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The backreaction of inhomogeneities describes the effect of inhomogeneous struc-
ture on average properties of the Universe. We investigate this approach by testing the
consistency of cosmological N-body simulations as non-linear structure evolves. Using
the Delaunay Tessellation Field Estimator (DTFE), we calculate the kinematical back-
reaction Q from simulations on different scales in order to measure how much N-body
simulations should be corrected for this effect. This is the first step towards creating
fully relativistic and inhomogeneous N-body simulations. In this paper we compare the
interpolation techniques available in DTFE and illustrate the statistical dependence of
Q as a function of length scale.

Keywords: large–scale structure, statistics, N-body simulations, interpolation techniques

1. Introduction

Inhomogeneous structure of the Universe at scales below 500h−1 Mpc is an unde-

niable fact. The standard approach to model it (i.e., in the standard ΛCDM model

approach) is to perturb the homogeneous solution of the Einstein equations, i.e.

the Friedmann–Lemáıtre–Robertson–Walker (FLRW) metric. However, there are

strong suggestions that this approach may not be the best one especially for the

late times (i.e. small redshifts z ≤ 3 ) of the Universe evolution (e.g., Ref. 1).

Another approach, scalar averaging using general relativity (GR), introduces

kinematical and curvature backreaction of the inhomogeneous structure of the Uni-

verse, in principle without assuming a homogeneous background. Here we focus

only on the Newtonian version of this approach [2, 3] since current N -body simu-

lations are Newtonian (within the expanding FLRW background, which is rigid in

comoving coordinates). Our motivation is to investigate whether the effect, namely

kinematical backreaction Q, described in Ref. 2, exists in N -body simulations as

the model predicts, and check how big this effect is compared to that expected

analytically.

2. Method

In the Newtonian approach there is only the kinematical backreactiona Q which

occurs in the generalised acceleration law:[2, 3]

3
äD
aD

+ 4πG 〈ρ〉D − Λ = QD, (1)

aCurvature backreaction is obviously zero because of the flat Euclidean spatial section.

http://arxiv.org/abs/1601.00110v1
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where

QD :=
2

3

(

〈θ2〉D − 〈θ〉2D
)

+ 2〈ω2 − σ2〉D. (2)

The volume-weighted average 〈·〉D is defined as a volume integral normalised by the

volume of the domain D for which averaging is performed. The quantities θ, ω and

σ are respectively the expansion rate and the rates of vorticity and shear, defined in

the standard way as elements of the decomposition of the velocity gradient tensor

vi,j in three parts: the trace θ, the symmetric part σij and the antisymmetric part

ωij .

Equation 2 can be rewritten in terms of the tensor invariants:

QD = 2〈II(vi,j)〉D −
2

3
〈I(vi,j)〉

2
D, (3)

where

I(vi,j) = tr(vi,j) = θ, (4a)

II(vi,j) = (tr(vi,j))
2 − tr((vi,j)

2) = ω2 − σ2 +
1

3
θ2 (4b)

and vi,j := ∂jvi.

2.1. Interpolating and averaging fields from N-body simulations

In order to calculate Q from N -body simulations for a given domain D one needs to

interpolate the velocity field (and its gradient) from a discrete set of points, since

in N -body simulations all information about fields is encoded in particles. There

are several methods for interpolating fields from a set of points (e.g. SPH, CIC).

We chose the Delaunay Tessellation Field Estimatorb (DTFE) [4] method, which

is based on Delaunay Triangulation (DT).[5] The advantage of this choice is that

it interpolates the velocity field and its gradients in a very natural way, i.e. by

linear interpolation inside every Delaunay cell (a tetrahedron in the 3D case).[6]

Cells are constructed from a discrete set of points (particles) in such a way that

every tetrahedron constructed from 4 particles fulfills the requirement that there is

no other particle inside a sphere circumscribed on that tetrahedron.

2.2. “QC = 0” test for periodic boundary condition

From (2) and (1) it is clear that the backreaction Q in the Newtonian approach is

purely of a kinematical origin. Moreover, because of the way in which it is defined, it

will always be zero if there is no boundary, e.g. if the “boundaries” are periodically

b The code is free-licensed and available at: http://www.astro.rug.nl/~voronoi/DTFE/dtfe.html.
DTFE uses CGAL—the Computational Geometry Algorithms Library, also free-licensed (http://
www.cgal.org/).

http://www.astro.rug.nl/~voronoi/DTFE/dtfe.html
http://www.cgal.org/
http://www.cgal.org/


January 5, 2016 1:34 WSPC Proceedings - 9.75in x 6.5in mg14˙kazimierczak-bbl page 3

Kinematical backreaction Q with DTFE 3

identified, as is the case for cosmological numerical simulations.c. This is due to the

fact that, by using Gauss’ theorem, QD in comoving coordinates can be expressed

as an integral over the surface ∂D (see eq. (10) of [2]). This gives the possibility

to test existing simulations for consistency if they preserve QC = 0 (C denotes the

whole simulation domain with T 3 topology, “periodic boundary conditions”). If

one divides the whole simulation box domain onto N3 smaller cubes (or domains

of another shape) of equal volume |Dn| = |C|/N3, then the following equation will

be valid:

QC =
1

N3

N
∑

n=1

QDn = 0 (5)

for any natural number N > 0.

3. Results

For calculations we used Einstein–de Sitter (Ωm = 1,ΩΛ = 0) N -body simulations:

(i) a Virgo Consortium (VC) simulation from [7] (simulation SCDM1, hereafter

VC EdS) and (ii) our own simulation performed with Gadget-2 (hereafter, Gadget-

2 EdS) with the same box size and number of particles and cosmological parameters

as in VC EdS (simulation box size: 240h−1 Mpc, 2563 particles, h = 0.5).

We tested vanishing QC with periodic boundary conditions (the “QC = 0” test)

with 4 ≤ N ≤ 512. For any N , this sets up the grid resolution which corresponds to

sub-box domains Dn of a fixed size (n = 1, . . . , N); and probes all ranges of scales

from LC/512 to LC/4 for a simulation with a box side length LC . The velocity gra-

dient was calculated using DTFE with the default averaged interpolation method,

i.e. Monte Carlo sampling over Delaunay cells 100 times for a given estimate.

Figure 1 shows QC as a function of the size LDn = LC/N of sub-domains Dn

(eq. 5), or equivalently, as a function of N . QC does not stay close to zero for

every N , particularly for N ranging from 128 to 512, where QC is negative for both

the VC EdS and Gadget-2 EdS simulations (top panels of fig.1). This corresponds

to 2h−1 Mpc >∼ Dn >
∼ 0.5h−1 Mpc. Moreover fig. 1 shows 〈I〉C (middle panels) and

〈II〉C (bottom panels) from which—with respect to the Dn—QC was calculated. It

is clear that negative values of QC comes from 〈II〉C . Equation (4b) shows that this

strong deviation from zero values comes from σ, since the square of the latter is the

only value which can provide a negative contribution to 〈II〉C .

For a regular grid such as the one used here, DTFE has two built-in methods

of interpolating fields to a grid location followed by a local averaging procedure

(hereafter, “averaged interpolation”): (i) sampling randomly over Delaunay cells

(hereafter, the DT method; as in fig. 1); or (ii) sampling (randomly or not) within

cThe problem of boundaries in cosmological simulations is “solved” by setting up a T 3 topology
of the simulation box, i.e. periodic translation of the fields through the opposite faces of the
simulation box.
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Fig. 1. QC = 0 test: upper panel – QC , middle – 〈I〉C , bottom – 〈II〉C , left panels: VC EdS
simulation, right panels: Gadget-2 EdS simulation, calculated for z = {10, 3, 0}. The source of
strange negative values for QC is 〈II〉C . Calculations done using default averaging method in
DTFE i.e. sampling over delaunay cells with 100 samples.

the grid cell (hereafter, the grid method). We have performed the same test for

both averaged interpolation methods, and varied the numbers of random samples.

Figure 2 compares these two methods for the “QC = 0” test with the VC EdS

simulation. The DT method (solid red line) is less noisy in general, but produces

strong negative values for 128 ≤ N ≤ 512. Grid sampling (dashed green line) is

more noisy (especially for high z) but does not produce strong negative values for

N >
∼ 120, even though the sample size per grid cell (by default, 20 random samples)

is lower than for the DT method. When N is high, the number of particles per

grid cell is low, so that Delaunay cells will be large compared to a grid cell; thus, a

systematic error in volume-weighted averaging of the velocity gradient could occur

by sampling within the local Delaunay cells rather than within the grid cell. This

may explain the DT-method high-N negative QC values, in which case increasing

the sample size should weaken the negative QC . Figure 3 supports this.

3.1. Statistics of Q—early results

Motivated by the QC = 0 analysis, the DT method, with random sample size

increased to 300 and grid size N = 100, was used to estimate probability density

functions (PDF) of QD for the VC EdS simulation at redshift z = 0. Figure 4
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Fig. 2. Comparison of two interpolation methods: sampling over DT cells (method 1) and sam-
pling over grid cells (method 2) for z = 0, z = 1.5 and z = 10.

shows PDFs for three different domain D sizes, LD = 20, 40, 60h−1 Mpc; in each

case, 200 domains were chosen randomly. There is clear evidence of statistical scale

dependence for QD: the smaller the domain D, the more negative Q tends to be

(fig. 4). More detailed calculations will be published soon.

4. Summary

Using DTFE to perform the “QC = 0 test” for the VC EdS and Gadget-2 EdS sim-

ulations suggests that the DT method (sampling over DT cells) introduces artificial

behaviour for small grid cells, i.e. when the number of grid cells is comparable to

the number of particles in simulation. At early epochs, the magnitude of the effect is

comparable to that of the noise of the grid-sampling averaged interpolation method

for big grid cells (low numbers of grid cells). This systematic error can be reduced

by increasing the number of random samples used for averaged interpolations within

Delaunay tetrahedra (fig. 3), at the cost of slowing the calculation. The code could

be improved by implementing an exact calculation of volume-weighted averages in

each grid cell (i.e. averaging the interpolation without random sampling). The

PDFs of Q show statistical scale dependence (fig. 4).
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Fig. 3. DT interpolation method (sampling in
Delaunay cells) as a function of sample size for
VC EdS, z = 0: 50 samples — green, 100 — blue
(default), 200 — red.

Fig. 4. Histogram of QD from sample
of 200 times randomly chosen domain
D of three different sizes: 20h−1 Mpc,
40h−1 Mpc and 60h−1 Mpc divided by H2

0

in order to have dimensionless units.
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