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Abstract. 

Algorithms of control of differential equations solutions are under investigation in the arti-

cle. Idealized and real modifications of the algorithms are distinguished. An equation, which can 

be the base equation for investigation of the idealized algorithms properties, is constructed. The 

difference appearing for real systems and real algorithms is for separate investigation. This differ-

ence tends to zero under tending to zero of the time step of control. If the systems of equations 

satisfy or almost satisfy some properties for which the algorithms are intended, then the results are 

similar numerically as well. One of the algorithms demonstrates high reliability. Another one is of 

more complex properties. Bifurcations, periodic solutions and strange attractors are possible in 

both algorithms in addition to stable steady states. 

Keywords: control of the system, discrete time maps, bifurcation, chaos. 

 

Introduction. 

Algorithmically defined methods are often worth applying for keeping different systems 

states on a necessary level. It is so, for example, for linear systems without steady states in the 

vicinity of the required state. Thus, appropriate algorithms and investigation of their properties are 

necessary. Two algorithms (and some modifications) were proposed in [1,2] for control of the 

atomic reactor power [1-4]. This article investigates properties of these algorithms from stability 

and the bifurcation properties point of view. Mathematically, it means investigation of a fixed 

point of some map. 

The algorithms are constructed here in the form all the same for what objects they are ap-

plied. Thus, they are probably applicable for controlling of different objects under an appropriate 

choice of parameters, but not only for the fast reactors in the self-adjusting mode. 

 

1. An object description from the point of view of the algorithms of control. 

Let us describe the system in an idealized form firstly. Let the vector ),...,,( 21 nxxxx  and 

time t  determine the object state, and the system of differential equations 
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determines the dependence of x  on time. More generally, some components of x  may be numbers 

and some may be functions. Then the system of equations contains the partial derivatives. Let the 

first component of x  is some quantity 0Q , which we need to keep approximately equal to Q . 

If Q  is a functional on system state and is not in a set of variables, then, applying time derivatives 

of the variables, we can write for Q  an equation (...)1fQ   and add it to the system. Let, just the 

same, the second component of x  is some quantity N , which is used to control  the object. If N  

is an independent parameter, then we can formally write an equation 0N  and add it to the 

system of equations. I.e. we consider that the system (1) is a system with already added, if neces-

sary, the described auxiliary equations. We need it only for simplification of denotation in theo-

retical investigation not to consider several essentially equal variants. Algorithms are usable with-

out this procedure. 

Control over the object is changing of the number N  by adding some number N . The 

control affects not Q  directly, but Q , where Q  is the time derivative. We assume that QQ /

. The value   is not a component of the vector x . Let the control N  is fulfilled at some moment 

t , then there exists such a function f  that 

),,,()0()( tNtfttt x  , 0t . (2) 

The function f , generally speaking, depends on the system state x  at the time moment t . And 

0),,0,0( tf x  always. We also assume that f  depends on N  by all means, otherwise, there is 

no sense to speak about possibility of control. 

Proposition. If f  does not depends on x  and t  then it is linear. 

Proof. Really, in this case 

),0(),(),( 1212 ttftNftNf  . 

Dividing by 12 tt   and letting 2t  go to 1t , we obtain 

)0,0(),( 1 tt ftNf  , 

i.e. the function f  can be written in the form tNbf t )( . Then, linearity of f  on N  

follows from the equality 

)0,()0,()0,( 2121 NNfNfNf  . 

Proof is over. 

Let now 

NtNtf Nt  ),( . (3) 

Then we can construct a differential equation for which equalities (2), (3) are true: 

QtNQ tN )(   . (4) 



We suppose that derivative of the function Q  has discontinuity at the moment of the control if 

0N : )0()0(  tQtQ . The system state is defined by three variables: t , Q  and N  here. 

The equality (3) is true for all values of this variables. 

Proposition. If the function )(tQ  satisfies the equation (4), then ),( Ntf   is defined by the 

equality (3). If the function ),( Ntf   is defined by equality (3), then there exists such  , that 

)(tQ  satisfies the equation (4). 

Proof. An expression in parentheses in (4) is )(t . The proof of the first part of the proposi-

tion is direct constructing of the function ),( Ntf   for the equation (4): 
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Let now we know the function NtNtf Nt  ),(  and 00 )(  t , then 

tNtt tN   00 )( . Then, it follows 
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Proof is over. 

The phrase “ )(tQ  satisfies the equation (4)” does not mean that the system (1) is this equa-

tion. It means that the value of )(tQ  follows the rule (4). For example, the system 
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forces )(tQ  to follow the same rule. 

The variable N  is an independent parameter in a case of equation (4), thus, it is always 

possible to choose such an initial value of N , that   equals 0: 

QtNQ tN )(   . (6) 

We need this equation in what follows, so, we write its solution here: 
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The description of the system in this item is called idealized because we suppose possibility 

of infinitely small values: measurement of instantaneous values of derivatives and instantaneous 

change of the number N . In reality even measurement of Q  may be averaging during some time 

(but we assume that measurement of Q  is instantaneous here). The derivative )(tQ  may be meas-

ured approximately, for example, by formula  /))()((  tQtQ . And control may be done in a 

time interval. Just the same, there exists some function f  that determines change of   similarly 

to (2). We suppose that there are really measured values in (2) and control takes some time interval 

in this case (for example, N  can change uniformly during the same time interval t ). We shall 

describe it more formally in what follows. 



Later we use denotation of subscripts relating to the time it , like ii QtQ )( , iit  )(  etc. 

by default. 

 

2. Algorithms. 

Algorithm 1. Let }{ it , ,...2,1i  is some sequence of time moments ii tt 1 . Actions on odd 

and even steps are different. We suppose that QQ / , and the control is instantaneous. We 

suppose also that there is initially given some number N
~

, coinciding with 
N  by sign and greater 

than 
N  in absolute magnitude. 

If i  is odd, then N  is unchanged, i.e. 0 iN . The time 
iii ttt  1
 passed, the value t

~
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is calculated, i.e. the formulas (2), (3) at 0N  are applied, supposing that the linear part of f  

is enough to be taken into account. 

If i  is even the desired value of   is calculated by the formula 

)/1(
~

QQi   (9) 

and the corresponding change of N  by the formula 

Nitii tN 
~
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i.e. the formulas (2), (3) are secondly applied, supposing that the function if  differs quite a little 

from 1if  (and from 2if  at 4i ). Here 0
~
  is some parameter of the algorithm, t

~
 is calculated 

at the previous step by the formula (8). The number N
~

 was given at 2i , and it will be calculated 

at 4i . The number N  is to be changed by adding iN  now. The time it  passed, the new value 

of N
~

 is calculated: 

   Nt
N

f
itiiN

i 



 /

~~
)0,0( 1  , (11) 

i.e. the formulas (2), (3) are applied the third time. 

Modified algorithm 1 coincides the algorithm 1, but   now is 

)(

)(2

11

1










iii

ii

i
QQt

QQ
 . (12) 

0Q  is necessary at the first step in this case. Thus, the time moment 0t  is added, and there is no 

control at the zero step on contrary from the other even steps. As for the other even steps, the value 

N  changes uniformly during it  to add iN  in sum. 

Algorithm 2. Let }{ it , ,...2,1i  again is some sequence of time moments ii tt 1 . We sup-

pose that QQ / , and control is instantaneous. Let N
~

 is some number such that 0
~

NN . 



The control is done at each step. The desired   is calculated by the formula (9), then the necessary 

change of N  is calculated by the formula 

N
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Then N  is changed by adding 
iN . In contrary from the algorithm 1 N

~
 is one and the same from 

step to step, and 
iN  is calculated neglecting the dependence of the function f  on time. 

Modified algorithm 2 coincides the algorithm 2, but   now is (12) and N  changes uni-

formly during it . 

 

3. An object for bifurcation analysis. 

There are sequences of pairs )},{( iiQ   in both algorithms and their modifications, and these 

pairs follow each other by the relations 
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If we suppose that the functions iF  are independent on i : FF i , then the problem of investiga-

tion of the fixed point and its bifurcations [5-10] for the map F  appears: 
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Independence iF  on i  means independence of composition of maps ii FF 1  in the case of the al-

gorithm 1: 
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Taking into account that iF  corresponds to control of a solution of the system of differential equa-

tions, the dependence of iF  on i  means dependence of F  on the other variables of the system (1): 

2x , 3x ,…, t . 

Proposition. The function F  does not depends on the system state, excepting Q , if and only 

if the function f  is linear and can be written in the form (3). 

Proof. Let us prove the proposition for the algorithm 1, for example. Let time t  corresponds 

to an even step. The following relation for the function )(tQ  is true 
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Here δ  is the pair )
~

,
~

( Nt  , calculated to the time t , )2( tt x  and tt 2  is the system state at 

the previous even step. 



If f  does not depend on x , t  and is linear, i.e. is given by (3), then δ  does not depend on 

)2( tt x  and tt 2 , thus, F  does not depend on x~ , )2( tt x , t  and tt 2 . Then QF  also 

does not depends on these values. The second part of the proposition is proved. 

It is remained to prove that if F  does not depends on x~ , )2( tt x  and t , then f  can be 

written in the form (3). Let δ  depends on )2( tt x  or tt 2 , then F  also depends on 

)2( tt x  or tt 2 . The nontrivial dependence of f  on N  is recalled here. Thus, δ  does not 

depends on )2( tt x  and tt 2 . Let now f  nontrivially depends on some component 
ix , 2i

. Then there exists such t  and also 1x  and 2x , differing only by values of 
ix , that 

),,2),,,,((),,2),,,,(( 21 ttQtNfttQtNf xδxδ   . 

Comparing this inequality with the previous formula for F  we get a contradiction: the function 

F  nontrivially depends on 
ix . The same is for t . So, f  can depend only on Q . 

Now we prove that the dependence f  is linear, i.e. it can be written in the form (3). Let us 

decompose one control action into two ones in two ways: 
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In the first equality (16) we subtract the last summand from the both parts of the equation, divide 

the both parts by 1N  and let 1N  go to zero. We obtain 

),0,0(),,( 002 QfQtNf NN 
 . 

In the second equality (16) we subtract the first summand of the right part from the both parts of 

the equation, divide the both parts by 2t  and let 2t  go to zero. We obtain 

),0,0(),,( 101 QfQtNf tt 
 . 

Now we subtract ),0,0( 0Qf t
  from the both parts, divide them by 1t  and let 1t  go to zero. We 

obtain 00000 ),0,0()0(),0,0(),0,0( QQfQQfQf tQtQtt 
 . This equality must be true for 

any 0 , including 00  , so, 

0),0,0( 0 
 Qf tt . 

But it must be true for 00   too, so, 

0),0,0( 0 
 Qf tQ . 

It follows from the last four equalities that f  can be written in a form 

),()(),,( 3 QttNQtQNtf Nt   . Comparing the expression for ),,( QNtf   with 

the formulas for calculation of δ  (8), (9), (10), (11), we obtain that δ  does not depend on 

)2( tt x  and tt 2  only if )(QN  does not depend on Q  and 0),(  Qt . So, the function 

f  can be written in the form (3). Proof is over. 



This proposition and the propositions from the item 2 give a possibility to investigate the 

fixed points and their bifurcations for idealized algorithms applied to the equation (6) and sepa-

rately investigate what difference appear for applying of real algorithms to real systems of equa-

tions. 

 

4. Bifurcation properties of the algorithm 1 on the equation (8) with a constant step. 

The numbers N
~

 and t
~

 are equal to N  and t  in this case. The cycle of the algorithm 

consists of two steps, thus, the map (14) is to be constructed on the interval t2 . It is convenient 

to begin from an even step, because the system moves itself during t2  after the control is done. 

According to (7) and (15) the following formulas define the map (14): 
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where N  is from the formulas (8), (9), (10), (11). The fixed point of this map exists and unique: 
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Proposition. If 


~
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then the fixed point (18) is stable. 

Proof. The eigenvalues 
1 , 

2  of the Jacoby matrix of the map (17) in the point (18) are 

real: 


~

211 t , 02  . 

If they are less than 1 in absolute magnitude, then the map (17) is a contraction, and the point (18) 

is stable. Proof is over. 

The t  increases the only one variant of stability loss is able. It is exit of the eigenvalue 
1  

at 
~

/1t  beyond -1. The Hopf bifurcation takes place in this case: 
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So, it is of interest: is this bifurcation subcritical or supercritical and is transfer to a strange attractor 

possible. Though, the following proposition gives an important information. 

Proposition. There exists at least one attracting set of the map (17) at any 
~

/1t . All the 

attracting sets are inside the rectangle 
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Any initial value for the process (17) lays in a region of attraction of one of these sets. 

Proof. Taking into account that QF , nor F  do not depend on   it is enough to study the 

map 

))1(exp(2 iii qaqq 
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at 2a , where QQq ii

~
/ . A fixed point of the map is 1q . The function of the map has a 

maximum in the point a/1 : 
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If iq  equals maxq , then 
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If ]1,[ minqqi  , then max2 qqq ii   . If ],1[ maxqqi  , then 12min  iqq . So, if ],[ maxmin qqqi  , 

then ],[ maxmin2 qqqi   too. If maxqqi  , then min2 qqi  . If minqqi  , then the further values of 

q  grow till some next iq  is in the segment ],[ maxmin qq . Reversing to the variables Q  and  , we 

obtain the proposition rectangle. Proof is over. 

Proposition. If the stability condition (19) is true, the process (21) converges to the fixed 

point (18) from any initial point. 

Proof. The proof is similar to the previous one, but after ]1,[ minqqi   the iterations converge 

to the fixed point. Proof is over. 

The dependences (22) and (23) are given at Fig. 1 to represent a pictorial frame of maximal 

deviation from the fixed point. 

 

Fig. 1. The fixed point q  (line a) and the functions )(min aq  (curve b) and )(max aq  (curve c). 

Fig. 2a represents converging of the process to the fixed point at 2a , i.e. before the sta-

bility condition (19) is violated. The Hopf bifurcation at 2a  is supercritical. Thus, the amplitude 



of oscillations is much less firstly than the restriction (20) predicts. Converging to the periodic 

solution after this bifurcation is on the Fig. 2b. The period doubling bifurcation occurs at 

5265.2a . Converging to the cycle with doubled period is on the Fig. 2c. 

 

    (a)      (b) 

 

    (c)      (d) 

 

Fig. 2. a) Tendency of the process (21) to the steady state at 1a . b) Tendency of the pro-

cess (21) to the cycle at 4.2a . c) Tendency of the process (21) to the cycle at 58.2a . d) Re-

gime of a strange attractor at 7.2a . 09.0L . 

Then a sequence of period doublings takes place: a 2.5265, 2.6564, 2.6846, 2.6907, … 

Approximately at 6924.2a  a strange attractor appears. An example of the algorithm functioning 

in a strange attractor regime is on the Fig. 2d. The positive Lyapunov exponent justifies that the 

process is really chaotic. It is easy to see from Fig. 1 and Fig. 2d, that the restriction (20) predicts 

maximal and minimal values of q  in this case well. Different effects can be observed at different 

values of a  and a larger number of the process iterations: beats, temporary (deceptive) exit to 

steady state etc. Though, all this takes place inside the rectangle (20). 

The map (17) is such that QF  and F  do not depend on  . Thus, all the points ),( 22  iiQ   

lay on one and the same curve: 
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For example, a strange attractor, corresponding to Fig. 2d, is pictured at Fig. 3 in the plane ),( q

. 



 

Fig. 3. 105 iterations of the algorithm 1. 1
~
 , 1534.0t , 35.1t . Looking as solid parts 

of the curve (24) are sets of separate point really. 

 

5. Bifurcation properties of the algorithm 2 on the equation (6). 

The following formulas determine the map (14) in the case of the algorithm 2 
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where N  can be found by formulas (9), (13). The map (25) has a unique fixed point 

,2/

,~
)/12/1(

1
~

t

at
QQ

t

t










 








 (26) 

where 0
~

/  NNa  . The formulas (26) are conscious if 0Q  and 0
~
Q . 

Proposition. It is necessary and sufficient for stability of the steady state },{ Q  for all small 

enough 0t , the following conditions to be true 
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where Qb
~

/
~
 . 

Proof. Since the formulas (26) a conscious at 0
~
QQ , the following condition should be 

fulfilled 
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It is fulfilled in two cases: 
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In particular, it is always fulfilled for small enough t . 

The eigenvalues of the Jacoby matrix of the map (25) in the point (26) are 

2

))2(2()2( 22

2,1
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 , (29) 

where tQh  . Only )( thh   depends on t  in (29), moreover, 0)0( h  and 0)0( h . If 

0h , the eigenvalues of (29) equal 11   and a12 . The second condition in (27) means 

negative derivative of 1  on h  at 0h  (an analogous variant 2a  and positive derivative of 2  

is impossible). Proof is over. 

Proposition. Let the radical expression in the formula 
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is positive. Then the point (26) loses stability for increasing t  then and only then when t  over-

comes the value 0t . The eigenvalue 2  passes over the value -1 in this case. If the radical ex-

pression is negative, then the point (26) is stable for any t  of the condition (28) b). 

Proof. At 1a  the radical expression in (29) is nonnegative and both eigenvalues are real. 

At )1,0(a  there is an interval on the positive semiaxis 
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in which the roots 1  and 2  are complex conjugate. 

If the discriminant in (29) is greater than zero, then, subject to the restrictions for a , b  and 

h , the eigenvalue 1  can’t equal 1, and the eigenvalue 2  equals -1 then and only then, when 

0hh  : 

ab

a
h

)2(2
0


 . 

If the radical expression in (29) is less than zero, then, subject to the restrictions for a , b  and h , 

the eigenvalues 1  and 2  can’t be equal to 1 in absolute magnitude. Note, that 20 hh  . Consid-

ering )( thh  and relations (27), (28) we obtain the condition (30). Proof is over. 

It is clear from the propositions about stability and its loss that the algorithm 2 reveals much 

more complex properties. The steady sates depend on greater number of parameters, moreover, 

QQ
~

 ; there are two, but not one, conditions of stability; and more variants of losing or keeping 

stability for t  increasing. Besides, in the case of algorithm 2, if the conditions 
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are fulfilled, then the steady state 
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is stable. This fixed point can play essential role even in the case if it is unstable. The exponent is 

present in the formula for 1iQ  in (25), thus, the value 1iQ  can prove quite close to 0 and, so, can 

remain there for quite a long time. For a numerical investigation, it can turn to computer zero. 

After this,  1iQ  is changeless, and  1i  goes to   (see. (32)). 

The following values of parameters were chosen for numerical investigation of the algorithm 

2 on the equation (6): N =0.2, t =0.25, 0N =1, Q
~

=1, 
~

=4, N
~

=0.5. The Fig. 4a represents tend-

ing to the stable steady state when the conditions (27) are true. 

 

    (а)      (б) 

 

    (в)      (г) 

Fig. 4. a) Tending to the stable fixed point (26) at 1t . 0Q =2, 00 NN  . b) Tending to 

the periodic solution at 66.1t . QQ  01.10 ,   99.00 . c) A sequence of iQ  values. The 

initial value 6.1t , then, t  enlarges with 0.01 every 100 steps. d) A strange attractor, hypo-

thetically, at 89.1t . 

The Hopf bifurcation takes place at  0tt 1.65685, and the fixed point becomes unsta-

ble. Converging to the appeared periodical solution after this bifurcation is drawn on the Fig. 4b. 



The initial condition is near the steady state since the region of convergence is uncertain. Period 

doublings takes place when t  continues increasing: 1.84664, 1.87434, 1.87924, 1.88027, 

1.88049, … Strange attractor appears approximately at t 1.8805. The sequence of period dou-

blings and transfer to the strange attractor, hypothetically, is on the Fig. 4c. It is said “hypotheti-

cally” here because calculation of the Lyapunov exponents is strongly obstructed by turning of iQ  

to computer zero. Some points are out the picture scale. The are segments where a long sequences 

of iQ  is very close to zero, then 5.0iQ , then iQ 1470 (this point is out of the scale) and then 

0iQ  for computer precision. A sequence of approximately 135 points on the Fig. 4d hypothet-

ically corresponds to a strange attractor. Several points are out of the picture scale. The maximal 

Lyapunov exponent is uncalculated because iQ  turned to computer zero. 

 

6. Discussion of results. 

Comparison of the algorithms 1 and 2 on the equation (6) shows substantial advantage of 

the algorithm 1. The steady state of the value Q  of this algorithm is Q
~

 (18) if the map (15) begins 

with an even step. Moreover, it is important that this value does not depend on the parameters and 

the system state, but depends only on the parameter of the algorithm itself. The same relates to the 

stability condition (19) of this steady state, i.e. the only parameters of the algorithm determine it. 

The steady state of the value Q  (26) can strongly differ from Q
~

 in the case of the algorithm 2. 

Moreover, it depends on t  besides the parameters of the algorithm. The N  does not influences 

the steady states and stability conditions for both algorithms. There is convergence to the fixed 

point (18) from any initial value, if this fixed point is stable, in the case of the algorithm 1. The 

stability condition is always true for the algorithm 1, if t  is small enough. The stability condition 

(27) of the algorithm 2 is always true for small enough t , if the parameters N
~

 and 
~

 are proper. 

It is always possible to choose these parameters properly. One can choose a large enough N
~

 to 

satisfy the condition 2a , and then a large enough 
~

 to satisfy the condition 1ab . 

The step value t  growth, every algorithm leads to Hopf bifurcation and the fixed point 

stability loss. The attracting sets are always inside the rectangle (20) for the algorithm 1. Thus, 

even the work in the strange attractor regime is predictable enough, although the parameters of the 

algorithm are still worth choosing for the steady state (18) be stable. Forecasting for the algorithm 

2 is much less, what is particularly because of the special role of the steady state (32). The se-

quences )},{( iiQ   can get in the vicinity of this steady state and be there for a long time even if 

this steady state is unstable. 

The said above relates to control of the equation (6) by idealized algorithms. The distinctions 

of the real system from the equation (6) are possible. The difference measuring of the value   and 

nonzero interval of the controlling value N  changing are possible too. All this distinctions from 

the situation investigated tend to zero for tending to zero of the value t . So, for small enough t

, the steady states of the real system will tend to the steady states (18) and (26), and the stability 

conditions will tend to the stability conditions (19) and (27). Moreover, if the system properties 

differ only a little from investigated case, then the results will be similar for the similar value t . 



I.e., the results will be similar numerically also. Taking into account possibility of small t  choos-

ing the algorithms seem to be applicable to many systems: to wind generators, for example [11-

12]. 

The two algorithms for controlling solutions of the systems of differential equations are in-

vestigated in the article. An equation is constructed under assumption that the systems keep or 

almost keep some definite properties, and this equation can be the main equation for investigation 

of the idealized algorithms properties. It is so because the method of investigation implies some 

suppositions fulfilled for this equation. It is possible to investigate the differences appearing in the 

real systems separately, and it is out of this article scope. The differences tend to zero for tending 

to zero the step of control. The fixed points and stability conditions are found for the both algo-

rithms. The bifurcations for violation of the stability conditions are investigated. One of the algo-

rithms acts much more reliably (in the case of the violation of the stability condition as well). It 

may be recommended for practical use. Another algorithm is of much more complex properties. 

Exit beyond the stability conditions leads to periodic solutions and strange attractors for both al-

gorithms. 
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