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SUMMARY

Sparse inversion of the large scale gravity problem is considered. The L1-type stabilizer

reconstructs models with sharp boundaries and blocky features, and is implemented here

using an iteratively reweighted L2-norm (IRLS). The resulting large scale regularized

least squares problem at each iteration is solved on the projected subspace obtained using

Golub-Kahan iterative bidiagonalization applied to the large scale linear system of equa-

tions. The regularization parameter for the IRLS problem is estimated using the unbiased

predictive risk estimator (UPRE) extended for the projected problem. Further analysis

leads to an improvement of the projected UPRE via analysis based on truncation of the

projected spectrum. Numerical results for synthetic examples and real field data demon-

strate the efficiency of the method.

Key words: Inverse theory; Numerical approximation and analysis; Gravity anomalies

and Earth structure; Asia

1 INTRODUCTION

The gravity data inversion problem is the estimation of the unknown subsurface density and its ge-

ometry from a set of gravity observations measured on the surface. This is a challenging problem for

several reasons: Foremost of these is the non-uniqueness of the problem, there are fewer observations

than the number of model parameters yielding algebraic ambiguity, but also by Gauss’s theorem non-

uniqueness arises due to the physics of the problem, (Li & Oldenburg 1996). Further, the data are
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always contaminated with noise, which, with the ill-conditioning of the model, leads to sensitivity of

the solution to the noise and to the numerical algorithm for finding the solution. Thus, the inversion

of gravity data is an example of an under-determined and ill-posed problem, for which a stable and

geologically plausible solution is feasible only with the imposition of additional information on the

model. Here we consider the minimization of a global objective function consisting of data misfit,

Φ(m), and stabilizing regularization, S(m), terms, with relative weighting determined by regulariza-

tion parameter α,

Pα(m) = Φ(m) + α2S(m). (1)

Data misfit Φ(m) measures how well an obtained model, m, reproduces the observed data, dobs. For

gravity data it is standard to assume that the noise in the data is uncorrelated and Gaussian, although

it arises due to several sources such as untreated instrumental or geologic noise. Assuming that the

standard deviation of the noise in the data is known, then a weighted L2 measure of the error between

the observed and the predicted data is used giving Φ(m) = ‖Wd(Gm − dobs)‖22, where Wd is a

diagonal matrix approximating the inverse of the diagonal standard deviation matrix of the data. We

note that throughout we use the standard definition ‖x‖p to be the Lp-norm of vector x, given by

‖x‖p = (
∑n

i=1 |xi|p)
1
p , p ≥ 1.

There are several choices for the stabilizer, S(m), depending on the type of features one wants

to see from the inverted model. A typical choice for geophysical applications is given by S(m) =

‖Wm(m − mapr)‖22 in which mapr may be some prior information on the model, and Wm is an

augmented matrix of spatially dependent weighting matrices, including potentially a depth weighting

matrix and matrices that approximate low order derivative operators in each dimension, (Li & Olden-

burg 1996, (4)). Then (1) involves two quadratic terms, and, supposing that the null spaces of both G

and Wm intersect only trivially, the unique minimizer of Pα(m) is obtained as the solution of a linear

system, the normal equations, for (1). Although this type of inversion has been used successfully in

much geophysical literature, models recovered in this way are characterized by smooth features, espe-

cially blurred boundaries, which are not always consistent with real geological structures (Farquharson

2008). There are situations in which the sources are localized and separated by sharp, distinct inter-

faces, requiring alternative approaches. In the geophysical community, Last & Kubik (1983) presented

a compactness criterion for gravity inversion that seeks to minimize the area (or volume in 3D) of the

causative body. In this case, mapr = 0 and Wm(m) = Wε(m) = diag(1/(m2 + ε2)1/2), for small

ε > 0, i.e. S(m) = ‖Wε(m)m‖22. Now, (1) is a non-linear function of m, and the model-space itera-

tively reweighted least square (IRLS) algorithm is used to solve the problem. At each iteration k, m(k)

is obtained using the weighting matrix W (k)
ε (m) calculated using m(k−1), where for any variable the
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superscript (k) denotes that variable at iteration k, and here we assume W (1)
ε (m) = I . Incorporating

mapr into the stabilizer, i.e. S(m) = ‖Wε(m)(m−mapr)‖22 with now Wε(m) defined by

Wε(m) = diag(1/((m−mapr)
2 + ε2)1/2), (2)

gives the minimum support (MS) stabilizer which minimizes the total volume of nonzero depar-

ture of the model parameters from the given prior model, (Portniaguine & Zhdanov 1999). A fur-

ther modification introduced in (Portniaguine & Zhdanov 1999) uses the gradient of the model pa-

rameters in the stabilization term via S(m) = ‖Dε(∇m)|∇m|‖22, where Dε(∇m) is defined by

diag(1/(|∇m|2 + ε2)1/2), yielding the minimum gradient support (MGS) stabilizer. This constraint

minimizes the volume over which the gradient of the model parameters is nonzero, and thus yields

models with sharp boundaries.

Another possibility for the reconstruction of sparse models is to use a stabilizer which minimizes

the L1-norm of the model or gradient, in this case known as the total variation (TV), of the model

parameters (Farquharson & Oldenburg 1998; Farquharson 2008; Loke et al. 2003). The L1-norm sta-

bilizer permits occurrence of large elements in the inverted model among mostly small values and

can, therefore, be used to obtain models with non-smooth properties (Sun & Li 2014). Although the

L1-norm stabilizer has favorable properties, and yields a convex functional that can be solved by linear

programming algorithms, its use for the solution of large scale problems is not feasible. Here we im-

plement the L1-norm stabilizer using the approximation based on an IRLS algorithm, (Bruckstein et

al. 2009), and extend the algorithm for the gravity inverse problem by including the depth weighting

and prior model information. Further, we use the weighting matrix similar to that used for the MS

stabilizer but defined by

WL1(m) = diag(1/((m−mapr)
2 + ε2)1/4), (3)

where we point to the use of fourth root in the denominator rather than square root in (2). Our results

will compare these choices.

Many techniques have been developed to estimate a suitable regularization parameter, α in (1),

including the L-curve (LC) (Hansen 1992), and Generalized Cross Validation (GCV) (Golub et al.

1979; Marquardt 1970), and methods which assume some knowledge of the noise level of the data,

including the χ2-discrepancy principle (Mead & Renaut 2009; Renaut et al. 2010; Vatankhah et al.

2014b), the unbiased predictive risk estimator (UPRE) (Vogel 2002) and the Morozov discrepancy

principle (MDP) (Morozov 1966). Our previous investigation for the gravity inverse problem, see

Vatankhah et al (2015), has demonstrated that the UPRE parameter-choice method provides a good

estimate for the Tikhonov regularization parameter especially for high noise levels. Therefore, here,
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we use the UPRE for estimation of the regularization parameter α, extending the approach in (Renaut

et al. 2015).

For small-scale problems involving two quadratic terms the solution of (1) may be found effi-

ciently using the generalized singular value decomposition (GSVD) or singular value decomposi-

tion (SVD), dependent on the choice for Wm. In addition, these factorizations present regularization

parameter-choice methods in computationally convenient forms (Vatankhah et al. 2014b). For large-

scale problems these factorizations are generally computationally impractical and an alternative ap-

proach is to find the solution through projection of the problem to a smaller subspace, on which it may

then be feasible to use the factorization for efficient estimation of the regularization parameter. Here

we use the Golub-Kahan iterative bidiagonalization projection of the solution which is based on the

LSQR Krylov methods introduced in Paige & Saunders (1982a; 1982b). Then, effective parameter es-

timation techniques, that are useful in the context of efficient iterative Krylov-based procedures, must

be developed. Chung et al. presented the weighted GCV for the projected problem which requires

the use of an additional solution dependent weighting parameter, (Chung et al. 2008). Here we focus

our discussion on the UPRE in conjunction with the solution of the projected problem, additionally

extending the approach introduced in (Renaut et al. 2015).

The outline of this paper is as follows. In Section 2 we review the inversion algorithm and trans-

formation of the L1-norm stabilizer into the standard form Tikhonov functional. Furthermore, the

development of the Tikhonov regularization functional based on the Golub-Kahan iterative bidiag-

onalization is given in Section 2.1. Section 3 is devoted to discussion of parameter estimation, the

derivation of the UPRE is presented in Section 3.1 with new work showing its extension for usage

with the projected problem in Section 3.2. Results for synthetic examples are illustrated in Section 4.

The reconstruction of an embedded cube with high density within a homogeneous medium is used for

contrasting the algorithms using the SVD, Section 4.2 and the LSQR algorithm, Section 4.3. These re-

sults demonstrate the need to use the truncated UPRE which is introduced and applied in Section 4.4.

The reconstruction of a more complex structure using the TUPRE is presented in Section 4.5. These

simulations are concluded with the contrast of the MS and L1 stabilizers in Section 4.6. The approach

is applied on gravity data acquired over a hematite mine located in the southeast of Iran and the results

are shown in Section 5. Conclusions and future work follow in Section 6.

2 L1 INVERSION METHODOLOGY

We briefly review the well-known approach for the standard 3D inversion of gravity data. The sub-

surface volume is discretized using a set of cubes, in which the cells size are kept fixed during the

inversion, and the values of densities at the cells are the model parameters to be determined in the
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inversion (Boulanger & Chouteau 2001; Li & Oldenburg 1998). Thus, we can introduce a vector m of

the unknown model parameters, here the density of each cell ρj , such that m = (ρ1, ρ2, . . . , ρn) ∈ Rn

and a vector dobs ∈ Rm which contains the measured data. Then, the gravity data satisfy the rectan-

gular underdetermined linear system

dobs = Gm. (4)

Practically, dobs = dexact + η, where dexact is the unknown exact data and η ∈ Rm represents the

error in the measurements, assumed to be Gaussian and uncorrelated. The matrixG ∈ Rm×n,m� n,

is the matrix resulting from the discretization of the forward operator which maps from the model

space to the data space. Given G, the goal of the gravity inverse problem is to find a stable and

geologically plausible density model m that reproduces dobs at the noise level.

As discussed in section 1, solving problem (4) is challenging due to the ill-posed nature of the

problem and regularization is required to stabilize the solution. Furthermore, depth weighting and

prior model information should be included in the formulation. Rewriting (4) via dobs − Gmapr =

Gm − Gmapr and then introducing the residual and discrepancy from the background data, using

r = dobs − Gmapr and y = m −mapr, respectively, for which it is immediate that r = Gy, we

obtain the functional for y,

Pα(y) = ‖Wd(Gy − r)‖22 + α2‖y‖1, (5)

here introducing the L1 regularization term. Assuming minimization of (5) to give y(α), the model is

updated by m(α) = mapr + y(α). In the IRLS algorithm ‖y‖1 is approximated as follows. We first

note, following for example (Voronin 2012; Wohlberg & Rodriguez 2007), that |yi| = y2i /
√
y2i can be

approximated by y2i /
√
y2i + ε2 for small and positive ε. Thus

‖y‖1 ≈
n∑
i=1

y2i√
y2i + ε2

=
n∑
i=1

(WL1)2ii y
2
i = ‖WL1(y)y‖2, for (WL1(y))ii =

1

(y2i + ε2)1/4
,

and (5) is replaced by the approximating differentiable functional with diagonal matrix WL1(y),

Pα(y) = ‖Wd(Gy − r)‖22 + α2‖WL1(y)y‖22, y = (m−mapr). (6)

Now the close relationship between the MS and L1-norm stabilizers is clear, the difference being

the fractional root, as is seen by introducing

Sp(x) =

n∑
i=1

ep(xi) where ep(x) =
x2

(x2 + ε2)
2−p
2

. (7)

When ε is sufficiently small, (7) yields the approximation of the Lp norm for p = 2 and p = 1,

while the case with p = 0 corresponds to the compactness constraint used in Last & Kubik (1983).

S0(x) does not meet the mathematical requirement to be regarded as a norm, and is commonly used
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Figure 1. Illustration of different norms for two values of parameter ε. (a) ε = 1e−9; (b) ε = 0.5.

to denote the number of nonzero entries in x. Fig. 1 demonstrates the impact of the choice of ε on

ep(x) for ε = 1e−9 , Fig. 1(a), and ε = 0.5, Fig. 1(b). For larger p, more weight is imposed on large

elements of x, large elements will be penalized more heavily than small elements during minimization

(Sun & Li 2014). Hence L2 tends to discourage the occurrence of large elements in the inverted model,

yielding smooth models, while L1 and L0 allow large elements leading to the recovery of data with

blocky features. Further, the L0-norm is non-quadratic and e0(x) asymptotes to one away from 0,

regardless of the magnitude of x. Hence the penalty on the model parameters does not depend on

their relative magnitude, only on whether or not they lie above or below a threshold dependent on ε

(Ajo-Franklin et al. 2007). Further, L1 does not necessarily lead to a very sparse solution and thus L0

is better for preserving sparsity. On the other hand, as compared to L1, the disadvantage of L0 is the

greater dependency on the choice of ε, so that it is less robust than L1.

Now, incorporating diagonal matrix Wz, where we generally assume that this is a depth weighting

matrix, into (6), see Li & Oldenburg (1998), yields

Pα(y) = ‖Wd(Gy − r)‖22 + α2‖WL1(y)Wzy‖22, (8)

with model dependent weighting in the regularization term, W (y) = WL1(y)Wz. Thus the IRLS

algorithm can be used to find a solution to the inverse problem as follows. The normal equations for

(8), for given W , now dropping the dependence on y, with G̃ = WdG and r̃ = Wdr, yield

y(α) = (G̃T G̃+ α2W TW )−1G̃T r̃.

For ε > 0, W is invertible and (8) can be transformed to standard form using

(G̃T G̃+ α2W TW ) = W T ((W T )−1G̃T G̃W−1 + α2In)W = W T ( ˜̃G
T ˜̃G+ α2In)W,

with ˜̃G = G̃W−1, which corresponds to variable preconditioning of G̃. Now the standard Tikhonov
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functional for the left and right preconditioned system is given by

Pα(h) = ‖ ˜̃Gh− r̃‖22 + α2‖h‖22, where h(α) = Wy(α). (9)

Solution

h(α) = ( ˜̃G
T ˜̃G+ α2In)−1 ˜̃G

T
r̃ = ˜̃G(α)r̃, where ˜̃G(α) = ( ˜̃G

T ˜̃G+ α2In)−1 ˜̃G
T
, (10)

yields the model update m(α) = mapr+W
−1h(α). For small-scale problems, the numerical solutions

of (10) can be obtained using the SVD for ˜̃G , see appendix A. Practically, however, within the context

of the IRLS in which W , and hence ˜̃G, are updated each step, the computation of the SVD each step

still represents a significant overhead for the iterative algorithm. For the forthcoming discussion on the

solution of large scale problems the overhead of the iterative update for ˜̃G is insignificant. While for

clarity in Algorithm 1 we directly form ˜̃G, we note that for some cases where G has certain structure

that may be eliminated by the pre and post multiplication even by diagonal matrices Wz and WL1 , it

is possible and efficient to consider the matrix vector products of ˜̃Gx for arbitrary x without explicitly

forming ˜̃G, as discussed in (Renaut et al. 2015). We note that in such cases when Wz and WL1 are

diagonal, multiplication, inversion and storage requirements are minimal, of O(n) only.

Application of the IRLS for the solution of the inverse problem requires the designation of a

termination test to determine whether or not an acceptable solution has been reached. Two criteria are

chosen to terminate the algorithm; either the solution satisfies the noise level,

χ2
Computed = ‖(dobs)i − (Gm)i

ηi
‖22 ≤ m+

√
2m, (11)

or a maximum number of iterations, Kmax, is reached. Additionally, at each step practical lower and

upper bounds on the density, [ρmin, ρmax], are imposed to recover reliable subsurface models. If at any

iterative step a given density value falls outside the bounds, the value at that cell is projected back to

the nearest constraint value. At iteration k we use the approximation of (7) given by

ep(x
(k), x(k−1)) =

(x(k))2

((x(k−1))2 + ε2)(
2−p
2

)
, (12)

where x(k) denotes the unknown model parameter. Typically, as the iterations proceed, if x(k) con-

verges, the approximation of (7) by (12) is increasingly better. The IRLS algorithm for small scale L1

inversion is summarized in Algorithm 1.

2.1 Numerical solution by the Golub-Kahan bidigonalization

It is not viable to use the SVD decomposition for large scale problems, rather iterative methods such

as conjugate gradients (CG), or other Krylov methods, can be employed to find h(α). In any case,

however, the problem of finding the optimal parameter α is a further complication. In general deter-
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Algorithm 1 Iterative L1 Inversion Algorithm
Input: dobs, mapr, G, Wd, ε > 0, ρmin, ρmax, Kmax

1: Calculate Wz, G̃ = WdG, and d̃obs = Wddobs

2: Initialize m(0) = mapr, W
(1)
L1

= In, W (1) = Wz

3: Calculate r̃(1) = d̃obs − G̃m(0), ˜̃G
(1)

= G̃(W (1))−1, k = 0

4: while Not converged, (11) not satisfied, and k < Kmax do

5: k = k + 1

6: Find the SVD: ˜̃G
(k)

= UΣV T

7: Use regularization parameter estimation to find α(k)

8: Set h(k) =
∑m

i=1
σ2
i

σ2
i +(α(k))2

uT
i r̃(k)

σi
vi

9: Set m(k) = m(k−1) + (W (k))−1h(k)

10: Impose constraint conditions on m(k) to force ρmin ≤m(k) ≤ ρmax

11: Calculate the residual r̃(k+1) = d̃obs − G̃m(k)

12: Set W (k+1)
L1

= diag
((

(m(k) −m(k−1))2 + ε2
)−1/4)

, as in (3), and W (k+1) = W
(k+1)
L1

Wz

13: Calculate ˜̃G
(k+1)

= G̃(W (k+1))−1

14: end while

Output: Solution ρ = m(k). K = k.

mination of an optimal α requires calculating h(α) for multiple α. Alternatively, as suggested for

example in Chung et al. (2008) and Kilmer & O’Leary (2001), regularization may be imposed on a

smaller space. The Golub-Kahan bidiagonalization (GKB) is applied to project the solution of the in-

verse problem to a smaller subspace. If we apply t steps of the GKB on matrix ˜̃G with initial vector r̃,

then bidiagonal matrix Bt ∈ R(t+1)×t and matrices Ht+1 ∈ Rm×(t+1), At ∈ Rn×t with orthonormal

columns will be generated such that, see (Hansen 2007; Kilmer & O’Leary 2001),

˜̃GAt = Ht+1Bt, Ht+1et+1 = r̃/‖r̃‖2.

For further discussion we explicitly use the subscript to indicate that the unit vector here is of length

(t+1) with a 1 in the first entry. The columns ofAt form an orthonormal basis for the Krylov subspace

Kt(
˜̃G
T ˜̃G, ˜̃G

T
r̃) = span{ ˜̃G

T
r̃, ( ˜̃G

T ˜̃G) ˜̃G
T
r̃, . . . , ( ˜̃G

T ˜̃G)t−1 ˜̃G
T
r̃}, (13)

and an approximate solution ht that lies in this Krylov subspace will have the form ht = Atzt, zt ∈

Rt. Note, we denote the quantities obtained using t steps of the factorization always with subscript t.

The matrixW−1, which acts as a right-preconditioner for the system, must be updated at each iteration

k (the same happens for r̃) and then the Krylov subspace (13) is changed at each iteration. Here the
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preconditioner is not used to accelerate convergence, but it is used to enforce some specific regularity

condition on the solution (Gazzola & Nagy 2014).

We now introduce notation that will be helpful in the discussion for estimation of the regular-

ization parameter. Specifically, defining the residuals for the full problem and projected problems by,

respectively,

Rfull(ht) = ˜̃Ght − r̃, and Rproj(zt) = Btzt − ‖r̃‖2et+1, (14)

then

Rfull(ht) = ˜̃GAtzt − r̃ = Ht+1Btzt −Ht+1‖r̃‖2et+1 = Ht+1Rproj(zt).

By the column orthogonality of Ht+1 it is immediate that the fidelity norm is preserved under pro-

jection, ‖Rfull(ht)‖22 = ‖Rproj(zt)‖22, and the Tikhonov functional (9) can be written in terms of the

projected problem,

P ζ(z) = ‖Btz− ‖r̃‖2et+1‖22 + ζ2‖z‖22, ‖h‖22 = ‖z‖22. (15)

Here regularization parameter ζ replaces α while having the same role as α but for the projected case.

Since the dimensions ofBt are small as compared to the dimensions of ˜̃G, the solution of the projected

problem (15) is obtained efficiently from

zt(ζ) = (BT
t Bt + ζ2It)

−1BT
t ‖r̃‖2et+1 = Bt(ζ)‖r̃‖2et+1,

where Bt(ζ) = (BT
t Bt + ζ2It)

−1BT
t can be obtained using the SVD, see appendix A, and the update

for the global solution is immediately given by mt(ζ) = mapr +W−1Atzt(ζ).

The projected solution zt(ζ) depends on both the subspace size, t, and the regularization param-

eter, ζ. Our focus here is not on the determination of the optimal subspace size topt, rather we focus

on the determination of ζopt, noting that finding topt is a topic of significant study see for example

the discussion in e.g. (Renaut et al. 2015). For small t, the singular values of Bt, γi, approximate the

largest singular values of ˜̃G, however, for larger t the smaller singular values of Bt approximate the

smallest singular values of ˜̃G, so that there is no immediate one to one alignment of the small singular

values between ˜̃G and Bt with increasing t. Thus, it is important to choose t such that the dominant

singular values of ˜̃G are well approximated by those of Bt effectively capturing the dominant sub-

space for the solution. We will discus the effect of choosing different t on the solution. Furthermore,

the regularization parameter-choice methods used in this context, also need some modification for the

projected case, which is demonstrated in the next section.

Although Ht+1 and At have orthonormal columns in exact arithmetic, Krylov methods lose or-

thogonality in finite precision. This means that after a relatively low number of iterations the vectors in

Ht+1 and At are no longer orthogonal and the relationship between (9) and (15) does not hold. Here
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we therefore use reorthogonalization to maintain the column orthogonality, which is also important

for replicating the dominant spectral properties of ˜̃G by Bt. We use Modified Gram Schmidt (MGS),

see Hansen (2007). We summarize the steps which are needed for implementation of the projected L1

inversion in Algorithm 2 and note that in practice one may not need to explicitly calculate ˜̃G, rather,

for the factorization it can be sufficient to be able to efficiently perform operations with G̃, G̃T , and

diagonal matrices W , as discussed in section 2 in relation to Algorithm 1.

Algorithm 2 Iterative Projected L1 Inversion Algorithm
Input: dobs, mapr, G, Wd, ε > 0, ρmin, ρmax, t, Kmax

1: Calculate Wz, G̃ = WdG, and d̃obs = Wddobs

2: Initialize m(0) = mapr, W
(1)
L1

= In, W (1) = Wz

3: Calculate r̃(1) = d̃obs − G̃m(0), ˜̃G
(1)

= G̃(W (1))−1, k = 0

4: while Not converged, (11) not satisfied, and k < Kmax do

5: k = k + 1

6: Apply GKB: ˜̃G
(k)
A

(k)
t = H

(k)
t+1B

(k)
t , H

(k)
t+1et+1 = r̃(k)/‖r̃(k)‖2

7: Find the SVD: B(k)
t = UΓV T

8: Use regularization parameter estimation to find ζ(k)

9: Set z(k)t =
∑t

i=1
γ2i

γ2i +(ζ(k))2
uT
i (‖r̃(k)‖2et+1)

γi
vi

10: Set h(k)
t = A

(k)
t z

(k)
t

11: Set m(k) = m(k−1) + (W (k))−1h
(k)
t

12: Impose constraint conditions on m(k) to force ρmin ≤m(k) ≤ ρmax

13: Calculate the residual r̃(k+1) = d̃obs − G̃m(k)

14: Set W (k+1)
L1

= diag
((

(m(k) −m(k−1))2 + ε2
)−1/4)

, as in (3), and W (k+1) = W
(k+1)
L1

Wz

15: Calculate ˜̃G
(k+1)

= G̃(W (k+1))−1

16: end while

Output: Solution ρ = m(k). K = k.

3 REGULARIZATION PARAMETER ESTIMATION

Now we focus on determination of the regularization parameter at each step k, supposing that the

dimension of the subspace, t, is known and kept fixed during the iterations. Our previous investigations

have been shown that the method of the UPRE leads to an effective estimation of the regularization

parameter (Renaut et al. 2015; Vatankhah et al. 2015; Vatankhah et al. 2014b). In order to use the

method for the projected problem we briefly review the derivation of the UPRE on the full problem.



3-D Projected L1 inversion of gravity data 11

3.1 Unbiased predictive risk estimator

Any method which is used to determine optimal α should minimize the error between the solution

h(α) and the exact solution hexact. Because the exact solution is unknown, an alternative error indi-

cator, called the predictive error, is used (Vogel 2002)

Pfull(h(α)) = ˜̃Gh(α)− r̃exact = ˜̃G ˜̃G(α)r̃− r̃exact

= H(α)(r̃exact + η̃)− r̃exact = (H(α)− Im)r̃exact +H(α)η̃ (16)

where H(α) = ˜̃G ˜̃G(α) is the influence matrix. The predictive error is also not computable because

r̃exact is unknown, however, it can be estimated using the full residual (14)

Rfull(h(α)) = ˜̃Gh(α)− r̃ = (H(α)− Im)r̃ = (H(α)− Im)r̃exact + (H(α)− Im)η̃. (17)

For both (16) and (17), the first term on the right hand side is deterministic, whereas the second is

stochastic. Applying the Trace lemma, e.g. (Vogel 2002), for both equations and using the symmetry

of the influence matrix we obtain

E(‖Pfull(h(α))‖22) = ‖(H(α)− Im)r̃exact‖22 + trace(HT (α)H(α)), and (18)

E(‖Rfull(h(α))‖22) = ‖(H(α)− Im)r̃exact‖22 + trace((H(α)− Im)T (H(α)− Im)). (19)

Here E(‖Pfull(h(α))‖22)/m is the expected value of the predictive risk (Vogel 2002). The first terms

in the right hand sides of (18) and (19) are the same. Thus, by the linearity of the trace operator and

with E(‖Rfull(h(α))‖22) ≈ ‖Rfull(h(α))‖22 = ‖(H(α)− Im)r̃‖22, the UPRE estimator of the optimal

parameter is

αopt = arg min
α
{U(α) := ‖(H(α)− Im)r̃‖22 + 2 trace(H(α))−m}. (20)

Typically αopt is found by evaluating (20) for a range of α, for example by the SVD see appendix B,

with the minimum found within that range of parameter values.

3.2 Extending the UPRE for the projected problem

For extending the UPRE parameter-choice method to a subspace, we first observe that given r̃ =

r̃exact+η̃, then ‖r̃‖2et+1 = HT
t+1r̃ consists of a deterministic and stochastic part,HT

t+1r̃exact+H
T
t+1η̃

, where for white noise vector η̃ and column orthogonal Ht+1, HT
t+1η̃ is a random vector of length

t+1 with covariance matrix It. Thus, from the derivation of UPRE for the full problem defined by the

system matrix ˜̃G, right hand side r̃ and white noise vector η̃ we immediately write down the UPRE for

the projected problem with system matrix Bt, right hand side HT
t+1r̃ and white noise vector HT

t+1η̃

ζopt = arg min
ζ
{U(ζ) := ‖(B(ζ)− It+1)‖r̃‖2et+1‖22 + 2 trace(B(ζ))− (t+ 1)}. (21)
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Figure 2. (a) Model of the cube on an homogeneous background. The density contrast of the cube is 1 g cm−3.

(b) Data due to the model and contaminated with noise N2.

Here B(ζ) = BtBt(ζ) is the influence matrix for the subspace. As for the full problem, see ap-

pendix B, the SVD of the matrix Bt can be used to find ζopt. In section 4.1 we show that in some

situations (21), as introduced in (Renaut et al. 2015), does not work well. Here, a modification is in-

troduced that does not use the entire subspace for a given t, but rather uses a truncated spectrum from

Bt for finding the regularization parameter, thus assuring that the dominant ttrunc singular values are

appropriately regularized.

4 SYNTHETIC EXAMPLES

4.1 Model of an embedded cube

The initial goal of the presented verification with simulated data is to contrast Algorithms 1 and 2.

We use a simple small-scale model that includes a cube with density contrast 1 g cm−3 embedded in

an homogeneous background, Fig. 2(a). Simulation data on the surface, dexact, are calculated over a

20 × 20 regular grid with 50 m grid spacing. To add noise to the data, a zero mean Gaussian random

matrix Θ of size m ×10 was generated. Then, setting

dcobs = dexact + (τ1(dexact)i + τ2‖dexact‖) Θc, (22)

for c = 1 : 10, with noise parameter pairs (τ1, τ2), for three choices, N1 : (0.01, 0.001), N2 :

(0.02, 0.005) and N3 : (0.03, 0.01), gives 10 noisy right-hand side vectors for 3 levels of noise.

Fig. 2(b) shows noise-contaminated data for one right-hand side, here c = 7, and for N2. For the

inversion the model region of depth 500 m, is discretized into 20× 20× 10 = 4000 cells of size 50m

in each dimension. The background model mapr = 0 and parameter ε2 = 1e−9 are chosen for the

inversion. Realistic upper and lower density bounds ρmax = 1 g cm−3 and ρmin = 0 g cm−3, are
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Table 1. The inversion results obtained by inverting the data from the cube using Algorithm 1, with ε2 = 1e−9,

average (standard deviation) over 10 runs.

Noise α(1) α(K) RE(K) K

N1 47769.1 117.5(10.6) 0.319(0.017) 8.2(0.4)

N2 48623.4 56.2(8.5) 0.388(0.023) 6.1(0.6)

N3 48886.2 36.2(9.1) 0.454(0.030) 5.8(1.3)

specified. The iterations are terminated when, approximating (11), χ2
Computed ≤ 429, or k > Kmax =

50.

4.2 Solution using Algorithm 1

The inversion was performed using Algorithm 1 for the 3 noise levels, and all 10 right-hand side data

vectors. The final iteration K, the final regularization parameter α(K) and the relative error of the

reconstructed model

RE(K) =
‖mexact −m(K)‖2
‖mexact‖2

(23)

are recorded. Table 1 gives the average and standard deviation of α(K), RE(K) and K over the 10

samples. It was explained by Farquharson (2004) that it is efficient if the inversion starts with a large

value of the regularization parameter. This prohibits imposing excessive structure in the model at early

iterations which would otherwise require more iterations to remove artificial structure. In this paper the

method introduced by Vatankhah et.al. (2014a; 2015) was used to determine an initial regularization

parameter, α(1). Because the non zero singular values, σi of matrix ˜̃G are known, the initial value

α(1) = (n/m)3.5(σ1/mean(σi)) (24)

can be selected. For subsequent iterations the UPRE method is used to estimate α(k).

To illustrate the results, Figs. 3-6 provide details for right-hand side c = 7 and for all noise

levels. Fig. 3 shows the reconstructed models, indicating that a focused image of the subsurface is

possible in all cases using Algorithm 1. The constructed models have sharp and distinct interfaces

with the embedded medium. The progression of the data misfit Φ(m), the regularization term S(m)

and regularization parameter α(k) with iteration k are presented in Fig. 4. Φ(m) is initially large

and decays quickly in the first few steps, but the decay rate decreases dramatically as k increases.

Fig. 5 shows the progression of the relative error, (23), as a function of k. In all cases there is a

dramatic decrease in the relative error for small k, after which the error decreases slowly. The UPRE

functional for iteration k = 4 is shown in Fig. 6. Clearly, for all cases the curves have a nicely defined
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Figure 3. The reconstructed model obtained by inverting the noise-contaminated right-hand side with c = 7

using Algorithm 1 for noise cases (a) N1; (b) N2; (c) N3 with ε2 = 1e−9 and (d) N2 when ε2 = 0.5.

minimum, which is important in the determination of the regularization parameter. We return to this

when considering the projected case.

To determine the dependence of Algorithm 1 on other values of ε2, we examined the results using

right-hand side data for c = 7 for noise N2 with ε2 = 0.5 and ε2 = 1e−15 with all other parameters

chosen as before. For ε2 = 1e−15 the results are very close to those obtained with ε2 = 1e−9,

and are not presented here. For ε2 = 0.5 the results are significantly different. Fig. 3(d) shows the

reconstructed model, indicating a smeared-out and fuzzy image of the original model. The maximum

of the obtained density is about 0.85 g cm−3, 85% of the imposed ρmax. The progression of the data

misfit, the regularization term and regularization parameter are presented in Fig. 4(d), while the relative

error functional and UPRE curve at iteration 4 are shown in Fig. 5(d) and Fig. 6(d), respectively.

Clearly more iterations are needed to terminate the algorithm, K = 31, and at the final iteration

α(31) = 1619.2 andRE(K) = 0.563 respectively, larger than their counterparts in the case ε2 = 1e−9.

4.3 Solution using Algorithm 2

Algorithm 2 is used to reconstruct the model for 4 different values of t, t = 3, 100, 200 and 400, in

order to examine the impact of the size of the projected subspace on the solution and the estimated

parameter ζ. The results for t < m, are given in Table 2. Here, in order to compare the algorithms, the

initial regularization parameter, ζ(1), is set to the value that would be used on the full space. Generally,

for small t the estimated regularization parameter is less than the counterpart obtained for the full case
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Figure 4. Inverting the noise-contaminated right-hand side with c = 7 using Algorithm 1. The progression of

the data misfit, ?, the regularization term, +, and the regularization parameter, �, with iteration k for noise cases

(a) N1; (b) N2; (c) N3 with ε2 = 1e−9 and (d) N2 when ε2 = 0.5.

for the specific noise level. Comparing Tables 1 and 2 it is clear that with increasing t, the estimated

ζ increases, reaching α(K) of the full space when t = m. For t = 3, the algorithm is computationally

very fast and the relative error of the reconstructed model is acceptable, but still larger than that

obtained using the full model. As t becomes greater than 3, and approaches t = 200, the results are

not satisfactory. For a sample case, t = 100, the results are presented in Table 2. The relative error is

very large and the reconstructed model is generally not acceptable. Although the results with the least

noise are acceptable, they are still worse than the results obtained with the other selected choices for

t. In this case, t = 100, and for high noise levels, the algorithm usually terminates when it reaches

k = Kmax = 50, indicating that the solution does not satisfy the noise level constraint (11). For

t = 200 the results are again acceptable, although less satisfactory than the results obtained with the

full space. With increasing t the results improve, until for t = m = 400 the results, not given here,

reproduce, as expected, those obtained with Algorithm 1.

To illustrate the results, we show the reconstructed models using Algorithm 2 with different t and
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Figure 5. Inverting the noise-contaminated right-hand side with c = 7 using Algorithm 1. The progression of

the relative error at each iteration for noise cases (a) N1; (b) N2; (c) N3 with ε2 = 1e−9 and (d) N2 when

ε2 = 0.5.
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Figure 6. Inverting the noise-contaminated right-hand side with c = 7 using Algorithm 1. The UPRE functional

at iteration 4 for noise cases (a) N1; (b) N2; (c) N3 with ε2 = 1e−9 and (d) N2 when ε2 = 0.5.

for right-hand side c = 7 for noise N2, Fig. 7. As illustrated, the reconstructed models for t = 3,

200 and 400 are acceptable, while for t = 100 the results are completely wrong. For some right-hand

sides c with t = 100, the reconstructed models may be much worse than that shown in Fig. 7(b). The

progression of the data misfit, the regularization term and the regularization parameter with iteration

k are presented in Fig. 8, while RE(K) is shown in Fig. 9. For t = 100 and for high noise levels,

usually the estimated value for ζ(k) using (21) for 1 < k < K is small, corresponding to under

regularization and yielding a large error in the solution. To understand why the UPRE leads to under

regularization we illustrate the UPRE curves for iteration k = 4 in Fig. 10. It is immediate that when

using small t, U(ζ) may not have a unique minimum, and thus the algorithm may find a minimum

at a small regularization parameter which leads to under regularization of the dominant, and more

accurate, terms in the expansion. This can cause problems for moderate t, t < 200. On the other hand,

as t increases, e.g. for t = 200 and 400, it appears that there is a unique minimum of U(ζ) and the

regularization parameter found is appropriate. Unfortunately, this situation creates a conflict with the

need to use t� m for large scale problems.

Table 2. The inversion results obtained by inverting the data from the cube using Algorithm 2, with ε2 = 1e−9,

and ζ(1) = α(1) for the specific noise level as given in Table 1. In each case the average (standard deviation)

over 10 runs. The rows corresponding to noise cases N1, N2 and N3, resp.

t=3 t=100 t=200

ζ(K) RE(K) K ζ(K) RE(K) K ζ(K) RE(K) K

75.5(2.9) .427(.037) 13.5(0.5) 98.9(12.0) .452(.043) 10.0(0.7) 102.2(11.3) .330(.019) 8.8(0.4)

46.7(14.2) .472(.041) 7.8(0.6) 42.8(10.4) 1.009(.184) 28.1(10.9) 43.8(7.0) .429(.053) 6.7(0.8)

25.6(4.7) .493(.03) 6.1(0.7) 8.4(13.3) 1.118(.108) 42.6(15.6) 27.2(6.3) .463(.036) 5.5(0.5)
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Figure 7. The reconstructed model obtained by inverting the noise-contaminated right-hand side with c = 7 for

noise N2 using Algorithm 2 with ε2 = 1e−9. (a) t = 3; (b) t = 100; (c) t = 200; and (d) t = 400.

4.4 Extending the projected UPRE by spectrum truncation

To determine the reason for the difficulty with using U(ζ) to find an optimal ζ for moderate t, we

illustrate the singular values for Bt and ˜̃G in Fig. 11 for the chosen choices of t for iteration 4 and

for the case with t = 100 the singular values at iterations 1, 3, 5 and the final iteration 14. It can be

seen that for moderate t, we have γi ≈ σi only for i = 1 : t∗ for some t∗ < t, where as seen from

Figs. 11(e)-11(h), t∗ is approximately preserved with the iterative steps. Now, for i > t∗, γi << σi,

as Bt reflects the overall condition of the problem. This generates regularization parameters which are

determined by the smallest γi, rather than the dominant terms. Suppose, on the other hand, that we use
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Figure 8. Inverting the noise-contaminated right-hand side with c = 7 for noise N2 using Algorithm 2 with

ε2 = 1e−9. The progression of the data misfit, ?, the regularization term, +, and the regularization parameter,

�, with iteration k, for (a) t = 3; (b) t = 100; (c) t = 200; and (d) t = 400.
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Figure 9. Inverting the noise-contaminated right-hand side with c = 7 for noise N2 using Algorithm 2 with

ε2 = 1e−9. The progression of the relative error at each iteration for (a) t = 3; (b) t = 100; (c) t = 200; and

(d) t = 400.

t steps of the GKB on matrix ˜̃G to obtain Bt, but use ttrunc = ω t, ω < 1, singular values of Bt in

estimating both ζ and zt, in steps 8 and 9 of Algorithm 2. Our examinations, see for example Fig. 11,

suggest taking ω ≈ 0.8, with this choice consistent across all iterations. With this choice the smallest

singular values of Bt are ignored in estimating ζ and zt.

We denote the approach, in which we replace steps 8 and 9 in Algorithm 2 with estimates using

ttrunc, truncated UPRE (TUPRE). We comment that the approach may work equally well for alter-

native regularization techniques, but this is not a topic of the current investigation, as is a detailed

investigation for the choice of ω. For example, our investigations show that ω may be estimated at the

first iteration by examining the singular values for Bt̂ where t̂ > t, say t̂ = 1.1t and comparing how

many of the singular values for Bt are close to the first t of these for Bt̂, even though for this first

iteration ζ(1) is set large as in the estimation of α(1), using (24), (Vatankhah et al. 2014a; Vatankhah

et al. 2015). If the relative change in the spectral value is say greater than 10% for a given i then this

suggests using ttrunc = i, and generally corresponds to our choice ω ≈ .8. Furthermore, we note this

is not a standard filtered truncated SVD for the solution, rather the truncation here is determined for
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Figure 10. Inverting the noise-contaminated right-hand side with c = 7 for noise N2 using Algorithm 2 with

ε2 = 1e−9. The UPRE functional at iteration 4 for (a) t = 3; (b) t = 100; (c) t = 200; and (d) t = 400.
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Figure 11. The singular values of ˜̃G, blue �, and Bt, red ?, at iteration 4 using Algorithm 2 with ε2 = 1e−9

for the noise-contaminated right-hand side with c = 7 and noise N2. (a) t = 3; (b) t = 100; (c) t = 200 and

t = 400, for plots 11(a)-11(d). In 11(e)-11(h) the singular values of Bt for t = 100 and the first 150 singular

values of ˜̃G, for iterations 1, 3, 5 and the final iteration 14.

the given projected problem and is based on the accuracy of the largest possible projected subspace

for a given t, which is a fraction of the anticipated subspace size t. To show the efficiency of TUPRE,

we run the inversion algorithm for case t = 100 for which the original results are not realistic. The

results using TUPRE are given in Table 3 for noise N1, N2 and N3, and illustrated, for right-hand

side c = 7 for noise N2, in Fig. 12. Fig. 12(c) shows the existence of a well-defined minimum for

U(ζ) at iteration k = 4, as compared to Fig. 10(b), although this is not preserved over all iterations.

Reconstructed models using TUPRE for t = 10, 20, 30 and 40 are illustrated in Fig. 13. The results

indicate that the use of TUPRE yields acceptable solutions for these moderate choices of t. Although

these results show that small t can be used in the method, we suggest that t > m/20 is a suitable

choice for this application. For high noise levels using ω ≈ 0.7 may improve the results. Here we use

ω ≈ 0.8 for all cases.

Table 3. The inversion results obtained by inverting the data from the cube using Algorithm 2, with ε2 = 1e−9,

using TUPRE with t = 100, and ζ(1) = α(1) for the specific noise level as given in Table 1. In each case the

average (standard deviation) over 10 runs.

Noise ζ(K) RE(K) K

N1 148.0(12.5) 0.299(0.010) 6.7(0.7)

N2 62.6(4.7) 0.384(0.035) 6.4(0.5)

N3 33.2(4.7) 0.445(0.034) 6.7(1.1)
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Figure 12. Results for right-hand side c = 7 for noise N2 using Algorithm 2, with ε2 = 1e−9 using TUPRE

when t = 100 is chosen; (a) The progression of the data misfit, ?, the regularization term, +, and the regular-

ization parameter, �, with iteration k; (b) The progression of the relative error at each iteration; (c) The TUPRE

functional at iteration 4; and (d) The reconstructed model.
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Figure 13. The reconstructed model by inverting noise-contaminated for right-hand side c = 7 for noise N2

using Algorithm 2, with ε2 = 1e−9, using TUPRE. (a) t = 10; (b) t = 20; (c) t = 30 and (d) t = 40.
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4.5 Model of multiple embedded bodies

A model consisting of four bodies with various geometries, sizes, depths and densities is used to verify

the ability and limitations of Algorithm 2 implemented with TUPRE for the recovery of large-scale

and more complex structures. Fig. 14(a) shows a perspective view of this model. The densities of the

dipping dike, anomaly A, and cube B are 0.8 g cm−3, and 1 g cm−3 for cubes C and D. Fig. 15 shows

four plane-sections of the model. The surface gravity data are calculated on a 60 × 60 grid with 100

m spacing, for a data vector of length 3600. Noise is added to the exact data vector as in (22) with

(τ1, τ2) = (.02, .002). Fig. 14(b) shows the noise-contaminated data.

The subsurface extends to depth 1000 m with cells of size 100 m in each dimension yielding

the unknown model parameters to be found on 60 × 60 × 10 = 36000 cells. The inversion assumes

mapr = 0, ε2 = 1e−9 and imposes density bounds ρmin = 0 g cm−3 and ρmax = 1 g cm−3. The

iterations are terminated when, approximating (11), χ2
Computed ≤ 3685, or k > Kmax = 100. The

inversion is performed using Algorithm 2 but with the TUPRE solution methods for steps 8 amd 9.

The initial regularization parameter is ζ(1) = (n/m)3.5(γ1/mean(γi)), for γi, i = 1 : t.

Fig. 16 shows the resulting model for the inversion, when t = 200 is chosen. The progression of

the data misfit, the regularization term and the regularization parameter with iteration k, the TUPRE

functional at the final iteration, and the progression of the relative error at each iteration are presented

in Fig. 17. Convergence is reached after 11 iterations, and ζ(11) = 50.3. As illustrated, the horizontal

borders of the bodies are recovered and the depths to the top are close to those of the original model.

At the intermediate depth, the shapes of the anomalies are reconstructed well, while deeper in the

subsurface additional structures appear. The reconstruction of the dipping dike is acceptable but does

not completely match the original model. Using the incorrect upper density bounds for anomalies

A and B, impacts the resulting model. For anomaly B the maximum density is obtained 1 g cm−3,

although in deeper parts it is close to the true value 0.8 g cm−3. Algorithm 2 is very fast, requiring

only a few minutes, dependent on the choice of t.

4.6 Comparison of L1 and MS stabilizers

To compare with results obtained using the MS stabilizer, we implement Algorithm 2 with step 14

for finding WL1 replaced by calculation of Wε as in (2). Equivalently we replace p = 1 by p = 0 in

(7). We use ε2 = 1e−5. The results are presented in Figs. 18 and 19. Although the MS solution is

more focused, the convergence of the solution to an acceptable error level takes more iterations. Here

the algorithm terminates at k = Kmax = K100, indicating that the noise level condition (11) was not

achieved. We note that, although, smaller values of ε provide a more focused image, the solution is

less stable. For example, using ε2 = 1e−9 the reconstructed model is more focused but is less stable.
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Figure 14. (a) The perspective view of the model. Four different bodies embedded in an homogeneous back-

ground. Densities of A and B are 0.8 g cm−3 and C and D are 1 g cm−3; (b) The noise contaminated gravity

anomaly due to the model.

In contrast, as indicated in Section 4.1, this is not an important issue for the L1 stabilizer which is

less sensitive to the choice of ε. Although there are advantages and disadvantages to each algorithm,

neither is superior, it is clear that the L1 stabilizer offers an acceptable and efficient alternative to the

standard MS approach.

5 REAL DATA

To illustrate the relevance of the approach for practical data we investigate the reconstruction of gravity

data acquired over a hematite mine. The survey area is near the village of Gheshmeh Gaz, Kerman

province, in the southeast of Iran. The gravity survey was performed by the Gravity Branch of the

Institute of Geophysics, at the University of Tehran. In this area mostly pyroclastic sediments were

formed in the upper Cambrian and Devonian. The Devonian outcrops have been formed mostly from

dolomitic limestone but the pyroclastic sediments of the Cambrian have been formed from rhyolite,

tuff and rhyodacite, and iron oxide (Hematite) can be seen in the outcrops. Data were measured at 750

stations spaced about 10 m along the profile with 30 m between profiles. The measurements have been

corrected for effects caused by variation in elevation, latitude and topography to yield the Bouguer

gravity anomaly. The residual gravity anomaly has been computed using a polynomial fitting method,

which was sampled every 10 m, providing a grid with 41 × 73 = 2993 gravity measurements. To

suppress effects of noise the residual anomaly is upward-continued to a height of 2.5 m. The resulting

anomaly is shown in Fig.20. Several major areas of high gravity are observed in the map, and are

labeled as positions 1, 2, 3 and 4. In the western part of the region, the extension of anomalies 1 and 3

is cut off at the boundary. At the moment, no gravity data beyond the western boundary is available.

We suppose each datum has an error with standard deviation (0.02(dobs)i + 0.003‖dobs‖).
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Figure 15. The original model is displayed in four plane-sections. The depths of the sections are: (a) Z = 100

m; (b) Z = 300 m; (c) Z = 400 m and (d) Z = 500 m.

For the data inversion we use a model with cells of width 10 m in the eastern and northern direc-

tions. In the depth dimension the first four layers of cells have a thickness of 5 m, while the subsequent

layers increase gradually to 10 m. The maximum depth of the model is 100 m. This yields a model

with the z-coordinates: 0 : 5 : 20, 26, 33, 41, 50 : 10 : 100. The original model is then padded in

the horizontal directions with three cells with dimensions that are the same as in the original model.

A mesh with 47 × 79 × 13 = 48269 cells results. Based on geological information, the background

density is taken to be 2.85 g cm−3 and density limits ρmin = 2.5 g cm−3 and ρmax = 4 g cm−3 are

imposed. The TUPRE with t = 200 and the L1 stabilizer with ε2 = 1.e−9 is used for the inversion by

algorithm 2.

The algorithm terminates after 19 iterations. The progression of the data misfit, the regularization

term and the regularization parameter with iteration k, the TUPRE functional at the final iteration,

and the gravity response of the reconstructed model are shown in Fig. 21. The predicted data provide

a good fit to the observed data, see Fig. 21(c). Cross-sections of the recovered model are shown in
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Figure 16. For the data in Fig. 14(b): The reconstructed model using Algorithm 2 with t = 200 and the L1

stabilizer with ε2 = 1.e−9. The depths of the sections are: (a) Z = 100 m; (b) Z = 300 m; (c) Z = 400 m and

(d) Z = 500 m.

2 4 6 8 10
10

−5

10
0

10
5

10
10

Iteration number

(a)

50 100 150 200
20

40

60

80

100

120

140

ζ

U
(

ζ)

(b)

2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

Iteration number

R
e
l
a
t
i
v
e
 
e
r
r
o
r

(c)

Figure 17. For the data in Fig. 14(b) using Algorithm 2 with t = 200 and the L1 stabilizer with ε2 = 1.e−9.

(a) The progression of the data misfit, ?, the regularization term, +, and the regularization parameter, �, with

iteration k; (b) The TUPRE functional at iteration 11; and (c) The progression of the relative error at each

iteration.
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Figure 18. For the data in Fig. 14(b) using Algorithm 2 with t = 200 and the MS stabilizer with ε2 = 1e− 5.

The depths of the sections are: (a) Z = 100 m; (b) Z = 300 m; (c) Z = 400 m and (d) Z = 500 m.
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Figure 19. For the data in Fig. 14(b) using Algorithm 2 with t = 200 and the MS stabilizer with ε2 = 1e − 5.

(a) The progression of the data misfit, ?, the regularization term, +, and the regularization parameter, �, with

iteration k; (b) The TUPRE functional at iteration 100; and (c) The progression of the relative error at each

iteration.
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Figure 20. Upward Residual Anomaly.

Fig. 22. These are cross-sections in the northern dimension at north=100 m, 210 m, 400 m, 500 m,

650 m, and in the eastern dimension at east=20 m, 100 m, 200 m, 280 m, 350 m, in Figs.22(a)-22(b),

respectively.

From Fig. 22, three major density sources are observed beneath anomalies 1, 2 and 3. The source

under anomaly 4 and some small sources in the eastern part of the area are not comparable with these

major sources. The maximum extension of source 1 in the west-east and south-north directions are

approximately 250 m and 200 m, respectively. The depth to the surface varies between 5-10 m in the

east to 20 m in the west. In the southwest, the source has a dipping form and extends to a maximum

70 m depth. Source 2 is approximately of horizontal dimnesions 100 m by 100 m, and extends from

15-25 m to 50-60 m in depth. Source 3 has a maximum extension of approximately 150 m in the west-

east dimension and approximately 100 m in the south-north dimension The source is quite close to the

surface, approximately at depth 5-10 m, and extends to an approximate maximum of 50 m. There are

currently no data that confirm or reject the inversion results, however, based on the synthetic examples

we can suppose that the inversion has yielded information that is close to the true subsurface model.
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Figure 21. For the real data inversion for the data in Fig. 20: (a) The progression of the data misfit, ?, the

regularization term, +, and the regularization parameter, �, with iteration k; (b) The TUPRE functional at

iteration 19; and (c) The gravity response of the reconstructed model.

6 CONCLUSION

We have developed an algorithm for sparse inversion of gravity data using an L1 norm stabilizer.

The algorithm is developed for both small and large scale problems. Our results show that the large

scale problem can be efficiently and effectively inverted using the GKB projection with regularization

applied on the projected space. We demonstrated that for estimating the regularization parameter on

the subspace, a new approach based on the truncation of the projected spectrum in conjunction with

the method of unbiased predictive risk should be applied. The new method, here denoted as TUPRE,

gives results using the projected subspace algorithm which are comparable with those obtained for the

full space, while just requiring a small number of Golub-Kahan iterations. Then, a fast and practical

algorithm for the large-scale inversion of gravity data was obtained. Numerical simulations support

the use of the algorithm. Finally, the algorithm was used on gravity data from a hematite mine in Iran
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Figure 22. For the data in Fig. 20: The reconstructed model using Algorithm 2 with t = 200 and the L1

stabilizer with ε2 = 1.e−9. (a) west-east cross-sections and (b) north-south cross-sections.
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and the reconstructed model was shown. Future work will look further at the algorithm for other data

sets, and additional justification mathematically of the truncated UPRE algorithm,
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APPENDIX A: SOLUTION USING SINGULAR VALUE DECOMPOSITION

Suppose m∗ = min(m,n) and the SVD of matrix ˜̃G ∈ Rm×n is given by ˜̃G = UΣV T , where the

singular values are ordered σ1 ≥ σ2 ≥ . . . ≥ σm∗ > 0, and occur on the diagonal of Σ ∈ Rm×n with

n−m zero columns (when m < n) or m−n zero rows (when m > n), using the full definition of the

SVD, (Golub & van Loan 1996). U ∈ Rm×m, and V ∈ Rn×n are orthogonal matrices with columns

denoted by ui and vi. Then the solution of (10) is given by

h(α) =
m∗∑
i=1

σ2i
σ2i + α2

uTi r̃

σi
vi (A.1)

For the projected problem Bt ∈ R(t+1)×t, i.e. m > n, and the expression still applies to give the

solution of (16) with ‖r̃‖2et+1 replacing r̃, ζ replacing α, γi replacing σi and m∗ = t in (A.1).

APPENDIX B: REGULARIZATION PARAMETER ESTIMATION

The UPRE functional for determining α in the Tikhonov functional (9) with system matrix ˜̃G is ex-

pressible using the SVD for ˜̃G

U(α) =
m∗∑
i=1

(
1

σ2i α
−2 + 1

)2 (
uTi r̃

)2
+ 2

(
m∗∑
i=1

σ2i
σ2i + α2

)
−m.

In the same way the UPRE functional for the projected problem (15) is given by

U(ζ) =
t∑
i=1

(
1

γ2i ζ
−2 + 1

)2 (
uTi (‖r̃‖2et+1)

)2
+

t+1∑
i=t+1

(
uTi (‖r̃‖2et+1)

)2
+ 2

(
t∑
i=1

γ2i
γ2i + ζ2

)
− (t+ 1).

Then, for truncated UPRE, t is replaced by ttrunc < t so that the terms from ttrunc to t are ignored,

corresponding to dealing with these as constant with respect to the minimization of U(ζ).


	1 Introduction
	2  L1 Inversion methodology 
	2.1 Numerical solution by the Golub-Kahan bidigonalization

	3 Regularization parameter estimation
	3.1 Unbiased predictive risk estimator
	3.2 Extending the UPRE for the projected problem

	4 Synthetic examples
	4.1 Model of an embedded cube
	4.2 Solution using Algorithm 1
	4.3 Solution using Algorithm 2
	4.4 Extending the projected UPRE by spectrum truncation
	4.5 Model of multiple embedded bodies
	4.6 Comparison of L1 and MS stabilizers

	5 Real data
	6 conclusion
	REFERENCES
	A solution using singular value decomposition
	B regularization parameter estimation

