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We study the problem of predictability, or “nature vs. nurture”, in several disordered Ising spin
systems evolving at zero temperature from a random initial state: how much does the final state
depend on the information contained in the initial state, and how much depends on the detailed
history of the system? Our numerical studies of the “dynamical order parameter” in Edwards-
Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state
decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick
infinite-range spin glass indicates that this information decays as the number of spins increases.
Based on these results, we conjecture that the influence of the initial state on the final state decays
to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless
of the presence of frustration. We also study the rate at which spins “freeze out” to a final state
as a function of dimensionality and number of spins; here the results indicate that the number
of “active” spins at long times increases with dimension (for short-range systems) or number of
spins (for infinite-range systems). We provide heuristic arguments to support these conjectures, and
also analyze theoretically several mean-field models: the random energy model, the uniform Curie-
Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the
information contained in the initial state does not decay in the thermodynamic limit— in fact, it fully
determines the final state. Unlike in short-range models, the presence of frustration in mean-field
models dramatically alters the dynamical behavior with respect to the issue of predictability.

I. INTRODUCTION

The dynamical properties of Ising spin systems far from equilibrium, and in particular those following a deep
quench, continue to be a major focus of research. There are multiple directions along which this research has been
pursued, including the general areas of phase-ordering kinetics [1–5], persistence [6–10], and damage spreading [11–14],
among many others. In [15] another line of investigation was proposed: the problem of predictability and retention of
information in discrete spin systems evolving far from equilibrium.
Following a deep quench an Ising spin system will be in a random configuration. One can then ask, how rapidly
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does this information in the initial state decay over time, as a function of dimension, lattice type, model (uniform
ferromagnet, random ferromagnet, spin glass, and so on), and other characteristics of the system under study?
The nature of information retention or decay depends on two sources of randomness: that contained in the initial
configuration and that generated through the dynamical realization governing an individual history. This dynamical
randomness is present even at zero temperature, in the order that spins are chosen to attempt to flip (and in the
tie-breaking rule for homogeneous systems when a spin flip would cost zero energy). Disordered Ising models such as
random ferromagnets and spin glasses bring in a third source of randomness, namely in the couplings determining the
local environment of an individual spin. We are interested in the question of how much information contained in the
configuration at time t depends on the initial configuration and how much depends on the specific dynamical path
the system has followed. We will formalize these remarks in Sect. II below. We have colloquially referred to the above
as the “nature vs. nurture” problem, where nature represents the information contained in the initial configuration
and (quenched) random couplings, while nurture refers to the history (i.e., dynamical realization) of the subsequent
evolution of the system.
It was shown in early work that this problem can be solved exactly for 1D random ferromagnets and spin glasses [16].

Preliminary numerical studies on the 2D homogeneous ferromagnet on the square lattice were reported in [17]. More
recently, extensive numerical studies [18] have largely solved the nature vs. nurture problem for the uniform 2D
ferromagnet, so that the rate of decay of initial information for this model is now understood quantitatively. These
results will be briefly reviewed in the next section.
In this paper we turn our attention to disordered Ising models in dimensions greater than one. Our particular focus

will be on the behavior of the random ferromagnet and the Edwards-Anderson (EA) spin glass [19] as a function
of dimension. We will also consider the infinite-range Sherrington-Kirkpatrick (SK) spin glass [20] as a function of
system size N . Our conclusions will be based on numerical studies, but in Sect. V we also present an analytical
discussion of these models, as well as the random energy model (REM) [21] and the uniform and disordered Curie-
Weiss ferromagnets.

II. PRELIMINARIES

Consider a set of Ising spins Si = ±1 on the sites i of the Euclidean lattice Z
d with periodic boundary conditions.

The system Hamiltonian is

H = −
∑

〈i,j〉

JijSiSj , (1)

where 〈i, j〉 indicates a sum over all nearest neighbor pairs and the couplings are independent, identically distributed
random variables chosen from a common distribution (which depends on the exact model under consideration). We
study numerically three types of models: the first is the Edwards-Anderson (EA) Ising spin glass [19] in d dimensions,
in which the common distribution of the couplings is a Gaussian with mean zero and variance one. The second is the
random ferromagnet, where the couplings are all positive; here the common distribution is taken to be a one-sided
Gaussian, in which each bond is chosen as the absolute value of a standard Gaussian random variable (again with
mean zero and variance one). Finally, we consider the infinite-range Sherrington-Kirkpatrick (SK) spin glass. Here
the spins sit on the N sites of a complete graph, with a modified Hamiltonian

H = − 1√
N

∑

i<j

JijSiSj . (2)

The couplings are again chosen from a Gaussian distribution with mean zero and variance one, and the rescaling
factor N−1/2 ensures a sensible thermodynamic limit of the energy and free energy per spin. (Note, however, that
the rescaling factor plays no role in the dynamics described below.)
Initially the spins are in a random initial configuration, in which each spin is chosen to be +1 or −1 with probability

1/2, independently of all the others. This corresponds to an infinite-temperature spin configuration. The subsequent
evolution is governed by zero-temperature Glauber dynamics, which in the simulations to be described below is
implemented as follows. At each step, a site i is selected uniformly at random and the energy change ∆Ei associated
with flipping the associated spin is computed: ∆Ei = ∆H when Si → −Si and all other spins remain fixed. If the
energy decreases (∆Ei < 0) as a result of the flip, the flip is carried out. If the energy increases (∆Ei > 0), the
flip is not accepted. If the energy remains the same (∆E = 0), a flip is carried out with probability 1/2. This last
“tie-breaking” rule is relevant only for models (such as the homogenous ferromagnet, or the ±J spin glass) in which
a zero-energy flip can occur. For disordered models with continuous coupling distributions, such as those considered
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here, this possibility never arises. These dynamics are run until the system reaches an absorbing state that is stable
against all single spin flips.
In [18] we defined a “heritability exponent” by preparing two Ising systems (regarded as identical twins) on a

square of side L with the same initial configuration and then allowing them to evolve independently using different
dynamical realizations of zero-temperature Glauber dynamics [22]. The spin overlap between the resulting copies

is qt(L) = 1

L2

∑L2

i=1
S1
i (t)S

2
i (t), where Sk

i (t) denotes the state of the ith spin at time t in twin k, where k = 1, 2.
The influence of initial conditions is quantified by qt(L), where q0(L) = 1 for any L. We examined the average

qt(L) over both initial conditions and dynamics to investigate two relevant quantities: q∞(L) = limt→∞ qt(L), the

size dependence of the overlap at large times, and qt = limL→∞ qt(L), the time dependence of the overlap in large
volumes.
It is important to note that heritability is not the same as persistence, although the two ask related questions.

Persistence asks which spins have not flipped up to a time t, while heritability asks to what extent the information

contained in the initial state persists up to time t. A spin may have flipped multiple times during this interval but
its final state might still be predictable knowing the initial condition.
Our key finding for the 2D uniform ferromagnet [18] was that heritability decays as a power law at long times:

qt ∼ t−θh . The power-law exponent θh is the “heritability exponent” referred to above. The size dependence of the
final overlap between twins on a finite lattice similarly decays as a power law: q∞(L) ∼ L−b, The exponents θh and b
were shown, through a finite size scaling ansatz, to be related by b = 2θh, consistent with our numerically determined
values and with exact 1D values.
Before turning to a study of nature vs. nurture in disordered Ising systems, we point out an important difference

between the uniform ferromagnet on Z
d and the models considered here: as noted above, there can be no “ties”, or

zero-energy flips in disordered models whose couplings are random variables arising from continuous distributions.
(This is equally true for the homogeneous ferromagnet with an odd number of neighbors, such as the d = 2 honeycomb
lattice, but we do not consider those models here.) It was proved in [16] that, in the uniform ferromagnet on the
square lattice under the dynamics described here, every spin (on the infinite lattice) flips infinitely often. It was also
proved in [16] that, in any discrete spin model such as those considered here, every spin makes only a finite number of
energy-lowering flips in any dynamical run; consequently, qt does not decay to zero as t → ∞ in any finite-dimensional
EA spin glass or random ferromagnet with a continuous coupling distribution [23]. In [16], we defined a dynamical
order parameter qD (D for dynamical) which effectively corresponds to

qD = lim
t→∞

qt . (3)

Because we are now considering heritability as a function of dimension d, to avoid confusion we will hereafter refer to
the dynamical order parameter as q∞ rather than qD. The interesting question is how does q∞ behave as a function
of dimension d for these models, and in particular does it tend to zero as d → ∞? For the SK model, in contrast,
one is forced to consider q∞ to be the long-time limit of qt(N) for finite number of spins N , which of course will be

nonzero for any finite N . The corresponding question is then whether q∞(N) → 0 as N → ∞.

III. MODELS AND METHODS

In order to distinguish the influence of nature and nurture in the above three models, we use the twin method
described above. As a function of time t, we look at the overlap q between the twins for a system of size N = Ld:

qt(N) =
1

N

N∑

i=1

S1
i (t)S

2
i (t) (4)

where S1
i (t) denotes the state of i

th spin at time t in twin 1 and S2
i (t) is the spin state for twin 2. Here and throughout

this work, time t is measured in sweeps, where one sweep corresponds to N spin-flip attempts. The overlap is initially
unity: q0(N) = 1 and, on average, decays in time. For each finite realization, it reaches a final value when both
twins are in absorbing states; we are therefore interested, in addition to q∞ defined above, in the N (equivalently, L)
dependence of qt(N) for the three models. We also study the time to reach the absorbing state and the fraction of
active or flippable spins as a function of time.
We use the algorithm introduced in [18]. For the first t0 sweeps we implement Glauber dynamics directly: A spin

Si is randomly selected, the energy change ∆Ei is computed, and the spin is flipped (Si → −Si) if ∆Ei < 0 and
not flipped otherwise. After each attempted spin flip, time is incremented by 1/N sweeps. After t0 sweeps, only a
few active spins (such that ∆Ei < 0) remain and the dynamics is significantly accelerated using kinetic Monte Carlo
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methods. To implement kinetic Monte Carlo, a list of active spins is maintained. A single step of kinetic Monte Carlo
consists of selecting a spin at random from the active list and then carrying out the flip. The time is incremented by
1/ft(N), where ft(N) is the number of active spins before the spin flip. After the spin flip the active list is updated:
the spin at i is removed from the list and its neighbors are all checked to see if they must be added to or removed
from the active list. Kinetic Monte Carlo dramatically improves the run time for the d-dimensional models. For the
finite-dimensional models, t0 is set to 10 while for the SK model, t0 = 20.
For each system, we study 30,000 independent pairs of twins (i. e. 60,000 systems). From qt(N), we compute the

mean qt, the standard deviation σt and the standard error of the mean. We are mostly interested in the final value
q∞ when both twins have reached the absorbing states.

IV. RESULTS

In this section we present numerical results for the Edwards-Anderson (EA) spin glass in dimensions d = 2, 3 and
4, the random ferromagnet in d = 2, and then the Sherrington-Kirkpatrick (SK) model.

A. Edwards-Anderson model in d dimensions

Figure 1 is a plot of q∞(N) as a function of number of spins N for the EA spin glass, with subfigures (a), (b), and

(c) representing d = 2, 3, and 4 dimensions, respectively. It is clear that q∞(N) is rapidly converging to a non-zero
constant as N → ∞.
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FIG. 1: The overlap q∞(N) vs. system size N . Panels (a), (b) and (c) represent Edwards-Anderson spin glasses in d = 2, 3
and 4 dimensions, respectively.

The fast convergence of q∞(N) to a constant value, motivates using q∞(Nmax) as an estimator for q∞(N → ∞)
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where Nmax is the largest size simulated for each system. For d = 1, it is known that q∞(N → ∞) = 1/2 [16]. The

results for q∞(Nmax) and the values of Nmax for each dimension are presented in Table I. The errors listed in the

Table include only statistical errors. It is possible that systematic errors due to estimating q∞(N → ∞) at a finite

Nmax are larger. Figure 2 shows q∞(Nmax) vs. d and indicates that q∞(N → ∞) decreases with increasing dimension

though with only four data points it is unclear whether in the limit of high dimension, d → ∞, q∞(N → ∞) = 0 or

q∞(N → ∞) > 0.

TABLE I: The largest simulated system size, Nmax and q∞(Nmax) for dimension d.

d Nmax q∞(Nmax)

2 1002 0.4166(1)

3 503 0.35233(3)

4 204 0.31746(3)
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FIG. 2: The average overlap in the absorbing state for the largest systems size q∞(Nmax) vs. dimension d for the EA spin glass
models.

Next we consider the mean survival time τ(N) as a function of number of spins N . The survival time for each
system is the (integer) number of sweeps immediately prior to reaching the absorbing state. Figure 3 shows τ(N)
vs. N for each dimension d.
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FIG. 3: (color online) Mean survival time τ (N) vs. number of spins N for the EA spin glass models d = 2 (red squares), d = 3
(black circles), and d = 4 (blue triangles).

A slight downward curvature of τ(N) can be seen in two dimensions, but not in three and four dimensions, where
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τ(N) shows no sign of saturating up to the largest sizes studied. At the same time, we know from [16] that in all
dimensions the number of spin flips is finite. It is also curious that in all cases the overlap saturates to a constant very
quickly with N , but the mean survival time is still increasing, even for the largest sizes. How can we reconcile these
disparities? In fact, these observations are not in contradiction. The most likely scenario is that τ(N) approaches
a finite dimension-dependent constant for all finite d, and our simulations simply have not gone to sufficiently large
N . But other possibilities are also consistent with observations. The fact that each spin flips finitely often of course
does not necessarily imply that the survival time, or (roughly) equivalently, the mean number of spin flips per site,
is finite: it could be the case that a small number of spins continue to flip long after most of the others have reached
their final state. This would also be consistent with the overlap saturating while the survival time is still increasing
with N . A more detailed numerical study is needed to determine whether this is indeed happening.
However, our main interest here is the dependence on d of the mean number of spin flips per site at fixed N . This

is not the same quantity as τ(N), for the reasons discussed in the preceding paragraph; nevertheless, the two are
related, and the clear increase in τ(N) with dimension d that can be seen in Fig. 3 provides reasonable supporting
(more accurately, necessary but not sufficient) evidence that the typical number of spin flips per site increases with
d, and we will take this as one of our conjectures in Sect. V.

B. Random Ferromagnet in 2D

Figure 4 is a plot q∞(N) vs. N for the d = 2 random ferromagnet. Similarly to the EA spin glass, q∞(N) quickly

saturates to a constant and it is reasonable to assume that at the largest system size, q∞(Nmax) ≈ q∞(N → ∞). We

note that q∞(Nmax) = 0.4198(1) for Nmax = 1002, and it is interesting to compare this result to that obtained for

the d = 2 EA spin glass, where q∞(Nmax) = 0.4166(1) for the same largest size Nmax = 1002. The two results are
very close, within 1% of each other, though they differ by many standard errors. Since the error bar accounts only
for statistical errors, and not finite-size systematic errors, it is possible that q∞(N → ∞) is identical for spin glasses
and random ferromagnets, though we believe it is more likely that they differ. In either case, the closeness of the two
values of q∞(N → ∞) suggest that frustration, which is present in the spin glass but not the random ferromagnet,
plays little or no role in the nature vs. nurture problem for finite dimensions.
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FIG. 4: q∞(N) vs. N for the d = 2 random ferromagnet.

C. Sherrington-Kirkpatrick model

This section presents results for Sherrington-Kirkpatrick (SK) model, the Ising spin glass on the complete graph.

Figure 5 is a plot of q∞(N) as a function of N . While it is clear that q∞(N) is decreasing with N it is not obvious

whether q∞(N → ∞) is zero or greater than zero.
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FIG. 5: The points are simulation results for q∞(N) vs. N for the SK model. The curve is the highest quality fit, fit 1 with
Nmin = 50.

To attempt to determine which possibility holds we fit q∞(N) to three functional forms:

1. q∞(N) =
a

(logN)1/3
+

b

N

2. q∞(N) = aN c + b

3. q∞(N) =
a

(logN)b

For each of these forms, we carried out fits for two values of the minimum size used in the fit Nmin = 30 and 50. The
fitting coefficients and quality of the fits are summarized in Table II and Fig. 5 shows the highest quality fit, which
is fit 1 with Nmin = 50.

TABLE II: Parameters and fit quality for the three fits of q∞(N) vs. N

a

(logN)1/3
+ b

N
aNc + b a

(logN)b

Nmin 30 50 30 50 30 50

a 0.4063(3) 0.4064(4) 0.29(2) 0.24(2) 0.439(8) 0.421(6)

b 0.49(5) 0.41(13) 0.175(3) 0.166(6) 0.369(9) 0.349(7)

c −0.29(2) −0.23(3)

Reduced χ2 0.99484 1.12424 2.44157 1.65737 4.43254 1.5121

Quality of Fit 0.4416 0.345 0.0123 0.1411 7.9458 × 10−6 0.1695

The first fitting function is the best fit to the data for both values of Nmin and implies that q∞(N → ∞) = 0.

Nonetheless, the second functional form also provides a reasonable fit and implies that q∞(N → ∞) > 0. It is also
noteworthy that the leading coefficient, a of the first functional form is stable with respect to changing the fitting
range while this is not true of the second functional form. Although the numerics are not definitive, we believe that
it is most likely that q∞(N) converges very slowly, i.e. as 1/ log(N)1/3, to q∞(N → ∞) = 0. Since, in some sense, the
SK model is believed to correspond to the EA model at d = ∞, these results provide further support to the conjecture
that q∞ → 0 in the EA model as dimensionality goes to infinity.
Next we consider the survival time as a function of N . For the SK model, we define τ(N) as the median survival

time for a system of N spins. We note that distribution of survival times is well described by a lognormal and obtain
the median by fitting the data to a lognormal. Figure 6 is a log-log plot of τ(N) vs. N . A power law fit with a 1/N
correction to scaling, τ(N) = aN b(1+c/N) does a reasonable job of fitting the data for N ≥ 800. The fitted exponent
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is b = 0.69. A pure power law is a worse fit and yields a smaller value of the exponent, b = 0.64. The pure power law
with b = 0.64 is shown as the solid curve in Fig. 6. Although we have low confidence in the value of the exponent
describing τ , in contrast to the finite-dimensional models, it seems clear that the survival time diverges in N , most
likely as a power near 2/3.
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FIG. 6: The median time for reaching the absorbing state, τ (N) vs. number of spins, N for the SK model.

Finally, we study the fraction of active (flippable) spins ft(N) as a function of time t. Figure 7 is a log-log plot of
ft(N) vs. t. We find that for the first 10 sweeps, ft(N) has a power law decay. At longer times the curves fall much
more steeply. However, for intermediate times and the larger system sizes there appears to be a flattening before
the steep fall-off. Thus the asymptotic behavior in time for ft(N) in the limit N → ∞ is not clear. A power law
ft(N) = (1/2)(t+ 1)−1.52 in the range 0 ≤ t ≤ 10 is a good fit to the data for all values of N .
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FIG. 7: Log-log plot of the fraction of active spins ft(N) vs. t for the SK model for different sizes N with sizes increasing from
left to right.

V. DISCUSSION

In this section we summarize the numerical results presented above, and discuss them within the context of the
theory of the nature vs. nurture problem. We also examine some other mean-field models for which rigorous conclusions
can be stated, and whose dynamical behavior is surprising given our knowledge of the behavior of finite-dimensional
systems and the SK model.
The numerical results discussed above focused on three disordered systems: the EA spin glass and random ferro-

magnet as a function of dimension d, and the SK spin glass as a function of the number of spins N . While no firm
conclusions can yet be drawn for these models, the results suggest several broad conclusions, which for now remain
as conjectures:
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1. In the numerical simulations of the EA model and random ferromagnet on Z
d reported in Sect. IV, the survival

time is seen to increase with dimension d; based on this (see the discussion at the end of Sect. IVA), we
conjecture that the number of spin flips per site diverges as d → ∞.

2. The dynamical order parameter q∞ in the EA model and random ferromagnet on Z
d is nonzero for any fixed

d < ∞ but tends to zero as d → ∞, and similarly in the SK model as N → ∞.

3. In short-range models, the dynamical behavior studied here is relatively insensitive to frustration, in that the
spin glass and random ferromagnet behave similarly. However, frustration appears to play an important role in
mean-field models, as discussed below.

While we do not as yet have analytical results on these conjectures, we can provide heuristic arguments in their
support. We first do so for short range models, then present some analytical results for mean field models and a
corresponding heuristic for the SK model.

A. Short-range models

We begin with some relevant rigorous results obtained in an earlier paper [15]. These are the following: first, for
both the EA spin glass and the random ferromagnet on the infinite Euclidean lattice Z

d for any finite d, there is an
uncountable infinity of k-spin-flip stable states, for any finite k ≥ 1 (states with k = 1 comprise the set of final possible
states for the dynamics described in this paper). The overlap distribution for the set of such states is a δ-function at
0.
Related to the above result is that if one begins with two independently chosen random initial configurations

for either the spin glass or random ferromagnet in any finite dimension, and lets their respective (zero-temperature
Glauber) dynamics proceed independently, then the two dynamical runs will almost surely “land” in separate 1-spin-
flip stable states with overlap zero. However, the nature vs. nurture question focuses on a single randomly chosen
initial configuration and asks for the spin overlap between the final states obtained through different runs under
independent dynamical realizations. In [15], it was proved that with probability one the spin overlap between final
states obtained under two independent dynamical runs starting from the same initial configuration is none other than
q∞ > 0.
The question then becomes how, given this perspective on the problem, we would expect this overlap to change

with dimension. To address this, we note another relevant result from [15]. This asserts that the union of the basins
of attraction of all k-spin flip stable states in any of these models has measure zero in the space of all randomly
chosen initial conditions. Moreover, any initial condition (except for a set of measure zero) is on the boundary of
an uncountably infinite number of basins of attraction of 1-spin-flip stable states. It follows that two dynamical
realizations starting from the same initial condition have probability zero of landing in the same 1-spin-flip state for
any fixed d.
So far all of our arguments are rigorously supported, but at this point we need to turn to heuristic arguments. It

seems reasonable, and is (weakly) supported by the numerical results in Sect. IV that the number of spin flips per
site in a typical dynamical run diverges as d → ∞. As a consequence, it is reasonable to expect that the system can
access an increasingly large subset of the set of all 1-spin-flip stable states. One would then expect the overlap of the
1-spin flip stable states within reach of a typical initial configuration to decay to zero as the dimension increases. This
would then lead to q∞ → 0 as d → ∞. Such an argument, of course, is only suggestive, and a fully rigorous approach
will be pursued elsewhere.

B. Mean-field models

It is also of interest to consider some mean-field models which have not previously been studied from the nature
vs. nurture perspective. The previous discussion may lead one to suppose that for a mean field model, q∞ → 0 as
N → ∞ should be normally expected. However, as we will see below, this is not the case.
We consider the random energy model (REM) [21], the Curie-Weiss ferromagnet, and (briefly) the random ferro-

magnet. While the results described below can be proved, we will present them here informally. We begin with the
REM. Although the REM is not typically thought of as a dynamical model, there is a natural dynamics associated
with it. For any N -spin system there are 2N corresponding spin configurations, which are the corners of the hyper-
cube. The REM assigns a random energy independently to each corner (or site) of the hypercube. The distribution
of the energies could be Gaussian, as in the original formulation of the REM, or flat, or some similar distribution;
the results are independent of the specific form, as long as the variance of the distribution is finite. A local minimum
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then corresponds to a site whose N neighboring sites on the hypercube all have larger energy. (This corresponds to a
1-spin flip stable state, because the spin configuration corresponding to each neighbor on the hypercube differs from
that corresponding to the original site by a single spin flip.)
Consider now a random walk starting at an arbitrary site, corresponding to a uniformly chosen point on the

hypercube. If the starting site is a local minimum the walk goes no farther. Otherwise, if the site has k (out of
N) neighbors with lower energy, the walk chooses one uniformly at random among the k. This is equivalent to the
usual zero-temperature Glauber or Metropolis dynamics on the Ising spin system formulation of the REM. One then
continues the process until it ends at a local minimum.
We can then ask a number of well-posed questions; in particular, how long is the length of a typical walk? If

such a walk does not proceed, on average, macroscopically far in the hypercube (i.e., has o(N) steps), then q∞
should go to 1. But this is precisely the case for the REM. In fact, this problem was solved in a different context
by Kauffman and Levin [24], who found that, on average, such a walk takes only O(logN) steps. Consequently,
q∞ ≥ 1 − O(logN/N). Therefore, as N → ∞, q∞ → 1: nature always wins! This is an unusual result, which we
have not seen for any nontrivial short-range model. (The largest q∞ found for other models is 1/2, for a random Ising
chain in one dimension [16].) The REM is of great interest because, despite its simplicity, it mimics much (though
certainly not all) of the thermodynamics of the far more complex SK model. These arguments demonstrate, though,
that the dynamics of the two models, at least from the viewpoint espoused in this paper, are very different.
We turn now to the mean-field ferromagnetic models. In the case of the homogeneous Curie-Weiss model with N

spins, a typical initial condition will have an excess of spins (of order
√
N) in one state (say the plus state) over the

other. Given the usual Glauber dynamics, it’s clear that the final state will then be all plus, so the typical initial
condition completely determines the final configuration. The only initial condition in which this will not be true is
when exactly half the spins (assuming N is even) in the initial condition are plus and half minus. It is easy to see
that the contribution to q∞ from such configurations goes to zero as N → ∞.
For disordered Curie-Weiss models, in which the couplings are i.i.d. nonnegative random variables, it can be shown

that q∞ still goes to 1 as N → ∞, but more extensive arguments are required. A brief sketch of such an argument
is as follows. A typical initial spin configuration will have on order

√
N excess of plus or minus spins. Without loss

of generality suppose the initial spin configuration has a positive magnetization of order
√
N . It is not hard to show,

after taking into account the effect of fluctuations in the magnitudes of the couplings, that the difference between the
number of sites with positive and negative effective field at time 0 is thus of order

√
N with probability going to one

as N → ∞. Now letting the time increase from 0 to a time t = o(
√
N) later, one can use standard arguments based

on the law of large numbers and central limit theorem to show that the magnetization increases by order t during this
time interval. This continues for all times of order N

1

2
−ǫ for any ǫ > 0 during which, with probability approaching 1,

no site’s effective field changes sign. But once O(
√
N) flips have taken place, the magnetization has shifted on order

O(
√
N) causing a corresponding shift, of the same order as the fluctuations in the effective field, in the effective field

at every site. Thus every site’s effective field after a time of order
√
N is shifted in the positive direction by a quantity

converging to a point mass at c > 0; consequently, some sites that had previously had negative effective fields now
have positive ones.
Repeating this until a time t = O(N

1

2
+ǫ) (for any ǫ > 0) leads, with high probability, to every site having positive

effective field. Since the dynamics of the disordered Curie-Weiss model are monotone, then from that time on, spins
flip only from minus to plus and the system steadily drifts to the all plus state. The conclusion is that as N → ∞,
with probability approaching 1, the system (thought of as a random walker on the 2N hypercube) avoids all local
minima and rapidly descends down the energy landscape to the all plus 1-spin flip stable state.
We conclude with a heuristic argument suggesting that the behavior of the SK model is very different: for this

case we conjecture that q∞(N) → 0 as N → ∞. The SK model has exponentially many local minima as N → ∞,
and they are believed to be uniformly distributed on the hypercube (i.e., have typical overlap 0). Unlike the random
ferromagnet, however, there is no natural “downward drift” toward a global energy minimum in the SK model owing
to the randomness in the signs of the couplings. Moreover, unlike in the REM model, the energies assigned to vertices
of the hypercube are highly correlated: the difference in energy of neighbors on the hypercube should be distributed
as ∼ N(0, 1) (where N(0, V ) is the normal, or Gaussian, distribution of mean zero and variance V ), while the energy
of a typical site is distributed as ∼ N(0, N).
The numerics (Fig. 6 ) also suggest that the SK spin glass dynamics take more than O(N) steps on the hypercube

before reaching a local minimum, implying that a typical dynamical realization can traverse most of the hypercube
as N → ∞. Thus it should be the case that as N → ∞, the set of accessible local minima approaches the set of all
local minima, suggesting that q∞(N) → 0 as N → ∞.
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