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Abstract

We introduce the co-surface graphCS of a finitely generated free groupF and use it to study the ge-
ometry of hyperbolic group extensions ofF. Among other things, we show that the Gromov boundary of
the co-surface graph is equivariantly homeomorphic to the space of free arationalF–trees and use this to
prove that a finitely generated subgroup of Out(F) quasi-isometrically embeds into the co-surface graph if
and only if it is purely atoroidal and quasi-isometrically embeds into the free factor complex. This answers
a question of I. Kapovich. Our earlier work [DT] shows that every such group gives rise to a hyperbolic
extension ofF, and here we prove a converse to this result that characterizes the hyperbolic extensions of
F arising in this manner. As an application of our techniques,we additionally obtain a Scott–Swarup type
theorem for this class of extensions.

1 Introduction

Let F be the free groups of rankr ≥ 3 and let Out(F) be its outer automorphism group. Every subgroup
Γ ≤ Out(F) gives rise to an exact sequence

1−→ F
i

−→ EΓ
p

−→ Γ −→ 1, (1)

in which EΓ is the preimage ofΓ under the homomorphism Aut(F)→ Out(F) andF✁EΓ is identified with
the inner automorphisms Inn(F). In fact every group extension ofF surjects onto an extensionEΓ of this
form. In [DT], we gave conditions onΓ ≤ Out(F) that guarantee the associated extensionEΓ is Gromov
hyperbolic. To state these conditions, first recall thatΓ is purely atoroidal if each infinite order element is
atoroidal (no power fixes a nontrivial conjugacy class ofF) and that the free factor complexF is the simplicial
complex whosek–simplices are nested chainsA0< · · ·<Ak of proper free factors ofF, up to conjugacy. Outer
automorphisms act isometrically onF, and we say that a finitely generated subgroupΓ ≤ Out(F) qi-embeds
intoF if some (equivalently any) orbit mapΓ → F is a quasi-isometric embedding.

Theorem 1.1([DT]). Suppose that a finitely generated subgroupΓ ≤ Out(F) is purely atoroidal and qi-
embeds intoF. Then the free group extension EΓ in Equation(1) is hyperbolic.

The goal of the present paper is twofold: to refine these conditions for hyperbolicity, and to make a more
in depth study of the geometry of these hyperbolic extensions. This study culminates in a converse to the
above result that characterizes those hyperbolic extensions arising fromTheorem 1.1. We note that the exact
converse ofTheorem 1.1is well-known to be false.
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Following Hamenstädt and Hensel [HH], a subgroupΓ ≤ Out(F) is said to beconvex cocompactif it
qi-embeds intoF. However, unlike the analogous situation for mapping classgroups [KL3, Ham1], convex
cocompactness itself does not ensure hyperbolicity ofEΓ. Indeed, pure atoroidality ofΓ is essential forEΓ
to be hyperbolic, since a periodic conjugacy class forφ ∈ Γ gives rise to aZ⊕Z in EΓ. Further, there
are automorphisms ofF that act loxodromically onF but are not atoroidal. In fact, by combining work of
Bestvina–Handel [BH1] and Bestvina–Feighn [BF2], such automorphisms precisely correspond to pseudo-
Anosov homeomorphisms of once-punctured, possibly nonorientable, surfaces.

This suggests thatF is not the correct complex for studying hyperbolic extensions of F. It is natural
to build a better-suited complex by starting withF and coning off the curve graphs for all once-punctured
surfacesS with π1(S) ∼= F. Versions of this construction appear several places in theliterature—first in the
work of Kapovich–Lustig [KL1] and later Mann–Reynolds [MR1] and Mann [Man] (see §4)—in each case
producing a hyperbolic Out(F)–graphY with the property that any subgroupΓ that qi-embeds intoY is both
convex cocompact and purely atoroidal. The converse was posed as a question by I. Kapovich:

Question 1.2(I. Kapovich). Suppose thatΓ ≤ Out(F) is purely atoroidal and convex compact. Is the orbit
mapΓ →Y a quasi-isomeric embedding?

To answerQuestion 1.2, we introduce (§4) a new model for the graphY that is both simple to define
and natural for our purposes. Thisco-surface graphis defined to be the simplicial graphCS whose vertices
are conjugacy classes of primitive elements ofF and where two conjugacy classes are adjacent if there is a
once-punctured surfaceSwith π1(S)∼= F in which they are both represented by simple closed curves onS.

Theorem 4.13(Qi-embedding intoCS). Let Γ be finitely generated subgroup ofOut(F). ThenΓ qi-embeds
into the co-surface graphCS if and only ifΓ is purely atoroidal and convex cocompact.

After formulatingQuestion 1.2, Kapovich showed it cannot be answered from formal properties of the
actionΓ y Y. That is, Kapovich constructs an action of the free group of rank 2 on a hyperbolic graphX
which has all the properties of the actionΓ yY but whose orbit mapΓ → X is not a qi-embedding [Kap2].
Thus the proof ofTheorem 4.13necessarily requires a deeper understanding of the co-surface graph itself.
Indeed, our argument uses the fine geometric structure of Culler and Vogtmann’s Outer spaceX and the
following calculation of the Gromov boundary ofCS:

Theorem 4.8(Boundary ofCS). The Gromov boundary∂CS of the co-surface graph isOut(F)–equivariantly
homeomorphic to the subspace of∂F consisting of classes of free arational trees.

We obtainTheorem 4.8as a corollary of the general theory ofalignment-preserving mapsthat we
develop in §3 and which may be of independent interest. Briefly, three (ordered) points are coarsely aligned
if the triangle inequality for them is nearly an equality, and a map that respects this condition is said to be
alignment preserving. We show (Theorem 3.2) that any coarsely surjective alignment preserving mapX →Y
between hyperbolic metric spaces extends to a homeomorphism between∂Y and a specific subset of∂X.

The co-surface graphCS has other advantages over the factor complexF, and indeed this is a major
theme of the present paper. For example, it is well known (see[BFH]) that full irreducibility is not stable
under passage to finite index subgroups. This causes complications when attempting to study the subgroup
structure ofEΓ. However, the following result shows that this is not an issue forCS:

Proposition 5.1. Let H be a finite index subgroup ofF and letΓH denote the subgroup ofOut(H) induced by
elements ofΓ ≤ Out(F) that stabilize the conjugacy class of H. IfΓ is finitely generated and qi-embeds into
CS, thenΓH also qi-embeds intoCS(H).

Proposition 5.1is one of the key ingredients allowing us to establish a Scott–Swarup [SS] type theorem for
these extensions ofF. Recall that the fiber subgroupF, being infinite and normal, is exponentially distorted
in the hyperbolic groupEΓ. The following theorem, however, shows that such distortion is confined to finite
index subgroups ofF; this mirrors a result of Dowdall–Kent–Leininger [DKL] for hyperbolic surface group
extensions. Bear in mind that the statement is false withoutthe hypothesis thatΓ qi-embed intoCS (see §7.4).
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Theorem 7.9(Nondistortion in fibers). Suppose thatΓ ≤ Out(F) quasi-isometrically embeds intoCS, and
let L be a finitely generated subgroup of the fiberF✁EΓ. Then L is quasiconvex, and hence undistorted, in
the hyperbolic extension EΓ if and only if L has infinite index inF.

We note that Mj and Rafi [MR2] have recently, and independently, provenTheorem 7.9by very different
methods. Their approach uses structural results on convex cocompact subgroups proven in [DT] as well as
a characterization of the Cannon–Thurston map for (1) that we obtained with Kapovich in [DKT] and which
builds on earlier work of Mj [Mit1]. Our proof is more direct and proceeds as follows.

The second key ingredient needed to proveTheorem 7.9is a careful study of the geometry of hyperbolic
extensionsEΓ that focuses on the relationship between the “local” axis ofan elementa ∈ F acting on any
given fiber ofp: EΓ → Γ and the “global” axis fora acting onEΓ. Specifically, ifa∗ denotes the geodesic in
EΓ whose endpoints are the fixed pointsa±∞ in ∂EΓ, we define thewidth of a to be the quantity

width(a) = diamΓ p(a∗).

This concept was first studied in the context of surface groupextensions by Kent and Leininger [KL4]. We
prove (Theorem 7.2) that whenΓ is convex cocompact, the quantity width(a) is uniformly bounded over all
simple elementsa ∈ F, where an element issimple if it is contained in some proper free factor ofF. As
a consequence, we show that the global axisa∗ fellow travels the local axis fora ∈ F acting on the fiber
of EΓ → Γ in which the translation length ofa is minimized. Combining this withProposition 5.1leads
to Theorem 7.9. This analysis also allows us to prove the following theorem, which gives a converse to
Theorem 1.1and characterizes hyperbolic extensions arising from convex cocompact subgroups as those for
which the simple elements have uniformly bounded width:

Theorem 8.1(Convex cocompactness). Suppose that1→ F→ E → Q→ 1 is a hyperbolic extension ofF.
Then Q has convex cocompact image inOut(F) (and hence admits a quasi-isometric embedding orbit map
into CS) if and only there exists D≥ 0 so thatwidthQ(a)≤ D for each simple element a∈ F.

Acknowledgments: The authors thank Ilya Kapovich and Patrick Reynolds for helpful conversations. We
are also grateful for the hospitality of the University of Illinois at Urbana-Champaign for hosting the second
author at the start of this project.

2 Background

Throughout,F will denote a finitely generated free group of rankr = rk(F) at least 3. In this section we
review several structures associated toF that will be relevant to our work.

2.1 Coarse geometry

A map f : X →Y of metric spaces is aK–quasi-isometric embeddingif

dX(a,b)/K−K ≤ dY( f (a), f (b)) ≤ KdX(a,b)+K

for all a,b∈ X. The map is moreover aK–quasi-isometryif its image isK–dense inY. A K–quasigeodesic
is then aK–quasi-isometric embedding of an intervalI ⊂ R into a metric space. TheHausdorff distance
between two subsetsA,B of a metric spaceX is the infimum of allε > 0 for whichA andB are both contained
within theε–neighborhoods of each other.

A geodesic metric spaceX is δ–hyperbolic, whereδ ≥ 0, if every geodesic triangle inX is δ–thin,
meaning that each side is contained within theδ–neighborhood of the other two. Every such space has a
well definedGromov boundary ∂X consisting of equivalence classes of admissible sequencesin X, where
a sequence{an} is admissible if limn,m(an|am)x = ∞ and two sequence{an} and {bn} are equivalent if
limn,m(an|bm)x =∞ for somex∈X. Here,(a|b)x denotes theGromov product (d(a,x)+d(b,x)−d(a,b))/2.
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One says the admissible sequencea1,a2, . . . ∈ X convergesto the point{an} ∈ ∂X. The Gromov product,
with respect tox∈ X, may be extended to∂X by declaring

(a|b)x := supliminf
m,n→∞

(am|bn)x,

where the supremum here is over all sequences{am},{bn} converging respectively toa,b∈ ∂X. The bound-
ary ∂X is then equipped with the topology in which the setsNx

a(r) := {b∈ ∂X : (a|b)x ≥ r} give a basis of
open neighborhoods about the pointa ∈ ∂X. Moreover, the topologies onX and∂X may be extended to
a topology on the disjoint unionX ∪ ∂X for which a sequencexn ∈ X converges toζ ∈ ∂X if and only if
{xn} is admissible and equivalent toζ . WhenX is proper (meaning that closed metric balls are compact),
X ∪ ∂X is a compactification ofX. Finally, hyperbolicity itself and and the Gromov boundary∂X are both
quasi-isometry invariants ofX. See [BH2, Section III.H.3], [GdlH], or [KB, Section 2] for more details.

If X is δ–hyperbolic, then every quasigeodesic rayr : [0,∞) → X converges to itsendpoint at infinity
r(∞) := {r(n)}∞

n=1 ∈ ∂X, and any two rays whose images have finite Hausdorff distancedetermine the same
endpoint. Conversely, as explained in [KB, Remark 2.16], for anyx0 ∈ X andζ ∈ ∂X one may build a 10δ
quasigeodesicr : R+ → X with the properties thatr(0) = x0 andr(∞) = ζ .

Throughout, we will useI (and sometimesJ) to denote a closed subinterval ofR. We writeI− andI+ for
the infimum and supremum ofI , respectively. With this notation, we every quasigeodesicγ : I → X naturally
has two well-definedendpoints γ(I±) ∈ X∪ ∂X, whereγ(I±) ∈ ∂X if I± = ±∞ andγ(I±) ∈ X otherwise.
The following is a fundamental feature of hyperbolic metricspaces; see [BH2, Theorem III.H.1.7] for a proof.

Proposition 2.1 (Stability of quasigeodesics). For every K≥ 1 andδ ≥ 0 there exists astability constant
R0(K,δ )> 0 such that ifγ : I → X andρ : J → X are K–quasigeodesics with the same endpoints in X∪∂X
for a δ–hyperbolic space X, thenγ(I) andρ(J) have Hausdorff distance at most R0(K,δ ).

2.2 Currents and laminations

All finite-valent Cayley graphs ofF are quasi-isometric hyperbolic spaces, and we write∂F to denote their
common Gromov boundary. The free groupF acts on each of its Cayley graphs by left multiplication, and
this extends to a left action ofF on ∂F by homeomorphisms. Let∂ 2

F= {(η ,ξ ) | η ,ξ ∈ ∂F,η 6= ξ} denote
the double boundary ofF, equipped with the subspace topology from∂F× ∂F. A lamination on F is a
nonempty closed subset of∂ 2

F that is invariant under both the flip map(η ,ξ ) 7→ (ξ ,η) and the (diagonal)
action ofF. A lamination isminimal if it does not contain a proper sublamination. IfL is a lamination onF,
we writeL′ to denote the set of accumulation points ofL in ∂ 2

F. Note thatL′ ⊂ L, sinceL is closed, and that
L′ is itself a lamination.

Following [Kap1], a geodesic currentonF is a positive Radon measure on∂ 2
F that is both flip andF–

invariant. Notice that the support supp(µ) of every nonzero currentµ is necessarily a lamination. We write
Curr(F) for the space of all geodesic currents onF equipped with the weak topology. Quotienting by the
action ofR+ by scalar multiplication yields the compact spacePCurr(F) of projective geodesic currents.

Let us discuss some basic examples of these concepts. Every nontrivial a∈ F acts on∂F with a unique
attracting fixed pointa+ and repelling fixed pointa−. The lamination of a (nontrivial) conjugacy classα
of F is then defined to be

L(α) :=
⋃

a∈α
{(a+,a−),(a−,a+)};

notice thatL(α) is indeed a closed andF–invariant subset of∂ 2
F. Correspondingly, thecounting current of

a (nontrivial) conjugacy classα = β m, whereβ is not a proper power, is defined as

ηα := mηβ := m ∑
b∈β

δ(b−,b+)+ δ(b+,b−).

One may check thatηα is indeed a current and moreover that supp(ηα) = L(α).

4



2.3 Trees

An R–tree is a 0–hyperbolic geodesic metric space. Alternately, anR–tree is a metric space in which there is
a unique embedded path between any two points and this path isa geodesic. Throughout this paper, we will
use the termtree to mean anR–tree equipped with an isometric and minimal action ofF; a tree isminimal
if it does not contain a properF–invariant subtree.

We write ℓT(a) for the translation length of an elementa ∈ F acting on a treeT, that is, ℓT(a) =
inft∈T d(t,a· t). Notice thatℓT(a) depends only on the conjugacy classα of a. The elementa actshyperboli-
cally (with an invariant axis) onT if ℓT(α)> 0 andelliptically (with a nonempty fixed subtree) ifℓT(α) = 0.
The treeT is said to befree if ℓT(α)> 0 for all nontrivial conjugacy classesα.

Coulbois, Hilion and Lustig [CHL] have associated to every treeT a dual lamination

L(T) :=
⋂

ε>0





⋃

α∈Ωε (T)

L(α)



⊂ ∂ 2
F,

whereΩε(T) = {α : ℓT(α) < ε} is the set of conjugacy classes with short translation length in T and the
closure is taken in∂ 2

F. Observe thatL(α)⊂ L(T) if and only if ℓT(α) = 0; thusT is free if and only ifL(T)
does not contain the laminationL(α) of any nontrivial conjugacy classα. The setL(T) is nonempty, and
thus a bona fide lamination, unlessT is free and simplicial. We refer the reader to [CHL] for a more detailed
discussion ofL(T).

We say that a tree isvery small if the stabilizer of any segment ofT is maximal cyclic and the stabilizer
of every tripod is trivial [CL]. A tree T is said to havedense orbitsif everyF orbit is dense inT. At the
other extreme, if every orbit is discrete then the tree is said to besimplicial. A tree isarational if there does
not exist a proper free factorA of F and anA–invariant subtree on whichA acts with dense orbits. Following
Guirardel [Gui], we say that a treeT is indecomposableif for every pair of nondegenerate arcsτ,τ ′ ⊂ T
there exista1, . . . ,an ∈ F so thatτ ′ ⊂ a1τ ∪ ·· · ∪ anτ with aiτ ∩ ai+1τ nondegenerate for each 1≤ i < n;
indecomposablity is thus a strong mixing property for the action of F on T. The following theorem of
Reynolds clarifies the relationship between these notions:

Theorem 2.2(Reynolds [Rey2]). A minimal, very small tree is arational if and only if it is indecomposable
and either(1) free or(2) dual to a filling measured lamination on a once-punctured surface.

2.4 The free factor complex

A nontrivial subgroupA≤ F of F is a free factor of F if there exists a complementary nontrivial subgroup
B ≤ F such thatF = A∗B. As is common we often blur the distinction between free factors and their
conjugacy classes. The(free) factor complexof F is the simplicial complexF whosek–simplices consist of
chainsA0 < · · · < Ak of properly nested (conjugacy classes of) free factors ofF and whose face inclusions
correspond to subchains. Note thatF is not locally compact, and that the group Out(F) acts onF by simplicial
automorphisms. We equipF with the path metric in which simplices are all isometric to standard Euclidean
simplices with side lengths equal to 1; the induced path metric on the 1–skeleton makesF1 into a simplicial
metric graph with all edges having length 1. With this setup we have the following foundational result of
Bestvina and Feighn:

Theorem 2.3(Bestvina–Feighn [BF2]). The factor complexF is Gromov hyperbolic.

As the full complexF and simplicial graphF1 are quasi-isometric, we henceforth work exclusively with
the 1–skeleton. In particular, forA,B∈ F

0 we writedF(A,B) to mean the distance fromA to B in the path
spaceF1.

5



2.5 Outer space

Let R be the rk(F)–petal rose with base vertexv, and fix an isomorphismπ1(R,v) ∼= F. A core graph
is a finite 1–dimensional CW-complexG with no valence 1 vertices; and by ametric on G we mean a
path metric for which the interior of each 1–cell (with the induced path metric) is isometric to a positive-
length open subinterval ofR. Thevolume of G is the sum of its edge lengths, and amarking of G is a
homotopy equivalenceg: R → G. Culler and Vogtmann’s [CV] unprojectivized Outer spaceof F is the
spacecv= {(G,g)} of marked metric core graphs, modulo the equivalence relation (G,g) ∼ (H,h) if there
exists an isometricchange of marking mapG→ H in the homotopy classh◦g−1. By (projectivized)Outer
spaceX, we simply mean the subset ofcv consisting of volume 1 marked metric graphs. We equipX with
theasymmetric metric dX defined as follows:

dX((G,g),(H,h)) := inf
{

log(Lip(φ)) | φ ≃ h◦g−1}

where Lip(φ) denotes the optimal Lipschitz constant for the change of marking mapφ : G→ H. Thesym-
metrization dsym

X
(G,H) = dX(G,H)+dX(H,G) is an honest metric and defines the topology onX. We will

suppress the marking and metric and denote points incvandX simply by the underlying graph.
Given any subgroupA≤ F (or conjugacy class thereof) and pointG∈ cv, we writeA|G for the maximal

core subgraph of the cover ofG corresponding toA and we equip this with the pull-back metric from the
immersionA|G→ G. When convenient we will blur the distinction between the metric core graphA|G and
the immersionA|G→ G itself. For a conjugacy classα and writeℓ(α|G) for the volume of the graphα|G;
this is thelength of α at G. With this notation we have the following useful formula forthe metric [FM]:

dX(G,H) = log

(

sup
α∈F

ℓ(α|H)

ℓ(α|G)

)

.

Observe that the universal coverG̃ of a graphG ∈ cv is naturally a simplicialR–tree equipped with an
action ofF∼= π1(G) by deck transformations (where the isomorphismF∼= π1(G) is provided by the marking
R→ G). With this perspectiveℓ(α|G) is simply the translation lengthℓG̃(α) of the conjugacy classα on the
treeG̃. In fact, this correspondence gives a bijection betweencv and the set of free simplicialR–trees up to
F–equivariant isometry.

Asymmetry in Outer space. Care must be taken to cope with the asymmetry inherent in Outer space. For
us ageodesic inX always means adirectedgeodesic, that is, a mapγ : I → X so thatdX(γ(s),γ(t)) = t − s
for all s< t. Similarly aK–quasigeodesicis a mapγ : I → X so that

1
K (t − s)−K ≤ dX(γ(s),γ(t)) ≤ K(t − s)+K

for all s< t. On the other hand, forr > 0 ther–neighborhoodNr(U) of a subsetU ⊂ X must be defined
using the symmetrized metric:

Nr(U) := {G∈X | dsym
X

(G,u)≤ r for someu∈U}.

The Hausdorff distance dHaus(U,W) between two subsetsU,W ⊂ X is then defined, as usual, to be the
infimal r so thatU ⊂Nr(W) andW ⊂Nr(U). Forε > 0, we write

Xε := {G∈X | ℓ(α|G)≥ ε for all α ∈ F\1}

for theε–thick part of Outer space. The following important result bounds the asymmetry inXε .

Lemma 2.4(Handel–Mosher [HM], Algom-Kfir–Bestvina [AKB]). For everyε > 0 there existsMε ≥ 1 so
that for all G,H ∈ Xε one has

dX(H,G)≤ dsym
X

(H,G) = dsym
X

(G,H)≤Mε ·dX(G,H).
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Projecting to the factor complex. There is a coarse projectionπF : X→F defined by sendingG∈X to the
set of free factorsπ1(G′) corresponding to proper, connected, noncontractible subgraphsG′ of G (hereπ1(G′)
is identified with a free factor ofF by the markingR→ G). One may easily check that diamF(πF(G)) ≤ 4
[BF2, Lemma 3.1], so we are justified in viewingπF as a coarse projection. ForG,H ∈ X we define

dF(G,H) = diamF(πF(G)∪πF(H)).

The following appears as Lemma 2.9 in [DT] and follows from [BF2, Corollary 3.5].

Lemma 2.5. For all G,H ∈ X we have dF(G,H)≤ 80dX(G,H)+80.

The projectionπF provides an important connection between the geometries ofX andF. For example,
the following stability result uses the geometry ofF to establish aspects of hyperbolicity inX and served as
a main tool in our proof ofTheorem 1.1.

Theorem 2.6(Dowdall–Taylor [DT]). Let γ : I → X be a K–quasigeodesic whose projectionπ ◦ γ : I → F

is also a K–quasigeodesic. Then there exist constants A,ε > 0 and K′ ≥ 1 depending only on K (and the
injectivity radius of the terminal endpointγ(I+) whenI+ < ∞) with the following property: Ifρ : J → X is
any geodesic with the same endpoints asγ, then

(i) γ(I),ρ(J)⊂ Xε ,

(i) dHaus(γ(I),ρ(J)) < A, and

(ii) π ◦ρ : J → F is a (parameterized) K′–quasigeodesic.

Folding. We will need a particular class of directed geodesics inX called folding paths, which we now
briefly describe. Asegmentin a metric core graphG is a locally isometric immersion of an interval[0,L]
into G, and adirection at p∈ G is a germ of nondegenerate segments with 07→ p. A turn is an unordered
pair{d,d′} of distinct directions at a vertex ofG.

A mapφ : G→ H of metric core graphs that is a local Lip(φ)–homothety induces a derivative mapDφ
which sends a direction atp to a direction atφ(p). Two directions atp are said to be in the samegateif they
are identified byDφ . The map then gives rise to anillegal turn structure on G, whereby a turn{d,d′} is
illegal if d andd′ are in the same gate and islegalotherwise.

We say that a mapφ : G→ H between pointsG,H ∈ X is afolding map if it is homotopic to the change
of markingsh◦g−1, is a local Lip(φ)–homothety, satisfiesdX(G,H) = logLip(φ), and it induces at least 2
gates at each pointp ∈ G. As described in [BF2, §2], each folding mapφ : G → H gives rise to a unique
folding path {Gt}t∈[0,L] via the process offolding all illegal turns at speed one. The folding path, viat 7→Gt ,
defines a directed geodesicγ : [0,L] → X from G = G0 to H = GL and comes equipped with a family of
folding maps{φst : Gs → Gt}s≤t satisfying

φ0L = φ , φss= IdGs, andφrt = φst ◦φrs with φrs andφrt inducing the same illegal turn structure onGr

for all 0≤ r ≤ s≤ t ≤ L. See Proposition 2.2 and Notation 2.4 of [BF2] or [DT, §2] for the details of this
construction; further properties will be recalled in §6.2. We note that it is also possible to construct biinfinite
folding paths.

2.6 The boundaries of Outer space and the factor complex

The length functions give an embedding of unprojectivized Outer spacecv into R
F via G 7→ (ℓ(a|G))a∈F,

and thuscv inherits the subspace topology fromRF. The resulting topology onX ⊂ cv agrees with the one
induced by the symmetrized metricdsym

X
. The work of Cohen–Lustig [CL] and Bestvina–Feighn [BF1] shows

that the closurecv of cv in R
F may be identified with the space of minimal very small trees. Projectivizing,

one similarly identifies the closureX of X⊂ PR
F with the space of projective classes of minimal very small
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trees. Theboundary of X is consequently defined to be the set∂X := X\X of projective classes very small
trees that are not both free and simplicial.

In [KL1], Kapovich and Lustig introduced an Out(F)–invariant intersection pairing〈·, ·〉 between very
small minimal trees and currents; we record here a few of its properties:

Theorem 2.7(Kapovich–Lustig [KL1, KL2]). There is a uniqueOut(F)–invariant continuous pairing

〈·, ·〉 : cv×Curr(F)→ R+

which is homogeneous in the first coordinate and linear in thesecond. Moreover, for every tree T , currentµ ,
and conjugacy classα, we have that〈T,ηα〉= ℓT(α) and that〈T,µ〉= 0 if and only ifsupp(µ)⊂ L(T).

We will be particularly interested in the case where the treeT is free and indecomposable.

Theorem 2.8(Coulbois–Hilion–Reynolds [CHR, Corollary 1.4]). If T ∈ cv is free and indecomposable, then
〈T,µ〉= 0 if and only ifsupp(µ) = L′(T).

Finally, let AT be the subspace of∂cv consisting of arational trees. ForT,′T ∈ AT, say T ∼ T ′ if
L(T) = L(T ′). The following result computes the boundary ofF.

Theorem 2.9(Bestvina–Reynolds [BR], Hamenstädt [Ham3]). The mapπF : X → F has a continuous ex-
tension to a map∂πF : AT → ∂F, in the sense that if Gi → T in X and T∈AT, thenπF(Gi)→ ∂πF(T) in
F∪ ∂F. Moreover, if T∼ T ′ then∂πF(T) = ∂πF(T

′), and the induced mapAT/ ∼→ ∂F is a homeomor-
phism.

3 Alignment preserving maps and boundaries

In §4 we will introduce and analyze a new Out(F)–graph termed the co-surface graph. For this analysis, we
develop a general framework for computing the boundary of any space whose hyperbolicity may be obtained
by the Kapovich–Rafi method [KR]. As this result is applicable in other contexts, we state itin general terms.

Let X andY be geodesic metric spaces. We say that three (ordered) points a,b,c∈ X areK–aligned if
dX(a,b)+ dX(b,c) ≤ dX(a,c)+K; the points are simply said to bealigned if they are 0–aligned. We say
that a Lipschitz mapp: X →Y is alignment preserving if there existsK ≥ 0 such thatp(a), p(b), p(c) are
K–aligned whenevera,b,c are aligned.

Lemma 3.1. Suppose that q: W →X and p: X →Y are alignment preserving maps between geodesic metric
spaces and that X isδ–hyperbolic. Then for all L≥ 0 there is an L′ ≥ 0 such that p(a), p(b), p(c) are L′–
aligned whenever a,b,c are L–aligned. Moreover, the composition p◦q: W →Y is alignment preserving.

Let us formalize some observations that will aid in the proof. Firstly, everyδ–thin triangle admits a
2δ–barycenter, meaning a pointω that lies within 2δ of each side of the triangle (and is consequently 4δ–
aligned between any two vertices). Secondly, whenever the three triples(a,ω ,b), (b,ω ,c), and(c,ω ,a) are
eachK–aligned, the triangle inequality immediately gives

|d(a,ω)− (b|c)a| ≤ K. (2)

Combining these, we see that in aδ–hyperbolic spaceX, the Gromov product(b|c)a lies within 4δ of
dX(a,ω) for any 2δ–barycenterω of the geodesic triangle△(a,b,c).

Proof. Let K ≥ 0 be the alignment constant of the alignment preserving mapp. TakeL–aligned points
a,b,c in X and letω be a 2δ–barycenter for the geodesic triangle△(a,b,c). ThendX(b,ω) is within 4δ
of (a|c)b, which is in turn bounded byL/2 sincea,b,c areL–aligned. Thus there is a pointx ∈ [a,c] with
dX(b,x) ≤ 6δ + L. Then p(a), p(x), p(c) areK–aligned, and so the pointsp(a), p(b), p(c) areL′–aligned,
whereL′ is K plus 2(6δ +L) times the Lipschitz constant forp. This proves the first claim. The second claim
now follows immediately from the first.
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If X andY are hyperbolic andp: X →Y is alignment preserving, theY–subboundary ofX (relative to
p) is defined to be

∂YX = {γ(∞) ∈ ∂X | γ : R+ → X is a quasigeodesic ray with diamY p(γ(R+)) = ∞}.

Informally, ∂YX consists of those points in∂X that “project to infinity” inY. This is made precise by the
following theorem.

Theorem 3.2 (Boundaries). Suppose that p: X → Y is a coarsely surjective, alignment preserving map
between hyperbolic spaces. Then p admits an extension to a homeomorphism∂ p: ∂YX → ∂Y. Moreover,
the extension p∪ ∂ p: X ∪ ∂YX → Y∪ ∂Y is continuous in the sense that if xn → λ ∈ ∂YX as n→ ∞, then
p(xn)→ ∂ p(λ ) ∈ ∂Y.

Proof. Let δ be the hyperbolicity constant ofX, let L be the Lipschitz constant forp, and letK′ ≥ 0 be
the constant, provided byLemma 3.1, such thatp(a), p(b), p(c) areK′–aligned whenevera,b,c∈ X are 4δ–
aligned. We then have the following useful observation: Ifω is any 2δ–barycenter for an arbitrary triangle
△(a1,a2,a3) in X, then the triples(p(ai), p(ω), p(a j)) for distinct i, j ∈ {1,2,3} are eachK′–aligned and so
we may apply (2) in bothX andY to conclude that

(p(a2)|p(a3))p(a1) ≤ K′+dY(p(a1), p(ω))≤ K′+LdX(a1,ω)≤ L(a2|a3)a1 +4δ +K′. (3)

To define the map∂ p, choose a quasigeodesic rayγ : R+ → X with diamY p(γ(R+)) = ∞ and consider
the admissible sequence{an}

∞
n=0, wherean = γ(n). Setbn = p(an). Since ordered triples of points along

γ(R+) are uniformly aligned byProposition 2.1, the assumption diamY p(γ(R+)) = ∞ in fact implies that
limt dY(b0, p(γ(t))) = ∞. For each pairn,m≥ 0, choose a 2δ–barycentercn,m for the triangle△(a0,an,am).
Then (an|am)a0 is within 4δ of dX(a0,cn,m) by (2). By Proposition 2.1, cn,m also lies within uniformly
bounded distance ofγ(tn,m) for sometn,m ∈ R+. By admissibility and the fact thatγ is a quasigeodesic,
the quantitiesdX(a0,cn,m) andtn,m both tend to infinity asn,m→ ∞. Therefore limn,mdY(b0, p(cn,m)) = ∞
sincep is Lipschitz. However,(bn|bm)b0 is within K′ of dY(b0, p(cn,m)) becausep(cn,m) is K′–aligned be-
tween the three pointsb0, bn andbm. Consequently{bn} is admissible, and we may define∂ p(γ(∞)) to be
{bn} ∈ ∂Y.

We now prove that∂ p is well-defined and thatp∪ ∂ p is continuous. Letλ = γ(∞) ∈ ∂YX with γ,
{an}, and{bn} as above. Suppose that{xn} is a sequence inX converging toλ . This simply means that
{xn} is admissible and equivalent to{an}. Letting en,m denote a 2δ–barycenter for△(a0,an,xm), we have
thatdX(a0,en,m) is within 4δ of (an|xm)a0 and thus tends to infinity. This barycenteren,m is also uniformly
close, again byProposition 2.1, to some pointγ(sn,m) with sn,m necessarily tending to infinity sinceγ is a
quasigeodesic. As before, it follows thatdY(b0, p(en,m))→ ∞ and, sincep is alignment preserving, that this
quantity coarsely agrees with(p(an)|p(xm))b0. Thus{p(xn)} is equivalent to{p(an)}, proving that{p(xn)} is
admissible and converges to∂ p(λ ) = {bn}. In particular, for any quasigeodesicγ ′ : R+ → X with γ ′(∞) = λ ,
it follows that {p(γ ′(n))} is equivalent to{bn} = {p(γ(n))}. Thus∂ p is well-defined and the extension
p∪∂ p is continuous in the manner claimed.

We next show∂ p is injective. Supposeλ ,µ ∈ ∂YX satisfy∂ p(λ ) = ∂ p(µ). If xn,zn ∈X are any sequences
with xn → λ andzn → µ , then{p(xn)} and{p(zn)} are equivalent by the continuity ofp∪ ∂ p. Therefore
(p(xn)|p(zm))p(x0) → ∞ which, by (3), forces(xn|zm)x0 → ∞ as well. Thusλ = µ and∂ p is injective.

To see surjectivity, letη ∈ ∂Y. For a sequenceyn ∈ Y with yn → η , choose pointsxn ∈ X so that
dY(p(xn),yn) is uniformly bounded and thusp(xn) → η as well. Since{p(xn)} is admissible; (3) implies
that{xn} is admissible and so converges to some pointλ ∈ ∂X. Now build 10δ–quasigeodesicγ : R+ → X
with γ(0) = x0 andγ(∞) = λ . Also let en,m be a 2δ–barycenter of△(x0,xn,xm). We claim that the pro-
jection of γ to Y has infinite diameter. To see this, fix anyD > 0 and use admissibility of{p(xn)} to find
N so thatdY(p(x0), p(en,m)) > D for all n,m≥ N. Fix somek ≥ N. Using the equivalence of{xn} and
{γ(n)}, we may then choosem≥ N so thatdX(x0,cm)≥ dX(x0,xk)+8δ , wherecm denotes a 2δ–barycenter
for △(x0,xm,γ(m)). Since the triple(x0,ek,m,xk) is 4δ–aligned, this impliesdX(x0,cm) ≥ dX(x0,ek,m)+4δ .
Choosing pointse′ andc′ in [x0,xm]within 2δ of ek,m andcm, respectively, it follows thatdx(x0,c′)≥ dX(x0,e′)
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so thate′ ∈ [x0,c′]. Now, sincecm is a barycenter for△(x0,xm,γ(m)), there is a pointa ∈ [x0,γ(m)] with
dX(c′,a) ≤ 4δ . By thinness of the triangle△(x0,c′,a), we see thate′ ∈ [x0,c′] lies within 5δ of [x0,a] ⊂
[x0,γ(m)]. Therefore, sincedX(ek,m,e′) ≤ 2δ andγ is a quasigeodesic,Proposition 2.1and the triangle in-
equality imply thatek,m is within 7δ +R0(10δ ,δ ) of some pointγ(t). Consequently,dY(p(x0), p(γ(t)))
coarsely agrees withdY(p(x0), p(ek,m)) ≥ D up to uniformly bounded additive error. SinceD here is arbi-
trary, it follows that diamY(p(γ)) = ∞. Thusλ ∈ ∂YX, which proves that∂ p is surjective.

Finally we prove∂ p is a homeomorphism. Firstly, for anyλ ,µ ∈ ∂YX andx ∈ X, Equation (3)and our
proof of surjectivity show that(∂ p(λ )|∂ p(µ))p(x) ≤ L(λ |µ)x+4δ +K′. By the definition of the topology on
the Gromov boundary, it immediately follows that∂ p: ∂YX → ∂Y is open. Conversely, for anyη ∈ ∂Y and
D > 0, we may, as above, build a 10δ–quasigeodesicγ : R+ → X converging toλ = (∂ p)−1(η) and whose
projection toY has infinite diameter. Setx= γ(0). Thus there is someR so thatdY(p(x), p(z)) ≥ D+K′ for
all z∈ X that lie within 2δ of γ and satisfydX(x,z)≥ R. Now if µ ∈ ∂YX is such that(µ |λ )x ≥ R+4δ , then
we may choose a sequence{zn} converging toµ so that

liminf
n,m→∞

(zn|γ(m))x ≥ R+4δ .

Thus if en,m is a 2δ–barycenter for△(x,zn,γ(m)), then liminfn,mdX(x,en,m) ≥ R. But sinceen,m lies within
2δ of γ, we have thatdY(p(x), p(en,m))≥ D+K′ and thus also(p(zn)|p(γ(m))p(x) ≥D for all largen,m. This
proves that(∂ p(µ)|η)p(x) ≥ D for all µ satisfying(µ |λ )x ≥ R+4δ . Therefore∂ p is continuous.

Remark 3.3. Note that if the hypothesis of coarse surjectivity inTheorem 3.2is dropped, the proof shows
that the map∂ p: ∂YX → ∂Y is a topological embedding.

We also record the following useful lemma, the idea of which is well-known to experts (see for example
[Ham2, Lemma 2.6]). First say thatp: X →Y is metrically proper if for any D ≥ 0 there is aC≥ 0 so that
dX(a,b)≥C impliesdY(p(a), p(b))≥ D.

Lemma 3.4. Suppose that X and Y are geodesic metric spaces. If p: X → Y is alignment preserving and
metrically proper, then p is a quasi-isometric embedding.

Proof. Since p: X → Y is alignment preserving, there is a constantK such that whenevera,b,c ∈ X are
0–aligned we have

dY(p(a), p(c))≥ dY(p(a), p(b))+dY(p(b), p(c))−K.

Further, sincep: X →Y is metrically proper, there is aC> 0 such that ifa,b∈ X satisfydX(a,b)≥C, then
dY(p(a), p(b))≥ 2K. Now letx andx′ be points ofX with dX(x,x′) = d and letγ : [0,d]→ X be a geodesic
with γ(0) = x andγ(d) = x′. Let N be the largest integer less thand

C , and setai = γ(iC) for 0≤ i ≤ N. Then,

dY(p(x), p(x
′))≥ dY(p(a0), p(aN))+dY(p(aN), p(x

′))−K

≥ dY(p(aN),x
′)−K+

N−1

∑
i=0

(dY(p(ai), p(ai+1))−K)

≥−K+K ·N

≥
K
C
·dX(x,x

′)−2K.

Sincep: X →Y is Lipschitz by assumption, this completes the proof.

4 The co-surface graphCS

This section introduces the co-surface graphCS of the free groupF and develops its basic properties. First
we defineCS and discuss its relationship to other Out(F)–graphs appearing in the literature. Then in §4.1we
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use the theory of alignment preserving maps to calculate theboundary ofCS. Finally, in §4.2we show that a
subgroupΓ ≤ Out(F) qi-embeds intoCS if and only if it is purely atoroidal and qi-embeds intoF.

Recall that an elementa ∈ F is primitive is a belongs to a free basis forF; this is an invariant of the
conjugacy classα of a and so we also callα primitive. Theprimitive loop graph of F is the simplicial graph
PL whose vertices are the primitive conjugacy classes ofF, and where two conjugacy classesα,β are joined
by an edge if and only if they have representatives that are jointly part of a free basis ofF. We equipPL with
the path metricdPL in which each edge has length 1. As each primitive element generates a cyclic free factor
of F, there is natural inclusion mapPL0 →F. It is straightforward to check that this inclusion is 2–bilipschitz
and 1–dense and therefore admits a 4–quasi-isometry coarseinverse which we denoteD : F → PL. We also
have the coarse projectionπPL : X→ PL defined by sendingG∈ X to the set of embedded closed loops on
G; this projection coarsely agrees with the compositionD ◦πF.

The primitive loop graph measures, in a sense, how algebraically complicated primitive conjugacy classes
are with respect to each other. The co-surface graph, on the other hand, is designed to measure howtopolog-
ically complicated primitive conjugacy classes are with respect to each other:

Definition 4.1 (Co-surface graphCS). Theco-surface graphCS of the free groupF is the simplicial graph
whose vertices are conjugacy classes of primitive elements, and where two verticesα andβ are joined by
an edge if there is a once-punctured surfaceSand an isomorphismπ1(S)∼= F with respect to whichα andβ
may both be represented bysimpleclosed curves onS.

In other words, each once-punctured surfaceSwith π1(S)∼= F determines a subsetCS⊂ PL
0 consisting

of those primitive conjugacy classes that correspond to (nonseparating) simple closed curves onS. As our
graphCS is obtained by collapsing eachCS ⊂ PL to a set of diameter 1, it records the geometry of the
primitive conjugacy classes that remains after all the “surface sets”CS have been crushed—hence the name
“co-surface” graph. We equipCS with the path metricdCS in which each edge has length 1 and note that
Out(F) acts simplicially (and hence isometrically) onCS.

From basic topology, we know that if primitive elementsa,b∈ F are jointly part of a free basis ofF, then
one may build a once-punctured surfaceS and an isomorphismπ1(S) ∼= F under whicha andb correspond
to disjoint simple closed curves onS. Therefore the “identity” mapPL0 → CS

0 extends to a simplicial and
hence 1–Lipschitz Out(F)–equivariant “electrification” mapel: PL → CS. Defineel′ : F → CS to be the
compositionel′ = el◦D . The purpose of this section is to establish the following essential properties ofCS.

Theorem 4.2(Properties ofCS). For the free groupF of rank at least3, the co-surface graphCS is hyperbolic
and the mapel: PL → CS (and thus alsoel′ : F → CS) is Lipschitz and alignment preserving. Moreover,
φ ∈ Out(F) acts as a loxodromic isometry ofCS if and only ifφ is atoroidal and fully irreducible.

To establish these properties, we show thatCS is quasi-isometric to another Out(F)–graph that has ap-
peared in several different forms in the literature under the name “intersection graph” (seeRemark 4.5). To
define this, say that a conjugacy class ofF is geometric if it is either primitive or it corresponds to the cusp
of a once-punctured surface whose fundamental group is identified with F. Define theintersection graph to
be the bipartite graphI whose vertices are geometric conjugacy classes and very small, simplicial, nonfree
trees, and where a conjugacy classα is joined by an edge to a treeT if and only if ℓT(α) = 0. Note that there
is an obvious action Out(F)y I and that the inclusionPL0 → I 0 extends to an Out(F)–equivariant map
PL→ I . Brian Mann and Patrick Reynolds have proven the following:

Theorem 4.3(Mann [Man], Mann–Reynolds [MR1]). The intersection graph is hyperbolic and the natural
mapPL→ I is Lipschitz and alignment preserving.

The proof of these results can be found in Mann’s thesis [Man]. Let us give a brief description of how
their argument may be applied directly to to the co-surface graph. The main point is to show that the map
el: PL→ CS fits the parameters of a recent theorem of Kapovich and Rafi [KR, Proposition 2.5] (whereas
[Man] shows the mapPL → I fits these parameters). Applying this theorem shows that hyperbolicity of
the primitive loop graph implies hyperbolicity the co-surface graph and, moreover, thatel: PL → CS is
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alignment preserving. Rather than carry out this argument in detail, we simply invokeTheorem 4.3and the
following quasi-isometry between the co-surface graph andthe intersection graph:

Proposition 4.4. The graphsI andCS areOut(F)–equivariantly quasi-isometric.

Proof. In [Man, §2.4], Mann defined a graphP which he shows is quasi-isometric toI . The vertices ofP
are marked rk(F)–petal roses, and rosesRandR′ are joined by an edge if they have either a common petal or a
common “cusp” (meaning that the given isomorphismπ1(R)∼= π1(R′) may be realized byπ1–isomorphically
embeddingRandR′ into the same once-punctured surface). We show thatP andCS are quasi–isometric.

Define an equivariant mapΦ : P → CS by sending a roseR to the conjugacy class determined by one
of its petals (the set of possible choices has diameter 1 by definition). Whenever verticesR andR′ of P

have a common petal we then havedCS(Φ(R),Φ(R′)) ≤ 2, and wheneverR andR′ have a common cusp we
havedCS(Φ(R),Φ(R′)) ≤ 1 since in this case the petals ofR andR′ all correspond to simple closed curves
on the same once-punctured surfaceS. ThusΦ : P → CS is 2–Lipschitz. Similarly, letΨ : CS → P be an
equivariant map that sends each primitive conjugacy classα to any rose in whichα appears as a petal. Since
the set of such roses has diameter 1,Ψ is a coarse inverse forΦ. Hence, it suffices to show thatΨ is Lipschitz.
For this, if α andβ are adjacent vertices ofCS we may choose a once-punctured surfaceS in which α and
β are represented simple closed curves. Extending these curves toπ1–injectively embedded rosesR andR′

in S, we see thatdP(Ψ(α),Ψ(β )) ≤ 3 sinceR andR′ have a common cusp and are respectively adjacent to
Ψ(α) andΨ(β ) by construction. This shows thatΨ is 3–Lipschitz and completes the proof.

Theorem 4.2now follow immediately fromTheorem 4.3andProposition 4.4. We also note that Bestvina
and Feighn show the projectionπPL : X→ PL is alignment preserving [BF2, Theorem 9.3]. ByLemma 3.1
it follows that the compositionπCS := el◦πPL : X→ CS is alignment preserving. As forF, for G,H ∈X we
then define

dCS(G,H) = diamCS(πCS(G)∪πCS(H)).

Remark 4.5(Historical context). In [KL1], Kapovich and Lustig use their intersection form (c.f.Theorem 2.7)
to show that several free group analogs of the curve complex have infinite diameter. Among their proposed
graphs were (up to quasi-isometry) versions of the free factor complex, free splitting complex, and what
they call the intersection graph. Their definition of the intersection graph is the following: vertices areall
conjugacy classes of very small trees and geodesic currentsand a treeT is joined by and edge to a current
µ if 〈T,µ〉 = 0. Although this graph is not connected (e.g. a free simplicial tree is isolated), the connected
component containing the rational currents correspondingto primitive conjugacy classes is Out(F) invariant.
This version of the intersection graph however is differentfrom the graphI defined above, which is also
referred to as the intersection graph in [Man]. The difference between these graphs lies in exactlywhich
geodesic currents are allowed; different restrictions determine which electrification ofF one obtains. Using
CS avoids this ambiguity as well as having the added benefit of a natural and transparent definition.

4.1 Boundary ofCS

FromTheorems 3.2and4.2we deduce that∂CS ∼= ∂CSF. Our next lemmas show that∂CSF is precisely the
collection of classes of free arational trees in∂F. The first lemma follows easily from work of Coulbois–
Hilion–Reynolds and Bestvina–Reynolds.

Lemma 4.6. Let T∈ ∂X be free and arational and letµ be any geodesic current. If〈T,µ〉= 0= 〈S,µ〉 for
some tree S∈ X∪∂X, then S is also free and arational.

Proof. By Theorem 2.7, the hypotheses imply supp(µ)⊂ L(T) and supp(µ)⊂ L(S). Using thatT is free and
arational,Theorem 2.8moreover gives supp(µ) = L′(T); thusL′(T) ⊂ L(S). Now apply Proposition 4.2(i)
and Corollary 4.3 of [BR] to conclude thatL(S) = L(T).

Recall from §2.3 that a tree is free if and only if its dual lamination does not contain L(α) for any
nontrivial conjugacy classα. Since this necessarily holds forL(T) = L(S), we conclude thatS is free as well.
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Finally, if S were not arational then there would be a free factorA of F and anA–invariant subtreeSA ⊂ S
on whichA acts with dense orbits. It would then follow thatL(T) = L(S) contains a leaf in∂ 2A ⊂ ∂ 2

F.
However, the fact thatT is free and arational implies thatL(T) cannot contain a leaf in∂ 2A [Rey2, Lemma
2.1]. This contradiction shows thatSmust be arational and completes the proof of the lemma.

The following lemma is an application of a standard argumentfor showing that graphs which are similar
to the curve graph of a surface have infinite diameter. See [Kob, MM, BR, KL1]. The details are provided
for the reader’s convenience.

Lemma 4.7. Let (Gi)i≥0 be a sequence of graphs inX converging to a tree T in∂X which is free and
arational. Then the projectionsπCS(Gi) of Gi to CS are unbounded.

Proof. Let αi ∈CS
0 be a primitive loop in the projectionπCS(Gi); thusαi corresponds to an embedded closed

loop onGi and so〈Gi ,αi〉 ≤ 1. Suppose that these curves do not go to infinity inCS. Then, after passing
to a subsequence and fixing somex ∈ CS

0, we may assume thatdCS(x,αi) = M for all i. Build a geodesic
x= x0

i ,x
1
i , . . . ,x

M
i = αi for eachi ≥ 0. By definition ofCS, for each 0≤ k≤ M−1 there is a once-punctured

surfaceSk
i realizing the edge betweenxk

i andxk+1
i ; let ck

i be the conjugacy class corresponding to the cusp
(i.e., peripheral curve) ofSk

i . Further, letRk
i be the simplicial tree dual to the simple closed curve representing

xk
i onSk

i , and for 1≤ k≤ M, let Lk
i be the simplicial tree dual toxk

i onSk−1
i . By construction

〈Rk
i ,x

k
i 〉= 〈Rk

i ,c
k
i 〉= 0 and 〈Lk

i ,x
k
i 〉= 〈Lk

i ,c
k−1
i 〉= 0. (4)

Now let i → ∞ and, after passing to a subsequence, assume that everythingconverges projectively to either
a tree or a geodesic current. Denote the limit by omitting thesubscript. Since〈·, ·〉 is continuous andGi

converges projectively to the free arational treeT, the inequality〈Gi ,αi〉 ≤ 1 implies〈T,α〉 = 0, whereα
is the limit of αi = xM

i in PCurr(F). This is because the rescaling constant forGi must tend to zero, for
otherwise the treeT would have a simplicial part.

By continuity of〈·, ·〉, we additionally have〈LM,α〉= 0. Hence,LM is free and arational byLemma 4.6.
Similarly we have〈LM ,cM−1〉= 0= 〈RM−1,cM−1〉; thusRM−1 is also free and arational byLemma 4.6. Using
continuity and (4) again to pairRM−1 andLM−1 with xM−1, we now see thatLM−1 is free and arational as well.
Applying this augment inductively, we conclude thatR0 is free and arational. This, however, contradicts the
observation that〈R0,x0〉= 0 for the primitive conjugacy classx0 = x (recall that the sequencex0

i is constant).
This shows thatdCS(x,αi)→ ∞ asi → ∞ and completes the proof.

Theorem 4.8(Boundary ofCS). The Gromov boundary∂CS of the co-surface graph isOut(F)–equivariantly
homeomorphic to the subspace of∂F consisting of classes of free arational trees.

Proof. We use the alignment preserving mapel′ : F → CS andTheorem 3.2to identify ∂CS ∼= ∂CSF. By
Theorem 2.9andLemma 4.7, the set of free arational trees is contained in∂CSF. Further, ifT ∈ ∂F then
T is arational byTheorem 2.9. If T is not free, then byTheorem 2.2, T is dual to a measured laminationL
on a once–punctured surfaceS. Let αi be a sequence of nonseparating simple closed curves inSconverging
to the laminationL. Thenαi is also a sequence of rank 1 free factors inF converging toT ∈ ∂F with
diamCSel(αi)≤ 1. Hence,T /∈ ∂CSF and we conclude that the set of free arational trees equals∂CSF.

Corollary 4.9. An element ofOut(F) acts loxodromically onCS if and only if it is fully irreducible and
atoroidal.

4.2 Quasi–isometric embeddings intoCS

We say that a finitely generated subgroupΓ≤Out(F) qi-embedsinto an Out(F) graphY if some (equivalently
any) orbit mapΓ →Y is a quasi-isometric embedding. In this section, we prove that Γ ≤ Out(F) qi-embeds
into CS if and only if it is purely atoroidal and qi-embeds intoF. This answersQuestion 1.2of I. Kapovich
and clarifies the connection between the factor complex, theco-surface graph, and hyperbolic extensions of
free groups.

13



Fix a roseR∈X and a primitive conjugacy classα represented by a petal ofR. Fix a finitely generated sub-
groupΓ ≤ Out(F) such that the orbit mapΓ →F given byg 7→ g·α is a quasi-isometric embedding. In [DT],
we show that this implies that the orbitΓ ·R has strong quasiconvexity properties inX (e.g. Theorem 2.6).
For the application needed here, the following propositionfrom [DKT] is most convenient.

Proposition 4.10 (Folding rays to infinity [DKT, Proposition 5.6]). Suppose thatΓ ≤ Out(F) is purely
atoroidal and qi-embeds intoF. For any k≥ 0 there is a K≥ 0 such that if(gi)i≥0 is a k–quasigeodesic
ray in Γ, then there is an infinite length folding rayγ : I → X parameterized at unit speed with the following
properties:

1. The setsγ(I) and{giR : i ≥ 0} have symmetric Hausdorff distance at most K.

2. The rescaled folding path Gt = e−t ·γ(t) ∈ cv converges to the arational tree T∈ ∂cv with the property
that lim i→∞ gi ·α = ∂πF(T) in F∪∂F, where∂πF(T) is the projection of the projective class of T to
the boundary ofF (c.f. Theorem 2.9). Moreover, the actionFy T is free.

GivenProposition 4.10, we show that the orbit map fromΓ to the co-surface graph is metrically proper.

Proposition 4.11. Suppose thatΓ ≤ Out(F) is purely atoroidal and qi-embeds into the factor complexF.
Then for every D≥ 0 there is an N≥ 0 so that

dCS(R,g ·R)≥ D

for all g ∈ Γ with |g| ≥ N.

Proof. Suppose not. Then there is aD ≥ 0 and a sequencehi ∈ Γ with dCS(R,hi ·R) ≤ D and|hi | → ∞ as
i → ∞. After passing to a subsequence, we may assume thathi → q∈ ∂Γ. SinceΓ → F is a quasi-isometric
embedding, there is a uniqueλ ∈ ∂F such thathi ·α → λ in F∪∂F. (Recall thatα ∈ πF(R).)

Claim 4.12. The sequence(hi)i≥0 can be replaced by a geodesic(gi)i≥0 in Γ such that gi → q ∈ ∂Γ and
dCS(α,gi ·α)≤ D, whereD ≥ 0 depends only on the constant D and the orbit mapΓ → F.

Proof of claim. Let (gi)i≥0 be any geodesic sequence inΓ with g0 = 1 andgi → q in Γ∪∂Γ. Then for each
i ≥ 0 there is aj ≥ 0 such that any geodesic[0,h j ] passes within 2δ from gi ; thus the triple(1,gi ,h j) is 4δ–
aligned inΓ. SinceΓ →F is a quasi-isometric embedding andF is hyperbolic, the stability of quasigeodesics
(Proposition 2.1) implies thatΓ → F is alignment preserving. ThereforeΓ → CS is alignment preserving by
Lemma 3.1and so there is someC≥ 0 (depending only on the quasi-isometry constant ofΓ → F) so that

dCS(α,gi ·α)≤ dCS(α,gi ·α)+dCS(gi ·α,h j ·α)≤ dCS(α,h j ·α)+C≤ D+C=: D.

Now let (gi)i≥0 be as inClaim 4.12and applyProposition 4.10to obtained a folding rayγ : I → X.
By Proposition 4.10, the graphsgi ·R andγ(t) both limit to the same free arational treeT ∈ ∂X. Sincegi ·R
converges toT in X, Lemma 4.7implies thatdCS(R,gi ·R)→∞, contradicting the construction of(gi)i≥0.

Theorem 4.13(Qi-embedding intoCS). LetΓ be a finitely generated subgroup ofOut(F). ThenΓ qi-embeds
into the co-surface graphCS if and only ifΓ is purely atoroidal and convex cocompact.

Proof. First, if Γ qi-embeds intoCS, then any orbit mapΓ → F is a quasi-isometric embedding since the
Out(F)–equivariant mapel′ : F → CS is Lipschitz. Moreover, since the loxodromic isometries ofCS are
atoroidal,Γ must be purely atoroidal.

Now suppose thatΓ is purely atoroidal and that the orbit mapΓ → F given byg 7→ g·α, for some rank 1
free factorα, is a quasi-isometric embedding. Sinceel′ : F → CS is alignment preserving, it follows that the
mapg 7→ g ·el′(α) ∈ CS is alignment preserving.Proposition 4.11shows that this orbit mapΓ → CS is also
metrically proper. We thus conclude thatΓ → CS is a quasi-isometric embedding byLemma 3.4
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5 Lifting to covers

In this section we show that orbits in the co-surface graph are well-behaved when passing to finite index
subgroups ofF. Specifically, we show that ifΓ ≤ Out(F) qi-embeds intoCS, then for any finite indexH ≤ F,
the induced subgroupΓH of Out(H) qi-embeds into the co-surface graph ofH. This proposition will be
necessary in §7, but it may also be of independent interest.

Fix a finite index subgroupH of F and letΓ≤Out(F) be finitely generated. Denote byΓH the subgroup of
Γ consisting of outer automorphisms which fix the conjugacy class ofH, and letΓH be the induced subgroup
of Out(H). That is, f ∈ ΓH if there is an automorphismφ of F whose outer class is inΓ such thatφ |H is in
the outer classf . These groups fit into a short exact sequence

1→ N(H)/H → ΓH → ΓH → 1,

whereN(H)≤ F is the normalizer ofH andN(H)/H is finite. The homomorphismΓH → ΓH is well-defined
in part because any automorphism ofF that restricts to the the identity on a finite index subgroup is in fact
the identity on all ofF.

Proposition 5.1. Let H be a finite index subgroup ofF and letΓH denote the subgroup ofOut(H) induced by
elements ofΓ ≤ Out(F) that stabilize the conjugacy class of H. IfΓ is finitely generated and qi-embeds into
CS, thenΓH also qi-embeds intoCS(H).

Let us briefly remark on the use of the co-surface graph in the statement ofProposition 5.1. In particular,
the corresponding statement for the factor graphF is false. For example, letφ ∈ Out(F) be an automorphism
that can be represented by a pseudo-Anosov on a once–punctured surfaceS. Let H be a subgroup ofF ∼=
π1(S) corresponding to a cover̃S→ S with at least 2 punctures. The cyclic subgroupΓ = 〈φ〉 then quasi-
isometrically embeds intoF(F) sinceφ is fully irreducible. However,ΓH does not qi-embed intoF(H).
Indeed,ΓH is a virtually cyclic group whose infinite order elements arerepresented by lifts of powers ofφ ;
since each such lift permutes the punctures ofS̃ and each puncture represents a rank 1 free factor ofH, ΓH

has bounded orbits inF(H). This suggests thatCS is a better tool for studying finite index subgroups ofF.
The proof ofProposition 5.1requires the following result of Reynolds whose proof uses ideas of Guirardel.

Lemma 5.2 (Reynolds [Rey1, Lemma 4.2]). Suppose that Gy T is an indecomposable action and that
H ≤ G is finitely generated and finite index. Then the action Hy TH is indecomposable.

We will use the lemma in the following form.

Corollary 5.3. Suppose that T∈ ∂X is free and arational and that H≤ F is finite index. Then the minimal
H–subtree TH is also free and arational.

Proof. Clearly,TH is free becauseT is free. SinceT is arational, it is indecomposable (Theorem 2.2); thus
TH is also indecomposable byLemma 5.2. UsingTheorem 2.2again, we conclude thatTH is arational.

5.1 The Outer space of a subgroup

Fix H ≤ F a subgroup of finite index[F : H] = n. ThenH is a free group of rank 1−n(1− rk(F)) and we
denote its Outer space byX(H). Recalling thatR is our fixed rk(F)–petal rose used to mark graphs ofX, we
let H|R denote the correspondingH–cover and fix a homotopy equivalence betweenH|R and a roseRH .

There is a natural inclusioni∗ : X→ X(H) defined by takingH–covers and lifting markings. In details,
if φ : R → G is a marked metricF–graph, then theH–coverH|G is a metricH–graph of volumen and we
may choose a liftφH : H|R → H|G. Any other lift φ̃ : H|R → H|G is then obtained by precomposingφH

with an element of the deck group ofH|R→ R, which is isomorphic toN(H)/H. Since for each such deck
transformationd ∈ N(H)/H, there is a graph isometryρd of H|G such thatρd ◦φH ∼ φH ◦d, we see that the
equivalence class of(H|G,φH) in X(H) is well-defined. Using the homotopy lifting property, we additionally
see that this induces a well-defined map

i∗ : X→ X(H)
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given by[G,φ ] 7→ [H|G,φH ]. Also note that if ˜g ∈ ΓH projects tog ∈ ΓH , theng̃ · i∗(G) = i∗(g ·G). Even
better, this map is an isometry with respect to the Lipschitzmetric:

Proposition 5.4. Let H≤ F be a finite index subgroup. Then the induced map i∗ : X→ X(H) is an isometry
with respect to the Lipschitz metric. Moreover, i∗ maps folding paths inX to folding paths inX(H).

Proof. Fix G1 andG2 in X. If f : G1 →G2 is an optimal change of marking, then choosing a liftfH : H|G1 →
H|G2 we see that since Lip( fH) = Lip( f ),

dX(H)(i
∗(G1), i

∗(G2)) = dX(H)(H|G1,H|G2)≤ dX(G1,G2).

Further,

edX(H)(H|G1,H|G2) = sup
h∈H

ℓ(h|(H|G2))

ℓ(h|(H|G1))
= sup

h∈H

ℓ(h|G2)

ℓ(h|G1)
.

Let a∈ F be such thata is optimally stretched byf : G1 → G2, i.e. ℓ(a|G2) = Lip( f )ℓ(a|G1), and letk> 0
be the smallest positive integer such thatak ∈ H. Then using our observation above

edX(G1,G2) =
ℓ(a|G2)

ℓ(a|G1)
=

ℓ(ak|G2)

ℓ(ak|G1)
≤ sup

h∈H

ℓ(h|G2)

ℓ(h|G1)
= edX(H)(H|G1,H|G2).

Hence, we also havedX(G1,G2)≤ dX(H)(i
∗(G1), i∗(G2)) showing thati∗ : X→ X(H) is an isometry.

To show thati∗ maps folding paths to folding paths, let{Gt}t∈[0,L] be a folding path inX with corre-
sponding folding maps{φst : Gs → Gt}s<t (see §2.5 for the definitions of folding maps and folding paths).
Set G̃t = H|Gt = i∗(Gt) with covering mappt : G̃t → Gt . We claim that{G̃t} is a folding path inX(H)
with corresponding lifted folding maps{φ̃st : H|Gs → H|Gt}s<t . Indeed, that each of these lifts is a local
Lip(φ̃st)–homothety with Lip(φ̃st) = dX(H)(G̃s,G̃t) follows from what we have already shown. What’s more,
the equalitypt ◦ φ̃st = φst◦ ps implies that the illegal turn structure thatφ̃st induces onG̃s is exactly the lift (via
ps) of the illegal turn structure thatφst induces onGs. From this it follows that each̃φst is a folding map and,
by the uniqueness of folding paths [BF2, §2], that{G̃t} is the folding path determined bỹφ0L : G̃0 → G̃L.

5.2 Proof ofProposition 5.1

Combining our work in the previous sections, we now turn to the proof ofProposition 5.1. Let R∈ X be a
rose with a petal representingα ∈ CS

0. Let α̃ ∈ CS
0(H) be primitive conjugacy class ofH represented by an

embedded loop ofH|R covering this petal ofR. Note thatα ∈ πCS(R) andα̃ ∈ πCS(H|R), whereπCS is the
projection from outer space to the corresponding co-surface graph.

Fix a finite generating set̃Sof ΓH with projectionS⊂ ΓH . By abuse of notation, we identifyΓH andΓH

with the corresponding Cayley graphs Cay(ΓH ,S) and Cay(ΓH , S̄), which are geodesic metric spaces. The
orbits maps ˜g 7→ g̃ · α̃ andg̃ 7→ g̃ ·H|R then extend equivariantly to continuous mapsψ : ΓH → CS(H) and
Ψ : ΓH → X(H), and similarly forΓH . Note also that the projectionΓH → ΓH is a quasi-isometry.

Proof ofProposition 5.1. By Lemma 3.4, it suffices to show that the orbit mapψ : ΓH → CS(H) is alignment
preserving and metrically proper. The strategy is to relatethe corresponding orbit inX with folding paths via
Theorem 2.6and to use that these folding paths lift toX(H) by Proposition 5.4.

In details, let(g̃−, g̃0, g̃+) be an aligned triple inΓH and letγ̃ : I → ΓH be a geodesic passing through ˜g0

with γ̃(I±) = g̃±. The projectionγ : I → ΓH ≤ Γ is then a uniform quasigeodesic and so maps to a uniform
quasigeodesic inCS by assumption. HenceTheorem 2.6provides a folding path{Gt}t∈[0,L] in X that has
uniformly bounded symmetric Hausdorff distance from the image of the compositionI → ΓH → X. Since
i∗ : X→ X(H) is aΓH–equivariant isometric embedding (Proposition 5.4), the same holds for the image of
I → ΓH →X(H) and the folding pathi∗(Gt) =H|Gt . In particular, the three points ˜g− ·H|R, g̃0 ·H|R, andg̃+ ·
H|R all lie within uniformly bounded symmetric Hausdorff distance of the geodesic{H|Gt} in X(H). Since
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the projectionπCS : X(H)→ CS(H) is alignment preserving, it follows that the triple(g̃− · α̃, g̃0 · α̃, g̃+ · α̃)
is uniformly aligned inCS(H). Therefore the orbit mapΓH → CS(H) is alignment preserving.

It remains to show thatΓH → CS(H) is metrically proper. If this were not the case, then there isa
sequence ofxi ∈ ΓH with |xi | → ∞ but dCS(H)(α̃,xi · α̃)≤ D for someD ≥ 0. By compactness ofΓH ∪∂ΓH ,
after passing to a subsequence we may assume thatxi → q∈ ∂ΓH = ∂ΓH = ∂Γ. Since we have already shown
thatΓH → CS(H) is coarsely alignment preserving, useClaim 4.12to obtain a geodesic(g̃i)i≥0 in ΓH such
thatgi → q in ΓH ∪∂ΓH butdCS(H)(α̃, g̃i · α̃) is uniformly bounded.

Now pass to a subsequence such thatgi ·Rconverges toT in X. Since(gi ·α)i≥0 is a quasigeodesic inCS,
we see combiningTheorem 2.9andTheorem 4.8that the treeT is free and arational and thatgi ·α converges
to the equivalence class ofT in CS∪∂CS. Hence,(H|gi ·R= g̃i ·H|R)i≥0 converges inX(H) to the treeTH .
By Corollary 5.3, TH is free and arational. Hence, byLemma 4.7, πCS(H)(g̃i ·H|R) = g̃i · α̃ converges to the
equivalence class of the treeTH in ∂CS(H). In particular,dCS(H)(α̃, g̃i · α̃)→ ∞ contradicting the conclusion
of the previous paragraph. This shows thatΓH → CS(H) is metrically proper and completes the proof.

6 Flaring of simple conjugacy classes in Outer space orbits

In this section, we use the geometry of Outer space and the nature of folding paths to analyze how the lengths
of conjugacy classes behave along the orbitΓ ·R⊂ X of certain subgroupsΓ ≤ Out(F). WhenΓ qi-embeds
into the factor complexF, we will find that for simple conjugacy classesα ∈ F, the lengthℓ(α|g ·R) grows
roughly exponentially in the distance from a certain uniformly bounded-diameter subsetρR

Γ (α) ⊂ Γ. Our
analysis culminates in the rather technicalLemma 6.10which establishes this exponential flaring not only for
simple classesα, but also for all conjugacy classesβ that are, in a sense, “well-aligned” withα at the points
of ρR

Γ (α) ·R (seeDefinition 6.6). Lemma 6.10moreover shows that this exponential growth isuniform in all
suchα andβ .

6.1 Uniform bounded backtracking

It is well known that any mapf : G → H of metric core graphs hasbounded backtracking, meaning that
there is a constant BBT( f ) ≥ 0 such that for any two pointsp,q ∈ G̃ in the universal cover and any lift
f̃ : G̃ → H̃ of f one has that the path̃f ([p,q]) is contained in the BBT( f )–neighborhood of the geodesic
segment[ f̃ (p), f̃ (q)]; see, e.g., [GJLL] or [CHL]. We will need a uniform bound on the constant BBT( f )
over a broad family of graph maps. While bounds of this type are certainly well known to experts (see, e.g.,
[BFH, Lemma 3.1]), we include a short proof here for completeness.

Lemma 6.1(Backtracking bound). For every D> 0 there exists a constant C> 0 so that if G,H ∈ X satisfy
dsym
X

(G,H)≤ D, then there exists a change of marking mapφ : G→ H with BBT(φ)≤C.

Proof. The hypothesis ensures there are mapsφ : G→ H andϕ : H → G so thatφ ◦ϕ ≃ IdH , ϕ ◦ φ ≃ IdG,
and Lip(φ),Lip(ϕ) ≤ eD. SetK = eD. Choose any liftsφ̃ : G̃ → H̃ and ϕ̃0 : H̃ → G̃ of these maps to the
universal covers, and note thatφ̃ andϕ̃0 are both equivariant with respect to theF actions on the trees̃G and
H̃. Note also that Lip(φ̃),Lip(ϕ̃0)≤ K.

Choose a basepointv ∈ G̃ and letw= φ̃(v) ∈ H̃. Since the orbitF · v is 1–dense inG̃, we may choose
a∈ F so thatdG̃(v,a· ϕ̃0(w))≤ 1. Define a new map̃ϕ : H̃ → G̃ by the ruleϕ̃(q) = a· ϕ̃0(q) and note that we
still have Lip(ϕ̃) ≤ K. We now have thatdG̃(v, ϕ̃ ◦ φ̃(v)) ≤ 1. By equivariance and the fact thatϕ̃ andφ̃ are
K–Lipschitz, it easily follows that̃ϕ ◦ φ̃ moves points at most distanceK2+2. From this, and the inequalities
Lip(ϕ̃),Lip(φ̃)≤ K, one may conclude that̃φ is a(2K2+4)–quasi-isometry. Thus for any geodesic segment
[p,q] ⊂ G̃, the imageφ̃([p,q]) is a (2K2+4)–quasigeodesic iñH. It now follows fromProposition 2.1that
φ̃([p,q]) is contained in theR0(2e2D+4,0)–neighborhood of[φ̃(p), φ̃(q)], as required.

If ϕ : T0 → T is anF–equivariant map between free simplicial trees, we also write BBT(ϕ) for the
bounded backtracking constant of the induced mapT0/F→ T/F of the quotient graphs.
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6.2 Bestvina–Feighn folding

Here, we recall some additional facts about folding paths that we will need in the proof ofLemma 6.10.
Recalling the notation from §2.5, we see that the folding maps{φst : Gs→Gt}s<t associated to a folding path
γ : I → X give rise to a well-defined illegal turn structure on each graph Gs = γ(s) in the image (except for
the right endpointγ(I+) whenI+ < ∞). We then say that an immersed path (i.e., segment) inGs is legal if it
only takes legal turns; notice that for any legal pathβ : J → Gs, the compositionφst ◦β is a legal path inGt .
An immersed path inGs will be calledillegal if it does not contain a legal subpath of length 3.

If Gt ∈ X is equipped with an illegal turn structure, then for every conjugacy classα of F the immersed
loop α|Gt → Gt breaks into maximal legal segments separated by illegal turns. Following our convention
from [DT, §6], thelegal lengthof α|Gt is defined to be the sum leg(α|Gt) of the lengths of those maximal
legal segments that have length at least 3. The following basic fact appears as Lemma 6.10 of [DT] and
follows directly from work in [BF2]:

Lemma 6.2([DT]). For any folding path Gt , t ∈ [a,b], every nontrivial conjugacy classα ∈ F satisfies

leg(α|Gb)≥ leg(α|Ga)

(

1
3

)

eb−a.

We also have the following technical result of Bestvina–Feighn; for the statement, recall that a nontrivial
elementa∈ F (or the conjugacy classα thereof) issimple if a is contained in a proper free factor ofF.

Lemma 6.3(Bestvina–Feighn [BF2, Lemma 5.8]). There exists a constant B1 depending only onrk(F) with
the following property. If Gt , t ∈ [a,b] is a folding path andα is simple withα|Gt illegal for all t ∈ [a,b],
then eitherℓ(α|Ga)> 2ℓ(α|Gb) or else dF(Ga,Gb)≤ B1.

For any subgroupA≤ F (or conjugacy classα) the illegal turn structure onGt pulls back to give an illegal
turn structure onA|Gt (or α|Gt ). This gives a notion of legal and illegal paths inA|Gt : an immersed path in
A|Gt is (il)legal if and only if it is mapped to an (il)legal path inGt . Define now theillegality constant

I := (2rk(F)−1)(18m̆(3rk(F)−3)+6),

wherem̆ is the maximal possible number of illegal turns in any illegal turn structure on any graphG∈ X (so
m̆ is linear in rk(F)). In [BF2], Bestvina and Feighn introduced the following projections to folding paths.

Definition 6.4. Given a folding pathγ : I → X and a free factorA of F, set

leftγ (A) = inf{t ∈ I : A|γ(t) has an immersed legal segment of length 3} and

rightγ (A) =sup{t ∈ I : A|γ(t) has an immersed illegal segment of lengthI}.

We similarly define leftγ (α) and rightγ(α) for every nontrivial conjugacy classα of F. Note that these
definitions agree whenα is a primitive conjugacy class.

The following technical result played a key roll in Bestvinaand Feighn’s proof ofTheorem 2.3.

Proposition 6.5(Bestvina–Feighn [BF2, Proposition 6.10]). There exists a universal constant B2 depending
only onrk(F) such that for every folding pathγ : I → X and free factor A ofF we have

dF
(

γ(leftγ(A)),γ(rightγ(A))
)

≤ B2.

We henceforth writeB for the universal constant max{B1,B2}, whereB1,B2 are the constants provided
by Lemma 6.3andProposition 6.5.
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6.3 Flaring and almost containment

The following notion will help us relate distances in the metric graph bundleE (see §7.1) to conjugacy lengths
along folding paths.

Definition 6.6. Suppose thatα,β are nontrivial conjugacy classes ofF and thatG ∈ X is a point in Outer
space with correspondingR–treeG̃. We say thatβ is k–almost contained inα at G, for k≥ 0, if there exists
an axisA ⊂ G̃ for (an element of)α and a fundamental domainB of an axis for (an element of)β in G̃ so
thatB\A is a (possibly degenerate) connected segment of length at mostk. This is to say thatB is contained
in A except for a subsegment of length at mostk.

Equivalently,β is k–almost contained inα at G there exist axesA ,B ⊂ G̃ for elements of the classesα
andβ , respectively, so thatℓ(A ∩B)≥ ℓ(β |G)− k. We also observe thatα is always 0–contained in itself.

Lemma 6.7. For any k≥ 0 and D≥ 0 there exists a constant k′ ≥ 0 so that ifβ is k–almost contained inα
at G∈X, thenβ is k′–almost contained inα at H for any H∈ X with dsym

X
(G,H)≤ D.

Proof. By assumption, we may may choose elementsa ∈ α andb ∈ β whose respective axesA ,B ⊂ G̃
satisfyℓ(A ∩B) ≥ ℓ(β |G)−k. OrientB so thatb translates in the forward direction, and letp andq be the
initial and terminal endpoints of the segmentA ∩B ⊂ B. Also letx= b· p∈ B. By k–almost containment,
we have that eitherdG̃(x,q)≤ k or elsex∈ A ∩B.

By Lemma 6.1, there is aneD–Lipschitz change of marking mapϕ : G→ H with BBT(ϕ)≤C for some
C > 0 depending only onD. Choose a liftϕ̃ : G̃ → H̃ and letµ be the (possibly empty) geodesic segment
obtained by removing the length–C initial and terminal segments of[ϕ̃(p), ϕ̃(q)]. LetA ′,B′ ⊂ H̃ be the axes
for ay H̃ andby H̃. By definition of bounded backtracking,ϕ̃(A ) is contained in theC–neighborhood of
A ′; in particularϕ̃(p) andϕ̃(q) are both withinC of A ′. It follows thatµ ⊂ A ′. Similarly µ ⊂ B′. Thus

ℓ(A ′∩B
′)≥ ℓ(µ)≥ dH̃(ϕ̃(p), ϕ̃(q))−2C.

Now if x= b · p∈ A ∩B, then the same reasoning gives

2C+ ℓ(A ′∩B
′)≥ dH̃(ϕ̃(p), ϕ̃(x)) = dH̃(ϕ̃(p),b · ϕ̃(p))≥ ℓ(β |H).

Otherwise we havedG̃(q,x)≤ k, so that

ℓ(β |H)≤ dH̃(ϕ̃(p),b · ϕ̃(p))≤ dH̃(ϕ̃(p), ϕ̃(q))+dH̃(ϕ̃(q), ϕ̃(x))
≤
(

ℓ(A ′∩B
′)+2C

)

+eDk,

sinceϕ̃ is eD–Lipschitz. Thusβ is (2C+eDk)–almost contained inα at H.

We now make a simple observation. Recall fromDefinition 6.4that rightγ(α) denotes the supremum of
times along a folding pathγ for which α|γ(t) contains an immersed illegal segment of lengthI.

Lemma 6.8. Letγ : I →X be a folding path and suppose that t∈ I satisfies t≥ rightγ(α) for some conjugacy
classα of F. If β is k–almost contained inα at Gt = γ(t) andℓ(β |Gt)≥ 3k+3I, then

leg(β |Gt)≥
2
I
ℓ(β |Gt).

Proof. The loopβ |Gt subdivides into two immersed subsegmentsβ ′
0 andβ ′

1, whereβ ′
0 has length at mostk

andβ ′
1 is an immersed path intoα|Gt . By choosing the maximal length legal subsegments containing the

two endpoints of these segments, we may alternately subdivideβ |Gt into 4 subsegmentsβ0pβ1q separated
at illegal turns, whereβ1 is an immersed path intoα|Gt , β0 has length at mostk, andp andq are both legal.
(Up to 3 of these segments may be degenerate, as happens in thecase thatβ |Gt is itself legal).

Since the endpoints ofβ1 are at illegal turns, we may unambiguously talk about the legal length leg(β1)
of β1 (defined in the same way as for conjugacy classes). Sinceβ1 is an immersed subpath inα|Gt and
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t ≥ rightγ (α) we see that every subpath ofβ1 of length at leastI contains a legal segment of length at least 3.
Therefore, if we subdivideβ1 into n= ⌊ℓ(β1)/I⌋ subsegments of equal lengthℓ(β1)/n≥ I, we see that each
subsegment contains a legal segment of length 3. Therefore

leg(β1)≥ 3n≥ 3
(

ℓ(β1)
I

−1
)

= 3
I
ℓ(β1)−3.

Hence it follows that

leg(β |Gt)≥ leg(β1)+ ℓ(p)+ ℓ(q)≥ 3
I
ℓ(β1)+ ℓ(p)+ ℓ(q)−3

≥ 3
I
(ℓ(β1)+ ℓ(p)+ ℓ(q))−3≥ 3

I
(ℓ(β |Gt)− k)−3.

Sinceℓ(β |Gt)≥ 3k+3I by hypothesis, we may conclude

leg(β |Gt)≥
3
I
ℓ(β |Gt)− (3k

I
+3)≥ 3

I
ℓ(β |Gt)−

1
I
ℓ(β |Gt) =

2
I
ℓ(β |Gt).

Corollary 6.9. Let γ : I → X be a folding path, and suppose thatβ is k–almost contained inα at Gs = γ(s).
If ℓ(β )≥ 3k+3I and s≥ rightγ(α), then for all t∈ I with t ≥ s we have

ℓ(β |Gt)≥
2
3I

ℓ(β |Gs)e
t−s.

Proof. By Lemma 6.2andLemma 6.8we immediately see that

ℓ(β |Gt)≥ leg(β |Gt)≥
1
3

leg(β |Gs)e
t−s ≥

2
3I

ℓ(β |Gs)e
t−s.

6.4 Flaring away from length minimizers

Given a subgroupΓ ≤ Out(F), a pointR∈X, and a conjugacy classα of F, we write

m
R
Γ(α) := inf{ℓ(α|g ·R) : g∈ Γ}

for the infimal length of the conjugacy classα on the orbitΓ ·R. Observe thatmR
Γ(α) is positive since it is

bounded below by the injectivity radius ofR. While this infimal length in principle need not be attained at
any orbit point, we may nevertheless be assured that the set

ρR
Γ (α) := {g∈ Γ : ℓ(α|g ·R)≤ 2mR

Γ(α)}

is nonempty.
We now come to the main technical lemma of §6, showing that ifΓ is convex cocompact andβ is long and

almost contained inα at a point ofρR
Γ (α), then the length ofβ in the orbitΓ ·Rgrows uniformly exponentially

with the distance fromρR
Γ (α). In fact we show something slightly stronger than this:

Lemma 6.10. Suppose thatΓ ≤ Out(F) is finitely generated with word metric dΓ and thatΓ qi-embeds into
F. For every R∈X there exist constantsλ > 1 and C> 0 such that for every k> 0 there is some L0 > 0 with
the following property: Letα be a simple conjugacy class ofF and let g0 ∈ Γ lie in ρR

Γ (α). Suppose further
that g∈ Γ lies on a geodesic from g0 to h∈ Γ, i.e. dΓ(g0,h) = dΓ(g0,g)+dΓ(g,h). If β ∈ F is k–almost
contained inα at g·R andℓ(β |g ·R)≥ L0, then

ℓ(β |h ·R)≥Cλ dΓ(g,h)ℓ(β |g ·R).

Proof. Choose a free factorA in πF(R). By assumption, the assignmentϕ 7→ ϕ ·A gives a quasi-isometric
embeddingΓ → F. SinceπF is coarsely Lipschitz (Lemma 2.5), it follows from Γ–equivariance that there is
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someK so that the assignmentϕ 7→ ϕ ·R gives aK–quasi-isometric embeddingΓ → X. Recall this means
that

1
K dΓ(ϕ ,ψ)−K ≤ dX(ϕ ·R,ψ ·R)≤ KdΓ(ϕ ,ψ)+K (5)

for all ϕ ,ψ ∈ Γ. SincedΓ(g0,h) = dΓ(g0,g)+ dΓ(g,h), we may choose a geodesic(ϕ0, . . . ,ϕN) in (Γ,dΓ)
from g0 = ϕ0 to h= ϕN with g= ϕ j for some 0≤ j ≤ N. It then follows from (5) that the mapγ0 : [0,N]→X

defined byγ0(s) = ϕi ·R for s∈ [i, i +1)∩ [0,N] is a (directed) 3K–quasigeodesic. As described in [BF2,
Proposition 2.11] and [FM, Theorem 5.6], we may build a geodesicγ̂ : Î → X from g0 ·R to h ·R which is
a concatenation of arescaling pathfollowed by a folding path. ByTheorem 2.6, it follows that there exists
constantsA,ε > 0 andK′ ≥ 1 depending only onK and the injectivity radius ofRsuch thatγ0([0,N]) andγ̂(Î)
have Hausdorff distance at mostA, thatγ̂(Î)⊂Xε , and thatπF ◦ γ̂ : Î →F is aK′–quasigeodesic. Furthermore,
the rescaling portion of̂γ has length at most log(2/ε) by [DT, Lemma 2.6]. Ifγ : I → X denotes the folding
path portion ofγ̂, then after replacingA by A+Mε log(2/ε) (whereMε is as inLemma 2.4) we may conclude
thatdHaus

(

γ(I),{ϕ0 ·R, . . . ,ϕN ·R}
)

≤A, thatdsym
X

(γ(I−),g0 ·R)≤A, thatγ(I+) = h·R, and thatπF ◦γ : I →F

is aK′–quasigeodesic. In particular, sinceg= ϕ j , there is someI0 ∈ I for whichdsym
X

(γ(I0),g ·R)≤ A.
Conversely, for eacht ∈ I there is somei so thatdsym

X
(γ(t),ϕi ·R) ≤ A and consequentlyℓ(α|ϕi ·R) ≤

eAℓ(α|γ(t)). Similarly ℓ(α|γ(I−)) ≤ eAℓ(α|g0 ·R). Furthermore, sinceg0 ∈ ρR
Γ (α), the definition ofρR

Γ (α)
givesℓ(α|g0 ·R)≤ 2ℓ(α|ϕi ·R). Combining these, for everyt ∈ I we find that

ℓ(α|γ(I−))≤ 2e2Aℓ(α|γ(t)). (6)

Let us analyze the location of rightγ(α) in I . SetD′ = K′(B+K′), whereB is the constant defined after
Proposition 6.5. Then alls, t ∈ I with |s− t| ≥ D′ satisfydF(γ(s),γ(t)) ≥ B. We claim that

leftγ (α)≤ I−+D′
(

2A
log2+2

)

.

Indeed, if this is false, thenα|γ(t) is illegal for all t ∈ [I−, I−+D′m], wherem=
⌈

2A
log2 +1

⌉

≤ 2A
log2+2. But

thenLemma 6.3would imply thatℓ(α|γ(I−))> 2mℓ(α|γ(I−+D′m)), contradicting (6) since 2m ≥ 2e2A. We
also know that rightγ(α)≤ leftγ (α)+D′ by Proposition 6.5and our choice ofD′. Therefore we conclude

rightγ (α)≤ I−+D′
(

2A
log2+3

)

≤ I0+D′
(

2A
log2 +3

)

. (7)

Setr0 :=max{I0, rightγ(α)}, so that rightγ(α)≤ r0 ≤ I+. Define alsoE :=MεD′( 2A
log2+3)+A. Equation

(7) with Lemma 2.4and the estimatedsym
X

(γ(I0),g ·R)≤ A then combine to givedsym
X

(γ(r0),g ·R)≤ E.
Suppose now thatβ is k–almost contained inα at g ·R for the given constantk. By Lemma 6.7, we

know thatβ is k′–almost containedα at γ(r0) for some constantk′ depending only onk andE. Define
L0 := (3k′+3I)eE so that the additional assumptionℓ(β |g ·R)≥ L0 will moreover imply

ℓ(β |γ(r0))≥ ℓ(β |g ·R)e−E ≥ 3k′+3I.

Thus if β is k–almost contained inα at g ·Randℓ(β |g ·R)≥ L0, we may applyCorollary 6.9to conclude

ℓ(β |γ(t))≥
2
3I

ℓ(β |γ(r0))e
(t−r0) ≥

2
3IeE ℓ(β |g ·R)e

(t−r0) (8)

for all t ≥ r0 (this is valid becauser0 ≥ rightγ (α)).
We now use (8) to prove the proposition. SinceI+ ≥ r0 by construction, (8) immediately gives

ℓ(β |h ·R) = ℓ(β |γ(I+))≥
2

3IeE ℓ(β |g ·R)e
(I+−r0).
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Sincedsym
X

(g ·R,γ(r0)) ≤ E andγ is a directed geodesic, we have thatdX(g ·R,h ·R) ≤ E+(I+− r0). We
also knowdX(g ·R,h ·R)≥

1
K dΓ(g,h)−K by Equation (5). Therefore(I+− r0)≥

1
K dΓ(g,h)−K−E and so

ℓ(β |h ·R)≥
2

3Ie2E+K ℓ(β |g ·R)
(

e1/K
)dΓ(g,h)

as desired. Thus the conclusion of the proposition holds with λ = e1/K andC= 2
3Ie2E+K .

7 Distortion within fibers of EΓ → Γ
Fix a finitely generated subgroupΓ≤Out(F) for which the orbit mapΓ→CS is a quasi-isometric embedding.
Then byTheorem 1.1and Theorem 4.13, the corresponding extensionEΓ is hyperbolic. In this section,
we establishTheorem 7.9which shows that ifH ≤ F is finitely generated and of infinite index, thenH
is quasiconvex (and hence undistorted) as a subgroup ofEΓ. This will follow from the structural result
Theorem 7.2, which will be used in §8 to characterize which hyperbolic extensions ofF induce convex
cocompact subgroups of Out(F).

7.1 The Cayley graph bundle

To this end, we first recall some notation and results from [DT, §§7–8] describing the structure ofEΓ. Fix
a finite generating setS= {s1, . . . ,sn} of Γ and a free basisX = {x1, . . . ,xr} for F. Recalling thatEΓ is the
preimage ofΓ under the quotient map Aut(F)→ Out(F), we choose a liftti ∈ Aut(F) of si for each 1≤ i ≤ n.
In general, we will use the notation ˜g∈ Aut(F) to denote a lift ofg∈ Γ to EΓ. We also writeix ∈ Aut(F) for
the inner automorphism given by conjugation byx∈ F, i.e.,ix(a) = xax−1 for a∈ F. Note thatϕ ixϕ−1 = iϕ(x)
for eachx∈ F andϕ ∈ Aut(F)

As a subgroup of Aut(F), EΓ is thus generated by the setW = {ix1, . . . ixr , t1, . . . , tn}. That is

EΓ = 〈ix1, . . . ixr , t1, . . . , tn〉 ≤ Aut(F).

For convenience, set̂X = {ix1, . . . , ixr } andF̂= 〈X̂〉, so thatF̂ is the isomorphic image ofF in Aut(F). Note
thatF̂ is also the kernel of the homomorphismEΓ → Γ. We also set̃S= {t1, . . . , tn}.

Let T = Cay(F,X), E = Cay(EΓ,W), andB = Cay(Γ,S), where Cay(·, ·) denotes the Cayley graph with
the specified generating set equipped with the path metric inwhich each edge has length one. We respectively
view F̂∼= F, EΓ, andΓ as the 0–skeletons of the simplicial complexesT, E , andB. SetR to be the standard
rose on the generating setX so thatR= T/F. There is then an obvious equivariant simplicial map

p: E → B

extending the surjective homomorphismEΓ → Γ; note thatp sends edges ofE to either vertices or edges
of B depending on whether the edge corresponds to a generator inX̂ or S̃, respectively. For eachb ∈ Γ,
we see that the preimageTb = p−1(b) is the simplicial tree (isomorphic toT) with vertices labeled by the
cosetb̃F̂ (b̃ any lift of b) and edges labeled bŷX. We writedb for the induced path metric on the fiberTb

overb ∈ Γ. By a k–qi sectionof p: E → B, we simply mean ak–quasi-isometric embeddingσ : B → E

such that(p◦σ)(g) = g for everyg∈ Γ (i.e., for every vertex ofB). By Mosher’s “quasi-isometric section
lemma” [Mos], there exists a constantK ≥ 1 (depending only on the bundlep: E → B) such that for every
b∈ Γ and vertexv∈ Tb one may build aK–qi sectionσ : B → E with σ(b) = v.

As discussed in [DT, §7] (see also [MS, Example 1.8]),p: E → B is an example of themetric graph
bundleconstruction developed by Mj and Sardar in [MS]. In particular, there is ametric properness function
f : N → N such thatdb(u,v) ≤ f (dE (u,v)) for all b ∈ Γ and all verticesu,v ∈ Tb [DT, Lemma 7.2]. We
moreover observe that if group elementsu,v∈ EΓ lie in the same fiberTb, thenu−1v ∈ F̂ and the fiberwise
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distance satisfiesdb(u,v) =
∣

∣u−1v
∣

∣

X̂ [DT, Lemma 7.1]. Writingu−1v = ia for the appropriatea ∈ F and
definingL≥ 1 to be the maximal bilipschitz constant of the automorphisms in S̃, we deduce the inequality

dbsi (uti ,vti) =
∣

∣t−1
i u−1vti

∣

∣

X̂ =
∣

∣t−1
i iati

∣

∣

X̂ =
∣

∣

∣it−1
i (a)

∣

∣

∣

X̂
≤ L |ia|X̂ = Ldb(u,v) (9)

for every generatorsi ∈ Swith corresponding liftti ∈ S̃.

7.2 The Width Theorem

Suppose thata is anelement(rather than conjugacy class) ofF. Then left multiplication by the inner auto-
morphismia ∈ F̂ gives an isometry ofE that preserves each fiberTb of p: E → B. In particular,ia acts as a
hyperbolic isometry of(Tb,db) translating along a unique invariant axis. We writeAb(a) for the axis ofia in
the fiberTb and then define theaxis bundle ofa to be the unionA (a) := ∪b∈ΓAb(a).

Note that whileAg(a) is a geodesic in the path metric space(Tg,dg), it will generally be far from being
a geodesic in the whole spaceE . However, our next result shows that whena is simple andg∈ Γ lies in the
minimizing setρR

Γ ([a]) for the conjugacy class ofa (see §6.4), thenAg(a) is a uniform quasigeodesic inE .

Proposition 7.1. Suppose thatΓ ≤ Out(F) qi-embeds intoCS and let p: E → B be as in §7.1. Then for
every R∈ X there exists a constant Q≥ 1 such that for any simple element a∈ F and any g∈ ρR

Γ ([a]), the
axisAg(a) (viewed as a mapR→ Tg ⊂ E ) is a Q–quasigeodesic inE .

The proof ofProposition 7.1is fairly technical and will be deferred to the next section.Meanwhile, we
use it to uniformly bound the “width” of all simple conjugacyclasses ofF. Suppose now thatΓ ≤ Out(F)
qi-embeds intoCS so that the corresponding bundleE is a hyperbolic metric space. Every elementa ∈ F

then acts (via left multiplication byia ∈ F̂) as a hyperbolic isometry ofE , and we leta∗ denote a biinfinite
geodesic ofE joining the two fixed pointsa∞,a−∞ of a in ∂E . Define thewidth of a∈ F (or its conjugacy
classα) by

width(α) = width(a) := diamB p(a∗).

Theorem 7.2(Width Theorem). Suppose thatΓ ≤ Out(F) qi-embeds intoCS and consider the hyperbolic
extension p: EΓ → Γ of F. Then the simple conjugacy classes ofF have uniformly bounded width. That is,

sup
α

diamΓ p(α∗)< ∞

where the supremum is over simple conjugacy classes ofF.

Proof. Let a be a simple element ofF andα is conjugacy class. Suppose that the length ofα is minimized
over the fiberTg for g∈ Γ. Then byProposition 7.1, the axisAg(a) of a in Tg is aQ–quasigeodesic forQ≥ 0
not depending ona. As EΓ is hyperbolic,Proposition 2.1provides a constantR= R(Q) ≥ 0 so that the axis
of a in EΓ has Hausdorff distance at mostR from anyQ–quasigeodesic joining its endpoints in∂EΓ. Hence,
dHaus(a∗,Ag(a)) ≤ R and so the diameter of the image ofa∗ in Γ is at mostR. Since this is independent of
the conjugacy classα, the theorem follows.

In §8, we will show that any hyperbolic extension ofF in which simple elements have uniformly bounded
width is an extension by a convex cocompact subgroupΓ ≤ Out(F).

7.3 Axis bundles and the proof ofProposition 7.1

We now embark on the proof ofProposition 7.1. Our approach is modeled on that of Kent–Leininger in
[KL4], where they prove an analogous result in order to establishtheir width theorem for hyperbolic exten-
sions of surface groups. The main idea is to use the axis bundleA (a) to construct a Lipschitz retract fromE
to Ag(a).
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The first step of the construction utilizes the techniques that Mitra [Mit2] has developed and used ex-
tensively to study hyperbolic group extensions. Letp: E → B be as in §7.1 and leta ∈ F be a nontrivial
element with corresponding axis bundleA (a)⊂ E . Definepa : EΓ →A (a) to be the fiber-wise closest point
projection toA (a), that is, for each vertexx in the fiberTg we definepa(x) to be the unique point inAg(a)
minimizing the distancedg(x,pa(x)).

Lemma 7.3 (Mitra [Mit2, Lemma 3.2]). There is a constantC ≥ 1 depending only on the bundleE → B

such thatpa : EΓ → A (a) is C–Lipschitz for each element a∈ F. That is, for for all u,v∈ EΓ we have

dE (pa(u),pa(v))≤ CdE (u,v).

Proof. Mitra’s proof ofLemma 7.3follows from basic hyperbolic geometry; for completeness we give a brief
sketch here: By the triangle inequality it suffices to supposedE (u,v) = 1. Then ifu,v lie in the same fiberTg,
we immediately havedE (pa(u),pa(v))≤ dg(pa(u),pa(v))≤ 1 by the nature of closest-point-projection in the
treeTg. Otherwiseu andv lie in neighboring fibers so thatv= uti for someti ∈ S̃. But then one may use the
uniform bilipschitz equivalence of neighboring fibers (Equation (9)) to prove thatpa(u)ti is uniformly close
to pa(v) (which is the content of [Mit2, Lemma 3.6]).

Lemma 7.3allows us to extendpa mappa : E → A (a) that is coarselyC–Lipschitz. Fora ∈ F non-
trivial, let us use the terminologyk–qi section through A (a) to mean ak–quasi-isometric embedding
σ : (B,dB)→ (E ,dE ) such thatσ(g) ∈ Ag(a) for all g∈ Γ.

Corollary 7.4. For any nontrivial a∈ F and any vertex v∈ Ag(a), there exists aCK–qi sectionσ through
A (a) with σ(g) = v.

Proof. Let σ0 : B → E be theK–qi section withσ0(g) = v provided by Mosher [Mos]. Composingσ0 with
pa : E → A (a) then gives the desiredCK–quasi-isometric embeddingpa◦σ0 : B → E .

We now make a basic observation about “well-separated”k–qi sections through axis bundles.

Lemma 7.5. There exists a constantD> 0 depending only onE → B with the following property. Suppose
a∈ F is nontrivial, thatσ1,σ2 are CK–qi sections throughA (a), and that g,h∈ Γ satisfy dB(g,h) ≤ 1. If
u∈Ag(a) lies betweenσ1(g) andσ2(g) onAg(a) with dg(u,σi(g))≥D for i = 1,2 and v∈Ah(a) is a vertex
with dE (u,v)≤ CK, then v also lies betweenσ1(h) andσ2(h) onAh(a).

Proof. DefineD := 4E2, whereE =L+2R0(L,0)+ f (2CK+1+R0(L,0)), and suppose thatg,h,u,v,σ1,σ2

are as in the statement of the lemma. IfdB(g,h)= 0 thenv is a point on the geodesicAg(a)within dg–distance
f (CK) of u. Thus the result is immediate sinceD> f (CK). OtherwisedB(g,h) = 1 so thath= gsi for some
generatorsi ∈ S. Let ti be the chosen lift iñS. Define a mapΨ from g̃F̂ (the vertex set ofTg) to h̃F̂ (the
vertex set ofTh) by declaringΨ(x) to be thedh–closest-point-projection ofxti ∈ Th to Ah(a). Since the
assignmentx 7→ xti is L–bilipschitz by Equation (9) andTh is 0–hyperbolic, it follows fromProposition 2.1
and the definition ofE >L+2R0(L,0) thatΨ restricts to anE–quasi-isometric embedding from (the vertices
of) Ag(a) to Ah(a). Observe also thatdE (Ψ(x),x) ≤ 1+R0(L,0) for each vertexx∈ Ag(a).

The hypotheses onσ1(g),u,σ2(g) now imply thatΨ(u) appears betweenΨ(σ1(g)) and Ψ(σ2(g)) on
Ah(a) with dh

(

Ψ(u),Ψ(σi(g)
)

≥ 3E for i = 1,2. Using the triangle inequality, the hypotheses onσ1,σ2,v
with the above observation aboutΨ|Ag(a) together give

dE

(

Ψ(σ1(g)),σ1(h)
)

, dE

(

Ψ(σ2(g)),σ2(h)
)

, dE

(

Ψ(u),v
)

≤ 2CK+1+R0(L,0).

By metric properness, we may thus conclude that

dh
(

Ψ(σ1(g)),σ1(h)
)

, dh
(

Ψ(σ2(g)),σ2(h)
)

, dh
(

Ψ(u),v
)

≤ f (2CK+1+R0(L,0))≤ E.

Therefore the triangle inequality shows thatv lies betweenσ1(h) andσ2(h) onAh(a), as desired.
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Next, whena∈ F is simple the flaring property established in §6.4 translates into the following estimate
for well-separated qi-sections throughA (a). Let R ∈ X denotes the marked graph Cay(F,X)/F equipped
with the metric in which each edge has length1/rk(F)

Proposition 7.6. Suppose thatΓ ≤ Out(F) qi-embeds intoF and let p: E → B be as in §7.1. For every
K̄ ≥ 1 there exist D,D0 > 0 and η > 1 so that the following holds. Suppose that a∈ F is simple and that
σ ,σ ′ areK̄–qi-sections throughA (a) with dg(σ(g),σ ′(g))≥ D0 for some element g∈ ρR

Γ ([a]). Then for all
h∈ Γ we have:

dh(σ(h),σ ′(h))≥ DηdΓ(g,h)dg(σ(g),σ ′(g)).

Proof. Le C, λ , andL0 be the constants obtained by applyingLemma 6.10to the orbitΓ ·R with k= 1, and
let f be the metric properness function for the graph bundleE →B. Fix N ≥ 1 large enough so thatCλ N > 4
and define

D0 := max
{

2, 2rk(F)L0, 8C−1 f (5K̄N)
}

.

Chooseh ∈ Γ arbitrarily, and letg = g0, . . . ,gm = h be a geodesic fromg to h in Γ. Let us writeσi :=
σ(gi) ∈ Tgi and σ ′

i := σ ′(gi) ∈ Tgi for the value of the twoK̄–qi-sections in the fiberTgi of p: E → B

over gi . Choose any verticesgi ,g j along our geodesic withi ≤ j ≤ i + 2N, and suppose temporarily that
dgi (σi ,σ ′

i )≥ D0. Recall from §7.1thatTgi = p−1(gi) is a simplicial tree whose edges are labeled by the free
basisX̂ of F̂. With respect to this basis, the elementic = σ−1

i σ ′
i ∈ F̂ may not by cyclically reduced. However,

there is somex∈ X̂ so thatib = σ−1
i σ ′

i x∈ F̂ is cyclically reduced. Setzi = σi andz′i = σix, so that the geodesic
edge path[zi ,z′i ] in Tgi is labeled by the cyclically reduced wordib of F̂ with the properties that‖ib‖X̂ = |ib|X̂
and that|ib|X̂ differs fromdgi (σi ,σ ′

i ) =
∣

∣σ−1
i ,σ ′

i

∣

∣

X̂ by at most 1.
Choosing a lift ˜gi ∈ Aut(F) of gi ∈ Out(F), the action ˜gi on E restricts to a simplicial automorphism

from T1 to Tgi that respects the edge labeling and thus gives an identification of T1 = Cay(F̂, X̂) with Tgi .
With respect to this identification, the element ˜gi(b) ∈ F acts onTgi the same way thatib acts on Cay(F̂, X̂).
Therefore, since the labeled edge path[zi ,z′i ] is a fundamental domain of the axis ofib in Cay(F̂, X̂), it follows
that [zi ,z′i ] ⊂ Tgi is a fundamental domain of the axis for ˜gi(b) acting onTgi . Letting β andα denote the
conjugacy classes ofb anda, respectively, it follows that ˜gi(β ) = gi(β ) is 1–almost contained inα at gi ·R
(sinceσi ,σ ′

i ∈ Agi (a) by construction and all edges in the universal cover ofgi ·R have length1/rk(F) ≤ 1).
Since

ℓ(gi(β )|gi ·R) = ℓ(β |R) = 1
rk(F) ‖ib‖X̂ ≥ 1

rk(F)

(

dgi (σi ,σ ′
i )−1

)

≥ 1
2rk(F)dgi (σi ,σ ′

i )≥ L0

by the assumptiondgi (σi ,σ ′
i )≥ D0, we may applyLemma 6.10to conclude

ℓ(gi(β )|g j ·R)≥Cλ j−iℓ(gi(β )|gi ·R)≥
C

2rk(F)λ
j−idgi (σi ,σ ′

i ).

For eachi < p ≤ j, setsp = g−1
p−1gp ∈ S and lettp ∈ S̃ be the chosen lift ofsp in the generating setW

of EΓ. For i ≤ p ≤ j let us also definezp = ziti+1 · · · tp andz′p = z′isi+1 · · · tp, both of which are points over
gp = gisi+1 · · ·sp. Sincegi,gi+1, . . . ,g j is a geodesic inΓ, it follows that zi , . . . ,zj and z′i , . . . ,z

′
j are both

geodesics inEΓ and thus thatdE (zi ,zj) = dE (z′i ,z
′
j ) = j − i ≤ 2N. Observe now that

z−1
j z′j = (ziti+1 · · · t j)

−1(z′iti+1 · · · t j
)

=
(

t−1
j · · · t−1

i+1

)

z−1
i z′i (ti+1 · · · t j) = ϕ ibϕ−1 = iϕ(b) ∈ F̂,

whereϕ is the specific liftϕ = t−1
j · · · t−1

i+1 ∈ Aut(F) of g−1
j gi = s−1

j · · ·s−1
i+1. In particular, we see that the

distance betweenzj andz′j in the fiberTg j satisfies

dg j (zj ,z
′
j ) =

∣

∣iϕ(b)
∣

∣

X̂
≥
∥

∥iϕ(b)
∥

∥

X̂
= rk(F)ℓ(ϕ(β )|R) = rk(F)ℓ(gi(β )|g j ·R)≥

C
2 λ j−idgi (σi ,σ ′

i ). (10)
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Let us now compare this distance todg j (σ j ,σ ′
j). Sinceσ ,σ ′ areK̄–qi-sections, the quantitiesdE (σi ,σ j)

anddE (σ ′
i ,σ ′

j) are bounded bȳK( j − i)+ K̄ ≤ 2K̄N+ K̄. Since we also havedE (σi ,zi),dE (σ ′
i ,z

′
i) ≤ 1 by

construction, the triangle inequality thus gives

dE (zj ,σ j),dE (z
′
j ,σ ′

j)≤ 2K̄N+ K̄+N+1≤ 5K̄N.

By metric properness of the graph bundleE →B, it follows thatdg j (zj ,σ j ),dg j (z
′
j ,σ ′

j)≤ f (5K̄N). Combin-
ing with (10) and usingdgi (σi ,σ ′

i )≥ D0 ≥ 8C−1 f (5K̄N) andλ j−i ≥ 1, we conclude that

dg j (σ j ,σ ′
j)≥

C
2 λ j−idgi (σi ,σ ′

i )−2 f (5K̄N)

≥
(

λ j−i − 1
2

)

C
2 dgi (σi ,σ ′

i )≥
C
4 λ j−idgi (σi ,σ ′

i ).

To summarize, we have now shown that the implication

dgi (σi ,σ ′
i )≥ D0 =⇒ dg j (σ j ,σ ′

j)≥
C
4 λ j−idgi (σi ,σ ′

i ) (11)

holds for any pair of verticesgi ,g j on the geodesicg = g0, . . . ,gm = h with i ≤ j ≤ i + 2N. Suppose now
thatdg(σ(g),σ ′(g)) ≥ D0. If dΓ(g,h) > N, we may then break the geodesicg0, . . . ,gm into ⌊dΓ(g,h)/N⌋ ≥
1

2NdΓ(g,h) pieces that each have length betweenN and 2N and inductively apply the estimate (11) to conclude

dh(σ(h),σ ′(h))≥
(

C
4 λ N)⌊dΓ(g,h)/N⌋

dg(σ(g),σ ′(g))≥ ηdΓ(g,h)dg(σ(g),σ ′(g)),

whereη :=
(

Cλ N

4

)1/2N

> 1. Otherwise,dΓ(g,h)≤ N and (11) immediately gives the desired bound

dh(σ(h),σ ′(h))≥
(

C
4ηN

)

ηdΓ(g,h)dg(σ(g),σ ′(g)).

With these tools in hand, we are now prepared to give the

Proof ofProposition 7.1. Let K, C, andD be the constants provided by Mosher’s quasi-isometric section
lemma,Lemma 7.3, andLemma 7.5(all which depend only on the bundleE → B). Let D,D0 > 0 be the
constants obtained by applyingProposition 7.6with K̄ = CK, and fix a constantM > D0+( f (C)+D)/D.

Let a∈ F andg∈ ρR
Γ ([a]) be as in the statement of the proposition. We may useCorollary 7.4to construct

an infinite family{Σi}i∈Z of CK–qi sections throughA (a) with the property that anddg(Σi(g),Σ j(g)) =
M |i − j| for all i, j ∈ Z. Notice that this forces the points. . . ,Σ−1(g),Σ0(g),Σ1(g), . . . to be linearly or-
dered along the axisAg(a). Furthermore, for alli 6= j we havedg(Σi(g),Σ j(g)) ≥ D0 so that we may apply
Proposition 7.6to concludedh(Σi(h),Σ j(h))≥ DM >D+ f (C) for all h∈ Γ.

From this we claim that the sections{Σi} areconsistently orderedin each fiber, meaning that ifΣ j(h)
appears betweenΣi(h) andΣk(h) in the axisAh(a) for someh ∈ Γ, then the same holds for everyh′ ∈ Γ.
Indeed, ifΣ j(h) appears betweenΣi(h) andΣk(h) in Ah(a), then applyingLemma 7.5with σ1 = Σi , σ2 = Σk,
u = Σ j(h) shows thatv = Σ j(h′) appears betweenΣi(h′) and Σk(h) in any neighboring fiberh′; thus the
consistently ordered conclusion follows by induction.

We now use the sections{Σi}i∈Z to define a mapqa : A (a) → Ag(a), as follows. For eachh ∈ Γ,
the sectionsΣi partition the geodesicAh(a) ∼= R into infinitely many, disjoint, half open intervalsZh

j :=

[Σ j(h),Σ j+1(h)). Define the mapqa by sending the intervalZh
j = [Σ j(h),Σ j+1(h)) to the pointΣ j(g) ∈ Ag(a)

(so the image ofqa is the set{Σ j(g)} j∈Z). Next defineΠa : EΓ → Ag(a) to be the compositionΠa = qa◦pa.

Claim. The mapΠa : EΓ → (Ag(a),dg) is a coarse3M–Lipschitz retraction ontoAg(a), meaning that for
all u,v∈ EΓ and each vertex x∈ Ag(a) we have

dg(Πa(u),Πa(v))≤ 3MdE (u,v) and dg(x,Πa(x))≤ 3M
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Indeed, for any vertexx∈ Ag(a) we havepa(x) = x, by definition, so thatΠa(x) = Σ j(g) where j ∈ Z is
the unique integer such thatx∈ Zg

j = [Σ j(g),Σ j+1(g)). Thusdg(x,Πa(x))≤ M sincedg(Σ j(g),Σ j+1(g)) = M
by construction of the family{Σi}. To complete the proof of the claim, it thus suffices to prove the bound
dg(Πa(u),Πa(v)) ≤ 3M for all u,v ∈ EΓ with dE (u,v) = 1. First supposeu,v ∈ Th for someh ∈ Γ. Then
pa(u),pa(v) ∈ Ah(a) satisfy

dh(pa(u),pa(v))≤ f
(

dE (pa(u),pa(v))
)

≤ f (C)

by Lemma 7.3. Sincedh(Σm(h),Σn(h)) ≥ D+ f (C) for all m 6= n, it follows that if pa(u) lies in Zh
i and

pa(v) lies in Zh
j , then|i − j| ≤ 1. Thusdg(Πa(u),Πa(v)) = dg(Σi(g),Σ j(g)) = M |i − j| ≤ M. Next suppose

thatu andv lie in different fibers. Then, sincedE (u,v) = 1, we haveu ∈ Th andv ∈ Th′ for someh,h′ ∈ Γ
with dB(h,h′) = 1. Let i, j ∈ Z be such thatpa(u) ∈ Zh

i andpa(v) ∈ Zh′
j , and note thatdE (pa(u),pa(v)) ≤ C

by Lemma 7.3. Sincepa(u) ∈ [Σi(h),Σi+1(h)), it follows thatpa(u) lies betweenΣi−1(h) andΣi+2(h) with
dh(pa(u),Σn(h)) ≥ D for n ∈ {i − 1, i + 2}. Therefore we may applyLemma 7.5to conclude thatpa(v)
lies betweenΣi−1(h′) andΣi+2(h′) in Ah′(a). In particular, we must havej ∈ {i − 1, i, i +1, i +2} so that
dg(Πa(u),Πa(v)) = dg(Σi(g),Σ j(g)) = M |i − j| ≤ 3M. This completes the proof of the claim.

We now prove the proposition. Letx,y∈Ag(a) be arbitrary. Then clearlydE (x,y)≤ dg(x,y) by definition
of the path metricsdE anddg. Choosing verticesx′,y′ ∈ Aa(g) with dg(x,x′),dg(y,y′) ≤ 1, the claim and
triangle inequality together imply that

dg(x,y)≤ 2+6M+dg(Πa(x
′),Πa(y

′))≤ 2+6M+3MdE (x
′,y′)≤ 2+6M+3M(dE (x,y)+2).

Therefore the inclusion(Ag(a),dg)→ (E ,dE ) is a(6M+2)–quasi-isometric embedding.

7.4 A Scott–Swarup theorem

In [SS], Scott and Swarup proved that a finitely generated, infiniteindex subgroup of the fiber of a fibered
hyperbolic 3-manifold group is quasiconvex. This result was extended to arbitrary hyperbolic extensions of
surface groups in [DKL] and to hyperbolic free-by-cyclic groups with fully irreducible monodromy in [Mit3].
In this section, we generalize these results on the nondistortion of finitely generated, infinite index subgroups
of fiber group to the case of hyperbolic extensions of free group by convex cocompact subgroups of Out(F).

We first show each free factorA of F is undistorted inEΓ. Our proof uses the following well-known fact
about hyperbolic groups:

Fact 7.7. Suppose that G is a hyperbolic group and let a,b∈ G be infinite order elements. Then(anb−n)∞ →
a∞ and(anb−n)−∞ → b∞ in ∂G as n→ ∞.

Proposition 7.8. Let Γ ≤ Out(F) be a finitely generated group with quasi-isometric orbit mapinto CS and
let EΓ be the associated hyperbolic extensions ofF. Then for any free factor A ofF, A is quasiconvex in EΓ.

Proof. Let δ be the hyperbolicity constant ofEΓ. By Proposition 7.1andTheorem 7.2, there are constants
R,Q> 1 so that diamΓ(p(x∗))≤ R for each simple elementx of F and thatx∗ and theQ–quasigeodesicAg(x)
have Hausdorff distance at mostRwheneverx is minimized in the fiber overg, i.e. wheneverg∈ ρR

Γ ([x]).
Now let a,b ∈ A be arbitrary. We claim thatdΓ(g,h) ≤ 5R+ 4δ for any g ∈ ρR

Γ ([a]) andh ∈ ρR
Γ ([b]).

Sinceanb−n ∈ A, these elements are simple. Moreover, since(anb−n)∞ → a∞ and(anb−n)−∞ → b∞ in ∂EΓ
by Fact 7.7, there is anN ≥ 0 such that(aNb−N)∗ meets a 2δ–neighborhood ofa∗ andb∗ in EΓ. Then

diam(p(a∗)∪ p(b∗))≤ diamp(a∗)+2δ +diamp((aNb−N)∗)+2δ +diamp(b∗)≤ 3R+4δ . (12)

ThereforedΓ(g,h)≤ 5R+4δ as claimed. SettingD= dΓ(1,g)+5R+4δ , this moreover shows thatdΓ(1,h)≤
D wheneverh lies in the minimizing setρR

Γ ([b]) for anyb∈ A.
We can now directly verify thatA is quasiconvex inEΓ. Identify A with the vertices of the treeTA

1 in E .
For any two verticesa,b of TA

1 there is anx∈ A whose axisA1(x) in T1 passes through the verticesa andb. If
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x is minimized in the fiber overh∈ Γ, thendΓ(1,h)≤ D. By Equation (9), there exists anF–equivariantLD–
bilipschitz mapT1 → Th (obtained by writingh as a geodesics1 · · ·sn in Γ and lifting thesi ∈ S to generators
ti ∈ S̃). This and the fact thatAh(x) is aQ–quasigeodesic together imply thatA1(x) is aQ′–quasigeodesic in
E for some constantQ′ ≥ 1 depending only onQ, L, andD. Hence, byProposition 2.1, any geodesic joining
a andb in EΓ = E 0 stays within theR0(Q′,δ )–neighborhood of the geodesicA1(x) in TA

1 joining a andb.
ThereforeA is quasiconvex inEΓ.

We can now combineProposition 7.8with Proposition 5.1to prove the main result of this section.

Theorem 7.9(Nondistortion in fibers). Suppose thatΓ ≤ Out(F) quasi-isometrically embeds intoCS, and
let L be a finitely generated subgroup of the fiberF✁EΓ. Then L is quasiconvex, and hence undistorted, in
the hyperbolic extension EΓ if and only if L has infinite index inF.

Proof. Suppose thatL is a finitely generated, infinite index subgroup ofF. By Marshall Hall’s theorem,L is
a free factor ofH for some finite index subgroupH ≤ F. By Proposition 5.1, the groupΓH qi-embeds into
CS(H), and hence the correspondingH–extensionEΓH fitting into the sequence

1−→ H −→ EΓH −→ ΓH −→ 1

is hyperbolic byTheorem 1.1andTheorem 4.13. SinceL is a free factor ofH, Proposition 7.8implies that
L is quasiconvex inEΓH . Finally, sinceH has finite index inF, EΓ andEΓH are commensurable, and we
conclude thatL is quasiconvex inEΓ. Conversely, ifL has finite index inF, thenL is quasi-isometric to
F✁EΓ which itself is exponentially distorted inEΓ by virtue of being infinite and normal.

Remark 7.10. We note that the above theorem does not necessarily hold for hyperbolic extensions ofF by
groups that do not admit quasi-isometric orbit maps intoCS. For example, ifφ is an automorphism ofF
which is atoroidal but fixes the conjugacy class of a free factor A, then theF–extensionF⋊ 〈φ〉 is hyperbolic
by [Bri], but the subgroupA is not quasiconvex.

8 Hyperbolicity of EΓ and convex cocompactness ofΓ
In the previous section, we learned that ifΓ is convex cocompact and purely atoroidal then not only is the
extensionEΓ hyperbolic, but the projectionEΓ → Γ has controlled geometry over the axes of simple elements.
In this section, we develop a converse to the main theorem of [DT], which established hyperbolicity ofEΓ.
That is, we impose additional structural properties ofEΓ that imply the induced orbit mapΓ → F is a quasi-
isometric embedding. These properties turn out to characterize convex cocompact subgroups of Out(F)
among the class of subgroups inducing hyperbolic extensions ofF.

Suppose henceforth that 1→ F→ E
p
→ Q→ 1 is a hyperbolic extension ofF. This short exact sequence

induces an outer action ofQ onF given by the homomorphismQ→ Out(F) sendingq∈ Q to the class of the
automorphism that conjugatesF✁E by any lift q̃∈ E of q. We then have the commutative diagram

1 F E Q 1

1 F EΓ Γ 1,

p

(13)

whereΓ is the image ofQ→ Out(F). Fixing finite generating sets forE andQ, for each elementa∈ F we
continue to writea∗ for a geodesic inE joining a−∞ ∈ ∂E to a∞ ∈ ∂E. The imagep(a∗) in Q then depends
only on theF–conjugacy classα of a. Hence, as in §7.2, we may define thewidth of a∈ F (or α) to be

widthQ(a) = widthQ(α) := diamQ p(α∗).
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Theorem 8.1(Convex cocompactness). Suppose that1→ F→ E → Q→ 1 is a hyperbolic extension ofF.
Then Q has convex cocompact image inOut(F) (and hence admits a quasi-isometric embedding orbit map
into CS) if and only there exists D≥ 0 so thatwidthQ(a)≤ D for each simple element a∈ F.

Proof. SinceE is hyperbolic, the induced homomorphismQ → Out(F) must have finite kernel. ThusQ is
quasi-isometric to its imageΓ in Out(F) and, further, each vertical arrow in (13) has finite kernel. From this
we see thatE is F–equivariantly quasi-isometric toEΓ and moreover that widthQ(a) coarsely agrees with
the width width(a) in Γ as defined in §7.2. Therefore ifΓ is convex cocompact,Theorem 7.2shows that
supremum supawidthQ(a) over all simplea∈ F is bounded.

For the converse, suppose that widthQ(β ) ≤ D for each simple conjugacy classβ of F. SinceEΓ is δ–
hyperbolic,Γ is purely atoroidal and so it suffices to show thatΓ, or equivalentlyQ, qi-embeds intoF by
Theorem 4.13. As it is more natural for our argument, we instead work the quasi-isometric primitive loop
graphPL defined in §4. Fix α ∈ PL

0 and consider the orbit mapQ→ PL given byg 7→ g ·α, whereQ acts
onPL via Q→ Out(F). We define a coarse mapσ : PL→ Q which we show is a coarse Lipschitz retraction
for the orbit mapQ → PL. Since the orbit map is necessarily Lipschitz, this will show that Q → PL is a
quasi-isometric embedding and establish the theorem. Set

σ(β ) = p(β ∗),

which is by assumption a subset ofQ of diameter at mostD. This map is equivariant since for eachg∈ Q
and any liftg̃∈ E,

σ(g ·β ) = σ(g̃b) = p(g̃b∗) = gp(β ∗),

whereb is any representative of the conjugacy class ofβ . Hence, if we setD0 = diamQ({1}∪σ(α)), then
σ : PL→ Γ is indeed aD0–coarse retraction and so it only remains to show that it is Lipschitz.

Let β andγ be adjacent conjugacy classes inPL and choose representativesb andc such that〈b,c〉 is
a rank 2 free factor ofF. Then, for eachn ∈ Z, bncn is a simple element ofF, and byFact 7.7(bncn)∞

approachesb∞ asn → ∞ and(bncn)−∞ approachesc−∞ asn → ∞. Hence, the axis(bncn)∗ in E becomes
forward asymptotic tob∗ and backward asymptotic toc∗. Then, just as inEquation (12), for all sufficiently
largen we have that

diamQ(p(b
∗)∪ p(c∗))≤ diamQ p(b∗)+2δ +diamQ p((bncn)∗)+2δ +diamQ p(c∗)≤ 3D+4δ .

This demonstrates thatσ : PL→ Q is a Lipschitz retract and completes the proof.
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