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Nonlinear Predictor Feedback for Input-Affine Systems
with Distributed Input Delays

Anton Ponomarev

Abstract—Prediction-based transformation is applied to control-dfine
systems with distributed input delays. Transformed systemstate is
calculated as a prediction of the system’s future responseotthe past
input with future input set to zero. Stabilization of the new system
leads to Lyapunov—Krasovskii proven stabilization of the oiginal one.
Conditions on the original system are: smooth linearly bouded open-
loop vector field and smooth uniformly bounded input vectors About
the transformed system which turns out to be affine in the undieyed
input but with input vectors dependent on the input history and system
state, we assume existence of a linearly bounded stabiligirfeedback and
quadratically bounded control-Lyapunov function. If all a ssumptions hold
globally, then achieved exponential stability is global, therwise local.
Analytical and numerical control design examples are prowied.

Index Terms—Nonlinear systems, delayed control, NL predictive con-
trol, stability of NL systems.

I. NOTATION
The symbolPC(T, X) stands for the space of piecewise contin
uous functions mappind’ C R into a Euclidean spac&’. The L?
norm of o € PC([—h,0),R™) is |¢||, i.e.,
0
el = [ e(@)* ao. @
—h

Givenu € PC([t — h,t), R™), whereh > 0, let u; be a function
defined asu:(0) = u(t + 0) for all @ € [—h,0).

O(R) is the closedR-ball about the origin in a normed space,

specifically,
z € O(R) & |z|* < R?,
(z,9) € O(R) & ||z|* + [l¢|* < R*.

)
®)

Il. INTRODUCTION
A. Problem statement
Consider the system

f(x(t)) + Bo(z(t))u(t) + Bi(z(t))u(t — h)

+ /0 Bt (0, z(t))u(t + 0)do, (4)

(t) =

wherex € R", w € R™, h > 0, and the following assumptions hold
for someM; < oo and R € (0, oo:
1) regardingf, for all z,zo € O(R):

I1f @) < Myl ®)
f(x) = f(@o) + A(zo)(x — o) + o(z — o), (6)
A€ C°(O(R),R™™); (7)
2) regardingB;, for all z,z0 € O(R):
B, is bounded orO(R), (8)

Bi(x) = Bi(wo) + (Bl (w0)(z — o), ..., B (w0) (@ — w0) )
+ o(x — z0),
Bi € C°(O(R),R™™) Vie Ty

9)
(10
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3) regardingBin;, for all z,z0 € O(R) andf € [—h,0]:
Bint is bounded orj—h, 0] x O(R),
Bu(-,x) € PC([~h,0], R"*™),
Bint(0, ) = Bint(0, x0)
+ (Bilm(&fl?o)(% —x0),- -, Biat (0, o) (x — 900))
+ o(x — z0), (13)
w(0,)) € C°(O(R),R™™) VieTIm. (14)

(11)
(12)

The linear bound[{5) is assumed primarily to establish stmpl
bounds on the system’s solutions.

This paper is concerned with stabilization of the origin @}, (
however, the approach presented here is applicable touémant
systems with more point-wise and integral delays.

As for the practical importance dfl(4), such systems are ,usegd,
for modeling of networked control systems where controagelalue
is unknown and varies rapidly[1].

There may be quite a few ways to stabilizé (4). See, é.9., [Bres
even more general time-variant systems with matriBgs B1, and
Bint dependent onx; are tackled, the result being that sometimes a
nonlinear feedback of (¢) is stabilizing. However, we are concerned
here with the so-callegredictor feedback. It got the name because, in
a sense, it predicts the system’s future behavior and howedheol
currently being chosen affects this behavior. Formallyakpwy, it is
based on a state transformation which puts the system intday-d
free form. If the transformed system is stabilized with adfesck, it
is possible to prove that the feedback will also stabilize dhiginal
system.

The predictor feedback theory is currently well-develogfed
linear systems with distributed input delays [3], [4], [$idanonlinear
single-delay systems [[6]. This paper extends the methggioto
nonlinear systems with distributed input delalyk (4) for fingt time.

B. Outline of the paper

In Sectior{TIl, already known predictor feedbacks are sunuae.

In Section[1V, nonlinear predictor-based state transfeionais
defined for [(#). The transformed system is derived in Thedfem

In SectionY, an approach to stabilization bf (4) is propoésee
Theorem[R). It is based on assumed existence of a quadhatical
bounded control-Lyapunov function and linearly boundexb#izing
feedback for the predictor-transformed system. Stahilftthe origi-
nal system’s closed loop is proved by Lyapunov—Krasovslthad.

In Section V], some illustrative problems are discussed.

Ill. PREDICTOR FEEDBACK OVERVIEW

Let us recall a control methodology first designed for linear
systems in[B],[[4],[[5] and named there “finite spectrum gasient”,
“receding horizon approach”, and “model reduction”. We i
here a certain rehash of the same method based on the “fwatlict
concept and called “predictor feedback”.

A. Linear predictor feedback: one delay

To begin with, consider the linear system with one discretiayd
z(t) = Az(t) + Biu(t — h). (15)

The principles of predictor feedback in this case are:
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« given the current stater(t) and past inputu:, predictor i.e., whenz = xz(t), ¢ = wu. It is convenient to construct the
Y(:c(t),ut) of the future state:(¢ + h) is calculated using the functional starting with a Lyapunov functiop” Vy for the closed-

variation of constants as loop y-system. The functional may be then designed as
0 B 0
Y (2(t),ue) = ™ a(t) + / e Y Buu(t+0)do;  (16) v(@, ) =Y (2,0)VY (2,0) + / e’ |lp(0)|° do,  (28)
— —h
« state transformation is applied to the system: whereo > 0 (see [7] for proofs).
y(t) = Y(:c(t),ut); (17) A lot of pr_cablems re_garding I?near _predictor_ _feedback haeerb
) ) addressed since its discovery including stability [8],, [O], ro-
« predictor-transformed system is delay-free: bustness[[7],T11]112]/T13], delay-adaptive versiong][]15], and
§(t) = Ay(t) + Bru(t); (18) practical implementation issues [16], [17], [18]. [19]. &'approach

is available for systems with state delays and an input diday,
« y(t) is stabilized, if possible, with a feedbaekt) = Ky(t); [21].
« the feedback for the original systemiigt) = KY (z(t),ut).

C. Nonlinear predictor feedback

B. Linear predictor feedback: distributed delay Predictor feedback technique has been already expandedren n

Suppose now that distributed delays are present: linear systems with one discrete delay in the input:
0
i(t) = A:c(t)+Bou(t)+B1u(t—h)+/ Bint(0)u(t+6) df. (19) @(t) = f(z(t),ult —h)). (29)
—h
The feedback was constructed and studied_in [6] using the sdea

In this casell.teral predlctlorl ofx(t.+ h) Qt the current time would as in the linear case: construct a predictofz (1), u:) of z(t + h);
be challenging because it requires eittkeowledge of the future . : !

. . ; introduce new variabley(t) = Y (z(t),u:) which transforms the
input or assumptions about the future input. The former leads to a

non-causal and thus non-implementable feedback, the latte an System to .

implicitly defined controller. y(t) = f(y(t)’u(t)) (30)
In [3], [4], [], however, “prediction witheero future input” is used. and stabilize it with a feedback = k(y). An analysis is then

It is not theliteral prediction, i.e., actual future input is not requirecconducted which shows that stability of the original systésn

to be zero. The feedback is constructed as follows: achieved byu(t) = k(Y (x(t),ut)).

o predictor Y (z(t),u:) is defined as a prediction af(t + h) As some examples of further development, let us mention the
with past inputu; and future input set to zero, i.e., assuminglelay-adaptive variation of the feedbatk|[22] and feedaclstate-
u(t+6) = 0 for all 8 € [0, h|; formally, dependent delay [23].

Y (a(t), u) = £(h), (20) IV. PREDICTOR-BASED STATE TRANSFORMATION

"s) = A Biu(t+s—h
€(s) 5(87):— 1w(t+s—h) Following the linear theory described in Subsectlon lll-Be

+ Bm(0)u(t +s+0)dg, (21) define predictod (z(t),u:) for @) via prediction ofz(¢ + h) under
—h zero future input. The nonlinear version of (25) is

£(0) = z(t) (22) y(t) = Y (x(t), ur) (31)
or, equivalently, . . '
. with mappingY (z, ) defined forz € R", ¢ € PC([—h,0],R™)
Y (2(t), ue) = e*a(t) + / QO)u(t +6)ds,  (23) Py the system
—h

Y(z, ) =&(h), (32)
where ,
0 €' (s) = f(&(s)) + B1(&(s))p(s — h)
0)=e 4B +/ A=+ B(r) dr; (24 s
Q( ) € 1 ) e mt(T) T ( ) + / Bint (97 {(S))Q&(S 4 0) d97 (33)
« predictor-basedtate transformation is applied: €0) = o " (34)
y(t) =Y (e (t) w); (25) The definition is algorithmic: to find”(z, ¢), solve [38) with initial
« predictor-transformed system is again delay-free: condition [34) fors € [0, h].
. There may be problems with this definitiongifs) goes to infinity
_ Ah .
9(t) = Ay(t) + (¢™" Bo + Q(0))u(t); (26)  petweens = 0 ands = h. However, the following lemma shows that
o y(t) is stabilized withu(t) = Ky(t); the mapping is defined at least in a zero neighborhood.
« the final feedback is Lemma 1: Y (z, ) is defined globally if[(b) is satisfied fdk = co
or, otherwise, locally for
u(t) = KY (z(t), ur). (27) R
Observe that thg-system[(2B) is clearly exponentially stable under (z,9) €0 (;) ) (35)

the feedback, = Ky if suitable K exists. Stability of[(IP) undef (27) M

is less obvious as the closed loop is a time-delay systenpun@/— where p = /2e*" max {17 hmaxge[—n,0),zco(r) [ Bint (0, )| +
Krasovskii analysis is highly desirable. The central peablin this MaXzco(r) [ Bi(x)|/}. Furthermore, for these and ¢

analysis is to find a functionab(z, ) defined for allz € R", 2 o 2y 2 2 36
€ PCg[—h,O),Rm) which is positive definite in terms of the lel” < » 2(” (f’¢)|‘2 + HWHJ’ (36)
norm ||z||* + ||¢||*> and decreasing along the closed-loop solutions, 1Y (2, )" < p*(l2]” + llell”)- (37)
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Proof: Suppose thaf{5) holds true along the solution of the prob-

lem (33), [34). Applying the Gronwall-Bellman, Cauchy—®elz,
and Young inequalities, one deduces

lE)I* < p* (1 + llell®) (38)

for all s € [0, h]. It leads to the conclusion that {{{B5) is satisfied,
then ||€(s)]] < R, so [B) does hold along(s), and£(s) does not

= A(E())¢(s) + D Bi(E(s))<(s)ult + 5 — h)

(0, €(8))C(s)ui(t + s+ 60) do

+ Blnt( - S, 5(5))u(t)A +0(A)
= fl(s, £(s),ur)C(s) + Bint(— s,&(s))u(t)A + o(A). (51)

go to infinity. Lets = h to get [3T). To arrive a{{36), use the same

estimations wher goes backwards from to 0. ]
Let us ignore the possibility of predictor nonexistence dowhile
(until TheorenR) and derive the transformed system.

Theorem 1. System[(#) after transformation (31) assumes the form

F(y(t)) + B(y(t), ue)u(t) (39)

y(t)

with B(y, ) defined for everyy and ¢ implicitly by the equations

B(y,¢) = Bi(&(h)) + B(h), (40)
B'(s) = A(s,£(s), ) B(s) + Bie( — 5,6()),  (41)
B(0) = Bo(£(0)), (42)
€' (s) = F(&(s)) + Bu(&(s)) (s — h)
+f - Bua(0.(3)) s + ) . (43)
&h) =y, (44)
A(s, & p) = +261 Epi(s —h
+Z/ Bi(0, €)pi(s + 0) db (45)

granted that(s) exists on the interval0, k.
Proof: We are going to calculate the difference betwegn)

andy(t+ A), whereA is a small number, and fingi(z) from there.

According to [(31),y(t) = £(h), wheref(s) satisfies

€'(s) = f(&(s)) + B1(&(s))ult + s —h)
+/ 5B.m(9 £(s))u(t + s +0) db, (46)
£(0) = z(t). (47)

Notice that this function¢ is the same as in the statement
the theorem, just defined from the other end of the inteftvah].
Likewise, y(t + A) = £(h), where&(s) satisfies

€' (s) = f(&(s) )+Bl( Nu(t +A+s—h)
[ B.m(9§ Du(t+A+s+0)do,  (48)
£(0) = z(t +A). (49)

Consider now((s) = 5(3)75(3+A) for s € [0, h—A]. It follows
from the definition of¢ and ¢ that

C(0) = z(t+ A) — £(A) = Bo(£(0))u(t) A+ o(A),  (50)
and
((s)=E8(s) =€ (s+A)
= f(&(s)) — f(&(s + D))
+ (Bl(g( )) — Bi(&(s + A))) t+A+s—nh)

Equation [[51L) holds only if(s) € O(R). Observe that, up te(A),
the solution of the problen{{b1)[_(b0) coincides with thattb&

problem [(41), [4R) multiplied by:(¢)A

C(h—A) = Bh)u(t)A + o(A). (52)
Therefore,
y(t+8) —y@®) _ E(h) —&(h)
A A
_in) —Eh—A) +¢(h— D)
A

= F) + B u)un + 22 63)

which proves the theorem. [ ]

V. FEEDBACK DESIGN

The following result is inspired by the control-Lyapunowdtion
concept.

Theorem 2: If for all (y, ¢) € O(R) itis possible to define smooth
functionsv(y) andwo(y) and a mapping:(y, ¢) which satisfy the
inequalities

Mg [y lI* < voly) < M, [lyll?, (54)

wo(y) > M, llylI°, (55)

5y, )| < Mellyll, (56)

(f(y) + By, ©)k(y, )" Vuo(y) < —wo(y), (57)

wherem,, > 0 andm.,, > 0, then:

1) the origin is exponentially stable in the loop 01 (4) clddsy
the feedback
u(t) = k(Y (z,ut), ur); (58)

of 2) the stability is global ifR = oo or local if R < oo with the

region of attraction containing at least the ball

R
(2(t),ur) € O ( m ;) , (59)
wherep is given by Lemméall, and

My = 2p2 min {muo,fye 7 ,p2fyef‘7h}, (60)
M»U :’Y-FP M’L}()y (61)

p— mw()

Mgy
= ; 63
M, (63)

3) solutions of the closed loop](4]_(58) exhibit the expdizn
decay property

M, _,
@I + lluel® < —=e™*([l2(0)I* + [[uol|*)-

Proof: The proof is by the Lyapunov—Krasovskii method. Con-
sider the functional for the closed lodg (4). (58):

(64)

0
o, 9) = vo (Y (2, 9)) +7 / ()] do. (69)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

Using [38), [[(37), and_(34), one can estimate When input coefficients are of different sigri3(y, ¢) may or may
5 5 5 5 not be zero. If it is zero for somg and , then the origin of [(Z3)
mo(lle]” + ell%) < v(@, ) < Mo ([l2]” + llel) (66)  may or may not be stabilizable. The exact case is unclearubeca
with m, and M, given in the statement of the theorem. unlike in the linear systems, heig(y, o) is not constant.
Let (x(t),u:) be an arbitrary solution of the closed loop and

suppose that (31) is defined along the whole trajectarft), u¢). B, Explicit prediction

Denote the value of along this solution as(t), i.e., . . . .
(@) 9 *) As explained in[[6], for some nonlinear systems with one inpu

v(t) = v(w(t)wt). (67) delay the predictor can be obtained by quadrature. The sads h
) true for distributed input delays. Let us give an example.
It follows from the choice ofy ando and from [5%), [(56),[(87) that 1,4 system
. 2
(1) < (= muwg + M) Y (2(8), ur) | #1(t) = 23(t) + ult — h), 25
© o 2 () = wa(t) + ull) 9
_ m/ e[t + 0)|® do
—h allows explicit predictor transformation
< —ou(t). (68) 2h _q 0
. . . p=ar+ it [ u(t+0)do, (76)
Combining [66) and(88) leads th (64). Finally. ]64) togetwith 2 n
(B9) taken att = 0 ensures that at no time> 0 does the system — oy (77)
leave the regioffz(t), u:) € O(R/p) which, according to Lemnid 1, bame®2
is sufficient for [31) to be defined for all> 0. Thus, the proof just which results in the system
given is correct inside_($9). ] . g [
The next statement is supplemental to Theofém 2. It presents { Y1 =1 + (% + (" —ey2)u, (78)
way to construct the feeedbaeKy, ¢), given vy (y) andwo(y). Its Yz = y2 +etu.
application is demonstrated in Section ViI-C. The origin of [Z8) is globally asymptotically stabilizabledeed,
Corollary 1: DefineB c R™*™ as the set of all possible valuesanother state and input transformation
of B(y, ¢) when (y, ¢) € O(R). SupposeB is bounded. Con
If there are smooth functionsy(y) and wo(y) meeting the =y —e Mys+ :ygy (79)
conditions [[54),[(55), and h 2
z2o=¢€ y2, (80)
V20 ()I] < Moo 1yl (69) w2+ (1)
T T 2
\% —k|B"V < - 70
I W)Veo(y) | vo)II" < —woly) (70) puts [78) into the cascade form
for some constantd/v., > 0, k, all B € B, and ally € O(R), .o
then the feedback { “1= %2 = &2, (82)
22 = —Z2 + U.
_ T
Ky, ¢) = —kB" (y,£) Vo (y) ("1) " Consider the positive definite function (the design is fr@]]
satisfies[(56) and(57). In other words, the implications loédren{ 2 . 1 o2, L2
hold true for thesey, wo, andx. V(@) = (o1 4 522(22 = 2))" 4 22 (83)
Proof: (56) is satisfied with Its time-derivative along the solutions ¢f {82)
- . oV _
(15%1) turns. intp [Qp) after substitution df {71). ™ 5hows that the feedback
Assuming infinitely fast computations, the control algamit sug- oV
gested by Corollaril1 is this: U= 3 (85)
1) Attimet, givenz(t) andw,, solve [486), [(4l7) forg(s). ) ) o 2
2) Assigny(t) := £(h). is globally asymptotically stabilizing. .
3) Solve [41),[@R) for3(h). On g&de note, the overall transformation frém] (75Ltd (&&)gens
4) Assign B(y(t),us) := Br + B(h). to be linear:
5) Apply u(t) = —kBT (y(t),u)V t)) and repeat. 0
) Apply u(t) (y(t), ut) Vo (y(t)) p o= 21 — 2o +/ ult + ) do, (86)
—h
VI. EXAMPLES Z2 = T, (87)
A. Scalar case u = —2x2 + 4. (88)

The most trivial examples are equations of the form Remark: Returning fromz back throughy to x leads to a rather

) 0 complex feedback for the original systeln](75). Does it aghiglobal

@(t) = f(x(t)) +bou(t) +bru(t —h) +/ . bini(0)u(t+0)df (73)  asymptotic stability (GAS)®n the one hand, transformations — y

) o . - is well defined globally and transformed system is closeIGAS.
with same-sign input coefficients, €.9o, > 0, b1 > 0, andbinc > 0. On the other, assumption[(5) and conditions {54)X(56) hold only
In this caseB(y, ) is a positive scalar separated from zero, S0 4|y if anywhere. Therefore, we are bound to conclude tha
possible feedback i§ (b8) with proofs do not warrant GAS of the original systems. This olzsion
—fly)—vy is valid not only in this example. It represents an inherénitation

Ky, ») = 4 of our proofs of stability. See Conclusions for further reksa
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Sep 2: find vo, wo and k that satisfy Corollar{11. Let

w(y) =y Vy (98)
| with some positive definit®”. The requirement of Corollafyl 1 is then
1 2" (y)Vy — 4k(Vy)" BB"Vy < —wo(y). (99)

It is convenient to decomposg(y) as

| fy) =F)y, (100)
where
i 0 1
F(y) = , 101
| = (atyy o) (101)
aly) = S”;—yl € [-0.22, 1], (102)
i 1
then [99) will follow from negative definiteness of the matri
V'FT(y)+ F(y)V ™' — 4kBB" (103)
_90 1 2 3 21 5 é 7 é é 10 for all y € R", all B € B, and somek. We found computationally
t that forh = /4 it is valid to takeV = I andk = 1, so the feedback

Fig. 1: Simulation of [89) under the feedbaGK](58L_JL04ywiititial Uction suggested by Corollafy 1 is

COﬂditiOﬂSCﬁ(O) € {7‘(’/27 T, 371'/2}, $2(0) = 7T/2, uo = 1. /Q(y7 (p) = —BT(:% (p)y_ (104)

Fig.[d shows the simulation results bf189) under the feekli{a8),
C. Numerical prediction (@03) for different initial conditions. Euler’s approxirian with time

) ) ) ) step of0.01 was used for calculating(t), 5(s), and&(s).
Consider the nonlinear inverted pendulum described byybtem

{ #1(t) = x2(t), (89) VII. CONCLUSIONS
d2(t) = sinz1(t) +u(t) +u(t —h), h=m/4 Let us pose some problems for a future discussion.
The design presented below is also possible fonal [0, 7/2]. Firstly, concerning practical implementation of the prepo feed-
In the above notation, back, it should be mentioned that solving nonlinear equatimay be
costly, and any approximation, strictly speaking, recalirgbustness
fla) = ( S ) . Bo=Bi= (0) . (90) analysis.
S 21 1 Secondly, it is demonstrated in Sectibn_MI-B that our lirear
Assumptions[(5) and16) hold true with quadratic boundd15) and_(54)=(56) may prohibit one fromlatec
ing global stabilization even when it is likely to be achidven
Az) = ( 0 1) , M;=1 R=oc. (91) fact, such restrictive bounds are not necessary. Theirogerjis to
coszi 0 simplify stability analysis by making the case “almost kne The
We are going to use Corollafyl 1 to design the feedback functi§implification is evinced in the exponential rate of dedag) (@hich
x and then simulate the closed lodp(89)1(58). is generally not expected from nonlinear systems. A possilaly to
Step 1: estimateB in order to apply Corollarffl1. The problefii{41),2void assumption${(5) and (54){56) and to achieve diassate of
@2) is decay in[(6#) is to follow the methodology df| [6].
B'(s) = A(£(5))B(s), (92) ACKNOWLEDGMENT
B(0) = (O) (93) The author thanks Prof. M. Krstic for suggesting a number of
1 substantial improvements to the presentation.

From the inclusions

d
(88 +83) € [0,2(82 + 83)], (94) _. .. o
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