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On some bounds for symmetric tensor rank of
multiplication in finite fields

Stéphane Ballet2

Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille

Case 907, 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France.

Julia Pieltant1,3

CNRS LTCI, Télécom ParisTech

46 rue Barrault, F-75634 Paris Cedex 13, France.

Matthieu Rambaud

CNRS LTCI, Télécom ParisTech
46 rue Barrault, F-75634 Paris Cedex 13, France.

Abstract

We establish new upper bounds about symmetric bilinear complexity in any ex-
tension of finite fields. Note that these bounds are not asymptotical but uniform.
Moreover, we discuss the validity of certain published bounds.
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1. Introduction

1.1. Tensor rank and symmetric tensor rank

Let q be a prime power, Fq be the finite field with q elements and Fqn be the
degree n extension of Fq. The multiplication of two elements of Fqn is a Fq-bilinear
application from Fqn × Fqn onto Fqn . Then it can be considered as an Fq-linear
application from the tensor product Fqn ⊗Fq

Fqn onto Fqn . Consequently it can be
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also considered as an element T of (Fqn ⊗Fq
Fqn)⋆ ⊗Fq

Fqn , namely an element of
F⋆qn ⊗Fq

F⋆qn ⊗Fq
Fqn . More precisely, when T is written

T =
r
∑

i=1

x⋆i ⊗ y⋆i ⊗ ci , (1)

where the r elements x⋆i and the r elements y⋆i are in the dual F⋆qn of Fqn and the r
elements ci are in Fqn , the following holds for any x , y ∈ Fqn :

x · y =
r
∑

i=1

x⋆i (x)y
⋆
i (y)ci .

The decomposition (1) is not unique and neither is the length of these decomposi-
tions, thus we set:

Definition 1. The minimal number of summands in a decomposition of the tensor T
of the multiplication is called the bilinear complexity of the multiplication in Fqn over
Fq and is denoted by µq(n):

µq(n) =min

(

r
�

�

� T =
r
∑

i=1

x⋆i ⊗ y⋆i ⊗ ci

)

.

Hence the bilinear complexity of the multiplication in Fqn over Fq is nothing
else than the rank of the tensor T . Among others, a special case of decompositions
for T is of particular interest, namely the symmetric decompositions:

T =
r
∑

i=1

x⋆i ⊗ x⋆i ⊗ ci . (2)

Definition 2. The minimal number of summands in a symmetric decomposition of
the tensor T of the multiplication is called the symmetric bilinear complexity of the
multiplication in Fqn over Fq and is denoted by µsym

q (n):

µsym
q (n) =min

(

r
�

�

� T =
r
∑

i=1

x⋆i ⊗ x⋆i ⊗ ci

)

.

One easily gets that µq(n) ≤ µsym
q (n). Some cases where µq(n) = µ

sym
q (n) are

known but to the best of our knowledge, no example where µq(n)< µ
sym
q (n) has

already been exhibited. However, better upper bounds have been established in
the asymmetric case [20, 19] and this may suggest that in general the asymmetric
bilinear complexity of the multiplication and the symmetric one are distinct. In any
case, at the moment, we must consider separately these two quantities.

Remark that from an algorithmic point on view as well as for some specific ap-
plications, a symmetric bilinear algorithm can be more interesting than an
asymmetric one, unless if a priori, the constant factor in the bilinear
complexity estimation is a little worse. Moreover, many other research domains are
closely related to the determination of symmetric bilinear multiplication
algorithms such as, amoung others, arithmetic secret sharing and multiparty
computation (see [9, 12]). . .
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1.2. Known results

The bilinear complexity µq(n) of the multiplication in the n-degree extension
of a finite field Fq is known for certain values of n. In particular, S. Winograd
[25] and H. de Groote [15] have shown that this complexity is ≥ 2n− 1, with
equality holding if and only if n≤ 1

2
q+ 1. Using the principle of the D.V. and G.V.

Chudnovsky algorithm [13] applied to elliptic curves, M.A. Shokrollahi has shown
in [21] that the symmetric bilinear complexity of multiplication is equal to 2n for
1
2
q+ 1< n< 1

2
(q+ 1+ ε(q)) where ε is the function defined by:

ε(q) =

�

greatest integer≤ 2
p

q prime to q, if q is not a perfect square
2
p

q, if q is a perfect square.

Later in [2, 3, 6, 8, 5, 4], the study made by M.A. Shokrollahi has been gener-
alized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky introduced
in [13] is symmetric by definition and leads to the following theorem obtained
in [2]:

Theorem 3. Let q be a power of a prime p. The symmetric tensor rank µsym
q (n) of

multiplication in any finite field Fqn is linear with respect to the extension degree;
more precisely, there exists a constant Cq such that:

µsym
q (n)≤ Cqn.

General forms for Cq have been established such as the following best current
known estimates:

Cq =























































if q = 2, then 4824
247
≃ 19,6 [7] and [11]

else if q = 3, then 27 [2]

else if q = p ≥ 5, then 3
�

1+ 4
q−3

�

[4]

else if q = p2 ≥ 25, then 2
�

1+ 2
p−3

�

[4]

else if q ≥ 4, then 6
�

1+ p
q−3

�

[3]

Now we introduce the generalized Chudnovsky-Chudnovsky type algorithm de-
scribed in [11]; the original algorithm given in [13] by D.V. and G.V. Chudnovsky
being the case where deg Pi = 1 and ui = 1 for i = 1, . . . , N . Here a wider notion of
complexity is involved: the quantity µsym

q (m,ℓ), which corresponds to the symmet-

ric bilinear complexity of the multiplication over Fq in Fqm[X ]/(X ℓ), the Fq-algebra
of polynomials in one indeterminate with coefficients in Fqm truncated at order ℓ.
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Theorem 1.1. Let

• q be a prime power,

• F/Fq be an algebraic function field,

• Q be a degree n place of F/Fq,

• D be a divisor of F/Fq,

• P = {P1, . . . , PN } be a set of N places of arbitrary degree,

• u1, . . . ,uN be positive integers.

We suppose that Q and all the places in P are not in the support of D and that:

a) the map

EvQ :

�

�

�

�

L (D) → Fqn ≃ FQ

f 7−→ f (Q)

is onto,

b) the map

EvP :

�

�

�

�

L (2D) −→
�

Fqdeg P1

�u1 ×
�

Fqdeg P2

�u2 × · · · ×
�

Fqdeg PN

�uN

f 7−→
�

ϕ1( f ),ϕ2( f ), . . . ,ϕN ( f )
�

is injective, where the application ϕi is defined by

ϕi :

�

�

�

�

�

L (2D) −→
�

Fqdeg Pi

�ui

f 7−→
�

f (Pi), f ′(Pi), . . . , f (ui−1)(Pi)
�

with f = f (Pi)+ f ′(Pi)t i+ f ′′(Pi)t
2
i + . . .+ f (k)(Pi)t

k
i + . . ., the local expansion at

Pi of f in L (2D), with respect to the local parameter t i. Note that we set f (0) = f .

Then

µsym
q (n) ≤

N
∑

i=1

µsym
q (deg Pi)µ

sym

qdeg Pi
(deg Pi ,ui).

The following special case of this result has been introduced independently by
N. Arnaud in [1], and can be seen as a corollary of Theorem 1.1 by gathering
the places used with the same multiplicity; namely one has to set for j = 1 and 2,
ℓ j := |{i | deg Pi = j and ui = 2}|.

Corollary 1.2. Let

• q be a prime power,

• F/Fq be an algebraic function field,

• Q be a degree n place of F/Fq,
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• D be a divisor of F/Fq,

• P = {P1, . . . , PN1
, PN1+1, . . . , PN1+N2

} be a set of N1 places of degree
one and N2 places of degree two,

• 0≤ ℓ1 ≤ N1 and 0≤ ℓ2 ≤ N2 be two integers.

We suppose that Q and all the places in P are not in the support of D and that:

a) the map
EvQ : L (D)→ Fqn ≃ FQ

is onto,

b) the map

EvP :

�

�

�

�

�

�

�

L (2D) → FN1
q × Fℓ1q ×F

N2

q2 × Fℓ2q2

f 7→
�

f (P1), . . . , f (PN1
), f ′(P1), . . . , f ′(Pℓ1),

f (PN1+1), . . . , f (PN1+N2
), f ′(PN1+1), . . . , f ′(PN1+ℓ2

)
�

is injective.

Then
µsym

q (n) ≤ N1 + 2ℓ1 + 3N2 + 6ℓ2.

From the results of [2, Corollary 2.1] and [8, Theorems 2.3 and 2.3] and the
algorithm of Corollary 1.2 with ℓ1 = ℓ2 = 0, we obtain:

Theorem 1.3. Let q be a prime power and let n be an integer > 1. Let F/Fq be an
algebraic function field of genus g and Nk the number of places of degree k in F/Fq.

If F/Fq is such that 2g + 1≤ q
n−1

2 (q
1
2 − 1) then:

1) if N1 > 2n+ 2g − 2, then

µsym
q (n)≤ 2n+ g − 1,

2) if there exists a non-special divisor of degree g − 1 and N1 + 2N2 > 2n+ 2g − 2,
then

µsym
q (n) ≤ 3n+ 3g,

3) if N1 + 2N2 > 2n+ 4g − 2, then

µsym
q (n) ≤ 3n+ 6g.

To conclude, we recall some particular exact values for µsym
q (n)wich will be use-

ful for computational use: µq(2) = µ
sym
q (2) = 3 for any prime power q, µsym

2 (4) = 9,

µ
sym
4 (4) = µsym

5 (4) = 8 and µsym
2 (6) = 15 [13].
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1.3. New results

In this paper, we prove new uniform bounds for the symmetric bilinear com-
plexity, namely the following ones:

Theorem 1.4. Let q = pr be a power of the prime p. Then:

(i) If q ≥ 4, then µsym

q2 (n) ≤ 2






1+

p

q− 3+ (p− 1)
�

1− 1
q+1

�






n.

(ii) If q ≥ 4, then µsym
q (n) ≤ 3






1+

p

q− 3+ (p− 1)
�

1− 1
q+1

�






n.

(iii) If p ≥ 5, then µsym
p2 (n)≤ 2

 

1+
2

p− 33
16

!

n.

(iv) If p ≥ 5, then µsym
p (n)≤ 3

 

1+
2

p− 33
16

!

n.

Remark. Even if Bound (i) was established by Arnaud in [1] it has never been
published in any journal, and the proof that is given in this paper is more complete
than the one that can be found in [1]. Moreover, Bound (ii) is an amelioration of
[1, Theorem 5.9] since it holds for q ≥ 4 whereas Arnaud’s bound in [1, Theorem
5.9] holds for q ≥ 16. Furthermore, Arnaud also gave bounds which are similar to
Bounds (iii) and (iv) in [1, Theorems 5.13 and 5.12] with respectively p − 2 and
p−1 as denominators. Unfortunatly, these denominators are slightly overestimated
under Arnaud’s hypotheses and no calculation is given to prove these bounds. Thus
we will give a corrected version of these bounds with detailed proofs.

In the last part of this paper, we discuss the validity of certain published bounds
and explain why some of them should not be considered as proven.

2. New upper bounds for the symmetric bilinear complexity

2.1. Towers of algebraic function fields

In this section, we introduce some towers of algebraic function fields.
Theorem 1.3 applied on the algebraic function fields of these towers gives us
bounds for the bilinear complexity. A given curve cannot permit to multiply in
every extension Fqn of Fq, but only for n lower than some value. With a tower of
function fields, we can adapt the curve to the degree of the extension. The impor-
tant point to note here is that in order to obtain a well adapted curve it will be
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desirable to have a tower for which the quotients of two consecutive genus are as
small as possible, namely a dense tower.

For any algebraic function field F/Fq defined over the finite field Fq, we denote
by g(F/Fq) the genus of F/Fq and by Bk(F/Fq) the number of places of degree k
in F/Fq.

2.1.1. Garcia-Stichtenoth tower of Artin-Schreier function field extensions
We present now a modified Garcia-Stichtenoth tower (cf. [17, 3, 8]) having

good properties. Let us consider a finite field Fq2 with q = pr > 3 and let T1 be
the Garcia-Stichtenoth elementary abelian tower over Fq2 constructed in [17] and
defined by the sequence (F1, F2, . . .) where

Fk+1 := Fk(zk+1)

and zk+1 satisfies the equation:

zq
k+1 + zk+1 = xq+1

k

with
xk := zk/xk−1 in Fk (for k ≥ 2).

Moreover F1 := Fq2(x1) is the rational function field over Fq2 and F2 the Hermitian
function field over Fq2 . Let us denote by gk the genus of Fk, we recall the following
formulae:

gk =

(

qk + qk−1 − q
k+1

2 − 2q
k−1

2 + 1 if k ≡ 1 mod 2,

qk + qk−1 − 1
2
q

k
2
+1 − 3

2
q

k
2 − q

k
2
−1 + 1 if k ≡ 0 mod 2.

(3)

Let us consider the completed Garcia-Stichtenoth tower

T2 = F1,0 ⊆ F1,1 ⊆ · · · ⊆ F1,r = F2,0 ⊆ F2,1 ⊆ · · · ⊆ F2,r ⊆ · · ·

considered in [3] such that Fk ⊆ Fk,s ⊆ Fk+1 for any integer s ∈ {0, . . . , r}, where
Fk,0 = Fk and Fk,r = Fk+1. Recall that each extension Fk,s/Fk is Galois of degree ps

with full constant field Fq2 . Now, we consider the tower studied in [8]:

T3 = G1,0 ⊆ G1,1 ⊆ · · · ⊆ G1,r = G2,0 ⊆ G2,1 ⊆ · · · ⊆ G2,r ⊆ · · ·

defined over the constant field Fq and related to the tower T2 by:

Fk,s = Fq2 Gk,s for all k and s,

namely Fk,s/Fq2 is the constant field extension of Gk,s/Fq. Note that the tower T3 is
well defined by [8] and [6]. Moreover, we have the following result:

Proposition 2.1. Let q = pr ≥ 4 be a prime power. For all integers k ≥ 1 and
s ∈ {0, . . . , r}, there exists a step Fk,s/Fq2 (respectively Gk,s/Fq) with genus gk,s and
Nk,s rational places in Fk,s/Fq2 (respectively Nk,s = N1(Gk,s/Fq) + 2N2(Gk,s/Fq)) such
that:
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(1) Fk ⊆ Fk,s ⊆ Fk+1, where we set Fk,0 = Fk and Fk,r = Fk+1,
(respectively Gk ⊆ Gk,s ⊆ Gk+1, where we set Gk,0 = Gk and Gk,r = Gk+1),

(2)
�

gk − 1
�

ps + 1≤ gk,s ≤
gk+1

pr−s + 1,

(3) Nk,s ≥ (q2− 1)qk−1ps.

2.1.2. Garcia-Stichtenoth tower of Kummer function field extensions
In this section, we present a Garcia-Stichtenoth tower (cf. [4]) having good

properties. Let Fq be a finite field of characteristic p ≥ 3. Let us consider the tower
T over Fq which is defined recursively by the following equation, studied in [18]:

y2 =
x2 + 1

2x
.

The tower T/Fq is represented by the sequence of function fields (H0, H1, H2, . . .)
where Hn = Fq(x0, x1, . . . , xn) and x2

i+1 = (x
2
i + 1)/2x i holds for each i ≥ 0. Note

that H0 is the rational function field. For any prime number p ≥ 3, the tower
T/Fp2 is asymptotically optimal over the field Fp2 , i.e. T/Fp2 reaches the Drinfeld-
Vladut bound. Moreover, for any integer k, Hk/Fp2 is the constant field extension
of Hk/Fp.

From [4], we know that the genus g(Hk) of the step Hk is given by:

g(Hk) =

(

2k+1 − 3 · 2
k
2 + 1 if k ≡ 0 mod 2,

2k+1 − 2 · 2
k+1

2 + 1 if k ≡ 1 mod 2.
(4)

and that the following bounds hold for the number of rational places in Hk over
Fp2 and for the number of places of degree 1 and 2 over Fp:

N1(Hk/Fp2) ≥ 2k+1(p− 1) (5)

and
N1(Hk/Fp) + 2N2(Hk/Fp) ≥ 2k+1(p− 1). (6)

From the existence of this tower, we can obtain the following proposition [4]:

Proposition 2.2. Let p ≥ 5 be a prime number. Then for any integer
n≥ 1

2
(p+ 1+ ε(p)) where ε(p) is defined as in Theorem ??:

1) there exists an algebraic function field Hk/Fp2 of genus g(Hk/Fp2) such that

2g(Hk/Fp2) + 1≤ pn−1(p− 1)

and
B1(Hk/Fp2) > 2n+ 2g(Hk/Fp2)− 2,

2) there exists an algebraic function field Hk/Fp of genus g(Hk/Fp) containing a
non-special divisor of degree g(Hk/Fp)− 1 and such that

2g(Hk/Fp) + 1≤ p
n−1

2 (p
1
2 − 1)

and
B1(Hk/Fp) + 2B2(Hk/Fp)> 2n+ 2g(Hk/Fp)− 2.

8



2.2. Some preliminary results
Here we establish some technical results about the genus and number of places

of each step of the towers T2/Fq2 , T3/Fq, T/Fp2 and T/Fp defined in Section 2.1.
These results will allow us to determine a suitable step of the tower to apply the
algorithm on.

2.2.1. About the Garcia-Stichtenoth tower of Artin-Schreier extensions
In this section, q := pr is a power of the prime p.

Lemma 2.3. Let q > 3. We have the following bounds for the genus of each step of
the towers T2/Fq2 and T3/Fq:

i) gk > qk for all k ≥ 4,

ii) gk ≤ qk−1(q+ 1)−pqq
k
2 ,

iii) gk,s ≤ qk−1(q+ 1)ps for all k ≥ 0 and s = 0, . . . , r,

iv) gk,s ≤ qk(q+1)−q
k
2 (q−1)

pr−s for all k ≥ 2 and s = 0, . . . , r.

Proof. i) According to Formula (3), we know that if k ≡ 1 mod 2, then

gk = qk + qk−1 − q
k+1

2 − 2q
k−1

2 + 1= qk + q
k−1

2 (q
k−1

2 − q− 2) + 1.

Since q > 3 and k ≥ 4, we have q
k−1

2 − q− 2> 0, thus gk > qk.
Else if k ≡ 0 mod 2, then

gk = qk + qk−1 −
1

2
q

k
2
+1 −

3

2
q

k
2 − q

k
2
−1+ 1= qk + q

k
2
−1(q

k
2 −

1

2
q2 −

3

2
q− 1) + 1.

Since q > 3 and k ≥ 4, we have q
k
2 − 1

2
q2− 3

2
q− 1> 0, thus gk > qk.

ii) It follows from Formula (3) since for all k ≥ 1 we have 2q
k−1

2 ≥ 1 which

works out for odd k cases and 3
2
q

k
2 + q

k
2
−1 ≥ 1 which works out for even k cases,

since 1
2
q ≥ pq.

iii) If s = r, then according to Formula (3), we have

gk,s = gk+1 ≤ qk+1 + qk = qk−1(q+ 1)ps.

Else, s < r and Proposition 2.1 says that gk,s ≤
gk+1

pr−s + 1. Moreover, since q
k+2

2 ≥ q

and 1
2
q

k+1
2
+1 ≥ q, we obtain gk+1 ≤ qk+1 + qk − q+ 1 from Formula (3). Thus, we

get

gk,s ≤
qk+1 + qk − q+ 1

pr−s + 1

= qk−1(q+ 1)ps − ps + ps−r + 1

≤ qk−1(q+ 1)ps + ps−r

≤ qk−1(q+ 1)ps since 0≤ ps−r < 1 and gk,s ∈ N.

9



iv) It follows from ii) since Proposition 2.1 gives gk,s ≤
gk+1

pr−s + 1, so

gk,s ≤
qk(q+1)−pqq

k+1
2

pr−s + 1 which gives the result since pr−s ≤ q
k
2 for all k ≥ 2.

Lemma 2.4. Let q > 3 and k ≥ 4. We set ∆gk,s := gk,s+1 − gk,s,Dk,s := (p− 1)psqk

and Mk,s := N1(Fk,s/Fq2) = N1(Gk,s/Fq) + 2N2(Gk,s/Fq). One has:

(i) ∆gk,s ≥ Dk,s,

(ii) Mk,s ≥ Dk,s.

Proof. (i) From Hurwitz Genus Formula, one has gk,s+1 − 1≥ p(gk,s − 1), so
gk,s+1 − gk,s ≥ (p− 1)(gk,s − 1). Applying s more times Hurwitz Genus Formula,
we get gk,s+1 − gk,s ≥ (p− 1)ps�g(Gk)− 1

�

. Thus gk,s+1 − gk,s ≥ (p− 1)psqk, from
Lemma 2.3 i) since q > 3 and k ≥ 4.
(ii) According to Proposition 2.1, one has

Mk,s ≥ (q2 − 1)qk−1ps

= (q+ 1)(q− 1)qk−1ps

≥ (q− 1)qkps

≥ (p− 1)qk ps.

Lemma 2.5. Let Mk,s := N1(Fk,s/Fq2) = N1(Gk,s/Fq) + 2N2(Gk,s/Fq). For all k ≥ 1
and s = 0, . . . , r, we have

sup
�

n ∈ N | 2n ≤ Mk,s − 2gk,s + 1
	

≥
1

2
(q+ 1)qk−1ps(q− 3).

Proof. From Proposition 2.1 and Lemma 2.3 iii), we get

Mk,s − 2gk,s + 1 ≥ (q2− 1)qk−1ps − 2qk−1(q+ 1)ps + 1

= (q+ 1)qk−1ps�(q− 1)− 2
�

+ 1

≥ (q+ 1)qk−1ps(q− 3)

thus we have sup
�

n ∈ N | 2n≤ Mk,s − 2gk,s + 1
	

≥ 1
2
qk−1ps(q+ 1)(q− 3).

2.2.2. About the Garcia-Stichtenoth tower of Kummer extensions
In this section, p is an odd prime. We denote by gk the genus of the step Hk

and we fix Nk := B1(Hk/Fp2) = B1(Hk/Fp) + 2B2(Hk/Fp). The following lemma is
straightforward according to Formulae (4) and (6):

Lemma 2.6. These two bounds hold for the genus of each step of the towers T/Fp2

and T/Fp:

i) gk ≤ 2k+1 − 2 · 2 k+1
2 + 1,
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ii) gk ≤ 2k+1.

Lemma 2.7. For all k ≥ 0, we set ∆gk := gk+1 − gk. Then one has

Nk ≥∆gk ≥ 2k+1 − 2
k+1

2 .

Proof. If k is even then∆gk = 2k+1 − 2
k
2 , else∆gk = 2k+1 − 2

k+1
2 so the second

equality holds trivially. Moreover, since p ≥ 3, the first one follows from Bounds
(5) and (6) which gives Nk ≥ 2k+2.

Lemma 2.8. Let Hk be a step of one of the towers T/Fp2 or T/Fp. One has:

sup
�

n ∈ N | Nk ≥ 2n+ 2gk − 1
	

≥ 2k(p− 3) + 2.

Proof. From Bounds (5) and (6) for Nk and Lemma 2.6 i), we get

Nk − 2gk + 1 ≥ 2k+1(p− 1)− 2(2k+1 − 2 · 2
k+1

2 + 1) + 1

= 2k+1(p− 3) + 4 · 2
k+1

2 − 1

≥ 2k+1(p− 3) + 4 since k ≥ 0.

2.3. General results for µsym
q (n)

In [5], Ballet and Le Brigand proved the following useful result:

Theorem 2.9. Let F/Fq be an algebraic function field of genus g ≥ 2. If q ≥ 4, then
there exists a non-special divisor of degree g − 1.

The four following lemmas prove the existence of a “good” step of the towers
defined in Section 2.1, that is to say a step that will be optimal for the bilinear
complexity of multiplication:

Lemma 2.10. Let n ≥ 1
2

�

q2 + 1+ ε(q2)
�

be an integer. If q = pr ≥ 4, then there
exists a step Fk,s/Fq2 of the tower T2/Fq2 such that all the three following conditions
are verified:

(1) there exists a non-special divisor of degree gk,s − 1 in Fk,s/Fq2 ,

(2) there exists a place of Fk,s/Fq2 of degree n,

(3) N1(Fk,s/Fq2) ≥ 2n+ 2gk,s − 1.

Moreover, the first step for which both Conditions (2) and (3) are verified is the first
step for which (3) is verified.
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Proof. Note that n ≥ 9 since q ≥ 4 and n≥ 1
2
(q2 + 1) ≥ 8.5. Fix 1 ≤ k ≤ n− 4

and s ∈ {0, . . . , r}. First, we prove that Condition (2) is verified. Lemma 2.3 iv)
gives:

2gk,s + 1 ≤ 2
qk(q+ 1)− q

k
2 (q− 1)

pr−s + 1

= 2ps

�

qk−1(q+ 1)− q
k
2

q− 1

q

�

+ 1

≤ 2qk−1ps(q+ 1) since 2psq
k
2

q− 1

q
≥ 1 (7)

≤ 2qk(q2 − 1).

On the other hand, one has n− 1≥ k+ 3> k+ 1
2
+ 2 so n−1≥ logq(q

k)+logq(2)+

logq(q+ 1). This gives qn−1 ≥ 2qk(q+ 1), hence qn−1(q− 1)≥ 2qk(q2 − 1). There-

fore, one has 2gk,s + 1≤ qn−1(q− 1) which ensure us that Condition (2) is satisfied
according to Corollary 5.2.10 in [23].
Now suppose also that k ≥ logq

�

2n
5

�

+ 1. Note that for all n ≥ 9 there exists such

an integer k since the size of the interval [logq

�

2n
5

�

+ 1, n − 4] is bigger than

9− 4− log4

�

2·9
5

�

− 1≥ 3> 1. Moreover such an integer k verifies qk−1 ≥ 2
5
n, so

n≤ 1
2
qk−1(q+ 1)(q− 3) since q ≥ 4. Then one has

2n+ 2gk,s − 1 ≤ 2n+ 2gk,s + 1

≤ 2n+ 2qk−1ps(q+ 1) according to (7)

≤ qk−1(q+ 1)(q− 3) + 2qk−1ps(q+ 1)

≤ qk−1ps(q+ 1)(q− 1)

= (q2 − 1)qk−1ps

which gives N1(Fk,s/Fq2)≥ 2n+ 2gk,s − 1 according to Proposition 2.1 (3). Hence,

for any integer k ∈ [logq

�

2n
5

�

+ 1, n− 4], Conditions (2) and (3) are satisfied and
the smallest integer k for which they are both satisfied is the smallest integer k for
which Condition (3) is satisfied.
To conclude, remark that for such an integer k, Condition (1) is easily verified from
Theorem 2.9 since q ≥ 4 and gk,s ≥ g2 ≥ 6 according to Formula (3).

This is a similar result for the tower T3/Fq:

Lemma 2.11. Let n ≥ 1
2

�

q+ 1+ ε(q)
�

be an integer. If q = pr ≥ 4, then there
exists a step Gk,s/Fq of the tower T3/Fq such that all the three following conditions
are verified:

(1) there exists a non-special divisor of degree gk,s − 1 in Gk,s/Fq,

(2) there exists a place of Gk,s/Fq of degree n,

(3) N1(Gk,s/Fq) + 2N2(Gk,s/Fq)≥ 2n+ 2gk,s − 1.
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Moreover, the first step for which both Conditions (2) and (3) are verified is the first
step for which (3) is verified.

Proof. Note that n≥ 5 since q ≥ 4, ε(q)≥ ε(4) = 4 and n≥ 1
2
(q+ 1+ ε(q))≥ 4.5.

First, we focus on the case n ≥ 12. Fix 1 ≤ k ≤ n−5
2

and s ∈ {0, . . . , r}. One has

2psqk q+1
p

q

2

≤ q
n−1

2 since

n− 1

2
≥ k+ 2= k−

1

3
+ 1+ 1+

3

2
≥ logq(q

k− 3
2 ) + logq(4) + logq(p

s) + logq(q+ 1).

Hence 2psqk−1(q+ 1)≤ q
n−1

2 (
p

q− 1) since
p

q

2
≤pq− 1 for q ≥ 4. According to

(7) in the previous proof, this proves that Condition (2) is satisfied.
The same reasoning as in the previous proof shows that Condition (3) is also satis-
fied as soon as k ≥ logq

�

2n
5

�

+ 1. Moreover, for n ≥ 12, the interval

[logq

�

2n
5

�

+ 1, n−7
2
] contains at least one integer and the smallest integer k in this

interval is the smallest integer k for which Condition (3) is verified. Furthermore,
for such an integer k, Condition (1) is easily verified from Theorem 2.9 since q ≥ 4
and gk,s ≥ g2 ≥ 6 according to Formula (3).

To complete the proof, we want to focus on the case 5 ≤ n ≤ 11. For this
case, we have to look at the values of q = pr and n for which we have both
n≥ 1

2

�

q+ 1+ ε(q)
�

and 5≤ n≤ 11. For each value of n such that these two
inequalities are satisfied, we have to check that Conditions (1), (2) and (3) are
verified. In this aim, we use the KASH packages [14] to compute the genus and
number of places of degree 1 and 2 of the first steps of the tower T3/Fq. Thus we
determine the first step Gk,s/Fq that satisfied all the three Conditions (1), (2) and
(3). We resume our results in the following table:

q = pr 22 23 32

ε(q) 4 5 6
1
2

�

q+ 1+ ε(q)
�

4.5 7 8
n to be considered 5≤ n≤ 11 7≤ n≤ 11 8≤ n≤ 11

(k, s) (1,1) (1,1) (1,1)
N1(Gk,s/Fq) 5 9 10
N2(Gk,s/Fq) 14 124 117
Γ(Gk,s/Fq) 15 117 113

gk,s 2 12 9
2gk,s + 1 5 25 19

q
n−1

2 (
p

q− 1)≥ . . . 16 936 4374
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q = pr 5 7 11 13
ε(q) 4 5 6 7

1
2

�

q+ 1+ ε(q)
�

5 6.5 9 10.5
n to be considered 5≤ n≤ 11 7≤ n≤ 11 9≤ n≤ 12 n= 11

(k, s) (2,0) (2,0) (2,0) (2,0)
N1(Gk,s/Fq) 6 8 12 14
N2(Gk,s/Fq) 60 168 660 1092
Γ(Gk,s/Fq) 53 151.5 611.5 1021.5

gk,s 10 21 55 78
2gk,s + 1 21 43 11 157

q
n−1

2 (
p

q− 1) ≥ . . . 30 564 33917 967422

In this table, one can check that for each value of q and n to be considered and
every corresponding step Gk,s/Fq one has simultaneously:

• gk,s ≥ 2 so Condition (1) is verified according to Theorem 2.9,

• 2gk,s + 1≤ q
n−1

2 (
p

q− 1) so Condition (2) is verified.

• Γ(Gk,s/Fq) := 1
2

�

N1(Gk,s/Fq) + 2N2(Gk,s/Fq)− 2gk,s + 1
�

≥ n so Condition
(3) is verified.

This is a similar result for the tower T/Fp2 :

Lemma 2.12. Let p ≥ 5 and n ≥ 1
2

�

p2 + 1+ ε(p2)
�

. There exists a step Hk/Fp2 of
the tower T/Fp2 such that the three following conditions are verified:

(1) there exists a non-special divisor of degree gk − 1 in Hk/Fp2 ,

(2) there exists a place of Hk/Fp2 of degree n,

(3) N1(Hk/Fp2)≥ 2n+ 2gk − 1.

Moreover the first step for which all the three conditions are verified is the first step
for which (3) is verified.

Proof. Note that n≥ 1
2
(52 + 1+ ε(52)) = 18. We first prove that for all in-

tegers k such that 2≤ k ≤ n− 2, we have 2gk + 1≤ pn−1(p− 1) , so Condition
(2) is verified according to Corollary 5.2.10 in [24]. Indeed, for such an in-
teger k, since p ≥ 5 one has k ≤ log2(p

n−2)≤ log2(p
n−1 − 1), thus it holds that

k+ 2≤ log2

�

4(pn−1 − 1)
�

≤ log2(4pn−1 − 1) and then 2k+2 + 1≤ 4pn−1. Hence

2 · 2k+1 + 1≤ pn−1(p− 1) since p ≥ 5, which gives the result according to
Lemma 2.6 ii).
We prove now that for k ≥ log2(2n− 1)− 2, Condition (3) is verified. Indeed,

14



for such an integer k, we have k+ 2≥ log2(2n− 1), so 2k+2 ≥ 2n− 1. Hence we
get 2k+3 ≥ 2n+ 2k+2 − 1 and so 2k+1(p− 1) ≥ 2k+1 · 4≥ 2n+ 2k+2 − 1 since p ≥ 5.
Thus we have N1(Hk/Fp2) ≥ 2n+ 2gk − 1 according to Bound (5) and
Lemma 2.6 ii).
Hence, we have proved that for any integers n≥ 18 and k ≥ 2 such that
log2(2n− 1)− 2≤ k ≤ n− 2, both Conditions (2) and (3) are verified. Moreover,
note that for any n≥ 18, there exists an integer k ≥ 2 in the interval
�

log2(2n− 1)− 2; n− 2
�

. Indeed, log2(2 · 18− 1)− 2≈ 3.12 > 2 and the size of
this interval increases with n and is greater than 1 for n= 18. To conclude, remark
that for such an integer k, Condition (1) is easily verified from Theorem 2.9 since
p2 ≥ 4 and gk ≥ g2 = 3 according to Formula (4).

This is a similar result for the tower T/Fp:

Lemma 2.13. Let p ≥ 5 and n ≥ 1
2

�

p+ 1+ ε(p)
�

. There exists a step Hk/Fp of the
tower T/Fp such that the three following conditions are verified:

(1) there exists a non-special divisor of degree gk − 1 in Hk/Fp,

(2) there exists a place of Hk/Fp of degree n,

(3) N1(Hk/Fp) + 2N1(Hk/Fp) ≥ 2n+ 2gk − 1.

Moreover the first step for which all the three conditions are verified is the first step
for which (3) is verified.

Proof. Note that n≥ 1
2
(5+ 1+ ε(5)) = 5. We first prove that for all integers k

such that 2≤ k ≤ n− 3, we have 2gk + 1≤ p
n−1

2 (
p

p− 1), so Condition (2) is veri-
fied according to Corollary 5.2.10 in [24]. Indeed, for such an integer k, since p ≥ 5

and n≥ 5 one has log2(p
n−1

2 − 1)≥ log2(5
n−1

2 − 1) ≥ log2(2
n−1) = n− 1. Thus

k+ 2≤ n− 1≤ log2(p
n−1

2 − 1) and it follows from Lemma 2.6 ii) that

2gk + 1≤ 2k+2 + 1≤ p
n−1

2 ≤ p
n−1

2 (
p

p− 1), which gives the result.
The same reasoning as in the previous proof shows that Condition (3) is also sat-
isfied as soon as k ≥ log2(2n− 1)− 2. Hence, we have proved that for any inte-
gers n≥ 5 and k ≥ 2 such that log2(2n− 1)− 2≤ k ≤ n− 3, both Conditions (2)
and (3) are verified. Moreover, note that the size of the interval
�

log2(2n− 1)− 2; n− 3
�

increases with n and that for any n≥ 5, this interval
contains at least one integer k ≥ 2. To conclude, remark that for such an integer
k, Condition (1) is easily verified from Theorem 2.9 since p ≥ 4 and gk ≥ g2 = 3
according to Formula (4).

Now we establish general bounds for the bilinear complexity of multiplication
by using derivative evaluations on places of degree one (respectively places of de-
gree one and two).

Theorem 2.14. Let q be a prime power and n > 1 be an integer. If there exists an
algebraic function field F/Fq of genus g with N places of degree 1 and an integer
0< a ≤ N such that

15



(i) there exists R , a non-special divisor of degree g − 1,

(ii) there exists Q, a place of degree n,

(iii) N + a ≥ 2n+ 2g − 1,

then
µsym

q (n) ≤ 2n+ g − 1+ a.

Proof. Let P := {P1, . . . , PN } be a set of N places of degree 1 and P
′ be a sub-

set of P with cardinality a. According to Lemma 2.7 in [7], we can choose an effec-
tif divisor D equivalent to Q+R such that supp(D)∩P = ∅. We define the maps
EvQ and EvP as in Theorem 1.1 with ui = 2 if Pi ∈P

′ and ui = 1 if Pi ∈P\P ′.
Then EvQ is bijective, since ker EvQ = L (D − Q) with dim(D −Q) = dim(R) = 0
and dim(Im EvQ) = dimD = degD − g + 1+ i(D)≥ n according to Riemann-Roch
Theorem. Thus dim(Im EvQ) = n. Moreover, EvP is injective. Indeed,

ker EvP =L (2D −
∑N

i=1 ui Pi) with deg(2D−
∑N

i=1 ui Pi) = 2(n+ g−1)−N−a < 0.
Furthermore, one has rk EvP = dim(2D) = deg(2D)− g+1+ i(2D), and i(2D) = 0
since 2D ≥ D ≥ R with i(R) = 0. So rk EvP = 2n+ g − 1, and we can extract a
subset P1 from P and a subset P

′
1 from P

′ with cardinality N1 ≤ N and a1 ≤ a,
such that:

• N1 + a1 = 2n+ g − 1,

• the map EvP1
defined as EvP with ui = 2 if Pi ∈P

′
1 and ui = 1 if Pi ∈P1\P ′1,

is injective.

According to Theorem 1.1, this leads to µq(n)≤ N1+2a1 ≤ N1+a1+a which gives
the result.

Theorem 2.15. Let q be a prime power and n > 1 be an integer. If there exists an
algebraic function field F/Fq of genus g with N1 places of degree 1, N2 places of degree
2 and two integers 0< a1 ≤ N1, 0< a2 ≤ N2 such that

(i) there exists R , a non-special divisor of degree g − 1,

(ii) there exists Q, a place of degree n,

(iii) N1 + a1 + 2(N2 + a2) ≥ 2n+ 2g − 1,

then
µsym

q (n) ≤ 2n+ g + N2 + a1+ 4a2

and

µsym
q (n)≤ 3n+

3

2
g +

a1

2
+ 3a2.

Proof. Let P1 := {P1, . . . , PN1
} be a set of N1 places of degree 1 and P

′
1

be a subset of P1 with cardinality a1. Let P2 := {Q1, . . . ,QN2
} be a set of N2

places of degree 2 and P
′
2 be a subset of P2 with cardinality a2. According to

Lemma 2.7 in [7], we can choose an effectif divisor D equivalent to Q +R such
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that supp(D)∩ (P1 ∪P2) =∅. We define the maps EvQ and EvP as in Theorem
1.1 with ui = 2 if Pi ∈P

′
1 ∪P

′
2 and ui = 1 if Pi ∈ (P1\P ′1)∪ (P2\P ′2). Then the

same raisoning as in the previous proof shows that EvQ is bijective. Moreover, EvP

is injective. Indeed, ker EvP =L (2D −
∑N

i=1 ui Pi) with deg(2D −
∑N

i=1 ui Pi) =

2(n+g−1)−(N1+a1+2(N2+a2))< 0. Furthermore, one has rk EvP = dim(2D) =
deg(2D)− g + 1+ i(2D), and i(2D) = 0 since 2D ≥ D ≥ R with i(R) = 0. So
rk EvP = 2n+ g − 1, and we can extract a subset P̃1 from P1, a subset P̃

′
1 from

P
′
1, a subset P̃2 from P2 and a subset P̃

′
2 from P

′
2 with respective cardinality

Ñ1 ≤ N1, ã1 ≤ a1, Ñ2 ≤ N2 and ã2 ≤ a2, such that:

• 2n+ g ≥ Ñ1 + ã1 + 2(Ñ2 + ã2)≥ 2n+ g − 1,

• the map Ev
P̃

defined as EvP with ui = 2 if Pi ∈ P̃
′
1 ∪ P̃

′
2 and ui = 1 if

(P̃1\P̃ ′1)∪ (P̃2\P̃ ′2), is injective.

According to Theorem 1.1, this leads to µq(n) ≤ Ñ1 + 2ã1 + 3(Ñ2 + 2ã2) since
Mk(2) ≤ 3 for all prime power k. Hence, one has the first result since
Ñ1 + ã1 + 2(Ñ2 + ã2)≤ 2n+ g and the second one since ã1

2
+ Ñ2 + ã2 ≤ g

2
+ n.

2.4. New upper bounds for µsym
q (n)

Here, we give a detailed proof of Bound (i) of Theorem 1.4 and of an improve-
ment of [1, Theorem 5.9]. Moreover, we established the new bounds for µsym

p2 (n)

and µsym
p (n) announced in Section 1.3.

Proof of Theorem 1.4.

(i) Let n ≥ 1
2
(q2 + 1 + ε(q2)). Otherwise, we already know from the pionner

works recalled in Section 1.2 that µsym
q2 (n) ≤ 2n. According to Lemma 2.10,

there exists a step of the tower T2/Fq2 on which we can apply Theorem 2.14
with a = 0. We denote by Fk,s+1/Fq2 the first step of the tower that suits the
hypothesis of Theorem 2.14 with a = 0, i.e. k and s are integers such that
Nk,s+1 ≥ 2n+ 2gk,s+1 − 1 and Nk,s < 2n+ 2gk,s − 1, where Nk,s := N1(Fk,s/Fq2)

and gk := g(Fk,s). We denote by nk,s
0 the biggest integer such that

Nk,s ≥ 2nk,s
0 + 2gk,s − 1, i.e. nk,s

0 = sup
�

n ∈ N |2n ≤ Nk,s − 2gk,s + 1
	

. To per-
form multiplication in Fq2n , we have the following alternative:

(a) use the algorithm on the step Fk,s+1. In this case, a bound for the bilinear
complexity is given by Theorem 2.14 applied with a = 0:

µ
sym

q2 (n) ≤ 2n+ gk,s+1 − 1= 2n+ gk,s − 1+∆gk,s.

(Recall that ∆gk,s := gk,s+1 − gk,s)

(b) use the algorithm on the step Fk,s with an appropriate number of deriva-

tive evaluations. Let a := 2(n− nk,s
0 ) and suppose that a ≤ Nk,s. Then

Nk,s ≥ 2nk,s
0 + 2gk,s − 1 implies that Nk,s + a ≥ 2n+ 2gk,s − 1 so Condition
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(iii) of Theorem 2.14 is satisfied. Thus, we can perform a derivative eval-
uations in the algorithm using the step Fk,s and we have:

µ
sym
q2 (n)≤ 2n+ gk,s − 1+ a.

Thus, if a ≤ Nk,s Case (b) gives a better bound as soon as a <∆gk,s. Since
we have from Lemma 2.4 both Nk,s ≥ Dk,s and ∆gk,s ≥ Dk,s, if a ≤ Dk,s then
we can perform a derivative evaluations on places of degree 1 in the step Fk,s

and Case (b) gives a better bound then Case (a).
For x ∈ R+ such that Nk,s+1 ≥ 2[x] + 2gk,s+1 − 1 and Nk,s < 2[x] + 2gk,s − 1,
we define the function Φk,s(x) as follow:

Φk,s(x) =

¨

2x + gk,s − 1+ 2(x − nk,s
0 ) if 2(x − nk,s

0 ) < Dk,s

2x + gk,s+1 − 1 else.

We define the function Φ for all x ≥ 0 as the minimum of the functions Φk,s

for which x is in the domain of Φk,s. This function is piecewise linear with
two kinds of piece: those which have slope 2 and those which have slope 4.
Moreover, since the y-intercept of each piece grows with k and s, the graph
of the function Φ lies below any straight line that lies above all the points
�

nk,s
0 +

Dk,s

2
,Φ(nk,s

0 +
Dk,s

2
)
�

, since these are the vertices of the graph.

Let X := nk,s
0 +

Dk,s

2
, then

Φ(X ) ≤ 2X + gk,s+1 − 1

≤ 2X + gk,s+1

= 2
�

1+
gk,s+1

2X

�

X .

We want to give a bound for Φ(X ) which is independent of k and s.

Recall that Dk,s := (p− 1)psqk, and

2nk,s
0 ≥ qk−1ps(q+ 1)(q− 3) by Lemma 2.5

and
gk,s+1 ≤ qk−1(q+ 1)ps+1 by Lemma 2.3 (iii).

So we have

gk,s+1

2X
=

gk,s+1

2nk,s
0 + Dk,s

≤
qk−1(q+ 1)ps+1

qk−1ps(q+ 1)(q− 3) + (p− 1)psqk

=
qk−1(q+ 1)ps p

qk−1(q+ 1)ps
�

q− 3+ (p− 1) q
q+1

�

=
p

(q− 3) + (p− 1) q
q+1

.
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Thus, the graph of the functionΦ lies below the line y = 2

�

1+ p
(q−3)+(p−1) q

q+1

�

x .

In particular, we get

Φ(n)≤ 2

 

1+
p

(q− 3) + (p− 1) q
q+1

!

n.

(ii) Let n ≥ 1
2
(q+ 1+ ε(q)). Otherwise, we already know from Section 1.2 that

µsym
q (n) ≤ 2n. According to Lemma 2.11, there exists a step of the tower

T3/Fq on which we can apply Theorem 2.15 with a1 = a2 = 0. We denote by
Gk,s+1/Fq the first step of the tower that suits the hypothesis of Theorem 2.15
with a1 = a2 = 0, i.e. k and s are integers such that Nk,s+1 ≥ 2n+ 2gk,s+1 − 1
and Nk,s < 2n+ 2gk,s − 1, where Nk,s := N1(Gk,s/Fq) + 2N2(Gk,s/Fq) and

gk,s := g(Gk,s). We denote by nk,s
0 the biggest integer such that

Nk,s ≥ 2nk,s
0 + 2gk,s − 1, i.e. nk,s

0 = sup
�

n ∈ N |2n ≤ Nk,s − 2gk,s + 1
	

. To per-
form multiplication in Fqn , we have the following alternative:

(a) use the algorithm on the step Gk,s+1. In this case, a bound for the bilinear
complexity is given by Theorem 2.15 applied with a1 = a2 = 0:

µsym
q (n)≤ 3n+

3

2
gk,s+1 = 3nk,s

0 +
3

2
gk,s + 3(n− nk,s

0 ) +
3

2
∆gk,s.

(b) use the algorithm on the step Gk,s with an appropriate number of deriva-

tive evaluations. Let a1 + 2a2 := 2(n− nk,s
0 ) and suppose that

a1 + 2a2 ≤ Nk,s. Then Nk,s ≥ 2nk,s
0 + 2gk,s − 1 implies that

Nk,s + a1 + 2a2 ≥ 2n+ 2gk,s − 1. Thus we can perform a1 + a2 derivative
evaluations in the algorithm using the step Gk,s and we have:

µsym
q (n)≤ 3n+

3

2
gk,s +

3

2
(a1 + 2a2) = 3nk,s

0 +
3

2
gk,s + 6(n− nk,s

0 ).

Thus, if a1 + 2a2 ≤ Nk,s Case (b) gives a better bound as soon as

n− nk,s
0 <

1
2
∆gk,s. Since we have from Lemma 2.4 both Nk,s ≥ Dk,s and

1
2
∆gk,s ≥ 1

2
Dk,s, if a1 + 2a2 ≤ Dk,s, i.e. n− nk,s

0 ≤
1
2

Dk,s, then we can perform
a1 derivative evaluations on places of degree 1 and a2 derivative evaluations
on places of degree 2 in the step Gk,s and Case (b) gives a better bound then
Case (a).
For x ∈ R+ such that Nk,s+1 ≥ 2[x] + 2gk,s+1 − 1 and Nk,s < 2[x] + 2gk,s − 1,
we define the function Φk,s(x) as follow:

Φk,s(x) =







3x + 3
2

gk,s + 3(x − nk,s
0 ) if x − nk,s

0 <
Dk,s

2

3x + 3
2

gk,s+1 else.
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We define the function Φ for all x ≥ 0 as the minimum of the functions Φk,s

for which x is in the domain of Φk,s. This function is piecewise linear with
two kinds of piece: those which have slope 3 and those which have slope 6.
Moreover, since the y-intercept of each piece grows with k and s, the graph
of the function Φ lies below any straight line that lies above all the points
�

nk,s
0 +

Dk,s

2
,Φ(nk,s

0 +
Dk,s

2
)
�

, since these are the vertices of the graph.

Let X := nk,s
0 +

Dk,s

2
, then

Φ(X ) ≤ 3X +
3

2
gk,s+1

= 3
�

1+
gk,s+1

2X

�

X .

We want to give a bound for Φ(X ) which is independent of k and s.

Recall that Dk,s := (p− 1)psqk, and

nk,s
0 ≥

1

2
qk−1ps(q+ 1)(q− 3) by Lemma 2.5

and
gk,s+1 ≤ qk−1(q+ 1)ps+1 by Lemma 2.3 (iii).

So we have

gk,s+1

2X
=

gk,s+1

2(nk,s
0 +

Dk,s

2
)

≤
qk−1(q+ 1)ps+1

2( 1
2
qk−1ps(q+ 1)(q− 3) + 1

2
(p− 1)psqk)

=
qk−1(q+ 1)psp

qk−1(q+ 1)ps
�

q− 3+ (p− 1) q
q+1

�

=
p

(q− 3) + (p− 1) q
q+1

.

Thus, the graph of the functionΦ lies below the line y = 3

�

1+ p
(q−3)+(p−1) q

q+1

�

x .

In particular, we get

Φ(n)≤ 3

 

1+
p

(q− 3) + (p− 1) q
q+1

!

n.

(iii) Let n ≥ 1
2
(p2 + 1 + ε(p2)). Otherwise, we already know from Section 1.2

that µsym
p2 (n) ≤ 2n. According to Lemma 2.12, there exists a step of the

tower T/Fp2 on which we can apply Theorem 2.14 with a = 0. We denote
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by Hk+1/Fp2 the first step of the tower that suits the hypothesis of Theo-
rem 2.14 with a = 0, i.e. k is an integer such that Nk+1 ≥ 2n+ 2gk+1 − 1 and
Nk < 2n+ 2gk − 1, where Nk := N1(Hk/Fp2) and gk := g(Hk). We

denote by nk
0 the biggest integer such that Nk ≥ 2nk

0 + 2gk − 1, i.e.
nk

0 = sup
�

n ∈ N |2n ≤ Nk − 2gk + 1
	

. To perform multiplication in Fp2n , we
have the following alternative:

(a) use the algorithm on the step Hk+1. In this case, a bound for the bilinear
complexity is given by Theorem 2.14 applied with a = 0:

µ
sym

p2 (n)≤ 2n+ gk+1 − 1= 2n+ gk − 1+∆gk,s.

(Recall that ∆gk := gk+1 − gk)

(b) use the algorithm on the step Hk with an appropriate number of deriva-
tive evaluations. Let a := 2(n − nk

0) and suppose that a ≤ Nk. Then
Nk ≥ 2nk

0 + 2gk − 1 implies that Nk + a ≥ 2n+ 2gk − 1 so Condition (3)
of Theorem 2.14 is satisfied. Thus, we can perform a derivative evalua-
tions in the algorithm using the step Hk and we have:

µ
sym

p2 (n) ≤ 2n+ gk − 1+ a.

Thus, if a ≤ Nk Case (b) gives a better bound as soon as a <∆gk. For x ∈ R+
such that Nk+1 ≥ 2[x] + 2gk+1 − 1 and Nk < 2[x] + 2gk − 1, we define the
function Φk(x) as follow:

Φk(x) =

�

2x + gk − 1+ 2(x − nk
0) if 2(x − nk

0)<∆gk

2x + gk+1 − 1 else.

Note that when Case (b) gives a better bound, that is to say when
2(x − nk

0) <∆gk, then according to Lemma 2.7 we have also

2(x − nk
0)< Nk

so we can proceed as in Case (b) since there are enough rational places to use
a = 2(x − nk

0) derivative evaluations on.

We define the function Φ for all x ≥ 0 as the minimum of the functions
Φk for which x is in the domain of Φk. This function is piecewise linear
with two kinds of piece: those which have slope 2 and those which have
slope 4. Moreover, since the y-intercept of each piece grows with k, the graph
of the function Φ lies below any straight line that lies above all the points
�

nk
0 +

∆gk

2
,Φ(nk

0 +
∆gk

2
)
�

, since these are the vertices of the graph.

Let X := nk
0 +

∆gk

2
, then

Φ(X ) ≤ 2X + gk+1 − 1≤ 2
�

1+
gk+1

2X

�

X .

We want to give a bound for Φ(X ) which is independent of k.
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Lemmas 2.6 ii), 2.7 and 2.8 give

gk+1

2X
≤

2k+2

2k+1(p− 3) + 4+ 2k+1 − 2
k+1

2

=
2k+2

2k+1
�

(p− 3) + 1+ 2−k+1 − 2−
k+1

2

�

=
2

p− 2+ 2−k+1 − 2−
k+1

2

≤
2

p− 33
16

since − 1
16

is the minimum of the function k 7→ 2−k+1 − 2−
k+1

2 .

Thus, the graph of the function Φ lies below the line y = 2
�

1+ 2
p− 33

16

�

x . In

particular, we get

Φ(n)≤ 2

 

1+
2

p− 33
16

!

n.

(iv) Let n ≥ 1
2
(p+ 1+ ε(p)). Otherwise, we already know from Section 1.2 that

µsym
p (n) ≤ 2n. According to Lemma 2.13, there exists a step of the tower

T/Fp on which we can apply Theorem 2.15 with a1 = a2 = 0. We denote by
Hk+1/Fp the first step of the tower that suits the hypothesis of Theorem 2.15
with a1 = a2 = 0, i.e. k is an integer such that Nk+1 ≥ 2n+ 2gk+1 − 1 and
Nk < 2n+ 2gk − 1, where Nk := N1(Hk/Fp) + 2N2(Hk/Fp) and gk := g(Hk).

We denote by nk
0 the biggest integer such that Nk ≥ 2nk

0 + 2gk − 1, i.e.
nk

0 = sup
�

n ∈ N |2n ≤ Nk − 2gk + 1
	

. To perform multiplication in Fpn , we
have the following alternative:

(a) use the algorithm on the step Hk+1. In this case, a bound for the bilinear
complexity is given by Theorem 2.15 applied with a1 = a2 = 0:

µsym
q (n)≤ 3n+

3

2
gk+1 = 3nk

0 +
3

2
gk + 3(n− nk

0) +
3

2
∆gk.

(b) use the algorithm on the step Hk with an appropriate number of deriva-
tive evaluations. Let a1 + 2a2 := 2(n− nk

0) and suppose that a1 + 2a2 ≤ Nk.
Then Nk ≥ 2nk

0 + 2gk − 1 implies that Nk + a1+ 2a2 ≥ 2n+ 2gk − 1. Thus
we can perform a1+ a2 derivative evaluations in the algorithm using the
step Hk and we have:

µsym
p (n)≤ 3n+

3

2
gk +

3

2
(a1 + 2a2) = 3nk

0 +
3

2
gk + 6(n− nk

0).
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Thus, if a1+2a2 ≤ Nk,s Case (b) gives a better bound as soon as n− nk,s
0 <

1
2
∆gk,s.

For x ∈ R+ such that Nk+1 ≥ 2[x] + 2gk+1 − 1 and Nk < 2[x] + 2gk − 1, we
define the function Φk(x) as follow:

Φk(x) =







3x + 3
2

gk + 3(x − nk
0) if x − nk

0 <
∆gk

2

3x + 3
2

gk+1 else.

Note that when Case (b) gives a better bound, that is to say when
2(x − nk

0) <∆gk, then according to Lemma 2.7 we have also

2(x − nk
0)< Nk

so we can proceed as in Case (b) since there are enough places of degree 1
and 2 to use a1+ a2 = 2(x − nk

0) derivative evaluations on.

We define the function Φ for all x ≥ 0 as the minimum of the functions
Φk for which x is in the domain of Φk. This function is piecewise linear
with two kinds of piece: those which have slope 3 and those which have
slope 6. Moreover, since the y-intercept of each piece grows with k, the graph
of the function Φ lies below any straight line that lies above all the points
�

nk
0 +

∆gk

2
,Φ(nk

0 +
∆gk

2
)
�

, since these are the vertices of the graph.

Let X := nk
0 +

∆gk

2
, then

Φ(X ) ≤ 3X +
3

2
gk+1 = 3

�

1+
gk+1

2X

�

X .

We want to give a bound for Φ(X ) which is independent of k.

The same reasoning as in (iii) gives

gk+1

2X
≤

2

p− 33
16

.

Thus, the graph of the function Φ lies below the line y = 3
�

1+ 2
p− 33

16

�

x . In

particular, we get

Φ(n)≤ 3

 

1+
2

p− 33
16

!

n.

3. Note on some unproven bounds

The two papers [10, 19] predict new upper bounds for the limsup of the com-
plexity of the multiplication in extensions of small prime finite fields. Unfortunatly
these predictions are based on an asumption which is unproven (and might be false
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in general). This asumption is stated as Lemma IV.4 in the paper [10]. The claim
is the following:

Let p a prime integer. For each even integer t, there exists a family (Xs)
∞
s=1 of

curves:

• defined over Fp;

• whose genuses tend to infinity, and grow slowly, i.e. gs+1/gs −→s→∞
1;

• whose number of Fpt -points is asymptotically optimal (i.e. the ratio of this

number with respect to the genus tends to
p

pt − 1).

And thus, by [10, Lemma IV.3], the family (Xs)
∞
s=1 would attain the generalized

Drinfeld-Vlădu̧t bound for the number of points of degree t.

The new result claimed in [10] is that the curves are defined over Fp. If one
removes this property, the computations made in this paper would lead to results
already known4 since [22]. But to justify the fact that their curves are defined
over Fp, p being a prime, the authors need that these curves come from the reduc-
tion modulo p of Shimura curves that would be defined over Q.

This latter claim is not proved, so this invalidates the result. We can further
notice that it appears that, up to some details (e.g. add the sufficient hypothesis
that K has narrow class number 1), some of these curves should indeed admit Q
as field of moduli (by the first corollary of [16] the levels ℓ being assumed Galois
invariant). But this potentially restrains the list of possible choices for p and t and
even in those cases, it does not suffice to prove the assumption, since the field of
moduli need not be the field of definition.

We give here a list of the bounds that, to the best of our knowledge, rely on this
unproven assumption:

• the symmetric bounds in Theorem IV.6, Theorem IV.7 and the list of specific
bounds in Corollary IV.8 of [10]; namely the followings:

Msym
q ≤ µ

sym
q (2t)

qt − 1

t(qt − 5)

for any t ≥ 1 as long as qt − 5> 0 for q a prime power;

Msym
q ≤ µ

sym
q (t)

qt/2− 1

t(qt/2− 5)

for any t ≥ 1 as long as qt/2 − 5> 0 for q a prime power which is a square;

µ
sym
2 (12)≤ 42 µ

sym
3 (10)≤ 27 µ

sym
4 (6)≤ 14 µ

sym
5 (4) = 8

4Modulo an error spotted by Cascudo, and then corrected by Ballet and Pieltant in [7, §4.5], and
Randriam in [20, §5].
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and
µsym

q (4) = 7 for q = 7,8,9,11,13.

• the asymmetric bounds in Theorem 5.3, Corollary 5.4, Corollary 5.5 of [19],
namely the followings:

Mq ≤
2µq(t)

t

�

1+
1

qt/2− 2

�

for q be a prime power and t ≥ 1 an integer such that qt ≥ 9 is a square;
and

M2 ≤
35

6
M3 ≤

36

7
M4 ≤

30

7
M5 ≤ 4 M7 ≤ 3.6 M8 ≤ 3.5.
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