)eSpitSiSi{EP'e demonstrate an interesting phenomenon. In Figlre 1, we show

ﬁc;trg:g gr:?jnﬁasoa Sim”arOpueﬁiinﬂgmniengirgpgfe'z Eg;\ﬂmgo; "9 10 clean images (each of siz0 x 100) con_sisti_ng of various _
content and textures. We generate the noisy images by adding

i.i.d. Gaussian noise of standard deviatior- 20/255. Then,

we denoise the noisy images using the non-local mean [3] for

@) and [2), respectively.

The results of this experiment are shown in the bottom of
o o Figure[d. It is perhaps a surprise to see that (2), which is a
A. Motivation: A Surprising Phenomenon simple modification of[{l1), improves the PSNR by more than

Consider a noisy observatiop € R™ of a clean image 1.6 dB on average. Another puzzling observation is that if we
z € R” corrupted by additive i.i.d. Gaussian noise. We woulckpeatedly apply the column-row normalization, the PSNR ca
like to denoisey using a linear operatoW € R™ ™ and drop after a certain number of iterations. Figlure 2 prestuigs
estimate the denoised imageas result. For 6 out of the 10 images we have tested, the PSNR

~ 1 values actually drop after the first column-row normaliaati

z=D "Wy, @ The above experiment piqued our curiosity and led us to
where D %f diag {W1} is a diagonal matrix for normaliza- & basic question: Why would the column-row normalization
tion so that each row oD ~'W sums to unity. The linear improve the denoising performance? If we can answer this
operatorW is referred to as themoothing filter question, then perhaps we can develop a systematic pracedur

The smoothing filter described Yl (1) is a general expressifitat can generalize the operationslin (2) and further imgrov
for many popular denoising algorithms, e.g., Gaussian fi€ denoising performance. The goal of this paper is to asdre
ter [1], bilateral filter [2], non-local means (NLM)[3], ladly ~this issue and propose a new algorithm.

Index Terms—Non-local means, patch-based filtering, patch
prior, Expectation-Maximization, doubly-stochastic matrix, sym-
metric smoothing filter
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Image No.
Smoothing Filter 1 2 3 4 5 6 7 8 9 10

D 'wW 34.12 31.60 3259 25.64 26.36 25.63 2231 2498 26.25 2247
D 'wD_! 3456 3349 36.44 26.50 29.37 27.71 2292 26.49 2785 2352
PSNR Improvement +0.44 +1.89 +3.85 +0.86 +3.01 +2.08 +0.61.5% +1.60 +1.05

Fig. 1: [Top] 100 x 100 testing images. Each image is corrupted by i.i.d Gaussi@ermdoc = 20/255. [Bottom] PSNR values
of the denoised image using 'W and D, 'WD_ .

tive degrees of freedom”, and so the reduction in the bias of
z is greater than the gain in the variancezofAs a result, the
overall mean squared error, which is the sum of the bias and
the variance, is reduced. However, this notion of “effextiv
degrees of freedom” is not easy to interpret intuitively. In
particular, it would be significantly more useful if we can

3 geometrically describe the actions under which the column-
g —— image no. 1 row normalization are applying to the noisy image.
2 —©— image no. 2
—9—?mage no.3 g
—e=imenod [l C. Contributions
:‘;—_:ngzzgs The goal of this paper is to provide an explanation to
—e— image no. 8 the performance gain phenomenon and to propose a new
_—g—_:xg: iy ?O denqising _algorithm. Our gpproach is to ;tudy an Ex_pecnaltio
o e Ma_X|m|z_at|on (_EM) algorithm for Iearmng a special prior
iteration no. which will be discussed shortly. By analyzing the E-step and

Fig. 2- E . f th . in Figufe 1. Th PSNthe M-step of the EM algorithm, we found that the actions of
Ig. 2 Extension of the experiment in Fig - Ihe ﬁ'le symmetrization is a type of dattustering This observa-

""J!'“es does not always increase as more Slnkhorn-Knopp '§5n echoes with a number of recent work that shows ordering

ayons are used. Th_e curves are averaged over 16 indepen ﬂ'atgrouping of non-local patches are key for superior image

trials of different noise realizations. denoising[[21L]-4[2B]. The two major contributions of the pap
are summarized as follows.

Algorithm 1 Sinkhorn-Knopp Balancing Algorithm First, we generalize the symmetrization process by refor-

Input: W © mulating tr_le d_enoisi_ng problem as a maximum-a-posteriori
While' ||W(m+1) e o> tol do (MAP) estimation w!th a new patch prior in the form. (_)f

L (m\T o ) a product of Gaussians (PoG). We show that the original

D, = diagy (W™™)"1 % Column Normalize  gyqothing filter in [[L), the one-step Sinkhorn-Knopp [ (2),

D, = diag W(m)Dgll} % Row Normalize and the full Sinkhorn-Knopp (i.e., iterate Sinkhorn-Knopp
Wmt) _ p-lym p1 until convergence) are all sub-rputlnes of the EM algorithm
. T ¢ to learn the PoG prior. By showing that each of methods su-

end while . . .
persedes its previous counterpart, we explain the perfocma
gain phenomenon.

Second, based on the analysis of the PoG patch prior,

Sinkhorn-Knopp has many interesting properties. Firsiye propose a new denoising algorithm called the PoG Non-
when Sinkhorn-Knopp converges, the converging limit is lacal Means (PoG-NLM). We show that PoG-NLM does
doubly-stochastic matrix — a symmetric non-negative matrhot only subsumes a number of smoothing filters, but also
with unit columns and rows (also calledsgmmetricsmooth- has a performance similar to some state-of-the-art denwisi
ing filter). Symmetric smoothing filters are admissible![1%iIgorithms. We will discuss implementation and parameter
and are stable in the sense that all eigenvalues are boundegkiections for the PoG-NLM algorithm.
the unit interval [20]. Also, symmetric smoothing filtersnca The PoG model discussed in this paper is an improved
be used to form a graph Laplacian in some recently proposgstsion of our earlier work in[[16] which used a classical
denoising algorithms, e.gl.1[9]. Gaussian mixture model (GMM). The problem of the GMM is

To explain the performance gain, Milanfar showed![in! [14hat the mixture weights are not used for the actual dengisin
that the symmetric smoothing filters often have higher ‘®ffe This causes a gap between the clustering model and the
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denoising step. The new PoG model resolves the issue by TABLE I: Popular choices of the smoothing filta¥ .
ensuring that the clustering model is used in the denoisifg

step. As a result, clustering is now an integral part of the Filter Wi
algorithm.
The rest of the paper is organized as follows. First, we . . @ —x; |
_ T the paper g X Gaussian Filter 1] exp{—iu 52 H }
provide a brief introduction to PoG and the EM algorithm 5

in Section]). In Sectiom 1l we discuss the generalizatidn ¢
different symmetrizations using the EM algorithm. The ne
PoG-NLM is discussed in Sectién]lV and experimental resu
are shown in SectionlV. We conclude in Section VI.

Bilateral Filter [2] | exp {— (”mj;,;i”z + (yj;,féi)z)}

t - |2
SNon-local Means|[[3] exp{— (”“”gh?“z + Hy]%ng )}

[l. PRODUCT OFGAUSSIANS PATCH PRIOR LARK [4] exp {—(z; — x) 'S () — )}
A. Notations

Throughout this paper, we use to denote the number ) o _ )
of pixels to be denoised, and to denote the number of Clusters if the distribution op; is a product ofk Gaussians
components of the PoG model. To avoid ambiguity, we shiith means{,;}*, and covariance matricg€; };-, . Math-
call each component of the PoG a cluster. The running indgfatically, by denoting the PoG parameters collectively as
j €{1,...,n} tracks the pixels, antlc {1,...,k} tracks the © = {(;,Cij)|i =1,....k, j=1,...,n}, the conditional
clusters. Vectors are represented by bold letters, and dteen distribution ofp; given © is
a constant vector of which all entries are one. We designate k
the vectorz; € R2 to represent the two-gimensional spatial f(p;|©) HeXp {—%(pj _ Ni)TC;(pj _ Hi)} (7
coordinate of thgth pixel, the vectoy; € R“ to represent &- i—1

dimensional patch centered at tjt pixel of the noisy image, where the proportionality accounts for the normalization-c
and the scalay; € R to represent the value of the centetiant which depends of;;
7"

pixel of jth patch. Without loss of generality, we assume that In general, botH{ iz, }5_, and{Cij}k.n have to be learned

all pixel intensity values have been normalized to the range | the dataP. However. for the pu;ggée of this paper, which
[0, 1]. : . ' '

. . . i to analyze the performance gain phenomenon, we assume
The results presented in this paper are applicable to a w y P gan p

e .
. : L atC;; takes a special form as follows.
range of smoothing filters. However, for simplicity we shal‘ Cij : . P . 1
Assumption 1:For any j, we assume thaC;;~ = ;I

focus on smoothing filter3¥ of the following general form
. where
(See Tablé]l for examples): def N(pj |y, 5)
Zf:l N(pj |, 34) ’

Wij = ri N(p; | q;, Z0), )

wherex; %' (2P, is a normalization constant, and(-) and E;-].IS ]E_Te covarlagc:(fe matrlxI del;med according to the
denotes g-dimensional Gaussian: smoothing filter, e.g.l]_ ) for non- ocal means.
If we apply assumptiohl1 td7), it becomes clear that
def 1

1
N(pj|qz'a2i) = ‘exp{__(pj_qi)Tzi1(pj_qi)}7 k
oL @ 7(p;1©) o [Lexw (=vsllp; — wil?) . ©)
i=1
with meang, € R” and covariance matri¥; € R”?*?. The The reason of defining,;; as in [8) is to ensure that;;
vectorp; € R” is ap-dimensional feature vector of thgh s a function of u,. If ~,;; is independent ofu;, then one
pixel of the noisy image. can show that learning the pair;,~;;) in @) is equivalent
Example 1:For non-local means_[3], the feature vectofy solving a non-negative matrix factorization problBmOf
p; is a concatenation of the spatial coordinatgsand the couyrse, solving such a matrix factorization problem is adval
intensity values of theth patchy;: step to learn®. However, the associated EM algorithm can
T T no longer be used to study the symmetrization effect — which
Pj = [z yi ] ®) will defeat the goal of this paper. Therefore, in the resthef t
The ith mean vector and thah covariance matrix are paper we assumegl(8) holds.
z; R2I 0 1 gef Since EM algorithm is a known method, we refer interested
q; = {y ] , and X; = { 0 th] = 3nxLM, (6) readers to the tutorial by Gupta and Chénl [24] for a gentle

) ’ introduction. We now present the EM algorithm to le@r
respectively, wheré; and h,. are parameters. Note that for{ p, e, from P
1J)1= "

NLM, the covariance matrices are identical.

(8)

ij

) 1For any fixedp;, the norm-squardip,; — ;|2 is a scalar indexed by.
B. Product of Gaussians (PoG) Model Let v; = ||p; — p;||? be such scalar. Then, the sUm,; v;;v; is a matrix-
. . def vector multiplication ofI’ = (v;;) andv = (v;). Since~y;; andv; are
Consider a set of: data .pomts’P = {py,...,p,} where non-negative, findingy;; and v; simultaneously is equivalent to solving a
p; € RP, we say thatP is generated from a PoG Of non-negative matrix factorization.



Proposition 1: Under Assumptiofll, the E-step and the M- I1l. GENERALIZATION OF SYMMETRIC FILTERS

step of learning® = {u,;}*_, from P = {p,}"_, are : . . . :
P P = {pikims P=A{pilia In this section, we discuss how various symmetric smooth-

E-Step ing filters can be generalized by the EM algorithm.
o Ny %) 10)
Yok Ny e =) A. Standard Non-Local Means
M-Step: We first study the non-local means (NLM) smoothing filter.
s a8 To establish the relationship between PoG and NLM, we
(t+1) j=1Tij Pj S . . (0)
B E (11) initialize the EM algorithm withpu;” = p, and choose
2j=1 Tij 3, = 3npum. However, instead of defininggl?) using [10),

respectively, where the superscript® denotes thet-th we initializewf?) as
iteration of the EM algorithm. © ©
Proof: See Appendix A. [ T =N(p; B Enim). (17)

Letting v;; = wl@, and using[(B) together with the condi-
tions in Examplde, we observe that the denoised image of
this (zero-iteration) EM algorithm is

The PoG model specified byl (9) allows us to derive various R ©) S Wiy,
image denoising algorithms by solving a maximum-a-posteri ~ z; = argmin Z Ty (2 — yj)? = ﬁ,
(MAP) estimation problem. In particular, sindg (9) is a prio = g=17
model ofp;, we can consider the following MAP formulation:which is identical to[(I5), i.e., it is the NLM solution.

n The PoG perspective of NLM provides a way to understand
Z=argmin Az —y[> > log f(p;|®), (12) the underlying principles of NLM. The variable{; =
z j=1 N(pj | p;, Xn1Mm) IS an un-normalized conditional probability
where ) is a parameter, and the summation oyefollows that thejth patchp; belongs to theth Gaussian component.

from the independence gf,. Substituting[(P) into[(112) yields Note that\(p; | p;, Znwm) is not a legitimate probab(i)lity
because summing overis not equal to 1. The action o:fgj)
~ . y . 9 is to implicitly group patches according to their distance to
# = argmn Alz =yl + 3> %P5z = mill’, (13) e centers of the Gaussians. However, such grouping hgs onl
j=11i=1 . . y . .
_ _ _ limited effectiveness because the cem,éor = p, is the noisy
where P; is a matrix which extracts thgth feature vector data itself. Moreover, the grouping is performed only once

C. Patch-based Denoising Algorithm

(18)

j=1

k

from the imagez, i.e., P;z = p,. because there is no EM iteration. Therefore, it is reasenabl
Example 2:1f we use P; to extract thejth pixel of z to expect a limited performance of NLM.
instead of extracting a feature vector, thédh;z = z;.
Moreover, if we letA = 0 and p; = y;, then [IB) can be )
simplified as B. One-step Sinkhorn-Knopp
n k To analyze the one-step Sinkhorn-Knopp, we first express
Z = argmin Z Z vij (25 — yi)?. (14) (@) as two consecutive steps:
2 j=li=1 WD, = Wiy N(jlpi, Exim) (19)
Letting v;; = W;; (with k = n), theith entry ofz becomes ¢ NI Wy Y N(py | pi Exim)
T Wiy _ _ WD,
% = 723;1 il (15) [D'WDi; = —i ]fl : (20)
Zj:l Wij Zj:l[WDc ]ij
which is exactly the non-local means. Inspecting the equations, we observe that (19) is equivéden

Example 3:If we substitute f(p,|®) in (@2) with the the E-step with the initializationp "’ = p,. In this case,
standard Gaussian _mixture_ model (GMM) instegd of t_he PoG © N(p; | pi Exim)
model, then we will obtain an MAP estimation with an  7;;" = ==

Dict N(Pj |P;, ENLm)

expected patch log-likelihood prior (EPLL) [22]:
Substituting[(2IL) into[(14), théth pixel of the denoised image

=[WD."l;;. (21

n k
zZ= argmin Allz — Yy ’— 1Og w’LN DK, C’L ) IS n 0 n —
z | | ; ; (i ) 5= Zj:l Wz(j)yj _ Zj:l[WDc l]ijyj 22)
(16) Siany  XiaWD My

where w; is the weight of theith Gaussian mixturep; is By identifying (Z1) with [Z0), and[{22) witH{11), it becomes

the ith mean, andC; is the ith covariance matrix. We will clear that the column normalizatidn {19) is the E-step, dued t
compare the difference between EPLL and PoG in Setfion Mw normalization[{20) is the M-step.
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The column normalization ensures thaj is a legitimate  In the M-step, instead of computing the actual mpétrTl),
conditional probability, and hence the EM algorithm of lear we define an intermediate vanabtﬂét*l) as
ing the PoG model is valid. To demonstrate the differengg-step:

between standard NLM and one-step Sinkhorn-Knopp, we 20
. . (t+1) ZJ 23
consider the following example. Bii T m (23)
Example 4:Smoothing filters can equivalently be consid- Za 17ij

ered as graphs [5]. In Figufé 3, we consider a cluster ofGonsequently, the E-step becomes
data points{p,,...,p,s} and two cluster center§u,, pu,}. E-step

Without loss of generality let us assume that all these 4 data 5(”1)

points belong to the first cluster. The weight of the edgetigk SH) S

u; andp; is denoted a$V;; (See Figurél3(a)). In this example, Y Bij

we assume that Clearly, [23)1(24) is equivalent to the full Sinkhorn-Krmp

0.9 09 09 03 |terat|on However, ad (23) require an intermediate végiab

01 01 01 o0.1l" ﬁ” , the modified EM steps do not correspond to a valid EM
. . algorithm for learning the PoG model.

Thus, {p,, p,,p;} have strong connections with, butp,  To understand the difference between the modified EM

only has a weak connection. For the other clugigr all  zigorithm and the original EM algorithm, we note frofil(24)

{p1, P>, P3,p4} have a weak connection. and [Il) thatﬂ(t.“) is an approximation of the likelihood
Now, if we apply column normalization té¥;; we can N(p. | E) In fact, if we compute the actual mean
obtain a column-normalized graph; = W;;/> . Wi;, i.e., (tf{) “Z P P
' ' W, (which is never explicitly calculated in the modified
(1) = 09 0.9 09 0.75 EM), we can show that
* 0.1 0.1 0.1 0.25]°

(24)

(Wiz) =

(1) _ M @ Z 5

The difference betweefil;;) and (m;;) can be seen from w; —
the new empirical meang; ger Z_j Wijpj_/ >_; Wi;. In the =1 ZJ

case of(I/Igj), vl\)/e observe;\c 'E[Prw]aﬁl :st_a plomt Io;l:atzd n%?r to where (a) follows from (23). [Z5) indicates thaﬂ(tJrl

P1, P2 GNEPs DECAUSE OF Te TEEVEY Smat 8098 Ols 4 Jinear combination of(p;}7_,, with {8} being

E;m)p?,;eedofg;\l,é %Zﬁarrg gli?té:?;vvsgz’ forbg::zucsfre Of the combination weights. Therefore, while the mod|f|ed EM
7 ! P4 1 algorithm does not explicitly the new meap$t+1), there is

has a similar value compared4g,, 712 andm3. Putting this . ; ! ) ;
in a more qualitative description, the column normalizatio?" |mpI|C|t groupmg of pixels performed via the interactio
betweenﬂ andm;;

triesto i the infl fl I its in th
ries to increase the influence of less popular units in taplgr The fact that the fuII Sinkhorn-Knopp is not a valid EM

or to *balance out” the influence of the minority. algorithm for learning the PoG offers some insights into the
performance gain phenomenon. Recall from the results in
Figure[2, we observe that not all images have increasing PSNR
when more Sinkhorn-Knopp iterations are performed. In,fact
the PSNRs increase monotonically only for images 1-3, which
are artificial images. These images are common in that there
are only a few distinctive clusters. Therefore, th )'s are
good approximations to the true likelihood (p; | uit), 3).
However, for other images where the clusters are not so
distinctive, theﬁi(;)’s have worse approximation and so the
PSNR would drop.

T (25)

D. Summary

To summarize our findings, we observe that the perfor-
mance of the normalization is directly relateditow the EM
Fig. 3: Comparison between standard NLM and one-stefgorithm is being implemented=or standard NLM, there
Sinkhorn-Knopp. The red cross represents the new positisnno EM iteration and the weights are not the legitimate
of the updated mean. probabilities. Thus its performance is the worst. The situa
improves when we apply a column normalization in Sinkhorn-
] Knopp, because the one-step Sinkhorn-Knopp is equivalent
C. Full Sinkhorn-Knopp to one iteration of the EM. However, when extending to full
The full Sinkhorn-Knopp (Algorithm[]1) is an iterative Sinkhorn-Knopp, the performance drops again because the fu
algorithm that repeatedly applies the one-step Sinkhamogp Sinkhorn-Knopp is only an approximated EM algorithm.
until convergence. To establish its link to the EM algorithm We summarize our results in Tallé Il. Besides the perfor-
we first consider a modification to the EM algorithm. mance gain phenomenon, we have two additional observations

(b) One-step Sinkhorn-Knopp.



TABLE II: Generalization and comparisons using EM alganitfor learning GMM with knownX.

Standard One-Step Full PoG-NLM
NLM [B] Sinkhorn-Knopp [15]  Sinkhorn-Knopp [18] (generatition)
No. Clusters k=n k=n k=n k<n
(cross-validation)
ialisati (0) (0) N(pj‘llo(LO)szNLM) N(PJIMED),ENLM) N(Pﬂl"EO)vENLM)
Initialization i N(p;lp;” Exnewm) NG AT E) SN RO B S N e S
(0) p; p; p; randomly pickedp,
E-step Updatew(” X v v (via ﬂf;)) v
M-step Updateu(” X X v' (implicitly) v
No. Iterations 0 1 Many Many
Denoising A 0 0 0 by SURE
Parameters P,z Zj Zj zj
0 0 t t
s 0 0 ) 0

First, in all three symmetrization schemes, the number optimality condition we obtain a normal equation
clustersk is equal to the number of data points This
setting is suboptimal because ideally we would like to group
multiple pixels into one cluster, and hence we like to have
k < n. Second, since none of the three symmetrization
schemes is the complete EM algorithm, it is natural th&f which the solution is the minimizer of (27). Ih_(28), the
a new denoising algorithm can be designed based on Mgftorw; is defined as

complete EM algorithm. As a preview we show and compare
the proposed method in the right most column of Tafle II.

Xn:PJTPj+AI zzipfwﬁxy,

j=1 j=1

(28)

def
’LUj =

Yij /Lz(r)

>
=1
IV. PRODUCT OFGAUSSIAN NON-LOCAL MEANS To interpret[ZB){(29), we note thatis a weighted average of
The proposed denoising algorithm is called the Product {)ﬁz(-r)}f:l. The operation ofP;’s represents an aggregation
Gaussian Non-local Means (PoG-NLM). The idea of Pof the spatially overlapping estimates (c.f..[25]). Theliddn
NLM is to run the full EM algorithm [(ZD)E(T1) for the NLM of Ay regulates the cluster centers by adding a small amount
filter defined in Exampl€]2 and solve the MAP optimziatiowf fine features, depending on the magnitude\of
(I3). In the following subsections we will discuss how the In order to use[(28), two technical issues must be resolved:
PoG-NLM is designed. (i) Determine); (ii) Determinek.

(29)

A. PoG-NLM B. Parameter Estimation

First of all, because the non-local means feature vectorWe now discuss how to choose Ideally, A should be
contains a spatial component and an intensity compor&jt, (€hosen as the one that minimizes the mean squared error
can be written as (MSE) of the denoised image. However, in the absence of the

ground truth, MSE cannot be calculated directly. To all&via
_ argm|n Az -yl + Z Z%J this difficulty, w\e cor)sider the Stein’s Un_biased Risk Es_ﬂm
o tor_(SURE) [26], [27]. SURE is a consistent and unbiased
estimator of the MSE. That is, SURE converges to the true
MSE as the number of observations. Therefore, when there are
sufficient number of observed pixels (which is typicallyeru
for images), minimizing the SURE is equivalent to minimgin

2
e

21- ) N

(r)
where \ is a parameterg; is the spatial coordlnate of the
jth pixel, z; is the jth patch of the denoised imagg, (*) g

)

the spatial component of thigh cluster centeps,;, and p;"
is the intensity component qgi;. Sincex; is independent of

the true MSE.
In order to derive SURE for our problem, we first make the

the optimization and thus can be eliminated without chaggitfiollowing assumption.

the objective function. Moreover, if we define a mat#x €
R¥*" as a patch-extract operator that extracts;ttepatch of
the image, i.e.P;z = z;, then [26) becomes

= argmln Mz —ylI>+ Z Z%;

j=1 =1

| (27)

Assumption 2:We assume that the patch-extract operator
{P;}7_, satisfies the following approximation:

> PP;=dlI
j=1

We note that Assumptionl 2 only affects the boundary pixels

(30)

The optimization in [(2]7) is a quadratic minimization andnd not the interior pixels. Intuitively, what Assumptibh 2

so closed-form solution exists. By considering the firsteord

does is to require that the boundary pixels of the image
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are periodically padded instead of zero-padded. In image x 10~

restoration literature, periodic boundary pad is commoenvh -— - MSE
analyzing deblurring methods, e.d., [28]. —— SURE
Under Assumptiof]2, we can substitufe](30) irta] (28) and or _F
take the matrix inverse. This would yield /’/‘
8r 3 i
d A Z
Zl = — _— 31 Z
N =Tty G 7 ]
where N //
def 1 i y ]
u® y > Plw,. (32 ¢ /./
Jj=1 Y
Then, we can derive the SURE &fas follows. ’ 0/' ]
Proposition 2: Under Assumptiofi]2, the SURE &f()\) is . Y ]
9 9 d 2 952 \ 7
SURE(\) = — o7 | —— —
*) U+”(d+A)+n< d+A

div(u)d + n)? =
3 0 20 40 60 80 100

~92 def 1 2 ( ) A
whereg? = =|ju — yl|#, and . .
" Fig. 4: Comparison between SURE and the ground truth MSE

n k noe. of a denoising problem.

. def 1 T Zj:l Vij€j

div(u) = lle - ZP <Z%‘j (ni )
d —~ T\ = 2oj=1 Yij

(34) Our proposed cross-validation method is based on compar-
wheree; € R? is the jth standard basis. ing the estimated covariance wilixy. More specifically,
Projof: See Appendix B. m e compute the estimated covariance
The SURE given in[(33) is a one-dimensional function in noo (o Y
. The minimizer can be determined in closed-form. ;= 2j=1 Y (x; _ wi) (p; — 1) , (36)
Corollary 1: The optimal\ that minimizesSURE(}) is 2 =1 i

52 R N A LA
v max (al (T n “1).0). (35 whergul (7, Hl(o]o) is the mean return(_ad by the EM
o2 n — div(u) algorithm, andy;; = 7, is the converged weight. Then, we

compute the ratio of the deviation

M

Proof: (33) is a differentiable function in\. Therefore,
the minimizer can be determined by considering the firstrorde oy 1 I
optimality and set the derivative SURE()) to zero. The 0ilk) = d TY{ENLMEZ}' (37)
projection operatomax(-,0) is placed to ensure that* > 0. Ideally, if S, = S, then by [3Y) we have; (k) — 1

Example 5:To demonstrate the effectiveness of SURE, ngowever, If theith estimated Gaussian component has a

. . ! “radius significantly larger thark, (or, h, for the spatial
show a typical MSE and a typical SURE curve of a denmsm&mponegr]\ts) the¥1 thg covarian&gi would deviate pfrom
problem. In this example, we considerla8 x 128 image '

“Baboon”, with noise standard deviation of= 30/255. The Ny and hencd;(k) > 1. Conversely, if thaith estimated

Gaussian component has a radius significantly smaller than
non-local means parameters are = o andh, = 10. The , 0 haved;(k) < 1. Therefore, the goal of the
number of clusters i& = 50, and the patch size i x 5. " ! X ' g

The results are shown in FiguE® 4, where we observe that §ross validation is to find & s_uch_ thaty; (k) is close to 1.
SURE curve and the true MSE curve are very similar. In fact, 2 complete the cross_—val|dat|on setup, we average)
o ; y ver all k clusters to obtain an averaged ratio

the minimizer of the true MSE i$ = 8.0080 with a PSNR ° 9

of 24.5143dB whereas the minimizer of SURE Js= 7.9145 15

with a PSNR 0f24.5141dB. o(k) = 2> 0i(k). (38)
Remark 1:Careful readers may notice that ih_{34), we i=1

implicitly assume thaty;; is independent of,;. This implicit The parenthesigk) in (38) emphasizes that boti(k) and

assumption is generally not valid i;; is learned fromy. §;(k) are functions ofc. With (38), we seek the rodt of the

However, in practice, we find that if we feed the EM algorithnequations (k) = 1.

with some initial estimate (e.g., by running the algorithm The root finding process fof(k) = 1 can be performed

with A = 0), then the dependence of; from y; becomes using the secant method. Secant method is an extension of

negligible. the bisection method in which the bisection step size (i.e.,
1/2) is now replaced by an adaptive step size determined by
C. Number of Clusters the local derivative of the function. Lét® andk(® be two

The number of clusterg is another important parameternumber of clusters, and® and §(*) be the corresponding
We estimatet based on the concept of cross validation| [29]cross-validation scores, i.e3(*) = §(k(®). If () > 1 and



— (k)
—— PSNR

126

;k(b)

“":5(1?)

Fig. 5: lllustration of the secant method. Giveft) andk(®),
we computek(®) according to the slope defined by the line
linking 6(® and§®).

Algorithm 2 Cross Validation to Determink 2% 100 5 200 250"

k
Input: £ andk® such thaty(* > 1 and§® < 1.
Output: &(¢),

Fig. 6: Comparison between the cross validation scgke
and the true PSNR value as a functionfofThe horizontal

while [k — £©| > tol and[k® — k| >tol do dashed line indicates the intersectiomét) = 1.

Computek() according to[(39).

Computes(© d:ef(s(k(c)) according to[(38). TABLE llI: Configurations of Methods

if 5(k(©)) > 1 then Method Configuration
k(@) k(0 §l@) 50, NLM [B] Patch size5 x 5, hy = 10, h, = a\/d
else One-step([15] Patch sizex 5, h, = 10, h, = o/d
KO = k) 60 60, PoG-NLM  Patch sizé x 5, hy = 10, h, = 0
end if GLIDE [9] Default settings. Pilot estimate uses NLM.
end while BM3D [25]  Default settings.
EPLL [22] Default settings. External Database.

§(®) < 1, the secant method computes the reas
E@(5®) — 1) — k) (5@ — 1) Several existing denoising algor?thms are studied, nartady
©) = 5B — 5@ (39) standard NLM [[3], One-step Sinkhorn-Knopp_[15], BM3D
B [25], EPLL J22], and Global image denoising (GLIDE)][9].
If §(k(?) > 1, then we replacé(® by k(®); Otherwise, we The parameters of the methods are configured as shown in
replacek(®) by k(®). The process repeats until the®) —  TapleIl. For NLM and Sinkhorn, we implement the algorithm
k| <tol and|k® — k(| < tol. A pictorial illustration by setting the patch size as x 5 (i.e., d = 25). The
of the secant method is shown in Figlile 5. A pseudo codepgrameters aré, = 10 and h, = ov/d. For the proposed
given in Algorithm[2. PoG-NLM, we keep the same settings as NLM and Sinkhorn
Example 6:To verify the effectiveness of the propose@xcept for the intensity parametéy. where we seth, = o.
cross validation scheme, we consideld28 x 128 “House” The omission of the factox/d is due to the fact that each
image with noiser = 60/255. The patch size i§x5, b, = o0, Gaussian component is alreadylalimensional multivariate
andh, = 10. Figurel6 shows the PSNR value of the denoiseflstribution. It is therefore not necessary to normalize th
image and the corresponding cross validation s¢fg as distance||y; — y;||? by the factord. For BM3D, EPLL and
a function ofk. For this experiment, the maximum PSNR i5LIDE, we downloaded the original MATLAB code from the
achieved at; = 144, where PSNR = 26.0257dB. Using the author's websitABf. Default settings of these algorithms
cross-validation scoré(k), we find thatd(k) is closest tol  are used. Among these methods, we remark that EPLL is
whenk = 130. The corresponding PSNR value is 25.9896dByn external denoising algorithm where a Gaussian mixture is

which is very similar to the true maximum PSNR. learned from a collection of 2 million clean patches. All @th
methods (including PoG-NLM) are single image denoising
V. EXPERIMENTS algorithms.
In this section, we present additional simulation resudts t
evaluate the proposed PoG-NLM. B. Comparison with NLM and One-step Sinkhorn-Knopp
The overall results of the experiment are shown in Table IV.
A. Experiment Settings We first compare the PSNR values of the proposed method

We consider 10 testing images,_each of which ha_s Siz@g\iap: it /o, cs. fUE i Fo GCF-BM3D
128 x 128 (so n = 16384). The noise standard deviations 3gp| | : hitp:/ipeople.csail.mit.edu/danielzoran/
are set ag € {20/255, 40/255, 60/255, 80/255, 100/255}. 4GLIDE: |https://users.soe.ucsc.editalebi/GLIDE.php


http://www.cs.tut.fi/~foi/GCF-BM3D/
http://people.csail.mit.edu/danielzoran/
https://users.soe.ucsc.edu/~htalebi/GLIDE.php
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TABLE IV: Denoising results of Standard NLM_[3], One-stempEhorn-Knopp[[15], BM3D [[25], EPLL[[22], Global image
denoising[[9], and the proposed PoG-NLM.

NLM Sinkhorn Ours GLIDE BM3D EPLL| NLM Sinkhorn Ours GLIDE BM3D EPLL

€] [15] K] [25] [22] 5] [135] ] [25] [22]

o Baboon Barbara

20 | 24.53 25.01 26.84 26.51 26.96  27.1926.05 27.02 29.43 28.64 29.42 2940

40 | 22.32 22.55 24,49 24.04 2457  24.5621.48 21.91 25.41 24.83 25.35 25.79

60 | 21.31 21.46 23.32 22.87 23.53 23.4419.31 19.55 23.28 22.33 23,55 23.64
1
0

80 | 20.76 20.87 2251 22.22 22.77  22.6618.25 18.38 21.83 20.92 2230 221
100 | 20.43 20.52 2198 20.68 22.14  22.0917.68 17.76 20.77 19.82 21.30 21.
o Boat Bridge
20 | 24.88 26.05 28.43 27.55 28.58  28.7623.99 24.95 26.90 26.34 27.09 27.25
40 | 21.97 22.39 2496 24.35 25.12  25.3220.87 21.35 23.85 23.18 23.88 24.19
60 | 20.46 20.70 23.19 22.59 23.47  23.5619.58 19.85 2224 21.47 2244 2248
80 | 19.60 19.74 2214 21.42 22.43  22.4118.83 19.01 21.20 20.44 2145 21.42
100 | 19.09 19.18 21.34 20.50 21.74  21.5318.35 18.48 2046 19.75 20.67  20.66
o Couple Hill
20 | 24.54 25.62 28.20 27.25 28.42  28.6025.51 26.38 28.68 27.98 28.82  28.4
40 | 21.67 22.10 2464 23.95 25.00 25.1122.58 23.11 2555 24.79 2570  25.8
60 | 20.35 20.60 23.07 22.32 23.36  23.3721.33 21.69 23.95 23.26 2421 24.]
80 | 19.64 19.81 22.02 21.40 22.32  22.3020.68 20.93 2290 22.42 2319 23.1
100 | 19.24 19.35 21.23 19.80 21.56  21.5220.29 20.49 22.07 21.85 22.37 223
o House Lena
20 | 28.20 30.02 3292 31.82 32.73  32.4726.90 28.03 29.83 29.19 29.93  30.06
40 | 23.26 24.27 2831 27.31 28.91  28.7722.40 23.11 26.40 25.96 26.23  26.70
60 | 21.40 21.79 26.05 24.72 26.68  26.5820.22 20.60 2449 2351 2449  24.80
80 | 20.52 20.70 2446  22.96 25.20  25.0419.09 19.32 23.10 22.00 23.22 23.45
100 | 20.04 20.13 23.21 20.80 23.96  23.8318.47 18.62 22.03 20.98 2225 2241
o Man Pepper

© N O O N

20 | 25.14 26.09 28.12 27.37 28.13  28.4326.17 27.89 29.58 28.86 29.61 29.76
40 | 21.93 22.26 2478 24.29 2491  25.1921.19 22.23 2543 2461 2544  26.02
60 | 20.26 20.45 23.12 2224 23.26  23.4819.05 19.61 23.28 2224 23.35  23.77
80 | 19.33 19.46 2201 20.72 2226  22.2717.92 18.22 21.71 20.58 2193 22.16
100 | 18.78 18.87 21.07 20.42 21.48  21.3817.27 17.45 20.51 1954 20.86  20.93
with NLM and One-step Sinkhorn. bandwidth of the smoothing filteld/. That is, a smallh,

In Table[M we show the average PSNR over the 10 testifgds to a banded diagon®” with small bandwidth. In the
images. In this table, we observe that on average One-stépt when h; — 0, W will become a diagonal matrix, and
Sinkhorn has a higher PSNR than NLM by 0.12dB to 1.12d®ence is immune to any column normalization. Therefore,
with more significant improvements at low noise levels. Thige effectiveness of the column normalization in the Oeg-st
implies that the “grouping” action by the column normalizaSinkhorn-Knopp depends on how largg is.
tion becomes less influential when noise increases. Morgove
if we compare PoG-NLM with NLM and One-step SinkhornC. Comparison with GLIDE
we observe that the PSNR gain is even larger. Even at a higigLIDE [9] is a recently proposed method that implements
noise level (e.g.g = 80/255 or o = 100/255), the average a full Sinkhorn-Knopp iteration. In addition to Sinkhorn-
gain from NLM is 2.5dB or more. Knopp, GLIDE also incorporates an estimator to optimally

Besides studying the trend of PSNR as a functioroft determine the number of non-zero eigenvalues and the power
is also interesting to compare the PSNR when we increasfeeigenvalues of the smoothing filter. GLIDE can use any
the spatial parametet,. In Table[Vl, we show the PSNR denoising result as its pilot estimate. For the fairness of
improvement when we use differeht € {5, 10,20,50,100} the experiment we follow the default setting of GLIDE and
for a 128 x 128 image. The results show that when use the standard NLM as the pilot estimate. The result in
increases, the PSNR improvement also increases. One reakanie[ VIl shows that in general PoG-NLM has at least 0.65dB
is that in [8), the spatial parametgr controls the diagonal improvement over GLIDE. This result is consistent with our
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TABLE V: PSNR comparison with different noise level TABLE VII: PSNR comparison between GLIDE and PoG-

Averaged over 10 testing imagés, = 10. NLM. Average over 10 testing imagek; = 10.
NLM Sinkhorn Ours PSNR» PSNR3 GLIDE Ours

o (PSNR;) (PSNR:) (PSNRs) —PSNR: —PSNR, o (PSNR;) (PSNR;) PSNR;— PSNR,
20 25.59 26.71 28.89 +1.12 +3.30 20 28.15 28.89 +0.74
40 21.97 22.53 25.38 +0.56 +3.41 40 24.73 25.38 +0.65
60 20.33 20.63 23.60 +0.30 +3.27 60 22.75 23.60 +0.85
80 19.46 19.64 22.39 +0.18 +2.92 80 21.51 22.39 +0.88
100 18.97 19.09 21.47 +0.12 +2.50 100 20.42 21.47 +1.05

TABLE VI: PSNR comparison with different parametét.  TABLE VIII: Comparison with EPLL using different pilot esti
The testing image is “Man’ = 40/255. mates: “Noisy” uses the noisy image; “BM3D” uses the BM3D
estimate; “Clean” uses the oracle clean image; “Externséisu
an external database. Testing image is “House”.

NLM Sinkhorn Ours PSNR» PSNR3
hs (PSNR:) (PSNR2) (PSNRs) —PSNR; —PSNRs

5 2282 23.08 24.76 +0.26 +1.68 EPLL EPLL EPLL EPLL Ours
10 21.83 22.24 24.83 +0.41 +2.60 o (Noisy) (BM3D) (Clean) (External)

20 21.25 21.66 24.79 +0.41 +3.13 20 25.40 3241 32.46 32.47 32.92
50 20.92 21.59 24.74 +0.68 +3.15 40 19.75 28.32 28.31 28.77 28.31
100 20.53 21.38 24.73 +0.85 +3.36 60 16.42 25.73 25.80 26.58 26.05

80 14.29 24.05 24.07 25.04 24.46
12.71 22.59 22.73 23.83 23.21

observation that full Sinkhorn-Knopp is an incomplete EM _100
algorithm.

be estimated through a cross-validation scheme, the actual
D. Comparison with EPLL complexity also depends on the number of cross-validation
are the Gaussian mixtu?&eps' To provide readers an idea of howhanges with other

Our next experiment is to comp ¢ ¢ duct t X ;
model (GMM) of EPLL [22] and the proposed PoG priorfSys €M parameters, we conduct two experiments.
In this experiment, we feed the noisy patches to two EM In Table[IX we show the number of clusters returned by

algorithms to learn a GMM and a PoG prior. The patch size lige cross-validation scheme as we increase the noise level.
fixed at5 x 5. and the number of clusters is fixed /as= 100 As shown, the number of clusters increases when noise level

We repeat the experiment by inputting the denoised result reduces. This resul'_[ is consistent with our intuition: Asseo
BM3D and the oracle clean image into the EM algorithms. "éduces, the grouping of patches becomes less important. In
From TableCVIl, we observe that EPLL with a noisy input,the limit when the image is noise-free, every patch will reeo
performs poorly. The reason should be clear because the Gl\!/Fﬁ/Iﬁwnf clulster center. Therel;ore, one Il_mltayon of PIS%NNL
learned from the noisy patchesrist the prior distribution of 's that for low-noise images the computing time could be very

the clean patches. In contrast, while the PoG learned in tR89: However, POG-NLM is still a useful tool as its simple
structure offers new insights to denoising.

proposed method is also not the prior of the clean patches; ) ; : ) .
actually leads to better results. Now, if we fix the noise level but change the image size, the

Another observation from TableVIl is that the performancEoMplexity of PoG-NLM also varies. In Tatld X, we show the
of EPLL depends heavily on the quality of the GMM. Foumber of clusters as a function of image size. As a reference
example, if we use the result of BM3D as a pilot estimate f§¥€ ls0_show the PSNR values of PoG-NLM and that of
learning the GMM, the performance of EPLL is similar to th&M3D- The result in Tabl¢ X indicates that the number of
oracle case where we use the clean image. However, usgl]lésters increases with the image size. In the table, we also
BM3D as a pilot estimate is not a plausible approach beca¥&erve that BM3D performs worse than POG-NLM for smalll
by running BM3D alone we can get an even higher PSNIR'2g€es, but becomes better as image size increases.

(See Tablé&1V). This result further shows the effectivenafss At this point readers may perhaps ask whether it is possible
the proposed PoG-NLM for single image denoising. to take out the mean of the patches when learning the PoG,

as it could reduce the number of clusters. However, from our
experience, we find that this approach actually degrades the

E. Complexity and Limitations denoising performance. Our observation is that if the PoG is
Finally, we discuss the complexity and limitations of théearned from a collection of zero-mean patches, the dermisi
proposed PoG-NLM. step in [2¥) can only be used to denoise zero-mean patches.

PoG-NLM is a one-step denoising algorithm provided th€éhe mean values, which are also noisy, are never denoised.
PoG is given. However, learning the PoG using the ENlhis phenomenon does not appear in EPLL (in which the
algorithm is time-consuming, and the complexity depend®G has a zero-mean) because the means are iteratively
on the number of clusterk. In addition, sincek needs to updated. We followed the same approach to iteratively wpdat
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TABLE IX: Number of clusters returned by cross-validatian ag,ssian component. The distribution; given (p, u(t))
noise level increases. Test image is “Man”. Size48 x 128. 5 3 delta function: e
o| 20 30 40 50 60 70 80 ® 1, if 2 = wS),
k| 1445 667 372 243 162 125 104 83 P2 =2 [P b ) =0 o i L ol
I i

TABLE X: Number of clusters returned by cross-validation a&here

image size increases.= 40/255. Test image is “Man”.

(t) def
Ty =

N(p; |, =)

S N(p; | ), =)

Ours  BM3D
Size k PSNR PSNR Denoting® = {u,}, the complete data has a distribution

50 x 50 120 22.76 22.36 &
100 x 100 290 2442  24.21 log f(2i5p; 1 ©) = = 3" 2 lp, — 2.
150 x 150 501 25.21 25.32 i=1
200 x 200 778 25.82  25.99 At the t-th EM iteration, thejth Q-function is
250 x 250 996  26.14  26.35 (1), def ®
300 x 300 1322 2658  26.83 Q;(@107) =Eyz |, o0 [10g f(zi5,p;1© )}
350 x 350 1646 26.97 27.20 k
400 x 400 1966 27.26  27.49 =Bz 1p, 00 [— 3" zillp; — p” Iﬂ

i=1

k

th i i isi =S 7P p; — |2
e means. However, we find that in general the denoising ij 1P i

performance is still worse than the original PoG with means =1

included. Further exploration on this would likely providel herefore, the overalf)-function is

more insights into the complexity reduction issue.

QeeM) =>"q;©|e")

VI. CONCLUSION j=1
n k
Motivated by the performance gain due to a column nor- _ () )2
malization step in defining the smoothing filters, we study - z;z;ﬁij Ip; — piII (40)
Jj=1li=

the origin of the symmetrization process. Previous studies
have shown that the symmetrization process is related @8d hence thét + 1)-th update of® is
the Sinkhorn-Knopp balancing algorithm. In this paper, we (t+1) _ (t)
further showed that the symmetrization is equivalent to bh E © N arg@max QO[67). (41)
algorithm of learning a Product of Gaussians (PoG) mode;, .« [40) is a sum of quadratic functions, eachin (@J)
This observation allows us to generalize various symmetrig, pe solved individually as
smoothing filters including the standard Non-Local Means
(NLM), the one-step Sinkhorn-Knopp and the full Sinkhorn- (t41) < )
Knopp, and allows us to geometrically interpret the perfor- i = = afgm'”Z Ty Py =
mance gain phenomenon. Heo=

Based on our findings, we proposed a new denoising al-
gorithm called the PoG non-local means (PoG-NLM). PoG-
NLM is a simple modification of the NLM optimization B. Proof of Proposition 2
framework by using the PoG prior for maximum-a-posteriori
estimation. Equipped with a cross-validation scheme whichGiven an estimatog of some observatioy, the SURE is
can automatically determine the number of clusters, Po@Gefined as
NLM shows consistently better denoising results than NLM,
One-step Sinkhorn-Knopp and full Sinkhorn-Knopp. While
PoG-NLM has slightly worse performance than state-of-the- , ... .. - :
art methods such as BM3D, its simple structure highligheés tﬁSubstltutmg [(3L) intol(42) yields

n (1)
w2 = Zj:l T Pj
ol n ) -
Zj:l Tij

1 20%
SURE &' 52 ¢ |z -yl + %div(z). (42)

2

importance of clustering in image denoising, which seems to 1 . s 1 d A
be a plausible direction for future research. ﬁ”z —yllF = nla ¥t gy v
1] d 2
APPENDIX = HdJr—/\(U—y)
A. Proof of Proposition 1 d \2
_ 2
In order to derive the EM algorithm, we first need to specify =0 (—d T )\) ; (43)

the missing data. Referring tig| (9), we I&}; (with a realization et
zi;) be the hidden random variable denoting the weight of eaothere52 = Lllu — y||*. So it remains to determindiv(z).
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From [31), the divergencéiv(z) is 8]

div(z) = div(u) + div(y)

El
[20]

d A
d+ A d+ A

d 8u7 y;
d+A§: d+A§: i

[11]
To determmeﬂ we note from[(3R),[{29) and (lL1) that

n k n . [12]
1 Zj:l Yij Y
-~ i | St (44)
d g ; Zj:l Vij [13]
Since ~ _ -
[14]
P . P Yj—1 - 0 . [15]
63/,7' J 6yj Y J, [16]
Yj+1 0
L J L [17]
it holds that
[18]
n k n
. 1 D1 Vi€
div(u) =1 = Z pPT Z Vij | =
d i=1 ! i=1 Zj:l Vi [19]
and hence [20]
div(2) = zn: — v+ ). @s) Y
= d+ A d+ A
Substituting [(4b) and (43) int¢_(4#2) completes the proof. [22]
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