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Magnetoquantum oscillations of resistance as functions of the potential difference applied across

the contact are studied for metallic point contacts made of Al and Be. The amplitude of resistance

oscillations in a magnetic field increases with voltage and is identical to the EPI spectrum of the

point contact for one group of contacts, and with the bias voltage across the contact for another.

The increase in the oscillation amplitude as well as its decrease has a nonmonotonic dependence on

energy. The scattering of electrons by nonequilibrium phonons and the Fermi-liquid effects in the

nonequilibrium electron system are considered as the possible reasons behind the observed effects.

PACS numbers: : 71.38.-k, 73.40.Jn, 74.25.Kc, 74.45.+c

I. INTRODUCTION

In a magnetic field B, the allowed electron states lie in

the k-space on tubes called Landau tubes. These states

are determined by the condition of quantization of the

cross- section of a tube by a plane perpendicular to the

direction of the magnetic field. If we take into considera-

tion the tube with the largest cross-sectional area which

partly lies inside the Fermi surface (FS), its filled part

will decrease with increasing B and disappear at infinite

velocity as the tube comes in contact with the FS. Such

sharp decreases in the population density, which occur

periodically in the reciprocal field 1/B, lead to oscilla-

tions of the free energy and magnetization (de Haas-van

Alphen effect dHvA). The frequency F of these oscilla-

tions is described by the Lifshits-Onsager relation

F = (ch̄/2πe)A, (1)

where A is the area of the extremal Fermi surface cross-

section.

An increase in the temperature blurs the boundary be-

tween filled and unfilled states, and decreases the oscil-

lation amplitude. The corresponding reducing factor has

the form

RT =
2π2kBnT/h̄ωc

sh(2π2kBnT/h̄ωc)
; (2)

where n is the harmonic number in the oscillation spec-

trum, and ωc = eB/m∗c.

In addition, in view of the elastic scattering of elec-

trons by impurities,1 the momentum relaxation time be-

comes finite. According to the uncertainty principle, this

leads to a broadening of the Landau levels and hence to

the same extent of decrease in the oscillation amplitude

as that caused by an increase in temperature from the

actual value T to Teff = T + x. The corresponding re-

duction factor (the Dingle factor), which has the same

meaning as the ratio of the actually observed amplitude

of oscillations to the amplitude which would be observed

in the absence of impurities, has the form

Rτ = exp(−2π2kBnx/h̄ωc), (3)

where x = h̄/2πkBτ is the Dingle temperature, and τ is

the carrier lifetime.

It follows from the theory of noninteracting particles

that all processes of electron scattering, including the

electron- phonon collisions, should make a contribution

to the Dingle temperature [1]. If higher-order contribu-

tions to the electron- phonon interaction (EPI) are dis-

1 By impurities, we mean any static defects that scatter electrons
elastically.
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regarded, the effect of phonons boils down just to a de-

crease in the amplitude. The magnitude of the effect is

determined in this case by the EPI function α2(ω)F (ω)

for the investigated metal, temperature, and magnitude

of the magnetic field. However, a consideration of the

many-particle effect shows that the scattering of elec-

trons by phonons does not lead to an increase in the Din-

gle temperature [1]. Additional scattering of electrons by

phonons upon an increase in temperature is compensated

by a decrease in the mass m∗ = m0(1 + λ) renormalized

due to electron-phonon interaction (λ is the EPI parame-

ter), which makes this quantity nearly equal to the ”bare”

mass m0. A departure from this formula towards higher

amplitudes is observed in strong fields, and the required

quantity B increases with temperature (phonon energy).

It must be considered that, although EPI renormalizes

the cyclotron mass determining the temperature atten-

uation of the amplitude, it does not affect the mass ap-

pearing in the Dingle factor, i.e., the correct expression

(3) contains the ”bare” mass m0 [1].

The effect of EPI on the amplitude of dHvA oscilla-

tions can be studied in traditional experiments only for

a limited number of metals (e.g., Hg) with an anoma-

lously low Debye temperature, in which phonons can be

excited at low temperatures when the oscillation ampli-

tude is large enough for observation. Point contacts with

a size of several tens or hundreds of angstroms provide

a unique possibility of studying the effect of nonequilib-

rium phonons generated in a contact on the amplitude of

oscillations of the electron density of states at the Fermi

surface on the banks.

The simplest model of contact is a circular aperture in

an infinitely thin opaque partition separating two metal-

lic half-spaces. Owing to the small size d of the point

contact relative to the energy mean free path lε of elec-

trons, the electrons are divided into two groups whose

Fermi energies differ by the applied potential difference

eV [2, 3]. In this case, the electrons from the group with

a higher Fermi energy may go over to the group with a

lower energy by emitting one phonon as a rule. Multi-

phonon processes are also possible, although their prob-

ability is much lower. Thus, if a voltage is applied across

the contact, phonons with all possible energies right up to

eV will be generated in the contact region. Since lε � d,

only a small fraction of total power is liberated in the

immediate vicinity of the contact, and the temperature

of the banks remains practically constant, viz., equal to

the temperature of the helium bath.

In the prevailing technology for the creation of pressure

point contacts, the elastic mean free path li, of electrons

near the constriction is usually of the same order of mag-

nitude as the contact diameter d, and much smaller than

the mean free path at the banks. The contact resistance

for zero bias voltage in the circular aperture model is

defined by Wexler’s interpolation formula [4]

R0 =
16ρli
3πd2

+ β(li/d)
ρ

d
(4)

Here, ρli = pF /e
2n = 3/2N(εF )vF e

2 is constant for the

given metal, εF , pF , vF - Fermi energy, ρ the resistivity,

N(εF ) the electron density of states at the Fermi surface,

and β(li/d) is a nonmonotonic weakly varying function

of li/d whose value is close to unity: β(0) = 1, β (4.48) '
0.6828 (minimum of the function), β(∞) = 9π2/128 '
0.694.

The first term in formula (4) describes the Sharvin

component of the point contact resistance, which does

not depend on the electron mean free path and is de-

termined by the shape of the Fermi surface of the given

metal. The second term is the Maxwell component of

resistance which depends on the purity of the metal near

the constriction.

If the point contact is placed in a varying magnetic

field, its resistance acquires an oscillatory component due

to quantization of the electron energy spectrum. These

oscillations may be associated with the Maxwellian or

Sharvin component of resistance and depend on the pa-

rameters of the metal. In the contacts formed by con-

ventional metals, the Farmor radii of electrons are much

larger than the typical values of the contact diameter in

fields up to 20 T . In the case of Be, for example, these

quantities are comparable only for the largest contacts

with d ' 500 Å and in the strongest field 10 T , i.e.,

for rB = m∗vF /eB = 3000 Å (the value m∗ = 0.17m0

was used in the estimates). Hence magnetoquantum os-

cillations of resistance of a metallic point contact are

mainly associated with the fulfillment of the quantiza-

tion conditions at the banks near the constriction. The

oscillations of the electron density of states at the banks

lead to the oscillations of the Sharvin component of the

point-contact resistance. This is the main distinction be-

tween such oscillations and the oscillations of the resis-

tance of point contacts formed by semimetals [5], which

are associated with the quantum oscillations of the col-

lision integral [1] (oscillations of the Maxwellian compo-

nent of resistance) and are analogous to the conventional

Shubnikov-de Haas effect in bulk conductors.
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FIG. 1: Scattering of electrons moving in quantized orbits

by nonequilibrium phonons (marked by stars) accumulated at

the contact. The z-component of electron momentum and the

ability to make an effective contribution to current increase

after scattering. The case (a) corresponds to a small negative

vz component and case (b) to zero vz component.

The fact that the effect of impurities near the constric-

tion is opposite to the effect of impurities at the banks

of the contacts in the case of a magnetic field oriented

parallel to the contact axis is paradoxical and leads to

an increase in the amplitude of the contact resistance

oscillations [6]. Indeed, the contribution to the magneto-

quantum oscillations comes from the regions of extremal

cross-section of the Fermi surface by the plane pz=const

(the z-axis is parallel to the contact axis and to the mag-

netic field direction). In ballistic contacts, such states

correspond to low values of the component vz of the

transport velocity of the carriers. Since the resistance

of a point-contact is determined by the z-component of

the transport velocity of electrons, the amplitude of os-

cillations of the Sharvin component of resistance is small.

If the contact region contains elastic scatterers, the mo-

menta of the electrons arriving in this region are dis-

tributed isotropically along the directions (Fig. 1). This

results in an increase in the z-component of the veloc-

ity of electrons from the extremal FS cross-section, and

hence in an increase in the amplitude of oscillations of

the Sharvin component of the point-contact resistance.

The presence of elastic scatterers at the contact banks

leads to an increase in the Dingle temperature and hence

to a decrease in the oscillation amplitude.

The first experiments on the investigation of the effect

of nonequilibrium phonons on the amplitude of the point-

contact resistance oscillations were reported in Refs. [5]

and [7]. While describing the experimental results, the

authors of Ref. [5] reduced the effect of phonons to over-

heating of the electron gas in the contact region, while

two alternative mechanisms of damping were proposed in

Ref. [7], viz., an increase in the Dingle temperature due

to the electron- phonon scattering, or the Joule heating

in the contact region.

In the present work, we study the effect of nonequilib-

rium phonons on the quantum magnetic oscillations in

Be and Al. For one group of contacts (Al and Be), the

amplitude of resistance oscillations in a magnetic field

increases with voltage and is identical to the EPI spec-

trum of the point contact. For other point-contacts (Al),

the magnetoresistance exhibits an increase in the oscilla-

tion amplitude with increasing potential difference across

the contact. Both the increase in the oscillation ampli-

tude and its decrease have a nonmonotonic energy de-

pendence.

II. EXPERIMENTAL TECHNIQUE AND

PROCESSING OF RESULTS

Point-contacts were formed between the edges of two

similarly oriented single-crystal electrodes of Al or Be.

These metals were chosen by us mainly because their en-

ergy spectrum contains groups of electrons with small

effective masses, which makes it possible to observe the

oscillations in relatively weak magnetic fields. In the

case of Be, the contact axis coincides with the crystal-

lographic axis c, while for Al it is parallel to the (110)

axis. The magnetic field was always applied parallel to

the contact axis. The preliminary treatment of the elec-

trodes included their chemical polishing in a mixture of

acids for removing the defect layer formed during electric

erosion cutting. For preparing Al contacts, the electro-

forming [8] and displacement techniques [9] were used

to the same extent. The Be contacts were formed pre-

dominantly by the electroforming technique which en-

sured their noticeably higher mechanical stability. We

did not detect any correlation between the method of

preparing a point contact and the form of the A1(eV )



4

FIG. 2: (a) Point-contact spectrum of a Be point contact,

R0 = 16.24 Ω.

(b) Oscillations of the resistance of a Be point contact in a

magnetic field at zero bias voltage B ‖ c ‖ z, R0 = 16.24 Ω;

∆R/r0 ≈ 2 · 10−2 at B ∼ 9 T.

(c) I and F are the intensity and the frequency of oscillations.

dependence. The first and second IVC derivatives were

recorded by the standard modulation technique, and the

data were registered directly on a computer. The follow-

ing characteristics were recorded during measurements:

d2V/dI2(V ); dV/dI(V ); dV/dI(B)|V=const. The tem-

perature was maintained at 1.3 K throughout the mea-

surements. By way of an example, Fig.2 shows the PC

FIG. 3: Fragments of recording of magnetoresistance oscilla-

tions of an Al point contact with R0 = 1.41 Ω for two different

bias voltages.

spectrum of a Be contact, the oscillating component of

the magnetoresistance, and its Fourier spectrum. The

PC spectrum d2I/dV 2 (V ) is obtained from the exper-

imental formulas d2V/dI2 (V ) and dV/dI (V ) by calcu-

lations and has a well-defined structure in the interval

40-80 meV , which is associated with the EPI function

α2
pc(ω)F (ω). The magnetoquantum oscillations of resis-

tance with a natural frequency 985 T correspond to the

third electron band (cigar) and are known from the de

Haas-van Alphen effect investigations [10]. The Fourier

spectrum also contains the second harmonic. The follow-

ing procedure was used for determining the dependence

of amplitude of magnetoresistance oscillations of the PC

on bias voltage. For a fixed bias voltage across the con-

tact, the oscillations Rd(B) = dV/dI(B) were recorded

in the same interval of magnetic fields (8.5 − 10 T as a

rule). Figure 3 shows fragments of the recording for two

different bias voltages applied to an Al−Al point contact.

For Al contacts, the investigated oscillations correspond

to the γ-pocket of the third band with a frequency 290 T

[11]. Two recordings were made for each bias voltage,

viz., in increasing and decreasing magnetic fields. After

recording of the curves for the entire range of the values

of V , a recording was made at V = 0 and compared with

the initial recording to ensure that the sample remained

unchanged in the course of measurements. Contacts with

different resistances (from 0.6 to 20 Ω), background levels

(30 to 85%) and levels of blurring of phonon singulari-

ties in the spectrum were studied. The complete set of

characteristics was obtained for five Al contacts and five

Be contacts. The results of experimental measurements
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were subjected to Fourier analysis for determining the

amplitudes of oscillations in a fixed interval of magnetic

fields for the entire set of curves. Since the character-

istics dV/dI(B) (V=const) were recorded for a constant

value of the modulating current, and the differential resis-

tance of the contact increases (up to 10% in the interval

of Debye energies) upon an increase in the bias voltage

across the contact, the obtained results were reduced to

a fixed modulating voltage and normalized to the value

obtained for zero bias voltage across the contact. Figures

4-6 show the typical results of such calculations. For one

group of point contacts, the amplitude A1, of magnetore-

sistance oscillations increases with eV , and their energy

dependence is identical to the EPI spectrum of the point

contact (Figs. 4, 5). For another group of contacts (Al

contacts), the amplitude decreases monotonically as a

function of voltage (Fig. 6). The possible reasons behind

such dependences will be discussed in the next section.

III. DISCUSSION OF EXPERIMENTAL

RESULTS

Phonons are generated as a result of the relaxation of

electrons injected from the contact by spontaneous emis-

sion processes. The resulting nonequilibrium distribution

of phonons depends on the voltage applied to the contact.

Like the effect of elastically scattered impurities, the scat-

tering of electrons by nonequilibrium phonons affects the

amplitude of quantum oscillations of the PC magnetore-

sistance in different ways depending on their position.

The scattering of processes occurring in the region of the

constriction lead to an increase in the amplitude, while

scattering at the banks decreases its resultant value. We

shall now discuss the dependence of the energy and coor-

dinate distribution of phonons on the contact parameters

and the effect of this distribution on magnetoquantum

oscillations.

Apart from the defects that weakly affect the elastic

mean free path of phonons but strongly scatter electrons,

the spring-type contacts also contain, as a rule, a large

number of line defects. These defects affect the momen-

tum mean-free path li, of electrons weakly, but consid-

erably shorten the elastic mean free path lphi of nonequi-

librium phonons generated by the electron flow through

the aperture [12]. If lphi < d, the additional scattering

of electrons by these nonequilibrium phonons accumu-

lated in the contact leads to the emergence of a back-

ground (the energy-independent second IVC derivative

FIG. 4:

(a) Point contact spectrum of an Al point contact with

R0 = 1.41 Ω.

(b) Relative change in the fundamental amplitude of resis-

tance oscillations of a point contact in a magnetic field as a

function of the applied bias voltage: ∆R/R0 ≈ 5 · 10−4 for

V = 0 and B = 9.5 T .

(c) Dependence of the amplitude ratio of the of the funda-

mental and the second harmonics as a function on eV .

d2I/dV 2 (eV ) for eV > h̄ωD which is comparable with

the spectral part in order of magnitude. A nonequilib-

rium phonon distribution is established in the contact

with an effective temperature that depends on coordi-

nates and phonon reabsorption coefficient. This distribu-
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FIG. 5:

(a) Point contact spectrum of an Be point contact with

R0 = 8.66 Ω.

(b) Relative change in the fundamental amplitude of resis-

tance oscillations of a point contact in a magnetic field as a

function of the applied bias voltage: ∆R/R0 ≈ 2 · 10−3 for

V = 0 and B = 9.5 T .

(c) Dependence of the amplitude ratio of the of the funda-

mental and the second harmonics as a function on eV .

tion differs from the Planck distribution in that it con-

tains a sharp edge at h̄ω = eV [12]. In this case, the

nonequilibrium phonon distribution function is defined

by the expression

Nω(r) =
eV − h̄ω

2h̄ω
Θ(eV − h̄ω)qω(r), (5)

FIG. 6:

(a) Point contact spectrum of an Al point contact with

R0 = 8.73 Ω.

(b) Relative change in the fundamental amplitude of resis-

tance oscillations of a point contact in a magnetic field as a

function of the applied bias voltage: ∆R/R0 ≈ 3 · 10−3 for

V = 0 and B = 9.5 T .

(c) The ratio of the amplitudes of the fundamental and the

second harmonics as a function of eV .

where

qω(r)
1

4πΛ2
ω

∫
dr

exp(−R/Λω)

R
q(r′); (6)
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FIG. 7: Distribution of nonequilibrium phonons over the z-

axis in the units of contact diameter as a function of their

diffusive mean free path Λω/d, calculated by formula (6).

All the curves corresponding to z=0 are normalized to unity;

Λω/d=0.5 (curve 1); 1 (2); 2 (3); 5 (4); 10 (5); and 1000 (6).

R = |r− r′| ;

q(r) = 1
2

[
1−

(
1− Ω(r)

2π

)2
]

;

Λω =
(
lphi lphε /3

)1/2

(ωD − ω)
1/2

Here Θ(x) is the Heaviside theta function; lphε is the in-

elastic mean free path of phonons which has the same

order of magnitude as the inelastic mean free path of

electrons in the case of Debye energies and has the same

energy dependence, Ω(r) is the solid angle at which the

aperture is seen from the point r, and Λω is the diffusive

relaxation length over which a nonequilibrium phonon

loses its energy.

Thus, for a fixed value of lphi , the diffusive relax-

ation length Λω of phonons decreases with increasing

phonon energy. Figure 7 shows a family of curves cal-

culated from formula (6) and describing the distribution

of phonons along the z-axis (in the units of contact di-

ameter) as a function of the parameter Λω. It can be

seen that high-energy phonons having the smallest value

of the ratio Λω/d are accumulated near the aperture and

are strongly reabsorbed by electrons while low-frequency

phonons (with a large value of the ratio Λω/d) dominate

at the banks.

All the contacts investigated by us lie in the spectral

regime of current flow, i.e., satisfy the condition d� Λε
where Λε = (lilε/3)

1/2
is the diffusive length of energy

relaxation of electrons (according to our estimates, lAlεD ∼

3000 Å, lBeεD ∼ 1500 Å, lεD = vF τεD ;

τ−1
εD =

2π

h̄

ωD∫
0

g(ω)dω

at Debye energies [13]. Hence a large part of the electrons

loses its energy at the banks and not in the contact. In

other words, the main source of nonequilibrium phonons

at the banks is ”hot” electrons injected from the contact.

These phonons with randomly oriented momenta scatter

electrons (including the electrons with extremal cross-

sections of the Fermi surface) at the banks. The fraction

of phonons arriving at the banks from the contact region

is insignificant (see Fig. 7).

Thus, we arrive at a complete analogy with impurities:

scattering of electrons by phonons in the contact leads to

an isotropization of the electron momenta. This leads to

an increase in the z-component of the velocity of electrons

from extremal FS cross sections and hence to an increase

in the amplitude of oscillations of the contact resistance

in a magnetic field. At the same time, the scattering

of electrons by phonons generated by hot electrons at

the banks lowers the amplitude of quantum oscillations

of the density of states. The resulting dependence of

the amplitude of point-contact resistance oscillations on

eV will be determined by the balance between these two

processes.

The amplitude of quantum oscillations of the density

of states at the banks depends nonlinearly on the con-

centration of the scatterers [see formula (3)], attaining

saturation for large values of ωcτ and attenuating expo-

nentially for small values. Hence if the concentration of

static defects scattering electrons at the banks is low, the

slight increase in the number of electron scattering acts

by nonequilibrium phonons generated by ”hot” electrons

will lead to an insignificant decrease in the amplitude

of quantum oscillations. However, if the concentration of

static defects at the banks is quite high, a similar increase

in the number of acts of electron scattering by nonequi-

librium phonons may radically decrease the amplitude of

oscillations at the banks. An increase in the contact size

leads to an increase in the time of residence of nonequi-

librium phonons near the constriction, and hence to an

increase in the effectiveness with which quantized elec-

trons are distributed isotropically along the directions as

a result of phonon-electron collisions.

Hence we can expect an increase in the amplitude of

oscillations with increasing bias voltage in low-resistance

contacts with clean banks. Obviously, the strongest in-
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crease will be observed for contacts that are ballistic

with respect to electrons and diffusive with respect to

phonons, since they do not exhibit a background increase

in the amplitude due to scattering of electrons by impu-

rities, and a smaller elastic mean free path of nonequilib-

rium phonons is responsible for their higher concentra-

tion.

On the other hand, nonequilibrium phonons quickly

leave the region of contacts that have a high resistance

and are ballistic relative to phonons. If, on top of this,

the contact banks are not very clean, a decrease in the

amplitude of contact resistance oscillations will be ob-

served with increasing eV due to the influence of the

Dingle factor at the contact banks.

These arguments have been confirmed in the experi-

ments. For high-resistance Al contacts (Fig. 6) with a

relatively low purity of banks near the constriction [this

is confirmed by a large value of the ratio A1/A2 of har-

monics for V = 0, see formula (8) below], the amplitude

of resistance oscillations always decreases with increas-

ing bias voltage across the contact. On the other hand,

low-resistance Al contacts with extremely clean banks

(anomalously low value of the ratio A1/A2 of harmonics

for V = 0, see Fig. 4), the dependence of the oscil-

lation amplitude on eV is similar to the PC spectrum.

We obtained the dependences Rd (H) for the given con-

tact in the entire range of magnetic fields (0-10 T) for

bias voltages of 0, 20, and 44 mV . Although the os-

cillations began for all three bias voltages in nearly the

same magnetic fields, the increase in the oscillation am-

plitude with increasing bias voltage across the contact is

more rapid (several times) in high magnetic fields (i.e.,

for large values of ωcτ). A considerable (more than four-

fold) increase in A1 in strong fields and for large bias

voltages, and its anomalously low value (about an order

of magnitude smaller than the typical value) for V = 0

also speaks in favor of a low concentration of impurities

and static defects that scatter electrons directly in the

contact. Irrespective of the variation of the resistance of

Be contacts with increasing bias voltage, we observed an

increase in the amplitude of oscillations of Rd (Fig. 5).

This is probably due to an extremely high rigidity of the

Be crystal lattice due to which the strains emerging dur-

ing the contact formation do not move into the bulk of

the material, but are rather concentrated near the surface

and form effective reflectors which return the phonons to

the contact. It is also necessary to use Be single crystals

with a high initial purity for preparing contacts.

The model presented above can explain not only the

monotonic part of variation of the amplitude of oscilla-

tions with bias voltage, but also its similarity to the EPI

spectrum. It was mentioned above that for eV ≤ ωD, the

energy of the emitted phonons almost always coincides

with the excess energy of electrons, due to a low prob-

ability of multiphonon processes. The group velocity of

phonons generated by the electron flow depends on their

energy and minimum for frequencies at which ∂ω/∂q ∼ 0,

i.e., near the peaks of the phonon density of states. Since

Λω depends on the velocity at which phonons leave the

contact, a sharp increase in the phonon reabsorption co-

efficient will be observed at certain energies, as well as in

the amplitude of the point-contact resistance oscillations.

Since all electrons lying in the layer eV can take part in

phonon generation, the entire spectrum of phonons with

energies ranging from 0 to eV will be generated for a

given bias voltage. Hence it can be expected that the

dependence of the oscillation amplitude on eV would be

monotonic like the first IVC derivative dV/dI (eV ), which

does not correspond to the experimental results. How-

ever, we have not taken into consideration the role of

phonon- phonon collisions in this discussion.

The phonon mean free path lphph defined by phonon-

phonon collisions depends on the phonon energy and con-

centration which, in turn, is determined by the rate of

phonon generation (i.e., by eV ) as well as the rate at

which they leave the contact. The latter depends on

the group velocity of the phonons being generated, the

contact diameter, and the phonon mean free paths Λω
and lphph [14]. Hence, for bias voltages that are higher

than or of the same order as the phonon energies, the

phonon-phonon collision frequency increases sharply due

to a stepwise decrease in the diffusive energy relaxation

length Λω for phonons (similar to the energy relaxation

length Λε for electrons), as well as to a sharp decrease in

their group velocity. Such collisions lead to a thermaliza-

tion of phonons, which may have three consequences.

1. The direction of the momentum of an electron may

change significantly only as a result of its colli-

sion with a high-energy phonon. Hence thermalized

phonons are less effective for a considerable increase

in the z-component of the velocity of quantum elec-

trons entering the contact.

2. The phonon-phonon collisions lead to a decrease

in the number of high-frequency phonons with low

group velocities, which scatter the electrons most

effectively, and the newly formed phonons will
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rapidly leave the contact region.

3. An increase in the total number of phonons at

the banks as a result of thermalization leads to a

stronger suppression of oscillations in this region

since collisions with phonons having any energy are

effective in ejecting the quantized electrons from

the extremal orbits.

Hence it can be expected that, for bias voltages that are

higher than or of the same order as the characteristic

phonon energies, the rise of the A1 (eV ) dependence will

slow down and we may even obtain a descending region.

Another possible factor contributing to the nonmono-

tonicity of A1 (eV ) may be the renormalization of the

effective masses of high-energy electrons [15] It was pre-

dicted in Ref. [15] that, in the immediate vicinity of the

contact, the EPI parameter λ responsible for the renor-

malization of the effective mass m∗ = m(1 + λ) differs

from its equilibrium value λ0. This difference is due to

the presence of the nonequilibrium function of electron

distribution in the point contact for eV = 0. For a bal-

listic contact, λ will depend on the applied voltage. For

the Einstein model of spectrum of distribution of phonons

with energy hν0, the following expression holds at the

center of the contact [15]:

λ(eV ) =
λ0

2

[
1 +

(hν0)
2

(hν0)
2 − (eV )

2

]
. (7)

The anticipated behavior of λ(eV ) is shown schemati-

cally in Fig. 8. It can be seen that for high voltages

across the contact, the renormalization factor decreases

by half since only half the Fermi surface participates in

the renormalization of mass in the case of a nonequilib-

rium electron distribution function in the point contact

(see inset to Fig. 8). For eV = hν0, resonance is observed

in mass renormalization. The dashed curve in this figure

shows the predicted form of the dependence λ(eV ) for

the case of a blurred phonon line (band) near hν. It can

be concluded from the theory [15] that the nonmono-

tonic energy dependence of the effective electron mass

for characteristic phonon frequencies is determined by

the nonequilibrium electron distribution function in the

PC for finite bias voltages.

The energy dependence of the renormalized effective

mass in a ballistic point contact might be responsible

for the observed nonmonotonic dependence of the ampli-

tude of magnetoquantum oscillations on the applied volt-

age. It can be seen from Fig. 8 that the characteristic

FIG. 8: Schematic representation of the behavior of the EPI

parameter λ near the aperture as a function of the applied

voltage, which was predicted in Ref. [15]. The solid and

dashed curves correspond to an infinitely narrow phonon line

and to a phonon band of a finite width with a characteristic

energy eV = hν0. The inset shows the electron distribution

function for a ballistic point contact at the center of the aper-

ture.

phonon energy should correspond to the point of inflec-

tion on the segment with a negative slope of the curve

A1(eV ). Although the exact position of the peak on the

voltage dependence of the oscillations varies from con-

tact to contact, the voltages corresponding to the points

of inflection are usually higher than the values at which

the phonon peaks are localized in the EPI spectrum of

a point contact. As regards the observed disparity be-

tween the experimental and theoretical results, we note

that the theory described in Ref. [15] was developed for

zero magnetic field. It would be interesting to include

the energy dependence of the effective mass in the theory

explaining the magnetoquantum oscillations observed in

ballistic point contacts. The ballistic electron transport

in a point contact makes it possible to study the energy

dependence m∗ (eV ) in the absence of thermal heating.

Let us now consider the dependence of the ratio A1/A2

of harmonic amplitudes on the bias voltage applied across

the contact. For a fixed temperature, the ratio of ampli-

tudes of the first and second harmonics is defined by the

elastic mean free path li = vF τ of electrons in the region

where the electron density of states is quantized in the

metal, i.e., at the banks adjoining the contact. It follows
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from formulas (2) and (3) that

A1/A2 = C cosh

(
2π2kBT

h̄ωc

)
exp

(
π

ωcτ

)
. (8)

The constant C has the meaning of the ratio of ampli-

tudes of harmonics at T = 0 in the absence of scatterers.

Thus, as the electron mean free path decreases in the re-

gion of oscillations, the ratio A1/A2 increases. In view

of the geometry of the experiments (the magnetic field

is oriented parallel to the contact axis, while the elec-

trons whose number oscillates have a small z-component

of velocity) the ratio of the harmonics for V = 0 contains

information about the electron mean free path in the pe-

ripheral regions of the contact that are not far from the

center of the contact, i.e., the regions where the electron

mean free path is long enough for the emergence of os-

cillations. We assume that the form of the dependence

of the ratio A1/A2 of the harmonics on the bias voltage

applied across the contact is mainly due to two mecha-

nisms:

1. A decrease in the (quasi)elastic mean free path of

electrons in the region of space carrying informa-

tion on the oscillations at V = 0 due to an addi-

tional scattering by nonequilibrium phonons.

2. A redistribution of the relative contribution to the

information on electron mean free paths from spa-

tial regions with different impurity concentrations.

Of course, both mechanisms can coexist. It is obvious

that the first mechanism can lead only to an increase in

the relative intensity of the first harmonic [see formula

(8)]. The second mechanism may lead to the opposite ef-

fect. Indeed, it was mentioned above that the amplitude

of oscillations depends nonlinearly on the impurity con-

centration [formula (3)]. We assume that regions with a

low and a relatively high concentration of impurities exist

in the vicinity of the point contact. In the current state,

both types of regions will be exposed to phonons gener-

ated at the banks. Such a scattering only decreases the

amplitude of density of states oscillations insignificantly

in the case of clean regions, while the oscillations may be

suppressed considerably in the dirty regions. Hence the

relative contribution to the resistance oscillations from

cleaner regions in space will increase with eV , and the

ratio A1/A2 will decrease accordingly. Consequently, the

shape of the dependence of A1/A2 on eV can provide in-

formation about the distribution of impurities near the

contact in the region where oscillations are observed. If

the impurity concentration is equally low in all the re-

gions where oscillations take place, the shape of the de-

pendence of A1/A2 on eV will on the whole be similar to

the EPI spectrum (Fig. 4). If, however, the impurities

are distributed nonuniformly and their concentration in

the oscillation region decreases with distance from the

center of the contact, or if regions with a low impurity

concentration and regions practically free from impuri-

ties exist at the same distance on the contact periphery,

we shall observe a decrease in the ratio A1/A2 with in-

creasing eV (Figs. 5,6).

IV. CONCLUSIONS

In this work, we have investigated the amplitudes of

quantum oscillations of Al and Be point contact resis-

tance in a magnetic field oriented parallel to the con-

tact axis as functions of the potential difference applied

to the contact. It was found for the first time that

this dependence has a nonmonotonic ascending nature

in many cases, and its shape is similar to the EPI spec-

trum of the point-contact. Such an effect was observed

for Be point contacts and for low-resistance Al point

contacts. The additional scattering (in the contact) of

magnetoquantized electrons by phonons generated by ac-

celerated electrons may be a possible reason behind the

increase in the amplitude of oscillations with voltage.

These processes of scattering of electrons by nonequi-

librium phonons increase the contribution to transport

of charge carriers through the contact for electrons from

extremal Fermi surface cross sections. Hence, in con-

trast to the conventional suppression of magnetoquan-

tum oscillations due to scattering by impurities in a bulk

metal, the oscillations increase with scattering upon an

increase in the applied voltage. If, however, scattering by

nonequilibrium phonons extends to the contact banks, we

observe a familiar decrease in the oscillation amplitude

(for high-resistance Al contacts). The nonmonotonic eV -

dependence of the oscillation amplitude A1 (i.e., the ex-

istence of a peak near the phonon density of states peak)

is probably associated with an energy redistribution of

phonons due to phonon-phonon collisions, as well as with

the possible energy dependence of the renormalized elec-

tron mass in the immediate vicinity of the contact.

The shape of the dependence of the ratio A1/A2 of the

harmonics of oscillation amplitudes on eV can be used to

draw conclusions as to the impurity distribution in the

quantization region. If the impurity concentration is the
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same over the entire contact region, the relative inten-

sity of the first harmonic increases with eV . If, however,

the impurity concentration decreases with increasing dis-

tance from the contact center, the opposite effect is ob-

served.
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