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ABSTRACT

We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In
the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection
between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with
a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements
iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between
steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the
volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal
states that are not steerable by two projective measurements. Furthermore, we explore the steerability of Bell-diagonal states
under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states
that are not steerable by two projective measurements. Finally, we generalize some of our results to arbitrary two-qubit
states. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement,
steering, and Bell nonlocality.

Introduction

Einstein-Podolsky-Rosen (EPR) steering,1 as noticed by Schrödinger,2 is an intermediate type of nonlocal correlation between
entanglement and Bell nonlocality. In the framework of modern quantum information theory, this “spooky action” can be
described as a task of entanglement verification with an untrusted party, as explained by Wisemanet al. 3,4 It hinges on
the question of whether Alice can convince Bob that they share an entangled state, despite the fact that Bob does not trust
Alice. In order to achieve this task, Alice needs to change Bob’s state remotely in a way that would be impossible if they
shared classical correlations only. Contrary to entanglement and Bell nonlocality, steering features a fundamental asymmetry
because the two observers play different roles in the steering test.3–5 Recently, growing attention has been directed to steering
because of its potential applications in quantum information processing, such as quantum key distribution (QKD),6 secure
teleportation,7 and entanglement assisted subchannel discrimination.8

Two basic questions concerning steering are its detection and quantification. Recently, various steering inequalities have
been introduced for detecting steering.9–14 The first such inequality was derived by Reid in 1989,9 which is applicable to
continuous variable systems, as considered in EPR’s original argument. General theory of experimental steering criteria
were developed in Ref.,10 followed by many other works.11–14 In line with theoretical development, a loophole-free steering
experiment was reported in Ref.,15 and one-way steering was demonstrated in Ref.16 Meanwhile, quantification of steering
has also received increasing attention in the past few years,8,17,18 which leads to several useful steering measures, such as
steerable weight17 and steering robustness.8

Despite these fruitful achievements, steering detection and quantification have remained challenging tasks, and manybasic
questions are poorly understood. For example, no conclusive criterion is known for determining the steerability of generic two-
qubit states except for Werner states.3,4 Even for Bell-diagonal states, only a few partial results are known concerning their
steerability, including several necessary criteria and several sufficient criteria;19–21 further progresses are thus highly desirable.
In addition, many results in the literature rely heavily on numerical calculation and lack intuitive pictures. Analytical results
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are quite rare since difficult optimization problems are often involved in solving steering problems.
In this work, we investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering

party. These states are appealing to both theoretical and experimental studies since they have a relatively simple structure and
are particularly suitable for illustrating ideas and cultivating intuition. In addition, generic two-qubit states can be turned
into Bell-diagonal states by invertible stochastic local operation and classical communication (SLOCC),22 so any progress on
Bell-diagonal states may potentially help understand two-qubit states in general.

We first consider the steerability of Bell-diagonal states under the simplest nontrivial measurement setting on the steering
party, that is, two projective measurements. We solve this problem completely by virtue of the connection between the
steering problem and the joint-measurement problem.14,23–25 In particular, we derive a necessary and sufficient steering
criterion analytically and providing a simple geometricalinterpretation. Such analytical results are valuable but quite rare in
the literature on steering. Our study leads to a measure of steering, which turns out to equal the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality.26,27 As an implication, a Bell-diagonal state is steerable by twoprojective
measurements iff it violates the CHSH inequality. This conclusion presents a sharp contrast with the observation that steering
is necessary but usually not sufficient for Bell nonlocality.3,4,28 The relations between our steering measure and concurrence
as well as the volume of the steering ellipsoid are then clarified. Quite surprisingly, the steering measure and the volume of
the steering ellipsoid seem to display opposite behaviors for states with given concurrence.

Furthermore, we explore the steerability of Bell-diagonalstates under three projective measurements. Although such
problems are generally very difficult to address, we derive anontrivial sufficient criterion, which also has a simple geometrical
interpretation. This criterion can detect the steerability of many states that are not steerable by two projective measurements.
The relation between entanglement and steering in this scenario is also clarified.

Finally, we discuss briefly the generalization of the above results to arbitrary two-qubit states. In particular, we derive
sufficient criteria on steerability of arbitrary two-qubitstates by two and three projective measurements.

Setting up the stage
Consider two remote parties, Alice and Bob, who share a bipartite quantum stateρ with reduced statesρA andρB for the
two parties, respectively. Alice can perform a collection of local measurements as characterized by a collection of positive-
operator-valued measures (POVMs){Aa|x}a,x, wherex labels the POVM anda labels the outcome in each POVM. Recall
that a POVM{Aa|x}a is composed of a set of positive operators that sum up to the identity, that is,∑a Aa|x = I. The whole
collection of POVMs{Aa|x}a,x is called ameasurement assemblage. If Alice performs the measurementx and obtains the
outcomea, then Bob’s subnormalized reduced state is given byρa|x = trA [(Aa|x ⊗ I)ρ ]. Note that∑a ρa|x = ρB is independent
of the measurement chosen by Alice, as required by the no signaling principle. The set of subnormalized states{ρa|x}a for a
given measurementx is anensemble for ρB, and the whole collection of ensembles{ρa|x}a,x is astate assemblage.12

The state assemblage{ρa|x}a,x is unsteerable if there exists a local hidden state (LHS) model:3,4,14,23–25

ρa|x = ∑
λ

pρ(a|x,λ )σλ , (1)

wherepρ(a|x,λ )≥ 0, ∑a pρ(a|x,λ ) = 1, andσλ are a collection of subnormalized states that sum up toρB and thus form an
ensemble forρB. This means that Bob can interpret his conditional statesρa|x as coming from the preexisting statesσλ , where
only the probabilities are changed due to the knowledge of Alice’s measurements and outcomes.

The steering problem is closely related to the joint-measurement problem. A measurement assemblage{Aa|x}a,x is com-
patible or jointly measurable23–25,29,30 if there exist a POVM{Gλ} and probabilitiespA(a|x,λ ) with ∑a pA(a|x,λ ) = 1 such
that

Aa|x =∑
λ

pA(a|x,λ )Gλ . (2)

Physically, this means that all the measurements in the assemblage can be measured jointly by performing the measurement
{Gλ}λ and post processing the measurement data. According to the above discussion, determining the compatibility of a
measurement assemblage is mathematically equivalent to determining the unsteerability of a state assemblage. Therefore,
many compatibility problems can be translated into steering problems, and vice versa.14,23–25 This observation will play an
important role in the present study.

WhenρB is of full rank, the state assemblage{ρa|x}a,x for Bob can be turned into a measurement assemblage as fol-
lows,14,25

Ba|x = ρ−1/2
B ρa|xρ−1/2

B . (3)
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Note that the set of operators{Ba|x}a for a givenx forms a POVM, which is referred to as Bob’ssteering-equivalent observable
(or POVM).25 The measurement assemblage{Ba|x}a,x is compatible iff the state assemblage{ρa|x}a,x is unsteerable. For

example, ifρa|x = ∑λ p(a|x,λ )σλ , thenBa|x = ∑λ p(a|x,λ )Gλ with Gλ = ρ−1/2
B σλ ρ−1/2

B ; the converse follows from the same
reasoning. This observation suggests a fruitful approach for understanding steering via steering-equivalent observables.

Results

Steer Bell-diagonal states by projective measurements
Any two-qubit state can be written in the following form

ρ =
1
4
(I ⊗ I+ aaa ·σσσ ⊗ I+ I⊗ bbb ·σσσ +

3

∑
i, j=1

ti jσi ⊗σ j), (4)

whereσ j for j = 1,2,3 are three Pauli matrices,σσσ is the vector composed of these Pauli matrices,aaa andbbb are the Bloch vectors
associated with the reduced states of Alice and Bob, respectively, andT = (ti j) is the correlation matrix. The two-qubit state
is a Bell-diagonal state iffaaa = bbb = 000,31 in which case we have

ρ =
1
4
(I ⊗ I+

3

∑
i, j=1

ti jσi ⊗σ j), (5)

with the two reduced states being completely mixed, that is,ρA = ρB = I/2. Bell-diagonal states are of special interest
because they have a simple structure and are thus a good starting point for understanding states with more complex structure.
In addition, all two-qubit states except for a set of measurezero can be turned into Bell-diagonal states by invertible SLOCC.22

With a suitable local unitary transformation, the correlation matrixT in (5) can be turned into diagonal form, so that

ρ =
1
4
(I ⊗ I+

3

∑
j=1

t jσ j ⊗σ j). (6)

As an implication of this observation, a Bell-diagonal state is steerable by one party iff it is steerable by the other party, so
there is no one-way steering5 for Bell-diagonal states. It does not matter which party serves as the steering party in the present
study.

In the case of a qubit, any projective measurement{A±|x} with two outcomes± is uniquely determined by a unit vector
eeex on the Bloch sphere asA±|x = (I ± eeex · σσσ)/2. If Alice and Bob share the Bell-diagonal state (5) and Alice performs
the projective measurement determined byeeex, then the two outcomes will occur with the same probability of 1/2, and the
subnormalized reduced states of Bob are given byρ±|x = [I±(T Teeex)·σσσ ]/4. Accordingly, Bob’s steering-equivalent observable
takes on the form

B±|x =
1
2
(I ± rrrx ·σσσ), rrrx = T Teeex. (7)

Note that this observable is uniquely characterized by the subnormalized vectorrrrx, which determines an unbiased noisy (or
unsharp) von Neumann observable. Here “unbiased” means that tr(B+|x) = tr(B−|x) = 1. In this way, the correlation matrixT
induces a map from projective measurements of Alice to noisyprojective measurements of Bob. Alice can steer Bob’s system
using the measurement assemblage{A±|x}x iff the set of noisy projective measurements{B±|x}x is incompatible.

To see the geometric meaning of the map induced byT , note that the end point ofrrrx lies on an ellipsoidE centered at origin
and characterized by the symmetric matrixT TT : the three eigenvalues ofT TT are the squares of the three semiaxes (some
of which may vanish), and the eigenvectors determine the orientation of these semiaxes; see Fig1. This ellipsoid encodes
the set of potential noisy projective measurements of Bob induced by projective measurements of Alice. Geometrically,this
ellipsoid is identical to the steering ellipsoid introduced in Refs.,20,32,33 which encodes the set of states to which Alice can
steer Bob’s system. It is also referred to as the steering ellipsoid here although the meaning is slightly different fromthat in
Ref.20,32,33 Since its discovery, the steering ellipsoid has played an important role in understanding various features pertinent
to entanglement and steering.20,21,32–34 To appreciate its significance in the current context, note that the steerability of a
Bell-diagonal state by the measurement assemblage{A±|x}x is completely determined by the set of vectorsrrrx on the steering
ellipsoid. Moreover, in several cases of primary interest to us, the steerability can be determined by purely geometrical means,
as we shall see shortly.
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Figure 1. The steering ellipsoids of three Bell-diagonal states. Theellipsoid of a Bell state (left) coincides with the Bloch
sphere; the ellipsoid of a rank-2 Bell-diagonal state or an edge state (middle) is rotationally symmetric with the largest
semiaxis equal to the radius of the Bloch sphere; the ellipsoid of a Werner state (right) is a sphere contained in the Bloch
sphere.

Steering by two projective measurements
In this section we derive a necessary and sufficient criterion on the steerability of a Bell-diagonal state under two projective
measurements. We also introduce a steering measure and illustrate its geometrical meaning. Our study shows that a Bell-
diagonal state is steerable by two projective measurementsiff it violates the CHSH inequality. Furthermore, we clarify the
relations between entanglement, steering, and Bell nonlocality by deriving tight inequalities between the followingthree
measures: the concurrence, the steering measure, and the volume of the steering ellipsoid.

Theorem 1. A Bell-diagonal state with correlation matrix T is steerable by two projective measurements iff λ1 + λ2 > 1,
where λ1,λ2 are the two larger eigenvalues of T T T.

Proof. Suppose Alice performs two projective measurements{A±|x} = {(I ± eeex ·σσσ)/2} for x = 1,2. Then Bob’s steering
equivalent observables are given by{B±|x}= {(I± rrrx ·σσσ)/2}, whererrrx = T Teeex for x = 1,2, as specified in (7). According to
Ref.35 (see also Refs.30,36–38), the two observables are compatible iff

|rrr1+ rrr2|+ |rrr1− rrr2| ≤ 2. (8)

Note thatrrr1 andrrr2 are two vectors on the steering ellipsoid, and the left hand side of the inequality is half of the perimeter
of a parallelogram inscribed on the steering ellipsoid, with the plane spanned by the parallelogram passing the centre of the
ellipsoid. So the Bell-diagonal state is steerable iff the maximal perimeter of such parallelograms is larger than 4. Interestingly,
the maximum can be derived with a similar method used for deriving the maximal violation of the CHSH inequality,27,39

max
eee111,eee222

{|rrr1+ rrr2|+ |rrr1− rrr2|}= max
eee111,eee222

{|T T(eee111+ eee222)|+ |T T(eee111− eee222)|}= max
χ ,ccc,ccc⊥

{2cosχ |T Tccc|+2sinχ |T Tccc⊥|}

= 2max
ccc,ccc⊥

√

|T Tccc|2+ |TTccc⊥|2 = 2max
ccc,ccc⊥

√

cccTT T Tccc+ ccc⊥TT T Tccc⊥ = 2
√

λ1+λ2, (9)

where 2χ is the angle spanned byeee1 andeee2; ccc andccc⊥ are the direction vectors of(eee111+ eee222) and(eee111− eee222), respectively, which
are always orthogonal. Here the maximum in the last step is attained whenccc andccc⊥ span the same space as that spanned by
the two eigenvectors associated with the two larger eigenvalues ofT T T. The maximum overeee1 andeee2 can be attained when
the two vectors are eigenvectors corresponding to the two larger eigenvalues ofTT T. The Bell-diagonal state is steerable by
two projective measurements iff 2

√
λ1+λ2 > 2, that is,λ1+λ2 > 1.

The choices ofccc andccc⊥ that maximize (9) are highly not unique. Therefore, the optimal projective measurements that
Alice needs to perform are also not unique. Although the optimal measurements can always be chosen to be mutually unbiased
as shown in the above proof, it is usually not necessary to do so. As an example, consider the Bell-diagonal state characterized
by the correlation matrixT = diag(t1, t2, t3) with t1 ≥ t2 ≥ |t3|. One choice ofccc andccc⊥ readsccc = (1,0,0) andccc⊥ = (0,1,0),

which leads to the optimal measurement directionseee1 = (t1, t2,0)/
√

t2
1 + t2

2 andeee2 = (t1,−t2,0)/
√

t2
1 + t2

2. Note thateee1 and
eee2 are not orthogonal in general, so the corresponding projective measurements are not mutually unbiased.

The proof of Theorem1 also suggests a steering measure of a Bell-diagonal state under two projective measurements,
namely,S := 2

√
λ1+λ2. This measure has a simple geometrical meaning:(S/2)2 is equal to the sum of squares of the two

larger semiaxes of the steering ellipsoid. A Bell-diagonalstate is steerable in this scenario iffS > 2. The maximum 2
√

2
of S is attained whenλ1 = λ2 = 1, which corresponds to a Bell state. To obtain a normalized measure of steering, we may

4/12



opt for max{0,(S−2)/(2
√

2−2)}. According to Ref.,27 the maximal violation of the CHSH inequality by the Bell-diagonal
state is equal to 2

√
λ1+λ2, which coincides with the steering measureS introduced here. This observation has an important

implication for the relation between steering and Bell nonlocality.

Corollary 1. A Bell-diagonal state is steerable by two projective measurements iff it violates the CHSH inequality.

To clarify the geometric meaning of Theorem1 and the steering measureS, it is convenient to choose a concrete Bell basis.
Here we shall adopt the following choice,40

|βµν〉=
1√
2
(|0,ν〉+(−1)µ |1,1⊕ν〉), µ ,ν = 0,1. (10)

Note that|β11〉 is the singlet. Thanks to the choice of the Bell basis, the correlation matrices of the four Bell states are diagonal
as given by diag((−1)µ ,−(−1)µ+ν ,(−1)ν). Up to a local unitary transformation, any Bell-diagonal state is a mixture of the
four Bell states. Without loss of generality, we can focus onBell-diagonal states of this form, whose correlation matrices are
also diagonal, as in (6).

Figure 2. Geometric illustration of Bell-diagonal states steerableby two projective measurements. (left) The regular
tetrahedron represents the set of Bell-diagonal states. The octahedron in green represents the set of separable states. The blue
regions represent those states that are steerable by two projective measurements. (right) A face of the regular tetrahedron
which represents the set of rank-3 Bell-diagonal states.

Geometrically, the set of Bell-diagonal states forms a regular tetrahedron, whose vertices correspond to the four Bell
states.31,40 The set of separable Bell-diagonal states forms an octahedron inside the tetrahedron.31,40 The tetrahedron can be
embedded into a cube whose sides are aligned with the three axes labelled byt1, t2, t3, as shown in Fig.2. In this way, a Bell-
diagonal state is uniquely specified by its three coordinates(t1, t2, t3). The half steering measureS/2 of this Bell-diagonal state

is equal to the maximum over
√

t2
1 + t2

2,
√

t2
2 + t2

3, and
√

t2
3 + t2

1, which is equal to the maximal length of the three projections

of (t1, t2, t3) onto the three coordinate planes. Note thatS is convex int1, t2, t3 and defines a norm in the three-dimensional
vector space accommodating Bell-diagonal states. Each level surface of this norm is determined by three orthogonal cylinders
of equal radius. In particular, the set of unsteerable Bell-diagonal states (determined by the level surface withS = 2) is
contained in the intersection of the three solid cylinders specified by the following three inequalities, respectively,

t2
1 + t2

2 ≤ 1, t2
2 + t2

3 ≤ 1, t2
3 + t2

1 ≤ 1. (11)

In the rest of this section we clarify the relations between the following three measures: the concurrence, the steering
measureS, and the volume of the steering ellipsoid. SinceS is equal to the maximal violation of the CHSH inequality, our
discussion is also of interest to studying Bell nonlocality.

Recall that a two-qubit state is entangled iff it has nonzeroconcurrence and that the concurrence of a Bell-diagonal state
is given byC = max{0,2pmax− 1}, wherepmax is the maximal eigenvalue of the state.41 Given a Bell-diagonal state with
correlation matrixT , the normalized volumeV of the steering ellipsoid is defined asV := |det(T )|.20 If T is diagonal, say
T = diag(t1, t2, t3), thenV = |t1t2t3|. The constraints|t j| ≤ 1 for j = 1,2,3 imply that 0≤ V ≤ 1, where the upper bound is
saturated only for Bell states.
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Figure 3. Relations between three entanglement and steering measures for Bell-diagonal states. HereC is the concurrence,
S is the steering measure, andV is the normalized volume of the steering ellipsoid. The orange region in each plot indicates
the range of values. The dashed lines represent edge states and the solid lines represent Werner states. In the left and right
plots, the blue regions (with some overlap with the orange regions) indicate the ranges of values of 2‖T‖F versusC and
2‖T‖F versusV , respectively. Here‖T‖F is the Frobenius norm of the correlation matrixT that characterizes the
Bell-diagonal state and is relevant to steering under threeprojective measurements.

Calculation shows thatC,S,V satisfy the following inequalities (see Methods section for more details):

2
√

2
3

(1+2C)≤ S ≤ 2
√

1+C2, (12)

C2 ≤V ≤
(1+2C

3

)3
, (13)

2
√

2 3
√

V ≤ S ≤ 2
√

1+V . (14)

Here the lower bound in (12) is applicable to entangled Bell-diagonal states, while the other five bounds in (12), (13), and (14)
are applicable to all Bell-diagonal states. As an implication of the above inequalities, any Bell-diagonal state with concurrence
larger than(3−

√
2)/(2

√
2) is steerable by two projective measurements. The normalized volume of the steering ellipsoid of

any separable Bell-diagonal state is bounded from above by 1/27, in agreement with the result in Ref.,20 while that of any
unsteerable Bell-diagonal state is bounded from above by 1/(2

√
2).

Two types of Bell-diagonal states deserve special attention as they saturate certain inequalities in (12), (13), and (14). A
Werner state has the form

Wf = f |β11〉〈β11|+
1− f

3
(I −|β11〉〈β11|), (15)

where 0≤ f ≤ 1. Note that f is equal to the singlet fraction whenf ≥ 1/4. Geometrically, the Werner state lies on a
diagonal of the cube in Fig.2; conversely, any Bell-diagonal state lying on a diagonal ofthe cube is equivalent to a Werner
state under a local unitary transformation. The correlation matrix for the Werner state has the formT = diag(t1, t2, t3) with
t1 = t2 = t3 = (1−4 f )/3. Therefore, the steering ellipsoid reduces to a sphere with radiust1 = t2 = t3 = |4 f −1|/3; see the
right plot in Fig.1. In addition,

C = max{0,2 f −1}, S =
2
√

2
3

|4 f −1|, V =
|4 f −1|3

27
. (16)

The Werner state is steerable by two projective measurements iff (3
√

2+2)/8< f ≤ 1. It saturates the lower bound in (14)
and, whenf ≥ 1

2, also the lower bound in (12) and the upper bound in (13).
Those states lying on an edge of the tetrahedron in Fig.2 are callededge states (or rank-2 Bell-diagonal states). If an edge

state has two nonzero eigenvaluesp and 1− p with p ≥ 1/2, thent2
11 = 1 andt2

22 = t2
33 = (2p−1)2 ( assumingt1 ≥ t2 ≥ |t3|).

Therefore, the steering ellipsoid is rotationally symmetric with the largest semiaxis equal to 1 and the other two semiaxes
equal to 2p−1; see the middle plot in Fig.1. In addition,

C = 2p−1, S = 2
√

1+(2p−1)2, V = (2p−1)2. (17)
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The edge state is steerable by two projective measurements wheneverp 6= 1/2, that is, when it is entangled. So entanglement
is sufficient to guarantee steering and Bell nonlocality in this special case. In addition, the edge state saturates the upper
bounds in (12) and (14) as well as the lower bound in (13).

Fig. 3 illustrates the relations betweenC,S,V . When the concurrenceC is large, the three measures are closely correlated
to each other, while they tend to be more independent in the opposite scenario. Quite surprisingly, the normalized volumeV
of the steering ellipsoid seems to have a closer relation with concurrenceC rather than the steering measureS. In addition,
for given concurrenceC > 0, the volumeV attains the maximum when the steering measureS attains the minimum, and vice
versa.

Steering by three projective measurements
In this section we explore the steerability of Bell-diagonal states under three projective measurements by the steering party. To
this end, we need a criterion for determining the compatibility of three unbiased noisy projective measurements. Fortunately,
this problem has been solved in Ref.,42,43 according to which, three noisy binary observables{B±|x}3

x=1 = {(I± rrrx ·σσσ)/2}3
x=1

are compatible iff

3

∑
x=0

|ΛΛΛx −ΛΛΛFT| ≤ 4. (18)

HereΛΛΛ0 = rrr1+ rrr2+ rrr3, ΛΛΛx = 2rrrx −ΛΛΛ0 for x = 1,2,3, andΛΛΛFT denotes the Fermat-Toricelli (FT) vector of{ΛΛΛx}3
x=0, which is

the vectorΛΛΛ that minimizes the total distance∑3
x=0 |ΛΛΛxxx −ΛΛΛ|. In general,ΛΛΛFT has no analytical expression.42,43

Given a Bell-diagonal state with correlation matrixT , suppose Alice performs three projective measurements{A±|x}3
x=1 =

{(I ± eeex ·σσσ)/2}3
x=1. Then Bob’s steering equivalent observables are given by{B±|x}3

x=1 = {(I ± rrrx ·σσσ)/2}3
x=1, whererrrx =

T Teeex for x = 1,2,3. Define

S3 =
1
2

max
rrr1,rrr2,rrr3∈E

3

∑
x=0

|ΛΛΛx −ΛΛΛFT| (19)

as a steering measure of the Bell-diagonal state under threeprojective measurements, whereE is the steering ellipsoid. Then
the Bell-diagonal state is steerable by three projective measurements iffS3 > 2. In general, it is not easy to computeS3. Here
we shall derive a nontrivial lower bound, which is very useful for understanding the steerability of Bell-diagonal states by
three projective measurements.

Whenrrr3⊥rrr1,2, the FT vector can be determined explicitly43 (note that there is a typo in Ref.43 about the sign),

ΛΛΛFT =
|rrr1− rrr2|− |rrr1+ rrr2|
|rrr1− rrr2|+ |rrr1+ rrr2|

rrr3, (20)

which imply that

3

∑
x=0

|ΛΛΛx −ΛΛΛFT|= 2
√

(|rrr1− rrr2|+ |rrr1+ rrr2|)2+4rrr2
3. (21)

Theorem 2. Any Bell-diagonal state with ‖T‖F >1 is steerable by three projective measurements, where ‖T‖F=
√

tr(T T T) =
√

tr(T TT ) is the Frobenius norm of the correlation matrix T .

Proof. Let λ1,λ2,λ3 be the eigenvalues ofT T T in nonincreasing order andeee1,eee2,eee3 the associated orthonormal eigenvectors.
Let rrrx = T Teeex for x = 1,2,3. Thenrrr1,rrr2,rrr3 are mutually orthogonal and

S3 ≥
√

(|rrr1− rrr2|+ |rrr1+ rrr2|)2+4rrr2
3 = 2

√

λ1+λ2+λ3 = 2‖T‖F. (22)

If the Bell-diagonal state is not steerable by three projective measurements, thenS3 ≤ 2, so‖T‖F ≤ 1.

The Frobenius norm‖T‖F happens to be the Euclidean norm of the vector(t1, t2, t3) that represents the Bell-diagonal
state in Figs.2 and4; its square is equal to the sum of squares of the three semiaxes of the steering ellipsoid. The set of
Bell-diagonal states with the same norm‖T‖F lies on a sphere. It is clear from the above discussion thatS3 ≥ 2‖T‖F ≥ S, so
any Bell-diagonal state that is steerable by two projectivemeasurements is also steerable by three projective measurements, as
expected. The converse is not true in general, as illustrated in Fig.4. Consider the Werner state in (15) for example, we have
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Figure 4. Illustration of Bell-diagonal states steerable by three projective measurements (cf. Fig.2). (left) The regular
tetrahedron represents the set of Bell-diagonal states. The octahedron in green represents the set of separable states. The blue
regions represent those states that are steerable by two projective measurements, and the red regions represent those states
that are not steerable by two projective measurements but steerable by three projective measurements as specified in the
proof of Theorem2. (right) A face of the regular tetrahedron which representsthe set of rank-3 Bell-diagonal states.

‖T‖F = |4 f −1|/
√

3, so the Werner state is steerable by three projective measurements if 1≥ f > (
√

3+1)/4. By contrast, it
is steerable by two projective measurements only if 1≥ f > (3

√
2+2)/8.

The relations between‖T‖F andC,V can be derived with similar methods used in deriving (12) and (14), with the results

1√
3
(1+2C)≤ ‖T‖F ≤

√

1+2C2, (23)

√
3V 1/3 ≤ ‖T‖F ≤

√
1+2V . (24)

Here the lower bound in (23) is applicable to entangled Bell-diagonal states, while the other three bounds are applicable to all
Bell-diagonal states. As in (12) and (14), the two lower bounds are saturated by Werner states, whilethe two upper bounds
are saturated by edge states; see Fig.3. These inequalities are quite instructive to understanding the steering of Bell-diagonal
states by three projective measurements given thatS3 ≥ 2‖T‖F. As an implication, any unsteerable Bell-diagonal state satisfies
C ≤ (

√
3−1)/2 andV ≤ 1/(3

√
3).

Beyond Bell-diagonal states
Here we discuss briefly the generalization of previous results to generic two-qubit states. First consider a two-qubit state with
maximally mixed marginal for Bob, that is,bbb = 000, in which case (4) reduces to

ρcano=
1
4
(I⊗ I+ aaa ·σσσ ⊗ I+

3

∑
i, j=1

ti jσi ⊗σ j), (25)

whereT = (ti j) is the correlation matrix. Letλ1,λ2,λ3 be the eigenvalues ofT T T arranged in nonincreasing order. The
following two corollaries generalize Theorems1 and2, respectively.

Corollary 2. Any two-qubit state in (25) with λ1+λ2 > 1 is steerable by two projective measurements from Alice.

This corollary also holds for arbitrary two-qubit states since the conditionλ1 +λ2 > 1 is both necessary and sufficient
for violating the CHSH inequality.27,39 Here we are contented to prove this special case using the connection with the joint
measurement problem, in line with our previous approach.

Proof. Suppose Alice performs two projective measurements{A±|x} = {(I ± eeex ·σσσ)/2}2
x=1. Then the steering-equivalent

observables for Bob are given by{B±|x}2
x=1 = {[(1±αx)I± rrrx ·σσσ)]/2}2

x=1, whereαx = eeex ·aaa andrrrx = T Teeex. Unlike the proof
of Theorem1, these observables are usually biased; nevertheless, the condition in (8) is still necessary for two compatible
biased observables.35–38 Now the Corollary follows from the same reasoning as in the proof of Theorem1.
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Corollary 3. Any two-qubit state in (25) with ‖T‖F > 1 is steerable by three projective measurements from Alice.

Proof. Suppose Alice performs three projective measurements{A±|x} = {(I ± eeex ·σσσ)/2}3
x=1. Then the steering-inequivalent

observables for Bob are given by{B±|x}3
x=1 = {[(1±αx)I ± rrrx ·σσσ)]/2}3

x=1, whereαx = eeex ·aaa andrrrx = T Teeex as before. Since
condition (18) is still necessary for three compatible biased observables,42,43 the corollary follows from the same reasoning
as in the proof of Theorem2.

In general, any two two-qubit stateρ with invertibleρB (note thatρ is necessarily separable and thus unsteerable ifρB is
not invertible) can be turned into the form of (25) by a local filtering operation of the form14,25,28,44

I⊗ (2ρB)
−1/2(·)I ⊗ (2ρB)

−1/2. (26)

Moreover, such filtering operation does not change the steerability of the state by measurements of Alice. Therefore, Corol-
laries2 and3 also provide sufficient criteria for the steerability of general two-qubit states.

Discussion
In summary, we studied systematically the steerability of Bell-diagonal states by projective measurements on the steering
party. In the simplest nontrivial scenario of two projective measurements, we solved the problem completely by deriving
a necessary and sufficient criterion, which has a simple geometrical interpretation. We also introduced a steering measure
and proved that it is equal to the maximal violation of the CHSH inequality. This conclusion implies that a Bell-diagonal
state is steerable by two projective measurements iff it violates the CHSH inequality. In addition, we clarified the relations
between entanglement and steering by deriving tight inequalities satisfied by the concurrence, our steering measure, and the
volume of the steering ellipsoid. Furthermore, we exploredthe steerability of Bell-diagonal states under three projective
measurements. A simple sufficient criterion was derived, which can detect the steerability of many states that are not steerable
by two projective measurements. Finally, we derive sufficient steering criteria for arbitrary two-qubit states under two and
three projective measurements by generalizing the above results.

Our study provided a number of instructive analytical results on steering, which are quite rare in the literature. These
results not only furnish a simple geometric picture about steering of Bell-diagonal states, but also offer valuable insight on
the relations between entanglement, steering, and Bell nonlocality. They may serve as a starting point for exploring more
complicated steering scenarios. In addition, our work prompts several interesting questions, which deserve further studies.
For example, is the steering criterion in Theorem2 both necessary and sufficient? Is there any upper bound on thenumber of
measurements that are sufficient to induce steering for all steerable Bell-diagonal states? We hope that these questions will
stimulate further progress on the study of steering.

Methods

Concurrence and steering measure
Here we derive the inequalities in (12), (13), and (14) in the main text, which characterize the relations betweenthe concur-
renceC, the steering measureS (under two projective measurements), and the volumeV of the steering ellipsoid. We also
determine those Bell-diagonal states that saturate these inequalities. Similar approach can be applied to derive (23) and (24),
which are pertinent to steering of Bell-diagonal states by three projective measurements.

Without loss of generality, we may assume thatρ has the form in (6) with |t3| ≤ t2 ≤ t1 ≤ 1. Then the spectrum ofρ is
given by

1
4

{

1− t1− t2− t3,1− t1+ t2+ t3,1+ t1− t2+ t3,1+ t1+ t2− t3
}

, (27)

where the eigenvalues are arranged in nondecreasing order.The minimal and the maximal eigenvalues are respectively given
by pmin = (1− t1− t2− t3)/4≥ 0 andpmax= (1+ t1+ t2− t3)/4.

If the Bell-diagonal state is separable, that isC = 0, then 0≤ pmin ≤ pmax≤ 1/2,31 which implies that

t1+ t2+ |t3| ≤ 1, t2
1 + t2

2 ≤ 1, |t1t2t3| ≤ 1/27. (28)

So the inequalitiesS ≤ 2
√

1+C2, V ≤ (1+2C)3/27, andS ≤ 2
√

1+V in (12), (13), and (14) hold for separable Bell-diagonal
states. The inequalityS ≤ 2

√
1+C2 is saturated ifft1 = 1, t2 = t3 = 0, in which caseρ is an edge state with two nonzero

eigenvalues equal to 1/2. The inequalityS ≤ 2
√

1+V is saturated under the same condition. The inequalityV ≤ (1+2C)3/27
is saturated ifft1 = t2 = |t3|= 1/3, in which caseρ is a Werner state which either has singlet fraction 1/2 or is proportional to
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a projector of rank 3. Here states that are equivalent toWf in (15) under local unitary transformations are also called Werner
states. The inequalityC2 ≤ V in (13) is trivial for separable states; it is saturated iffV =C = 0, that is,t3 = 0, in which case
the Bell-diagonal state lies on a coordinate plane in Fig.2. The inequality 2

√
2 3
√

V ≤ S follows from the definitions ofS and
V and is applicable to both separable and entangled states. Itis saturated ifft1 = t2 = |t3|, in which caseρ is a Werner state.

If the Bell-diagonal state is entangled, thenpmax > 1/2, C = 2pmax−1= (t1+ t2− t3−1)/2, andt3 = t1+ t2−1−2C.
The positivity ofρ and the requirement|t3| ≤ t2 ≤ t1 lead to the following set of inequalities,

t2 ≤ t1 t1+ t2 ≤ 1+C, t1+2t2 ≥ 1+2C. (29)

These inequalities determine a triangular region in the parameter space oft1, t2 with the following three vertices:

(1,C),
1
2
(1+C,1+C),

1
3
(1+2C,1+2C). (30)

The maximum 1+C2 of t2
1 + t2

2 under these constraints is attained ifft1 = 1, t2 = −t3 = C, in which case the state has two
nonzero eigenvalues equal to(1±C)/2 and is thus an edge state. The minimum 2(1+2C)2/9 is attained ifft1 = t2 =−t3 =
(1+2C)/3, in which case the state has one eigenvalue equal to(1+C)/2 and three eigenvalues equal to(1−C)/6, and is
thus a Werner state. By contrast, the maximum(1+2C)3/27 of |t1t2t3| is attained exactly whent2

1 + t2
2 attains the minimum,

and the minimumC2 of |t1t2t3| is attained whent2
1 + t2

2 attains the maximum. Therefore, (12) and (13) hold for entangled
Bell-diagonal states. As an immediate corollary, (14) also holds in this case.

In summary, the lower bound in (12) is applicable to entangled Bell-diagonal states, while the other five bounds in (12),
(13), (14) are applicable to all Bell-diagonal states. The two inequalities S ≤ 2

√
1+C2 andS ≤ 2

√
1+V are saturated only

for edge states. The inequalityC2 ≤ V is saturated only for edge states and those states withV = 0. The two inequalities
2
√

2(1+ 2C)/3 ≤ S andV ≤ (1+ 2C)3/27 are saturated only for Werner states that have singlet fractions at least 1/2 or
Werner states that are proportional to rank-3 projectors. The inequality 2

√
2 3
√

V ≤ S is saturated only for Werner states. In
particular, among entangled Bell-diagonal states, only edge states and Werner states with singlet fractions larger than 1/2 can
saturate these inequalities.
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