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Abstract

The exact grand-canonical solution of a generalized interacting self-avoid walk (ISAW) model,

placed on a Husimi lattice built with squares, is presented. In this model, beyond the traditional

interaction ω1 = eǫ1/kBT between (nonconsecutive) monomers on nearest-neighbor (NN) sites,

an additional energy ǫ2 is associated to next-NN (NNN) monomers. Three definitions of NNN

sites/interactions are considered, where each monomer can have, effectively, at most 2, 4 or 6 NNN

monomers on the Husimi lattice. The phase diagrams found in all cases have (qualitatively) the

same thermodynamic properties: a non-polymerized (NP) and a polymerized (P) phase separated

by a critical and a coexistence surface that meet at a tricritical (θ-) line. This θ-line is found even

when one of the interactions is repulsive, existing for ω1 in the range [0,∞), i. e., for ǫ1/kBT in

the range [−∞,∞). Counterintuitively, a θ-point exists even for an infinite repulsion between NN

monomers (ω1 = 0), being associated to a coil-“soft globule” transition. In the limit of an infinite

repulsive force between NNN monomers, however, the coil-globule transition disappears and only

a NP-P continuous transition is observed. This particular case, with ω2 = 0, is also solved exactly

on the square lattice, using a transfer matrix calculation, where a discontinuous NP-P transition

is found. For attractive and repulsive forces between NN and NNN monomers, respectively, the

model becomes quite similar to the semiflexible-ISAW one, whose crystalline phase is not observed

here, as a consequence of the frustration due to competing NN and NNN forces. The mapping of

the phase diagrams in canonical ones is discussed and compared with recent results from Monte

Carlo simulations.
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† tiago@ufv.br
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I. INTRODUCTION

A polymer in solution, usually, may exist in three different conformations depending on

temperature T or solvent quality: i) extended : coil -like chains (high T and/or good solvents);

ii) collapsed : the chains have globule-like shapes (low T and/or poor solvents); and iii) θ:

this point marks the (continuous/tricritical [1, 2]) transition between the coil and globule

phases (occurring at Tθ and in a “θ-solvent”) [3, 4]. The differences among these phases

can be characterized, for example, through the metric exponent ν - from the scaling of the

gyration radio Rg with the number N of monomers, Rg ∼ Nν -, being νcoil > νθ > νglobule.

For linear polymers, the coil phase can be modeled by self-avoiding walks (SAWs), where

the excluded volume is the only interaction present (athermal system). Generalizing this

model, by including self-attraction in the chain, the globule phase as well as a coil-globule

transition arise. When the polymer is placed on a lattice, the standard interacting SAW

(ISAW) model consists in assigning an energy ǫ (yielding an attractive force) between

monomers on nearest-neighbor (NN) sites nonconsecutive in the walk [2, 4, 5]. Coil and

globule phases, separated by a tricritical (θ)-point, are indeed observed in this model. In

two-dimensions, the exponents νcoil = 3/4, νθ = 4/7 and νglobule = 1/2 are exactly known

[3, 5, 6]. The more general case of semiflexible polymers has been modeled by introducing

a bending energy ǫb in the ISAW model (see for instance Refs. [7–10]). In this semiflexible-

ISAW (sISAW) model, a stable crystalline (solid-like) phase also exists in the system (for

low T and large ǫb), in addition to the coil and globule ones.

Lee et al. [11, 12] have proposed another interesting generalization of the ISAW model

by associating different energies ǫ1 and ǫ2 to monomers on NN and next-NN (NNN) sites,

respectively. From exact enumeration of walks with up to 38 monomers on the square lattice,

a line of θ-points (a θ-line) separating the coil and globule phases was found. Similar results

were also observed in recent Monte Carlo simulations of this model on the square and cubic

lattices [13]. Interestingly, this last study showed that the θ-line exists even for competing

interactions between monomers (ǫ1 < 0 and ǫ2 > 0 or ǫ1 > 0 and ǫ2 < 0). Actually, a

θ-line and the absence of other phases (beyond the coil and globule ones) is quite expected

when both forces are attractive (ǫ1 > 0 and ǫ2 > 0), but for competing interactions this

is not necessarily the case, due to the frustration arising from such competition, which

might change the critical properties of the system. As a classical example of this, one may
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cite the Ising model on the square lattice with competing NN and NNN interactions, where

different ordered phases, transitions and universality classes are observed (for a recent survey

see [14]). In polymers, competing (on-site) interactions in the multiple monomer per site

(MMS) model by Krawczyk et al. [15] is known to change the coil-globule transition in a

certain region of its phase diagram, but the order of transition still remain unclear [16].

Another interesting feature of the ISAW model when the force between NNN monomers

is repulsive is its semiflexibility, because ǫ2 < 0 acts as a bending energy, though it also

repels NNN monomers that are not part of a bend. Anyway, for large enough ǫ1 > 0 and

ǫ2 < 0, a crystalline phase could be expected in this model. However, at least in the range

of energies analyzed in Ref. [13], this crystalline phase was not observed.

In order to analyze in more detail whether competing forces between monomers can

change or not the coil-globule transition, as well as whether it yields or not an ordered

(crystalline) phase in the ISAW with NNN interactions, here, we solve this model on a Husimi

lattice built with squares. Different definitions of next nearest-neighbors (and interactions

between them) on this lattice are analyzed, but in all cases the same qualitative results

are obtained: no crystalline phase is found and the θ-line extends over the whole phase

diagram, for ǫ1 in the range [−∞,∞), which includes the regions of competing interactions.

Only in the extremal case of an infinite repulsive force between NNN monomers there is a

breakdown of the coil-globule transition, which is quite expected since in this case the chains

are straight.

The rest of this work is organized as follows. In Sec. II the model is defined on a Husimi

lattice built with squares and solved in terms of recursion relations. The thermodynamic

properties of the model are presented in Sec. III. In Sec. IV our final discussions and

conclusions are summarized. The calculations of the free energy and of the θ-lines are

demonstrated in appendices A and B, respectively.

II. DEFINITION OF THE MODEL AND ITS SOLUTION IN TERMS OF RE-

CURSION RELATIONS

We investigate interacting self- and mutually avoiding walks on a Husimi lattice - the core

of a Cayley tree [17] - built with squares (see Fig.1). The endpoints of the walks are placed

on the surface of the tree. In our grand-canonical solution, the thermodynamic variables
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FIG. 1. (Color online) a) Example of contribution to the partition function of the model on

a Husimi tree with three generations. The polymer chains are represented by full thick (blue)

lines and the dashed lines gives examples of each type of monomer interaction. The weight of

this configuration is z18ω2
1ω

8
2ω

′4
2 . b) Definition of the second neighbor (circles) - by the chemical

distance - of the site i (square).

of interest are the monomer fugacity z and the Boltzmann weights ω1 = exp(ǫ1/kBT ) and

ω2 = exp(ǫ2/kBT ) associated to each pair of nonconsecutive monomers on nearest-neighbor

(NN) sites and pairs of monomers on next-NN (NNN) sites on the lattice, respectively.

Hereafter, we will refer to them as NN and NNN monomers. Then, the grand-canonical

partition function of the model is given by

Y =
∑

zMωMNN

1 ωMNNN

2 , (1)

where the sum runs over all configurations of the walks on the tree, and M , MNN and MNNN

are respectively the total number of monomers and the number of NN and NNN monomers.

At this point, one notices that on the Husimi lattice there exists an ambiguity in definition

of NNN sites:

a) the neighborhood of a given site, let us say i, can be defined according to the chemical

distance (associated to the number of steps along the lattice edges to reach a site j starting

at i). So, at first, any site would have ten second neighbors, as shown in Fig. 1b. However,

four of these sites (7-10 in Fig. 1b) would correspond to third neighbors on the square lattice.

Since our aim is to compare the Husimi solution with results for the ordinary lattice, it is

more reasonable to define only six NNN sites (the 1-6 ones in Fig. 1b).
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FIG. 2. Definition of a) the root sites for each partial partition function and b) the types of possible

vertices. Circles indicate the presence of monomers in the vertex and their bonds are represented

by full lines.

b) Another option is to state that second neighbors are the sites in opposite vertices of

an elementary square (sites 1-i and 2-i, in Fig. 1b). Then, each site will have two NNN

ones.

Since definition a (b) - hereafter called approach A (C) - overestimates (underestimates)

the number of second neighbors on square lattice - which is four -, both approaches will

be analyzed in the following. It is easy to see in Fig. 1b that the overestimate in case A

comes from the “out-square” sites 3-6, because in the ordinary lattice 3 and 4 (and also 5

and 6) would be a single site. So, this “excess” of second neighbors can be compensated by

assigning only half of NNN energy (ǫ2/2) for “out-square” NNN monomers. In this way, the

contribution to the partition function of the possible six NNN monomers will be effectively

the same of four NNN ones (i.e., ω4
2). This case will be referred to as approach B. In order

to consider all these cases in a general way, one may assign a weight ω2 for “in-square” NNN

monomers and a weight ω′
2 for the “out-square” NNN monomers (see Fig. 1a). Thence, the

approaches A, B and C are recovered by making ω′
2 = ω2, ω

′
2 =

√
ω2 and ω′

2 = 1, respectively.

A subtree with generation M +1 can be obtained by attaching 3 subtrees (each one with

M generations) in 3 vertices of an elementary square. The remaining vertex is usually called
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the “root site” and, associated to it, a partial partition function (ppf) gi is defined. Nine root

sites and, thus, nine ppf’s are required to correctly account for the NNN interactions (see

Fig. 2a). The ppf gi in generation M + 1 is determined counting all possible configurations

produced by attaching 3 subtrees (each one with M generations) in a square with root site

of type i. Instead of do this directly, it is convenient to determine first the contribution

coming from each type of vertex of the elementary square (depicted in Fig. 2b), being

v0,0 = g0,0 + 2g0,1 + g0,2, (2a)

v0,1 = g0,0 + (1 + ω′
2)g0,1 + ω′

2g0,2, (2b)

v0,2 = g0,0 + 2ω′
2g0,1 + ω′2

2 g0,2, (2c)

v1,0 = zg3, (2d)

v1,1 = zω′
2g3, (2e)

v1,2 = zω′2
2 g3, (2f)

v2,0 = z[(1 + ω′
2)g2,0 + 2ω′

2g2,1], (2g)

v2,1 = 2z(ω′
2g2,0 + ω′2

2 g2,1), (2h)

v3 = z(g1,0 + 2ω′
2g1,1 + ω′2

2 g1,2). (2i)

In terms of these expressions, it is quite simple to determine the recursion relations for

the ppf’s of the model, given by

g′0,0 = v30,0 + v20,1v1,0, (3a)

g′0,1 = v0,0v0,1v1,0 + ω1v0,1v
2
1,1 + v0,1v

2
2,0, (3b)

g′0,2 = ω2[v0,2v
2
1,0 + ω2

1v
2
1,1v1,2 + 2ω1v1,1v2,0v2,1 + v22,0v3], (3c)

g′1,0 = v0,0v
2
0,1 + ω2v

2
0,2v1,0, (3d)

g′1,1 = ω1[v
2
0,1v1,1 + ω1ω2v0,2v1,1v1,2 + ω2v0,2v2,0v2,1], (3e)

g′1,2 = ω2
1ω2[v0,2v

2
1,1 + ω2

1ω2v
3
1,2 + 2ω1ω2v1,2v

2
2,1 + ω2v

2
2,1v3], (3f)

g′2,0 = v20,1v2,0 + ω1ω2v0,2v1,1v2,1 + ω2v0,2v2,0v3, (3g)

g′2,1 = ω1ω2[v0,2v1,1v2,0 + ω2
1ω2v

2
1,2v2,1 + ω1ω2(v

3
2,1 + v1,2v2,1v3) + ω2v2,1v

2
3], (3h)
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g′3 = ω2[v0,2v
2
2,0 + ω2

1ω2v1,2v
2
2,1 + 2ω1ω2v

2
2,1v3], (3i)

where gi and g′i are in generations M and M + 1, respectively.

In a similar way, the partition function of the model on the Cayley tree can be find by

attaching four subtrees in a central square, which yields

Y = v40,0 + 4v0,0v
2
0,1v1,0 + 4ω1v

2
0,1v

2
1,1 + 2ω2v

2
0,2v

2
1,0 + 4ω2

1ω2v0,2v
2
1,1v1,2 + ω4

1ω
2
2v

4
1,2 + 4v20,1v

2
2,0 (4)

+ 8ω1ω2v0,2v1,1v2,0v2,1 + 4ω2v0,2v
2
2,0v3 + 4ω3

1ω
2
2v

2
1,2v

2
2,1 + 2ω2

1ω
2
2(v

4
2,1 + 2v1,2v

2
2,1v3) + 4ω1ω

2
2v

2
2,1v

2
3.

Then, the densities of monomers (ρ), of NN (ρNN) and NNN (ρNNN) monomers are

ρ =
z

4Y

(

∂Y

∂z

)

, ρNN =
ω1

4Y

(

∂Y

∂ω1

)

and ρNNN =
ω2

SY

(

∂Y

∂ω2

)

, (5)

where S = 10, 6 and 2 are used in approaches A, B and C, respectively, to make the

maximum value of ρNNN equal 1 in all cases.

In the thermodynamic limit, when the number of generations of the tree and, conse-

quently, the length of the polymers tend to infinity, the ppf’s diverge, so, we will work with

ratios of them, defined as R1 = g0,1/g0,0, R2 = g0,2/g0,0, R3 = g1,0/g0,0, R4 = g1,1/g0,0,

R5 = g1,2/g0,0, R6 = g2,0/g0,0, R7 = g2,1/g0,0 and R8 = g3/g0,0. This leads to the recursion

relations (RR’s):

R′
1 = (zABR8 + z2ω1ω

2α
2 BR2

8 + z2BD2)/R0, (6a)

R′
2 = ω2(z

2CR2
8 + z3ω2

1ω
4α
2 R3

8 + 4z3ω1ω
α
2DER8 + z3D2F )/R0, (6b)

R′
3 = (AB2 + zω2C

2R8)/R0,

R′
4 = ω1(zω

α
2B

2R8 + z2ω1ω
3α+1
2 CR2

8 + 2z2ω2CDE)/R0, (6c)

R′
5 = ω2

1ω2(z
2ω2α

2 CR2
8 + z3ω2

1ω
6α+1
2 R3

8 + 8z3ω1ω
2α+1
2 E2R8 + 4z3ω2E

2F )/R0, (6d)

R′
6 = (zB2D + 2z2ω1ω

α+1
2 CER8 + z2ω2CDF )/R0, (6e)

R′
7 = ω1ω2[z

2ωα
2CDR8 + 2z3ω2

1ω
4α+1
2 ER2

8 + ω1ω2(8z
3E3 + 2z3ω2α

2 EFR8) + 2z3ω2EF 2]/R0,

(6f)

R′
8 = ω2(z

2CD2 + 4z3ω2
1ω

2α+1
2 E2R8 + 8z3ω1ω2E

2F )/R0, (6g)

with

R0 = (1 + 2R1 +R2)
3 + z[1 + (1 + ωα

2 )R1 + ωα
2R2]

2R8, (6h)

A = 1 + 2R1 +R2, (6i)
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B = 1 + (1 + ωα
2 )R1 + ωα

2R2, (6j)

C = 1 + 2ωα
2R1 + ω2α

2 R2, (6k)

D = (1 + ωα
2 )R6 + 2ωα

2R7, (6l)

E = ωα
2R6 + ω2α

2 R7, (6m)

F = R3 + 2ωα
2R4 + ω2α

2 R5, (6n)

where α = 1, 1/2 and 0 in cases A, B and C, respectively. In the case C (ω′
2 = 1), it

is easy to see that v0,0 = v0,1 = v0,2 = (g0,0 + 2g0,1 + g0,2), v1,0 = v1,1 = v1,2 = zg3,

v2,0 = v2,1 = 2z(g2,0 + g2,1) and v3 = z(g1,0 + 2g1,1 + g1,2) and, thus, only the combinations

g0 ≡ (g0,0 + 2g0,1 + g0,2), g1 ≡ (g1,0 + 2g1,1 + g1,2) and g2 ≡ (g2,0 + g2,1) will appear in

the recursion relations. Thus, one may work with simplified ratios of ppf’s, defined as

R1 = g1/g0, R2 = g2/g0 and R3 = g3/g0, yielding

R′
1 = [1+z(2ω1+ω2)R3+3z2ω2

1ω2R
2
3+z3ω4

1ω
2
2R

3
3+8z2ω1ω2R

2
2+8z3ω3

1ω
2
2R

2
2R3+4z3ω2

1ω
2
2R1R

2
2]/R0,

(7a)

R′
2 = 2zR2(1+2zω1ω2R3+ z2ω3

1ω
2
2R

2
3+4z2ω2

1ω
2
2R

2
2+ zω2R1+ z2ω2

1ω
2
2R1R3+ z2ω1ω

2
2R

2
1)/R0,

(7b)

R′
3 = 4z2R2

2ω2(1 + zω2
1ω2R3 + 2zω1ω2R1)/R0, (7c)

with

R0 = 1 + 3zR3 + z2(2ω1 + ω2)R
2
3 + z3ω2

1ω2R
3
3 + 8z2R2

2 + 8z3ω1ω2R
2
2R3 + 4z3ω2R1R

2
2 (7d)

It is worth noting that the partition functions (Eq. 4) for approach X , with X =A,

B or C, can be written as YX = g40,0yX , where yX is finite (since is depends only on the

ratios Ri, beyond z, ω1 and ω2), while YX diverges as g40,0, in the thermodynamic limit.

Notwithstanding, the densities (Eq. 5) remain finite because they are in fact functions of

yX , instead of YX .

III. THERMODYNAMIC PROPERTIES OF MODEL

The thermodynamic phases of the model on the Husimi lattice are given by the real and

positive fixed points of the recursion relations (RR’s - Eqs. 6). Similarly to the classical

ISAW model (ω2 = 1), the grand-canonical phase diagram for general ω2 presents only two
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phases: i) a non-polymerized (NP) phase, where R3 = 1 and Ri = 0 otherwise; and ii) a

polymerized (P) phase, with Ri 6= 0 for i = 1, . . . , 8. In the former, the density of monomers

vanishes (ρ = 0) and, consequently, ρNN = ρNNN = 0. On the other hand, in P phase these

densities are, in general, non-null and depend on the parameters z, ω1 and ω2. Obviously,

working with the reduced set of RR’s (Eqs. 7) in approach C, one finds a similar behavior,

with R1 = 1, R2 = R3 = 0 in NP phase, and Ri 6= 0 in P one.

Each phase is stable in the region of the parameter space (z, ω1, ω2) where the largest

eigenvalue λ of its Jacobian matrix
(

Ji,j =
∂R′

i

∂Rj

)

is smaller than one. The condition λ = 1

gives the thermodynamic stability limit (the spinodal) of the respective phase, which is easy

to calculate in NP phase, being

ω1 =
1

2z3ω
2(α+1)
2

(

−1 + z + zωα
2 + z2ω2 + z2ωα+1

2

−1− z + zωα
2 − z2ω2 + z2ωα+1

2

)

, (8)

recalling that α = 1, 1/2 and 0 in approaches A, B and C, respectively. For the polymerized

phase, the stability limit is determined numerically. In a certain region of the phase diagram,

the NP and P spinodals are coincident, forming a critical surface.

There exists also a coexistence region in the phase diagram - where the spinodals do

not match and both phases are stable - with a coexistence surface separating the NP and

P phases there. A simple way to determine this surface is through the free energy of the

model, which can be calculated using Gujrati’s prescription [18]. The derivation of this free

energy for the Husimi lattice built with squares is presented in appendix A, leading to

φb = −1

2
(2 lnR0,X − ln yX) (9)

with X =A, B or C, and R0,X and yX defined as above and calculated at the fixed point. In

NP phase, R0,X = yX = 1, so that φNP
b = 0 and, then, the coexistence surface - where the

free energies of both phases are equal - is given by φP
b = φNP

b = 0.

These critical and coexistence surfaces meet (tangentially) at a tricritical (TC) line, which

was calculated exactly by locating the points along the spinodal of NP phase where the

solution of the RR’s is triply degenerate. This is demonstrated in detail in appendix B.

Let us first discuss the thermodynamic behavior for approach A. Figure 3a shows phase

diagrams for several values of (fixed) ω2 in the range [0.4, 2.2]. For any ω2 < 1.9217692, the

same properties of the classical ISAW model (ω2 = 1) are found: there is a continuous NP-P

transition at small ω1 that becomes discontinuous at a tricritical (θ) point. The location of

the θ point, however, strongly depends on ω2, forming a continuous θ-line.
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FIG. 3. (Color online) Phase diagrams in the variables ω1 versus z for approaches a) A and b)

C. In a) diagrams for ω2 varying by 0.2 in the range [0.4, 2.2] ω2 = 0.4, 0.6, 0.8, 1.0, 1.6, 2.2, 2.8, 3.4

and 4.0 are shown, while in b) they are for ω2 = 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 8.0 and 16.0. The full

(red) and dashed (blue) lines are the critical and coexistence lines, respectively. The black dots

indicate the θ points and the θ line is given by the dotted (black) line.

In general, a decrease in the coordinates (zθ, ωθ
1) of the tricritical point is observed as

ω2 increases. In fact, for attractive forces between NN and NNN monomers, this is quite

expected, since βǫ2 > 0 will facilitate the collapse and, thus, βǫ1 becomes smaller. When

ω2 = 1.1553956, the NN energy is null, i.e., ωθ
1 = 1 (and zθ = 0.3085453), so that the collapse

transition happens due solely to the NNN interaction. For larger ω2, the θ-line still exists,

but for ωθ
1 < 1, meaning that NN monomers repel each other. The value of ωθ

1 decreases,

for increasing ω2, until reaches the zero at ω2 = 1.9217692. Therefore, even for an infinite

repulsive force between NN monomers a coil-globule transition exists for a finite (attractive)

interaction between NNN ones. This will be discussed in more detail in the following. For

ω2 > 1.9217692, only a NP-P coexistence surface is found.

The θ-line extends also to the region of repulsive NNN interactions (ω2 < 1), where,

again, increasing zθ and ωθ
1 are observed as ω2 decreases. When ω2 approaches the zero, one

finds ωθ
1 → ∞ and zθ → 1. This is quite reasonable, since ω2 ≪ 1 will prevent the formation

of bends in the walks and, consequently, of a globular phase. Notwithstanding, if ω1 ≫ 1

the attractive NN force can overcome the NNN repulsion yielding this phase.

The phase diagram for approach C is presented in Fig. 3b, where the same qualitative
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FIG. 4. (Color online) Values of a) ωθ
1 and b) ωθ

2 against zθ, for all approaches. The horizontal

(dotted, black) line separates the regions where interactions are attractive and repulsive.

behavior of A is observed, with θ-lines extending also over the whole phase diagrams since

ω1 = 0 until ω1 → ∞. An analogous phase diagram is also found for the intermediate

approach B (not shown). These similarities are more evident in the comparison of the θ-

lines, for all approaches, which is presented in Fig. 4. In case A (B), the θ-line starts at

zθ = 0.235592 (0.208304) - where ωθ
1 = 0 and ωθ

2 = 1.921769 (3.345581) - and ends at zθ → 1

- where ωθ
1 → ∞ and ωθ

2 → 0. On the other hand, in case C a quite different z-range is

found for the θ-line, which starts at zθ = 0.16447819 - where ωθ
1 = 0 and ωθ

2 = 12.4023526

- and ends at zθ → 1/2 - where ωθ
1 → ∞ and ωθ

2 → 0. Notice that ωθ
2(C) > ωθ

2(B) > ωθ
2(A)

for attractive NNN interactions and ωθ
2(C) < ωθ

2(B) < ωθ
2(A) for repulsive ones is quite

expected, since the effective number of possible NNN monomers decreases from A to C.

We notice that in approach C a repulsive (attractive) NNN interaction introduces ener-

getic penalties (advantages) whenever the polymer bending within an elementary square,

but do not when it bends in the opposite direction. This unrealistic feature of the Husimi

lattice in case C certainly explains why zθ → 1 (in cases A and B) and zθ → 1/2 (in C),

when ωθ
2 → 0 (with ωθ

1 → ∞).

It is important to remark that, when NNN monomers repel each other, the polymer

is semiflexible and, thus, an anisotropic/crystalline phase could be expected in the phase

diagrams, for large enough ω1. However, we have exhaustively looked for any new stable

phase in this region and did not find any. One recalls that the crystalline phase is dense
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(ρ ≈ 1) - it is a quasi-Hamiltonian walk - featured by straight parallel chains, maximizing

the number of NN monomers and minimizing the bending. Therefore, to correctly analyze

this phase - with chains aligned in one direction of the lattice -, at first, more general RR’s

are required, defining the root sites (and ppf’s) to account for the directional anisotropy (as

done for the sISAW in [9], for example). In the homogeneous solution, analyzed here, both

directions are treated as equivalent (in the same ppf) and, thus, the symmetry-breaking of

the phase cannot arise. In any case, however, a dense phase should appear as a diverging

fixed point of the RR’s, because they were defined as Ri = gi/g0,0 and configurations of type

g0,0 (see Fig. 2) do not exist in a fully occupied lattice. Thus, although we are analyzing

only the homogeneous case, the absence of a divergence in the RR’s strongly suggests that

there is no crystalline phase in the model on the Husimi lattice. In fact, in contrast to

the bending energy in the sISAW model, in our case the (repulsive) force acts on NNN

monomers regardless they are part of a bending and, thus, in such crystalline phase the

(repulsive) NNN interaction would be also maximized, together with the (attractive) NN

one. This frustration in the system is certainly responsible for the absence of the order.

A. Infinite repulsion between NN monomers (ω1 = 0)

Now, we consider the case where NN monomers are forbidden (ω1 = 0). As pointed

above, phase diagrams similar to the ones for finite NN interaction are found also in this

limit. Indeed, from equation 8, the NP spinodal can be written as

z =
−1 − ωα

2 +
√

1 + 2ωα
2 + ω2α

2 + 4ω2 + 4ωα+1
2

2(ω2 + ωα+1
2 )

. (10)

For ω2 < ωθ
2, this expression defines also the critical line. Once more, α = 1 (in case A),

α = 1/2 (in B) and α = 0 (in C). From the analysis in appendix B, the values of ωθ
2 are

given by the real positive root of the polynomial

7 +29ω2 + 26ωα
2 − 2ω2

2 + 74ωα+1
2 + 33ω2α

2 − 6ω
2(α+1)
2 + 12ω3α

2 − 7ω4α
2 − 6ω5α

2 − ω6α
2 (11)

+ 46ω2α+1
2 − 2ω3α+2

2 − 2ω5α+1
2 − 16ω3α+1

2 − 19ω4α+1
2 − 6ωα+2

2 + b(ω5α
2 + ω4α

2 + ω2 + 1

− 2ω3α
2 + 3ωα+1

2 − 2ω2α
2 + ωα

2 + ω3α+1
2 + 3ω2α+1

2 ) = 0,

with b =
√

1 + 2ωα
2 + ω2α

2 + 4ω2 + 4ωα+1
2 . Actually, in each approach, there are two of

such roots, but one of them leads to inconsistent values of z, being ωθ
2 = 1.9217693 (A),
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FIG. 5. (Color online) Phase diagram for approach A and ω1 = 0. The full (red) and dashed (blue)

lines are the critical and coexistence lines, respectively. The black dot indicate the tricritical point.

ωθ
2 = 3.3455816 (B) and ωθ

2 = 12.4023526 (C) the physical ones. Inserting these values in

Eq. 10 one readily finds zθ = 0.2355927 (A), zθ = 0.2083038 (B) and zθ = 0.1644782 (C). In

the region z < zθ (where ω2 > ωθ
2) both phases coexist. One example of this phase behavior

is presented in Fig. 5 for case A and analogous ones are obtained in other approaches (not

shown).

Although a coil-globule transition is present in this case, the globule phase is different

from the one for ω1 > 0, since ω1 = 0 forbids the presence of NN monomers in the system

(i.e., ρNN = 0). For instance, from the expressions for the densities of monomers ρ and NNN

monomers ρNNN (not shown explicitly here), it is possible to demonstrate that ρ → 1 and

ρNNN → 1, in the limit ω2 → ∞, for any approach when ω1 > 0. However, for ω1 = 0, a

diverging ω2 leads to ρ → 3/4 and ρNNN → 7/10 (in case A), ρ → 3/4 and ρNNN → 2/3 (in

B), and ρ → 2/3 and ρNNN → 1/2 (in C), which corresponds to “soft” polymerized phases

(and respective “soft globules”), since the maximal occupation of the lattice is smaller than

one. In a canonical situation (of polymers with fixed size), this “soft” phase (for ω1 = 0)

shall occupy a volume larger than the “regular” globule phase (for ω1 > 0).

We claim that this “soft” globule phase is not a feature of the Husimi lattice, but it might

exist also in the square (and other regular) lattices. In fact, although NN monomers are

forbidden, the attractive force between NNN monomers that are not part of a bending can

13



acts to collapse the chains, in a similar way as the NN one in the ordinary ISAW model.

Moreover, the NNN interaction enhances the formation of bends and, consequently, the

formation of globules. Anyhow, more studies are necessary to confirm this.

B. Infinite repulsion between NNN monomers (ω2 = 0)

Now, we turn our attention for the case of forbidden NNN monomers. Making ω2 = 0

in the RR’s (Eqs. 6), their solution for the polymerized phase can also be found exactly,

being R2 = R4 = R5 = R7 = R8 = 0, and R1 = a/24 + (z + z2/24)/a + z/24 − 1/2, with

a ≡
(

36z2 + 216z + z3 + 24
√
3z3 + 81z2

)1/3
, R3 = (1 + 2R1)/z and R6 =

√

R1(1 +R1)/z,

in approaches A and B. In case C, one finds R1 = z − 1/2, R3 = 1, R6 =
√
4z − 2/2 and

Ri = 0 otherwise. Noteworthy, this fixed point is independent of ω1, indicating that the

thermodynamic properties of the model will not depend on this parameter, as expected.

In approaches A and B, the only non-null eigenvalue of the Jacobian matrix in NP phase

is λ = z, so, this phase is stable for z ≤ 1 and its spinodal is at z = 1. The fixed point above

for the P phase is physical (and stable) for z ≥ 1 and its stability limit is at z = 1. Therefore,

the phase diagrams in both approaches present only a critical line at z = 1 separating the

NP and P phases, which is consistent with a θ-point located at zθ = 1 and ωθ
1 → ∞, as

already discussed. In case C, we have the same scenario, but the critical line is at z = 1/2.

Notice that ω2 = 0 leads to ρNNN = 0, so that all polymer chains are straight in cases A

and B. As already noticed, in case C, the chains are not necessarily straight, since they can

bend out the elementary squares and still have ρNNN = 0. In all cases, ρNN = 0 is also found,

as expected, since the infinite repulsion between NNN monomers also forbids NN ones. The

density of monomers ρ is a monotonic increasing function of z, being ρ = (2z−1)/(4z−1) in

approach C. In the other approaches the expressions are too long to be given here, but one

also finds ρ = 0 at z = 1 and ρ → 1/2 for z → ∞. On the square lattice this shall corresponds

to a “soft crystalline” phase, where half of the rows (or columns) of the lattice are occupied

by straight, parallel and alternating chains. Indeed, placing such aligned (repulsive) polymer

chains on a square lattice is analogous to the athermal problem of place infinite rigid rods

with NNN exclusion. We remark that athermal lattice gases with exclusion of neighbors

have been considered in literature for several ranges of exclusion (or particle sizes) [19, 20]

as well as mixtures of them [21]. Furthermore, isotropic-nematic transitions in rigid rods is
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a problem largely studied (see e. g. [22, 24] for recent surveys). However, for the best of

our knowledge, rigid rods with neighbor exclusion has been considered only in the case of

dimers with NN exclusion [23] only.

Anyhow, the case of infinite rods with NNN exclusion can be solved on the square lattice,

for example, following the recent transfer matrix (TM) calculation by Stilck and Rajesh

[24]. Considering the limit of infinite rods, without neighbor exclusion, on a roted square

lattice yielding a diagonal TM, those authors showed that the (degenerated) spectrum of

eigenvalues of the TM is given by Λk = zm, with m = 0, 1, . . . , L or Λk = 0 [24]. This

result is for an infinite stripe (in vertical) with width L and periodic boundary conditions in

horizontal (for more details see [24]). One notices that all rods are parallel in this limiting

case and that an eigenvalue of type zm is associated to a state of the system with m parallel

rods in horizontal direction. So, it is easy to particularize these results for the case with

infinite NNN repulsion, by noting that two rods can not occupy adjacent columns (or rows)

of the lattice. This will simply reduce the number of states of the TM and, consequently, the

spectrum of eigenvalues, which shall be Λk = zm, with m = 0, 1, . . . , L/2 or Λk = 0, since

on a stripe of (even) width L it is possible to exist at most L/2 parallel rods/chains, due to

exclusion. Thence, the largest eigenvalue Λl and, consequently, the free energy f = 1
L
ln Λl

and the density of monomers ρ = z
(

∂f
∂z

)

are: Λl = 1, f = 0 and ρ = 0, for z ≤ 1; and

Λl = zL/2, f = 1
2
ln z and ρ = 1/2, for z > 1. Namely, the system undergoes a discontinuous

transition at z = 1 from an empty lattice (the NP phase - for z ≤ 1) to a low density nematic

phase (the “soft crystalline” polymer phase - for z > 1).

Although the Husimi solution yields the correct transition point z = 1 (at least in the

more realistic A and B approaches), the continuous transition found is more a feature of the

hierarchical lattice. At first, it is unexpected to find a continuous transition in a mean-field

calculation, while the real transition is discontinuous. One recall, notwithstanding, that

similar inversions have been observed in other models for θ-polymers, with discontinuous

transitions observed in simulations and continuous ones in exact solutions on hierarchical

lattices [16, 25].
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IV. FINAL DISCUSSIONS AND CONCLUSIONS

In summary, we have studied a generalized ISAW model - where different forces exist

between nearest-neighbor (NN) and next-nearest-neighbor (NNN) monomers - on a Husimi

lattice built with squares. Three definitions of second neighbors - or interactions between

them - have been considered, which effectively overestimate, match or underestimate the

number of NNN monomers, compared with square lattice. Since all approaches leads to

analogous thermodynamic behaviors, this suggests that a similar scenario can exists also on

the regular lattice.

Indeed, our findings are in good agreement with the ones from Monte Carlo simulations

on square and cubic lattices [13], where only a θ-line was observed, as well as with previous

results from exact enumerations [12]. Interestingly, approximately linear θ-lines were found

in the canonical phase diagrams reported in these works, around the region of positive

energies. Figure 6 shows the mapping of our grand-canonical phase diagrams in the canonical

variables K2 ≡ ǫ2/kbT (= lnω2) versus K1 ≡ ǫ1/kbT (= lnω1) and, indeed, almost linear

behaviors are found around the first quadrant of the diagrams, but the whole θ-lines are

curved. For comparison, the θ-line found in simulations of the model on square lattice,

-3 3

K
1

-4

-2

2

K
2 approach A

approach B
approach C
simulations

0.0 0.2 0.4 0.6
0.0

0.2

0.4

FIG. 6. (Color online) Canonical phase diagrams, in variables K2 = lnω2 against K1 = lnω1, for

approaches A (full, blue) and B (dashed, red) and simulational (dash-dotted, black line) results

from Ref. [13]. The inset shows the same data in the region of attractive interactions.
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K2 ≃ −0.6099K1 + 0.4066 [13], is also shown in Fig. 6. In the region corresponding to

attractive interactions (highlighted in the inset), the θ-line from approaches A and B are

always below the one from simulations, which is expected, since mean-field results generally

underestimate the (tri)critical points. A similar behavior is found for small K2 in approach

C, but as this parameter increases its θ-line crosses the one from simulations, which is simply

due to the underestimate in the number of NNN sites/monomers in this approach. Linear

fits of the θ-lines in the attractive region return the slopes −0.333 (in case A), −0.522 (in

B) and −1.221 (in C), which are approximately 55%, 86% and 200% of the value found in

simulations. These behaviors are physically reasonable, because in a collapsing chain each

monomer can have at most 2 NN monomers, while in approaches A, B and C it can have

effectively a maximum of 6, 4 and 2 NNN monomers, respectively, which is consistent with

K2 ∼ −K1/3 (in A), K2 ∼ −K1/2 (in B) and K2 ∼ −K1 (in C).
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Appendix A: Free Energy

The grand-canonical free energy of the model on the Cayley tree with M generations

is Φ̃M = −kBT lnYM and one may, conveniently, define the adimensional free energy as

ΦM = Φ̃M/kBT . Assuming that each surface site has a free energy φs, while the ones in

bulk has φb [18], it reads

ΦM = NM
s φs +NM

b φb, (A1)

where NM
s and NM

b are the number of sites at surface and bulk, respectively, in generation

M . Considering a Cayley tree built with squares and ramification σ (coordination number

q = 2(σ + 1)), these numbers are

NM
s = 4(3σ)M−1 and NM

b = 4
(3σ)M−1 − 1

3σ − 1
. (A2)
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From these equations, one finds

φb =
1

4
[ΦM+1 − 3σΦM ] = −1

4
ln

[

YM+1

Y 3σ
M

]

, (A3)

which is the reduced free energy in the bulk of the Cayley tree built with squares, i. e., the

Husimi lattice.

As discussed in Sec. II, in general, one may write YM = (gM0 )4σy and so YM+1 = (gM+1
0 )4σy

(where y = yA or y = yB depending on the approach). In addition, it is easy to see that

gM+1
0 = (gM0 )3σR0, then

lim
M→∞

YM+1

Y 3σ
M

=
R4σ

0

y3σ−1
, (A4)

leading finally to

φb = −1

4
[4σ lnR0 − (3σ − 1) ln y]. (A5)

For the case σ = 1, considered in this work, the expressions for R0 are given in Eq. 6h,

while y ≡ Y/g400 can be easily calculated from Eq. 4, setting α = 1 (in approach A), α = 1/2

(in B) or α = 0 (in C).

Appendix B: Tricritical lines

At the tricritical condition the solution of the recursion relations (RR’s - Eqs. 6 and 7)

must be triply degenerated. Then, one may find the points at the parameter space where

this happens, bearing in mind that they shall be on the NP spinodal.

In NP phase Ri = 1 for i = 3 and Ri = 0 otherwise, so, near the critical surface (and

the tricritical line), one may expand the RR’s around, for example, R6 keeping only the

terms up to third order. A simple inspection of the RR’s (Eq. 6) shows that Ri ≃ aiR
2
6 for

i = 1, 2, 4, 5 and 8, R3 ≃ 1 + a3R
2
6 and R7 ≃ a7,1R + a7,2R

3
6. Inserting this in the RR’s and
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expanding them up to order R3
6, one finds

D ≈ 1 + C0R
2
6 (B1a)

Da1R
2
6 ≈ C1R

2
6 (B1b)

Da2R
2
6 ≈ C2R

2
6 (B1c)

D(1 + a3R
2
6) ≈ 1 + C3R

2
6 (B1d)

Da4R
2
6 ≈ C4R

2
6 (B1e)

Da5R
2
6 ≈ C5R

2
6 (B1f)

DR6 ≈ C6,1R6 + C6,2R
3
6 (B1g)

D(a7,1R6 + a7,2R
3
6) ≈ C7,1R6 + C7,2R

3
6 (B1h)

Da8R
2
6 ≈ C8R

2
6 (B1i)

where

C0 = 6a1 + 3a2 + za8 (B2a)

C1 = za8 + z2b2 (B2b)

C2 = z3ω2b
2 (B2c)

C3 = 2(1 + ωα
2 )a1 + 2ωα

2 a2 + 2a1 + a2 + zω2a8 (B2d)

C4 = ω1[zω
α
2 a8 + 2ω2z

2b(ωα
2 + ω2α

2 a7,1)] (B2e)

C5 = 4ω2
1ω

2
2z

3(ωα
2 + ω2α

2 a7,1)
2 (B2f)

C6,1 = zb+ ω2z
2b (B2g)

C6.2 = ω2z
2b(a3 + 2ωα

2 a4 + ω2α
2 a5) + 2ωα+1

2 z2a7,2 + ω2(2ω
α
2 a1 + ω2α

2 a2)z
2b (B2h)

+ 2ω1z
2ωα+1

2 a8(ω
α
2 + ω2α

2 a7,1) + 2zωα
2 a7,2 + [(2(1 + ωα

2 ))a1 + 2ωα
2 a2]zb

C7,1 = 2ω1ω
2
2z

3(ωα
2 + ω2α

2 a7,1) (B2i)

C7,2 = ω1ω2[ω
α
2 z

2a8b+ 2ω2z
3(ωα

2 + ω2α
2 a7,1)(2a3 + 4ωα

2 a4 + 2ω2α
2 a5) + 2ω2α+1

2 z3a7,2(B2j)

+ ω1ω2(8z
3(ωα

2 + ω2α
2 a7,1)

3 + 2z3ω2α
2 a8(ω

α
2 + ω2α

2 a7,1))]

C8 = ω2[z
2b2 + 8ω1z

3ω2(ω
α
2 + ω2α

2 a7,1)
2] (B2k)

with b ≡ 1 + ωα
2 + 2ωα

2 a7,1 and α = 1 (in case A), α = 1/2 (in B) or α = 0 (in C).

Equating the terms of same order in Eqs. (B1a)-(B1i), the relations ai = Ci for i =

1, 2, 4, 5, 8 and a3+C0 = C3, a7,1 = C7,1 and a7,2+a7,1C0 = C7,2 are obtained, allowing us to
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determine all ai’s as functions of z, ω1 and ω2. Using these functions in the two additional

equations C6,1 = 1 - which leads to the same expression for the stability limit of the NP

phase (Eq. 8) - and C6,2 = C0, the tricritical line is found. Although we do not find a closed

expression for this line, it can be easily calculated with the help of an algebra software.
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