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Abstract: In this paper, we investigate the existence of multiple periodic solutions for two classes of non-

linear difference systems involving (φ1, φ2)-Laplacian. First, by using an important critical point theorem

due to B. Ricceri, we establish an existence theorem of three periodic solutions for the first nonlinear dif-

ference system with (φ1, φ2)-Laplacian and two parameters. Moreover, for the second nonlinear difference

system with (φ1, φ2)-Laplacian, by using the Clark’s Theorem, we obtain a multiplicity result of periodic

solutions under a symmetric condition. Finally, two examples are given to verify our theorems.
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1. Introduction and main results

Let R denote the real numbers, Z the integers, Given a < b in Z. Let Z[a, b] = {a, a+ 1, ...., b}. Let

T > 1 and N be fixed positive integers.

Firstly, in this paper, we are concerned with the existence of three periodic solutions for the following

nonlinear difference system:







µ∆
[

ρ1(t− 1)φ1
(

∆u1(t− 1)
)

]

− µρ3(t)φ3(u1(t)) +∇u1
W
(

t, u1(t), u2(t)
)

= 0

µ∆
[

ρ2(t− 1)φ2
(

∆u2(t− 1)
)

]

− µρ4(t)φ4(u2(t)) +∇u2
W
(

t, u1(t), u2(t)
)

= 0,
(1.1)

where µ ∈ R, ρi : R → R
+, φi, i = 1, 2, 3, 4 satisfy the following conditions:

(ρ) ρi are T -periodic and mint∈Z[1,T ] ρi(t) > 0, i = 1, 2, 3, 4;

(A1) φi : R
N → R

N are homeomorphisms such that φi(0) = 0, φi = ∇Φi, with Φi ∈ C1(RN , [0,+∞))

strictly convex and Φi(0) = 0, i = 1, 2, 3, 4.

Remark Assumption (A1) is given in [2], where it is used to characterize the classical homeomorphism.
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Moreover, assume that

(A2)W (t, x1, x2) = F (t, x1, x2)−λG(t, x1, x2)+νH(t, x1, x2), where λ, ν ∈ R, F,G,H : Z×R
N×R

N −→

R
N , (t, x1, x2) −→ F (t, x1, x2), (t, x1, x2) −→ G(t, x1, x2), (t, x1, x2) −→ H(t, x1, x2) are T -periodic in t

for all (x1, x2) ∈ R
N × R

N and continuously differentiable in (x1, x2) for every t ∈ Z[1, T ].

It is well known that variational methods have been important tools to study the existence and

multiplicity of solutions for various difference systems. Lots of contributions has been obtained (for

example, see [2], [5]-[16], [18]). Recently, in [2] and [30], by using a variational approach, Mawhin

investigated the following second order nonlinear difference systems with φ-Laplacian:

∆φ[∆u(n− 1)] = ∇uF [n, u(n)] + h(n) (n ∈ Z), (1.2)

where φ = ∇Φ, Φ strictly convex, is a homeomorphism of RN onto the ball Ba ⊂ R
N or of Ba onto

R
N . The assumption about φ implies three cases: firstly, classical homeomorphism if φ : RN → R

N , for

example, φ(0) = 0, φ(x) = |x|p−2x for some p > 1 and all x ∈ R
N/{0}; secondly, bounded homeomor-

phism if φ : RN → Ba (a < +∞), for example, φ(x) = x√
1+|x|2

∈ B1 for all x ∈ R
N ; finally, singular

homeomorphism if φ : Ba ⊂ R
N → R

N , for example, φ(x) = x√
1−|x|2

for all x ∈ B1. Under some

reasonable assumptions, by using variational approach, Mawhin obtained system (1.2) has at least one

T -periodic solution or N + 1 geometrically distinct T -periodic solutions.

However, to the best of our knowledge, except for recent works in [25] and [26] which are made by

our first author and his cooperator named Yun Wang, there are no people to investigate the existence

and multiplicity of solutions for system involving classical (φ1, φ2)-Laplacian. In [25], Wang and our first

author investigated the multiplicity of T -periodic solutions for the following nonlinear difference system:







∆φ1
(

∆u1(t− 1)
)

= ∇u1
F
(

t, u1(t), u2(t)
)

+ h1(t)

∆φ2
(

∆u2(t− 1)
)

= ∇u2
F
(

t, u1(t), u2(t)
)

+ h2(t),
(1.3)

where F : Z× R
N × R

N → R and φm,m = 1, 2 satisfy the following condition:

(A) φi is a homeomrphism from R
N onto Ba ⊂ R

N (a ∈ (0,+∞]), such that φi(0) = 0, φi = ∇Φi, with

Φi ∈ C1(RN , [0,+∞]) strictly convex and Φi(0) = 0, m = 1, 2.

Assumption (A) implies that Φi, i = 1, 2 are the classical homeomorphisms or the bounded homeomor-

phisms. They investigated the case that F (t, x1, x2) is periodic on r1 components of variables x
(1)
1 , · · · , x(1)N

and r2 components of variables x
(2)
1 , · · · , x(2)N , where 1 ≤ r1 ≤ N and 1 ≤ r2 ≤ N . By using a critical

point theorem in [1] and a generalized saddle point theorem in [27], they obtain that system (1.3) has at

least r1 + r2 +1 geometrically distinct T -periodic solutions. Their results generalize those corresponding

to classical homeomorphism and bounded homeomorphism in [30].

In [26], our first author and Wang investigated the existence of homoclinic solutions for the following
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nonlinear difference systems involving classical (φ1, φ2)-Laplacian:







∆φ1
(

∆u1(t− 1)
)

+∇u1
V
(

t, u1(t), u2(t)
)

= f1(t)

∆φ2
(

∆u2(t− 1)
)

+∇u2
V
(

t, u1(t), u2(t)
)

= f2(t),
(1.4)

where t ∈ Z, um(t) ∈ R
N , m = 1, 2, V (t, x1, x2) = −K(t, x1, x2)+W (t, x1, x2), K,W : Z×R

N ×R
N → R

and φm,m = 1, 2 satisfy assumption (A1). They first improve some inequalities in [29]. Then by using a

linking theorem in [28], some new existence results of homoclinic solutions for system (1.4) are obtained

when W has super p-linear growth and K has sub p-linear growth.

Inspired by [2], [3], [25], [26] and [30], in this paper, we are interested in the existence of three T -

periodic solutions for system (1.1). By using an important three critial point theorem established by B.

Ricceri in [3], we investigate the existence of three T -periodic solutions for system (1.1), as stated in the

following.

Define

I(u) =
T
∑

t=1

[ρ1(t)Φ1(∆u1(t)) + ρ2(t)Φ2(∆u2(t)) + ρ3(t)Φ3(u1(t)) + ρ4(t)Φ4(u2(t))] ,

Ψ(u) = −
T
∑

t=1

F (t, u1(t), u2(t)), Φ(u) =

T
∑

t=1

G(t, u1(t), u2(t)),

Γ(u) = −
T
∑

t=1

H(t, u1(t), u2(t)), u ∈ E,

where the definitions of E and its norm are in section 2 below.

Theorem 1.1. Suppose that (ρ), (A1), (A2) and the following conditions hold:

(A3) there exist positive constants ci (i = 1, 2, 3, 4), θ > 1 such that

(φi(x) − φi(y), x− y) ≥ ci|x− y|θ, ∀ x, y ∈ R
N , i = 1, 2, 3, 4,

where (·, ·) stands for the usual product in R
N ;

(A4) lim|x|→∞Φi(x) = +∞ and there exist positive constants l ≥ θ, di and mi such that Φi(x) ≤

di|x|l +mi for all x ∈ R
N , (i = 1, 2, 3, 4);

(A5) for all t ∈ Z[1, T ] and all λ > 0, there exists C0(λ) ∈ R such that for all (x1, x2) ∈ R
N × R

N ,

lim
|x1|+|x2|→∞

F (t, x1, x2)

|x1|l + |x2|l
= +∞, λG(t, x1, x2) ≥ F (t, x1, x2) + C0(λ);

(A6)
∑T

t=1G(t, 0, 0) = 0.

Then for each r > 0, for each µ > max{0, µ∗(I,Ψ,Φ, r)}, and for each compact interval [a, b] ⊂]0, β(µI+

Ψ,Φ, r)[, there exists a number ρ > 0 with the following property: for every λ ∈ [a, b], there exists δ > 0

such that, for each ν ∈ [0, δ], system (1.1) has at least three T -periodic solutions in E whose norms are

less than ρ, where

β(µI +Ψ,Φ, r) = sup
u∈Φ−1(]r,+∞[)

µI(u) + Ψ(u)− inf
Φ−1(]−∞,r])

(µI +Ψ)

r − Φ(u)
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µ∗(I,Ψ,Φ, r) = inf

{

Ψ(u)− γ + r

ηr − I(u)
: u ∈ E,Φ(u) < r, I(u) < ηr

}

γ = inf
E
(Ψ(u) + Φ(u)), ηr = inf

u∈Φ−1(r)
I(u).

Inspired by [3], we have the following corollary:

Corollary 1.1. Suppose that (ρ), (A1)-(A4) and (A6) hold. If

(A5)′ there exists s > l such that for every t ∈ Z[1, T ],

lim
|x1|+|x2|→∞

F (t, x1, x2)

|x1|l + |x2|l
= +∞, lim

|x1|+|x2|→∞

F (t, x1, x2)

|x1|s + |x2|s
< +∞

and

lim
|x1|+|x2|→∞

G(t, x1, x2)

|x1|s + |x2|s
= +∞,

then the conclusion of Theorem 1.1 holds.

Remark 1.1. There exist examples satisfying (A1)-(A6) in Theorem 1.1. For example, let T > 1

and N be fixed integer. Let θ ≥ 2 and qi ≥ 2, i = 1, 2, 3, 4. Assume that φ1(y) = |y|θ−2y + |y|q1−2y,

φ2(y) = |y|θ−2y + |y|q2−2y, φ3(y) = |y|θ−2y + |y|q3−2y, φ4(y) = |y|θ−2y + |y|q4−2y, ρi are T -periodic

and satisfy ρi > 0 for all t ∈ Z[1, T ], i = 1, 2, 3, 4. Then Φ1(y) = |y|θ

θ + |y|q1

q1
, Φ2(y) = |y|θ

θ + |y|q2

q2
,

Φ3(y) =
|y|θ

θ + |y|q3

q3
, Φ4(y) =

|y|θ

θ + |y|q4

q4
.

Note that

(|x|θ−2x− |y|θ−2y, x− y) ≥ c|x− y|θ

for all x, y ∈ R
N , θ ≥ 2 and some c > 0 (see [17]). Hence,

(φ1(x)− φ1(y), x− y)

= (|x|θ−2x+ |x|q1−2x− |y|θ−2y − |y|q1−2y, x− y)

= (|x|θ−2x− |y|θ−2y, x− y) + (|x|q1−2x− |y|q1−2y, x− y)

≥ (|x|θ−2x− |y|θ−2y, x− y)

≥ c|x− y|θ, ∀ x, y ∈ R
N .

Similarly, we have

(φi(x)− φi(y), x− y) ≥ ci|x− y|θ, ∀ x, y ∈ R
N , i = 2, 3, 4

for some ci > 0, i = 2, 3, 4. So (A3) holds.

Take l = max{θ, q1, q2, q3, q4} and let

F (t, x1, x2) =

[

(cos2
πt

T
+ 2)|x1|l + (| cos πt

T
|+ 2)|x2|l

]

ln(|x1|2 + |x2|2 + 1)

G(t, x1, x2) = (| sin πt
T
|+ 2)(|x1|l + |x2|l)2 ln(|x1|2 + |x2|2 + 1)

H(t, x1, x2) = (cos2
πt

T
+ 2) sin(|x1|2 + |x2|2 + 2)
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W (t, x1, x2) = F (t, x1, x2)− λG(t, x1, x2) + νH(t, x1, x2).

Then it is easy to obtain that (A2) and (A6) hold and Φi satisfy (A1) and (A4), i = 1, 2, 3, 4. Moreover,

lim
|x1|+|x2|→∞

F (t, x1, x2)

|x1|l + |x2|l
≥ 2 lim

|x1|+|x2|→∞
ln(|x1|2 + |x2|2 + 1) = +∞

and for all λ > 0,

lim
|x1|+|x2|→∞

λG(t, x1, x2)

F (t, x1, x2)
= lim

|x1|+|x2|→∞

λ
(

| sin πt
T |+ 2

)

(|x1|l + |x2|l)2
[

(cos2 πt
T + 2)|x1|l + (| cos πt

T |+ 2)|x2|l
]

≥ lim
|x1|+|x2|→∞

2λ(|x1|l + |x2|l)2
3 (|x1|l + |x2|l)

= lim
|x1|+|x2|→∞

2λ

3

(

|x1|l + |x2|l
)

= +∞.

Hence, (A5) holds.

Moreover, in this paper, we are also concerned with the multiplicity of T -periodic solutions for the

following nonlinear difference system:







∆
(

γ1(t− 1)φ1
(

∆u1(t− 1)
))

− γ3(t)φ3(|u1(t)|) +∇u1
F
(

t, u1(t), u2(t)
)

= 0

∆
(

γ2(t− 1)φ2
(

∆u2(t− 1)
))

− γ4(t)φ4(|u2(t)|) +∇u2
F
(

t, u1(t), u2(t)
)

= 0,
(1.5)

where γi : R → R
+ satisfy the following conditions:

(γ) γi are T -periodic and mint∈Z[1,T ] γi(t) > 0, i = 1, 2, 3, 4,

and φi, i = 1, 2, 3, 4 satisfy the assumption (A1) and the following condition:

(φ) there exist positive constants p > 1, q > 1, ai, bi, i = 1, 2, 3, 4 such that

ai|x|q ≤ Φi(x) ≤ bi|x|q, i = 1, 3, ∀ x ∈ R
N

and

ai|x|p ≤ Φi(x) ≤ bi|x|p, i = 2, 4, ∀ x ∈ R
N .

Moreover, F : Z×R
N ×R

N −→ R, (t, x1, x2) −→ F (t, x1, x2) is T -periodic in t for all (x1, x2) ∈ R
N ×R

N

and continuously differentiable in (x1, x2) for every t ∈ Z[1, T ].

When Φi(x) = 1
q |x|q , i = 1, 3 and Φi(x) = 1

p |x|p, i = 2, 4, system (1.5) can be seen as a discrete

analogue of the following (q, p)-Laplacian differential systems:











d
(

γ1(t)|u̇1(t)|q−2u̇1(t)
)

dt
− γ3(t)|u1(t)|q−2u1(t) +∇u1

F
(

t, u1(t), u2(t)
)

= 0

d
(

γ2(t)|u̇2(t)|p−2u̇2(t)
)

dt
− γ4(t)|u2(t)|p−2u2(t) +∇u2

F
(

t, u1(t), u2(t)
)

= 0.

(1.6)

Recently, by using variational methods, system (1.6) has been investigated by some authors (for example,

see [19]-[23]) and some interesting results on the existence and multiplicity of solutions have been obtained.

However, to the best of our knowledge, there are no people to investigate the nonlinear difference system

5



(1.5). In this paper, inspired by [18]-[23], we are interested in the existence and multiplicity of T -periodic

solutions for system (1.5). By using the Clark’s theorem, we obtain the following theorem.

Theorem 1.2. Suppose that (γ), (φ) and the following conditions hold:

(F0) there exist α1 ∈ [0, q), α2 ∈ [0, p), hi : Z[1, T ] → R
+, i = 1, 2 and l : Z[1, T ] → R

+ such that

F (t, x1, x2) ≤ h1(t)|x1|α1 + h2(t)|x2|α2 + l(t).

(F1) F (t, 0, 0) = 0;

(F2) F (t,−x1,−x2) = F (t, x1, x2);

(F3) there exist constants βi ∈ (1,min{q, p}), Mi ∈ (0,∞), i = 1, 2 and δ ∈ (0, 1) such that

F (t, x1, x2) ≥M1|x1|β1 +M2|x2|β2 , ∀ |x1| < δ, |x2| < δ.

Then system (1.5) has at least 2NT distinct pairs of nonzero solutions.

2. Preliminaries

At first, we make some preliminaries. Define

ET = {h := {h(t)}t∈Z|h(t+ T ) = h(t), h(t) ∈ R
N , t ∈ Z}

and let E = ET × ET . For h ∈ ET , set

‖h‖r =
(

T
∑

t=1

|h(t)|r
)1/r

and ‖h‖∞ = max
t∈Z[1,T ]

|h(t)|, r > 1. (2.1)

Obviously, we have

‖h‖∞ ≤ ‖h‖r ≤ T 1/r‖h‖∞. (2.2)

On ET , we define

‖h‖ET
=

(

T
∑

t=1

|∆h(t)|θ +
T
∑

t=1

|h(t)|θ
)1/θ

and

‖h‖[ET ] =

(

T
∑

t=1

|∆h(t)|l +
T
∑

t=1

|h(t)|l
)1/l

For u = (u1, u2) ∈ E, define

‖u‖ = ‖u1‖ET
+ ‖u2‖ET

.

Then E is a separable and reflexive Banach space. Moreover, ‖ · ‖ET
is equivalent to ‖ · ‖r(r > 1) and

‖ · ‖[ET ]. Hence, there exist positive constants Ci (i = 1, · · · , 6) such that

C1‖ · ‖ET
≤ ‖ · ‖θ ≤ C2‖ · ‖ET

, (2.3)

6



C3‖ · ‖ET
≤ ‖ · ‖l ≤ C4‖ · ‖ET

, (2.4)

C5‖ · ‖ET
≤ ‖ · ‖[ET ] ≤ C6‖ · ‖ET

. (2.5)

Lemma 2.1 (see [25]) Let L : Z[1, T ]×R
N×R

N×R
N×R

N −→ R, (t, x1, x2, y1, y2) −→ L(t, x1, x2, y1, y2)

and assume that L is continuously differentiable in (x1, x2, y1, y2) for all t ∈ Z[1, T ]. Then the functional

ϕ : E → R defined by

ϕ(u) = ϕ(u1, u2) =

T
∑

t=1

L
(

t, u1(t), u2(t),∆u1(t),∆u2(t)
)

is continuously differentiable on E and for u, v ∈ E,

〈ϕ′(u), v〉 = 〈ϕ′(u1, u2), (v1, v2)〉

=

T
∑

t=1

[(

Dx1
L(t, u1(t), u2(t),∆u1(t),∆u2(t)), v1(t)

)

+
(

Dy1
L(t, u1(t), u2(t),∆u1(t),∆u2(t)),∆v1(t)

)

+
(

Dx2
L(t, u1(t), u2(t),∆u1(t),∆u2(t)), v2(t)

)

+
(

Dy2
L(t, u1(t), u2(t),∆u1(t),∆u2(t)),∆v2(t)

)]

.

Let

L(t, x1, x2, y1, y2) = µ[ρ1(t)Φ1(y1) + ρ2(t)Φ2(y2) + ρ3(t)Φ3(x1) + ρ4(t)Φ4(x2)]

−F (t, x1, x2) + λG(t, x1, x2)− νH(t, x1, x2),

where F,G,H : Z[1, T ]× R
N × R

N −→ R
N are continuously differentiable in (x1, x2) ∈ R

N × R
N for all

t ∈ Z[1, T ]. Then

ϕ(u) =

T
∑

t=1

[µ(ρ1(t)Φ1(∆u1(t)) + ρ2(t)Φ2(∆u2(t)) + ρ3(t)Φ3(u1(t)) + ρ4(t)Φ4(u2(t)))

−F (t, u1(t), u2(t)) + λG(t, u1(t), u2(t)) − νH(t, u1(t), u2(t))] . (2.6)

Obviously, when (A1) and (A2) hold, ϕ is continuously differentiable on E and for ∀ u, v ∈ E, we have

〈ϕ′(u), v〉 = 〈ϕ′(u1, u2), (v1, v2)〉

=
T
∑

t=1

[µρ1(t)(φ1(∆u1(t)),∆v1(t)) + µρ2(t)(φ2(∆u2(t)),∆v2(t))

+µρ3(t)(φ3(u1(t)), v1(t)) + µρ4(t)(φ4(u2(t)), v2(t))]

−
T
∑

t=1

[(∇u1
F (t, u1(t), u2(t)), v1(t)) + (∇u2

F (t, u1(t), u2(t)), v2(t))]

+λ

T
∑

t=1

[(∇u1
G(t, u1(t), u2(t)), v1(t)) + (∇u2

G(t, u1(t), u2(t)), v2(t))]

−ν
T
∑

t=1

[(∇u1
H(t, u1(t), u2(t)), v1(t)) + (∇u2

H(t, u1(t), u2(t)), v2(t))] . (2.7)
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Lemma 2.2. If u ∈ E is a solution of Euler equation ϕ′(u) = 0, then u is a solution of system (1.1).

Proof At first, for any u = (u1, u2), v = (v1, v2) ∈ E, we can obtain the following two equalities:

−
T
∑

t=1

(

∆
[

ρ1(t− 1)φ1(∆u1(t− 1))
]

, v1(t)
)

=

T
∑

t=1

(ρ1(t)φ1(∆u1(t)),∆v1(t)), (2.8)

−
T
∑

t=1

(

∆
[

ρ2(t− 1)φ2(∆u2(t− 1))
]

, v2(t)
)

=

T
∑

t=1

(ρ2(t)φ2(∆u2(t)),∆v2(t)). (2.9)

In fact, since u1(t) = u1(t+ T ) and v1(t) = v1(t+ T ) for all t ∈ Z, then

−
T
∑

t=1

(

∆
[

ρ1(t− 1)φ1(∆u1(t− 1))
]

, v1(t)
)

= −
T
∑

t=1

(ρ1(t)φ1(∆u1(t)), v1(t)) +

T
∑

t=1

(ρ1(t− 1)φ1(∆u1(t− 1)), v1(t))

= −
T
∑

t=1

(ρ1(t)φ1(∆u1(t)), v1(t)) +

T−1
∑

t=1

(ρ1(t)φ1(∆u1(t)), v1(t+ 1)) + (ρ1(0)φ1(∆u1(0)), v1(1))

=
T
∑

t=1

(ρ1(t)φ1(∆u1(t)),∆v1(t)) + (ρ1(0)φ1(∆u1(0)), v1(1))− (ρ1(T )φ1(∆u1(T )), v1(T + 1))

=

T
∑

t=1

(ρ1(t)φ1(∆u1(t)),∆v1(t)).

Hence, (2.8) holds. Similarly, it is easy to get (2.9). Since ϕ′(u) = 0, then for all v = (v1, 0) ∈ E, (2.7)

implies that

T
∑

t=1

[µ(ρ1(t)φ1(∆u1(t)),∆v1(t)) + µ(ρ3(t)φ3(u1(t)), v1(t))]

=
T
∑

t=1

(∇u1
F (t, u1(t), u2(t)), v1(t))− λ

T
∑

t=1

(∇u1
G(t, u1(t), u2(t)), v1(t))

+ν

T
∑

t=1

(∇u1
H(t, u1(t), u2(t)), v1(t)) (2.10)

Note that v1 is arbitrary. Then (2.8) and (2.10) imply that

µ∆
[

ρ1(t− 1)φ1(∆u1(t− 1))
]

− µρ3(t)φ3(u1(t)) +∇u1
W (t, u1(t), u2(t)) = 0.

Similarly, Let v1 = 0. We can obtain that

µ∆
[

ρ2(t− 1)φ2(∆u2(t− 1))
]

− µρ4(t)φ4(u2(t)) +∇u2
W (t, u1(t), u2(t)) = 0. �

To prove Theorem 1.1, we will use the following three critical points theorem due to Ricceri [3].

Theorem 2.1 (see [3]) Let X be a reflexive real Banach space, I : X → R a sequentially weakly lower

semicontinuous, coercive, bounded on each bounded subset of X, C1 functional whose derivative admits a

continuous inverse on X∗; Ψ,Φ : X → R two C1 functionals with compact derivative. Assume also that

the functional Ψ+ λΦ is bounded below for all λ > 0 and that

lim inf
‖x‖→+∞

Ψ(x)

I(x)
= −∞. (2.11)
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Then, for each r > supM Φ, whereM is the set of all global minima of I, for each µ > max{0, µ∗(I,Ψ,Φ, r)},

and for each compact interval [a, b] ⊂]0, β(µI + Ψ,Φ, r)[, there exists a number ρ > 0 with the following

property: for every λ ∈ [a, b] and every C1 functional Γ : X → R with compact derivative, there exists

δ > 0 such that, for each ν ∈ [0, δ], the equation

µI ′(x) + Ψ′(x) + λΦ′(x) + νΓ′(x) = 0

has at least three solutions in X whose norms are less than ρ, where

β(µI +Ψ,Φ, r) = sup
x∈Φ−1(]r,+∞[)

µI(x) + Ψ(x)− inf
Φ−1(]−∞,r])

(µI +Ψ)

r − Φ(x)

µ∗(I,Ψ,Φ, r) = inf

{

Ψ(x)− γ + r

ηr − I(x)
: x ∈ X,Φ(x) < r, I(x) < ηr

}

γ = inf
X
(Ψ(x) + Φ(x)), ηr = inf

x∈Φ−1(r)
I(x).

3. Proof of Theorem 1.1

For the sake of convenience, we denote

ρ+i = max
t∈Z[1,T ]

ρi(t), ρ−i = min
t∈Z[1,T ]

ρi(t), i = 1, 2, 3, 4.

Proof of Theorem 1.1 We prove that ϕ defined by (2.6) satisfies all the assumptions of Theorem 2.1.

Let X = E. Then E is a reflexive and separable Banach space. Since all the topologies are equivalent in

the finite dimensional Banach space E, then for any sequence {un} ⊂ E, assume that

un → u∗ in E as n→ ∞, (3.1)

that is,

(

T
∑

t=1

|∆un1 (t)−∆u∗1(t)|θ +
T
∑

t=1

|un1 (t)− u∗1(t)|θ
)1/θ

+

(

T
∑

t=1

|∆un2 (t)−∆u∗2(t)|θ +
T
∑

t=1

|un2 (t)− u∗2(t)|θ
)1/θ

= ‖un − u∗‖ → 0, as n→ ∞,

which implies that lim
n→∞

|∆uni (t)−∆u∗i (t)| = 0 and lim
n→∞

|uni (t)− u∗i (t)| = 0, i = 1, 2 for every t ∈ Z[1, T ].

Hence, it is easy to obtain that (A1) implies that I is continuous in E and then sequentially weakly lower

semicontinuous. Moreover, obviously, (A1) and Lemma 2.1 imply that I is a C1 functional and

〈I ′(u), v〉 =

T
∑

t=1

[ρ1(t)(φ1(∆u1(t)),∆v1(t)) + ρ2(t)(φ2(∆u2(t)),∆v2(t))

+ ρ3(t)(φ3(u1(t)), v1(t)) + ρ4(t)(φ4(u2(t)), v2(t))] , for u, v ∈ E.

It follows from (A3) that

〈I ′(u)− I ′(v), u− v〉 =
T
∑

t=1

[ρ1(t)(φ1(∆u1(t)) − φ1(∆v1(t)),∆u1(t)−∆v1(t))
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+ρ2(t)(φ2(∆u2(t))− φ2(∆v2(t)),∆u2(t)−∆v2(t))

+ρ3(t)(φ3(u1(t))− φ3(v1(t)), u1(t)− v1(t))

+ρ4(t)(φ4(u1(t))− φ4(v2(t)), u2(t)− v2(t))]

≥
T
∑

t=1

[

c1ρ
−
1 |∆u1(t)−∆v1(t)|θ + c2ρ

−
2 |∆u2(t)−∆v2(t)|θ

+ c3ρ
−
3 |u1(t)− v1(t)|θ + c4ρ

−
4 |u2(t)− v2(t)|θ

]

≥ min{c1ρ−1 , c3ρ−3 }‖u1 − v1‖θET
+min{c2ρ−2 , c4ρ−4 }‖u2 − v2‖θET

≥ 1

2θ−1
min{c1ρ−1 , c2ρ−2 , c3ρ−3 , c4ρ−4 } (‖u1 − v1‖ET

+ ‖u2 − v2‖ET
)
θ

=
1

2θ−1
min{c1ρ−1 , c2ρ−2 , c3ρ−3 , c4ρ−4 }‖u− v‖θ, for u, v ∈ E.

So I ′ is uniformly monotone in E. By (A1) and (A3), we have

(φi(x), x) ≥ ci|x|θ, for all x ∈ R
N , i = 1, 2, 3, 4. (3.2)

Hence, (3.2) implies that

〈I ′(u), u〉
‖u‖

=
1

‖u‖

T
∑

t=1

[ρ1(t)(φ1(∆u1(t)),∆u1(t)) + ρ2(t)(φ2(∆u2(t)),∆u2(t))

+ ρ3(t)(φ3(u1(t)), u1(t)) + ρ4(t)(φ4(u2(t)), u2(t))]

≥ 1

‖u‖

{

T
∑

t=1

[

c1ρ
−
1 |∆u1(t)|θ + c2ρ

−
2 |∆u2(t)|θ + c3ρ

−
3 |u1(t)|θ + c4ρ

−
4 |u2(t)|θ

]

}

≥ min{c1ρ−1 , c2ρ−2 , c3ρ−3 , c4ρ−4 }
‖u1‖θET

+ ‖u2‖θET

‖u1‖ET
+ ‖u2‖ET

≥ 1

2θ−1
min{c1ρ−1 , c2ρ−2 , c3ρ−3 , c4ρ−4 }

(‖u1‖ET
+ ‖u2‖ET

)θ

‖u1‖ET
+ ‖u2‖ET

=
1

2θ−1
min{c1ρ−1 , c2ρ−2 , c3ρ−3 , c4ρ−4 }‖u‖θ−1 (3.3)

for all u ∈ E. So lim
‖u‖→∞

〈I′(u),u〉
‖u‖ = +∞, that is, I ′ is coercive in E. Next, we show that I ′ is also

hemicontinuous in E. Assume that s→ s∗, s, s∗ ∈ [0, 1]. Note that

|〈I ′(u + sv), w〉 − 〈I ′(u+ s∗v), w〉| ≤ ‖I ′(u + sv)− I ′(u+ s∗v)‖‖w‖ (3.4)

for all u, v, w ∈ E. Then the continuity of I ′ implies that 〈I ′(u+ sv), w〉 → 〈I ′(u+ s∗v), w〉 as s→ s∗ for

all u, v, w ∈ E. Hence, I ′ is hemicontinuous in E. Thus by Theorem 26.A in [4], we know that I ′ admits

a continuous inverse in E.

Obviously, (A2) implies that Ψ, Φ and Γ are C1 functionals. Next, we show that Ψ′, Φ′ and Γ′ are

compact. Assume that {un} ⊂ E is bounded. Then there exists a constant D1 such that ‖un‖ ≤ D1

and there exists a subsequence, still denoted by {un}, such that un ⇀ u∗ for some u∗ ∈ E. Furthermore,

un → u∗. By the continuity of Ψ′, Φ′ and Γ′, it is clear that

‖Ψ′(un)−Ψ′(u∗)‖ → 0, ‖Φ′(un)− Φ′(u∗)‖ → 0, ‖Γ′(un)− Γ′(u∗)‖ → 0, as n→ ∞.
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Hence, Ψ′, Φ′ and Γ′ are compact in E. It follows from (A5) that

Ψ(u) + λΦ(u) =

T
∑

t=1

[λG(t, u1(t), u2(t)) − F (t, u1(t), u2(t))] ≥ TC0(λ),

which shows that Ψ + λΦ is bounded below for all λ > 0. Moreover, (A5) implies that for any positive

constant D1, there exists a positive constant D2(D1), which depends on D1, such that

F (t, x1, x2) ≥ D1(|x1|l + |x2|l)−D2(D1) (3.5)

for all (x1, x2) ∈ R
N × R

N and t ∈ Z[1, T ]. Then (3.5), (A4), (2.4) and (2.5) imply that

lim
‖u‖→∞

Ψ(u)

I(u)

= lim
‖u‖→∞

−
T
∑

t=1
F (t, u1(t), u2(t))

T
∑

t=1
[ρ1(t)Φ1(∆u1(t)) + ρ2(t)Φ2(∆u2(t)) + ρ3(t)Φ3(u1(t)) + ρ4(t)Φ4(u2(t))]

≤ lim
‖u‖→∞

−D1

T
∑

t=1
(|u1(t)|l + |u2(t)|l) +D2(D1)T

T
∑

t=1
[ρ1(t)Φ1(∆u1(t)) + ρ2(t)Φ2(∆u2(t)) + ρ3(t)Φ3(u1(t)) + ρ4(t)Φ4(u2(t))]

≤ lim
‖u‖→∞

−D1

T
∑

t=1
(|u1(t)|l + |u2(t)|l)

T
∑

t=1

[

d1ρ
+
1 |∆u1(t)|l + d2ρ

+
2 |∆u2(t)|l + d3ρ

+
3 |u1(t)|l + d4ρ

+
4 |u2(t)|l +

4
∑

i=1

miρ
+
i

]

+ lim
‖u‖→∞

D2(D1)T

min{ρ−1 , ρ−2 , ρ−2 , ρ−4 }
T
∑

t=1
[Φ1(∆u1(t)) + Φ2(∆u2(t)) + Φ3(u1(t)) + Φ4(u2(t))]

≤ lim
‖u‖→∞

−D1C
l
3(‖u1‖lET

+ ‖u2‖lET
)

max{d1ρ+1 , d2ρ+2 , d3ρ+3 , d4ρ+4 }(‖u1‖l[ET ] + ‖u2‖l[ET ]) +
T
∑

t=1

4
∑

i=1

miρ
+
i

≤ lim
‖u‖→∞

−D1C
l
3

1
2l−1 (‖u1‖ET

+ ‖u2‖ET
)l

max{d1ρ+1 , d2ρ+2 , d3ρ+3 , d4ρ+4 }(‖u1‖l[ET ] + ‖u2‖l[ET ]) +
T
∑

t=1

4
∑

i=1

miρ
+
i

≤ lim
‖u‖→∞

−D1C
l
3

1
2l−1 (‖u1‖ET

+ ‖u2‖ET
)l

max{d1ρ+1 , d2ρ+2 , d3ρ+3 , d4ρ+4 }(Cl
6‖u1‖lET

+ Cl
6‖u2‖lET

) +
T
∑

t=1

4
∑

i=1

miρ
+
i

≤ lim
‖u‖→∞

−D1C
l
3

1
2l−1 (‖u1‖ET

+ ‖u2‖ET
)l

max{d1ρ+1 , d2ρ+2 , d3ρ+3 , d4ρ+4 }Cl
6(‖u1‖ET

+ ‖u2‖ET
)l +

T
∑

t=1

4
∑

i=1

miρ
+
i

=
1

2l−1

−D1C
l
3

max{d1ρ+1 , d2ρ+2 , d3ρ+3 , d4ρ+4 }Cl
6

.

By the arbitrary of D1, we obtain that

lim
‖u‖→∞

Ψ(u)

I(u)
= −∞.

By (A1) and (A4), we know that Φi reaches its unique minimum at 0, i = 1, 2, 3, 4 (see [2]) and so I has
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unique global minima 0. Then M = {0}. By (A6), we have supM Φ = 0. Hence, by Theorem 2.1, the

conclusion of Theorem 1.1 holds. �

Proof of Corollary 1.1 It follows from (A5)′ that there exist D3 > 0 and D4 > 0 such that for every

t ∈ Z[1, T ],

F (t, x1, x2) ≤ D3|x1|s +D3|x2|s +D4

and for any D5 > D3, there are a constant D6(D5), which depends on D5, such that

G(t, x1, x2) ≥ D5|x1|s +D5|x2|s +D6(D5).

Obviously, for every λ > 0, we can find a sufficiently large D5(λ) such that λD5(λ) > D3. Hence, we

have

λG(t, x1, x2) ≥ D3|x1|s +D3|x2|s + λD6(D5(λ)) ≥ F (t, x1, x2)−D4 + λD6(D5(λ)).

So (A5)′ implies (A5). �

4. Proof of Theorem 1.2

When the condition (γ) holds, on ET , we define

‖u‖(ET,q) =

(

T
∑

t=1

γ1(t)|∆u1(t)|q +
T
∑

t=1

γ3(t)|u1(t)|q
)1/q

and

‖u‖(ET,p) =

(

T
∑

t=1

γ2(t)|∆u2(t)|p +
T
∑

t=1

γ4(t)|u2(t)|p
)1/p

.

For u = (u1, u2) ∈ E, define

‖u‖(∞) = ‖u1‖∞ + ‖u2‖∞.

Moreover, it is clear that E is homeomorphic to R2NT . Then there is a basis of E denoted by {e1, e2, ..., e2NT }.

For every u ∈ E, there exists a unique point (λ1, λ2, ..., λ2NT ) ∈ R
2NT such that

u =

2NT
∑

i=1

λiei

and define

‖u‖(2) =
(

2NT
∑

i=1

λ2i

)

1
2

.

Set

Eδ = {u ∈ E : ‖u‖(2) = δ}.
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Since both E and ET are finite-dimensional spaces, then ‖ · ‖(∞) is equivalent to ‖ · ‖(2) on E, and

both ‖ · ‖(ET ,q) and ‖ · ‖(ET ,p) are equivalent to ‖ · ‖∞ on ET . Hence, there exist positive constants Ri

(i = 1, 2, · · · , 6) such that

R1‖ · ‖(2) ≤ ‖ · ‖(∞) ≤ R2‖ · ‖(2), (4.1)

R3‖ · ‖∞ ≤ ‖ · ‖(ET,q) ≤ R4‖ · ‖∞, (4.2)

R5‖ · ‖∞ ≤ ‖ · ‖(ET,p) ≤ R6‖ · ‖∞. (4.3)

In Lemma 2.1, let

L(t, x1, x2, y1, y2) = γ1(t)Φ1(y1) + γ2(t)Φ2(y2) + γ3(t)Φ3(x1) + γ4(t)Φ4(x2)− F (t, x1, x2),

where F : Z[1, T ]×R
N ×R

N −→ R is continuously differentiable in (x1, x2) ∈ R
N ×R

N for all t ∈ Z[1, T ].

Then

ϕ(u) =

T
∑

t=1

γ1(t)Φ1(∆u1(t)) +

T
∑

t=1

γ2(t)Φ2(∆u2(t))

+

T
∑

t=1

γ3(t)Φ3(u1(t)) +

T
∑

t=1

γ4(t)Φ4(u2(t))−
T
∑

t=1

F (t, u1(t), u2(t)). (4.4)

and for ∀ u, v ∈ E, we have

〈ϕ′(u), v〉

= 〈ϕ′(u1, u2), (v1, v2)〉

=
T
∑

t=1

[γ1(t)(φ1(∆u1(t)),∆v1(t)) + γ2(t)(φ2(∆u2(t)),∆v2(t))

+γ3(t)(φ3(u1(t)), v1(t)) + γ4(t)(φ4(u2(t)), v2(t))

−
T
∑

t=1

(∇u1
F (t, u1(t), u2(t)), v1(t))−

T
∑

t=1

(∇u2
F (t, u1(t), u2(t)), v2(t)). (4.5)

Similar to the argument of Lemma 2.2, it is easy to obtain the following Lemma:

Lemma 4.1 If u ∈ E is a solution of Euler equation ϕ′(u) = 0, then u is a solution of system (1.5).

Denote with θ the zero element of X and with Σ the family of sets A ⊂ X\{θ} such that A is closed

in X and symmetric with respect to θ, i.e. u ∈ A implies −u ∈ A.

Theorem 4.1 (see [24], Theorem 9.1) Let X be a real Banach space and ϕ be an even function belonging

to C1(X,R) with ϕ(θ) = 0, bounded from below and satisfying (PS) condition. Suppose that there is a

set K ∈ Σ such that K is homeomorphic to Sj−1(j − 1 dimension unit sphere) by an odd map and

supK ϕ < 0. Then, ϕ has at least j distinct pairs of nonzero critical points.

Proof of Theorem 1.2 It follows from (φ), (4.4), (2.2), (4.2), (4.3) and (F0) that

ϕ(u) =
T
∑

t=1

γ1(t)Φ1(∆u1(t)) +
T
∑

t=1

γ2(t)Φ2(∆u2(t))
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+

T
∑

t=1

γ3(t)Φ3(u1(t)) +

T
∑

t=1

γ4(t)Φ4(u2(t))−
T
∑

t=1

F (t, u1(t), u2(t))

≥ a1

T
∑

t=1

γ1(t)|∆u1(t)|q + a2

T
∑

t=1

γ2(t)|∆u2(t)|p

+a3

T
∑

t=1

γ3(t)|u1(t)|q + a4

T
∑

t=1

γ4(t)|u2(t)|p −
T
∑

t=1

F (t, u1(t), u2(t))

≥ min{a1, a3}‖u1‖q(ET,q)
+min{a2, a4}‖u2‖p(ET,p)

−
T
∑

t=1

[h1(t)|u1(t)|α1 + h2(t)|u2(t)|α2 + l(t)]

≥ min{a1, a3}Rq
3‖u1‖q∞ +min{a2, a4}Rp

5‖u2‖p∞

−‖u1‖α1

∞

T
∑

t=1

h1(t)− ‖u2‖α2

∞

T
∑

t=1

h2(t)−
T
∑

t=1

l(t) (4.6)

for all u ∈ E. Since α1 ∈ [0, q) and α2 ∈ [0, p), it is easy to see that

ϕ(u) → +∞, as ‖u‖(∞) = ‖u1‖∞ + ‖u2‖∞ → ∞, (4.7)

which implies that ϕ is bounded from below and any (PS) sequence {un} is bounded. Hence ϕ satisfies

(PS) condition. Obviously, (F1) and (F2) imply that ϕ(0) = 0 and ϕ is even. Next, we prove that there

exists a set K ⊂ E such that K is homeomorphic to S2NT−1 by an odd map, and supK ϕ < 0. Note that

δ < 1. For all u = (u1, u2) ∈ Eδ and r > 0, by (4.1) we have

M1r
β1‖u1‖β1

∞ +M2r
β2‖u2‖β2

∞

= M1r
β1Rβ1

2

∥

∥

∥

∥

u1
R2

∥

∥

∥

∥

β1

∞

+M2r
β2Rβ2

2

∥

∥

∥

∥

u2
R2

∥

∥

∥

∥

β2

∞

≥ min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

∥

∥

∥

∥

u1
R2

∥

∥

∥

∥

max{β1,β2}

∞

+

∥

∥

∥

∥

u2
R2

∥

∥

∥

∥

max{β1,β2}

∞

)

≥ 21−max{β1,β2} min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(∥

∥

∥

∥

u1
R2

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

u2
R2

∥

∥

∥

∥

∞

)max{β1,β2}

= 21−max{β1,β2} min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

1

R2

)max{β1,β2}

‖u‖max{β1,β2}
(∞)

≥ 21−max{β1,β2} min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

1

R2

)max{β1,β2}

R
max{β1,β2}
1 ‖u‖max{β1,β2}

(2)

= 2min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

R1δ

2R2

)max{β1,β2}

. (4.8)

Then for all u = (u1, u2) ∈ Eδ and 0 < r < 1
R2

, by (φ), (F3), (2.2), (4.1)-(4.3) and (4.8) we have

ϕ(ru) =

T
∑

t=1

γ1(t)Φ1(r∆u1(t)) +

T
∑

t=1

γ2(t)Φ2(r∆u2(t))

+

T
∑

t=1

γ3(t)Φ3(ru1(t)) +

T
∑

t=1

γ4(t)Φ4(ru2(t))−
T
∑

t=1

F (t, ru1(t), ru2(t))

≤ b1

T
∑

t=1

γ1(t)|r∆u1(t)|q + b2

T
∑

t=1

γ2(t)|r∆u2(t)|p

14



+b3

T
∑

t=1

γ3(t)|ru1(t)|q + b4

T
∑

t=1

γ4(t)|ru2(t)|p −
T
∑

t=1

F (t, ru1(t), ru2(t))

≤ max{b1, b3}rq‖u1‖q(ET ,q) +max{b2, b4}rp‖u2‖p(ET ,p)

−M1r
β1

T
∑

t=1

|u1(t)|β1 −M2r
β2

T
∑

t=1

|u2(t)|β2

≤ max{b1, b3}rqRq
4‖u1‖q∞ +max{b2, b4}rpRp

6‖u2‖p∞

−M1r
β1‖u1‖β1

∞ −M2r
β2‖u2‖β2

∞

≤ max{b1, b3}rqRq
4R

q
2‖u‖q(2) +max{b2, b4}rpRp

6R
p
2‖u‖p(2)

−2min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

R1δ

2R2

)max{β1,β2}

= max{b1, b3}rq(R4R2δ)
q +max{b2, b4}rp(R6R2δ)

p

−2min{M1r
β1Rβ1

2 ,M2r
β2Rβ2

2 }
(

R1δ

2R2

)max{β1,β2}

. (4.9)

Since βi ∈ (1,min{q, p}), i = 1, 2. Then (4.9) implies that there exist sufficiently small r0 ∈ (0, 1) and

ǫ > 0 such that there exists sufficiently small r0 ∈ (0, 1) and ǫ > 0 such that ϕ(r0u) < −ǫ for all u ∈ Eδ.

Set

Er0
δ = {r0u : u ∈ Eδ} and S2NT−1 =

{

(λ1, λ2, · · · , λ2NT ) ∈ R
2NT :

2NT
∑

i=1

λ2i = 1

}

.

Then Er0
δ ∈ Σ and

ψ(u) < −ǫ, ∀ u ∈ Er0
δ . (4.10)

Define the map ψ : Er0
δ → S2NT−1 by

ψ(u) = ψ

(

2NT
∑

i=1

λiei

)

=
1

r0δ
(λ1, λ2, · · · , λ2NT ).

Then it is easy to see that ψ is an odd and homeomorphic map. Moreover, (4.10) implies that supEr0
δ
ϕ ≤

−ǫ < 0. Therefore, by Theorem 4.1, we obtain that system (1.5) has at least 2NT distinct pairs of

solutions in E. �

5. Examples

Example 5.1. We present an example to which Theorem 1.1 applies and make an estimate for the

parameters in our result. Let T = 2 and N be fixed integer. Assume that φ1(y) = y + |y| 13 y, φ2(y) =

y + |y| 12 y, φ3(y) = φ4(y) = 2y, ρi are 2-periodic and satisfy ρi > 0 for all t ∈ Z[1, 2] (i = 1, 2, 3, 4). Then

Φ1(y) =
|y|2

2 + |y|
7
3

7
3

, Φ2(y) =
|y|2

2 + |y|
5
2

5
2

, Φ3(y) = Φ4(y) = |y|2. Let

F (t, x1, x2) = |x1|3 + |x2|3

G(t, x1, x2) = |x1|4 + |x2|4

H(t, x1, x2) = (cos2
πt

2
+ 2) sin(|x1|2 + |x2|2 + 2)

15



W (t, x1, x2) = F (t, x1, x2)− λG(t, x1, x2) + νH(t, x1, x2).

Then

I(u) =

2
∑

t=1

[

ρ1(t)

(

|∆u1(t)|2
2

+
|∆u1(t)|

7
3

7
3

)

+ ρ2(t)

(

|∆u2(t)|2
2

+
|∆u2(t)|

5
2

5
2

)]

+

2
∑

t=1

[

ρ3(t)|u1(t)|2 + ρ4(t)|u2(t)|2
]

,

Ψ(u) = −
2
∑

t=1

(

|u1(t)|3 + |u2(t)|3
)

, Φ(u) =

2
∑

t=1

(

|u1(t)|4 + |u2(t)|4
)

,

Γ(u) = −
T
∑

t=1

(cos2
πt

2
+ 2) sin(|u1(t)|2 + |u2(t)|2 + 2), u ∈ E,

where the definition of E and its norm are in section 2. Take θ = 2 and l = 5
2 . With a similar discussion

as in Remark 1.1, we can prove that all conditions of Theorem 1.1 hold. Since, by a simply computation

we have

γ = inf
E
(Ψ(u) + Φ(u)) = inf

E

2
∑

t=1

(

|u1(t)|4 + |u2(t)|4 − |u1(t)|3 − |u2(t)|3
)

= −27

64
, (5.1)

which is obtained when |u1(1)| = |u1(2)| = |u2(1)| = |u2(2)| = 3
4 . Moreover, for r > 0, we have

Φ−1(r) = {u ∈ E : |u1(1)|4 + |u1(2)|4 + |u2(1)|4 + |u2(2)|4 = r},

Φ−1(]−∞, r]) = {u ∈ E : |u1(1)|4 + |u1(2)|4 + |u2(1)|4 + |u2(2)|4 ≤ r},

Φ−1(]r,+∞[) = {u ∈ E : |u1(1)|4 + |u1(2)|4 + |u2(1)|4 + |u2(2)|4 > r}.

Then

ηr = inf
u∈Φ−1(r)

I(u)

= inf
u∈Φ−1(r)

{

2
∑

t=1

[

ρ1(t)

(

|∆u1(t)|2
2

+
|∆u1(t)|

7
3

7
3

)

+ ρ2(t)

(

|∆u2(t)|2
2

+
|∆u2(t)|

5
2

5
2

)]

+

2
∑

t=1

[

ρ3(t)|u1(t)|2 + ρ4(t)|u2(t)|2
]

}

≥ inf
u∈Φ−1(r)

2
∑

t=1

[

ρ3(t)|u1(t)|2 + ρ4(t)|u2(t)|2
]

= inf
u∈Φ−1(r)

(

ρ3(1)|u1(1)|2 + ρ3(2)|u1(2)|2 + ρ4(1)|u2(1)|2 + ρ4(2)|u2(2)|2
)

= min{ρ3(1), ρ3(2), ρ4(1), ρ4(2)}
√
r, (5.2)

which can be obtained by using the Lagrange multiplier method. By (5.1), (5.2) and the fact that

Φ(0) = I(0) = 0, we have

µ∗(I,Ψ,Φ, r) = inf

{

Ψ(u)− γ + r

ηr − I(u)
: u ∈ E,Φ(u) < r, I(u) < ηr

}

≤ Ψ(0)− γ + r

ηr − I(0)
=

27
64 + r

ηr
≤

27
64 + r

min{ρ3(1), ρ3(2), ρ4(1), ρ4(2)}
√
r
. (5.3)
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When µ > r
1
4

min{ρ3(1),ρ3(2),ρ4(1),ρ4(2)}
, we have

inf
Φ−1(]−∞,r])

(µI +Ψ)

= inf
Φ−1(]−∞,r])

µ

{

2
∑

t=1

[

ρ1(t)

(

|∆u1(t)|2
2

+
|∆u1(t)|

7
3

7
3

)

+ ρ2(t)

(

|∆u2(t)|2
2

+
|∆u2(t)|

5
2

5
2

)]

+
2
∑

t=1

[

ρ3(t)|u1(t)|2 + ρ4(t)|u2(t)|2
]

}

−
2
∑

t=1

(

|u1(t)|3 + |u2(t)|3
)

= 0, (5.4)

which is obtained when u1(1) = u1(2) = u2(1) = u2(2) = 0. When µ > r
1
4

min{ρ3(1),ρ3(2),ρ4(1),ρ4(2)}
, we

choose u0 : u1(1) = u1(2) = u2(1) = u2(2) = µ[ρ3(1) + ρ3(2) + ρ4(1) + ρ4(2)], then

|u1(1)|4 + |u1(2)|4 + |u2(1)|4 + |u2(2)|4

= 4µ4[ρ3(1) + ρ3(2) + ρ4(1) + ρ4(2)]
4

>
4r[ρ3(1) + ρ3(2) + ρ4(1) + ρ4(2)]

4

(min{ρ3(1), ρ3(2), ρ4(1), ρ4(2)})4
> r

which implies that u0 ∈ Φ−1(]r,+∞[). Therefore, when µ >
max{

27
64

+r
√

r
,r

1
4 }

min{ρ3(1),ρ3(2),ρ4(1),ρ4(2)}
, by (5.4) and the

fact that u0 ∈ Φ−1(]r,+∞[) we have

β(µI +Ψ,Φ, r) = sup
u∈Φ−1(]r,+∞[)

µI(u) + Ψ(u)− inf
Φ−1(]−∞,r])

(µI +Ψ)

r − Φ(u)

= sup
u∈Φ−1(]r,+∞[)

µI(u) + Ψ(u)

r − Φ(u)

≥ µI(u0) + Ψ(u0)

r − Φ(u0)

=
3µ3[ρ3(1) + ρ3(2) + ρ4(1) + ρ4(2)]

3

4µ4[ρ3(1) + ρ3(2) + ρ4(1) + ρ4(2)]4 − r
. (5.5)

Hence, by Theorem 1.1, we obtain that for each r > 0, for each µ >
max{

27
64

+r
√

r
,r

1
4 }

min{ρ3(1),ρ3(2),ρ4(1),ρ4(2)}
, and for each

compact interval [a, b] ⊂]0, 3µ3[ρ3(1)+ρ3(2)+ρ4(1)+ρ4(2)]
3

4µ4[ρ3(1)+ρ3(2)+ρ4(1)+ρ4(2)]4−r [, there exists a number ρ > 0 with the following

property: for every λ ∈ [a, b], there exists δ > 0 such that, for each ν ∈ [0, δ], system (1.1) has at least

three 2-periodic solutions in E whose norms are less than ρ.

Example 5.2. We present this example when Theorem 1.2 applies. Let N = 6 and T = 4. Assume

that φ1(x) = φ3(x) = |x|3x, φ2(x) = φ4(x) = |x|x. Consider the following nonlinear difference (φ1, φ2)-

Laplacian system:































∆
([

sin2 π
4 (t− 1) + 1

]

φ1
(

∆u1(t− 1)
))

−
[

| sin π
4 t|+ 1

]

φ3(|u1(t)|)

+∇u1
F
(

t, u1(t), u2(t)
)

= 0

∆
([

cos2 π
4 (t− 1) + 1

]

φ2
(

∆u2(t− 1)
))

−
[

| cos π
4 t|+ 1

]

φ4(|u2(t)|)

+∇u2
F
(

t, u1(t), u2(t)
)

= 0.

(5.6)
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Then γ1(t) = sin2 π
4 t + 1, γ2(t) = cos2 π

4 t + 1, γ3(t) = | sin π
4 t| + 1, γ4(t) = | cos π

4 t| + 1. Obviously, the

conditions (γ) and (φ) hold and γi, i = 1, 2, 3, 4 are T -periodic (T = 4).

If we assume that

F (t, x1, x2) =
(∣

∣

∣
sin

π

4
t
∣

∣

∣
+ 1
)

|x1|
3
2 +

(

cos2
π

4
t+ 1

)

|x2|2,

then, obviously, (F0), (F1) and (F2) hold and there exists enough small δ ∈ (0, 1) such that

F (t, x1, x2) =
(∣

∣

∣
sin

π

4
t
∣

∣

∣
+ 1
)

|x1|
3
2 +

(

cos2
π

4
t+ 1

)

|x2|2

≥ |x1|
3
2 + |x2|2

≥ |x1|2 + |x2|
5
2 , ∀ |x1| < δ, |x2| < δ. (5.7)

Let β1 = 2, β2 = 5
2 and M1 = M2 = 1. Then (5.7) implies that (F3) holds. Hence, by Theorem 1.2, we

obtained that system (5.6) has at least 48 distinct pairs of 4-periodic solutions.
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