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ABSTRACT

In this short note we prove a conjecture for the interval (0, 1), related to a logarithmi-
cally completely monotonic function, presented in [5]. Then, we extend by proving a
more generalized theorem. At the end we pose an open problem on a logarithmically
completely monotonic function involving ¢-Digamma function.

Key words: completely monotonic, logarithmically completely monotonic

2000 Mathematics Subject Classification: 33D05, 26D07

1. INTRODUCTION

Recall from [14, Chapter XIII], [I8, Chapter 1] and [19, Chapter IV] that a function f
is said to be completely monotonic on an interval I if f has derivatives of all orders on
I and satisfies

(1.1) 0< (—=1)"f™(z) < o0

for x € I and n > 0. The celebrated Bernstein-Widder’s Theorem (see [18, p. 3,
Theorem 1.4] or [19, p. 161, Theorem 12b]) characterizes that a necessary and sufficient
condition that f should be completely monotonic for 0 < z < oo is that

(1.2) fa) = / )

where «(t) is non-decreasing and the integral converges for 0 < x < co. This expresses
that a completely monotonic function f on [0, 00) is a Laplace transform of the measure
a.

It is common knowledge that the classical Euler’s gamma function I'(x) may be defined
for x > 0 by

(1.3) I(z) = /0 Tttt

The logarithmic derivative of I'(x), denoted by v (z) = 11:,((;)), is called psi function or

digamma function.
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An alternative definition of the gamma function I'(z) is

(1.4) D(2) = lim Ty (2),
where

| T
(1.5) Ty(x) = 2 = F

Sz ) (wdp) (/1) (1+2/p)

for x > 0 and p € N. See [3 p. 250]. The p-analogue of the psi function ¢(x) is defined
as the logarithmic derivative of the I', function, that is,
d ry(@)
1. = —1InT =1 -
(1.6) () = oIy (e) = 220
The function 1, has the following properties (see [10} p. 374, Lemma 5] and [12] p. 29,
Lemma 2.3]).

(1) It has the following representations

P -
1 ] _ et

(1.7) Yp(x) =lnp — Z T E Inp — / — "t

0

k=0

(2) It is increasing on (0, o0) and 1, is completely monotonic on (0, 00).
In [2, pp. 374-375, Theorem 1], it was proved that the function
(1.8) 0, (z) = 2%[Inz — Y(z)]
is completely monotonic on (0, 00) if and only if o < 1.

For the history, backgrounds, applications and alternative proofs of this conclusion,
please refer to [4], [15, p. 8, Section 1.6.6] and closely-related references therein.

A positive function f is said to be logarithmically completely monotonic [10] on an open
interval I, if f satisfies

(1.9) (=D)"[In f(2)]™ >0,(x € [,n=1,2,...).

If the inequality (1.2) is strict, then f is said to be strictly logarithmically completely
monotonic. Let C' and L denote the set of completely monotonic functions and the
set of logarithmically completely monotonic functions, respectively. The relationship
between completely monotonic functions and logarithmically completely monotonic
functions can be presented [10] by L C C.

2. MAIN RESULTS

In [5] has been posed the following conjecture.

Conjecture 2.1. The function

(2.1) q(t) = ti(D-logt)—y

is logarithmically completely monotonic on (0,00).
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Theorem 2.2. The function

(2.2) g(t) = Ol
is logarithmically completely monotonic on (0,1).

Proof. One easily finds that

(2.3) logq(t) = —t - (logt —(t))logt — v - logt

Let h(t) = —v -logt,g(t) = —logt; f(t) = t- (logt — ¥(t)). Alzer [2] proved that
the function f(t) =t - (logt — ¢(t)) is strictly completely monotonic on (0,00). The
functions ¢(t) = —logt and h(t) = —v -logt are also strictly completely monotonic on

(0,1). We complete the proof by recalling the results from [19].

1) The product of two completely monotone functions is completely monotonic func-
tion.

2) A non-negative finite linear combination of completely monotone functions is com-
pletely monotonic function. 0

We extend the previous result to the following theorem.
Theorem 2.3. The function

(2.4) ap(t) = t" (e (t)—tog 2y ) —
is logarithmically completely monotonic on (0,1).

Proof. One easily finds that

pt
2. 1 t) = —t(log ———— — (1)) logt — v - logt
(2.5) 08 gp(t) = ~t(log ;=7 — w(1)) logt — - log
pt
et h(t) = =7 -log,g(t) = ~log s f,(t) = t - (log == = ¥»(1))
Krasniqi and Qi [11] proved that the function f,(t) =t - (log t+1;7t-i-1 — 1, (t)) is strictly

completely monotonic on (0,00). The functions g(¢) = —logt and h(t) = —v-logt are
also strictly completely monotonic on (0,1).

By refering the same results from [19] as in previous proof, we complete the proof. [

Remark 2.4. Letting p — oo in Theorem 2.3 , we obtain Theorem 2.2 .

At the end we pose the following open problem:

Problem 2.5. Let 1,(t) be q-Digamma function. Find the family of functions 0(t)
such that

(2.6) q(t) := ttWa®-log ()=
is logarithmically completely monotonic on (0,00).

Remark 2.6. This is a corrected version of paper [9]
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