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A BOUND ON THE CODIMENSIONS OF A PI-ALGEBRA USING

GROUP GEOMETRY

CHRISTOPHER S. HENRY

Abstract. In this note we draw a connection between noncommutative algebra and geo-
metric group theory. Specifically, we ask whether it is possible to bound the sequence of
codimensions for an associative PI-algebra using techniques from geometric group theory.
The classic and best known bound on codimension growth was derived by finding a “nice”
spanning set for the multilinear polynomials of degree n inside the free algebra. This span-
ning set corresponds to permutations in the symmetric group Sn which are so-called d-good,
where d is the degree of the identity satisfied by the algebra. The motivation for our ques-
tion comes from the fact that there is an obvious relationship between the word metric on
Sn and the property of being d-good. We answer in the affirmative, by finding a spanning
set that corresponds to permutations which are large with respect to the word metric. We
provide an explicit algorithm and formula for calculating the size of the resulting bound,
and demonstrate that it is asymptotically worse than the classic one.
AMS MSC classes: 16R99,20F10.
Key-words: PI-algebras, codimension growth, geometric group theory.

1. Introduction

Let A be an associative polynomial identity algebra (PI-algebra) over a field k, satisfying an
identity of degree d. It is a well known result of Regev ([8]) that the sequence of codimensions
{cn(A)} is bounded exponentially in n. The bound comes from counting the number of d-
good permutations in the symmetric group Sn, for which Dilworth has shown that there
are at most (d − 1)2n. One can identify permutations with monomials in the subspace
Pn ⊂ k〈X〉 of multilinear polynomials of degree n, where k〈X〉 = k〈x1, x2, . . .〉 is the free
algebra on countably many variables. The existence of an identity of degree d implies that
Pn is spanned - modulo the identities of A - by d-good monomials, which gives the result.

In general, the strategy for bounding the codimensions can be described as follows: identify
a collection of monomials which form a spanning set for Pn modulo the identities of A,
and then calculate the size of this spanning set as n grows large. The strategy itself is
important because it has been adapted in several ways to provide arguments which establish
the existence of an identity for certain algebras; see as examples [1], [2], [5], and [7]. Roughly
speaking, in such arguments applied to associative algebras one still counts the number of
d-good monomials in some appropriate free object. In the Lie algebra case however, the
notion of d-indecomposable is used in place of d-good, and a more complicated function is
required to count the number of d-indecomposable monomials. It is therefore natural to ask
if there are alternative ways of finding such a spanning set and estimating its size.

In this note, we ask whether it is possible to find a spanning set for Pn that is based
on the geometry of the symmetric group, i.e. viewing Sn as a metric space in the spirit of
geometric group theory. The motivation for this question stems from the fact that both the
word metric and “d-goodness” provide a measure of the extent to which a given permutation
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is out of order. In fact, we find an easily stated relationship between the two concepts in
Lemma 3.1. One might hope to exploit this relationship to provide an improved bound on
the codimensions compared to the one given by d-good monomials.

We find mixed results. On one hand, we are able to develop a novel strategy for bounding
codimensions that is purely based on geometry. The spanning set we derive corresponds
to monomials which are “large”, that is, those for which the associated permutation is a
certain distance from the identity. Furthermore, we present an explicit formula and a nice
algorithm for calculating the size of our bound. On the other hand, we confirm that our
bound is asymptotically worse than the one provided by Regev, as it grows on the order of
n! as opposed to exponentially.

2. Preliminaries

We present the classic (i.e. Regev’s) bound on the codimensions of a PI-algebra, and then
introduce some notation required for our results.

2.1. Regev’s bound on codimension. We follow the exposition in Chapter 4.2 of [5].
Denote by Sn the symmetric group on n elements and let σ ∈ Sn. For d ∈ {2, . . . , n} we say
that σ is d-bad if there exists indices 1 ≤ i1 < . . . < id ≤ n such that σ(i1) > . . . > σ(id).
If σ is not d-bad then we say it is d-good. Dilworth originally provided the bound on the
number of d-good permutations in a well known result.

Lemma 2.1. Let d ∈ {2, . . . , n}. The number of d-good permutations is bounded above by
(d− 1)2n.

Let A be an associative k-algebra with k a field, and k〈X〉 = k〈x1, x2, . . .〉 be the free
k-algebra on countably many variables. The set Pn = span{xσ(1) · · ·xσ(n) | σ ∈ Sn} is the
subspace of multilinear polynomials of degree n. A monomial xσ = xσ(1) · · ·xσ(n) ∈ Pn is
called d-good if the associated permutation σ is d-good, and similarly for d-bad.

The algebra A is a polynomial identity algebra (PI-algebra) if there exists some f =
f(x1, . . . , xm) ∈ k〈X〉, such that f(a1, . . . , am) = 0 for all ai ∈ A. Denote by Id(A) the
T -ideal of identities of A. The n-th codimension of A is given by cn(A) = dim Pn

Pn∩Id(A)
. Note

that A satisfies a polynomial identity of degree n as soon as cn(A) < n!.

Theorem 2.2. Let A be a PI-algebra satisfying an identity of degree d. Then for n ≥ d we
have cn(A) ≤ (d−1)2n, i.e. Pn is spanned (modulo the identities of A) by d-good monomials.

Proof. We may assume that A satisfies an identity of the form

x1 · · ·xd =
∑

16=τ∈Sd

ατxτ(1) · · ·xτ(d). (∗)

Pick xσ = xσ(1) · · ·xσ(n), minimal in the dictionary order on monomials, such that xσ is not
a linear combination of d-good monomials. In particular σ must be d-bad. By definition
there are indices 1 ≤ i1 < · · · < id ≤ n with σ(i1) > · · · > σ(id). We decompose xσ

by setting w0 = xσ(1) · · ·xσ(i1−1), w1 = xσ(i1) · · ·xσ(i2−1), . . . , wd = xσ(id) · · ·xσ(n). Clearly
xσ = w0 · · ·wd, and for any 1 6= τ ∈ Sd we have w0wτ(1) · · ·wτ(d) < w0w1 · · ·wd = xσ in the
dictionary order. By minimality this means that each w0wτ(1) · · ·wτ(d) is a linear combination
of d-good monomials. Left multiply (∗) by the variable x0, and use the resulting identity to
conclude that xσ must also be a linear combination of d-good monomials, a contradiction. �
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As an application we recall Regev’s theorem regarding the tensor product of PI-algebras.
Regev’s theorem demonstrates how codimension arguments are used to establish the exis-
tence of an identity for a particular algebra. It follows almost immediately from the following,
which we state without proof.

Theorem 2.3. Let A and B be PI-algebras. We have that cn(A⊗B) ≤ cn(A)cn(B).

Theorem 2.4 (Regev). If A and B are PI-algebras, then so is A⊗B.

Proof. Assume that A satisfies an identity of degree d1, and B an identity of degree d2. By
the above and Theorem 2.2, we have that cn(A⊗ B) ≤ cn(A)cn(B) ≤ (d1 − 1)2n(d2 − 1)2n.
Let k1 = (d1 − 1)2 and k2 = (d2 − 1)2, so that cn(A⊗B) ≤ (k1k2)

n. There exists an m such
that (k1k2)

m < m!, and so A⊗ B satisfies an identity of degree m. �

2.2. Geometry of Sn. A reference for this material is [4]. We denote by n̄ the set n̄ =
{1, . . . , n}. For any σ ∈ Sn, construct the descent set

Rσ = {(i, j) ∈ n̄× n̄ | i < j and σ(j) < σ(i)}.
This is also known in the literature as the set of inversions. It should be clear that Rσ is
uniquely determined by σ. Furthermore, a subset R ⊂ n̄ × n̄ comes from a permutation
precisely when:

(1) (i, j) and (j, k) ∈ R =⇒ (i, k) ∈ R, and
(2) (i, k) ∈ R =⇒ (i, j) ∈ R or (j, k) ∈ R for all i < j < k.

Take the generating set of Sn to be T = {t1, . . . , tn−1} where ti = (i, i + 1). We may
form the Cayley graph Γ = Γ(Sn, T ), which induces a metric on Sn called the word metric.
More specifically for σ, τ ∈ Sn, d(σ, τ) is the length of the shortest path in Γ from σ to
τ , i.e. the shortest expression of σ−1τ in terms of the generators. We take the ball of
radius K in Sn to be B(K) = {σ ∈ Sn | d(σ, 1) < K}; the complement of such a ball is

B̂(K) = {σ ∈ Sn | d(σ, 1) ≥ K}.
We use the symbol # for the cardinality of a set, so the number of elements in B(K)

is denoted #B(K), and similarly for #B̂(K). Finally, we denote the size of σ ∈ Sn by
|σ| = d(σ, 1), and remark that |σ| = #Rσ, the number of pairs in the descent set.

2.3. Some convenient notation. As above, we use the shorthand xσ for the monomial
xσ(1) · · ·xσ(n) ∈ Pn. We wish to consider submonomials of xσ which are often referred to as
subwords. Choose another letter for such a subword, for example w, so that w = xσ(i) · · ·xσ(j)

for some 1 ≤ i ≤ j ≤ n. The length of this subword is l(w) = j− i+1. We say that another
subword u precedes w, denoted u � w, if u = xσ(i) · · ·xσ(j′) for j

′ ≤ j.
For a decomposition of xσ into subwords xσ = w1 · · ·wk with k ≤ n, we can act on xσ by

τ ∈ Sk. We denote such an action by xτ(σ) = wτ(1) · · ·wτ(k), where σ′ := τ(σ) ∈ Sn is the
resulting permutation of the indices. Finally, for i ∈ n̄ we write i ∈ wj if σ(i) shows up as
an index in wj.

3. Results

The motivation for our results comes from the following simple observation.

Lemma 3.1. Let σ ∈ Sn. If σ ∈ B(d(d−1)
2

), then σ is d-good.
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Proof. We establish the contrapositive. If σ is d-bad, there are indices i1 < · · · < id with
σ(i1) > · · · > σ(id). For each j = 1, . . . , d− 1 there is a pair (ij , il) ∈ Rσ for every l > j, for

a total of at least
∑d−1

i=1 i =
d(d−1)

2
pairs in Rσ. Hence, σ ∈ B̂(d(d−1)

2
). �

Both size and “d-badness” provide a measure of the extent to which a given permutation
is out of order. Ideally one would like to state something like the following: if A is a PI-
algebra satisfying an identity of degree d, then Pn is spanned by d-good monomials xσ with
σ ∈ B(Kn), for some sequence of radiiKn. If we can makeKn small enough, i.e. so that there
are d-good permutations outside of B(Kn), this would automatically provide an improved
bound on the codimensions compared to the classic one.

The sticking point is that we require a decomposition of the monomial xσ - as in the proof
of Theorem 2.2 - that is somehow related to |σ|. There is a natural such decomposition
called left greedy form, which we describe below in Sections 3.1 and 3.2. However, there is
no clear relationship between the d-good/bad condition and left greedy form. We are still
able to obtain a bound on the codimensions, but it is not as small as one might hope.

3.1. Left greedy form.

Definition 3.2. Let σ ∈ Sn with descent set Rσ, and xσ ∈ Pn the associated monomial. We
define the initial chunk c of xσ as follows. If Rσ = ∅ (i.e. σ = 1) then c is the empty word.
Otherwise c is the subword xσ = w0cw1 with c = xσ(i0) · · ·xσ(j0), and i0, j0 ∈ n̄ satisfying:

(1) (i0, j) ∈ Rσ for some j ∈ n̄, and (i0, j) is minimal in Rσ with respect to the dictionary
order.

(2) (i, j0) ∈ Rσ for some i ∈ n̄,
(3) for all i0 ≤ i ≤ j0, if j > j0 then (i, j) /∈ Rσ.

We remark that w0 or w1 (or both) may be empty words. For example the element δ ∈ Sn

of maximal size |δ| =
(
n

2

)
has initial chunk xδ = xδ(1) · · ·xδ(n) = xnxn−1 · · ·x1 = c. The

following lemma describes the algorithm for finding the initial chunk.

Lemma 3.3. For any σ ∈ Sn and xσ ∈ Pn, the initial chunk c exists.

Proof. If σ = 1 then we are done. Otherwise by assumption there is some (i, j) ∈ Rσ which
is minimal in the dictionary order, so take i0 = i. We may set j = j10 to be our candidate
for j0. For all i

′ with i0 ≤ i′ ≤ j10 , check whether there exists some j′ > j10 with (i′, j′) ∈ Rσ.
If no such j′ exists, then we have j10 = j0. Otherwise, update j20 = j′, and repeat the process
for i′′ with i′ ≤ i′′ ≤ j20 . The sequence j10 , j

2
0 , . . . must terminate, since the monomial is of

finite length. �

Given xσ = w0cw1, we can proceed to find the initial chunk of w1. Iterating this pro-
cess gives a decomposition xσ = w0c1w1c2 · · ·wk−1ckwk, where ci is the initial chunk of
wi−1 · · · ckwk. Again, note that wj may be empty for any 0 ≤ j ≤ k, however we assume that
cj is always nonempty (provided σ 6= 1). In the spirit of [4], we refer to this decomposition as
the left greedy form of xσ. By construction, left greedy form satisfies two useful properties,
which we now list.

Proposition 3.4. Let xσ = w0c1 · · ·wk−1ckwk ∈ Pn be in left greedy form.

(1) If i ∈ wl for some 0 ≤ l ≤ k, then (i, j) /∈ Rσ for all j ∈ n̄.
(2) If (i, j) ∈ Rσ, then i, j ∈ clσ for some 1 ≤ l ≤ k.
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Proof. For 1, assume that i ∈ wl for some l and that (i, j) ∈ Rσ for some j ∈ n̄. This
contradicts cl+1 being the initial chunk of wlcl+1 · · · ckwk. Part 2 follows from part 1, and
the definition of the initial chunk. �

Definition 3.5. Let xσ = w0c1 · · · ckwk be in left greedy form. We say that a decomposition
of xσ preserves chunks if it is of the form

xσ = y01 · · · y0m0
c′1 · · · c′k′yk

′

1 · · · yk′mk′
,

where

(1) k′ ≤ k,
(2) ci � c′i for all i = 1, . . . , k′, and
(3) yk

′

1 · · · yk′mk′
is the empty word if k′ < k.

Note that for such a decomposition and for i < k′, l(c′i) is is minimal when c′i = ci, and
maximal when c′i = ciwi. In other words, the decomposition distinguishes all the initial
chunks, except possibly at the end of the word. We can act on a decomposition preserving
chunks by elements of Sk′+m, wherem =

∑
mj , as described in Section 2.3. More specifically,

relabel the indices to be {1, . . . , k′ + m} and then apply τ to the indices. The following
corollary to Proposition 3.4 is key to the proof of our main theorem.

Corollary 3.6. Let xσ = y01 · · · y0m0
c′1 · · · c′k′yk

′

1 · · · yk′mk′
∈ Pn be a decomposition preserving

chunks, and assume that xσ 6= c1. Take m =
∑

mj. For any 1 6= τ ∈ Sk′+m, we have
|σ′| > |σ| where xσ′ = xτ(σ).

Proof. First note that |σ′| ≥ |σ|, since by part 2 of Proposition 3.4, any pair (i, j) ∈ Rσ

belongs to some chunk cl. Under τ these indices get sent to i 7→ i′ and j 7→ j′ respectively,
and their order is preserved, i.e. i′ < j′. But then we have σ′(j′) = σ(j) < σ(i) = σ′(i′), and
(i′, j′) ∈ Rσ′ .

Therefore we must show that there is at least one additional pair belonging to Rσ′ . Since
τ 6= 1 there is some first (reading left to right) subword that is moved by τ . We have two
cases:
Case 1: Assume that ylm is the first subword moved by τ , and pick any i ∈ ylm. Since ylm is
moved, there is some subword w in the given decomposition of xσ that follows ylm, and gets
moved to the position of ylm under τ . Pick j ∈ w. Since w follows ylm we have i < j. By
part 1 of Proposition 3.4 (i, j) /∈ Rσ, i.e. σ(i) < σ(j). Under τ the indices i and j get sent
to i 7→ j′ and j 7→ i′ respectively, with i′ < j′. But then σ′(j′) = σ(i) < σ(j) = σ′(i′), so
(i′, j′) ∈ Rσ′ .
Case 2: Assume that c′l is the first subword moved by τ , and pick any i ∈ c′l. Since c′l is
moved, there is some subword w in the given decomposition of xσ that follows c

′
l, and is moved

to the position of c′l under τ . Pick j ∈ w. There are two subcases, depending on whether
i ∈ cl. If so, then by definition of left greedy form we must have that (i, j) /∈ Rσ, otherwise
j would belong to the chunk cl. If not, then i ∈ wl and again by part 1 of Proposition 3.4
we have (i, j) /∈ Rσ. In either case σ(i) < σ(j). As above, under τ the indices i and j get
sent to j′ and i′, so that σ′(j′) = σ(i) < σ(j) = σ′(i′) and (i′, j′) ∈ Rσ′ . �

3.2. Constraints on left greedy form. To prove our main theorem, we need a few more
facts regarding the left greedy form of monomials xσ when σ is “small” in the geometry of
Sn. First we note that the number of chunks must be bounded.
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Proposition 3.7. Let xσ = w0c1 · · ·wk−1ckwk ∈ Pn be in left greedy form, and σ ∈ B(K)
for some K ≥ 1. Then k < K, i.e. the number of chunks is at most K − 1.

Proof. Since each chunk cl contains at least one pair (i, j) ∈ Rσ. �

We wish to use this fact to bound the length of chunks in left greedy form. First we need
the following.

Lemma 3.8. Let xσ ∈ Pn, (i, j) ∈ Rσ, and w be the subword w = xσ(i) · · ·xσ(j). Then
|σ| ≥ l(w)− 1.

Proof. Since (i, j) ∈ Rσ we get (at least) one pair in Rσ for each i′ with i < i′ < j, by the
properties of Rσ (see Section 2.2). That is, we get an additional j − i− 1 pairs in Rσ, for a
total of at least j − i− 1 + 1 = j − i+ 1− 1 = l(w)− 1. �

This can be used to bound the length of chunks in the left greedy form of xσ when σ is
small.

Corollary 3.9. Let xσ = w0c1 · · ·wk−1ckwk ∈ Pn be in left greedy form, and σ ∈ B(K) for
some K ≥ 1. Then

∑
l(cj) < 2K.

Proof. Let cj = xσ(i0) · · ·xσ(j0), and denote by |cj| the number of pairs in Rσ belonging to cj .
Since all pairs in Rσ must show up in some cj then

∑ |cj | = |σ|. By the construction of left
greedy form (Lemma 3.3), we can find a sequence of pairs

(i0, j1), (i1, j2), . . . , (im, jm+1 = j0)

belonging to Rσ, such that:

(1) i0 < i1 < · · · < im,
(2) j1 < j2 < · · · < jm+1,
(3) il ≤ jl for all 1 ≤ l ≤ m.

Using Lemma 3.8, we then have

|cj | ≥ (j1 − i0) + (j2 − i1) + · · · (j0 − im)

≥ (j1 − i0) + (j2 − j1) + · · ·+ (j0 − jm)

= j0 − i0 = j0 − i0 + 1− 1

= l(cj)− 1.

But then
∑

l(cj) ≤
∑ |cj|+ k = |σ|+ k < K +K = 2K. �

3.3. Main theorem. Finally we come to our main result.

Theorem 3.10. Let A be a PI-algebra satisfying an identity of degree d, and let Kn = (n−d)
2

.

Then for n ≥ d we have cn(A) ≤ #B̂(Kn).

Proof. As in Theorem 2.2, we may assume an identity of the form

x1 · · ·xd =
∑

16=τ∈Sd

ατxτ(1) · · ·xτ(d) (∗)

We show directly that any monomial xσ ∈ Pn with σ ∈ B(Kn) can be written as a linear

combination of monomials xσ′ with σ′ ∈ B̂(Kn). It will suffice to show that any such xσ can
be written as a linear combination of xσ′ with |σ′| > |σ|.

6



Let xσ = w0c1 · · ·wk−1ckwk be in left greedy form with σ ∈ B(Kn), and observe that∑
l(cj) +

∑
l(wj) = n. By Corollary 3.9 we have that

∑
l(cj) < 2Kn = n − d. We would

like to utilize Corollary 3.6, for which we need that k +
∑

l(wj) ≥ d. Indeed we have

k +
∑

l(wj) ≥
∑

l(wj)

= n−
∑

l(cj)

> n− (n− d)

= d.

This inequality says that we can always find a decomposition preserving chunks, of the form
xσ = y01 · · · y0m0

c′1 · · · c′k′yk
′

1 · · · yk′mk′
, where k′ +

∑
mj = d.

Using (∗) and Corollary 3.6, we then have that xσ =
∑

16=τ∈Sd
ατxτ(σ), with τ(σ) = σ′

satisfying |σ′| > |σ|.
�

It is clear that one could improve the bound on the codimensions if there was some way
to increase the radius of B̂(Kn) in the above result. In particular the maximum size of an

element in Sn is
(
n

2

)
= n(n−1)

2
, so if one could replace Kn with a sequence that grows O(n2)

instead of just O(n), there may be some hope to provide a bound that is asymptotically
better than (d− 1)2n. However using the tools we have developed in this note, Kn appears
to be the best we can do.

4. Calculating the bound

In this section we give an indication of how to compute #B̂(Kn), and provide a comparison

to the classic bound of (d− 1)2n. Recall that Kn = (n−d)
2

.

4.1. Algorithm and formula. For a given d and n, there is a nice algorithm for computing

#B̂(Kn) that is easy to describe. It is known - see for e.g. in [3], result originally due to
O. Rodrigues dating to 1838 - that one can count the number of permutations in Sn with a
given number of descents/inversions. Specifically, given the generating set T = {t1, . . . , tn−1}
and distance metric referenced in Section 2.2, then

n−1∏

i=1

(1 + z + · · · zi) =
(n
2
)∑

k=0

In(k)z
k,

where the coefficient In(k) counts the number of elements in Sn of size k. Hence, one can
simply multiply out the polynomial on the left hand side to determine In(k), and then

#B̂(Kn) =

(n
2
)∑

k=⌈Kn⌉

In(k).(1)

Furthermore, since Kn < n one can use Knuth’s formula for In(k) to provide an explicit

formula for #B̂(Kn). Recall that the pentagonal numbers are defined as uj =
j(3j−1)

2
.
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Proposition 4.1. (Knuth) For k ≤ n,

In(k) =

(
n+ k − 1

k

)
+

∞∑

j=1

(−1)j
(
n + k − uj − j − 1

k − uj − j

)
+

∞∑

j=1

(−1)j
(
n+ k − uj − 1

k − uj

)
.(2)

The sums on the right hand side converge, as the binomial coefficients are defined to be
zero when the lower index is negative. Using Formula 2 above we then take

#B̂(Kn) = n!−
⌊Kn⌋∑

k=0

In(k).(3)

4.2. Asymptotics. In [6], asymptotic estimates for In(k) with k ≤ n were derived using
Formula 2. These provide a convenient functional form which we use to demonstrate that
our bound is asymptotically worse than (d− 1)2n.

Theorem 4.2 ([6]). For k ≤ n and n large,

In(n− k) ≈ Ĩn(n− k) =
22n−k−1

√
nπ

Q(1 +O(n−1)),

where Q =
∏∞

j=1(1− 1
2j
) < 1.

Setting K = ⌊Kn⌋, we get a lower bound φ(n) for #B̂(Kn),

#B̂(Kn) ≈ n!−
n∑

k=K

Ĩn(n− k)

> n!−
n∑

k=K

22n−k−1

= n!− (22n−K − 2n−1)

:= φ(n)

> (d− 1)2n,

where the last inequality holds as n! ∈ O(φ(n)).

4.3. Small codimensions. One possible advantage of the bound we have provided is that
it is sharper for “small” codimensions. More precisely, let n(d) = nd be the least integer for
which (d− 1)2nd < nd!. This is an increasing function of d.
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Figure 1. Smallest n such that (d− 1)2n < n!
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Form such that d ≤ m < n(d), observe that the effective bound on the codimension cm(A)
given by d-good monomials is therefore actually m!. However, we know simply due to the
constraints of geometry that #B̂(Km) is strictly less than m! for all m > d. This suggests

that one should take the bound on cn(A) to be #B̂(Kn) until it surpasses (d− 1)2n.

References

1. Y.A. Bahturin, A. Giambruno, and D. Riley, Group graded algebras with polynomial identity, Israel
Journal of Mathematics, 104 , (1998), 145–155.

2. Y.A. Bahturin, and M.V. Zaicev, Identities of Graded Algebras, J. Algebra, 205 , (1996), 1–12.
3. P. De la Harpe, Topics in Geometric Group Theory, The University of Chicago Press, Chicago, IL

(2000).
4. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word

Processing in Groups, Jones and Bartlett, Boston, MA., (1992).
5. A. Giambruno, and M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys

and Monographs, 122 , American Mathematical Society (2005).
6. B.H. Margolius, Permutations with Inversions, Journal of Integer Sequences, 4 , 13pp, (2001).
7. C. Plyley, and D. Riley, Identities of associative algebras with generalized Hopf algebra actions, preprint,

(2013), 15pp.
8. A. Regev, The representations of Sn and explicit identities for P.I. algebras, J. Algebra, 51 , (1978),

25–40.

9


	1. Introduction
	2. Preliminaries
	2.1. Regev's bound on codimension
	2.2. Geometry of Sn
	2.3. Some convenient notation

	3. Results
	3.1. Left greedy form
	3.2. Constraints on left greedy form
	3.3. Main theorem

	4. Calculating the bound
	4.1. Algorithm and formula
	4.2. Asymptotics
	4.3. Small codimensions

	References

