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ABSTRACT

We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In
the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection
between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with
a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements
iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between
steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the
volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal
states that are not steerable by two projective measurements. Furthermore, we explore the steerability of Bell-diagonal states
under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states
that are not steerable by two projective measurements. Finally, we generalize some of our results to arbitrary two-qubit
states. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement,
steering, and Bell nonlocality.

Introduction

Einstein-Podolsky-Rosen (EPR) steerirags noticed by Schrodingéiis an intermediate type of nonlocal correlation between
entanglement and Bell nonlocality. In the framework of modguantum information theory, this “spooky action” can be
described as a task of entanglement verification with arusted party, as explained by Wisemetral. 2# It hinges on

the question of whether Alice can convince Bob that theyeslaar entangled state, despite the fact that Bob does not trust
Alice. In order to achieve this task, Alice needs to changb'8state remotely in a way that would be impossible if they
shared classical correlations only. Contrary to entangtgrand Bell nonlocality, steering features a fundamersiaenetry
because the two observers play different roles in the stgéeist.™ Recently, growing attention has been directed to steering
because of its potential applications in quantum infororapirocessing, such as quantum key distribution (QRBgcure
teleportatior’, and entanglement assisted subchannel discriminétion.

Two basic questions concerning steering are its detectidrgaantification. Recently, various steering inequaitiave
been introduced for detecting steeritigft The first such inequality was derived by Reid in 198®hich is applicable to
continuous variable systems, as considered in EPR’s afigigument. General theory of experimental steeringraite
were developed in Ret? followed by many other works™4 In line with theoretical development, a loophole-free steg
experiment was reported in RéP.and one-way steering was demonstrated in'Refleanwhile, quantification of steering
has also received increasing attention in the past few Jyeldr$ which leads to several useful steering measures, such as
steerable weighf and steering robustne$s.

Despite these fruitful achievements, steering detectimihcmantification have remained challenging tasks, and thasig
guestions are poorly understood. For example, no con@usiterion is known for determining the steerability of gen two-
qubit states except for Werner stafe’s Even for Bell-diagonal states, only a few partial resules lemown concerning their
steerability, including several necessary criteria ave'is# sufficient criterid®2! further progresses are thus highly desirable.
In addition, many results in the literature rely heavily amrerical calculation and lack intuitive pictures. Anabyi results
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are quite rare since difficult optimization problems ar@nfinvolved in solving steering problems.

In this work, we investigate the steerability of two-qubélBdiagonal states under projective measurements byekeisg
party. These states are appealing to both theoretical gretiexental studies since they have a relatively simplecgire and
are particularly suitable for illustrating ideas and awting intuition. In addition, generic two-qubit statesndae turned
into Bell-diagonal states by invertible stochastic logaémtion and classical communication (SLOCE3p any progress on
Bell-diagonal states may potentially help understand dqaubit states in general.

We first consider the steerability of Bell-diagonal stateder the simplest nontrivial measurement setting on threzisig
party, that is, two projective measurements. We solve thiblpm completely by virtue of the connection between the
steering problem and the joint-measurement probtefd2> In particular, we derive a necessary and sufficient steering
criterion analytically and providing a simple geometritaierpretation. Such analytical results are valuable litegare in
the literature on steering. Our study leads to a measuresefing, which turns out to equal the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequalf§?’ As an implication, a Bell-diagonal state is steerable by prajective
measurements iff it violates the CHSH inequality. This dosion presents a sharp contrast with the observation thetisg
is necessary but usually not sufficient for Bell nonlocality?® The relations between our steering measure and concurrence
as well as the volume of the steering ellipsoid are thenfadri Quite surprisingly, the steering measure and the velam
the steering ellipsoid seem to display opposite behavarsthtes with given concurrence.

Furthermore, we explore the steerability of Bell-diagosialtes under three projective measurements. Although such
problems are generally very difficult to address, we derimerarivial sufficient criterion, which also has a simple gesdrical
interpretation. This criterion can detect the steerabditmany states that are not steerable by two projective ureagnts.
The relation between entanglement and steering in thisasiteis also clarified.

Finally, we discuss briefly the generalization of the abautts to arbitrary two-qubit states. In particular, weier
sufficient criteria on steerability of arbitrary two-qubtates by two and three projective measurements.

Setting up the stage

Consider two remote parties, Alice and Bob, who share a tiipajuantum stat@ with reduced statepa andpg for the
two parties, respectively. Alice can perform a collectidiozal measurements as characterized by a collection afiyms
operator-valued measures (POVM#),x}ax, Wherex labels the POVM and labels the outcome in each POVM. Recalll
that a POVM{Ay,}a is composed of a set of positive operators that sum up to #itgl, that is,y , Aq = |. The whole
collection of POVMs{A,,}ax is called ameasurement assemblage. If Alice performs the measuremexntand obtains the
outcomea, then Bob’s subnormalized reduced state is giveply= tra[(Aqgx ®1)p]. Note thaty , pax = Ps is independent
of the measurement chosen by Alice, as required by the nalgigrprinciple. The set of subnormalized staf@gx}a for a
given measurementis anensemble for pg, and the whole collection of ensemblgs,x}ax is astate assemblage.1?

The state assembla@p,x}ax is unsteerableif there exists a local hidden state (LHS) modéii# 232>
pa\x: z pp(a|X7A)UA7 (1)
2

wherepp(ajx,A) >0, S ,pp(alx,A) =1, andg, are a collection of subnormalized states that sum ygtand thus form an
ensemble fopg. This means that Bob can interpret his conditional staggsas coming from the preexisting staigs, where
only the probabilities are changed due to the knowledge weA measurements and outcomes.

The steering problem is closely related to the joint-measient problem. A measurement assemblglg, }a x is com-
patible or jointly measurable?®252930 jf there exist a POVM G, } and probabilitiegoa (ax,A) with S, pa(ax,A) = 1 such
that

Aax = Pa(alx,A)G,. )
p

Physically, this means that all the measurements in therddage can be measured jointly by performing the measuremen
{G, }, and post processing the measurement data. According tdbthe aliscussion, determining the compatibility of a
measurement assemblage is mathematically equivalentiéonaieing the unsteerability of a state assemblage. Thezef
many compatibility problems can be translated into stegpiroblems, and vice ver$&232> This observation will play an
important role in the present study.

When pg is of full rank, the state assemblagp,}ax for Bob can be turned into a measurement assemblage as fol-

lows 1425

Bax = Pg " “PaxPg - 3)
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Note that the set of operatofB, }a for a givenxforms a POVM, which is referred to as Bolsteering-equivalent observable
(or POVM) 25 The measurement assemblald®x}ax is compatible iff the state assemblafig,x}ax is unsteerable. For
example, ifoax = Y2 p(alx,A) 0y, thenBg, = 3 ) p(ax,A)G, with G, = pgl/za}\ pgl/z; the converse follows from the same
reasoning. This observation suggests a fruitful approachriderstanding steering via steering-equivalent oladdes.

Results

Steer Bell-diagonal states by projective measurements
Any two-qubit state can be written in the following form

3
(lel+aool+lob-a+ 3 tj0®0), ()
i,]=1

_1
P=3

whereg; for j = 1, 2,3 are three Pauli matriceg, s the vector composed of these Pauli matriaendb are the Bloch vectors
associated with the reduced states of Alice and Bob, respbctandT = (tj) is the correlation matrix. The two-qubit state
is a Bell-diagonal state it = b = 0,31 in which case we have

3
(Iol+ 3 tijo®o)), %)
i,]=1

_1
P=3

with the two reduced states being completely mixed, thapis= ps = 1/2. Bell-diagonal states are of special interest

because they have a simple structure and are thus a goadgsfarint for understanding states with more complex stnect

In addition, all two-qubit states except for a set of meagere can be turned into Bell-diagonal states by invertihl®SC 22
With a suitable local unitary transformation, the cornelatmatrixT in (5) can be turned into diagonal form, so that

1 3
pZZ(|®|+thjUj®Uj). (6)
=

As an implication of this observation, a Bell-diagonal stet steerable by one party iff it is steerable by the othetypao
there is no one-way steerintpr Bell-diagonal states. It does not matter which partyssms the steering party in the present
study.

In the case of a qubit, any projective measurenfént, } with two outcomest is uniquely determined by a unit vector
& on the Bloch sphere a&,, = (I -&c-0)/2. If Alice and Bob share the Bell-diagonal stat§ and Alice performs
the projective measurement determinedehythen the two outcomes will occur with the same probabilityl 2, and the
subnormalized reduced states of Bob are givephy= [l + (TTey)- a]/4. Accordingly, Bob's steering-equivalent observable
takes on the form

Bix==(1%£rx-0), =T e 7

2(I
Note that this observable is uniquely characterized by theermalized vectory, which determines an unbiased noisy (or
unsharp) von Neumann observable. Here “unbiased” meats tBay,) = tr(B_|x) = 1. In this way, the correlation matrik
induces a map from projective measurements of Alice to nmisjective measurements of Bob. Alice can steer Bob’s syste
using the measurement assemblfge , }x iff the set of noisy projective measuremefiB, }x is incompatible.

To see the geometric meaning of the map induced mote that the end point of lies on an ellipsoid’ centered at origin
and characterized by the symmetric maffiXT: the three eigenvalues @' T are the squares of the three semiaxes (some
of which may vanish), and the eigenvectors determine thentation of these semiaxes; see EigThis ellipsoid encodes
the set of potential noisy projective measurements of Bdhdred by projective measurements of Alice. Geometrictilg,
ellipsoid is identical to the steering ellipsoid introddda Refs.2%3%33 which encodes the set of states to which Alice can
steer Bob’s system. It is also referred to as the steeringgseltl here although the meaning is slightly different frorat in
Ref20:3233 gince its discovery, the steering ellipsoid has played gromant role in understanding various features pertinent
to entanglement and steerif?13%3* To appreciate its significance in the current context, nioe the steerability of a
Bell-diagonal state by the measurement assemidlagg }x is completely determined by the set of vectoy®n the steering
ellipsoid. Moreover, in several cases of primary interests, the steerability can be determined by purely geona¢trieans,
as we shall see shortly.
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Figure 1. The steering ellipsoids of three Bell-diagonal states. dllipsoid of a Bell state (left) coincides with the Bloch
sphere; the ellipsoid of a rank-2 Bell-diagonal state ordgeestate (middle) is rotationally symmetric with the laige
semiaxis equal to the radius of the Bloch sphere; the ellipgba Werner state (right) is a sphere contained in the Bloch
sphere.

Steering by two projective measurements

In this section we derive a necessary and sufficient critesio the steerability of a Bell-diagonal state under two gctye
measurements. We also introduce a steering measure asitaitklits geometrical meaning. Our study shows that a Bell-
diagonal state is steerable by two projective measureniféittsiolates the CHSH inequality. Furthermore, we clgrthe
relations between entanglement, steering, and Bell naiitpdy deriving tight inequalities between the followitigree
measures: the concurrence, the steering measure, anduheevof the steering ellipsoid.

Theorem 1. A Bell-diagonal state with correlation matrix T is steerable by two projective measurements iff Ay + A, > 1,
where A1, A, arethe two larger eigenvaluesof TT'.

Proof. Suppose Alice performs two projective measuremgAts,} = {(I +-€&- 0)/2} for x=1,2. Then Bob'’s steering
equivalent observables are given{®, } = {(I £rx- 0)/2}, wherery = TTe forx = 1,2, as specified in7). According to
Ref3® (see also Refd236-38) the two observables are compatible iff

|r1+r2|+|r1—r2| <2 (8)

Note thatr, andr, are two vectors on the steering ellipsoid, and the left haahel of the inequality is half of the perimeter
of a parallelogram inscribed on the steering ellipsoidhwiite plane spanned by the parallelogram passing the cdrtre o
ellipsoid. So the Bell-diagonal state is steerable iff treximal perimeter of such parallelograms is larger than teréstingly,
the maximum can be derived with a similar method used fowaegithe maximal violation of the CHSH inequalify°

max{|ry+ra| +|r1—r2|} = max{|TT (e + &)|+[T'(er — &)} = max{2cosx|T c|+ 2sin|T ¢ |}
€1, €1,6 X,c,cj‘

= 2max,/ [TTe]2+|TTet2=2 malxx/cTTTchL cHTTTTel = 2¢/A1+ Ay, 9)
c.c c.c

where X is the angle spanned l&y ande,; c andc' are the direction vectors ¢&; + €,) and(e; — €;), respectively, which

are always orthogonal. Here the maximum in the last stegagatd wherc andc* span the same space as that spanned by
the two eigenvectors associated with the two larger eigaasafTT'. The maximum ovee; ande, can be attained when
the two vectors are eigenvectors corresponding to the tigetaigenvalues 6fF T'. The Bell-diagonal state is steerable by
two projective measurements iff/2A1 + A, > 2, thatis A1 + Ay > 1. O

The choices ot andc’ that maximize 9) are highly not unique. Therefore, the optimal projectiveasurements that
Alice needs to perform are also not unique. Although thenoptimeasurements can always be chosen to be mutually udbiase
as shown in the above proof, it is usually not necessary tedAs an example, consider the Bell-diagonal state chaiaete
by the correlation matrif = diag(ty,tp,t3) with t; > t, > |t3|. One choice ot andc* readsc = (1,0,0) andct = (0,1,0),
which leads to the optimal measurement directiens- (t1,t2,0)/4 /tf—i—tz2 andey = (t1,—12,0)/4 /tf—i—t%. Note thate; and
e, are not orthogonal in general, so the corresponding piiegeteasurements are not mutually unbiased.

The proof of Theoreni also suggests a steering measure of a Bell-diagonal stdter tiwo projective measurements,
namely,S:= 2\/A; + A,. This measure has a simple geometrical meaniBg2)? is equal to the sum of squares of the two
larger semiaxes of the steering ellipsoid. A Bell-diagastate is steerable in this scenario®ft> 2. The maximum 22
of Sis attained whem; = A, = 1, which corresponds to a Bell state. To obtain a normalizedsure of steering, we may
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opt for max0, (S—2)/(2v2—2)}. According to Ref3’ the maximal violation of the CHSH inequality by the Bell-ganal
state is equal to2A1 + A2, which coincides with the steering meas&mtroduced here. This observation has an important

implication for the relation between steering and Bell maality.
Corollary 1. A Bell-diagonal stateis steerable by two projective measurementsiff it violates the CHSH inequality.

To clarify the geometric meaning of Theordmand the steering measusgt is convenient to choose a concrete Bell basis.

Here we shall adopt the following choié@,
(10)

1
_(|07V>+(_1)u|171@v>)1 uav:Oal-

|Buv> = \/E
Note thatl311) is the singlet. Thanks to the choice of the Bell basis, thestation matrices of the four Bell states are diagonal
as given by diag(—1)4, —(—1)#*V (—1)V). Up to a local unitary transformation, any Bell-diagonaltetis a mixture of the
four Bell states. Without loss of generality, we can focuBeiti-diagonal states of this form, whose correlation ntasiare

also diagonal, as irgj.

Figure 2. Geometric illustration of Bell-diagonal states steerdlyléwo projective measurements. (left) The regular
tetrahedron represents the set of Bell-diagonal stateso¢tahedron in green represents the set of separable Stheeklue

regions represent those states that are steerable by tyezfire measurements. (right) A face of the regular tetatve

which represents the set of rank-3 Bell-diagonal states.

Geometrically, the set of Bell-diagonal states forms a lagtetrahedron, whose vertices correspond to the four Bell
states’4? The set of separable Bell-diagonal states forms an octahedside the tetrahedroit*° The tetrahedron can be

embedded into a cube whose sides are aligned with the thesdabelled by, t,,t3, as shown in Fig2. In this way, a Bell-
diagonal state is uniquely specified by its three coordsgiet,, t3). The half steering measu8#2 of this Bell-diagonal state
is equal to the maximum ovey't? +t2, \/t22+t32, and, /t2+t2, which is equal to the maximal length of the three projection

of (t1,t2,t3) onto the three coordinate planes. Note tBad convex inty,ty,t3 and defines a norm in the three-dimensional
vector space accommodating Bell-diagonal states. Eaehdavface of this norm is determined by three orthogonahdgirs
of equal radius. In particular, the set of unsteerable Bilgonal states (determined by the level surface \Bith 2) is

contained in the intersection of the three solid cylindgexi#fied by the following three inequalities, respectiyely
(11)

24t5<1, t34t2<1 t24t2<1
In the rest of this section we clarify the relations betwe®s following three measures: the concurrence, the steering

measuresS, and the volume of the steering ellipsoid. Sirgés equal to the maximal violation of the CHSH inequality, our
discussion is also of interest to studying Bell nonlocality

Recall that a two-qubit state is entangled iff it has nonzenocurrence and that the concurrence of a Bell-diagont sta
is given byC = max{0, 2pmax— 1}, where pmax is the maximal eigenvalue of the stdfe Given a Bell-diagonal state with

correlation matrixT, the normalized volum¥ of the steering ellipsoid is defined ¥s:= |det(T)|.?° If T is diagonal, say
T =diag(ty,to,t3), thenV = |titots|. The constraintdt;| < 1 for j = 1,2,3 imply that 0<V < 1, where the upper bound is

saturated only for Bell states.
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Figure 3. Relations between three entanglement and steering medeuigell-diagonal states. He€gis the concurrence,
Sis the steering measure, avds the normalized volume of the steering ellipsoid. The gearegion in each plot indicates
the range of values. The dashed lines represent edge stattseasolid lines represent Werner states. In the left agid ri
plots, the blue regions (with some overlap with the orangére) indicate the ranges of values dff|r versusC and
2||T||r versusV, respectively. Herd T || is the Frobenius norm of the correlation maffixhat characterizes the
Bell-diagonal state and is relevant to steering under tpregctive measurements.

Calculation shows tha, S|V satisfy the following inequalities (see Methods sectionnfore details):

ZT\/E(1+ 2C) < S<2V/1+C2, (12)
142C\3
2 _
c2<v< (=57) (13)
2V29N <S<2V1+V. (14)

Here the lower bound inlQ) is applicable to entangled Bell-diagonal states, whiéedther five bounds inl@), (13), and (L4)
are applicable to all Bell-diagonal states. As an implmatf the above inequalities, any Bell-diagonal state withaurrence
larger than(3 — /2)/(2V/2) is steerable by two projective measurements. The nornuiviakime of the steering ellipsoid of
any separable Bell-diagonal state is bounded from above/BY,lin agreement with the result in Réf.while that of any
unsteerable Bell-diagonal state is bounded from above/t8:\12).

Two types of Bell-diagonal states deserve special atteratothey saturate certain inequalities12)( (13), and (4). A
Werner state has the form

1—f

Wi = f|B12) (Ba| + T(' —[B11){B1al), (15)

where 0< f < 1. Note thatf is equal to the singlet fraction wheh> 1/4. Geometrically, the Werner state lies on a
diagonal of the cube in Fi®; conversely, any Bell-diagonal state lying on a diagonahefcube is equivalent to a Werner
state under a local unitary transformation. The correfatiwtrix for the Werner state has the foiim= diag(ty, to,t3) with

t; =t, =tz = (1—4f)/3. Therefore, the steering ellipsoid reduces to a sphefenadiust; =t, =tz = |4f —1|/3; see the
right plot in Fig.1. In addition,

2V2 |af -1
Sl vt

The Werner state is steerable by two projective measurenifei8/2 +2)/8 < f < 1. It saturates the lower bound ih4)
and, whenf > % also the lower bound inl@) and the upper bound irig).

Those states lying on an edge of the tetrahedron inZge callededge states (or rank-2 Bell-diagonal states). If an edge
state has two nonzero eigenvalyeand 1- p with p > 1/2, thent?, = 1 andt3, = t2, = (2p— 1) (assuming; >t > |t3]).
Therefore, the steering ellipsoid is rotationally symreetvith the largest semiaxis equal to 1 and the other two sessia
equal to D — 1; see the middle plot in Fid.. In addition,

C=2p-1, S=2\/1+(2p-1)?2, V=(2p-1)2 17)
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The edge state is steerable by two projective measureméetsavelp £ 1/2, that is, when it is entangled. So entanglement
is sufficient to guarantee steering and Bell nonlocalityhis special case. In addition, the edge state saturatespiber u
bounds in 12) and (4) as well as the lower bound i1 §).

Fig. 3 illustrates the relations betwe€nS V. When the concurreneis large, the three measures are closely correlated
to each other, while they tend to be more independent in thesife scenario. Quite surprisingly, the normalized vain
of the steering ellipsoid seems to have a closer relation eohcurrenc€ rather than the steering meas@&eln addition,
for given concurrenc€ > 0, the volumé/ attains the maximum when the steering mea8a#ains the minimum, and vice
versa.

Steering by three projective measurements

In this section we explore the steerability of Bell-diaglstates under three projective measurements by the sggaaity. To
this end, we need a criterion for determining the compatijlaf three unbiased noisy projective measurements. Ratgly,
this problem has been solved in R&:3 according to which, three noisy binary observaliBs}3_, = {(I £rx-0)/2}3_,
are compatible iff

3
> 1A= Aer| <4 (18)
X=

HereAog=r1+ra+r3, Ax=2r— Ag for x=1,2,3, andAgr7 denotes the Fermat-Toricelli (FT) vector{f 3:0, which is
the vector\ that minimizes the total distangg_ |Ax — A|. In general Agr has no analytical expressi¢h?3

Given a Bell-diagonal state with correlation maffixsuppose Alice performs three projective measuren’{e!@g(}f:l =
{(1 e 0)/2}3_,. Then Bob’s steering equivalent observables are givefBay,}3 | = {(1 £rx-0)/2}3_;, wherer, =
TTe, forx = 1,2, 3. Define

3
S = max %|AX—AFT| (19)
X=

1
2 ri,rp,rz3eé

as a steering measure of the Bell-diagonal state under phogective measurements, whefas the steering ellipsoid. Then
the Bell-diagonal state is steerable by three projectivasueements if§; > 2. In general, it is not easy to compg Here
we shall derive a nontrivial lower bound, which is very usdbr understanding the steerability of Bell-diagonal etaby
three projective measurements.

Whenrz_Lry», the FT vector can be determined explicilynote that there is a typo in Ré&f.about the sign),

_ |r1— r2| — |r1+r2|

Aer = , 20

T o+ jritrg) ° 0
which imply that

3

ZJ|AX—AFT|:2¢<|r1—r2|+|r1+r2|>2+4r§. (21)

X=

Theorem 2. Any Bell-diagonal statewith || T || > 1 is steerable by three projective measurements, where | T||g = /tr(TTT) =
\/tr(TTT) is the Frobenius norm of the correlation matrix T.

Proof. LetAq,A,,As be the eigenvalues @' in nonincreasing order ared, €, €3 the associated orthonormal eigenvectors.
Letry=TTe for x=1,2,3. Thenry,r»,r3 are mutually orthogonal and

S > \/(|f1— ro|+|ri+ r2|)2+4r§ =2V A1+ 224+ A3 =2||T||r. (22)
If the Bell-diagonal state is not steerable by three projecheasurements, théz < 2, so||T||g < 1. O

The Frobenius nornfjT ||z happens to be the Euclidean norm of the ve¢toit,,t3) that represents the Bell-diagonal
state in Figs2 and4; its square is equal to the sum of squares of the three sesnaixbe steering ellipsoid. The set of
Bell-diagonal states with the same nojifi||¢ lies on a sphere. Itis clear from the above discussionShat 2||T| > S, so
any Bell-diagonal state that is steerable by two projectieasurements is also steerable by three projective measotg, as
expected. The converse is not true in general, as illustiatEig. 4. Consider the Werner state ih5) for example, we have
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Figure 4. lllustration of Bell-diagonal states steerable by thregjgutive measurements (cf. Fig). (left) The regular
tetrahedron represents the set of Bell-diagonal statesottahedron in green represents the set of separable Stateblue
regions represent those states that are steerable by tyez{ive measurements, and the red regions represent ttadss s
that are not steerable by two projective measurementsédeitadile by three projective measurements as specified in the
proof of Theoren?®. (right) A face of the regular tetrahedron which repres#msset of rank-3 Bell-diagonal states.

| T||r = |4f —1|/+/3, so the Werner state is steerable by three projective maasnts if 1> f > (1/3+1)/4. By contrast, it
is steerable by two projective measurements only3f L > (3v/2+2)/8.
The relations betwe€lfiT || andC,V can be derived with similar methods used in derivihg) @nd (4), with the results

1
\—@(1+20)§ [Tllr < V1+2C2 (23)
VAV < TIe< VItV (24)

Here the lower bound ir2@) is applicable to entangled Bell-diagonal states, whigedther three bounds are applicable to all
Bell-diagonal states. As irl@) and (L4), the two lower bounds are saturated by Werner states, weléwvo upper bounds
are saturated by edge states; see Eig.hese inequalities are quite instructive to understaptlie steering of Bell-diagonal
states by three projective measurements giverShat2||T||r. As an implication, any unsteerable Bell-diagonal statisfes
C<(V3-1)/2andv <1/(3V3).

Beyond Bell-diagonal states
Here we discuss briefly the generalization of previous tesalgeneric two-qubit states. First consider a two-quhteswith
maximally mixed marginal for Bob, that ib,= 0, in which case4) reduces to

3
(Iel+a-o0l+ Y tjo®o)), (25)
i,)=1

N

Pcano=

whereT = (tjj) is the correlation matrix. Ledi,A2,A3 be the eigenvalues OfTT arranged in nonincreasing order. The
following two corollaries generalize Theorerhand2, respectively.

Corollary 2. Any two-qubit state in (25) with A1 + A, > 1is steerable by two projective measurements from Alice.

This corollary also holds for arbitrary two-qubit statesca the conditiorA; + A, > 1 is both necessary and sufficient
for violating the CHSH inequality”3° Here we are contented to prove this special case using threectian with the joint
measurement problem, in line with our previous approach.

Proof. Suppose Alice performs two projective measuremgAts, } = {(I +&- 0)/2}2_,. Then the steering-equivalent

observables for Bob are given ¥B.}2_; = {[(1+0x)l +:rx-@)]/2}2_,, whereay = e aandry = T ' e. Unlike the proof
of Theoreml, these observables are usually biased; neverthelessotigition in @) is still necessary for two compatible
biased observables:38 Now the Corollary follows from the same reasoning as in ttepof Theorentl. O
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Corollary 3. Any two-qubit statein (25) with || T||r > 1 is steerable by three projective measurements from Alice.

Proof. Suppose Alice performs three projective measuremghis } = {(I - &- 0)/2}3_,. Then the steering-inequivalent
observables for Bob are given §8. .}, = {[(1£ ax)l £ rx- 0)]/2}3_,, whereay = €;-aandry = T e as before. Since

condition (L8) is still necessary for three compatible biased obsergdBI€ the corollary follows from the same reasoning
as in the proof of Theorei O

In general, any two two-qubit stapewith invertible pg (note thatp is necessarily separable and thus unsteeralplg i
not invertible) can be turned into the form @) by a local filtering operation of the forkf2528 44

| @ (208) Y2(-)l ® (208) V2 (26)

Moreover, such filtering operation does not change theadiy of the state by measurements of Alice. Therefore,oGo
laries2 and3 also provide sufficient criteria for the steerability of geal two-qubit states.

Discussion

In summary, we studied systematically the steerability efl-liagonal states by projective measurements on theirstee
party. In the simplest nontrivial scenario of two projeetmeasurements, we solved the problem completely by dgrivin
a necessary and sufficient criterion, which has a simple gétieal interpretation. We also introduced a steering meas
and proved that it is equal to the maximal violation of the GHSequality. This conclusion implies that a Bell-diagonal
state is steerable by two projective measurements iff iatés the CHSH inequality. In addition, we clarified the tielas
between entanglement and steering by deriving tight inkiteesasatisfied by the concurrence, our steering measuocktte
volume of the steering ellipsoid. Furthermore, we explateal steerability of Bell-diagonal states under three mtdje
measurements. A simple sufficient criterion was derivedclwvban detect the steerability of many states that are aetable
by two projective measurements. Finally, we derive sufficieering criteria for arbitrary two-qubit states undeo tand
three projective measurements by generalizing the absuidtse

Our study provided a number of instructive analytical ressoh steering, which are quite rare in the literature. These
results not only furnish a simple geometric picture abogshg of Bell-diagonal states, but also offer valuabléginson
the relations between entanglement, steering, and Belboality. They may serve as a starting point for exploringreno
complicated steering scenarios. In addition, our work ptenseveral interesting questions, which deserve furtiuelies.
For example, is the steering criterion in Theor2foth necessary and sufficient? Is there any upper bound onthber of
measurements that are sufficient to induce steering fotesrable Bell-diagonal states? We hope that these qusstidin
stimulate further progress on the study of steering.

Methods

Concurrence and steering measure
Here we derive the inequalities idg), (13), and (4) in the main text, which characterize the relations betwtberconcur-
renceC, the steering measuf®@(under two projective measurements), and the volwirad the steering ellipsoid. We also
determine those Bell-diagonal states that saturate thesgialities. Similar approach can be applied to de@3s énd @4),
which are pertinent to steering of Bell-diagonal stateshivge projective measurements.

Without loss of generality, we may assume tpatas the form in§) with |t3| <t, <t; < 1. Then the spectrum @f is
given by

1
Z{l—tl—tz—t3,1—t1+t2+t3,1+t1—t2+t3,1+t1+t2—t3}, (27)

where the eigenvalues are arranged in nondecreasing dtteeminimal and the maximal eigenvalues are respectivebgi
by pmin=(1—t1 —to—t3)/4 > 0 andpmax= (1+t1+t, —t3) /4.
If the Bell-diagonal state is separable, thatis- 0, then 0< pmin < Pmax < 1/2,31 which implies that

i+ttt <1+ <1 |tatots < 1/27, (28)

So the inequalitieS < 2v/1+C2,V < (1+2C)3/27, andS< 2/1+V in (12), (13), and (L4) hold for separable Bell-diagonal
states. The inequalitg < 2/1+C? is saturated ift; = 1, t, = t3 = 0, in which casep is an edge state with two nonzero
eigenvalues equal to/2. The inequality8 < 2\/1+V is saturated under the same condition. The inequdlity(1-+2C)3/27

is saturated iff; =t = |t3] = 1/3, in which case is a Werner state which either has singlet fractig@ ar is proportional to
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a projector of rank 3. Here states that are equivaleiitan (15) under local unitary transformations are also called Werne
states. The inequali@? <V in (13) is trivial for separable states; it is saturatedfi= C = 0, that istz3 = 0, in which case
the Bell-diagonal state lies on a coordinate plane in Eigthe inequality 2/2¢V < Sfollows from the definitions of and
V and is applicable to both separable and entangled statesaturated iff; = t, = |t3|, in which casep is a Werner state.

If the Bell-diagonal state is entangled, thpRax > 1/2,C = 2pmax— 1= (1 +tp —t3 —1)/2, andtz =t; +t, — 1 — 2C.
The positivity ofp and the requiremeris| < t, <t; lead to the following set of inequalities,

<ty t1+6,<14+C, t1+2>142C (29)

These inequalities determine a triangular region in therpater space af,t, with the following three vertices:

(1,0), %(1+C,1+C), %(1+2C,1+2C). (30)
The maximum K C2? of t12+t§ under these constraints is attainedtift= 1,t, = —tz = C, in which case the state has two
nonzero eigenvalues equaltb+C)/2 and is thus an edge state. The minimuh-22C)?/9 is attained ifft; =t, = —t3 =
(14 2C)/3, in which case the state has one eigenvalue equdl+cC)/2 and three eigenvalues equal(fo— C)/6, and is
thus a Werner state. By contrast, the maximdm- 2C)3/27 of |tytots| is attained exactly whetf +t2 attains the minimum,
and the minimunC? of |tyt,ts| is attained when? +t3 attains the maximum. Thereforel2) and (L3) hold for entangled
Bell-diagonal states. As an immediate corollafy)(also holds in this case.

In summary, the lower bound i) is applicable to entangled Bell-diagonal states, whikedther five bounds inl@),
(13), (14) are applicable to all Bell-diagonal states. The two inditiga S < 2y/1+C? andS< 2y/1+V are saturated only
for edge states. The inequaliB? < V is saturated only for edge states and those stateswvith0. The two inequalities
2v/2(1+2C)/3 < SandV < (14 2C)3/27 are saturated only for Werner states that have singletidres at least 42 or
Werner states that are proportional to rank-3 projectots iequality 2/2YV < Sis saturated only for Werner states. In
particular, among entangled Bell-diagonal states, onfjeextates and Werner states with singlet fractions larger 12 can
saturate these inequalities.
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