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Abstract

We introduce the co-surface grag of a finitely generated free groupand use it to study the ge-
ometry of hyperbolic group extensionsBf Among other things, we show that the Gromov boundary of
the co-surface graph is equivariantly homeomorphic to ffiaes of free arationdf—trees and use this to
prove that a finitely generated subgroup of @Utquasi-isometrically embeds into the co-surface graph if
and only if it is purely atoroidal and quasi-isometricallyleeds into the free factor complex. This answers
a question of I. Kapovich. Our earlier worlT] shows that every such group gives rise to a hyperbolic
extension ofF, and here we prove a converse to this result that charaesettie hyperbolic extensions of
F arising in this manner. As an application of our techniques additionally obtain a Scott—Swarup type
theorem for this class of extensions.

1 Introduction

Let F be the free groups of rank> 3 and let OufF) be its outer automorphism group. Every subgroup
I < Out(F) gives rise to an exact sequence

1—F- g Pr 1, 1)

in which Er is the preimage of under the homomorphism A@®) — Out(IF) andF < Er is identified with
the inner automorphisms IfA). In fact every group extension & surjects onto an extensidgr of this
form. In [DT], we gave conditions ofi < Ouf(FF) that guarantee the associated exten&prns Gromov
hyperbolic. To state these conditions, first recall thas purely atoroidal if each infinite order element is
atoroidal (no power fixes a nontrivial conjugacy clas§pénd that the free factor complé&xis the simplicial
complex whosé&—simplices are nested chaifig< - - - < A of proper free factors df, up to conjugacy. Outer
automorphisms act isometrically 61 and we say that a finitely generated subgrbup Out(F) gi-embeds
into J if some (equivalently any) orbit map— ¥ is a quasi-isometric embedding.

Theorem 1.1([DT]). Suppose that a finitely generated subgrdug Out(F) is purely atoroidal and qgi-
embeds intdF. Then the free group extensiop B Equation(1) is hyperbolic.

The goal of the present paper is twofold: to refine these ¢immdi for hyperbolicity, and to make a more
in depth study of the geometry of these hyperbolic exterssidrhis study culminates in a converse to the
above result that characterizes those hyperbolic extessinsing fromrheorem 1.1We note that the exact
converse offheorem 1.1s well-known to be false.
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Following Hamenstadt and HensélH], a subgroug™ < Out(F) is said to beconvex cocompacif it
gi-embeds intdF. However, unlike the analogous situation for mapping ctassips KL3, Ham1], convex
cocompactness itself does not ensure hyperbolicitgrofindeed, pure atoroidality df is essential foEr
to be hyperbolic, since a periodic conjugacy classdot I gives rise to @& @ Z in Er. Further, there
are automorphisms df that act loxodromically or¥ but are not atoroidal. In fact, by combining work of
Bestvina—HandelgH1] and Bestvina—FeighrBF2], such automorphisms precisely correspond to pseudo-
Anosov homeomorphisms of once-punctured, possibly nentable, surfaces.

This suggests thdf is not the correct complex for studying hyperbolic extensiofF. It is natural
to build a better-suited complex by starting withand coning off the curve graphs for all once-punctured
surfacesSwith mq(S) = F. Versions of this construction appear several places ititérature—first in the
work of Kapovich—Lustig KL1] and later Mann—Reynold$/R1] and Mann Man]| (see 8)—in each case
producing a hyperbolic O(F)—graphY with the property that any subgrolipthat gi-embeds int¥ is both
convex cocompact and purely atoroidal. The converse wasdpas a question by |. Kapovich:

Question 1.2(l. Kapovich) Suppose thal < Out(F) is purely atoroidal and convex compact. Is the orbit
mapl” — Y a quasi-isomeric embedding?

To answerQuestion 1.2we introduce (8) a new model for the grap¥ that is both simple to define
and natural for our purposes. This-surface graphis defined to be the simplicial graji$ whose vertices
are conjugacy classes of primitive element&aind where two conjugacy classes are adjacent if there is a
once-punctured surfacwith 7 (S) = F in which they are both represented by simple closed curves on

Theorem 4.13(Qi-embedding int®8). LetT" be finitely generated subgroup OUt(F). Thenl" gi-embeds
into the co-surface grap8s if and only ifl" is purely atoroidal and convex cocompact.

After formulatingQuestion 1.2 Kapovich showed it cannot be answered from formal progetif the
actionl ~ Y. That is, Kapovich constructs an action of the free groupaokr2 on a hyperbolic grapk
which has all the properties of the actibn~ Y but whose orbit map — X is not a gi-embeddingqap?.
Thus the proof ofTheorem 4.1ecessarily requires a deeper understanding of the caesugiraph itself.
Indeed, our argument uses the fine geometric structure déiCaid Vogtmann’s Outer spadé and the
following calculation of the Gromov boundary 68:

Theorem 4.8(Boundary ofc8). The Gromov boundagCs of the co-surface graph But(F)—equivariantly
homeomorphic to the subspaceddf consisting of classes of free arational trees.

We obtainTheorem 4.8as a corollary of the general theory afignment-preserving mapsthat we
develop in 8 and which may be of independent interest. Briefly, threedigrd) points are coarsely aligned
if the triangle inequality for them is nearly an equalitydasm map that respects this condition is said to be
alignment preserving. We shoviitffeorem 3.Pthat any coarsely surjective alignment preserving dap Y
between hyperbolic metric spaces extends to a homeomanjiifsisveerdY and a specific subset aiX.

The co-surface grapi$ has other advantages over the factor compiexand indeed this is a major
theme of the present paper. For example, it is well known [B&®]) that full irreducibility is not stable
under passage to finite index subgroups. This causes catiptis when attempting to study the subgroup
structure ofer. However, the following result shows that this is not an ésgur CS:

Proposition 5.1 Let H be a finite index subgroup Bfand letr™ denote the subgroup @ut(H) induced by
elements of < Ouf(TF) that stabilize the conjugacy class of H .IMiis finitely generated and gi-embeds into
8, thenr™ also gi-embeds int6S(H).

Proposition 5.1s one of the key ingredients allowing us to establish a S&tarup §9 type theorem for
these extensions d@f. Recall that the fiber subgrolfy being infinite and normal, is exponentially distorted
in the hyperbolic groufgr. The following theorem, however, shows that such distarisoconfined to finite
index subgroups df; this mirrors a result of Dowdall-Kent-LeiningddKL ] for hyperbolic surface group
extensions. Bear in mind that the statement is false wittheuhypothesis that gi-embed intd2S (see §.4).



Theorem 7.9(Nondistortion in fibers) Suppose that < Ouf([F) quasi-isometrically embeds inte8, and
let L be a finitely generated subgroup of the filier Er. Then L is quasiconvex, and hence undistorted, in
the hyperbolic extensionrf and only if L has infinite index iff.

We note that Mj and RafiNIR2] have recently, and independently, provEmeorem 7.y very different
methods. Their approach uses structural results on cormemtpact subgroups proven iDT] as well as
a characterization of the Cannon—Thurston map Tpth{at we obtained with Kapovich irDKT] and which
builds on earlier work of Mj Mit1]. Our proofis more direct and proceeds as follows.

The second key ingredient needed to prot'eorem 7.9s a careful study of the geometry of hyperbolic
extensiongEr that focuses on the relationship between the “local” axiaroklement € F acting on any
given fiber ofp: Er — I and the “global” axis foa acting onEr. Specifically, ifa* denotes the geodesic in
Er whose endpoints are the fixed poiats® in dEr, we define thevidth of ato be the quantity

width(a) = diany p(a*).

This concept was first studied in the context of surface gedpnsions by Kent and Leiningefl[4]. We
prove (Theorem 7.pthat whenl™ is convex cocompact, the quantity wid#) is uniformly bounded over all
simple elementa € F, where an element isimple if it is contained in some proper free factor Bf As

a consequence, we show that the global @xigellow travels the local axis foa € F acting on the fiber
of Er — I in which the translation length a is minimized. Combining this withProposition 5.lleads

to Theorem 7.9 This analysis also allows us to prove the following theor@rhich gives a converse to
Theorem 1.Jand characterizes hyperbolic extensions arising from@onecompact subgroups as those for
which the simple elements have uniformly bounded width:

Theorem 8.1(Convex cocompactnesspuppose that — F — E — Q — 1is a hyperbolic extension @.
Then Q has convex cocompact imag&iat(F) (and hence admits a quasi-isometric embedding orbit map
into C8) if and only there exists D> 0 so thatwidthg(a) < D for each simple elementaF.
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2 Background

ThroughoutF will denote a finitely generated free group of rank rk(FF) at least 3. In this section we
review several structures associated tinat will be relevant to our work.

2.1 Coarse geometry

A mapf: X —Y of metric spaces is K—quasi-isometric embeddingf
dx(a,b)/K—K < dy(f(a), f(b)) <Kdx(ab)+K

for all a,b € X. The map is moreoverki—quasi-isometryif its image isKk—dense irY. A K—quasigeodesic
is then aK—quasi-isometric embedding of an interVat R into a metric space. Thidausdorff distance
between two subse#s B of a metric spac& is the infimum of alle > 0 for whichA andB are both contained
within the e—neighborhoods of each other.

A geodesic metric spac¥ is d—hyperbolic, whered > 0, if every geodesic triangle iX is d—thin,
meaning that each side is contained within theneighborhood of the other two. Every such space has a
well definedGromov boundary dX consisting of equivalence classes of admissible sequémegswhere
a sequencda,} is admissible if limym(an|am)x = « and two sequencéa,} and {b,} are equivalent if
[imn,m(an|bm)x = o for somex € X. Here,(alb)x denotes th&romov product (d(a,x) +d(b,x) —d(a,b))/2.



One says the admissible sequengsn,, ... € X convergesto the point{an} € dX. The Gromov product,
with respect toc € X, may be extended @X by declaring

(alb)x = SUpMmigf(arn|bn)x7

where the supremum here is over all sequeregs, {b,} converging respectively @ b € dX. The bound-
ary X is then equipped with the topology in which the skif$r) := {b € dX : (alb)x > r} give a basis of
open neighborhoods about the poiné dX. Moreover, the topologies 0X anddX may be extended to

a topology on the disjoint uniok U X for which a sequencr, € X converges tal € X if and only if
{xn} is admissible and equivalent to WhenX is proper (meaning that closed metric balls are compact),
XUJdX is a compactification oK. Finally, hyperbolicity itself and and the Gromov boundapy are both
guasi-isometry invariants of. See BH2, Section III.H.3], [GdIH], or [KB, Section 2] for more details.

If X is d—hyperbolic, then every quasigeodesic ray0,«) — X converges to itendpoint at infinity
r(eo) :={r(n)}n_; € 9X, and any two rays whose images have finite Hausdorff distdetsmine the same
endpoint. Conversely, as explained g, Remark 2.16], for anyy € X and{ € dX one may build a 18
quasigeodesic: R, — X with the properties that(0) = xp andr(«) = .

Throughout, we will usé (and sometimeg) to denote a closed subintervallf We writel _ andl . for
the infimum and supremum bof respectively. With this notation, we every quasigeodgsic— X naturally
has two well-define@ndpoints y(l +) € XU dX, wherey(l+) € X if L = +o andy(l+) € X otherwise.
The following is a fundamental feature of hyperbolic mespaces; se@3H2, Theorem I11.H.1.7] for a proof.

Proposition 2.1 (Stability of quasigeodesicsfor every K> 1 and é > 0 there exists atability constant
Ro(K,d) > 0such thatify: | — X andp: J — X are K—quasigeodesics with the same endpointsingX
for a 0—hyperbolic space X, ther(l) andp(J) have Hausdorff distance at mos§(K, 9).

2.2 Currents and laminations

All finite-valent Cayley graphs df are quasi-isometric hyperbolic spaces, and we vditeo denote their
common Gromov boundary. The free grafi@mcts on each of its Cayley graphs by left multiplication, and
this extends to a left action & on dF by homeomorphisms. L&’F = {(n,&) | n,& € dF,n # &} denote
the double boundary df, equipped with the subspace topology fratfi x dF. A lamination onF is a
nonempty closed subset 8fF that is invariant under both the flip madp, &) — (&,n) and the (diagonal)
action ofFF. A lamination isminimal if it does not contain a proper sublaminationLIfs a lamination orF,

we writeL’ to denote the set of accumulation pointd.dh d2F. Note thatl’ L, sinceL is closed, and that
L’ is itself a lamination.

Following [Kap1], a geodesic currenton I is a positive Radon measure 8AF that is both flip andf—
invariant. Notice that the support supp of every nonzero current is necessarily a lamination. We write
Curr(FF) for the space of all geodesic currents Brequipped with the weak topology. Quotienting by the
action of R by scalar multiplication yields the compact sp&@urr(IF) of projective geodesic currents

Let us discuss some basic examples of these concepts. Ewetryvial a € F acts ondF with a unique
attracting fixed poina™ and repelling fixed poina~. Thelamination of a (nontrivial) conjugacy classa
of F is then defined to be

L(a):= J{(@"a"),(a",a")};

aca

notice that_(a) is indeed a closed arig-invariant subset a#?F. Correspondingly, theounting current of
a (nontrivial) conjugacy class = 8™, wheref is not a proper power, is defined as

Na '=MNg:=m Z 6(b*,b+) + 6(b+,b*)-
bep

One may check thaj, is indeed a current and moreover that supp = L(a).



2.3 Trees

An R—treeis a O—hyperbolic geodesic metric space. AlternatelyfRatmee is a metric space in which there is
a unique embedded path between any two points and this patheedesic. Throughout this paper, we will
use the terntree to mean aR—tree equipped with an isometric and minimal actioripé tree isminimal

if it does not contain a propéi—invariant subtree.

We write ¢7(a) for the translation length of an element € F acting on a tredTl, that is, {1(a) =
infieT d(t,a-t). Notice that/t (a) depends only on the conjugacy classf a. The elemené& actshyperboli-
cally (with an invariant axis) off if ¢t (o) > 0 andelliptically (with a nonempty fixed subtree)df (a) =0.
The treeT is said to bdreeif ¢1(a) > 0 for all nontrivial conjugacy classes.

Coulbois, Hilion and LustigCHL] have associated to every tréea dual lamination

LM = U L(a)]|ca’F,

>0 \ aeQ¢(T)

whereQ(T) = {a : {1(a) < €} is the set of conjugacy classes with short translation lengT and the
closure is taken i@?F. Observe thatt(a) C L(T) if and only if ¢t (a) = 0; thusT is free if and only ifL(T)
does not contain the laminatidr{a) of any nontrivial conjugacy class. The setL(T) is nonempty, and
thus a bona fide lamination, unleEss free and simplicial. We refer the reader @HL] for a more detailed
discussion of(T).

We say that a tree igery small if the stabilizer of any segment @f is maximal cyclic and the stabilizer
of every tripod is trivial CL]. A treeT is said to havelense orbitsif every IF orbit is dense ifl. At the
other extreme, if every orbit is discrete then the tree id sabesimplicial. A tree isarational if there does
not exist a proper free factdt of F and anA—invariant subtree on which acts with dense orbits. Following
Guirardel [Gui], we say that a tre&@ is indecomposableif for every pair of nondegenerate arcst’ ¢ T
there existay,...,an € IF so thatt’ C a;TU---UanT with TN a, 1T nondegenerate for each<li < n;
indecomposablity is thus a strong mixing property for thdomcof F on T. The following theorem of
Reynolds clarifies the relationship between these notions:

Theorem 2.2(Reynolds Reyd). A minimal, very small tree is arational if and only if it is indomposable
and either(1) free or(2) dual to a filling measured lamination on a once-puncturedate.

2.4 The free factor complex

A nontrivial subgroupA < I of F is afree factor of F if there exists a complementary nontrivial subgroup
B < F such thatF = AxB. As is common we often blur the distinction between freedetand their
conjugacy classes. Tliiree) factor complexof I is the simplicial compleg whosek—simplices consist of
chainsAg < --- < Ay of properly nested (conjugacy classes of) free facto® ahd whose face inclusions
correspond to subchains. Note tias not locally compact, and that the group (itacts or by simplicial
automorphisms. We equip with the path metric in which simplices are all isometric targlard Euclidean
simplices with side lengths equal to 1; the induced pathimetr the 1-skeleton makég- into a simplicial
metric graph with all edges having length 1. With this setugphave the following foundational result of
Bestvina and Feighn:

Theorem 2.3(Bestvina—FeighnBF2]). The factor compleg is Gromov hyperbolic.

As the full complexd and simplicial grapl¥#! are quasi-isometric, we henceforth work exclusively with
the 1-skeleton. In particular, féx, B € 3° we write d5 (A, B) to mean the distance frodto B in the path
spaceg.



2.5 Outer space

Let R be the rKFF)—petal rose with base vertex and fix an isomorphisnm (R,v) 2 F. A core graph

is a finite 1-dimensional CW-complé® with no valence 1 vertices; and byraetric on G we mean a
path metric for which the interior of each 1—cell (with thelirted path metric) is isometric to a positive-
length open subinterval d&. Thevolume of G is the sum of its edge lengths, andrearking of G is a
homotopy equivalencg: R — G. Culler and Vogtmann’sQV] unprojectivized Outer spaceof F is the
spacecv= {(G,qg)} of marked metric core graphs, modulo the equivalence ogld, g) ~ (H,h) if there
exists an isometrichange of marking mapG — H in the homotopy classo g~*. By (projectivized)Outer
spaceX, we simply mean the subset of consisting of volume 1 marked metric graphs. We ediwith
theasymmetric metric dy defined as follows:

dy((G,9),(H,h)) :=inf {log(Lip(p)) | p~hog*}

where Lip(@) denotes the optimal Lipschitz constant for the change okingmapg@: G — H. Thesym-
metrization d;‘cym(G, H) = dx(G,H) 4 dx(H,G) is an honest metric and defines the topologyoiwe will
suppress the marking and metric and denote points andX simply by the underlying graph.

Given any subgroup < F (or conjugacy class thereof) and poBE cv, we write A|G for the maximal
core subgraph of the cover & corresponding t&A and we equip this with the pull-back metric from the
immersionA|G — G. When convenient we will blur the distinction between thenneore graphA|G and
the immersiomA|G — G itself. For a conjugacy class and write/(a|G) for the volume of the graph|G;
this is thelength of a at G. With this notation we have the following useful formula fbe metric FM]:

o2(6) oo (2875

Observe that the universal coverof a graphG < cv is naturally a simpliciaR—tree equipped with an
action ofF = 15 (G) by deck transformations (where the isomorphiBat 1 (G) is provided by the marking
R — G). With this perspectivé(a|G) is simply the translation lengtg (a) of the conjugacy class on the
treeG. In fact, this correspondence gives a bijection betwseand the set of free simplici®—trees up to
F—equivariant isometry.

Asymmetry in Outer space. Care must be taken to cope with the asymmetry inherent inr@ptee. For
us ageodesic inX always means directedgeodesic, that is, a mgp | — X so thatdx (y(s), y(t)) =t —s
for all s< t. Similarly aK—quasigeodesids a mapy: | — X so that

g (t=s) =K <dx(y(s),y(t)) <K(t—9)+K

for all s< t. On the other hand, far> 0 ther—neighborhoodN; (U) of a subsetd ¢ X must be defined
using the symmetrized metric:

Nr(U) = {G e X |dY"(G,u) <r for someuc U}.

The Hausdorff distance dyaudU,W) between two subsetd, W C X is then defined, as usual, to be the
infimal r so thaty c N, (W) andW c N, (U). Fore > 0, we write

Xe:={GeX|{(a|G) >¢eforallacF\1}
for the e—thick part of Outer space. The following important result bounds therasetry inX;.

Lemma 2.4(Handel-Mosher{iM], Algom-Kfir—Bestvina AKB]). For everye > 0 there existdVl; > 1 so
that for all G,H € X¢ one has

dy(H,G) <dY¥™(H,G) = d¥™(G,H) < M¢-dy (G,H).



Projecting to the factor complex. There is a coarse projection-: X — F defined by sendin@® € X to the
set of free factorsn (G') corresponding to proper, connected, noncontractiblersyibgG’ of G (hererm (G)
is identified with a free factor df by the markingR — G). One may easily check that digrtrez(G)) < 4
[BF2, Lemma 3.1], so we are justified in viewing: as a coarse projection. F&H € X we define

d5(G,H) = diamy (15 (G) Utz (H)).
The following appears as Lemma 2.9 IDT] and follows from BF2, Corollary 3.5].

Lemma 2.5. For all G,H € X we have ¢(G,H) < 80dy(G,H) + 80.

The projectionrr provides an important connection between the geometriésafdF. For example,
the following stability result uses the geometry®fo establish aspects of hyperbolicitydhand served as
a main tool in our proof offheorem 1.1

Theorem 2.6(Dowdall-Taylor PT]). Lety: | — X be a K-quasigeodesic whose projectiony: | — F
is also a K—quasigeodesic. Then there exist constangs>20 and K > 1 depending only on K (and the
injectivity radius of the terminal endpoi{l ) whenl; < ) with the following property: Ifo: J — X is
any geodesic with the same endpointyathen

@) y(1),p(J) C X,
(i) draud¥(1),p(J)) <A, and

(i) mop:J— Fis a (parameterized) k-quasigeodesic.

Folding. We will need a particular class of directed geodesic¥ inalled folding paths, which we now
briefly describe. Asegmentin a metric core grapks is a locally isometric immersion of an intervil, L]
into G, and adirection at p € G is a germ of nondegenerate segments with @. A turn is an unordered
pair{d,d’} of distinct directions at a vertex @&.

A map @: G — H of metric core graphs that is a local I(ip)—homothety induces a derivative mByg
which sends a direction @tto a direction atp(p). Two directions ap are said to be in the sangateif they
are identified byD,. The map then gives rise to diegal turn structure on G, whereby a tur{d,d’} is
illegal if d andd’ are in the same gate andégal otherwise.

We say that a map: G — H between point&, H € X is afolding map if it is homotopic to the change
of markingsho g2, is a local Lig ¢)—homothety, satisfiedy (G,H) = logLip(¢), and it induces at least 2
gates at each poirg € G. As described inBF2, 82], each folding mag: G — H gives rise to a unique
folding path {G }ic(o, Via the process dblding all illegal turns at speed ond he folding path, vid — G,
defines a directed geodesic [0,L] — X from G = Gp to H = G| and comes equipped with a family of
folding maps{@:: Gs — Gt }s<t satisfying

@L = @, @s=ldg,, andgr = @t o @s With @s andgy inducing the same illegal turn structure Gp

forall0<r <s<t<L. See Proposition 2.2 and Notation 2.4 BH?] or [DT, §2] for the details of this
construction; further properties will be recalled 6.8 We note that it is also possible to construct biinfinite
folding paths.

2.6 The boundaries of Outer space and the factor complex

The length functions give an embedding of unprojectivizeded spaceyv into RF via G — (¢(a|G))acr,
and thuscv inherits the subspace topology frdRi. The resulting topology ofC C cv agrees with the one
induced by the symmetrized metdé‘/m. The work of Cohen—LustigjL] and Bestvina—FeighrBF1] shows
that the closurev of cvin RF may be identified with the space of minimal very small tree@wjd®tivizing,
one similarly identifies the closuté of X c PR with the space of projective classes of minimal very small



trees. Theéboundary of X is consequently defined to be the 88t := X \ X of projective classes very small
trees that are not both free and simplicial.

In [KL1], Kapovich and Lustig introduced an Gli)—invariant intersection pairing,-) between very
small minimal trees and currents; we record here a few ofrapgrties:

Theorem 2.7(Kapovich—Lustig KL1, KL2]). There is a uniqu®©ut(IF)—invariant continuous pairing
(,):Tuvx Cur(F) — Ry

which is homogeneous in the first coordinate and linear instteond. Moreover, for every tree T, current
and conjugacy clasg, we have thatT,nq) = ¢1(a) and that(T, u) = 0if and only ifsupgu) C L(T).

We will be particularly interested in the case where the Trég free and indecomposable.

Theorem 2.8(Coulbois—Hilion—ReynoldSJHR, Corollary 1.4]) If T e tvis free and indecomposable, then
(T,u) =0if and only ifsupgu) = L'(T).

Finally, let AT be the subspace afcv consisting of arational trees. Fai'T € AT, sayT ~ T’ if
L(T) =L(T’). The following result computes the boundaryJof

Theorem 2.9(Bestvina—ReynoldsHR], Hamenstadtflamd). The mapr;: X — F has a continuous ex-
tension to a maprir: AT — 97, in the sense thatif G- T in X and T € AT, thenriy(Gi) — d75(T) in
FUdF. Moreover, if T~ T’ thend iy (T) = dnx(T’), and the induced magdT/ ~— dF is a homeomor-
phism.

3 Alignment preserving maps and boundaries

In 84 we will introduce and analyze a new @E)—graph termed the co-surface graph. For this analysis, we
develop a general framework for computing the boundary gfsprace whose hyperbolicity may be obtained
by the Kapovich—Rafi methodkKR]. As this result is applicable in other contexts, we state general terms.

Let X andY be geodesic metric spaces. We say that three (orderedspomt € X areK-alignedif
dx(a,b) + dx(b,c) < dx(a,c) + K; the points are simply said to kadigned if they are O—aligned. We say
that a Lipschitz magp: X — Y is alignment preservingif there existsK > 0 such thaip(a), p(b), p(c) are
K—-aligned whenevea, b, c are aligned.

Lemma 3.1. Suppose thatgW — X and p X — Y are alignment preserving maps between geodesic metric
spaces and that X i§—hyperbolic. Then for all > 0 there is an L. > 0 such that a), p(b), p(c) are L'—
aligned whenever ®, c are L—-aligned. Moreover, the compositior ¢: W — Y is alignment preserving.

Let us formalize some observations that will aid in the probBfrstly, everyd—thin triangle admits a
26—barycenter, meaning a pointv that lies within 2 of each side of the triangle (and is consequendiy 4
aligned between any two vertices). Secondly, whenevetiteettriplesa, w,b), (b, w,c), and(c, w,a) are
eachK-aligned, the triangle inequality immediately gives

|d(a, w) — (blc)al <K. )

Combining these, we see that inda-hyperbolic space, the Gromov productb|c), lies within 45 of
dx (a, w) for any 2—barycentetw of the geodesic trianglé.(a, b, c).

Proof. Let K > 0 be the alignment constant of the alignment preserving mafake L-aligned points
a,b,cin X and letw be a D-barycenter for the geodesic trianglga,b,c). Thendx (b, w) is within 40

of (alc)p, which is in turn bounded bl/2 sincea,b,c areL-aligned. Thus there is a poirte [a,c| with
dx(b,x) <65+ L. Thenp(a), p(x), p(c) areK-aligned, and so the poinf¥a), p(b), p(c) areL’-aligned,
wherel’ isK plus 26d + L) times the Lipschitz constant fgr This proves the first claim. The second claim
now follows immediately from the first. O



If X andY are hyperbolic angh: X — Y is alignment preserving, thé-subboundary of X (relative to
p) is defined to be

X = {y(w) € X |y: Ry — X is a quasigeodesic ray with diap(y(R;)) = o}.

Informally, dy X consists of those points X that “project to infinity” inY. This is made precise by the
following theorem.

Theorem 3.2 (Boundaries) Suppose that pX — Y is a coarsely surjective, alignment preserving map
between hyperbolic spaces. Then p admits an extension tonadraorphism@p: & X — dY. Moreover,
the extension pdp: XU X — YUQJY is continuous in the sense that jf% A € X as n— o, then
pP(Xn) — Ip(A) € IY.

Proof. Let & be the hyperbolicity constant of, let L be the Lipschitz constant fqs, and letk’ > 0 be
the constant, provided Hyemma 3.1 such thaip(a), p(b), p(c) areK’—aligned wheneve, b, c € X are £H—
aligned. We then have the following useful observationwlis any D—barycenter for an arbitrary triangle
A(ag,ap,ag) in X, then the triplegp(a;), p(w), p(a;j)) for distincti, j € {1,2,3} are eachK’-aligned and so
we may apply 2) in both X andY to conclude that

(P(a2)|p(ag))p(ay) < K"+ dv(p(as), p(w)) <K'+ Ldx(ay, w) < L(@z|ag)a, +40+K'. ©)

To define the map p, choose a quasigeodesic nayR — X with diamy p(y(R)) = « and consider
the admissible sequenden}y_,, wherea, = y(n). Setb, = p(ans). Since ordered triples of points along
y(R,) are uniformly aligned byProposition 2.1the assumption diapp(y(R+)) = o in fact implies that
lim¢ dy (bo, p(y(t))) = e. For each pain,m> 0, choose a @-barycentec, m for the triangleA (ag, an, am).
Then (an|am)a, is within 45 of dx(ag,chm) by (2). By Proposition 2.1 cnm also lies within uniformly
bounded distance of(t,m) for somet,m € R. By admissibility and the fact that is a quasigeodesic,
the quantitiesdx (ag, Chm) andt, m both tend to infinity as,m — c. Therefore lim mdy (bo, p(Cam)) = o
sincep is Lipschitz. However(bn|bm)y, is within K’ of dy (bo, p(chm)) because(cnm) is K'-aligned be-
tween the three points, by andby,. Consequentlyb,} is admissible, and we may defidg(y(«)) to be
{bn} € 0Y.

We now prove thatp is well-defined and thapU dp is continuous. LeA = y(«) € dyX with v,
{an}, and{b,} as above. Suppose thft,} is a sequence iX converging toA. This simply means that
{xn} is admissible and equivalent {&,}. Lettingenmn denote a 2—barycenter forA(ag, an, Xm), we have
thatdyx (ao, enm) is within 45 of (an|Xm)a, and thus tends to infinity. This barycentgm, is also uniformly
close, again byProposition 2.1to some point/(s,m) with s, m necessarily tending to infinity singeis a
quasigeodesic. As before, it follows tréit(bo, p(enm)) — © and, sincep is alignment preserving, that this
quantity coarsely agrees witp(an)| p(Xm))b,- Thus{ p(xs)} is equivalenttq p(aa) }, proving that{ p(x) } is
admissible and convergesd@(A ) = {b,}. In particular, for any quasigeodegic R, — X with y/(0) = A,
it follows that {p(y'(n))} is equivalent to{bn} = {p(y(n))}. Thusdp is well-defined and the extension
puUdpis continuous in the manner claimed.

We next showd pis injective. Supposg, i € dy X satisfydp(A) =ap(u). If xn,zn € X are any sequences
with xn — A andz, — u, then{p(x,)} and{p(z,)} are equivalent by the continuity gfudp. Therefore
(P(%n)|P(Zm)) p(x) — % Which, by @), forces(xa|zm)x, — « as well. Thus\ = p anddpis injective.

To see surjectivity, lety € dY. For a sequencg, € Y with y, — n, choose pointx, € X so that
dv (p(*%n),Yn) is uniformly bounded and thug(x,) — n as well. Since{p(xn)} is admissible; §) implies
that{xn} is admissible and so converges to some pdiatdX. Now build 1®—quasigeodesig: R, — X
with y(0) = xp andy() = A. Also lete,m be a D-barycenter ofA(xg, X, Xm). We claim that the pro-
jection of y to Y has infinite diameter. To see this, fix aBy> 0 and use admissibility of p(x,)} to find
N so thatdy (p(Xo), p(énm)) > D for all n,m> N. Fix somek > N. Using the equivalence dfx,} and
{y(n)}, we may then choosa > N so thatdx (Xp,cm) > dx (X0, X) + 89, wherecy, denotes a @barycenter
for A(Xo, Xm, y(m)). Since the triplgXg, & m, %) is 40—aligned, this impliesix (Xo,Cm) > dx (X0, &m) + 49.
Choosing pointg’ andc’ in [Xo, Xm] within 26 of &, andcm, respectively, it follows thady (xo, ¢") > dx (Xo, €)



so thate € [xo,C’]. Now, sincecn is a barycenter for\ (xo,Xm, y(m)), there is a poing € [xo, y(m)] with
dx(c’,a) < 44. By thinness of the trianglé\(xo,C’,a), we see tha€’ € [xo,C] lies within 55 of [xo,a] C
(X0, y(m)]. Therefore, sincelx (exm,€) < 20 andy is a quasigeodesi€roposition 2.1and the triangle in-
equality imply thate, m is within 75 + Ry(105, 5) of some pointy(t). Consequentlygdy (p(xo), p(y(t)))
coarsely agrees wittly (p(Xo), p(&m)) > D up to uniformly bounded additive error. SinEehere is arbi-
trary, it follows that diam(p(y)) = ». ThusA € /X, which proves thaf p is surjective.

Finally we provedp is a homeomorphism. Firstly, for any, 4 € dyX andx € X, Equation (3)and our
proof of surjectivity show thatd p(A )[dp(u)) px) < L(A|)x+4d +K'. By the definition of the topology on
the Gromov boundary, it immediately follows th&p X — dY is open. Conversely, for any € dY and
D > 0, we may, as above, build a &9quasigeodesig: R, — X converging toA = (dp)~*(n) and whose
projection toY has infinite diameter. Sat= y(0). Thus there is somR so thatdy (p(x), p(z)) > D+ K’ for
all ze X that lie within 2> of y and satisfydx (x,2) > R. Now if p € &/ X is such that1|A )x > R+ 49, then
we may choose a sequen@®} converging tou so that

Irl]m]oz(zn|y(m))x > R+496.

Thus if enm is a 25—barycenter for\ (x, z,, y(my)), then liminf, mdx (X,enm) > R. But sincee, m lies within
24 of y, we have thatly (p(x), p(énm)) > D+K" and thus als¢p(z,)|p(y(m)) p(x) > D for all largen, m. This
proves thatdp(u)|n)px) > D for all p satisfying(u|A )x > R+ 49. Thereforeﬁp is continuous. O

Remark 3.3. Note that if the hypothesis of coarse surjectivityliheorem 3.4s dropped, the proof shows
that the map: &y X — JY is a topological embedding.

We also record the following useful lemma, the idea of whictvell-known to experts (see for example
[Ham2 Lemma 2.6]). First say that: X — Y is metrically proper if for any D > 0 there is & > 0 so that
dx(a,b) > Cimpliesdy (p(a), p(b)) > D.

Lemma 3.4. Suppose that X and Y are geodesic metric spaces: X p> Y is alignment preserving and
metrically proper, then p is a quasi-isometric embedding.

Proof. Sincep: X — Y is alignment preserving, there is a constinsuch that whenevea,b,c € X are
O-aligned we have

dv(p(a), p(c)) > dy(p(a), p(b)) +dv(p(b), p(c)) — K.

Further, sincep: X — Y is metrically proper, there is@ > 0 such that ifa,b € X satisfydx (a,b) > C, then
dy(p(a), p(b)) > 2K. Now letx andx’ be points ofX with dx(x,x') = d and lety: [0,d] — X be a geodesic
with y(0) = xandy(d) = X. LetN be the largest integer less thénand set; = y(iC) for 0<i <N. Then,

dv(p(x), p(x)) > dv(p(a0), P(an ))+dv(( ),p(X)) =K

> dy(p( —K+ Z} p(ai+1)) —K)
>—-K+K-N
> g -dx (Xa)() -
Sincep: X — Y is Lipschitz by assumption, this completes the proof. O

4 The co-surface graphCs

This section introduces the co-surface gr&gshof the free grouf and develops its basic properties. First
we defineCs and discuss its relationship to other Qiit-graphs appearing in the literature. Then4nl8ve
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use the theory of alignment preserving maps to calculatbdbedary of©S. Finally, in 8.2we show that a
subgroud” < Out(F) gi-embeds int®S if and only if it is purely atoroidal and gi-embeds irfo

Recall that an elemera € I is primitive is a belongs to a free basis fdf; this is an invariant of the
conjugacy class of aand so we also catt primitive. Theprimitive loop graph of F is the simplicial graph
PL whose vertices are the primitive conjugacy classds, @ind where two conjugacy classes3 are joined
by an edge if and only if they have representatives that andygart of a free basis df. We equipP£ with
the path metriclp - in which each edge has length 1. As each primitive elemerdrgéss a cyclic free factor
of F, there is natural inclusion mapC® — . Itis straightforward to check that this inclusion is 2-skchitz
and 1-dense and therefore admits a 4—quasi-isometry dogesse which we denot@: ¥ — PL. We also
have the coarse projection  : X — PL defined by sendin® € X to the set of embedded closed loops on
G; this projection coarsely agrees with the composition 1.

The primitive loop graph measures, in a sense, how algeblaoomplicated primitive conjugacy classes
are with respect to each other. The co-surface graph, ortlilee lnand, is designed to measure hopolog-
ically complicated primitive conjugacy classes are with respeettch other:

Definition 4.1 (Co-surface grapRS8). Theco-surface graphC8 of the free grouf¥ is the simplicial graph
whose vertices are conjugacy classes of primitive elements where two vertices andf are joined by
an edge if there is a once-punctured surf8emd an isomorphismm (S) = F with respect to whiclw andf
may both be represented binpleclosed curves of.

In other words, each once-punctured surf8edth 13 (S) = F determines a subs€g C PL0 consisting
of those primitive conjugacy classes that correspond togeparating) simple closed curves &nAs our
graphC8 is obtained by collapsing eac®s C PL to a set of diameter 1, it records the geometry of the
primitive conjugacy classes that remains after all thefesie sets'Cs have been crushed—hence the name
“co-surface” graph. We equi@$ with the path metrideg in which each edge has length 1 and note that
Out(FF) acts simplicially (and hence isometrically) G§.

From basic topology, we know that if primitive elemeatb € IF are jointly part of a free basis @&, then
one may build a once-punctured surf&and an isomorphismg (S) = F under whicha andb correspond
to disjoint simple closed curves @ Therefore the “identity” map£® — €8° extends to a simplicial and
hence 1-Lipschitz O(fF)—equivariant “electrification” magl: PL — CS. Defineel: F — €S to be the
compositiorel = elo 2. The purpose of this section is to establish the followirggesial properties ofS.

Theorem 4.2(Properties o€8). For the free groufF of rank at leas8, the co-surface grap8s is hyperbolic
and the magel: PL£ — C§ (and thus alseel : F — €8) is Lipschitz and alignment preserving. Moreover,
¢ € Out(F) acts as a loxodromic isometry 88 if and only if ¢ is atoroidal and fully irreducible.

To establish these properties, we show B&tis quasi-isometric to another Qiit)—graph that has ap-
peared in several different forms in the literature underrtame “intersection graph” (séemark 4.3 To
define this, say that a conjugacy classdé geometricif it is either primitive or it corresponds to the cusp
of a once-punctured surface whose fundamental group isiidenwith F. Define thentersection graphto
be the bipartite grapt¥ whose vertices are geometric conjugacy classes and vety smwlicial, nonfree
trees, and where a conjugacy clasis joined by an edge to a trdeif and only if /1 (o) = 0. Note that there
is an obvious action O(F) ~ .# and that the inclusio?£° — .70 extends to an O(F)—equivariant map
PL — 7. Brian Mann and Patrick Reynolds have proven the following:

Theorem 4.3(Mann Man], Mann—ReynoldsIR1]). The intersection graph is hyperbolic and the natural
mapPL — .7 is Lipschitz and alignment preserving.

The proof of these results can be found in Mann’s thddiar]. Let us give a brief description of how
their argument may be applied directly to to the co-surfaegly. The main point is to show that the map
el: PL — CS fits the parameters of a recent theorem of Kapovich and R&;j Proposition 2.5] (whereas
[Man] shows the mapPL — .# fits these parameters). Applying this theorem shows thag¢tgdicity of
the primitive loop graph implies hyperbolicity the co-sagé graph and, moreover, thelt PL — CS8 is
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alignment preserving. Rather than carry out this argunredetail, we simply invok& heorem 4.3and the
following quasi-isometry between the co-surface graphthadntersection graph:

Proposition 4.4. The graphs# andC8 are Out(F)—equivariantly quasi-isometric.

Proof. In [Man, §2.4], Mann defined a grapt® which he shows is quasi-isometric.t8. The vertices of”

are marked rif)—petal roses, and rosBandR are joined by an edge if they have either a common petal or a

common “cusp” (meaning that the given isomorphigitR) = 7 (R') may be realized byg—isomorphically

embeddindR andR' into the same once-punctured surface). We show#ha@ndCs are quasi—isometric.
Define an equivariant magp: &2 — CS8 by sending a ros® to the conjugacy class determined by one

of its petals (the set of possible choices has diameter 1 fgitilen). Whenever verticeR andR of &7

have a common petal we then hakg (P(R), ®(R)) < 2, and wheneveR andR have a common cusp we

havedes(P(R),P(R)) < 1 since in this case the petalsRfandR’ all correspond to simple closed curves

on the same once-punctured surf&elhus®: &2 — €8 is 2—Lipschitz. Similarly, letV: €8 — &2 be an

equivariant map that sends each primitive conjugacy @atssany rose in whicler appears as a petal. Since

the set of such roses has diameteé¥1s a coarse inverse fob. Hence, it suffices to show thetis Lipschitz.

For this, if a and3 are adjacent vertices 6fS we may choose a once-punctured surf&ée which a and

B are represented simple closed curves. Extending thesestow—injectively embedded rosésandR

in S, we see thatl»(W(a),W(B)) < 3 sinceRandR have a common cusp and are respectively adjacent to

W(a) andW(B) by construction. This shows thtis 3-Lipschitz and completes the proof. O

Theorem 4.%ow follow immediately fromTheorem 4.2andProposition 4.4We also note that Bestvina
and Feighn show the projection . : X — PL is alignment preservindgF2, Theorem 9.3]. By.emma 3.1
it follows that the compositiomg := elo 11p . : X — €8 is alignment preserving. As fdF, for G,;H € X we
then define

des(G,H) = diames (Mes (G) U Ties (H)).

Remark 4.5(Historical context) In [KL1], Kapovich and Lustig use their intersection form (d-heorem 2.y
to show that several free group analogs of the curve comes finite diameter. Among their proposed
graphs were (up to quasi-isometry) versions of the freeofabmplex, free splitting complex, and what
they call the intersection graph. Their definition of theeisection graph is the following: vertices ak
conjugacy classes of very small trees and geodesic curaedts tre€l is joined by and edge to a current
p if (T,u) = 0. Although this graph is not connected (e.g. a free sinwgllitee is isolated), the connected
component containing the rational currents correspontipgimitive conjugacy classes is G} invariant.
This version of the intersection graph however is diffeifean the graph’ defined above, which is also
referred to as the intersection graph Mdn]. The difference between these graphs lies in exasttich
geodesic currents are allowed; different restrictiongigeine which electrification af one obtains. Using
CS§ avoids this ambiguity as well as having the added benefit ataral and transparent definition.

4.1 Boundary ofCS

FromTheorems 3.2and4.2we deduce thadCS = degF. Our next lemmas show thagsF is precisely the
collection of classes of free arational treesifi. The first lemma follows easily from work of Coulbois—
Hilion—Reynolds and Bestvina—Reynolds.

Lemma 4.6. Let T € X be free and arational and lgt be any geodesic current. (T, u) = 0= (S ) for
some tree & X UJX, then S is also free and arational.

Proof. By Theorem 2.7the hypotheses imply sufp) C L(T) and suppu) C L(S). Using thafT is free and
arational,Theorem 2.8noreover gives sugp) = L'(T); thusL'(T) C L(S). Now apply Proposition 4.2(i)
and Corollary 4.3 of BR] to conclude that.(S) = L(T).

Recall from 8.3 that a tree is free if and only if its dual lamination does nohtainL(a) for any
nontrivial conjugacy clasg. Since this necessarily holds fofT) = L(S), we conclude thabis free as well.
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Finally, if Swere not arational then there would be a free faétaf F and anA-invariant subtre&* ¢ S
on whichA acts with dense orbits. It would then follow thia{T) = L(S) contains a leaf i9?A c 9°F.
However, the fact thal is free and arational implies thatT) cannot contain a leaf iA?A [Rey2 Lemma
2.1]. This contradiction shows th&must be arational and completes the proof of the lemma. O

The following lemma is an application of a standard argunfiemshowing that graphs which are similar
to the curve graph of a surface have infinite diameter. 8eé,[MM, BR, KL1]. The details are provided
for the reader’s convenience.

Lemma 4.7. Let (Gj)i>o be a sequence of graphs % converging to a tree T i@X which is free and
arational. Then the projectionge s (G;) of G; to €8 are unbounded.

Proof. Leta; € €8° be a primitive loop in the projectiorieg (G;); thusa; corresponds to an embedded closed
loop onG; and so(G;,a;) < 1. Suppose that these curves do not go to infinitg$n Then, after passing

to a subsequence and fixing some €8°, we may assume thalks (x,0i) = M for all i. Build a geodesic
x=x0xt, ..., xM = q; for eachi > 0. By definition of€s, for each 0< k < M — 1 there is a once-punctured
sun‘ace&k realizing the edge betweeﬂﬁ andxik“; let c}‘ be the conjugacy class corresponding to the cusp
(i.e., peripheral curve) cﬁk Further, IeRik be the simplicial tree dual to the simple closed curve reprtisg

X ong, and for 1< k < M, let LK be the simplicial tree dual tf on S 1. By construction

<R1'k7X=(> = <R1kaclk> =0 and <L:(,X1k> = <Likacik71> =0. (4)

Now leti — o« and, after passing to a subsequence, assume that evergtimngrges projectively to either
a tree or a geodesic current. Denote the limit by omittingshiescript. Sinc€-,-) is continuous and;
converges projectively to the free arational tieethe inequality(G;, a;) < 1 implies(T,a) = 0, wherea

is the limit of a; = x,!\’I in PCurr(F). This is because the rescaling constant@must tend to zero, for
otherwise the tre@ would have a simplicial part.

By continuity of (-, -), we additionally havélLM, a) = 0. HenceM is free and arational byemma 4.6
Similarly we have/LM, cM~1) = 0= (RM-1 cM—1); thusRM 1 is also free and arational hemma 4.6 Using
continuity and ¢) again to paiRM 1 andLM—1 with xM~1, we now see thdt™~1 is free and arational as well.
Applying this augment inductively, we conclude tii&tis free and arational. This, however, contradicts the
observation thatR®,x°%) = 0 for the primitive conjugacy clasé = x (recall that the sequenag is constant).
This shows thatleg (X, a;) — o asi — c and completes the proof. O

Theorem 4.8(Boundary of€8). The Gromov boundagCs of the co-surface graph But(F)—equivariantly
homeomorphic to the subspaceddf consisting of classes of free arational trees.

Proof. We use the alignment preserving maly ¥ — €8 and Theorem 3.2o0 identify dCS = degF. By
Theorem 2.9andLemma 4.7 the set of free arational trees is containedi F. Further, if T € 0F then
T is arational byTheorem 2.9 If T is not free, then byrheorem 2.2T is dual to a measured laminatian
on a once—punctured surfaBelLet a; be a sequence of nonseparating simple closed cun@&saénverging
to the laminationL. Thena; is also a sequence of rank 1 free factorsfirconverging toT € dF with
diameg el(a;) < 1. HenceT ¢ desF and we conclude that the set of free arational trees edygls. O

Corollary 4.9. An element oDut(F) acts loxodromically orCS$ if and only if it is fully irreducible and
atoroidal.

4.2 Quasi—isometric embeddings int@S

We say that a finitely generated subgréug Out(F) gi-embedsinto an Ou{FF) graphy if some (equivalently
any) orbit mag™ — Y is a quasi-isometric embedding. In this section, we proaelth< Out(F) gi-embeds
into GS if and only if it is purely atoroidal and gi-embeds info This answerfuestion 1.2f |. Kapovich
and clarifies the connection between the factor complex¢thgurface graph, and hyperbolic extensions of
free groups.
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Fix aroseR e X and a primitive conjugacy classrepresented by a petal Bf Fix a finitely generated sub-
groupl” < Out(F) such that the orbit map — F given byg+— g- a is a quasi-isometric embedding. IR T],
we show that this implies that the orlbit R has strong quasiconvexity propertiesiinle.g. Theorem 2.5
For the application needed here, the following propositiom [DKT] is most convenient.

Proposition 4.10 (Folding rays to infinity DKT, Proposition 5.6]) Suppose thaf < Out(F) is purely
atoroidal and gi-embeds int§. For any k> 0 there is a K> 0 such that if(gi)i>o is a k—quasigeodesic
ray in I, then there is an infinite length folding rax | — X parameterized at unit speed with the following
properties:

1. The sety(l) and{giR: i > 0} have symmetric Hausdorff distance at most K.

2. The rescaled folding path;G= et - y(t) € cv converges to the arational treed dcv with the property
thatlimi.gi- o = d15+(T) in FUITF, whered i (T) is the projection of the projective class of T to
the boundary off (c.f. Theorem 2.2 Moreover, the actiofi’ ~ T is free.

GivenProposition 4.1pwe show that the orbit map fromto the co-surface graph is metrically proper.

Proposition 4.11. Suppose thaf < Out(F) is purely atoroidal and gi-embeds into the factor compfex
Then for every D> O there is an N> 0 so that

dGS(Rag' R) Z D
for all g € I with |g| > N.

Proof. Suppose not. Then there ia> 0 and a sequendg € I with deg(R hi - R) < D and|hj| — « as
i — oo, After passing to a subsequence, we may assumdithatg € dI'. Sincell — J is a quasi-isometric
embedding, there is a uniguec dF such that-a — A in FUJF. (Recall thato € m5(R).)

Claim 4.12. The sequencéh;)i>o can be replaced by a geodesig )i>o in ' such that g— q € dI" and
des(a,gi - a) <D, whereD > 0 depends only on the constant D and the orbit fap 7.

Proof of claim. Let (g;)i>o be any geodesic sequencdinvith go = 1 andg; — qin F'Udr. Then for each

i > 0 there is g > 0 such that any geodedig h;] passes within & from g;; thus the triple(1,g;, h;j) is 40—
alignedinr. Sincel" — F is a quasi-isometric embedding afids hyperbolic, the stability of quasigeodesics
(Proposition 2.Yimplies that” — JF is alignment preserving. Therefore— C8 is alignment preserving by
Lemma 3.1and so there is som@> 0 (depending only on the quasi-isometry constarit ef F) so that

des(a,gi-a) <des(a,gi-a)+des(gi-a,hj-a) <des(a,hj-a)+C<D+C=:D. O

Now let (gi)i>o be as inClaim 4.12and applyProposition 4.1Go obtained a folding ray: | — X.
By Proposition 4.10the graphg; - Randy(t) both limit to the same free arational tréec dX. Sinceg; - R
convergestd in X, Lemma 4.4mplies thatdes (R, g - R) — 0, contradicting the construction ¢ )i>o. O

Theorem 4.13(Qi-embedding int®8). Letl” be a finitely generated subgroup®@tt(F). Thenl" gi-embeds
into the co-surface grapfis if and only ifl" is purely atoroidal and convex cocompact.

Proof. First, if I' gi-embeds intd28, then any orbit mafy — F is a quasi-isometric embedding since the
Out(F)—equivariant magl : ¥ — €8 is Lipschitz. Moreover, since the loxodromic isometriesCsf are
atoroidal,l” must be purely atoroidal.

Now suppose thdt is purely atoroidal and that the orbit m&p— F given byg+— g- o, for some rank 1
free factora, is a quasi-isometric embedding. Sirele F — €S is alignment preserving, it follows that the
mapg — g-el'(a) € €S is alignment preservingProposition 4.1khows that this orbit map — €S is also
metrically proper. We thus conclude tHat- CS is a quasi-isometric embedding hgmma 3.4 O
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5 Lifting to covers

In this section we show that orbits in the co-surface graghvegll-behaved when passing to finite index
subgroups oF. Specifically, we show that F < Out(FF) gi-embeds int®8, then for any finite indeid <F,
the induced subgroup" of Out(H) gi-embeds into the co-surface graphkf This proposition will be
necessary in 8 but it may also be of independent interest.

Fix a finite index subgroupl of F and let” < Out(FF) be finitely generated. Denote by, the subgroup of
I consisting of outer automorphisms which fix the conjugaagslofH, and letr™ be the induced subgroup
of Out(H). Thatis,f € ' if there is an automorphism of F whose outer class is i such thaty|y is in
the outer clas$. These groups fit into a short exact sequence

1-NH)/H-TH Sy —1,

whereN(H) < T is the normalizer oH andN(H)/H is finite. The homomorphisii™ — I is well-defined
in part because any automorphismiothat restricts to the the identity on a finite index subgraumifact
the identity on all off.

Proposition 5.1. Let H be a finite index subgroup Bfand letr™ denote the subgroup Gfut(H) induced by
elements of < Out(F) that stabilize the conjugacy class of H I1fis finitely generated and gi-embeds into
e8, thenr™ also gi-embeds int@S(H).

Let us briefly remark on the use of the co-surface graph inttitermient ofProposition 5.11In particular,
the corresponding statement for the factor gr@pb false. For example, l& € Out(F) be an automorphism
that can be represented by a pseudo-Anosov on a once—peshsunfaces. Let H be a subgroup of =
mm(S) corresponding to a cové&— Swith at least 2 punctures. The cyclic subgrdup: (@) then quasi-
isometrically embeds int6 (F) since g is fully irreducible. However[" does not gi-embed int6(H).
Indeed, M is a virtually cyclic group whose infinite order elements apresented by lifts of powers gk
since each such lift permutes the punctureS ahd each puncture represents a rank 1 free factbr, &
has bounded orbits ifi(H). This suggests th&S is a better tool for studying finite index subgroupsfof

The proof ofProposition 5.Xequires the following result of Reynolds whose proof udeas of Guirardel.

Lemma 5.2 (Reynolds Reyl Lemma 4.2]) Suppose that G» T is an indecomposable action and that
H < G is finitely generated and finite index. Then the actiomH " is indecomposable.

We will use the lemma in the following form.

Corollary 5.3. Suppose that E 0X is free and arational and that K F is finite index. Then the minimal
H-subtree T' is also free and arational.

Proof. Clearly, T" is free becaus® is free. SinceT is arational, it is indecomposabl&{eorem 2., thus
TH is also indecomposable lhemma 5.2 Using Theorem 2.2again, we conclude that" is arational. [

5.1 The Outer space of a subgroup

Fix H < F a subgroup of finite indef# : H] = n. ThenH is a free group of rank £ n(1—rk(F)) and we
denote its Outer space BY(H). Recalling thatR is our fixed rK[F)—petal rose used to mark graphsXgfwe
let H|R denote the correspondiht-cover and fix a homotopy equivalence betwkkf® and a ros&ry.

There is a natural inclusiori: X — X(H) defined by takingd—covers and lifting markings. In details,
if : R — G is a marked metri&—graph, then thél—coverH|G is a metricH—graph of volumen and we
may choose a lifgy: H|R — H|G. Any other lift @: H/R — H|G is then obtained by precomposigg
with an element of the deck group BfiR — R, which is isomorphic tdN(H)/H. Since for each such deck
transformatiord € N(H)/H, there is a graph isometpy of H|G such thaipg o @4 ~ @4 od, we see that the
equivalence class ¢H|G, @) in X(H) is well-defined. Using the homotopy lifting property, we #uhally
see that this induces a well-defined map

"1 20— X(H)
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given by [G, ¢] — [H|G, @4]. Also note that ifg"c '™ projects tog € Iy, theng™i*(G) = i*(g- G). Even
better, this map is an isometry with respect to the Lipsamigtric:

Proposition 5.4. Let H < F be a finite index subgroup. Then the induced miapi — X(H) is an isometry
with respect to the Lipschitz metric. Moreovémaps folding paths ifX to folding paths irfl((H).

Proof. Fix G; andG, in X. If f: G; — G, is an optimal change of marking, then choosing &flift H|G; —
H|G; we see that since L{gy) = Lip(f),

dy(n) (i"(G1),1"(G2)) = dye(n) (H[G1, H|G2) < dy (G2, G2).
Further,

edx(H)(HIGLHIG2) _

(|(HG) . ((h[Gy)
T o EN|(H[Gy) ~ pe Z(NGy)”

Leta € IF be such tha& is optimally stretched by : G — G, i.e. £(a|Gz) = Lip(f)¢(aG1), and letk > 0
be the smallest positive integer such thfae H. Then using our observation above

(GG _ L@IG2) ((a|Gy) sup UNIG2) _ i (HIGLHIG)
((aG1)  L(&[G1) ~ hen £(h|Gy)

Hence, we also hawié (G, Gz) < dy () (i*(Ga),i*(G2)) showing thaf*: X — X(H) is an isometry.

To show that* maps folding paths to folding paths, 1€ }icjo,; be a folding path irlX with corre-
sponding folding map$@;: Gs — Gt }s<t (see &.5for the def|n|t|ons of folding maps and folding paths).
SetG; = H|G; = i*(G) with covering mapp : Gt — Gi. We claim that{G;} is a folding path inX(H)
with corresponding lifted folding map&pst HJGS — H|Gt}s<t- Indeed, that each of these lifts is a local
Lip(gs)— homothety with Liggy) = )(Gs, Gt) follows from what we have already shown. What's more,
the equalityp; o @& = @0 psimplies that the illegal turn structure thag induces oer is exactly the lift (via
ps) of the illegal turn structure thag: induces orGs. From this it follows that eachy is a folding map and,
by the uniqueness of folding patt3f2, §2], that{G[} is the folding path determined g, : Go — GL. O

5.2 Proof of Proposition 5.1

Combining our work in the previous sections, we now turn ® phoof of Proposition 5.1 LetR € X be a
rose with a petal representinge CS°. Letd GSO(H) be primitive conjugacy class &f represented by an
embedded loop dfl |R covering this petal oR. Note thata € mes(R) andé € e (H|R), wherergg is the
projection from outer space to the corresponding co-sarfgaph.

Fix a finite generating s&of M with projectionSc IMy. By abuse of notation, we identify! andly
with the corresponding Cayley graphs C&Y,S) and Cayly,S), which are geodesic metric spaces. The
orbits mapsgy™+ §- & andg— §- H|R then extend equivariantly to continuous majpsr™ — €8(H) and
W: '™ — X(H), and similarly for" . Note also that the projectidi! — I'y is a quasi-isometry.

Proof of Proposition 5.1 By Lemma 3.4it suffices to show that the orbit majp: '™ — €8(H) is alignment
preserving and metrically proper. The strategy is to rdlaecorresponding orbit it with folding paths via
Theorem 2.@nd to use that these folding paths liftX¢H ) by Proposition 5.4

In details, let(§_, §o,§. ) be an aligned triple i and lety: | — '™ be a geodesic passing through ~
with y(1+) = §+. The projectiony: | — 'y < T is then a uniform quasigeodesic and so maps to a uniform
quasigeodesic €S by assumption. Henc&heorem 2.6provides a folding patfGi }c(o. in X that has
uniformly bounded symmetric Hausdorff distance from thagm of the compositioh— 'y — X. Since
i*: X — X(H) is ar"—equivariant isometric embeddingroposition 5.} the same holds for the image of
| — " — X(H) and the folding patki' (G;) = H|G. In particular, the three pointgs “H|R, §o- H|R, andg; -
H|Rall lie within uniformly bounded symmetric Hausdorff diatze of the geodesifH |G;} in X(H). Since
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the projectiontes : X(H) — C8(H) is alignment preserving, it follows that the tripl§_ - &,8o- &,§. - &)
is uniformly aligned inc8(H). Therefore the orbit map™ — CS(H) is alignment preserving.

It remains to show thaE™ — CS(H) is metrically proper. If this were not the case, then thera is
sequence af € M with [x| — o butdeg)(&,% - @) < D for someD > 0. By compactness ¢f* uar,
after passing to a subsequence we may assumg thatj € dr'™ = gry = ar. Since we have already shown
thatr™ — @S(H) is coarsely alignment preserving uSkim 4.12to obtain a geodesigjj)i>o in ' such
thatgi — qin TH Ut butdeg ) (@, §i - &) is uniformly bounded.

Now pass to a subsequence such thaR converges td in X. Since(g; - a)i>o is a quasigeodesic i8S,
we see combiningheorem 2.@ndTheorem 4.8hat the tred is free and arational and thgt- o converges
to the equivalence class @fin €8 UJCS. Hence(H|gi - R= §i - H|R)i>o convergesifX(H) to the treeTH.
By Corollary 5.3 TH is free and arational. Hence, hgmma 4.7 Tes(H)(Gi - H|R) = Gi - & converges to the
equivalence class of the tr@é&' in dCS(H). In particulardeg ) (@, Gi - ) — oo contradicting the conclusion
of the previous paragraph. This shows th&t— CS(H) is metrlcally proper and completes the proof.

6 Flaring of simple conjugacy classes in Outer space orbits

In this section, we use the geometry of Outer space and theeaitfolding paths to analyze how the lengths
of conjugacy classes behave along the drbiR C X of certain subgroups < Out(F). Whenrl" gi-embeds
into the factor comple®, we will find that for simple conjugacy classeas< F, the length’(a|g- R) grows
roughly exponentially in the distance from a certain uniity bounded-diameter subser'ﬁ(a) cr. Our
analysis culminates in the rather technicainma 6.1@vhich establishes this exponential flaring not only for
simple classes, but also for all conjugacy classgsthat are, in a sense, “well-aligned” withat the points
of p,-R(a) -R (seeDefinition 6.9. Lemma 6.10moreover shows that this exponential growthiméformin all
sucha andp.

6.1 Uniform bounded backtracking

It is well known that any mag : G — H of metric core graphs hdsounded backtracking, meaning that
there is a constant BET) > 0 such that for any two pointp,q € G in the universal cover and any lift
f: G — H of f one has that the patf([p,q]) is contained in the BB )—-neighborhood of the geodesic
segmentf(p), f(q)]; see, e.g.,GJILL] or [CHL]. We will need a uniform bound on the constant BBT
over a broad family of graph maps. While bounds of this typecartainly well known to experts (see, e.g.,
[BFH, Lemma 3.1]), we include a short proof here for completeness

Lemma 6.1 (Backtracking bound)For every D> 0 there exists a constant£ 0 so that if GH € X satisfy
dY"(G,H) < D, then there exists a change of marking ngapG — H with BBT(¢) < C.

Proof. The hypothesis ensures there are map& — H and¢: H — G so thatpo ¢ ~ Idn, ¢ o ¢ ~ Idg,
and Lip(@),Lip(¢) < €P. SetK = €P. Choose any liftsp: G — H and@o: H — G of these maps to the
universal covers, and note thaand @, are both equivariant with respect to thections on the treeS and
H. Note also that Lipp), Lip($o) < K.

Choose a basepoimte G and letw = (p( ) € H. Since the orbiff - v is 1-dense ir5, we may choose
ac IF so thatdg(v,a- o(w)) < 1. Define a new mag : H — G by the ruled (q) = a- ¢o(q) and note that we
still have Lip(¢) < K. We now have thadis (v, @ o @(v)) < 1. By equivariance and the fact thfitand ¢ are
K-Lipschitz, it easily follows thaf o @ moves points at most distank@ + 2. From this, and the inequalities
Lip(¢), L|p((p) < K, one may conclude thatis a(2K?+4)— —quasi-isometry. Thus for any geodesic segment
[p,q] C G, the imagep([p,q]) is a (2K2+ 4)- —quasigeodesic i ifi. It now follows fromProposition 2.that
@([p,q]) is contained in th&y(2€?° + 4,0)—neighborhood ofp(p), @(q)], as required. O

If ¢: To — T is anF—equivariant map between free simplicial trees, we alsaevBBT(¢) for the
bounded backtracking constant of the induced gy — T /F of the quotient graphs.
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6.2 Bestvina—Feighn folding

Here, we recall some additional facts about folding patlas #e will need in the proof ofemma 6.10
Recalling the notation from&5, we see that the folding magg:: Gs — Gt }s<t associated to a folding path
y: | — X give rise to a well-defined illegal turn structure on eachpbr@s = y(s) in the image (except for
the right endpoiny(l ;) whenl < »). We then say that an immersed path (i.e., segmer@y}iis legal if it
only takes legal turns; notice that for any legal pAth] — G, the compositiorg;; o 3 is a legal path irG;.
An immersed path iss will be calledillegal if it does not contain a legal subpath of length 3.

If Gt € X is equipped with an illegal turn structure, then for evergjagacy classr of F the immersed
loop a|G: — G; breaks into maximal legal segments separated by illegaktuFollowing our convention
from [DT, §6], thelegal lengthof a|G; is defined to be the sum lgg|G;) of the lengths of those maximal
legal segments that have length at least 3. The followingclast appears as Lemma 6.10 &T] and
follows directly from work in BF2]:

Lemma 6.2([DT]). For any folding path G t € [a,b], every nontrivial conjugacy class € F satisfies

1
leg(a|Gp) > leg(a|Ga) (5) e
We also have the following technical result of Bestvinaghei for the statement, recall that a nontrivial
elementa € IF (or the conjugacy class thereof) issimpleif ais contained in a proper free factorBf

Lemma 6.3(Bestvina—FeighnBF2, Lemma 5.8]) There exists a constant Blepending only ork(FF) with
the following property. If G t € [a,b] is a folding path andx is simple witha |G; illegal for all t € [a,b],
then either/(a|Ga) > 2¢(a|Gy) or else dr(Ga, Gp) < B;.

For any subgroup < IF (or conjugacy clase) the illegal turn structure o6 pulls back to give an illegal
turn structure o\|G; (or a|Gt). This gives a notion of legal and illegal pathsAfG;: an immersed path in
A|G; is (il)legal if and only if it is mapped to an (il)legal path & . Define now thellegality constant

9:= (2rk(F) — 1)(18M(3rk(F) — 3) +6),

whereniis the maximal possible number of illegal turns in any illegian structure on any grap® € X (so
mis linear in rKF)). In [BF2], Bestvina and Feighn introduced the following projectida folding paths.

Definition 6.4. Given a folding patty: | — X and a free factoA of I, set

left,(A) =inf{t € | : Ajy(t) has an immersed legal segment of length &nd
right,(A) =sup{t € | : Aly(t) has an immersed illegal segment of leng}h

We similarly define left(a) and right(a) for every nontrivial conjugacy class of F. Note that these
definitions agree whea is a primitive conjugacy class.

The following technical result played a key roll in Bestvisad Feighn'’s proof ofheorem 2.3

Proposition 6.5(Bestvina—FeighnBF2, Proposition 6.10]) There exists a universal constant @epending
only onrk(FF) such that for every folding paty: | — X and free factor A oF we have

d (y(lefty(A)), y(right,(A))) < By.

We henceforth writé3 for the universal constant méR;,B,}, whereBy, B, are the constants provided
by Lemma 6.3andProposition 6.5
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6.3 Flaring and almost containment

The following notion will help us relate distances in the megraph bundle’ (see §.1) to conjugacy lengths
along folding paths.

Definition 6.6. Suppose thatr, 3 are nontrivial conjugacy classes Bfand thatG € X is a point in Outer
space with correspondifi@-treeG. We say thaf is k—almost contained ina at G, for k > 0, if there exists
an axis«Z C G for (an element ofpr and a fundamental domaBof an axis for (an element ofy in G so
thatB\ <7 is a (possibly degenerate) connected segment of lengthstkmbhis is to say thaB is contained
in o7 except for a subsegment of length at miast

Equivalently, is k-almost contained ir atG there exist axes?, % c G for elements of the classes
andp, respectively, so that{.«7 N %) > £(B|G) — k. We also observe that is always O—contained in itself.

Lemma 6.7. For any k> 0 and D> 0 there exists a constant k 0 so that if 8 is k—almost contained ior
at G € X, then is K—almost contained i at H for any He X with d™(G,H) < D.

Proof. By assumption, we may may choose elementsa andb € 8 whose respective axes, 2 C G
satisfy/(o/ N %) > ¢(B|G) — k. OrientZ so thatb translates in the forward direction, and feandq be the
initial and terminal endpoints of the segmentn % C 4. Also letx=b- p € A. By k—almost containment,
we have that eithedlz(x,q) < kor elsex € o/ N 4.

By Lemma 6.1 there is are®—Lipschitz change of marking map: G — H with BBT(¢) < C for some
C > 0 depending only o. Choose a lifif : G — H and letu be the (possibly empty) geodesic segment
obtained by removing the lengtB-nitial and terminal segments @ (p), (q)]. Let.er’, 8’ C H be the axes
fora~ H andb ~ H. By definition of bounded backtracking(.<7) is contained in th€-neighborhood of
</"; in particularg (p) and@ (q) are both withinC of «7’. It follows thaty C &’. Similarly up € %’. Thus

W' NA') > (1) > dg((p),P(q)) — 2C.

Now if x=b- p € & N %, then the same reasoning gives

2C+U(e"'NA) = dq(§(p), $(X)) = di5(§(p),b-F(p)) = £(BIH).

Otherwise we havég(g,x) < k, so that

{(BIH) < d(¢(p),b-6(p)) < dy (¢ (p),$(a)) +dq(#(a), (X))
< (U(«'NA)+2C) + €k,

sinced is eP—Lipschitz. ThusB is (2C + ePk)—almost contained ir atH. O

We now make a simple observation. Recall frdrfinition 6.4that right,(a) denotes the supremum of
times along a folding path for which a|y(t) contains an immersed illegal segment of lerfgth

Lemma6.8. Lety: | — X be afolding path and suppose thai 1 satisfies t right, (o) for some conjugacy
classa of F. If B is k—almost contained io at G = y(t) and4(B|G;) > 3k+ 37, then

leg(BIGr) > 21(BIG).

Proof. The loopB|G; subdivides into two immersed subsegmeBfsnd;, wheref has length at most
andp; is an immersed path inta|G;. By choosing the maximal length legal subsegments comigitiie
two endpoints of these segments, we may alternately sudsfB/iG; into 4 subsegment8pf1q separated
at illegal turns, wherg; is an immersed path int@|G;, B has length at modt, andp andq are both legal.
(Up to 3 of these segments may be degenerate, as happensasththap|G; is itself legal).

Since the endpoints ¢ are at illegal turns, we may unambiguously talk about thallEEngth led; )
of B1 (defined in the same way as for conjugacy classes). ende an immersed subpath m|G; and
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t > right,(a) we see that every subpath@f of length at leasl contains a legal segment of length at least 3.
Therefore, if we subdividg; inton= |£(f1)/J| subsegments of equal lengttB;)/n > J, we see that each
subsegment contains a legal segment of length 3. Therefore

leg(By) > 3n > 3 (182 —1) = 3u(py) -
Hence it follows that

leg(B|Gt) > leg(B1) +£(p) +£(q) > 34(Br) + £(p) +£(q) — 3
3(0(Br) + () + () —3> 3(¢(BIG) —k) — 3

Sincel(B|Gt) > 3k+ 37 by hypothesis, we may conclude
leg(B|Gy) > $4(BIGt) — (3 +3) > 3¢(BIG) — F4(BIGy) = 54(B|Gy). O

Corollary 6.9. Lety: | — X be a folding path, and suppose thais k—almost contained ior at Gs = y(S).
If £(B) > 3k+3J and s> right,(a), then for all te | with t > s we have

AVARAY

((B|Gy) > H&ﬁs

Proof. By Lemma 6.2andLemma 6.8ve immediately see that
1 2
UPBIGY) = leg(B|G) > Sleg(BIGs)e > ((B|Gs)e . O

6.4 Flaring away from length minimizers

Given a subgroup < Out(FF), a pointR € X, and a conjugacy clags of F, we write
mR(a) :=inf{¢(alg-R):geT}

for the infimal length of the conjugacy clagson the orbit - R. Observe thatR(a) is positive since it is
bounded below by the injectivity radius 8 While this infimal length in principle need not be attainéd a
any orbit point, we may nevertheless be assured that the set

pR(a) = {geT : ¢(alg-R) < 2mB(a)}

is nonempty.

We now come to the main technical lemma 6f §howing that if” is convex cocompact arfélis long and
almost contained ir at a point ofoR(ar), then the length o8 in the orbitl” - Rgrows uniformly exponentially
with the distance frorm),B(a). In fact we show something slightly stronger than this:

Lemma 6.10. Suppose that < Out(F) is finitely generated with word metrig-chnd thatl" gi-embeds into
F. For every Re X there exist constants > 1 and C> 0 such that for every k- O there is some ¢.> 0 with
the following property: Letr be a simple conjugacy classBfand let g € I lie in p,-R(a). Suppose further
that ge I lies on a geodesic frompgo he I, i.e. d-(go,h) = dr(go,9) +dr(g,h). If B € F is k—almost
contained ina at g-R and/(8|g-R) > Lo, then

((Blh-R) >CA% @My (B|g-R).

Proof. Choose a free factok in 77(R). By assumption, the assignmept— ¢ - A gives a quasi-isometric
embeddind” — . Sincerty is coarsely Lipschitzliemma 2.9, it follows from F—equivariance that there is
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someK so that the assignmenmt— ¢ - R gives aK—quasi-isometric embedding— X. Recall this means
that

forall ¢, €. Sincedr(go,h) = dr(go,g) + dr(g,h), we may choose a geodesifp, ..., ¢n) in (7, dr)
from go = ¢o to h= ¢n with g= ¢; for some 0< j <N. It then follows from b) that the mapep: [O,N] — X
defined byy(s) = ¢i - Rfor se [i,i+1)N[0,N] is a (directed) B—quasigeodesic. As described BH2,
Proposition 2.11] andAM, Theorem 5.6], we may build a geodeg§icl — X from go - R to h- R which is
a concatenation of eescaling pathfollowed by a folding path. Byrheorem 2.6it follows that there exists
constants\, € > 0 andK’ > 1 depending only oK and the injectivity radius dR such tha ([0, N]) andy(i)
have Hausdorff distance at md&stthat{/(f) C X, and thatzz o y: I —Fis aK’—quasigeodesic. Furthermore,
the rescaling portion of has length at most I1¢g/¢) by [DT, Lemma 2.6]. Ify: | — X denotes the folding
path portion ofy, then after replacing by A+ M, log(2/¢€) (whereM; is as inLemma 2.4 we may conclude
thatduaus(y(1), {$o-R....,¢n-R}) <A, thatdsym( y(1_),00-R) <A thaty(l, ) =h-R, and thattroy: | —F
is aK’—quaS|ge0deS|c In particular, singe- ¢;, there is someég € | for whichdy’ M(y(lg),9-R) < A.

Conversely, for eache | there is some so thatdsym( y(t),¢i-R) < Aand consequentlg/(a|¢i ‘R) <
eM(aly(t)). Similarly ¢(aly(1-)) < eM(algo- R). Furthermore, sincgo € pR(a), the definition ofpR(a)
glvesf(a|go R) < 2/(a|¢i - R). Combining these for evetye | we find that

aly(1-)) < 2e%(aly(t)). (6)

Let us analyze the location of rigftr) in I. SetD’ = K'(B+K’), whereB is the constant defined after
Proposition 6.5Then alls;t € | with |[s—t| > D’ satisfyds(y(s), y(t)) > B. We claim that

left,(a) <1_+D’ (% n 2) .

Indeed, if this is false, thea|y(t) is illegal for allt € [| _,1 _ + D’'m]|, wherem = {'0924_ 1} < IogZ+2 But

thenLemma 6.3vould imply that/(a|y(1)) > 2™¢(a|y(l - 4+D’'m)), contradicting 6) since 2" > 2e?A. We
also know that righf(a) < left,(a) + D’ by Proposition 6.5nd our choice ob’. Therefore we conclude

righty(a)gl,JrD’(%w)§|0+D’(%+3). @)

Setro :=max{lo,right,(a)}, so thatrighf(a) <ro <. Define alsdE := M:D'(;Z, +3) +A. Equation
(7) with Lemma 2.4and the estimatéyY"(y(lo),g- R) < A then combine to give}Y"(y(ro),g-R) < E.
Suppose now thgB is k—almost contained imr at g- R for the given constarit. By Lemma 6.7 we
know thatf3 is k'—almost containedr at y(ro) for some constank’ depending only ork andE. Define
0:= (3K +3J)€F so that the additional assumptiéB|g- R) > Lo will moreover imply

((Bly(ro)) > ¢(Blg-Rje™= > 3K +30.
Thus if B is k—almost contained ior atg- Rand/(8|g- R) > Lo, we may applyCorollary 6.9to conclude
3 (t—ro) (t—ro)
(BIVD) > = ((BIyiro)el ™ > =2 ¢(Blg-R)é (®)

forallt > ro (this is valid because, > right, (o))
We now use &) to prove the proposition. Sinde > rg by construction,§) immediately gives

(BIhR) = (BIV(1 1)) = e (Blg- R
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Sincedy"(g-R,y(r0)) < E andy is a directed geodesic, we have that(g-R,h-R) < E+ (1. —ro). We
also knowdy (g-R,h-R) > dr(g,h) — K by Equation §). Therefore(l ; —rq) > +dr(g,h) —K — E and so

¢(B|h-R) > ((Blg-R) (el/K)dr(g,h)

2
3Je2E+K

as desired. Thus the conclusion of the proposition holds Avit e/X andC = 3392%%- O

7 Distortion within fibers of Ef — I

Fix a finitely generated subgrolip< Out(IF) for which the orbit map — €S8 is a quasi-isometric embedding.
Then by Theorem 1.1and Theorem 4.13the corresponding extensidf is hyperbolic. In this section,
we establishTheorem 7.9which shows that iH < F is finitely generated and of infinite index, théh
is quasiconvex (and hence undistorted) as a subgrougy of This will follow from the structural result
Theorem 7.2 which will be used in 8 to characterize which hyperbolic extensionsFfnduce convex
cocompact subgroups of Giii).

7.1 The Cayley graph bundle

To this end, we first recall some notation and results fr@m,[8§7—8] describing the structure Bf. Fix
a finite generating s&= {s,...,s} of I and a free basiX = {xi,..., %} for F. Recalling thaEr is the
preimage of” under the quotient map A{£) — Out(F), we choose a lift; € Aut(F) of 5 for each 1< i <n.
In general, we will use the notatigne Aut(F) to denote a lift ofg € I' to Er. We also writdy € Aut(F) for
the inner automorphism given by conjugationby I, i.e.,ix(a) = xax ! for ac F. Note thatpixg 1 = ip(x)
for eachx € F and¢ € Aut(F)

As a subgroup of AyfF), Er is thus generated by the 88t= {iy,,...ix,t1,...,ta}. Thatis

Er == <in7' . in7t17' . ,tn> S AU'[(F)

For convenience, sét = {ix,,...,ix } andF = (X), so thatk is the isomorphic image df in Aut(F). Note
that[¥ is also the kernel of the homomorphiin — I'. We also seS= {t;,...,tn}.

LetT = Cay(F,X), & = Cay(Er,W), and# = Cay(I',S), where Cay-,-) denotes the Cayley graph with
the specified generating set equipped with the path metvithioh each edge has length one. We respectively
viewF > F, Er, andr" as the O—skeletons of the simplicial compleXeg’, and#. SetXR to be the standard
rose on the generating sétso thatR = T/F. There is then an obvious equivariant simplicial map

p: & — A

extending the surjective homomorphigtn — I'; note thatp sends edges of to either vertices or edges
of % depending on whether the edge corresponds to a generaXopirS, respectively. For eache T,
we see that the preimadg = p—1(b) is the simplicial tree (isomorphic t6) with vertices labeled by the
cosetblF (5 any lift of b) and edges labeled b§. We write dy, for the induced path metric on the fib&
overb € I'. By ak—qi sectionof p: & — %, we simply mean &—quasi-isometric embeddirg: 4 — &
such thatpo 0)(g) = g for everyg e T (i.e., for every vertex of4). By Mosher’s “quasi-isometric section
lemma” Mosg], there exists a constasit> 1 (depending only on the bundfe & — %) such that for every
b eI and vertex € T, one may build a&—qi sectiono: 8 — & with o(b) = v.

As discussed inDT, 87] (see alsojIS, Example 1.8])p: & — £ is an example of themetric graph
bundleconstruction developed by Mj and Sardarliag]. In particular, there is enetric properness function
f: N — N such thatdp(u,v) < f(dg(u,v)) for all b € " and all verticesu,v € T, [DT, Lemma 7.2]. We
moreover observe that if group elements € Er lie in the same fibeTy, thenulv € F and the fiberwise
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distance satisfiesl,(u,v) = |u~lv|¢ [DT, Lemma 7.1]. Writingu™'v = i, for the appropriata € F and
defining€£ > 1 to be the maximal bilipschitz constant of the automorpkisn$, we deduce the inequality

dos (Ut Vt) = [t MU tve

= [ttt = [iy-2q | < Slialx = Sdb(uv) ©)

for every generatos; € Swith corresponding lift; € S

7.2 The Width Theorem

Suppose that is anelement(rather than conjugacy class) Bf Then left multiplication by the inner auto-
morphismi, € F gives an isometry of’ that preserves each fib& of p: & — 4. In particular,i, acts as a
hyperbolic isometry of Ty, dp) translating along a unique invariant axis. We writg(a) for the axis ofi; in
the fiberT, and then define thaxis bundle ofato be the union (a) := Uper o (a).

Note that whileesy(a) is a geodesic in the path metric spd@g, dg), it will generally be far from being
a geodesic in the whole spaée However, our next result shows that wheeis simple andy € T lies in the
minimizing setpR([a]) for the conjugacy class @f(see §.4), thene(a) is a uniform quasigeodesic ifi.

Proposition 7.1. Suppose thaf < Out(FF) gi-embeds intd®®8 and let p & — £ be as in §.1 Then for
every Re X there exists a constant © 1 such that for any simple elementaF and any ge pR([a)), the
axis.ofg(a) (viewed as a maf — Ty C &) is a Q—quasigeodesic ifi.

The proof ofProposition 7.1is fairly technical and will be deferred to the next sectidheanwhile, we
use it to uniformly bound the “width” of all simple conjugaciasses of. Suppose now thdt < Out(F)
gi-embeds intdS so that the corresponding bundifeis a hyperbolic metric space. Every elemart F
then acts (via left multiplication big € F) as a hyperbolic isometry of, and we leta* denote a biinfinite
geodesic off joining the two fixed pointe®,a~* of ain d&. Define thewidth of a € F (or its conjugacy
classa) by

width(a) = width(a) := diamy p(a").

Theorem 7.2(Width Theorem) Suppose thalt < Out(FF) gi-embeds intd®®8 and consider the hyperbolic
extension pEr — I of F. Then the simple conjugacy classe&dfave uniformly bounded width. That is,

supdiam- p(a™) < o
a

where the supremum is over simple conjugacy classEs of

Proof. Leta be a simple element & anda is conjugacy class. Suppose that the lengtlr @ minimized
over the fibefTy for g € I'. Then byProposition 7. 1the axis#(a) of ain Ty is aQ—quasigeodesic fa@ > 0
not depending oa. As Er is hyperbolic,Proposition 2.Jprovides a constaiR = R(Q) > 0 so that the axis
of ain Er has Hausdorff distance at mdsfrom anyQ—quasigeodesic joining its endpointsdi&r. Hence,
dhaug@*, #%g(a)) < R and so the diameter of the imageadfin I' is at mostR. Since this is independent of
the conjugacy class, the theorem follows. O

In 88, we will show that any hyperbolic extension®fn which simple elements have uniformly bounded
width is an extension by a convex cocompact subgfogpOut(F).

7.3 Axis bundles and the proof ofProposition 7.1

We now embark on the proof dfroposition 7.1 Our approach is modeled on that of Kent—Leininger in
[KL4], where they prove an analogous result in order to estathisin width theorem for hyperbolic exten-
sions of surface groups. The main idea is to use the axis bu#i¢t) to construct a Lipschitz retract froi

to <7y(a).
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The first step of the construction utilizes the techniques Mitra [Mit2] has developed and used ex-
tensively to study hyperbolic group extensions. pet§ — % be as in §.1and leta € F be a nontrivial
element with corresponding axis bundiga) C &. Definepa: Er — <7 (a) to be the fiber-wise closest point
projection to<7 (a), that is, for each vertexin the fiberTy we definepa(x) to be the unique point inzy(a)
minimizing the distancey(X, pa(x)).

Lemma 7.3 (Mitra [Mit2, Lemma 3.2]) There is a constard > 1 depending only on the bund — %
such thap,: Er — &7 (a) is €—Lipschitz for each elementaF. That is, for for all uv € Er we have

ds(pa(u), pa(V)) < €de(u,v).

Proof. Mitra’s proof ofLemma 7.Jollows from basic hyperbolic geometry; for completenesgive a brief
sketch here: By the triangle inequality it suffices to sugbgu,v) = 1. Then ifu,v lie in the same fibeTy,
we immediately have s (pa(u),pa(V)) < dg(pa(u),pa(v)) <1 by the nature of closest-point-projection in the
treeTy. Otherwiseu andv lie in neighboring fibers so that= ut; for somet; € S But then one may use the
uniform bilipschitz equivalence of neighboring fibers (Btjan @)) to prove thata(u)t; is uniformly close
to pa(v) (which is the content ofiflit2, Lemma 3.6]). O

Lemma 7.3allows us to extengh, mappa: & — <7 (a) that is coarselyf¢—Lipschitz. Fora € F non-
trivial, let us use the terminologk—qi section through </ (a) to mean ak—quasi-isometric embedding
0: (#,dz) — (&,ds) such thao(g) € of(a) forallgeT.

Corollary 7.4. For any nontrivial ac F and any vertex ¥ <75(a), there exists & f—qi sectiono through
o/ (a) with o(g) = v.

Proof. Let gp: # — & be theR—qi section withagp(g) = v provided by Mosheriflos]. Composingop with
pa: & — /(@) then gives the desiretiR—quasi-isometric embeddinpg o 0p: B — &. O

We now make a basic observation about “well-separatedf sections through axis bundles.

Lemma 7.5. There exists a constafit > 0 depending only od” — % with the following property. Suppose
a € F is nontrivial, thatoy, o, are €£—qi sections throughk# (a), and that gh € I' satisfy dz(g,h) < 1. If

u e y(a) lies betweerny (g) andoz(g) on.«7g(a) with dy(u, 0i(g)) > D fori =1,2and ve «,(a) is a vertex
with de(u,v) < €R, then v also lies betweem (h) and gz(h) on .o (a).

Proof. Define® := 4E2, whereE = £+ 2Ry(£,0) + f(2€R+ 1+ Ry(£,0)), and suppose thath, u,v, g, 0>
are as in the statement of the lemmad f(g, h) = 0 thenvis a point on the geodesig;(a) within dg—distance
f(€R) of u. Thus the result is immediate singe> f(€R). Otherwisedz(g,h) = 1 so thath = gs for some
generatoss € S. Lett; be the chosen lift irS. Define a map¥ from g (the vertex set ofly) to hFF (the
vertex set ofT,) by declaringW(x) to be thed,—closest-point-projection oft; € Tj, to «4,(a). Since the
assignmenxk — X is £-bilipschitz by Equationg) andTj, is 0—hyperbolic, it follows fronProposition 2.1
and the definition oE > £+ 2Ry (£, 0) thatW restricts to arE—quasi-isometric embedding from (the vertices
of) 27y(a) to o4 (a). Observe also thats (W(x),x) < 1+ Rg(£,0) for each vertex € <7y(a).

The hypotheses odi(g),u,g2(g) now imply thatW(u) appears betweeW(o1(g)) and W(o2(g)) on
(@) with dy (W(u), W(0i(g)) > 3E for i = 1,2. Using the triangle inequality, the hypothesesmnos,v
with the above observation abdut%(a> together give

ds (W(01(9)), 01(h)), de (W(02(9)), 02(h)) , dis (W(u), V) < 2€R+ 1+ Ro(L,0).
By metric properness, we may thus conclude that
dn(W(01(9)), 01(N)), dh(W(02(9)), 02(h)), dn (W(u),v) < F(2€R + 1+ Ro(£,0)) <E.

Therefore the triangle inequality shows thdies betweero; (h) andoz(h) on «4,(a), as desired. O
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Next, whena € F is simple the flaring property established i.&translates into the following estimate
for well-separated gi-sections through(a). Let R € X denotes the marked graph G&yX)/F equipped
with the metric in which each edge has lengfk(r)

Proposition 7.6. Suppose thalt < Ouf([F) gi-embeds intdF and let p & — % be as in §.1 For every

K > 1 there exist DDg > 0 and 1 > 1 so that the following holds. Suppose that & is simple and that
0,0’ are K—gi-sections throughy (a) with dy(o(g), 0’(g)) > Do for some element g pZ([a]). Then for all

heT we have:

dn(a(h),0’(h)) > DN @M dg(a(g), 0’(g)).

Proof. LeC, A, andLg be the constants obtained by applyltemma 6.1Go the orbitl” - R with k=1, and
let f be the metric properness function for the graph burtie 2. Fix N > 1 large enough so th@AN > 4
and define

Do := max{2, 2rk(F)Lo, 8C 1 (5KN)}.

Chooseh e T arbitrarily, and letg = go,...,9m = h be a geodesic frorgto hin I'. Let us writeg; :=
0(gi) € Ty andg{ := 0'(gi) € Ty for the value of the twd—qi-sections in the fibelly, of p: & — &
overgi. Choose any verticeg,g; along our geodesic with< j <i+ 2N, and suppose temporarily that
dg, (a,, /) > Do. Recall from §.1thatTy = p~1(gi) is a simplicial tree whose edges are labeled by the free
basisX of F. With respect to this baS|s the element 0*10 eF may not by cyclically reduced. However,
there is some € X so thai, = g, 0 xeFis cyclically reduced. Set = 0; andZ = giX, so that the geodesic
edge pathz,Z] in Ty, is labeled by the cyclically reduced woiglof [F with the properties thafip||x = [iblg
and thatip|¢ differs fromdg (0i, 0f) = |6; *, o/ |4 by at most 1.

Choosing a liftgi’ € Aut(F) of g. € Out(F), the actiongi”on & restricts to a simplicial automorphism
from Ty to Ty, that respects the edge labeling and thus gives an ideritficat T; = Cay(F, X) with Tg;-
With respect to this identification, the elemepib] € F acts onTy, the same way thag, acts on Caiir, X).
Therefore, since the labeled edge patt¥] is a fundamental domain of the axisigin Cay(IF, X), it follows
that [z,Z] C Ty is a fundamental domain of the axis fgi(l5) acting onTy,. Letting 8 anda denote the
conjugacy classes &fanda, respectively, it follows that {8) = gi(8) is 1-almost contained io atg; - R
(sincea;, g/ € <7 (a) by construction and all edges in the universal covegiofR have length/mkr) < 1).
Since

(9i(B)Igi - R) = L(BIR) = i llibllg > ey (dai(03,07) — 1) > 5pez7a (03, 0f) > Lo

by the assumptiody, (i, 0/) > Do, we may applyemma 6.1Go conclude

Ugi(B)Ig; - R) > CAV(Gi(B)|gi - R) > mrgmA ) g (1, 0)).

For eachi < p < j, setsy = g;}lgp € Sand lettp € Shbe the chosen lift 0§, in the generating séw/
of Er. Fori < p < j letus also defingy = ztj,1---tp andz, = zs1---tp, both of which are points over
Op = 0iS+1---Sp. Sinceg;,gi11,...,0j is a geodesic irf, it follows thatz,...,z; and zi’,...,z’j are both
geodesics ifEr and thus thatls (z,2j) = d¢(Z,7j) = ] —i < 2N. Observe now that

27 = @ta ) (Bt t) = (51 40) 34 e ) = Bind =g € B,

where¢ is the specific liftp = tj’l-~~tf+11 € Aut(F) of g lgi = Sj §+1 In particular, we see that the
distance betweezy andz, in the fiberTy, satisfies

dg; (1,2) = [ig(m) |5 = lligw|lg = KE)S(B)IR) = rk(F)e(gi(B)Ig; - R) > §A)dg (a1, o). (10)
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Let us now compare this distancedg (0, J) Sinceo, o’ areK—gi-sections, the quantltleg»(a.,aj)
andd¢(o{, 0]) are bounded b¥(j —i) +K < 2KN + K. Since we also havés(0i,z),ds(0!,Z) < 1 by
construction, the triangle inequality thus gives

ds(zj,07),ds(Z,0]) < 2KN+K+N+1< 5KN.

By metric properness of the graph bundle- 4, it follows thatdgJ (zj,0)),dg; (z’J , aj) < f(5K_N). Combin-
ing with (10) and usingdg (ai,07) > Do > 8C~1f(5KN) andA i~ > 1, we conclude that

ng(UJ, J) A Idgl(O'i,O-/)—Zf(SK_N)
—(’\JI 3) §dg(ai,0)) > §A1dg (a1, o).

To summarize, we have now shown that the implication
dgi(o-ho-i/) >Do = dgj(aj7oj) %)\J Idg|(q7 ) (11)

holds for any pair of verticeg;,g; on the geodesig = go,...,gm = hwith i < j <i+2N. Suppose now
thatdy(o(g),0’(g)) > Do. If dr(g,h) > N, we may then break the geodesig...,gm into [dr(g,h)/N| >
%dr(g, h) pieces that each have length betwdkand N and inductively apply the estimat&l) to conclude

dn(a(h), o’ (h)) > (SAN) VN 4o(a(g), 0 (g)) > N Mdy(a(g), o' (g)),

1/2N
wheren = (%) / > 1. Otherwisedr(g,h) <N and (L1) immediately gives the desired bound

dn(a(h), 0 () > (5Sx ) n*@"dg(0(), o'(9)). O
With these tools in hand, we are now prepared to give the

Proof of Proposition 7.1 Let &, €, and® be the constants provided by Mosher’s quasi-isometridaect
lemma,Lemma 7.3 andLemma 7.5(all which depend only on the bundi¢ — %). Let D,Dg > 0O be the
constants obtained by applyifgoposition 7.&vith K = €8, and fix a constaril > Do+ (f(€) +©)/D.

Letac F andg € p*([a]) be as in the statement of the proposition. We mayGmsellary 7.4to construct
an infinite family {Z; }icz of €R—qi sections throughv (a) with the property that andy(Zi(g),2;(g)) =
Mli—j| for all i, j € Z. Notice that this forces the points.,>_1(g),Z0(g),Z1(9),... to be linearly or-
dered along the axis/y(a). Furthermore, for ali # j we havedy(Zi(g),Zj(g)) > Dg so that we may apply
Proposition 7.6o concluded,(Zj(h),Zj(h)) > DM > © + (&) forallheT.

From this we claim that the sectiog&;} areconsistently ordereéh each fiber, meaning that K; (h)
appears betweeh (h) and Z¢(h) in the axisaf(a) for someh € I', then the same holds for evelnye
Indeed, ifz; (h) appears betweexn) (h) and>y(h) in .4, (a), then applyind-emma 7.5with 01 = j, 02 = X,

u = Zj(h) shows thatv = X () appears betweeh;(l') and % (h) in any neighboring fibeh'; thus the
consistently ordered conclusion follows by induction.

We now use the section&, }icz to define a mapja: </(a) — <%(a), as follows. For eacth e T,
the sections; partition the geodesie,(a) = R into infinitely many, disjoint, half open intervals'jq =
[Zj(h),Zj+1(h)). Define the mapa by sending the intervé[lh =[Zj(h),Zj1(h)) to the pointz(g) € (a)
(so the image ofa is the sef{Zj(g) }jcz). Next defindla: Er — <75(a) to be the compositiofly = qa0 pa.

Claim. The mapla: Er — (2%(a),dy) is a coarseBM—Lipschitz retraction onta(a), meaning that for
all u,v € Er and each vertex x <75(a) we have

dg(Ma(u),Ma(v)) < 3Mdg(u,v) and &(x,Ma(x)) < 3M
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Indeed, for any vertex € «7(a) we havepa(x) = x, by definition, so thalla(x) = Zj(g) wherej € Z is
the unique integer such thae Z? = [2(g),Z;11(9)). Thusdg(x,Ma(x)) <M sincedy(Z(g),Zj:1(g)) =M
by construction of the famil{Z;}. To complete the proof of the claim, it thus suffices to prdwe bound
dg(Ma(u),Ma(v)) < 3M for all u,v € Er with dg(u,v) = 1. First suppose,v € Ty for someh e . Then
pa(u),pa(Vv) € o (a) satisfy

dh(pa(u), pa(v)) < f(ds(pa(u), pa(v))) < F(€)

by Lemma 7.3 Sincedn(Zm(h),Zn(h)) > D + (&) for all m # n, it follows that if pa(u) lies in Z" and
pa(V) lies in Z?, then|i — j| < 1. Thusdg(Ma(u),Ma(v)) = dg(Zi(9),%j(9)) = M|i — j| < M. Next suppose
thatu andyv lie in different fibers. Then, sincés(u,v) = 1, we haveu € T, andv € Ty for someh,i € T
with dz(h,l) = 1. Leti, j € Z be such thapa(u) € Z" andpa(v) € ZI', and note thatls (pa(u),pa(v)) < €
by Lemma 7.3 Sincepa(u) € [Zi(h),Zi11(h)), it follows thatpa(u) lies betweer;_;(h) andZi 2(h) with
dn(pa(u),Zn(h)) > © for ne {i —1,i+2}. Therefore we may applzemma 7.5to conclude thapa(v)
lies betweery;_1(h') andZj»(h') in «4y(a). In particular, we must havge {i — 1,i,i +1,i+2} so that
dg(Ma(u),Ma(v)) = dg(Zi(9),%j(9)) = M|i — j| < 3M. This completes the proof of the claim.

We now prove the proposition. L&ty € o7y(a) be arbitrary. Then clearlgs(x,y) < dg(x,y) by definition
of the path metricsly anddyg. Choosing vertices',y’ € <74 (g) with dg(x,X),dg(y,y) < 1, the claim and
triangle inequality together imply that

dg(X,y) <24 6M +dg(Ma(X),Ma(y)) <2+ 6M+3Mdg(X,Y) < 2+6M+ 3M(dg(X,y) + 2).

Therefore the inclusiofw(a),dg) — (&£, de) is a(6M + 2)—quasi-isometric embedding. O

7.4 A Scott—Swarup theorem

In [SY, Scott and Swarup proved that a finitely generated, infimtiex subgroup of the fiber of a fibered
hyperbolic 3-manifold group is quasiconvex. This resulswatended to arbitrary hyperbolic extensions of
surface groups indKL] and to hyperbolic free-by-cyclic groups with fully irredibble monodromy inlit3].
In this section, we generalize these results on the nontmtf finitely generated, infinite index subgroups
of fiber group to the case of hyperbolic extensions of freeigimy convex cocompact subgroups of @yt

We first show each free factédrof IF is undistorted irEr-. Our proof uses the following well-known fact
about hyperbolic groups:

Fact 7.7. Suppose that G is a hyperbolic group and lgbv & G be infinite order elements. Théa'b—")* —
a”and(@b ") "* — b*in G as n— .

Proposition 7.8. Let" < Out(IF) be a finitely generated group with quasi-isometric orbit nirsp ¢S and
let Er be the associated hyperbolic extensionB.of hen for any free factor A d, A is quasiconvexin &

Proof. Let d be the hyperbolicity constant &r-. By Proposition 7.JandTheorem 7.2there are constants
R,Q > 1 so that diam(p(x*)) < Rfor each simple elementof F and tha* and theQ—-quasigeodesiezy(X)
have Hausdorff distance at mddtwhenevex is minimized in the fiber oveg, i.e. wheneveg € pZ([x)).

Now leta,b € A be arbitrary. We claim thadr (g,h) < 5R+ 46 for anyg € p([a]) andh € p([b]).
Sinceab " € A, these elements are simple. Moreover, si@b ")® — a® and(a"b™")"* — b in dEr
by Fact 7.7 there is arN > 0 such thataVNb~N)* meets a @—neighborhood o&* andb* in Er. Then

diam(p(a*) U p(b*)) < diamp(a*) + 25 + diamp((aNb~N)*) + 25 + diamp(b*) < 3R+ 43. (12)

Thereforedr (g,h) <5R+ 40 as claimed. Settin® = dr (1, 9) + 5R-+ 49, this moreover shows the (1,h) <
D wheneveh lies in the minimizing sep® ([b]) for anyb € A.

We can now directly verify thad is quasiconvex irEr. Identify A with the vertices of the tre€* in &.
For any two verticea, b of TlA there is arx € Awhose axis# (x) in Ty passes through the verticeandb. If
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x is minimized in the fiber ovem € T, thendr (1,h) < D. By Equation (9)there exists afi—equivariantt®—
bilipschitz mapT; — Ty (obtained by writingh as a geodesis; - - - &, in I and lifting thes € Sto generators
t; € §). This and the fact that4,(x) is aQ—-quasigeodesic together imply that (x) is aQ—quasigeodesic in
& for some constar® > 1 depending only o®, £, andD. Hence, byProposition 2.1any geodesic joining
aandb in Er = &9 stays within theRy(Q', 8)—neighborhood of the geodesig (x) in T/ joining a andb.
ThereforeA is quasiconvex ity O

We can now combinBroposition 7.8vith Proposition 5.10 prove the main result of this section.

Theorem 7.9(Nondistortion in fibers) Suppose thaf < Out(F) quasi-isometrically embeds inte8, and
let L be a finitely generated subgroup of the filier1 Er. Then L is quasiconvex, and hence undistorted, in
the hyperbolic extensionrf and only if L has infinite index iff.

Proof. Suppose thdt is a finitely generated, infinite index subgroupfofBy Marshall Hall's theorem,. is
a free factor oH for some finite index subgroug < F. By Proposition 5.1the groupr™ gi-embeds into
C8(H), and hence the correspondidgextensiorEr fitting into the sequence

1—H—Em NI L —

is hyperbolic byTheorem 1.JandTheorem 4.13SincelL is a free factor oH, Proposition 7.8mplies that

L is quasiconvex irEru. Finally, sinceH has finite index inF, Er andErn are commensurable, and we
conclude that is quasiconvex irEr. Conversely, ifL has finite index inF, thenL is quasi-isometric to
F < Er which itself is exponentially distorted - by virtue of being infinite and normal. O

Remark 7.10. We note that the above theorem does not necessarily holg/farbolic extensions df by

groups that do not admit quasi-isometric orbit maps i&%o For example, ifgp is an automorphism af

which is atoroidal but fixes the conjugacy class of a freedia&f then theF—extensiorF x (@) is hyperbolic
by [Bri], but the subgroup is not quasiconvex.

8 Hyperbolicity of Er and convex cocompactness éf

In the previous section, we learned thaf ifs convex cocompact and purely atoroidal then not only is the
extensiorEr hyperbolic, but the projectior — I' has controlled geometry over the axes of simple elements.
In this section, we develop a converse to the main theorer®®f, [which established hyperbolicity d.
That is, we impose additional structural propertie€pfthat imply the induced orbit malp — F is a quasi-
isometric embedding. These properties turn out to chaiaeteonvex cocompact subgroups of Qt
among the class of subgroups inducing hyperbolic extesgifi.

Suppose henceforth that2 F — E LY Q — 1is a hyperbolic extension d@f. This short exact sequence
induces an outer action @f onTF given by the homomorphis@ — Out(F) sendingg € Q to the class of the
automorphism that conjugat®sa E by any lift § € E of g. We then have the commutative diagram

1—>]F—>E—p>Q—>1
[ (13)

l1—-F—E—I—01,

whererl is the image of) — Out(F). Fixing finite generating sets f& andQ, for each elemerd € F we
continue to writea* for a geodesic irE joininga = € JE to a® € JE. The imagep(a*) in Q then depends
only on theF—conjugacy clase of a. Hence, as in 8.2 we may define thevidth of a € IF (or o) to be

widthg(a) = widthg(a) := diamg p(a”™).
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Theorem 8.1(Convex cocompactnesspuppose that -+ F — E — Q — 1is a hyperbolic extension .
Then Q has convex cocompact imag&iat(F) (and hence admits a quasi-isometric embedding orbit map
into €8) if and only there exists D- 0 so thatwidthg(a) < D for each simple element@aF.

Proof. SinceE is hyperbolic, the induced homomorphi€n— Out(IF) must have finite kernel. Thu3 is
quasi-isometric to its image in Out(F) and, further, each vertical arrow i) has finite kernel. From this
we see thak is F—equivariantly quasi-isometric tBr and moreover that widgf(a) coarsely agrees with
the width widtHa) in I as defined in 8.2 Therefore ifl" is convex cocompaciTheorem 7.Zhows that
supremum supwidthg(a) over all simplea € F is bounded.

For the converse, suppose that wiglth) < D for each simple conjugacy clagsof F. SinceEr is 6—
hyperbolic,I is purely atoroidal and so it suffices to show tliator equivalentlyQ, gi-embeds intdF by
Theorem 4.13 As it is more natural for our argument, we instead work thasitisometric primitive loop
graphP£ defined in 8. Fix a € P£° and consider the orbit map — PL given byg — g- a, whereQ acts
onPL viaQ — Out(FF). We define a coarse map. PL — Q which we show is a coarse Lipschitz retraction
for the orbit mapQ — P£L. Since the orbit map is necessarily Lipschitz, this will shthatQ — PL is a
guasi-isometric embedding and establish the theorem. Set

a(B) = p(B),

which is by assumption a subset@fof diameter at modD. This map is equivariant since for eagle Q
and any liftge E,

a(g-B) = a(gb) = p(gvb’) = gp(B"),

whereb is any representative of the conjugacy clasgoHence, if we seDg = diamp({1} U o(a)), then
o: PL —T isindeed @&p—coarse retraction and so it only remains to show that itpsthitz.

Let 3 andy be adjacent conjugacy classesHd and choose representatideandc such that(b,c) is
a rank 2 free factor oF. Then, for eachn € Z, b"c" is a simple element df, and byFact 7.7(b"c")*
approache®” asn — c and (b"c")~* approaches ™ asn — . Hence, the axigh"c")* in E becomes
forward asymptotic tdo* and backward asymptotic t§. Then, just as irequation (12)for all sufficiently
largen we have that

diamp(p(b*) U p(c*)) < diamg p(b*) + 20 + diamy p((b"c")*) + 25 + diamg p(c*) < 3D + 49.

This demonstrates that: PL — Qs a Lipschitz retract and completes the proof. O
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