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Abstract. We show that the topological equivalence class of holomorphic fo-

liation germs with an isolated singularity of Poincaré type is determined by the
topological equivalence class of the real intersection foliation of the (suitably

normalized) foliation germ with a sphere centered in the singularity. We use

this Reconstruction Theorem to completely classify topological equivalence
classes of plane holomorphic foliation germs of Poincaré type and discuss a

conjecture on the classification in dimension ≥ 3.

0. Introduction

As for isolated singularities of analytic set germs (see [BK86] in the case of plane
curve germs) a standard technique to study the topology of holomorphic foliation
germs with isolated singularity looks at the intersection of their integral manifolds
with spheres centered in the origin (see [LS11] for a more general Morse-theoretic ap-
proach). The technique was particularly successful when analyzing holomorphic fo-
liation germs represented by vector fields, that is, foliation germs with 1-dimensional
leaves: Guckenheimer [Guc72] and Camacho, Kuiper and Palis [CKP78] (who use
polycylinders instead of spheres) classify foliation germs represented by generic lin-
earizable vector fields, whereas Camacho and Sad [CS82] treat resonant cases of
plane foliation germs represented by holomorphic vector fields of Siegel type.
In this paper we first prove a reconstruction theorem for holomorphic foliation germs
represented by a vector field of Poincaré type, that is, the linear part of the vector
field has eigenvalues whose convex hull in C does not contain 0 ∈ C: The topological
equivalence class of such a holomorphic foliation germ is uniquely determined by the
real-analytic foliation obtained on a sphere around the singularity when intersecting
it with all the leaves of a holomorphically equivalent, normalized foliation germ. For
more details see Thm. 2.4 and the preceding discussion in sections 1 and 2.
A similar reconstruction theorem for holomorphic foliation germs represented by
vector fields of Siegel type (that is, not of Poincaré type and the linear part has only
non-zero eigenvalues) seems possible. The main obstacles to prove such a theorem
are missing normal forms and the fact that leaves of such foliation germs may not
intersect spheres around the singularity transversally, but tangentially. However, in
sufficiently normal situations the intersection of leaves and sphere still combine to
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a real-analytic foliation on the sphere, and the tangential locus is the polar variety
of Limón and Seade [LS11] with useful properties.
In sections 3 to 6 we use the Reconstruction Theorem 2.4 to completely classify
topological equivalence classes of plane holomorphic foliation germs represented by
vector fields of Poincaré type, thus extending Guckenheimer’s Stability Theorem
[Guc72] in the 2-dimensional case.
Recently, Maŕın and Mattei presented a classification of topological equivalence
classes of plane holomorphic foliation germs satisfying weak genericity assumptions
[MM12], by exhibiting an invariant based on the reduction of plane holomorphic
foliation singularities and the holonomy around irreducible exceptional components
of the reduction. However this classification does not cover the resonant cases dis-
cussed in Section 4 because these are not of generic general type, in the terminology
of [MM12] (see Rem. 4.5). In any case, Maŕın and Mattei give no explicit lists of
topological equivalent foliation germs. Furthermore, our approach generalizes to
higher dimensions, at least in the Poincaré case, as Guckenheimer’s proof of sta-
bility of generic linearizable vector fields [Guc72] shows. In Section 7 we speculate
how to extend the 2-dimensional picture and Guckenheimer’s Stability to higher-
dimensional foliation germs represented by vector fields of Poincaré type.

1. Preliminaries on holomorphic foliation germs of rank 1

Definition 1.1. A germ of a holomorphic foliation of rank 1 in Cn with an isolated
singularity in 0 ∈ Cn is an equivalence class of pairs [U, θ] where U ⊂ Cn is an
open neighborhood of 0 with holomorphic coordinates z1, . . . , zn and

θ = f1
∂

∂z1
+ . . .+ fn

∂

∂zn

is a holomorphic vector field such that f1, . . . , fn ∈ O(U) vanish simultaneously
only in 0.
Two such pairs [U, θ] and [U ′, θ′] are equivalent if there exists an open neighborhood
V ⊂ U ∩ U ′ of 0 ∈ Cn and a function h ∈ O∗(V ) such that

h · θ|V = θ′|V .

We denote such holomorphic foliation germs by F .

Proposition 1.2. Let [U, θ] represent a holomorphic foliation germ F of rank 1 in
Cn with an isolated singularity in 0 ∈ Cn. Then for all p ∈ U − {0} there exists
an open neighborhood V ⊂ U of p and holomorphic coordinates w1, . . . , wn on V
centred in p such that

θ(w1) = . . . = θ(wn−1) = 0.

Proof. This is an immediate consequence of the holomorphic version of Frobenius’
theorem on integrability of involutive subbundles of the tangent bundle, see [War83].

�

The foliation charts described in this proposition can be used to define an
equivalence relation on U − {0}: Two points p, q ∈ U − {0} are equivalent if
there exists a sequence of points p = p0, p1, . . . , pK = q and neighborhoods

Vi ⊂ U − {0} of pi with coordinates w
(i)
1 , . . . , w

(i)
n as in Prop. 1.2 such that the

curves {w(i)
1 = . . . = w

(i)
n−1 = 0} and {w(i+1)

1 = . . . = w
(i+1)
n−1 = 0}, i = 0, . . . ,K − 1,

intersect.
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Proposition 1.3. The equivalence classes of this equivalence relation on U − {0}
have the structure of a holomorphic curve.

Proof. If V resp. V ′ and w1, . . . , wn resp. w′1, . . . , w
′
n are two different open neigh-

borhoods around p with holomorphic coordinates centred in p we have the following
commutative diagram:

Cn W_?
oo

��

V ∩ V ′
∼=oo

πzz

∼= //

π′ $$

W ′

��

� � // Cn

Cn−1 Cn−1

Here, the horizontal biholomorphisms are given by the coordinates, and the vertical
projections project onto the first n− 1 coordinates. Then two points in V ∩ V ′ are
mapped to the same point in Cn−1 by π if, and only if the two points are mapped to
the same point in Cn−1 by π′, by Frobenius’ Theorem. Consequently, the equiva-
lence class of p ∈ U−{0} coincides with the holomorphic curve w1 = . . . = wn−1 = 0
in a small enough neighborhood around p. �

Definition 1.4. Let [U, θ] represent a holomorphic foliation germ F of rank 1
with an isolated singularity in 0 ∈ Cn. Then the holomorphic curves given by the
equivalence classes on U − {0} as in Prop. 1.3 are called the leaves of F in U .

We are ready to define the topological equivalence relation on holomorphic foliation
germs that we want to consider.

Definition 1.5. Two holomorphic foliation germs F , F ′ of rank 1 with an isolated
singularity in 0 ∈ Cn and represented by [U, θ], [U ′, θ′] are called topologically equiv-
alent if there exists a homeomorphism φ : V → V ′ of open neighborhoods V ⊂ U ,
V ′ ⊂ U ′ of 0 such that φ(0) = 0 and the leaves of F in V are mapped onto the
leaves of F ′ in V ′ by φ.

If φ is biholomorphic we say that F and F ′ are holomorphically equivalent.
We will focus on a special type of holomorphic foliation germs:

Definition 1.6. A holomorphic foliation germ of rank 1 with an isolated singularity
in 0 ∈ Cn represented by [U, θ] is said to be of Poincaré type if the eigenvalues
λ1, . . . , λn ∈ C of the linear part

A =

(
∂fj
∂zi

(0)

)
i,j=1,...,n

of θ =
∑n
j=1 fj

∂
∂zj

generate a convex hull not containing 0 ∈ C. Then the tuple of

eigenvalues (λ1, . . . , λn) ∈ Cn is said to be in the Poincaré domain.

The classical theorems of Poincaré and Poincaré-Dulac (see [Arn83, §24.D and E])
state that all holomorphic foliation germs of rank 1 with an isolated singularity
in 0 ∈ Cn of Poincaré type are even holomorphically equivalent to such germs
F of Poincaré type represented by an open subset U ⊂ Cn containing 0 and a
holomorphic vector field θ =

∑n
i=1 fi(z)

∂
∂zi

for which the following hold:

(i) In U , the fi(z) can be developed into powers series in the variables
z1, . . . , zn.

(ii) The linear part A =
(
∂fj
∂zi

(0)
)
i,j=1,...,n

of θ is in Jordan normal form.
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(iii) If λ1, . . . , λn are the eigenvalues of A appearing with their algebraic mul-
tiplicity, then the non-vanishing monomials zm1

1 · · · zmnn in fi(z), with
mi ∈ N0, satisfy

λi =

n∑
j=1

mjλj .

Note that condition (ii) implies that the linear term in fi(z) has the form λizi or
λizi+zi+1. In the latter case λi = λi+1 by the properties of the Jordan normal form,
hence all the non-vanishing monomials in these linear terms satisfy condition (iii).
For m = (m1, . . . ,mn) ∈ Nn0 a relation λi =

∑n
j=1mjλj is called a resonance of the

eigenvalues λ1, . . . , λn, and the monomial zm := zm1
1 · · · zmnn is called a resonant

monomial if it appears in fi(z).

Remark 1.7. If (λ1, . . . , λn) ∈ Cn is in the Poincaré domain then there are only
finitely many resonances λi =

∑n
j=1mjλj . Furthermore, a resonance relation with

λi on the left hand side is either the trivial resonance relation λi = λi, or λi does
not appear on the right hand side at all, that is mi = 0. For proofs, see [Arn83,
§24.B]. Note finally that we do not require

∑
imi ≥ 2 as in [Arn83] but only dis-

tinguish between the trivial resonant monomial zi in fi(z) and non-trivial resonant
monomials.

Remark 1.8. Let F be a holomorphic foliation germ satisfying (i), (ii) and (iii).
For the tuple (λ1, . . . , λn) ∈ Cn in the Poincaré domain there exists a maximal real
constant c > 0 such that

|
n∑
i=1

λiti| ≥ c ·
n∑
i=1

ti,

for all real numbers t1, . . . , tn ≥ 0. The number c can be interpreted as the distance
of the convex hull of λ1, . . . , λn in C from 0. By separately rescaling the coordinates
we can achieve that the entries of the matrix A on the superdiagonal are arbitrarily
small. If the entries are c

2n we will call F normalized (see the next section).

Remark 1.9. If n = 2 then every normalized holomorphic foliation germ of rank 1
with an isolated singularity in 0 ∈ Cn of Poincaré type is represented by a vector
field of one of the following types:

(1) θ = λz1
∂
∂z1

+ z2
∂
∂z2

, where λ ∈ C− R,

(2) θ = λz1
∂
∂z1

+ z2
∂
∂z2

, where λ ∈ R>0,

(3) θ = (mz1 + zm2 ) ∂
∂z1

+ z2
∂
∂z2

, where m ≥ 2, or

(4) θ = (z1 + 1
4z2) ∂

∂z1
+ z2

∂
∂z2

because the constant c of Rem. 1.8 is 1 in this
case.

2. The intersection foliation

In this section F is always a normalized holomorphic foliation germ of rank 1 with
an isolated singularity in 0 ∈ Cn of Poincaré type, and [U, θ] represents F , with
θ =

∑n
i=1 fi(z)

∂
∂zi

. Furthermore, λ1, . . . , λn are the eigenvalues of the linear part
of θ appearing with their algebraic multiplicity, and c > 0 is the real constant for
the tuple (λ1, . . . , λn) ∈ Cn in the Poincaré domain introduced in Rem. 1.8.
S2n−1
ε denotes the (real) 2n− 1-dimensional sphere in Cn centered in 0 ∈ Cn with

radius ε, and B2n
ε denotes the (real) 2n-dimensional ball in Cn centered in 0 ∈ Cn

with radius ε.
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Proposition 2.1. In each point p ∈ S2n−1
ε , 0 < ε � 1, the leaf of F through p

intersects the sphere S2n−1
ε transversally.

Proof. The holomorphic tangent vector θ(p) given by F in a point p ∈ S2n−1
ε is∑n

i=1 fi(p)
∂
∂zi

. The leaf of F through p = (p1, . . . , pn) does not intersect S2n−1
ε

transversally in p if, and only if θ(p) is tangent to S2n−1
ε in p if, and only if(

n∑
i=1

pidzi +

n∑
i=1

pidzi

)(
n∑
i=1

fi(p)
∂

∂zi

)
=

n∑
i=1

pi · fi(p) = 0,

where
∑n
i=1 (pidzi + pidzi) is the real differential in p of the equation

∑n
i=1 zizi = ε2

defining S2n−1
ε .

Since F is normalized fi(z) = λizi+gi(z) or fi(z) = λizi+
c

2nzi+1+gi(z), where gi(z)
is a power series convergent in U of order ≥ 2 (actually, a polynomial by Rem. 1.7).
Let J ⊂ {1, . . . , n} be the subset of indices j such that fj(z) = λjzj+

c
2nzj+1+gj(z).

Then we have ∣∣∣∣∣∣
∑
j∈J

pj
c

2n
pj+1

∣∣∣∣∣∣ ≤ |J | · c2n · ε2 ≤ c

2
· ε2.

Furthermore, since
∑n
i=1 pigi(p) is a power series in pi, pi, i = 1, . . . , n, convergent

in U and of order ≥ 3 there exists a real constant C > 0 such that

sup
p∈S2n−1

ε

|
n∑
i=1

pigi(p)| ≤ C · ε3.

These estimates imply that∣∣∣∣∣
n∑
i=1

pi · fi(p)

∣∣∣∣∣ ≥
∣∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

λipipi

∣∣∣∣∣−
∣∣∣∣∣∣
∑
j∈J

pj
c

2n
pj+1

∣∣∣∣∣∣−
∣∣∣∣∣
n∑
i=1

pigi(p)

∣∣∣∣∣
∣∣∣∣∣∣ ≥

≥
∣∣∣c · ε2 − c

2
· ε2 − C · ε3

∣∣∣ > 0,

for 0 < ε� 1. �

Remark 2.2. Since in the Euclidean metric the form
∑n
i=1 (pidzi + pidzi) in a point

p ∈ S2n−1
ε has length 2ε,∣∣∣∣∣

(
n∑
i=1

pidzi +

n∑
i=1

pidzi

)(
n∑
i=1

fi(p)
∂

∂zi

)∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

pi · fi(p)

∣∣∣∣∣
is 2ε times the length of the projection of θ(p) to the normal direction of S2n−1

ε in
p. In particular, the length of this projection is ≥ 1

2ε ·
c
4 · ε

2 = c
8 · ε for 0 < ε � 1,

by the calculations in the proof above.

From now on, let ε be small enough such that the conclusion of Prop. 2.1 and the
estimate in Rem. 2.2 hold for F .
Then in each point p ∈ S2n−1

ε the (real) tangent spaces of the leaf of F through p and
of S2n−1

ε intersect in a (real) 1-dimensional subspace. This yields a 1-dimensional
distribution on the real C∞-manifold S2n−1

ε denoted by F∩S2n−1
ε . This distribution

is integrable because it is 1-dimensional, see [War83]. Therefore we obtain a real
foliation on S2n−1

ε with 1-dimensional leaves , also denoted by F ∩S2n−1
ε and called

the real intersection foliation of F .
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Its leaves can be canonically oriented: In each point p ∈ S2n−1
ε choose those vectors

in the tangent subspace given by the distribution F ∩ S2n−1
ε in p which together

with the tangent vectors of the leaf of F through p pointing away from 0 ∈ Cn
represent the positive orientation of the complex structure on the leaf. Taking in
each point p ∈ S2n−1

ε a unit vector oriented in that way yields a nowhere vanishing
vector field on S2n−1

ε whose flow, denoted by ΦF , has integral curves coinciding
with the leaves of F ∩ S2n−1

ε .

Definition 2.3. Two real 1-dimensional foliations F ,G on the sphere S2n−1 are
called topologically equivalent if there exists a homeomorphism φ : S2n−1 → S2n−1

mapping the leaves of F onto the leaves of G.

Theorem 2.4 (Reconstruction Theorem). Two normalized holomorphic foliation
germs F ,G with an isolated singularity in 0 ∈ Cn of Poincaré type are topologically
equivalent if, and only if the real intersection foliations F ∩ S2n−1

ε and G ∩ S2n−1
ε ,

0 < ε� 1, are topologically equivalent.

Proof. We first show that two normalised germs F ,G are topologically equivalent
if their associated real intersection foliations F ∩S2n−1

ε ,G ∩S2n−1
ε are topologically

equivalent. To this purpose we note that the tangent vectors to leaves of F or-
thogonal to the tangent space of F ∩ S2n−1

ε in a point p ∈ S2n−1
ε pointing towards

0 ∈ Cn and projecting to a vector of length ε in normal direction to S2n−1
ε form a

real C∞ vector field v on the pointed ball B2n
ε0 − {0}, for some fixed 0 < ε0 � 1.

The vector field v is continuously extended to 0 by setting v(0) = 0 because by
Rem. 2.2 the tangent vector θ(p) describing F in a point p ∈ S2n−1

ε projects to a
vector of length ≥ c

8 · ε in normal direction to S2n−1
ε , and the lengths of the tangent

vectors θ(p) uniformly tend to 0 when ε→ 0.
Let Φ : B2n

ε0 × [0,∞) → B2n
ε0 be the associated flow. By construction, Φt maps

S2n−1
ε homeomorphically onto S2n−1

εe−t and can be continuously extended to 0 ∈ Cn,

and Φt is a topological equivalence of the real intersection foliations F ∩ S2n−1
ε

and F ∩ S2n−1
εe−t . This shows in particular that the topological equivalence class of

F ∩ S2n−1
ε does not depend on ε if ε is small enough.

Similarly, the homeomorphisms Ψt of the flow

Ψ : B2n
ε0 × [0,∞)→ B2n

ε0 , x 7→ xe−t

associated to the vector field
∑n
i=1 zi

∂
∂zi

map S2n−1
ε homeomorphically onto S2n−1

εe−t .

We construct the foliation cone of F ∩ S2n−1
ε0 as the (not necessarily holomorphic)

foliation on B2n
ε0 with real 2-dimensional leaves on B2n

ε0 \ {0} given by

Ψ({leaf of F ∩ S2n−1
ε0 } × [0,∞))

and the 0-dimensional leaf 0 ∈ Cn.
Since the foliation cones are constructed from the flow Ψ two topologically equiv-
alent real intersection foliations have topologically equivalent foliation cones, that
is, there exists a homeomorphism of B2n

ε0 mapping the leaves of one foliation cone
to the leaves of the other foliation cone, and in particular fixing 0 ∈ Cn.
On the other hand, the foliation F on B2n

ε0 is topologically equivalent to the foliation

cone of F ∩ S2n−1
ε0 , by the homeomorphism

H : B2n
ε0 → B2n

ε0 , q 7→ Ψtq (Φ
−1
tq (q)), q 6= 0, and H(0) = 0,

where tq = ln ε0 − ln ‖ q ‖= ln ε0
‖q‖ , implying ε0e

−tq =‖ q ‖.
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This finishes the proof of one direction of the theorem.
For the other direction let H be a topological equivalence between the holomorphic
foliation germs F and G, as defined in Def. 1.5. As shown above, F resp. G is
topologically equivalent to the foliation cone over F ∩ S2n−1

ε resp. G ∩ S2n−1
ε , for

ε > 0 small enough. Thus H defines a topological equivalence HC between these
foliation cones.
By possibly decreasing ε to ε′ we will obtain an embedding HC : B2n

ε′ ↪→ B2n
ε

such that HC(0) = 0 and leaves of the foliation cone over F ∩ S2n−1
ε′ are mapped

into leaves of the foliation cone over G ∩ S2n−1
ε . Composing HC with the radial

projection r : B2n
ε − {0} → S2n−1

ε produces a continuous map

h : S2n−1
ε′

HC
↪→ B2n

ε − {0}
r→ S2n−1

ε

Since HC may map S2n−1
ε′ to a topological manifold in B2n

ε intersecting the same
radial line more than once, h may not be injective, and hence not the wanted
homeomorphism. But from h we will be able to construct a homeomorphism
g : S2n−1

ε′ → S2n−1
ε defining a topological equivalence of F ∩S2n−1

ε′ with G ∩S2n−1
ε .

Since we have already shown that the topological equivalence class of real intersec-
tion foliations do not depend on small enough ε this shows the theorem.
Let LF,x denote the leaf of F ∩ S2n−1

ε′ through x ∈ S2n−1
ε′ , and LG,y the leaf of

G ∩ S2n−1
ε through y ∈ S2n−1

ε . Let CF,x denote the radial cone in B2n
ε′ with vertex

in 0 over the leaf LF,x ⊂ S2n−1
ε′ , and similarly CG,y the radial cone in B2n

ε with
vertex in 0 over the leaf LG,y ⊂ S2n−1

ε .

Claim 1. h is a surjective map, and h(LF,x) = LG,h(x) for each x ∈ S2n−1
ε′ .

Proof. There exists ε′′ � ε such that B2n
ε′′ ⊂ HC(B2n

ε′), as HC is an embedding fixing

0. Consequently, for every y ∈ S2n−1
ε , the segment [y, 0] ⊂ B2n

ε intersects HC(B2n
ε′ )

in a point HC(x), with x ∈ S2n−1
ε′ . Hence h(x) = y, and the surjectivity of h is

shown.
The equality LG,h(x) = h(LF,x) follows from the fact that by definition, the topo-

logical equivalence HC maps CF,x bijectively onto CG,h(x) ∩HC(B2n
ε′ ). �

We want to relate h to the flows ΦF : S2n−1
ε′ × R → S2n−1

ε′ and
ΦG : S2n−1

ε × R → S2n−1
ε whose integral curves are the leaves of the real inter-

section foliations F ∩ S2n−1
ε′ and G ∩ S2n−1

ε . Note that in general, ΦF and ΦG will
not commute with h, that is

(h ◦ ΦF )(x, t) 6= ΦG(h(x), t).

To obtain the correct relation, we lift ΦF to a flow ΦF̃ on S2n−1
ε′ × R, by setting

ΦF̃ ((x, t′), t) := (ΦF (x, t), t+ t′), x ∈ S2n−1
ε′ , t, t′ ∈ R.

The integral curves of ΦF̃ define a foliation F̃ on S2n−1
ε′ × R whose leaves project

onto the leaves of F on S2n−1
ε′ . Similarly,

ΦG̃((y, s′), s) := (ΦG(y, s), s+ s′), y ∈ S2n−1
ε , s, s′ ∈ R

defines a flow ΦG̃ and a foliation G̃ on S2n−1
ε × R whose leaves project onto the

leaves of G on S2n−1
ε .

Let p1, p2 resp. q1, q2 denote the projections from S2n−1
ε′ × R resp. S2n−1

ε × R to

the first and second component. If U ⊂ S2n−1
ε′ resp. V ⊂ S2n−1

ε are foliation
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charts of F resp. G, then p−1
1 (U) resp. q−1

1 (V ) are foliation charts of F̃ resp. G̃.
Consequently, h : S2n−1

ε′ → S2n−1
ε can be lifted exactly in one way to a continuous

map

H̃ : S2n−1
ε′ × R→ S2n−1

ε × R

such that H̃(x, 0) = (h(x), 0) for all x ∈ S2n−1
ε′ and the leaves of F̃ are

mapped into the leaves of G̃. In particular, q1 ◦ H̃ = h ◦ p1, and since

(ΦF (x, t), t) = ΦF̃ ((x, 0), t) the point H̃(ΦF (x, t), t) ∈ S2n−1
ε × R must be in the

same G̃-leaf as H̃(x, 0) = (h(x), 0). Hence there is an s ∈ R such that

ΦG̃((h(x), 0), s) = H̃(ΦF (x, t), t),

and the defining equations of ΦG̃ and H̃ imply that

ΦG((h(x), s), s) = (h(ΦF (x, t)), (q2 ◦ H̃)(ΦF (x, t), t)).

Setting τ := q2 ◦ H̃ ◦ (ΦF × p2) : S2n−1
ε′ × R → R and comparing the second and

the first components yield s = τ(x, t) and

(1) h(ΦF (x, t)) = ΦG((h(x), τ(x, t)).

This is the requested relation between h, ΦF and ΦG .
By construction we have

(2) τ(x, 0) = 0.

To obtain further properties of τ we need to investigate the leaves LF,x and LG,y
of the real intersection foliations F ∩S2n−1

ε′ and G ∩S2n−1
ε in more details. First of

all, we must carefully distinguish between the leaf topology on LF,x = ΦF ({x}×R)
and LG,y = ΦG({y} × R) defined as the finest topology such that ΦF|{x}×R resp.
ΦG|{y}×R are continuous, and the inclusion topology induced by the inclusion in

S2n−1
ε′ resp. S2n−1

ε . The leaf topology is always finer than the inclusion topology,

and the two topologies only coincide if the leaf is locally closed in S2n−1
ε′ resp.

S2n−1
ε . If LF,x resp. LG,y are not bijective images of {x} × R resp. {y} × R under

ΦF resp. ΦG then ΦF|{x}×R resp. ΦG|{y}×R are periodic maps, and the images LF,x
resp. LG,y are compact both in leaf topology and inclusion topology. In particular,

in that case LF,x resp. LG,y are embedded circles in S2n−1
ε′ resp. S2n−1

ε . Note also
that ΦF|{x}×R and ΦG|{y}×R are universal coverings of LF,x and LG,y endowed with
the leaf topology.

Claim 2. The leaf LF,x ⊂ S2n−1
ε′ is an embedded circle if, and only if the leaf

LG,h(x) ⊂ S2n−1
ε is an embedded circle.

Proof. Assume that LF,x is an embedded circle, hence compact. Since
h(LF,x) = LG,h(x) by Claim 1 and h is continuous in the inclusion topology, LG,h(x)

must be compact, hence closed. Then leaf and inclusion topology on LG,h(x) co-
incide, so LG,h(x) cannot be homeomorphic to R in leaf topology. Consequently,
LG,h(x) is an embedded circle.
On the other hand, if LG,h(x) is an embedded circle then the cone leaf CG,h(x)

and hence the intersection CG,h(x) ∩ HC(S2n−1
ε′ ) is compact. But the topological

equivalence H−1
C maps CG,h(x) ∩ (HC(S2n−1

ε′ ) onto LF,x. So LF,x is compact in
the inclusion topology, hence compact in the coinciding leaf topology, and hence an
embedded circle, not a line. �
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Using (1) and the functorial property of the flows ΦF and ΦG we calculate

ΦG(h(x), τ(x, t) + τ(ΦF (x, t), t′)) = ΦG(ΦG(h(x), τ(x, t)), τ(ΦF (x, t), t′)) =

= ΦG(h(ΦF (x, t)), τ(ΦF (x, t), t′)) =

= h(ΦF (ΦF (x, t), t′)) = h(ΦF (x, t+ t′)) =

= ΦG(h(x), τ(x, t+ t′)).

If ΦG(h(x), ·) is injective this implies

(3) τ(x, t+ t′) = τ(x, t) + τ(ΦF (x, t), t′).

If LF,x and LG,h(x) are embedded circles then ΦF|{x}×R and ΦG|{h(x)}×R are periodic
maps with periods TF,x and TG,h(x). Consequently,

τ(x, t+ t′) = τ(x, t) + τ(ΦF (x, t), t′) + k(t, t′) · TG,h(x),

where k(t, t′) is an integer continuously depending on t, t′, hence a constant k.
Setting t = t′ = 0 we obtain k = k(0, 0) = 0 and thus (3).
In this situation, τ(x, ·) : R → R is the lifting of h : LF,x → LG,h(x) to the
universal coverings of the leaves along the flows ΦF : {x} × R → LF,x and
ΦG : {h(x)} × R → LG,h(x). Since liftings preserve fibers of the coverings this
implies

τ(x, t+ TF,x) = τ(x, t) + l · TG,h(x).

Since HC(LF,x) is an embedded circle in CG,h(x) with 0 in its interior,
h : LF,x → LG,h(x) is homotopic to a homeomorphism. Since furthermore HC

preserves orientation, we conclude l = 1 and obtain:

(4) τ(x, t+ TF,x) = τ(x, t) + TG,h(x).

As a last property of τ we show:

(5) lim
t→∞

τ(x, t) =∞ and lim
t→−∞

τ(x, t) = −∞ :

If LF,x and LG,h(x) are embedded circles, this follows from (4). Otherwise, both
ΦF|{x}×R and ΦG|{h(x)}×R are bijective. In that case, for all y ∈ LG,h(x) the set of
t ∈ R such that

y = h(ΦF (x, t)) = ΦG(h(x), τ(x, t))

is bounded because the intersection of the line segment [y, 0] with HC(LF,x) equals

[y, 0]∩HC(S2n−1
ε′ ), hence is compact. On the other hand, |τ(x, t)| may be arbitarily

large, as h(LF,x) = LG,h(x). Both facts together contradict limt→±∞ |τ(x, t)| 6=∞.
The signs are again as claimed because HC preserves orientation.

The aim is now to modify τ to a continuous map σ : S2n−1
ε′ × R → R which is

strictly increasing and surjective for fixed x ∈ S2n−1
ε′ but still satisfies a functorial

property analogous to (3). We use σ to modify h to a topological equivalence g of
F ∩ S2n−1

ε′ and G ∩ S2n−1
ε .

The modification of τ to σ and hence from h to g is done in two steps: First, we
cut off any ”moving backwards” of the image of the leaf LF,x on the leaf LG,h(x)

by keeping the map stationary whenever such a backwards move starts. Then
we smoothen the stationary intervals to obtain a bijective map. For the image
HC(LF,x) in CG,h(x) these steps may locally be visualized as follows:
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Continuity of τ and (5) imply that µ(x, t) := maxt′≤t{τ(x, t′)} defines a continuous

function µ : S2n−1
ε′ ×R→ R which is surjective and increasing for fixed x. It holds

that

µ(x, t+ t′) = max
t′′≤t+t′

{τ(x, t′′)} = max
t′′′≤t′

{τ(x, t′′′ + t)} =

= max
t′′′≤t′

{τ(ΦF (x, t), t′′′) + τ(x, t)} =(6)

= µ(ΦF (x, t), t′) + τ(x, t).

µ(x, ·) is not necessarily strictly increasing. To modify µ to a strictly increasing
function without destroying (6) we introduce the growth function

γδ(x, t) := min
t<t′
{t′ : τ(x, t′) = τ(x, t) + δ} − t > 0,

for a fixed δ > 0. It is continuous on S2n−1
ε′ × R, hence averaging µ by γδ leads to

the continuous function

σ(x, t) :=
1

γδ(x, t)

∫ t+γδ(x,t)

t

µ(x, t′)dt′

which is strictly increasing and surjective onto R for fixed x, hence continuously
invertible. Using (3) we see that γδ(x, t + t′) = γδ(ΦF (x, t), t′) and together with
(6) this implies

(7) σ(x, t+ t′) = σ(ΦF (x, t), t′) + τ(x, t).

Claim 3. The map g : S2n−1
ε′ → S2n−1

ε , x 7→ ΦG(h(x), σ(x, 0)) defines a homeomor-

phism inducing a topological equivalence of F ∩ S2n−1
ε′ and G ∩ S2n−1

ε .

Proof. If ΦG(h(x), σ(x, 0)) = ΦG(h(y), σ(y, 0)) then h(y) is in the same G-leaf as
h(x), hence y is in the same F-leaf as x, hence there is t ∈ R such that y = ΦF (x, t).
Using (1), (7) and the functorial properties of the flow ΦG we calculate

ΦG(h(x), σ(x, 0)) = ΦG(h(y), σ(y, 0)) = ΦG(h(ΦF (x, t)), σ(ΦF (x, t), 0)) =

= ΦG(ΦG(h(x), τ(x, t)), σ(ΦF (x, t), 0)) =

= ΦG(h(x), τ(x, t) + σ(ΦF (x, t), 0)) =

= ΦG(h(x), σ(x, t)).

If ΦG|{h(x)}×R is bijective, this implies σ(x, 0) = σ(x, t), hence t = 0 by injectivity
of σ for fixed x, hence y = ΦF (x, 0) = x. If ΦG|{h(x)}×R is periodic with period
TG,h(x) and hence ΦF|{x}×R is periodic with period TF,x then for some k ∈ Z we
have

σ(x, t) = σ(x, 0) + k · TG,h(x) = σ(x, 0) + k · τ(x, TF,x) = σ(x, k · TF,x),

by (4) and (7). Injectivity of σ implies t = k · TF,x, hence y = ΦF (x, k · TF,x) = x.
So g is injective.
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If y ∈ S2n−1
ε then there exists x ∈ S2n−1

ε′ such that y = h(x), since h is surjective.
Then y = ΦF (h(x), 0). Since σ(x, ·) is surjective onto R there exists t ∈ R such
that

y = ΦG(h(x), σ(x, t)) = ΦG(h(x), τ(x, t) + σ(ΦF (x, t), 0)) =

= ΦG(ΦG(h(x), τ(x, t)), σ(ΦF (x, t), 0)) =

= ΦG(h(ΦF (x, t)), σ(ΦF (x, t), 0)) =

= g(ΦF (x, t)),

by (7), (1) and the functorial property of the flow ΦG . Hence g is surjective.
As a bijective continuous map from a compact topological space to a Hausdorff
space, g is a homeomorphism. g is also mapping leaves of F ∩ S2n−1

ε′ to leaves of

G ∩ S2n−1
ε , so g is a topological equivalence of F ∩ S2n−1

ε′ and G ∩ S2n−1
ε . �

This finishes the proof of the theorem. �

3. The case of R-linearly independent eigenvalues in dimension 2

In this section, we only consider holomorphic foliation germs F around 0 ∈ C2

represented by vector fields of the form

λx
∂

∂x
+ y

∂

∂y
, λ ∈ C− R.

These foliation germs are invariant under the maps C2 → C2, (x, y) 7→ r(x, y) for
all r ∈ R>0. Hence there is a real intersection foliation F ∩ S3

ε for all ε ∈ R>0 as in
section 2, and we assume from now on ε = 1.

Lemma 3.1. Let S1×S1 act on S3 by (x, y) 7→ (xeit1 , yeit2). Then the intersection
foliation F ∩ S3 is invariant under this action.

Proof. The 1-form ydx− λxdy corresponding to λx ∂
∂x + y ∂

∂y is pulled back to

yeit2d(xeit1)− λxeit1d(yeit2) = ei(t1+t2)(ydx− λxdy)

by the action of S1 × S1. Hence the tangent directions of the intersection foliation
F ∩ S3 are not changed, and the foliation is invariant under the action. �

For 0 < εx, εy < 1, denote the torus {(x, y) ∈ S3 : |x| = εx} by T xεx and the torus

{(x, y) ∈ S3 : |y| = εy} by T yεy . Then T xεx = T y√
1−ε2x

.

Lemma 3.2. T xεx intersects all the leaves of the intersection foliation F ∩ S3 not
lying on the coordinate axes exactly once and transversally.

Proof. The real tangent vectors to the torus T xεx in a point (x, y) are those real
tangent vectors that are annihilated by the real differential forms

d(xx) = xdx+ xdx and d(yy) = ydy + ydy.

The real tangent vectors to the leaf L(x,y) through (x, y) ∈ T xεx in (x, y) are the

R-linear combinations of the real and imaginary part of λx ∂
∂x + y ∂

∂y . Since

(ydy + ydy)(λx
∂

∂x
+ y

∂

∂y
) = yy ∈ R and y 6= 0
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only the imaginary part of λx ∂
∂x + y ∂

∂y can be tangent to T xεx . Since

(xdx+ xdx)(λx
∂

∂x
+ y

∂

∂y
) = λxx and x 6= 0

this can only be the case if Im(λ) = 0. But we assumed λ ∈ C− R, hence the real
tangent spaces of T xεx and L(x,y) intersect transversally, hence the leaf L(x,y) ∩ S3

of F ∩ S3 and T xεx intersect transversally.

In particular, on a leaf of F ∩ S3 different from {x = 0} and {y = 0} the absolute
value of the x-coordinate must always strictly increase or decrease. Consequently,
such a leaf intersects T xεx exactly once. �

For 0 < εx, εy < 1 and t ∈ R denote the disk {(x,
√

1− |x|2eit) ∈ S3 : |x| < εx} by

Dx
t,εx and the disk {(

√
1− |y|2eit, y) ∈ S3 : |y| < εy} by Dy

t,εy .

Lemma 3.3. Dx
t,εx and Dy

t,εy intersect all the leaves of the intersection foliation

F ∩ S3 everywhere transversally.

Proof. By the S1 × S1-invariance of the leaves of F ∩ S3 shown in Lemma 3.1 we
can assume that t = 0. Since Dx

0,εx is an open subset of {y2 = 1 − |x|2} ⊂ C2,
a smooth manifold for |x| < 1, the real tangent vectors to Dx

0,εx are exactly those
annihilated by the real and the imaginary part of the differential form

ω = d(y2 + |x|2 − 1) = 2ydy + xdx+ xdx.

We have

ωRe = ydy + ydy + xdx+ xdx and ωIm = −i(ydy − ydy).

Let θ(x, y) denote the complex tangent vector λx ∂
∂x +y ∂

∂y to the leaf L(x,y) through

(x, y) ∈ Dx
0,εx . Then ωIm(θ(x, y)) = −iy2 ∈ iR − {0} since y ∈ R − {0}. But the

real part of θ(x, y) is not tangent to both {y2 = 1− |x|2} and S3 = {xx+ yy = 1}
either:

ωRe(θ(x, y)) = 2y2 + λxx and d(xx+ yy)(θ(x, y)) = λxx+ yy,

hence the real part of the first number vanishes for Reλ = − 2y2

|x|2 , the second for

Reλ = − yy
|x|2 . Since y 6= 0 this cannot happen for the same λ. �

Figure 3.1 visualizes the behaviour of leaves of F ∩ S3 in the cut-up solid torus⋃
0≤εx≤ε T

x
εx (resp.

⋃
0≤εy≤ε T

y
εy ) as decribed by Lem. 3.2 and 3.3.

Theorem 3.4. Let λ1x
∂
∂x + y ∂

∂y and λ2x
∂
∂x + y ∂

∂y represent two holomorphic

foliation germs F1,F2 in 0 ∈ C2, with λ1, λ2 ∈ C − R. Then F1 and F2 are
topologically equivalent.

Proof. We will construct a topological equivalence of the intersection foliations
F1∩S3 and F2∩S3. Then the statement follows by the Reconstruction Theorem 2.4.
Lemma 3.2 and 3.3 show that every leaf of Fi in the tubular torus
{(x, y) ∈ S3 : 0 < |x| ≤ 1

2} is parametrized on the one hand by the absolute value
εx of the x-coordinate, on the other hand by the argument t of the y-coordinate.
The parametrisation by εx yields the homeomorphisms

Φ(i)
x : T1/2 × (0, 1/2]→ {(x, y) ∈ S3 : 0 < |x| ≤ 1/2}
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Figure 3.1.

mapping a pair (x, y) × εx to the unique intersection point of the leaf of Fi ∩ S3

through (x, y) with T xεx .

Then Φ
(2)
x ◦ (Φ

(1)
x )−1 is a homeomorphism of the tubular torus

{(x, y) ∈ S3 : 0 < |x| ≤ 1
2} into itself but might not be extendable to a

homeomorphism of the solid torus {(x, y) ∈ S3 : 0 ≤ |x| ≤ 1
2}. To achieve that

we reparametrize the εx-interval (0, 1
2 ] using the second parametrization by the

argument of the y-coordinate: Every leaf L(x,y) through a point (x, y) ∈ T x1
2

defines

an invertible function φ
(i)
x : (0, 1

2 ] → [0,∞), mapping εx to t − t0 where t is the
argument of the y-coordinate of the intersection point of L(x,y) with T xεx and t0 is
the argument of y. These functions are the same for all such leaves because of the

S1 × S1-invariance, and we always have φ
(i)
x ( 1

2 ) = 0. Then

Φ(2)
x ◦

[
idTx 1

2
× ((φ(2)

x )−1 ◦ φ(1)
x )
]
◦ (Φ(1)

x )−1

maps Dx
t, 12

and T xεx , 0 < εx ≤ 1
2 onto themselves. This implies that the identity

map on {x = 0} ∩ S3 extends this composition of maps to a homeomorphism Φx
of the solid torus {(x, y) ∈ S3 : 0 < |x| ≤ 1

2} mapping leaves of F1 ∩ S3 to leaves of

F2 ∩ S3. Furthermore, the restriction of Φx to T x1
2

is the identity map.

In the same way we can construct a homeomorphism Φy of the solid torus
{(x, y) ∈ S3 : 0 < |y| ≤ 1

2} mapping leaves of F1 ∩ S3 to leaves of F2 ∩ S3.
Since again the restriction of Φy to T x1

2

is the identity map Φx and Φy glue to a

topological equivalence of the intersection foliations F1 ∩ S3 and F2 ∩ S3 . �

Remark 3.5. The theorem is Guckenheimer’s result in dimension 2 [Guc72]. The
proof above yields the construction of an explicit topological equivalence which is
missing in Guckenheimer’s original argument. Another explicit topological equiva-
lence is constructed in [CKP78] using polycylinders instead of balls.
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4. The resonant case in dimension 2

In this section, we only consider holomorphic foliation germs Fm around 0 ∈ C2

represented by vector fields of the form

(mx+ ym)
∂

∂x
+ y

∂

∂y
, m ≥ 1.

Note that all these foliation germs are equal to the germs in Rem. 1.9.(3) and (4),
up to possibly rescaling the x-coordinate.

Lemma 4.1. The leaves of Fm intersect all spheres S3
ε , 0 < ε ≤ 1, transversally.

In particular the real intersection foliation Fm ∩ S3 on S3 = S3
1 exists.

Proof. As in the proof of Prop. 2.1 we have to show that for (x, y) ∈ S3
ε , 0 < ε ≤ 1

it holds that

x(mx+ ym) + yy = xx+ yy + (m− 1)xx+ xym 6= 0.

But xx+ yy = ε2, (m− 1)xx ≥ 0 and

|xym| = |x| · |y|m < εm+1 ≤ ε2,
since |x|, |y| < ε but never |x| = |y| = ε. �

Next, we analyse the leaves of the intersection foliations Fm ∩ S3.

Proposition 4.2. The only closed leaf of Fm ∩S3 is {y = 0} ∩S3. The closure of
any leaf L(a,b) through a point (a, b) ∈ S3 − {y = 0} is L(a,b) ∪ ({y = 0} ∩ S3). For
a certain εy = εy(L(a,b)) with 0 < εy ≤ 1 the leaf L(a,b) intersects a torus T yε′y

• in two distinct points if 0 < ε′y < εy,
• in one point if ε′y = εy and
• not at all if ε′y > εy.

Proof. The holomorphic map

λ(a,b) : C→ C2, t 7→ ((a+ bmt)emt, bet)

defines the integral curve of the vector field (mx + ym) ∂
∂x + y ∂

∂y through

λ(a,b)(0) = (a, b), that is the leaf of Fm through (a, b). If (a, b) ∈ S3 the leaf

of Fm ∩ S3 through (a, b) is the λ(a,b)-image of the branch through t = 0 of the
curve in C implicitely given by

1 = em(t+t)(aa+ bmat+ ab
m
t+ (bb)mtt) + bbet+t.

Decomposing t = tR+itI into real and imaginary part and rearranging the equation
we obtain

(∗) (bb)mt2I+2Im(ab
m

)tI+aa+2Re(bma)tR+(bb)mt2R+bbe2(1−m)tR−e−2mtR = 0.

This is a quadratic equation in tI , with coefficients of t2I and tI independent of tR.

Claim. For tR ≤ 0 the constant term of (∗) is increasing with tR.

Proof. When we derive the constant term with respect to tR we obtain the gradient

2Re(bma) + 2(bb)mtR + 2(1−m)bbe2(1−m)tR + 2me−2mtR

which is > 2e−2mtR + 2tR + 2(1 −m)e2tR − 2 for tR ≤ 0 since (a, b) ∈ S3 implies
|a|, |b| ≤ 1 and |Re(bma)| < 1. But the function x 7→ e−2mx + x + (1 −m)e2x − 1
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has derivative −2me−2mx + 2(1 −m)e2x + 1 < 0 for x ≤ 0, hence the gradient is
always > 0 for tR ≤ 0, as it is > 0 for tR = 0. �

If tR → ∞ the constant term also tends to ∞. So we conclude: There exists a
t0 ≥ 0 such that for all tR < t0 there are two solutions tI to the equation (∗)
symmetric to − Im(ab

m
)

(bb)m
, and one solution tI = − Im(ab

m
)

(bb)m
if tR = t0.

In particular, if tR → −∞ we have y = bet → 0 which implies the claim on the
closure of L(a,b). Since this leaf intersects a torus T yε′y in all points (a′, b′) of the

leaf where |b′| = ε′y the last claim follows. In particular, the maximal εy such that

L(a,b) ∩ T yεy 6= ∅ is given by εy = |et0b|. �

Corollary 4.3. All the leaves of Fm ∩ S3 away from {y = 0} are uniquely
parametrised by the points of the set

{(a, b) ∈ S3 : Im(ab
m

) = 0, b 6= 0}.

Proof. Since there is only one point on a leaf L(a,b) with maximal distance εy(L(a,b))
to {y = 0}, these points uniquely parametrise all leaves of Fm away from {y = 0}.
Furthermore, (a, b) is such a point on L(a,b) if for t = 0 the linear and constant term

of (∗) vanish. This is exactly the case when Im(ab
m

) = 0 since aa+ bb = 1. �

Theorem 4.4. The intersection foliations Fm∩S3 are not topologically equivalent
for different m = 1, 2, . . ..

Proof. Assume that Φ : S3 → S3 is a topological equivalence of Fm1 ∩ S3 with
Fm2 ∩ S3. Then Φ maps the only closed leaf of Fm1 to the only closed leaf
of Fm2

, that is, {y = 0} ∩ S3 to itself. Hence Φ maps the open complement
U1 := S3−

⋃
0≤εy≤ε1 T

y
εy of the solid torus

⋃
0≤εy≤ε1 T

y
εy to an open set Φ(U1) in S3

not intersecting {y = 0} ∩ S3 but containing {x = 0} ∩ S3 if ε1 is small enough, by
a compactness argument.
Let U1 be the union of all leaves of Fm1

∩ S3 intersecting U1. Then the
complement V1 := S3 − (U1 ∪ {y = 0}) consists of leaves of the foliation
Fm1

∩ S3. Cor. 4.3 shows that these leaves are uniquely parametrised by points of

{Im(ab
m1

) = 0} ∩
⋃

0<εy≤ε1 T
y
εy .

Note that for 0 < εy < 1 the intersection {Im(ab
m

) = 0} ∩ T yεy consists of m

connected curves given by marg(b)− arg(a) ∈ π · Z on the torus T yεy , each of them

of homology class (m, 1) with respect to the generating cycles {arg(x) = 0} ∩ T yεy
and {arg(y) = 0} ∩ T yεy . These curves are visualized in Figure 4.1 when m = 2,

as the red and the blue curve on the torus T yεy cut up along a disk Dy
t . Hence

{Im(ab
m

) = 0} ∩
⋃

0<εy≤ε1 T
y
εy has m connected components, and all of them can

be retracted to a curve of homology class (m, 1) in T yε1 . Since S3 − {y = 0} can be

retracted to S3 ∩ {x = 0}, the homology class of this curve in S3 − {y = 0} is m
times the generator represented by S3 ∩ {x = 0}.
The flow on S3 associated to Fm1

induces a retraction of V1 to

{Im(ab
m1

) = 0} ∩
⋃

0<εy≤ε1 T
y
εy , hence V1 consists of m1 connected components

V ′1 , . . . , V
(m1)
1 . These components are visualized in Figure 4.1 when m1 = 2, as

the two regions enclosed by the red and the blue surfaces in the cut-up solid torus⋃
0≤εy≤ε1 T

y
εy . By construction, Φ(V1) does not intersect the complement of a solid
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Figure 4.1.

torus, U2 := S3 −
⋃

0≤εy≤ε2 T
y
εy if ε2 is close enough to 1. Constructing V2 from U2

using Fm2 as V1 was constructed from U1 using Fm1 , this implies Φ(V1) ⊂ V2, and
Φ(V ′1) lies in one of the m2 connected components of V2, say V ′2 .
Consequently, we have a commutative diagram of homeomorphisms and embed-
dings,

V ′1
Φ→ Φ(V ′1) ⊂ V ′2

∩ ∩ ∩
S3 − {y = 0} Φ→ S3 − {y = 0} = S3 − {y = 0}.

This diagram induces the commutative diagram of group homomorphisms of ho-
mology group

Z ·±1−→ Z → Z
·m1 ↓ ↓ ·m2

Z = Z = Z

The left and right vertical homomorphism are given by multiplications with m1

and m2 because of the retractions constructed above, whereas the upper right
homomorphism is given by multiplication with an arbitrary integer n.
Consequently, we obtain ±m1 = ±n ·m2, hence m1 ≥ m2. Exchanging the roles of
m1 and m2 we also obtain m1 ≤ m2 and therefore m1 = m2. �

Remark 4.5. The holomorphic foliation germs Fm discussed in this section are
not of general type, in the terminology of [MM12]: One feature of plane holomor-
phic foliation germs of general type is that the singularities of the reduction are
represented by vector fields without a linear part with eigenvalue 0. But from
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(mx+ ym) ∂
∂x + y ∂

∂y respectively the holomorphic 1-form ydx− (mx+ ym)dy repre-

senting the same holomorphic foliation germ we obtain 1-forms resp. vector fields

t(1−m+tmxm−1)dx−(mx+tmxm)dt resp. (mx+tmxm)
∂

∂x
+t(1−m+tmxm−1)

∂

∂t

in the (x, t)-chart with (x, y) = (x, xt) and

yds+ (s(1−m) + ym−1)dy resp. y
∂

∂y
+ ((m− 1)s+ ym−1)

∂

∂s

in the (s, y)-chart with (x, y) = (sy, y), by blowing up C2 in 0.
If m = 1 the blown-up foliation in the (x, t)-chart is represented by x ∂

∂x + t2 ∂
∂t ,

yielding a reduced singularity in (x, t) = (0, 0) but not one of general type.
If m ≥ 2 the blown-up foliation has a singularity of type Fm−1 in (s, y) = (0, 0).
Thus further reducing this singularity will finally lead to another reduced singularity
not of general type.

5. The non-resonant case of R-linearly dependent eigenvalues in
dimension 2

In this section, we only consider holomorphic foliation germs Fλ around 0 ∈ C2

represented by vector fields of the form

λx
∂

∂x
+ y

∂

∂y
, λ ∈ R>0.

As in Section 3 these foliation germs are invariant under rescaling with positive
real constants. Hence it is enough to consider the real intersection foliations
Fλ ∩ S3

1 = Fλ ∩ S3.

Lemma 5.1. Every leaf of the intersection foliation Fλ ∩ S3 lies on a torus T xεx ,
0 ≤ εx ≤ 1.

Proof. The flow of the vector field λx ∂
∂x + y ∂

∂y is given by (a, b, t) 7→ (aeλt, bet).

Since λ ∈ R>0 the intersection of the associated integral manifold through a point
(a, b) ∈ S3 with S3 is parametrised by t 7→ (aeλit, beit). Thus the leaf of Fλ ∩ S3

through (a, b) lies on the torus Tx(|a|). �

5.1. λ ∈ Q>0. Assume that λ = p
q , where p, q ∈ N are relatively prime.

Proposition 5.2. Every leaf of the intersection foliation Fλ ∩ S3 is closed. A leaf
on the torus Tx(εx), 0 < εx < 1, is a curve of type (p, q), where p describes the
winding number of the leaf around {x = 0} ∩ S3 and q the winding number around
{y = 0} ∩ S3. The holonomy in a point (0, eit) ∈ {x = 0} ∩ S3 following the leaf
in counter-clockwise direction is given by the germ of the map Dt

x(εx) → Dt
x(εx),

0 < εx � 1, multiplying the x-coordinate by e2πi· pq . Similarly, the holonomy of the
leaf in a point (eit, 0) following the leaf in counter-clockwise direction is described

by the germ of the map Dt
y(εy)→ Dt

y(εy) multiplying the y-coordinate with e2πi· qp .

The holonomy in all points of S3 away from {x = 0} ∪ {y = 0} is the identity.

Proof. Fλ is also represented by the vector field px ∂
∂x + qy ∂

∂y . The flow of this

vector field is given by (a, b, t) 7→ (aept, beqt), and the intersection of the associated
integral manifold through (a, b) with S3 is parametrised as t 7→ (aepit, beqit), t ∈ R.
These parametrisations are periodic, with period 2π

gcd(p,q) = 2π. The claims of the

proposition follow. �
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Corollary 5.3. Two foliation germs Fλ, Fµ, λ, µ ∈ Q>0, are topologically equiva-
lent if, and only if λ = µ or = 1

µ .

Proof. By the Reconstruction Theorem 2.4 we only have to decide whether the
intersection foliations Fλ ∩ S3 and Fµ ∩ S3 are topologically equivalent or not.
Now, the topological types of the holonomy along closed paths on leaves of these real
foliation are topologically invariant, in particular the order of the holonomy germ.
Consequently, Prop. 5.2 implies that only F p

q
∩S3 and F q

p
∩S3 can be topologically

equivalent, and in that case the equivalence is given by (x, y) 7→ (y, x). �

5.2. λ ∈ R>0 − Q>0. As in the proof of Lemma 5.1 the leaf of the intersection
foliation Fλ ∩ S3 through a point (a, b) ∈ S3 is parametrised by t 7→ (aeiλt, beit),
hence lies on Tx(|a|). Since λ is irrational the leaf is not closed but dense on the
torus Tx(|a|), for all a ∈ C such that 0 < |a| < 1. Thus we can describe the leaves
of Fλ ∩ S3 as follows:

Lemma 5.4. The intersection foliation Fλ∩S3 has two closed leaves, {x = 0}∩S3

and {y = 0} ∩ S3, whereas the closure of every other leaf is a torus Tx(εx),
0 < εx < 1. �

Next, we consider the continuous map f : S3 → [0, 1], (x, y) 7→ |x|. Its fibers are
f−1(εx) = Tx(εx), 0 ≤ εx ≤ 1. Lemma 5.4 shows that a topological equivalence Φ of
Fλ∩S3 with Fµ∩S3, λ, µ ∈ R>0−Q>0, induces a homeomorphism φ : [0, 1]→ [0, 1]
such that φ ◦ f = f ◦ Φ, with φ({0, 1}) = {0, 1}. Note that φ(0) = 0 and φ(1) = 1
means that Φ maps the closed leaves {x = 0} ∩ S3 resp. {y = 0} ∩ S3 onto
themselves, whereas φ(0) = 1, φ(1) = 0 indicates that Φ interchanges the closed
leaves.
Furthermore, Φ maps the torus Tx(εx) homeomorphically onto the torus Tx(φ(εx)),
0 < εx < 1. Recall that the (extended) mapping class group of a 2-dimensional
torus T 2 ∼= S1 × S1 is given by GL(H1(T 2),Z) [FM12, Thm.2.5]. Identifying the
tori Tx(εx) for different 0 < εx < 1 by rescaling the x- and the y-coordinate the
following statement makes sense:

Proposition 5.5. If Φ : S3 → S3 is a topological equivalence of Fλ ∩ S3 with
Fµ ∩ S3, λ, µ ∈ R>0 − Q>0 then the restriction Φ|Tx(εx) : Tx(εx) → Tx(φ(εx)) is

of one of the types

(
±1 0
0 ±1

)
or

(
0 ±1
±1 0

)
in the mapping class group of a

2-dimensional torus, for all 0 < εx < 1.

Proof. Interchanging the coordinates yields a homeomorphism
Ψ : S3 → S3, (x, y) 7→ (y, x) whose restriction to tori Tx(εx) is of type(

0 1
1 0

)
in the mapping class group of a 2-dimensional torus. Composing Ψ with

a topological equivalence Φ of Fλ ∩ S3 with Fµ ∩ S3 such that φ(0) = 1, φ(1) = 0
yields a topological equivalence Φ′ of Fλ ∩ S3 with F 1

µ
∩ S3 such that φ′(0) = 0,

φ′(1) = 1. Hence, from now on we will only consider that case.
For all 0 < ε0 < 1 the topological equivalence Φ maps the solid torus⋃

0≤εx≤ε0 Tx(εx) homeomorphically onto the solid torus
⋃

0≤εx≤ε0 Tx(φ(εx)) and⋃
ε0≤εx≤1 Tx(εx) onto

⋃
ε0≤εx≤1 Tx(φ(εx)), always mapping the tori Tx(εx) onto

Tx(φ(εx)). The fundamental groups of these solid tori are generated by
Lx := {x = 0} ∩ S3 resp. Ly := {y = 0} ∩ S3, and a curve of type (p, q) on
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the torus Tx(εx) (for the notation, see Prop. 5.2) is mapped to the class of q · Lx
resp. p·Ly by the inclusion into the solid tori. Consequently, the homeomorphism Φ
must map a curve of type (p, q) on Tx(εx) to a curve of type (±p,±q) on Tx(φ(εx)).
This implies the claim on the isotopy classes of Φ|Tx(εx). �

To finally classify the holomorphic foliation germs Fλ, λ ∈ R>0−Q>0, we consider
Kronecker foliations Fλ, λ ∈ R>0, on the 2-dimensional torus T 2 = S1×S1. These
foliations are given by the orbits of the flow

t ·λ (eia, eib) = (ei(a+λt), ei(b+t)), t, a, b ∈ R.

Proposition 5.6. Two Kronecker foliations Fλ and Fµ, λ, µ ∈ R, are topologically

equivalent if µ = aλ+b
cλ+d , where

(
a b
c d

)
∈ GL(2,Z).

Proof. Let Q :=

(
a b
c d

)
∈ GL(2,Z). Then

φQ : T 2 → T 2, (eix, eiy) 7→ (ei(ax+by), ei(cx+dy))

is a homeomorphism with inverse map φQ−1 . Since for s = (cλ+ d)t,

φQ(t ·λ (eix, eiy)) = (ei(ax+by+(aλ+b)t), ei(cx+dy+(cλ+d)t)) =

= (ei(ax+by+µs), ei(cx+dy+s)) =

= s ·µ φQ(eix, eiy),

φQ is a topological equivalence of Fλ and Fµ. �

If λ, µ ∈ R>0 −Q>0 the converse is also true, as the following theorem shows:

Theorem 5.7. Let φ : T 2 → T 2 be a topological equivalence of Kronecker foliations

Fλ and Fµ, λ, µ ∈ R>0−Q>0. If φ has the homotopy type

(
a b
c d

)
in the mapping

class group GL(2,Z) of T 2 then µ = aλ+b
cλ+d .

Proof. First of all, we may assume that

(
a b
c d

)
=

(
1 0
0 1

)
, that is, φ is iso-

topic to the identity: If not, Prop. 5.6 shows that Fµ is topologically equivalent

to FQ−1·µ where Q−1 is the inverse matrix of Q =

(
a b
c d

)
. Furthermore, the

topological equivalence φQ−1 is of homotopy type Q−1 ∈ GL(2,Z), so the topolog-

ical equivalence φQ−1 ◦ φ between Fλ and FQ−1·µ is of homotopy type

(
1 0
0 1

)
.

Consequently, if we show that λ = Q−1 · µ, then as claimed

µ = Q · λ =
aλ+ b

cλ+ d
.

For a given λ ∈ R>0 −Q>0 and a point P = (eia, eib) ∈ T 2, let

L
(λ)
P := {(ei(a+λt), ei(b+t))|t ∈ R} ⊂ T 2

be the leaf of Fλ through P . Following ideas from ergodic theory we express the

”slope” of the leaf L
(λ)
P as a quotient of its topological intersection numbers with two

curves representing generators of H1(T 2,Z). To this purpose we need arbitrarily

long pieces of the leaf L
(λ)
P starting in P and ending in P ′ arbitrarily close to P .
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Figure 5.1.

Here, we measure distances on T 2 using the metric induced by the Euclidean metric
on the universal covering R2.
So consider the preimage p−1(BP (ε)) of a ball BP (ε), 0 < ε � 1 under the

parametrisation p : R → L
(λ)
P ⊂ T 2 given by t 7→ (ei(a+λt), ei(b+t)). Since λ is

irrational, L
(λ)
P is dense in T 2, hence p−1(BP (ε)) consists of infinitely many inter-

vals in arbitrarily large distances to 0 ∈ R. One of the intervals in p−1(BP (ε)),
say I0, contains 0, whereas the images of all the other intervals have a non-zero
distance to P . In particular, if ε → 0 then the boundaries of all the intervals not
containing 0 tend to ±∞. This observation holds for the intervals in the preimage
of an arbitrary neighborhood basis of P .
Let I1 be the interval in p−1(BP (ε)) closest to the right to I0. As indicated in

Figure 5.1 we can construct a closed path γ
(λ)
P,ε : [0, 1]→ T 2 starting and ending in

P , by following the leaf L
(λ)
P to a point P ′ ∈ p(I1) and connecting P ′ to P by a

path inside BP (ε).

Note that the homotopy class of γ
(λ)
P,ε depends neither on the choice of P ′ nor on

the path connecting P ′ and P . Hence we can even construct a smoothly embedded
path in that way. By construction, this path covers arbitrarily long segments of the

leaf L
(λ)
P if ε is small enough.

Next, set C1 := {(eit, 1) : t ∈ R} and C2 := {(1, eis) : s ∈ R}. The closed curves
C1, C2 ⊂ T 2 represent generators [C1], [C2] ∈ H1(T 2,Z) intersecting exactly once

in the point (1, 1) ∈ T 2. Let [γ
(λ)
P,ε ] ∈ H1(T 2,Z) denote the homological 1-class

represented by γ
(λ)
P,ε , and consider the topological intersection numbers [γ

(λ)
P,ε ] · [Ci]

(see [SZ94, 14.6]).

Claim: λ = limε→0
[γ

(λ)
P,ε]·[C2]

[γ
(λ)
P,ε]·[C1]

.

Proof. We calculate the intersection numbers using their differential-topological

interpretation, for smoothly embedded paths γ
(λ)
P,ε (see [Hir94, 5.2]). Since L

(λ)
P

intersects C1 and C2 everywhere with the same orientation, we just need to count

the intersection points in γ
(λ)
P,ε ∩ Ci. Assuming for the moment that P 6∈ C1 ∪ C2,

for small enough ε we only need to count the intersection points of the part of γ
(λ)
P,ε

lying on L
(λ)
P with Ci. This part is the image p([0, bε]) of an interval [0, bε] ⊂ R
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under the parametrisation p : R→ L
(λ)
P introduced above. Then[

λbε
2π

]
≤ |p([0, bε]) ∩ C2| ≤

[
λbε
2π

]
+ 1 and

[
bε
2π

]
≤ |p([0, bε]) ∩ C1| ≤

[
bε
2π

]
+ 1,

where [x] denotes the maximal integer ≤ x ∈ R and |p([0, bε]) ∩ Ci| the number of
intersection points of p([0, bε]) and Ci. As discussed above, bε → ∞ if ε → 0, and
the claim follows.
If P ∈ C1 ∪ C2 the path in γ

(λ)
P,ε connecting P ′ with P can be chosen to intersect

Ci only in a number of points bounded from above independently of ε. Hence the
claim also holds in that case. �

Now, we calculate:

λ = lim
ε→0

[γ
(λ)
P,ε ] · [C2]

[γ
(λ)
P,ε ] · [C1]

= lim
ε→0

[φ(γ
(λ)
P,ε)] · [φ(C2)]

[φ(γ
(λ)
P,ε)] · [φ(C1)]

= lim
ε→0

[φ(γ
(λ)
P,ε)] · [C2]

[φ(γ
(λ)
P,ε)] · [C1]

,

by the Claim and since φ : T 2 → T 2 is a homeomorphism assumed to be homotopic

to the identity. But φ(L
(λ)
P ) = L

(µ)
φ(P ), hence φ(γ

(λ)
P,ε) is a path constructed as above

for the leaf L
(µ)
φ(P ) of Fµ and the neighborhood basis Uε := φ(BP (ε)) of φ(P ), so the

above limit is equal to

lim
ε→0

[γ
(µ)
φ(P ),Uε

] · [C2]

[γ
(µ)
φ(P ),Uε

] · [C1]
= µ,

once again by the Claim. �

Theorem 5.8. Two holomorphic foliation germs Fλ,Fµ, µ, λ ∈ R>0 − Q>0, are
topologically equivalent if, and only if λ = µ or = 1

µ .

Proof. By the Reconstruction Theorem 2.4 it is enough to show the statement for
the intersection foliations Fλ ∩ S3 and Fµ ∩ S3.
Exchanging the coordinates yields a topological equivalence Φ of Fλ ∩ S3 with
F 1
λ
∩ S3. On the other hand, let Φ be a topological equivalence of Fλ ∩ S3 with

Fµ ∩S3. As above, for 0 < εx < 1 the restriction Φ|Tx(εx) maps the torus Tx(εx) to
another torus Tx(ε′x) and induces a topological equivalence of the Kronecker folia-
tions Fλ = Fλ|Tx(εx) and Fµ = Fµ|Tx(ε′x). Prop. 5.5 shows that Φ|Tx(εx) must be of

type

(
±1 0
0 ±1

)
or

(
0 ±1
±1 0

)
in the mapping class group of a 2-dimensional

torus. Then Thm. 5.7 implies that λ = µ or λ = 1
µ . �

6. Topological equivalence classes in dimension 2

In each of the sections 3, 4, 5.1 and 5.2 we identified the topological equivalence
classes of plane holomorphic foliation germs represented by vector fields of a certain
type, and the list in Rem. 1.9 shows that every plane holomorphic foliation germ is
of one of these types. Consequently, the classification is completed by the following
statement:

Theorem 6.1. The topological equivalence classes determined in sections 3, 4, 5.1
and 5.2 are pairwise distinct.
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Proof. If the eigenvalues of the linear part of the representing vector field are R-
linearly independent then there exists two closed leaves in the intersection foliation,
and the closure of any other leaf of the intersection foliation consists of the leaf and
these two closed leaves – see the results of Section 3. If the eigenvalues are R-
linearly dependent amd have resonances then there is only one closed leaf in the
intersection foliation – see the results of Section 4. If the eigenvalues are Q-linearly
dependent but the vector field is non-resonant then every leaf in the intersection
foliation is closed – see the results of Section 5.1. Finally, if the eigenvalues are
R-linearly dependent but Q-linearly independent then all leaves in the intersection
foliation besides the two closed leaves have as closure a torus – see the results of
Section 5.2.
Thus, in each of the four cases, there exist leaves of the intersection foliation with
topological properties not occuring in the other cases. Hence the Reconstruction
Theorem 2.4 shows the theorem. �

7. Topological equivalence classes in dimension ≥ 3

Guckenheimer’s Stability Theorem generalizes Thm. 3.4 to arbitrary dimensions:

Theorem 7.1 ([Guc72]). Let
∑n
i=1 λizi

∂
∂zi

and
∑n
i=1 µizi

∂
∂zi

represent two holo-
morphic foliation germs with an isolated singularity in 0 ∈ Cn such that λ1, . . . , λn
resp. µ1, . . . , µn are in the Poincaré domain and pairwise R-linearly independent.
Then F1 and F2 are topologically equivalent.

Guckenheimer also showed that F1 and F2 are topologically equivalent if, under
the same assumptions on the λi, the vector field θ2 representing F2 is obtained
from

∑n
i=1 λizi

∂
∂zi

representing F1 by a sufficiently small holomorphic perturbation.
This implies the following classification result:

Proposition 7.2. Let F1 and F2 be two holomorphic foliation germs of rank 1 with
an isolated singularity in 0 ∈ Cn represented by [U1, θ1] and [U2, θ2] such that the
eigenvalues of the linear parts of the vector fields θ1 resp. θ2 are in the Poincaré
domain and pairwise R-linearly independent. Then F1 and F2 are topologically
equivalent.

Proof. Assume that θ1 =
∑n
i=1 fi(z)

∂
∂zi

and θ2 =
∑n
i=1 gi(z)

∂
∂zi

. As discussed in

Section 1 we can assume that the non-linear terms of the power series fi(z) and
gi(z) consist of resonant monomials zm1

1 · · · zmnn wrt the eigenvalues λ1, . . . , λn of
the linear part of θ1 resp. zn1

1 · · · znnn wrt the eigenvalues µ1, . . . , µn of the linear part
of θn, that is, the λ1, . . . , λn resp. µ1, . . . , µn satisfy the resonance λi =

∑n
j=1mjλj

resp. µi =
∑n
j=1 njµj for some integersmj , nj ≥ 0. Since λ1, . . . , λn resp. µ1, . . . , µn

are in the Poincaré domain there are only finitely many of these resonant monomials,
hence fi(z) and gi(z) are polynomials.
Possibly after a holomorphic coordinate change we can furthermore assume that
the real parts of all the λi and µi are positive and that

0 < Reλ1 < · · · < Reλn resp. 0 < Reµ1 < · · · < Reµn.

Thus, resonances λi =
∑n
j=1mjλj resp. µi =

∑n
j=1 njµj always satisfy

mj = nj = 0 for j ≥ i. Consequently, rescaling the ith coordinate zi by a real
factor εi such that 0 < ε1 � ε2 � · · · � εn changes the vector fields θ1, θ2 to vector
fields with non-linear parts arbitarily close to 0.
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So Guckenheimer’s Stability Theorem implies that F1 resp. F2 are topologically
equivalent to the foliations represented by the linear parts

∑n
i=1 λizi

∂
∂zi

resp.∑n
i=1 µizi

∂
∂zi

of θ1 resp. θ2, and these foliations are topologically equivalent by
Thm. 7.1. �

Under the assumptions of the proposition the appearence of resonant monomials
involving only R-linearly independent eigenvalues does not influence the topological
equivalence class. So for more general situations we introduce the following notion:

Definition 7.3. Let (λ1, . . . , λn) ∈ Cn be a set of complex numbers in the Poincaré
domain. A resonance λi =

∑n
j=1mjλj is called inessential if not all the λj ∈ C

with mj 6= 0 lie on the same real ray starting in the origin. Otherwise the resonance
is called essential.

The 2-dimensional classification in Sections 3 - 6 shows that R-linear (in)dependence
of the two eigenvalues of the linear part of a representing vector field distinguishes
the topological equivalence class of holomorphic foliation germs of rank 1 with an
isolated singularity in 0 ∈ C2 of Poincaré type. In higher dimension we extend this
dichotomy to the following invariant:

Definition 7.4. The ray configuration of a tuple (λ1, . . . , λn) ∈ Cn is the ordered
partition of this set into subsets consisting of those λi ∈ C lying on the same real
ray starting in the origin, and the subsets are ordered by increasing angle of this
ray with the positive real axis.
Two ray configurations are called equivalent if the sizes of the partition subsets, in
the order of the partition, are equal, or become equal after reversing the order of
one of the partitions.

Finally, the 2-dimensional classification shows that topologically equivalent plane
holomorphic foliation germs of rank 1 with an isolated singularity in 0 ∈ C2 of
Poincaré type having equivalent ray configurations are also holomorphically equiv-
alent.
Combining all these observations we predict the following behaviour of such foliation
germs in arbitrary dimensions:

Conjecture 7.5. Two holomorphic foliation germs of rank 1 with an isolated sin-
gularity in 0 ∈ Cn of Poincaré type are topologically equivalent if and only if the
following two conditions are satisfied:

(1) The ray configurations of the tuples of eigenvalues of the linear part of a
vector field representing the foliation germs are equivalent.

(2) For every two corresponding partition subsets {i1, . . . , ik},
{j1, . . . , jk} ⊂ {1, . . . , n} of the two ray configurations, the restrictions of
the two foliation germs to the linear subspaces

L1 := {zl = 0 : l 6= i1, . . . , ik} , L2 := {zm = 0 : m 6= j1, . . . , jk} ⊂ Cn

are holomorphically equivalent.

In particular, the conjecture predicts in full generality that the appearence of
inessential resonant monomials does not influence the topological equivalence class.
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