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Nonlinear Predictor Feedback for Input-Affine Systems
with Distributed Input Delays

Anton Ponomarev

Abstract—Prediction-based transformation is applied to control-affine
systems with distributed input delays. Transformed systemstate is
calculated as a prediction of the system’s future response to the past
input with future input set to zero. Stabilization of the new system
leads to Lyapunov–Krasovskii proven stabilization of the original one.
Conditions on the original system are: smooth linearly bounded open-
loop vector field and smooth uniformly bounded input vectors. About
the transformed system which turns out to be affine in the undelayed
input but with input vectors dependent on the input history and system
state, we assume existence of a linearly bounded stabilizing feedback and
quadratically bounded control-Lyapunov function. If all a ssumptions hold
globally, then achieved exponential stability is global, otherwise local.
Analytical and numerical control design examples are provided.

Index Terms—Nonlinear systems, delayed control, NL predictive con-
trol, stability of NL systems.

I. NOTATION

The symbolPC(T,X) stands for the space of piecewise contin-
uous functions mappingT ⊂ R into a Euclidean spaceX. TheL2

norm ofϕ ∈ PC
(

[−h, 0), Rm
)

is ‖ϕ‖, i.e.,

‖ϕ‖2 =

∫ 0

−h

‖ϕ(θ)‖2 dθ. (1)

Givenu ∈ PC
(

[t−h, t), Rm
)

, whereh > 0, let ut be a function
defined asut(θ) = u(t+ θ) for all θ ∈ [−h, 0).

O(R) is the closedR-ball about the origin in a normed space,
specifically,

x ∈ O(R) ⇔ ‖x‖2 ≤ R2, (2)

(x, ϕ) ∈ O(R) ⇔ ‖x‖2 + ‖ϕ‖2 ≤ R2. (3)

II. I NTRODUCTION

A. Problem statement

Consider the system

ẋ(t) = f
(

x(t)
)

+B0

(

x(t)
)

u(t) +B1

(

x(t)
)

u(t− h)

+

∫ 0

−h

Bint
(

θ, x(t)
)

u(t+ θ) dθ, (4)

wherex ∈ Rn, u ∈ Rm, h > 0, and the following assumptions hold
for someMf < ∞ andR ∈ (0,∞]:

1) regardingf , for all x, x0 ∈ O(R):

‖f(x)‖ ≤ Mf‖x‖, (5)

f(x) = f(x0) +A(x0)(x− x0) + o(x− x0), (6)

A ∈ C0
(

O(R),Rn×n
)

; (7)

2) regardingB1, for all x, x0 ∈ O(R):

B1 is bounded onO(R), (8)

B1(x) = B1(x0) +
(

B1
1(x0)(x− x0), . . . ,Bm

1 (x0)(x− x0)
)

+ o(x− x0), (9)

Bi
1 ∈ C0(O(R), Rn×n

)

∀i ∈ 1,m; (10)
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3) regardingBint, for all x, x0 ∈ O(R) andθ ∈ [−h, 0]:

Bint is bounded on[−h, 0]×O(R), (11)

Bint(·, x) ∈ PC
(

[−h, 0], Rn×m
)

, (12)

Bint(θ, x) = Bint(θ, x0)

+
(

B1
int(θ, x0)(x− x0), . . . ,Bm

int(θ, x0)(x− x0)
)

+ o(x− x0), (13)

Bi
int(θ, ·) ∈ C0(O(R),Rn×n

)

∀i ∈ 1,m. (14)

The linear bound (5) is assumed primarily to establish simple
bounds on the system’s solutions.

This paper is concerned with stabilization of the origin of (4),
however, the approach presented here is applicable to time-variant
systems with more point-wise and integral delays.

As for the practical importance of (4), such systems are used, e.g.,
for modeling of networked control systems where control delay value
is unknown and varies rapidly [1].

There may be quite a few ways to stabilize (4). See, e.g., [2] where
even more general time-variant systems with matricesB0, B1, and
Bint dependent onxt are tackled, the result being that sometimes a
nonlinear feedback ofx(t) is stabilizing. However, we are concerned
here with the so-calledpredictor feedback. It got the name because, in
a sense, it predicts the system’s future behavior and how thecontrol
currently being chosen affects this behavior. Formally speaking, it is
based on a state transformation which puts the system into a delay-
free form. If the transformed system is stabilized with a feedback, it
is possible to prove that the feedback will also stabilize the original
system.

The predictor feedback theory is currently well-developedfor
linear systems with distributed input delays [3], [4], [5] and nonlinear
single-delay systems [6]. This paper extends the methodology to
nonlinear systems with distributed input delays (4) for thefirst time.

B. Outline of the paper

In Section III, already known predictor feedbacks are summarized.
In Section IV, nonlinear predictor-based state transformation is

defined for (4). The transformed system is derived in Theorem1.
In Section V, an approach to stabilization of (4) is proposed(see

Theorem 2). It is based on assumed existence of a quadratically
bounded control-Lyapunov function and linearly bounded stabilizing
feedback for the predictor-transformed system. Stabilityof the origi-
nal system’s closed loop is proved by Lyapunov–Krasovskii method.

In Section VI, some illustrative problems are discussed.

III. PREDICTOR FEEDBACK OVERVIEW

Let us recall a control methodology first designed for linear
systems in [3], [4], [5] and named there “finite spectrum assignment”,
“receding horizon approach”, and “model reduction”. We describe
here a certain rehash of the same method based on the “prediction”
concept and called “predictor feedback”.

A. Linear predictor feedback: one delay

To begin with, consider the linear system with one discrete delay:

ẋ(t) = Ax(t) +B1u(t− h). (15)

The principles of predictor feedback in this case are:
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• given the current statex(t) and past inputut, predictor
Y
(

x(t), ut

)

of the future statex(t+ h) is calculated using the
variation of constants as

Y
(

x(t), ut

)

= eAhx(t) +

∫ 0

−h

e−AθB1u(t+ θ) dθ; (16)

• state transformation is applied to the system:

y(t) = Y
(

x(t), ut

)

; (17)

• predictor-transformed system is delay-free:

ẏ(t) = Ay(t) +B1u(t); (18)

• y(t) is stabilized, if possible, with a feedbacku(t) = Ky(t);
• the feedback for the original system isu(t) = KY

(

x(t), ut

)

.

B. Linear predictor feedback: distributed delay

Suppose now that distributed delays are present:

ẋ(t) = Ax(t)+B0u(t)+B1u(t−h)+

∫ 0

−h

Bint(θ)u(t+θ) dθ. (19)

In this caseliteral prediction ofx(t+h) at the current timet would
be challenging because it requires eitherknowledge of the future
input or assumptions about the future input. The former leads to a
non-causal and thus non-implementable feedback, the latter – to an
implicitly defined controller.

In [3], [4], [5], however, “prediction withzero future input” is used.
It is not theliteral prediction, i.e., actual future input is not required
to be zero. The feedback is constructed as follows:

• predictor Y
(

x(t), ut

)

is defined as a prediction ofx(t + h)
with past inputut and future input set to zero, i.e., assuming
u(t+ θ) = 0 for all θ ∈ [0, h]; formally,

Y
(

x(t), ut

)

= ξ(h), (20)

ξ′(s) = Aξ(s) +B1u(t+ s− h)

+

∫

−s

−h

Bint(θ)u(t+ s+ θ) dθ, (21)

ξ(0) = x(t) (22)

or, equivalently,

Y
(

x(t), ut

)

= eAhx(t) +

∫ 0

−h

Q(θ)u(t+ θ) dθ, (23)

where

Q(θ) = e−AθB1 +

∫ θ

−h

eA(h−θ+τ)Bint(τ ) dτ ; (24)

• predictor-basedstate transformation is applied:

y(t) = Y
(

x(t), ut

)

; (25)

• predictor-transformed system is again delay-free:

ẏ(t) = Ay(t) +
(

eAhB0 +Q(0)
)

u(t); (26)

• y(t) is stabilized withu(t) = Ky(t);
• the final feedback is

u(t) = KY
(

x(t), ut

)

. (27)

Observe that they-system (26) is clearly exponentially stable under
the feedbacku = Ky if suitableK exists. Stability of (19) under (27)
is less obvious as the closed loop is a time-delay system. Lyapunov–
Krasovskii analysis is highly desirable. The central problem in this
analysis is to find a functionalv(x,ϕ) defined for allx ∈ Rn,
ϕ ∈ PC

(

[−h, 0), Rm
)

which is positive definite in terms of the
norm ‖x‖2 + ‖ϕ‖2 and decreasing along the closed-loop solutions,

i.e., whenx = x(t), ϕ = ut. It is convenient to construct the
functional starting with a Lyapunov functionyTV y for the closed-
loop y-system. The functional may be then designed as

v(x,ϕ) = Y T (x,ϕ)V Y (x,ϕ) +

∫ 0

−h

eσθ‖ϕ(θ)‖2 dθ, (28)

whereσ > 0 (see [7] for proofs).
A lot of problems regarding linear predictor feedback have been

addressed since its discovery including stability [8], [9], [10], ro-
bustness [7], [11], [12], [13], delay-adaptive versions [14], [15], and
practical implementation issues [16], [17], [18], [19]. The approach
is available for systems with state delays and an input delay[20],
[21].

C. Nonlinear predictor feedback

Predictor feedback technique has been already expanded on non-
linear systems with one discrete delay in the input:

ẋ(t) = f
(

x(t), u(t− h)
)

. (29)

The feedback was constructed and studied in [6] using the same idea
as in the linear case: construct a predictorY

(

x(t), ut

)

of x(t+ h);
introduce new variabley(t) = Y

(

x(t), ut

)

which transforms the
system to

ẏ(t) = f
(

y(t), u(t)
)

(30)

and stabilize it with a feedbacku = κ(y). An analysis is then
conducted which shows that stability of the original systemis
achieved byu(t) = κ

(

Y
(

x(t), ut

))

.
As some examples of further development, let us mention the

delay-adaptive variation of the feedback [22] and feedbackfor state-
dependent delay [23].

IV. PREDICTOR-BASED STATE TRANSFORMATION

Following the linear theory described in Subsection III-B,we
define predictorY

(

x(t), ut

)

for (4) via prediction ofx(t+h) under
zero future input. The nonlinear version of (25) is

y(t) = Y
(

x(t), ut

)

(31)

with mappingY (x, ϕ) defined forx ∈ Rn, ϕ ∈ PC
(

[−h, 0], Rm
)

by the system

Y (x, ϕ) = ξ(h), (32)

ξ′(s) = f
(

ξ(s)
)

+B1

(

ξ(s)
)

ϕ(s− h)

+

∫

−s

−h

Bint
(

θ, ξ(s)
)

ϕ(s+ θ) dθ, (33)

ξ(0) = x. (34)

The definition is algorithmic: to findY (x,ϕ), solve (33) with initial
condition (34) fors ∈ [0, h].

There may be problems with this definition ifξ(s) goes to infinity
betweens = 0 ands = h. However, the following lemma shows that
the mapping is defined at least in a zero neighborhood.

Lemma 1: Y (x,ϕ) is defined globally if (5) is satisfied forR = ∞
or, otherwise, locally for

(x, ϕ) ∈ O
(

R

ρ

)

, (35)

where ρ =
√
2eMfh max

{

1, hmaxθ∈[−h,0],x∈O(R) ‖Bint(θ, x)‖ +
maxx∈O(R) ‖B1(x)‖

}

. Furthermore, for thesex andϕ

‖x‖2 ≤ ρ2
(

‖Y (x,ϕ)‖2 + ‖ϕ‖2
)

, (36)

‖Y (x, ϕ)‖2 ≤ ρ2
(

‖x‖2 + ‖ϕ‖2
)

. (37)
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Proof: Suppose that (5) holds true along the solution of the prob-
lem (33), (34). Applying the Gronwall–Bellman, Cauchy–Schwarz,
and Young inequalities, one deduces

‖ξ(s)‖2 ≤ ρ2
(

‖x‖2 + ‖ϕ‖2
)

(38)

for all s ∈ [0, h]. It leads to the conclusion that if (35) is satisfied,
then ‖ξ(s)‖ ≤ R, so (5) does hold alongξ(s), and ξ(s) does not
go to infinity. Let s = h to get (37). To arrive at (36), use the same
estimations whens goes backwards fromh to 0.

Let us ignore the possibility of predictor nonexistence fora while
(until Theorem 2) and derive the transformed system.

Theorem 1: System (4) after transformation (31) assumes the form

ẏ(t) = f
(

y(t)
)

+B
(

y(t), ut

)

u(t) (39)

with B(y,ϕ) defined for everyy andϕ implicitly by the equations

B(y,ϕ) = B1

(

ξ(h)
)

+ β(h), (40)

β′(s) = Ã
(

s, ξ(s), ϕ
)

β(s) +Bint
(

− s, ξ(s)
)

, (41)

β(0) = B0

(

ξ(0)
)

, (42)

ξ′(s) = f
(

ξ(s)
)

+B1

(

ξ(s)
)

ϕ(s− h)

+

∫

−s

−h

Bint
(

θ, ξ(s)
)

ϕ(s+ θ) dθ, (43)

ξ(h) = y, (44)

Ã(s, ξ, ϕ) = A(ξ) +
m
∑

i=1

Bi
1(ξ)ϕi(s− h)

+
m
∑

i=1

∫

−s

−h

Bi
int(θ, ξ)ϕi(s+ θ) dθ (45)

granted thatξ(s) exists on the interval[0, h].
Proof: We are going to calculate the difference betweeny(t)

andy(t+∆), where∆ is a small number, and finḋy(t) from there.
According to (31),y(t) = ξ(h), whereξ(s) satisfies

ξ′(s) = f
(

ξ(s)
)

+B1

(

ξ(s)
)

u(t+ s− h)

+

∫

−s

−h

Bint
(

θ, ξ(s)
)

u(t+ s+ θ) dθ, (46)

ξ(0) = x(t). (47)

Notice that this functionξ is the same as in the statement of
the theorem, just defined from the other end of the interval[0, h].
Likewise, y(t+∆) = ξ̃(h), whereξ̃(s) satisfies

ξ̃′(s) = f
(

ξ̃(s)
)

+B1

(

ξ̃(s)
)

u(t+∆+ s− h)

+

∫

−s

−h

Bint
(

θ, ξ̃(s)
)

u(t+∆+ s+ θ) dθ, (48)

ξ̃(0) = x(t+∆). (49)

Consider nowζ(s) = ξ̃(s)−ξ(s+∆) for s ∈ [0, h−∆]. It follows
from the definition ofξ and ξ̃ that

ζ(0) = x(t+∆)− ξ(∆) = B0

(

ξ(0)
)

u(t)∆ + o(∆), (50)

and

ζ′(s) = ξ̃′(s)− ξ′(s+∆)

= f
(

ξ̃(s)
)

− f
(

ξ(s+∆)
)

+
(

B1

(

ξ̃(s)
)

−B1

(

ξ(s+∆)
)

)

u(t+∆+ s− h)

+

∫

−s

−h

Bint
(

θ, ξ̃(s)
)

u(t+∆+ s+ θ) dθ

−
∫

−s−∆

−h

Bint
(

θ, ξ(s+∆)
)

u(t+∆+ s+ θ) dθ

= A
(

ξ(s)
)

ζ(s) +
m
∑

i=1

Bi
1

(

ξ(s)
)

ζ(s)ui(t+ s− h)

+
m
∑

i=1

∫

−s

−h

Bi
int

(

θ, ξ(s)
)

ζ(s)ui(t+ s+ θ) dθ

+Bint
(

− s, ξ(s)
)

u(t)∆ + o(∆)

= Ã
(

s, ξ(s), ut

)

ζ(s) +Bint
(

− s, ξ(s)
)

u(t)∆ + o(∆). (51)

Equation (51) holds only ifξ(s) ∈ O(R). Observe that, up too(∆),
the solution of the problem (51), (50) coincides with that ofthe
problem (41), (42) multiplied byu(t)∆:

ζ(h−∆) = β(h)u(t)∆ + o(∆). (52)

Therefore,

y(t+∆)− y(t)

∆
=

ξ̃(h)− ξ(h)

∆

=
ξ̃(h)− ξ̃(h−∆) + ζ(h−∆)

∆

= f
(

y(t)
)

+B
(

y(t), ut

)

u(t) +
o(∆)

∆
, (53)

which proves the theorem.

V. FEEDBACK DESIGN

The following result is inspired by the control-Lyapunov function
concept.

Theorem 2: If for all (y, ϕ) ∈ O(R) it is possible to define smooth
functionsv0(y) andw0(y) and a mappingκ(y, ϕ) which satisfy the
inequalities

mv0‖y‖2 ≤ v0(y) ≤ Mv0‖y‖2, (54)

w0(y) ≥ mw0
‖y‖2, (55)

‖κ(y, ϕ)‖ ≤ Mκ‖y‖, (56)
(

f(y) +B(y,ϕ)κ(y, ϕ)
)T∇v0(y) ≤ −w0(y), (57)

wheremv0 > 0 andmw0
> 0, then:

1) the origin is exponentially stable in the loop of (4) closed by
the feedback

u(t) = κ
(

Y (x, ut), ut

)

; (58)

2) the stability is global ifR = ∞ or local if R < ∞ with the
region of attraction containing at least the ball

(

x(t), ut

)

∈ O
(√

mv

Mv

R

ρ

)

, (59)

whereρ is given by Lemma 1, and

mv =
1

2ρ2
min

{

mv0 , γe
−σh, ρ2γe−σh

}

, (60)

Mv = γ + ρ2Mv0 , (61)

γ =
mw0

2M2
κ

, (62)

σ =
mw0

2Mv0

; (63)

3) solutions of the closed loop (4), (58) exhibit the exponential
decay property

‖x(t)‖2 + ‖ut‖2 ≤ Mv

mv

e−σt
(

‖x(0)‖2 + ‖u0‖2
)

. (64)

Proof: The proof is by the Lyapunov–Krasovskii method. Con-
sider the functional for the closed loop (4), (58):

v(x, ϕ) = v0
(

Y (x,ϕ)
)

+ γ

∫ 0

−h

eσθ‖ϕ(θ)‖2 dθ. (65)
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Using (36), (37), and (54), one can estimate

mv

(

‖x‖2 + ‖ϕ‖2
)

≤ v(x,ϕ) ≤ Mv

(

‖x‖2 + ‖ϕ‖2
)

(66)

with mv andMv given in the statement of the theorem.
Let (x(t), ut) be an arbitrary solution of the closed loop and

suppose that (31) is defined along the whole trajectory(x(t), ut).
Denote the value ofv(x,ϕ) along this solution asv(t), i.e.,

v(t) = v
(

x(t), ut

)

. (67)

It follows from the choice ofγ andσ and from (55), (56), (57) that

v̇(t) ≤
(

−mw0
+ γM2

κ

)∥

∥Y
(

x(t), ut

)∥

∥

2

− σγ

∫ 0

−h

eσθ‖u(t + θ)‖2 dθ

≤ −σv(t). (68)

Combining (66) and (68) leads to (64). Finally, (64) together with
(59) taken att = 0 ensures that at no timet ≥ 0 does the system
leave the region

(

x(t), ut

)

∈ O(R/ρ) which, according to Lemma 1,
is sufficient for (31) to be defined for allt ≥ 0. Thus, the proof just
given is correct inside (59).

The next statement is supplemental to Theorem 2. It presentsa
way to construct the feeedbackκ(y, ϕ), given v0(y) andw0(y). Its
application is demonstrated in Section VI-C.

Corollary 1: DefineB ⊂ Rn×m as the set of all possible values
of B(y, ϕ) when (y,ϕ) ∈ O(R). SupposeB is bounded.

If there are smooth functionsv0(y) and w0(y) meeting the
conditions (54), (55), and

‖∇v0(y)‖ ≤ M∇v0‖y‖, (69)

fT (y)∇v0(y)− k‖BT∇v0(y)‖2 ≤ −w0(y) (70)

for some constantsM∇v0 > 0, k, all B ∈ B, and all y ∈ O(R),
then the feedback

κ(y, ϕ) = −kBT (y,ϕ)∇v0(y) (71)

satisfies (56) and (57). In other words, the implications of Theorem 2
hold true for thesev0, w0, andκ.

Proof: (56) is satisfied with

Mκ = |k|max
B∈B

‖B‖M∇v0 . (72)

(57) turns into (70) after substitution of (71).
Assuming infinitely fast computations, the control algorithm sug-

gested by Corollary 1 is this:

1) At time t, givenx(t) andut, solve (46), (47) forξ(s).
2) Assigny(t) := ξ(h).
3) Solve (41), (42) forβ(h).
4) AssignB

(

y(t), ut

)

:= B1 + β(h).
5) Apply u(t) = −kBT

(

y(t), ut

)

∇v0
(

y(t)
)

and repeat.

VI. EXAMPLES

A. Scalar case

The most trivial examples are equations of the form

ẋ(t) = f
(

x(t)
)

+b0u(t)+b1u(t−h)+

∫ 0

−h

bint(θ)u(t+θ)dθ (73)

with same-sign input coefficients, e.g.,b0 > 0, b1 > 0, andbint > 0.
In this caseB(y, ϕ) is a positive scalar separated from zero, so a
possible feedback is (58) with

κ(y, ϕ) =
−f(y)− y

B(y,ϕ)
. (74)

When input coefficients are of different signs,B(y, ϕ) may or may
not be zero. If it is zero for somey andϕ, then the origin of (73)
may or may not be stabilizable. The exact case is unclear because,
unlike in the linear systems, hereB(y, ϕ) is not constant.

B. Explicit prediction

As explained in [6], for some nonlinear systems with one input
delay the predictor can be obtained by quadrature. The same holds
true for distributed input delays. Let us give an example.

The system
{

ẋ1(t) = x2
2(t) + u(t− h),

ẋ2(t) = x2(t) + u(t)
(75)

allows explicit predictor transformation

y1 = x1 +
e2h − 1

2
x2
2 +

∫ 0

−h

u(t+ θ) dθ, (76)

y2 = ehx2 (77)

which results in the system
{

ẏ1 = y2
2 +

(

1 +
(

eh − e−h
)

y2
)

u,

ẏ2 = y2 + ehu.
(78)

The origin of (78) is globally asymptotically stabilizable. Indeed,
another state and input transformation

z1 = y1 − e−hy2 +
e−2h − 1

2
y2
2 , (79)

z2 = e−hy2, (80)

u = −2z2 + ũ (81)

puts (78) into the cascade form
{

ż1 = z22 − z2,
ż2 = −z2 + ũ.

(82)

Consider the positive definite function (the design is from [24])

V (z) =
(

z1 +
1
2
z2(z2 − 2)

)2
+ z22 . (83)

Its time-derivative along the solutions of (82)

V̇ = −2z22 +
∂V

∂z2
ũ (84)

shows that the feedback

ũ = − ∂V

∂z2
(85)

is globally asymptotically stabilizing.
On a side note, the overall transformation from (75) to (82) happens

to be linear:

z1 = x1 − x2 +

∫ 0

−h

u(t+ θ) dθ, (86)

z2 = x2, (87)

u = −2x2 + ũ. (88)

Remark: Returning fromz back throughy to x leads to a rather
complex feedback for the original system (75). Does it achieve global
asymptotic stability (GAS)?On the one hand, transformationx 7→ y
is well defined globally and transformed system is closed-loop GAS.
On the other, assumption (5) and conditions (54)–(56) hold only
locally if anywhere. Therefore, we are bound to conclude that our
proofs do not warrant GAS of the original systems. This observation
is valid not only in this example. It represents an inherent limitation
of our proofs of stability. See Conclusions for further remarks.
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Fig. 1: Simulation of (89) under the feedback (58), (104) with initial
conditionsx1(0) ∈ {π/2, π, 3π/2}, x2(0) = π/2, u0 ≡ 1.

C. Numerical prediction

Consider the nonlinear inverted pendulum described by the system
{

ẋ1(t) = x2(t),
ẋ2(t) = sin x1(t) + u(t) + u(t− h), h = π/4.

(89)

The design presented below is also possible for allh ∈ [0, π/2].
In the above notation,

f(x) =

(

x2

sin x1

)

, B0 = B1 =

(

0
1

)

. (90)

Assumptions (5) and (6) hold true with

A(x) =

(

0 1
cos x1 0

)

, Mf = 1, R = ∞. (91)

We are going to use Corollary 1 to design the feedback function
κ and then simulate the closed loop (89), (58).

Step 1: estimateB in order to apply Corollary 1. The problem (41),
(42) is

β′(s) = A
(

ξ(s)
)

β(s), (92)

β(0) =

(

0
1

)

. (93)

From the inclusions

d

ds

(

β2
1 + β2

2

)

∈
[

0, 2
(

β2
1 + β2

2

)]

, (94)

d

ds

(

β1

β2

)

∈
[

1−
(

β1

β2

)2

, 1 +

(

β1

β2

)2
]

(95)

valid for s ∈ [0, π/2) we find

β2
1(h) + β2

2(h) ∈
[

1, e2h
]

, (96)

β1(h)

β2(h)
∈
[

tanhh, tan h
]

, (97)

which means thatβ(h) resides in a sector of a circular ring centered
at the origin. It implies a rough estimation ofB as the sector moved
by B1.

Step 2: find v0, w0 andk that satisfy Corollary 1. Let

v0(y) = yTV y (98)

with some positive definiteV . The requirement of Corollary 1 is then

2fT (y)V y − 4k(V y)TBBTV y ≤ −w0(y). (99)

It is convenient to decomposef(y) as

f(y) = F (y)y, (100)

where

F (y) =

(

0 1
α(y) 0

)

, (101)

α(y) =
sin y1
y1

∈ [−0.22, 1], (102)

then (99) will follow from negative definiteness of the matrix

V −1F T (y) + F (y)V −1 − 4kBBT (103)

for all y ∈ Rn, all B ∈ B, and somek. We found computationally
that forh = π/4 it is valid to takeV = I andk = 1, so the feedback
function suggested by Corollary 1 is

κ(y, ϕ) = −BT (y, ϕ)y. (104)

Fig. 1 shows the simulation results of (89) under the feedback (58),
(104) for different initial conditions. Euler’s approximation with time
step of0.01 was used for calculatingx(t), β(s), andξ(s).

VII. C ONCLUSIONS

Let us pose some problems for a future discussion.
Firstly, concerning practical implementation of the proposed feed-

back, it should be mentioned that solving nonlinear equations may be
costly, and any approximation, strictly speaking, requires robustness
analysis.

Secondly, it is demonstrated in Section VI-B that our linear-
quadratic bounds (5) and (54)–(56) may prohibit one from declar-
ing global stabilization even when it is likely to be achieved. In
fact, such restrictive bounds are not necessary. Their purpose is to
simplify stability analysis by making the case “almost linear”. The
simplification is evinced in the exponential rate of decay (64) which
is generally not expected from nonlinear systems. A possible way to
avoid assumptions (5) and (54)–(56) and to achieve classKL rate of
decay in (64) is to follow the methodology of [6].
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[1] G. Goebel, U. Münz, and F. Allgöwer, “Stabilization oflinear systems
with distributed input delay,” in2010 American Control Conference,
Marriott Waterfront, Baltimore, MD, USA, 2010, pp. 5800–5805.

[2] F. Mazenc, S.-I. Niculescu, and M. Bekaik, “Stabilization of time-
varying nonlinear systems with distributed input delay by feedback of
plant’s state,”IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 264–269,
Jan. 2013.

[3] A. Manitius and A. W. Olbrot, “Finite spectrum assignment problem for
systems with delays,”IEEE Trans. Autom. Control, vol. AC-24, no. 4,
pp. 541–552, Aug. 1979.

[4] W. H. Kwon and A. E. Pearson, “Feedback stabilization of linear systems
with delayed control,”IEEE Trans. Autom. Control, vol. AC-25, no. 2,
pp. 266–269, Apr. 1980.

[5] Z. Artstein, “Linear systems with delayed control: a reduction,” IEEE
Trans. Autom. Control, vol. AC-27, no. 4, pp. 869–879, Aug. 1982.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

[6] M. Krstic, “Input delay compensation for forward complete and strict-
feedforward nonlinear systems,”IEEE Trans. Autom. Control, vol. 5,
no. 2, pp. 287–303, Feb. 2010.

[7] A. Ponomarev, “Reduction-based robustness analysis oflinear predic-
tor feedback for distributed input delays,”IEEE Trans. Autom. Con-
trol, to be published, doi:10.1109/TAC.2015.2437520, available online:
http://arxiv.org/abs/1505.02402.

[8] M. Krstic, “Lyapunov tools for predictor feedbacks for delay systems:
inverse optimality and robustness to delay mismatch,”Automatica, vol. 4,
no. 11, pp. 2930–2935, Nov. 2008.

[9] N. Bekiaris-Liberis and M. Krstic, “Lyapunov stabilityof linear predictor
feedback for distributed input delays,”IEEE Trans. Autom. Control,
vol. 56, no. 3, pp. 655–660, Mar. 2011.

[10] F. Mazenc, S.-I. Niculescu, and M. Krstic, “Lyapunov–Krasovskii func-
tionals and application to input delay compensation for linear time-
invariant systems,”Automatica, vol. 48, no. 7, pp. 1317–1323, Jul. 2012.

[11] W. Michiels and S.-I. Niculescu, “On the delay sensitivity of Smith
Predictors,”Int. J. Syst. Sci., vol. 34, no. 8–9, pp. 543–551, Jul. 2003.

[12] M. Jankovic, “Forwarding, backstepping, and finite spectrum assignment
for time delay systems,”Automatica, vol. 45, no. 1, pp. 2–9, Jan. 2009.

[13] I. Karafyllis and M. Krstic, “Delay-robustness of linear predictor feed-
back without restriction on delay rate,”Automatica, vol. 49, no. 6, pp.
1761–1767, Jun. 2013.

[14] D. Bresch-Pietri and M. Krstic, “Delay-adaptive predictor feedback
for systems with unknown long actuator delay,”IEEE Trans. Autom.
Control, vol. 55, no. 9, pp. 2106–2112, Sep. 2010.

[15] D. Bresch-Pietri, J. Chauvin, and N. Petit, “Adaptive control scheme for
uncertain time-delay systems,”Automatica, vol. 48, no. 8, pp. 1536–
1552, Aug. 2012.

[16] Z. Palmor, “Stability properties of Smith dead-time compensator con-
troller,” Int. J. Control, vol. 32, no. 6, pp. 937–949, 1980.
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