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ON MOTIVIC JOYCE-SONG FORMULA FOR THE BEHREND

FUNCTION IDENTITIES

YUNFENG JIANG

ABSTRACT. We prove the motivic version of Joyce-Song formula for the
Behrend function identities proposed in [24]. The main method we use is
Nicaise’s motivic integration for formal schemes and Cluckers-Loeser’s
motivic constructible functions. As an application we prove that there
is a Poisson algebra homomorphism from the motivic Hall algebra of
the abelian category of coherent sheaves on a Calabi-Yau threefold Y
to the motivic quantum torus of Y, thus generalizing the integration
map of Joyce-Song in [27] and Bridgeland in [10] to the motivic level.
Such an integration map has applications in the wall crossing of motivic
Donaldson-Thomas invariants.
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1. INTRODUCTION

1.1. Background on Donaldson-Thomas theory.

. (1.1.1) Let Y be a smooth Calabi-Yau threefold or a smooth threefold
Deligne-Mumford stack. The Donaldson-Thomas invariants of Y count
stable coherent sheaves on Y. The goal was achieved by R. Thomas in [49],
who constructed a perfect obstruction theory E• in the sense of Li-Tian [35],
and Behrend-Fantechi [3] on the moduli space X of stable sheaves over Y.
If X is proper, then the virtual dimension of X is zero, and the integral

DTY =
∫

[X]virt
1

is the Donaldson-Thomas invariant of Y. Of course the Donaldson-Thomas
invariants are defined for any projective threefold, and in general the
virtual dimension is not zero and one should integrate some cohomology
classes over the virtual fundamental cycle. Here we only restrict to the case
of Calabi-Yau threefolds. Donaldson-Thomas invariants have been proved
to have deep connections to Gromov-Witten theory and provided more
deep understanding of the curve counting invariants, see [38], [39], [46],
etc.

. (1.1.2) In the Calabi-Yau threefold case, in [1] Behrend proves that the
moduli scheme X of stable sheaves on Y admits a symmetric obstruction
theory which is defined by him in the same paper [1]. Also Behrend in the
same paper constructs a canonical integer-valued constructible function

νX : X → Z

on X, which we call the Behrend function of X. If X is proper, then in [1,
Theorem 4.18] Behrend proves that

DTY =
∫

[X]virt
1 = χ(X, νX),

where χ(X, νX) is the weighted Euler characteristic weighted by the
Behrend function. Same result for a proper Deligne-Mumford stack X with
a symmetric perfect obstruction theory is conjectured by Behrend in [1],
and is proved in [25].

. (1.1.3) The perfect obstruction theory on the moduli scheme requires that
we only can count stable coherent sheaves on Y. In order to count semi-
stable sheaves on the abelian category A := Coh(Y) of coherent sheaves
on Y, Joyce-Song in [27] developed a theory of generalized Donaldson-
Thomas invariants. Let M be the moduli stack of coherent sheaves on
A , which is an Artin stack locally of finite type. Then in [27], Joyce-Song
generalized the definition of the Behrend function to M:

νM : M→ Z.
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We can understand the Behrend function νM as follows: if there is a finite
1-morphism

f : X →M

from a κ-scheme X to M, then f ∗νM = (−1)nνX , where n is the relative
dimension. For any E1, E2 ∈ Coh(Y), Joyce-Song in [27, §5.2] proves the
following formula of the Behrend function identities:

(1)

νM(E1 ⊕ E2) = (−1)χ(E1,E2)νM(E1)νM(E2) .

Here, χ(E1, E2) = ∑i(−1)i dim Exti(E1, E2) is the Euler form.
(2) ∫

F∈P(Ext1(E2,E1))
νM(F)dχ−

∫

F∈P(Ext1(E1,E2))
νM(F)dχ

= (dim(Ext1(E2, E1))− dim(Ext1(E1, E2)))νM(E1 ⊕ E2).

Here for the integral
∫

F∈P(Ext1(E2,E1))
νM(F)dχ, we understand it as the

weighted Euler characteristic. The Formulas (1), (2) are essential to the
wall-crossing of Donaldson-Thomas invariants as studied in [27], and
[9], since they imply that the morphism from the motivic Hall algebra
of A to the ring of functions of the quantum torus is a Poisson algebra
homomorphism. Then the wall-crossing techniques can be applied to get
relations between generalized Donaldson-Thomas invariants.

. (1.1.4) Let Db(A ) := Db(Coh(Y)) be the bounded derived category of

coherent sheaves on Y. An object E ∈ Db(A ) is called semi-Schur if

Ext<0(E, E) = 0. It is very interesting to study these formulas for semi-

Schur objects in the derived category Db(Coh(Y)) of coherent sheaves on
Y. Note that in [15] V. Bussi uses the (−1)-shifted symplectic structure on
the moduli stack M of coherent sheaves to prove such Behrend function
identities, where her proof relies on the local structure of the moduli stack
in [28]. In [24], we use Berkovich spaces to prove these formulas.

1.2. The motivic Donaldson-Thomas invariants.

. (1.2.1) As in §(1.1.2) the Donaldson-Thomas invariant is the weighted
Euler characteristic χ(X, νX) for a Donaldson-Thomas moduli scheme X.
One can ask if there exists a global defined perverse sheaf F such that

χ(X, F ) = χ(X, νX).

Such an idea is true if the moduli scheme X is the critical locus of a
global regular function (or holomorphic) function f : M → κ on a higher
dimensional smooth scheme M. Then the value of Behrend function νX is
given by

νX(P) = (−1)dim(M)(1− χ(FP)),
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where FP is the Milnor fiber of f at P ∈ X. The sheaf F is the perverse
sheaf ϕ f [−1] of vanishing cycles of f and it is known that

χ(X, ϕ f [−dim(M)]|P) = νX(P).

Let i : M0 →֒ M be the inclusion, where M0 = f−1(0). The vanishing cycle
sheaf ϕ f is defined by

i∗C → ψ f (C)→ ϕ f (C)
[1]
→ · · ·

where ψ f is the nearby cycle, and it is seen that the vanishing cycle supports
on the critical locus of f . The nearby cycle can be understood as the nearby
Milnor fiber. Thus it is interesting to lift the Donaldson-Thomas invariants
to the motivic level of cycles.

. (1.2.2) Let Mκ = K(Varκ)[L−1] be the motivic ring which will be
reviewed in §2.1, where K(Varκ) is the Grothendieck ring of varieties.

Similarly, let µ̂ = lim
←−

µn and let M
µ̂
κ = Kµ̂(Varκ)[L−1] be the equivariant

motivic ring, where Kµ̂(Varκ) is the equivariant Grothendieck ring of
varieties. The motivic Donaldson-Thomas theory on any Calabi-Yau three
category was developed by Kontsevich-Soibelman in [31]. For instance,

Kontsevich-Soibelman defined a motivic weight MF(E) ∈ M
µ̂
κ for any

derived object E ∈ Db(A ), which is given by the motivic Milnor fiber
of E. Then Kontsevich-Soibelman prove that there exists an algebra
homomorphism from the motivic Hall algebra H(A ) on the abelian
category A to the motivic quantum torus based on a conjecture about
the motivic Milnor fibers. Then using the homomorphism Kontsevich-
Soibelman prove a wall crossing formula for their motivic Donaldson-
Thomas invariants.

The Kontsevich-Soibelman conjecture on the motivic Milnor fiber has
been proved by Le in [32], [33] using the method of motivic integration.

. (1.2.3) The degree zero motivic Donaldson-Thomas invariants for any
smooth projective threefold Y was studied by Behrend, Bryan and Szendroi
in [2]. The essential point is the case of Y = C3, where the degree zero
Donaldson-Thomas moduli space is the Hilbert scheme Hilbn(C3) of n-
points on C3 which is the critical locus of a regular on a smooth higher
dimensional variety. In this case the motivic Donaldson-Thomas invariants
are the motive of vanishing cycles of the regular function.

1.3. The motivic Joyce-Song formula.

. (1.3.1) We follow the proposal of Joyce-Song in [27] to study the motivic
Donaldson-Thomas invariants. In [24] we study the Joyce-Song formula
using Berkovich spaces [4], and find that the techniques there can be
generalized to the motivic level. In the paper [24, §6], we make the
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conjecture for the motivic version of the Joyce-Song formulas. We briefly
review the conjecture.

. (1.3.2) Since the moduli stack of derived objects has not been constructed

yet, we fix a Bridgeland stability condition on Db(Coh(Y)) and the heart
A of the corresponding bounded t-structure is an abelian category. Any

object E ∈ A satisfies the condition that Ext<0(E, E) = 0. Hence it
is semi-Schur. The moduli stack M of objects in A can be constructed,
which is an Artin stack locally of finite type. For an arbitrary object E
in the heart A , we assume that E is Schur or stable under some stability

condition, i.e. Exti(E, E) = 0 only except for i = 1, 2. There is a cyclic
dg Lie algebra RHom(E, E) corresponding to E. On the cohomology
LE := Ext∗(E, E) there is a cyclic L∞-algebra structure coming from the
transfer theorem. In [23], [24], we define the Euler characteristic χ(E) of E
by the Euler characteristic of the cyclic L∞-algebra Ext∗(E, E) or the dg Lie
algebra RHom(E, E). Donaldson-Thomas invariants count stable objects in
the derived category and this Euler characteristic is equal to the pointed
Donaldson-Thomas invariant given by the point E in the moduli space.

. (1.3.3) If E is semi-Schur, the cyclic L∞-algebra Ext∗(E, E) defines a
potential function

f : Ext1(E, E)→ κ

on Ext1(E, E), see [23]. In general, f is a formal power series.
In the case of coherent sheaves, Joyce-Song prove that f is actually

holomorphic, see [27]. In [28], Joyce etc use (−1)-shifted symplectic
structure of [47] on the moduli of stable sheaves over smooth Calabi-Yau
threefolds to show that the local potential function is actually algebraic,
i.e. a regular function. The Euler characteristic of the topological Milnor
fiber associated with the regular function f gives the pointed Donaldson-
Thomas invariant.

. (1.3.4) Let K be a non-archimedean complete discretely valued field of
characteristic zero. The ring of integers of K is denoted by R, and the
residue field is denoted by κ. Our main example is R = κ[[t]], and the
corresponding nonarchimedean field K = κ((t)).

Associated with the formal potential function f , there is a generically
smooth special formal R-scheme:

f̂ : X→ spf(R),

see [7], [44]. If f is a regular function, then (X, f̂ ) is the t-adic completion

of the morphism f : Ext1(E, E) → κ = Spec(κ[t]). The generic fiber Xη

is a rigid K-variety, or a Berkovich space in sense of [7]. There exists a
specialization map

sp : Xη → X0
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from the generic fiber to the reduction X0, which is a κ-variety. For any
y ∈ X0, the Analytic Milnor Fiber Fy( f ) of y is defined as

Fy( f ) := sp−1(y).

The analytic Milnor fiber Fy( f ) is an analytic subspace of Xη . If we let

f̂y : Xy := spf(ÔX,y)→ spf(R)

to be the formal completion of X along y ∈ X0, then from [44] the analytic
Milnor fiber Fy( f ) is the generic fiber of the formal scheme Xy.

. (1.3.5) The formal R-scheme (X, f̂ ) is quasi-excellent in sense of Temkin
[48]. Let

h : Y −→ X

be the resolution of singularities of the formal scheme X. Let Ei, i ∈ I be
the set of irreducible components of the exceptional divisors of h. For any
I ⊂ I let

EI :=
⋂

i∈I

Ei

and

E◦I := EI \
⋃

j/∈I

Ej.

Let mI = gcd(mi)i∈I , where mi are the multiplicities of the components Ei.
Then there is an Galois cover

Ẽ◦I → E◦I

with Galois group µmI
. Hence we get an µ̂-action on Ẽ◦I . See §2.2.11 and [44]

for more details on the resolution of singularities. The following definition
is given in [23], [24].

Definition 1.1. The motivic Milnor fiber of the object E is defined as follows:

S0(E) := S0( f̂ ) := ∑
∅ 6=I⊂I

(1−L)|I|−1[Ẽ◦I ∩ h−1(0)].

It is clear that S0(E) ∈ M
µ̂
κ . From [44], the motivic volume of the analytic

Milnor fiber is given by the motivic Milnor fiber, which we review in §2.2.

Of course, if we have a formal subscheme Z ⊂ X, then we define SZ( f̂ )
to be the motivic Milnor fiber of Z:

SZ( f̂ ) := ∑
∅ 6=I⊂I

(1−L)|I|−1[Ẽ◦I ∩ h−1(Z)].



MOTIVIC JOYCE-SONG FORMULA FOR THE BEHREND FUNCTION IDENTITIES 7

. (1.3.6) We introduce the following localized ring of motives:

MX,loc =MX[L
−1/2, (Li − 1)−1, i ∈N>0]

and

M
µ̂

X,loc =M
µ̂
X [L

−1/2, (Li − 1)−1, i ∈ N>0].

Let E1, E2, E1 ⊕ E2 be semi-Schur objects in the derived category of
coherent sheaves over Y. We introduce the conjecture for the motivic
version of Joyce-Song formulas in [24]. First we have:

Ext1(E, E) = Ext1(E1, E1)⊕ Ext1(E2, E2)⊕ Ext1(E1, E2)⊕ Ext1(E2, E1).

The conjecture is a motivic version of the Joyce-Song formula for Behrend
function identities in §(1.1.3).

Conjecture 1.2. (1)

(1−S((0,0))(E1 ⊕ E2)) = (1− S0(E1)) · (1− S0(E2)) .

(2)
∫

F∈P(Ext1(E2,E1))
(1− S0(F))−

∫

F∈P(Ext1(E1,E2))
(1− S0(F))

= ([Pdim Ext1(E2,E1)]− [Pdim Ext1(E1,E2)])

(
1− S f |

Ext1(E1,E1)⊕Ext1(E2,E2)
,0

)
.

where
∫
M0

(−) :M
µ̂
M0
→M

µ̂
κ is the pushforward of motives.

. (1.3.7) We give an explanation about the conjectural formulas. For any

semi-Schur object E ∈ Db(A ), S0(E) is the motivic Milnor fiber of E, and
(1− S0(E)) is the analogue of motivic vanishing cycle. Let E := E1 ⊕ E2.
Let

φ : X̃→ X := ̂Ext1(E, E)→ spf(R)

be the formal blow-up of X along the completion Y ⊂ X, where Y = V̂ is

the formal completion of V, and V := Ext1(E1, E1) ⊕ Ext1(E2, E2) ⊕ 0 ⊕

Ext1(E2, E1) ⊂ Ext1(E, E). We denote by Z := ̂Ext1(E1, E2) ⊂ X. Let

P(Z) := ̂
P(Ext1(E1, E2)) ⊂ X̃ be the closed formal subscheme of X̃. The

corresponding reduction scheme is denoted by P(Z)0 = P(Ext1(E1, E2)).
Since the motivic vanishing cycle is constructible, then the integration

∫

F∈P(Ext1(E2,E1))
(1− S0(F))

can be understood as the motivic cycle SP(Z)0
(˜̂f ), where ˜̂f = φ ◦ f̂ : X̃ →

spf(R) is the formal R-scheme X̃ of the composition φ ◦ f̂ .
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Remark 1.3. The Euler characteristic of the motivic Milnor fiber S0(E) is, plus
the correct sign, the value of the Behrend function νM on E ∈ M. Hence taking
the Euler characteristic on the formulas (1), (2) in Conjecture 1.2, when putting
the right signs, we get the Joyce-Song formula (1), (2) in §(1.1.3).

. (1.3.8) Our main result in this paper is to prove the above conjecture.

Theorem 1.4. Conjecture 1.2 is true inM
µ̂
κ,loc.

. (1.3.9) Recall that for any semi-Schur object E ∈ Db(Coh(Y)), we have

a super potential function f : Ext1(E, E) → κ, which is from the cyclic
L∞-algebra structure on Ext∗(E, E). Taking completion we get a special

formal scheme f̂ : X := ̂Ext1(E, E) → spf(R). We use Nicaise’s motivic
integration for formal schemes in [44], and the method of Cluckers-Loeser
[17] of motivic constructible functions as studied in [33] to prove the above
formula. Actually our idea is motivated by Le’s study of Kontsevich-
Soibelman Conjecture in [32], [33].

It turns out that the positive techniques of motivic constructible
functions in [17] used here is that it is convenient to show that the motivic
volume of an annulus in the analytic Milnor fiber space is zero, which helps
us to prove the Formula (1) in the conjecture. We hope that such an idea
may help to study the motivic Donaldson-Thomas invariants under a torus
action, parallel to the work of Maulik in [40].

. (1.3.10) The Formula (1) is similar to Kontsevich-Soibelman Conjecture
4.2 in [31], which is proved by Le in [33] using the same method in [17]. The
Conjecture 4.2 in [31] plays an important role in the wall crossing of motivic
Donaldson-Thomas theory of Kontsevich and Soibelman. We follow the
proposal of Joyce, and Conjecture 1.2 is essential for the study of the wall
crossing of the motivic Donaldson-Thomas invariants by defining a global
motive for the Donaldson-Thomas moduli scheme in [14].

1.4. Applications.

. (1.4.1) One application of the motivic Joyce-Song formulas in Conjecture
1.2 is to prove a Poisson algebra homomorphism from the motivic Hall

algebra H(A ) to the motivic quantum torus M
µ̂
κ,loc[Γ], thus generalizing

the Lie algebra homomorphism in [27, Theorem 5.14], and the Poisson
algebra homomorphism in [10, Theorem 5.2] to the motivic level. Here the

ringM
µ̂

κ,loc[Γ] is roughly defined as follows. The ringM
µ̂
κ,loc[Γ] is a formal

power series ring overM
µ̂

κ,loc generated by symbols xα for α ∈ Γ, where Γ
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is the effective classes of the numerical K-group of Y. The ringM
µ̂
κ,loc[Γ] is

the quotient of the ringM
µ̂
κ,loc[Γ] modulo the relations

Υ(Q1 ⊗ Q2)− Υ(Q1)⊙ Υ(Q2)

for quadratic forms Q1, Q2 and Υ(Qi) are the motive of the quadratic forms
for i = 1, 2. This is related to the triangle property of the orientation data
in [31] and have applications to the wall crossing of motivic Donaldson-
Thomas invariants.

. (1.4.2) The motivic Hall algebra H(A ) is a K(VarM)[L−1]-module. We
define a submodule of H(A ) by the elements [X → M] such that X is an
algebraic d-critical locus in the sense of [28]. We call it the d-critical elements
of H(A ) and denote it by Hd−Crit(A ). Then let

Hssc,d−Crit(A ) = Hd−Crit(A )/(L− 1)Hd−Crit(A ).

We define the integration map

I : Hssc,d−Crit(A )→M
µ̂
κ [Γ]

by taking the global motivic sheaf S
φ
X for the algebraic d-critical locus X.

By [12], if the algebraic d-critical locus (X, s) has an orientation, which is

a root line bundle K1/2
X,s for the canonical line bundle KX,s, then there exists

a global motivic sheaf S
φ
X ∈ M

µ̂
X, where M

µ̂
X is defined similarly to M

µ̂
κ

by considering the motives of quadratic forms over X. The sheaf S
φ
X, when

restricted to the local critical chart of X, is the perverse sheaf of vanishing
cycles times the motive of a quadratic form over X. In this paper we always
assume that there exists an orientation. Please see §4 for more details. The
algebra Hssc,d−Crit(A ) is called the semi-classical part of the Hall algebra
and has a Poisson bracket, see §(4.3.6). We also define a Poisson bracket

on the ring M
µ̂
κ [Γ], see §(4.3.8). We prove that the integration map I is a

Poisson algebra homomorphism.

. (1.4.3) Another application is to apply the Poisson algebra homomor-
phism to prove the motivic DT/PT-correspondence, and the flop-formula
for the motivic Donaldson-Thomas invariants. In [46], Pandharipande-
Thomas define another curve-counting invariants: the stable pair
invariants, and conjecture that the stable pair invariants are the same as
the Donaldson-Thomas invariants of the moduli space of ideal sheaves.
The DT/PT-correspondence conjecture was prove by Bridgeland in [9]
using the idea of the Hall algebra identities and the Poisson algebra
homomorphism from the motivic Hall algebra to the ring of functions
on the quantum torus, i.e. the classical part of the motivic quantum
torus. The Euler characteristic level of this conjecture and the flop formula
were proved by Toda in [50], [51] using Joyce’s wall crossing formula for
changing the Bridgeland stability conditions. Calabrese [16] proved the
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flop formula using similar idea in [9]. Using the motivic integration map
in this paper we should be able to prove the motivic version of the DT/PT-
correspondence and the flop formula by the Hall algebra identity method
of Bridgeland in [9], see [26].

1.5. Outline.

. (1.5.1) The outline of the paper is as follows. The materials about motivic
integration are reviewed in §2, where in §2.1 we review the Grothendieck
ring of varieties, and in §2.2 we briefly talk about the motivic integration
of rigid varieties from formal scheme models following [44]. In §3 we
prove Theorem 1.4. Here in §3.1 we prove a motivic blow-up formula
for the motivic Milnor fibers, generalizing the one in [27, §4.1]; In §3.2 we
review the techniques of motivic constructible functions in [17]; in §3.3 we
prove Formula (1) in Conjecture 1.2; and in §3.4 we prove Formula (2) in
Conjecture 1.2. Combining sections §3.3 and §3.4, Theorem 1.4 is proved.
Section §4 serves as the proof of the Poisson algebra homomorphism from
the motivic Hall algebra to the motivic quantum torus, where in §4.1 we
introduce the motivic Hall algebra H(A ) for the abelian category A ; in
§4.2 we briefly review the notion of algebraic d-critical locus of Joyce in
[28]; in §4.3 we define the integration map; and in §4.4 we prove that the
integration map is a Poisson algebra homomorphism.

Convention. Throughout the paper we work over an algebraically closed
field κ so that the nonarchimedean field is κ((t)) and its ring of integers is
R = κ[[t]]. For the applications in §4, we consider the schemes and stacks
over κ = C, the field of complex numbers.

For a Berkovich analytic space F, we use χ(F) to represent the Euler
characteristics the étale cohomology of F. We use L to represent the
Lefschetz motive [A1

κ ].

Acknowledgments. The author would like to thank Kai Behrend,
Johannes Nicaise, Sam Payne and Andrew Strangeway for valuable
discussions on Berkovich spaces, especially Johannes Nicaise for answering
the questions about the motivic integration of formal schemes in [44]. He
also thanks Professor Tom Bridgeland for the discussion of the integration
map in his proof of the DT/PT-correspondence, Professor Dominic Joyce
for the discussion of the Joyce-Song formula for the Behrend function
identities, and Professors Tom Coates, Richard Thomas and Alessio Corti
for support at Imperial College London. This work is partially supported
by Simons Foundation Collaboration Grant 311837.

2. THE MOTIVIC MILNOR FIBRE AND THE MOTIVIC VOLUMES.

2.1. Grothendieck group of varieties.
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. (2.1.1) In this section we briefly review the Grothendieck group of
varieties. Let S be an algebraic variety over κ. Let VarS be the category
of S-varieties.

. (2.1.2) Let K0(VarS) be the Grothendieck group of S-varieties. By
definition K0(VarS) is an abelian group with generators given by all the
varieties [X]’s, where X → S are S-varieties, and the relations are [X] = [Y],
if X is isomorphic to Y, and [X] = [Y] + [X \ Y] if Y is a Zariski closed
subvariety of X. Let [X], [Y] ∈ K0(VarS), and define [X][Y] = [X ×S Y].
Then we have a product on K0(VarS). Let L represent the class of [A1

κ × S].
Let MS = K0(VarS)[L

−1] be the ring by inverting the class L in the ring
K0(VarS).

If S is a point Spec(κ), we write K0(Varκ) for the Grothendieck ring of
κ-varieties. One can take the map Varκ −→ K0(Varκ) to be the universal
Euler characteristic. After inverting the class L = [A1

κ ], we get the ring
Mκ.

. (2.1.3) We introduce the equivariant Grothendieck group defined in [19].
Let µn be the cyclic group of order n, which can be taken as the algebraic

variety Spec(κ[x]/(xn − 1)). Let µmd −→ µn be the map x 7→ xd. Then all
the groups µn form a projective system. Let

lim←−nµn

be the direct limit.
Suppose that X is a S-variety. The action µn × X −→ X is called a good

action if each orbit is contained in an affine subvariety of X. A good µ̂-
action on X is an action of µ̂ which factors through a good µn-action for
some n.

The equivariant Grothendieck group K
µ̂
0 (VarS) is defined as follows: The

generators are S-varieties [X] with a good µ̂-action; and the relations are:
[X, µ̂] = [Y, µ̂] if X is isomorphic to Y as µ̂-equivariant S-varieties, and
[X, µ̂] = [Y, µ̂] + [X \Y, µ̂] if Y is a Zariski closed subvariety of X with the µ̂-
action induced from that on X, if V is an affine variety with a good µ̂-action,

then [X ×V, µ̂] = [X ×An
κ , µ̂]. The group K

µ̂
0 (VarS) has a ring structure if

we define the product as the fibre product with the good µ̂-action. Still we

let L represent the class [S ×A1
κ, µ̂] and let M

µ̂
S = K

µ̂
0 (VarS)[L

−1] be the

ring obtained from K
µ̂
0 (VarS) by inverting the class L.

If S = Spec(κ), then we write K
µ̂
0 (VarS) as K

µ̂
0 (Varκ), and M

µ̂
S as M

µ̂
κ .

Let s ∈ S be a geometric point. Then we have natural maps K
µ̂
0 (VarS) −→

K
µ̂
0 (Varκ) andM

µ̂
S −→M

µ̂
κ given by the correspondence [X, µ̂] 7→ [Xs, µ̂].

. (2.1.4) Let S be a scheme. Following [14], we need to define a new product

⊙ onM
µ̂
S. The following definition is due to [14, Definition 2.3].
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Definition 2.1. Let [X, σ̂], [Y, τ̂] be two elements in K
µ̂
0 (VarS) or M

µ̂
S . Then

there exists n ≥ 1 such that the µ̂-actions σ̂, τ̂ on X, Y factor through µn-actions
σn, τn. Define Jn to be the Fermat curve

Jn = {(t, u) ∈ (A1 \ {0})2 : tn + un = 1}.

Let µn × µn act on Jn × (X ×S Y) by

(α, α′) · ((t, u), (v, w)) = ((α · t, α′ · u), (σn(α)(v), τn(α
′)(w))).

Write Jn(X, Y) = (Jn × (X ×S Y))/(µn × µn) for the quotient κ-scheme, and
define a µn-action vn on Jn(X, Y) by

vn(α)((t, u), v, w)(µn × µn) = ((α · t, α · u), v, w)(µn × µn).

Let v̂ be the induced good µ̂-action on Jn(X, Y), and set

[X, σ̂]⊙ [Y, τ̂] = (L− 1) · [(X ×S Y/µn, ι̂)]− [Jn(X, Y), v̂]

in K
µ̂
0 (VarS) orM

µ̂
S. This defines a commutative, associative product on K

µ̂
0 (VarS)

orM
µ̂
S.

Consider the Lefschetz motive L = [A1
κ ]. As in [14], we define L

1
2 in

K
µ̂
0 (VarS) orM

µ̂
S by:

L
1
2 = [S, ι̂]− [S× µ2, ρ̂],

where [S, ι̂] with trivial µ̂-action ι̂ is the identity in K
µ̂
0 (VarS) or M

µ̂
S , and

S× µ2 is the two copies of S with the nontrivial µ̂-action ρ̂ induced by the

left action of µ2 on itself, exchanging the two copies of S. Then L
1
2 ⊙L

1
2 =

L.

2.2. Motivic integration on rigid varieties.

. (2.2.1) Let K be a non-archimedean complete discretely valued field of
characteristic zero. The ring of integers of K is denoted by R, and the
residue field is denoted by κ. For instance, R = κ[[t]] and K = κ((t)) is
the fractional field of R. We fix a unformizing paremeter π in R throughout
the paper, and in the case that R = κ[[t]], π = t.

. (2.2.2) Let X → spf(R) be a separated generically smooth formal scheme
over R of topologically of finite type. We call such types of R-formal
schemes st f t R-formal schemes. A st f t R-formal scheme X is obtained by
gluing finite open covers by affine st f t formal R-schemes. Each affine st f t
formal R-scheme is of the form

spf(A)→ spf(R)

for a topologically of finite type R-algebra A, which is isomorphic to an
algebra of the form R{x1, · · · , xm}/I for some integer m > 0 and some
ideal I, where R{x1, · · · , xm} is the algebra of converging power series over
R.
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The special f iber X0 for an affine st f t formal R-scheme X = spf(A) is the
κ-scheme X0 = Spec(A0), where A0 is the κ-algebra A/J with J the largest
ideal of definition. In general the affine covers of Spec(A0) glue to give the
κ-scheme X0 for any st f t formal R-scheme X.

. (2.2.3) Let X be a generically smooth st f t formal R-scheme. The generic
fiber Xη is rigid K-variety. The construction is obtained by gluing the
constructions on affine charts. If X = spf(A) is affine, recall that from [45,
§4.8, §4.9], there is a specialization map

sp : |Xη | → |X| = |X0|

such that if U is any open formal subscheme of X, then sp−1(U) is an
admissible open in Xη . Thus the generic fibers Ui of an affine open covers
of a st f t formal R-scheme X can be glued along the generic fibers of the
intersections Ui ∩Uj to obtain a rigid K-variety Xη . The specialization maps
glue to give a continuous map

(2.2.4) sp : |Xη | → |X| = |X0|.

In the language of Berkovich analytic spaces, the analytification of Xη

is a Berkovich analytic space over the nonarchimedean field K in sense of
Berkovich [4]. We still denote it by Xη . The construction is also obtained
by gluing the constructions on affine charts. For X = spf(A) is affine, let
A = A⊗R K then Xη = M(A) is the spectrum of the affinoid K-algebra
A, which consists of all bounded multiplicative semi-norms x : A → R+.
The affine Berkovich spacesM(A) glue to give us the Berkovich analytic
space Xη .

Finally we recall the following result in [45]. The construction of the
generic fiber is functorial. A morphism of st f t formal R-schemes h : Y→ X

induces a morphism of rigid K-varieties hη : Yη → Xη and the square

(2.2.5) Yη

hη
//

sp

��

Xη

sp

��

Y
h

// X

commutes. Thus there is a functor

(·)η : (stft− For/R)→ (sqc− Rig/K) : X 7→ Xη

from the category of stft formal R-schemes to the category of separated,
quasi-compact rigid K-varieties.

. (2.2.6) Let X be a generically smooth stft formal R-scheme. We follow the
construction of Nicaise-Sebag, Nicaise in [42], [44] for the definition of the
motivic integration of a gauge form ω on Xη , which takes values inMX0

.
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We briefly recall the method to define the motivic integration
∫
X
|ω|.

First we have
X = lim

−→
m

Xm,

where Xm = (X,OX ⊗R Rm) and Rm = R/(π)m+1. In Greenberg [20], the
functor

Y 7→ HomRm(Y ×κ Rm,Xm)

from the category of κ-schemes to the category of sets is presented by a
κ-scheme

Grm(Xm)

of finite type such that

Grm(Xm)(A) = Xm(A⊗κ Rm)

for any κ-algebra A. The projective limit lim
−→m

Xm is denoted by Gr(X).
The functor Gr respects open and closed immersions and fiber products,
and sends affine topologically of finite type formal R-schemes to affine κ-
schemes. The motivic integration of a gauge form ω is defined by using the
stable cylindrical subsets of Gr(X), introduced by Loeser-Sebag in [36], and
Nicaise-Sebag in [43].

Let C0,X be the set of stable cylindrical subsets of Gr(X) of some level. If
A ⊂ C0,X is a cylinder, and we have a function

α : A→ Z ∪ {∞}

such that α−1(m) ⊂ C0,X. Then
∫

A
[A1

X0
]−αdµ̃ := ∑

m∈Z

µ̃(α−1(m)) · [A1
X0
]−m,

where
µ̃ : C0,X →MX0

is the unique additive morphism defined in [32, Proposition 5.1] by

µ̃(A) = [πm(A)] · [A1
X0
]−(m+1)d

for A a stable cylinder of level m, d is the relative dimension of X, and
πm : Gr(X)→ Gr(Xm) is the canonical projection.

Let ω be a gauge form on Xη , in [36], the authors constructed an integer-
valued function

ordπ,X(ω)

on Gr(X) that takes the role of α before. The motivic integration
∫
X
|ω| is

defined to be

(2.2.7)
∫

X
|ω| :=

∫

Gr(X)
[A1

X0
]− ordπ,X(ω)dµ̃ ∈ MX0

.

From [36], [42], the forgetful map
∫

:MX0
→Mκ
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defined by ∫

X
|ω| 7→

∫

Xη

|ω| :=
∫ ∫

X
|ω|

only depends on Xη , not on X.

. (2.2.8) In [44] Nicaise generalizes the motivic integration construction
to generically smooth special formal R-schemes. A special formal R-
scheme X is a separated Noetherian adic formal scheme endowed with
a structural morphism X → spf(R), such that X is a finite union of open
formal subschemes which are formal spectra of special R-algebras. From
Berkovich [7], a topological R-algebra A is special, iff A is topologically
R-isomorphic to a quotient of the special R-algebra

R{T1, · · · , Tm}[[S1, · · · , Sn]] = R[[S1, · · · , Sn]]{T1, · · · , Tm}.

The Noetherian adic formal scheme X has the largest ideal of definition
J. The closed subscheme of X defined by J is denoted by X0, which is a
reduced Noetherian κ-scheme.

. (2.2.9) We briefly review the motivic integration of Nicaise in [44].

Definition 2.2. Let X be a special formal R-scheme. By a Néron smoothening
we mean a morphism of special formal R-schemes Y → X, such that Y is adic

smooth over R and Yη → Xη is an open embedding satisfying Yη(K̃) = Xη(K̃)

for any finite unramified extension K̃ of K.

In [44, §2], Nicaise proves that a Néron smoothening of X exists and is
given by the dilatation of X. Then Y is a stft formal R-scheme.

Definition 2.3. Let X be a generically smooth special formal R-scheme. We define
∫

X
|ω| :=

∫

Y
|ω|

and ∫

Xη

|ω| :=
∫

Yη

|ω|

for a gauge form ω on Xη .

. (2.2.10) We recall the motivic volume of Xη in [44]. For m ≥ 1, let
K(m) := K[T]/(Tm − π) be a totally ramified extension of degree m of
K, and R(m) := R[T]/(Tm − π) the normalization of R in K(m). If X is a
formal R-scheme, we define

X(m) := X×R R(m)

and
Xη(m) := Xη ×K K(m).

If ω is a gauge form on Xη , we denote by ω(m) the pullback of ω via the
natural morphism Xη(m)→ Xη.
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Definition 2.4. Let X be a generically smooth special formal R-scheme. Let ω be
a gauge form on Xη. Then the volume Poincaré series of (X, ω) is defined to be

S(X, ω; T) := ∑
d>0

(∫

X(d)
|ω(d)|

)
Td ∈ MX0

[[T]].

. (2.2.11)

Definition 2.5. Let X be a generically smooth flat R-formal scheme. A resolution
of singularities of X is a proper morphism h : Y → X of flat special formal R-
schemes such that h induces an isomorphism on generic fibers, and such that Y is
regular (meaning the local ring at points is regular), with a special fiber a strict
normal crossing divisor Ys. We say that the resolution h is tame if Ys is a tame
normal crossing divisor.

By Temkin’s resolution of singularities for quasi-excellent schemes of
characteristic zero in [48], any affine generically smooth flat special formal
R-scheme X = spf(A) admits a resolution of singularities by means of
admissible blow-ups.

In general for any generically smooth R-formal scheme X, suppose that
there is a resolution of singularities

(2.2.12) h : Y −→ X

Let Ei, i ∈ I , be the set of irreducible components of the exceptional
divisors of the resolution. For I ⊂ I , we set

EI :=
⋂

i∈I

Ei

and
E◦I := EI \

⋃

j/∈I

Ej.

Let mi be the multiplicity of the component Ei, which means that the special
fiber of the resolution is

∑
i∈I

miEi.

Let mI = gcd(mi)i∈I . Let U be an affine Zariski open subset of Y, such that,
on U, f ◦ h = uvmI , with u a unit in U and v a morphism from U to A1

C
.

The restriction of E◦I ∩U, which we denote by Ẽ◦I ∩U, is defined by

{(z, y) ∈ A
1
C × (E◦I ∩U)|zmI = u−1}.

The E◦I can be covered by the open subsets U of Y. We can glue together all
such constructions and get the Galois cover

Ẽ◦I −→ E◦I

with Galois group µmI
. Remember that µ̂ = lim←−µn is the direct limit of the

groups µn. Then there is a natural µ̂ action on Ẽ◦I . Thus we get [Ẽ◦I ] ∈ M
µ̂
X0

.
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. (2.2.13) Using resolution of singularities, in [44, Theorem 7.12], Nicaise
proves the following result:

Theorem 2.6. Let X be a generically smooth special formal R-scheme of pure
relative dimension d. Then we have a structural morphism f : X → spf(R).
Suppose that X has a resolution of singularities X′ → X with special fiber X′s =
∑i∈I NiEi.

Let ω be a X-bounded gauge form on Xη , where the definition of bounded gauge
form is given by Nicaise in [44, Definition 2.11]. Then for any integer m > 0,

∫

X(m)
|ω(m)| = L

−d ∑
∅ 6=J⊂I

(L− 1)|J|−1[Ẽ◦J ]


 ∑

ki≥1,i∈J
∑i∈ J kiNi=d

L
−∑i kiµi


 ∈ M

µm

X0
.

Furthermore, from [44, Corollary 7.13] we have:

Proposition 2.7. With the same notations and conditions as in Theorem 2.6,
the volume Poincaré series S(X, ω; T) is rational over MX0

. In fact, let µi :=
ordEi

ω, then

S(X, ω; T) = L
−d ∑

∅ 6=J⊂I

(L− 1)|J|−1[Ẽ◦J ]∏
i∈J

L−µi TNi

1−L−µi TNi
∈ M

µ̂
X0
[[T]].

The limit

S(X, K̂
s) := − lim

T→∞
S(X, ω; T) := L

−dS f

is called the motivic volume of X, where

S f = ∑
∅ 6=J⊂I

(L− 1)|J|−1[Ẽ◦I ].

And

S(Xη, K̂
s) : = − lim

T→∞
S(Xη, ω; T) = − lim

T→∞
∑

m≥1

(∫

Xη

|ω(m)|

)
Tm

= L
−d
∫

X0

S f ∈ M
µ̂
κ

is called the motivic volume of Xη .

. (2.2.14) Let (X, f ) be a generically smooth formal R-scheme. From

Proposition 2.7, the motivic vanishing cycle S f belongs to M
µ̂
X0

. For any

point x ∈ X0, let

S f ,x = ∑
∅ 6=J⊂I

(L− 1)|J|−1[Ẽ◦I ∩ h−1(x)],

where h : X′ → X is the resolution of singularities. We call S f ,x the motivic
Milnor fiber of x ∈ X0.
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. (2.2.15) In summary, if we let K(GBSRig
K
) be the Grothendieck ring of the

category of gauge bounded smooth rigid K-varieties. Here for an object Xη

in GBSRig
K

we understand that the rigid variety Xη comes from the generic
fiber of a generically smooth special formal R-scheme f : X→ spf(R) with
gauge bounded form ω. The Grothendieck ring

K(GBSRig
K
) :=

⊕

d≥0

K(GBSRigd
K
)

is defined in [32, §5.2].
Let K(BSRig

K
) be the Grothendieck ring of the category BSRig

K
of

bounded smooth rigid K-varieties, which is obtained from K(GBSRig
K
)

by forgetting the gauge form. Then we can represent the above results in
§(2.2.13) as follows:

Theorem 2.8. There exists a homomorphism of additive groups:

MV : K(BSRig
K
)→M

µ̂
κ

given by:

[Xη ] 7→ S(Xη, K̂
s)

for a generically smooth special formal R-scheme X. Moreover, if X has relative
dimension d, then

MV([Xη ]) = L
−d ·

∫

X0

S f ∈ M
µ̂
κ .

So MV is a morphism from the group K(BSRig
K
) to the groupM

µ̂
κ .

Moreover, if x ∈ X0 and let

f̂x : spf(ÔX,x)→ spf(R)

be the formal completion of X along x, then the generic fiber spf(ÔX,x)η of the

formal completion is the analytic Milnor fiber Fx( f̂ ) defined in 1.3.4, and

MV([Fx( f̂ )]) = L
d · S f ,x.

3. PROOF OF THE CONJECTURE

3.1. A motivic Blow-up formula.

. (3.1.1) We prove a motivic blow-up formula for motivic Milnor fibers in
the formal scheme setting, thus generalizing the one in [27, Theorem 4.11]
for Behrend functions. Using Berkovich spaces, such a blow-up formula is
proved in the Euler characteristic level in [24, Proposition 3.13].
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. (3.1.2) Let f : X → spf(R) be a smooth special formal R-scheme and
Z ⊂ X a closed embedded formal subscheme. Let

φ : X̃→ X

be the formal blow-up of X along Z. Set

f̃ := f ◦ φ : X̃→ spf(R).

For details of formal blow-up for special formal schemes see [44]. Let y ∈

Z∩ Crit( f ), then φ−1(y) = P(TyX/TyZ) is contained in Crit( f̃ ).

Proposition 3.1. We have the following formula
∫

P(TyX/TyZ)
S

f̃
= S f ,y + [Pdim(X)−dim(Z)−1− 1] · S f |Z,y ∈ M

µ̂
κ ,

where
∫

P(TyX/TyZ)
is understood as the pushforward fromM

µ̂

P(TyX/TyZ)
→M

µ̂
κ .

Proof. It is enough to prove the formula for the case of affine formal
schemes. Let X = spf(A), where A = R{T1, · · · , Tm}[[S1, · · · , Sn]], and
Z = spf(B), where B = R{T1, · · · , Tl}[[S1, · · · , Sn]] for l < m. The ideal
I = (Tl+1, · · · , Tm) ⊂ A is an open ideal. The formal blow-up

X̃ = lim
→

n∈N

Proj
(
⊕∞

d=0 Id ⊗R (R/tn)
)

.

The morphism φ induces the following commutative diagram:

(3.1.3) X̃η

φη
//

sp

��

Xη

sp

��

X̃0
φ0

// X0

where sp is the specialization map from the generic fiber to the special fiber.
For any y ∈ Z0 ⊂ X0,

(sp ◦ φη)
−1(y) = (φ0 ◦ sp)−1(y).

From the argument of (sp ◦ φη)−1(y) and (φ0 ◦ sp)−1(y) as in the proof of

[24, Proposition 3.13], the left side is the preimage sp−1(P(TyX/TyZ)), and
the the right side is

(
Fy( f̂ |Z)×P

dim(X)−dim(Z)−1
K

)
⊔ (Fy( f̂ ) \ Fy( f̂ |Z)).

Then applying the map MV in Theorem 2.8 we get that the left side is the
motivic cycle

∫
P(TyX/TyZ)

S
f̃
, while the right side is

S f ,y + [Pdim(X)−dim(Z)−1− 1] · S f |Z,y.

�



20 YUNFENG JIANG

3.2. Techniques on the motivic constructible functions of Cluckers and
Loeser.

. (3.2.1) In this section we learn a little bit about Cluckers-Loeser’s motivic
constructible function theory in [17], which we will use to prove the
conjecture. Le in [32] uses another method of Hrushovski-Kazhdan’s ACVF
theory in [22] to prove the Kontsevich-Soibelman conjecture on the motivic
Milnor fiber. Later on he can use the theory of motivic constructible
functions of Cluckers-Loeser to give a new proof, which is working over
any field of characteristic zero. We adapt such a beautiful theory to our
applications for the motivic Joyce-Song formula.

. (3.2.2) The theory of motivic constructible functions is motivated by the
constructible functions for the Euler characteristic over reals. The idea of
Cluckers-Loeser is to do integration (functions defined on) subobjects of
κ((t))m, or more wiser, integration on subobjects of

κ((t))m × κn ×Z
r.

The theory is based on the Denef-Pas language LDP with the ring language
for valued fields and residue fields and with the Presburger language for
valued groups. Let T be the theory of algebraic closed fields containing
κ, as in [17, §16.2, 16.3], then (K((t)), K, Z) is a model of T. The primary
definable T-subassignment has the forms:

h[m, n, r](K) := K((t))m ×K
n ×Z

r.

It can be taken as a functor

h[m, n, r] : K ⊃ κ → Category of sets.

Any formula ϕ in LDP with coefficients in κ((t)), and coefficients in κ,
defines a subassignment hϕ ⊂ h[m, n, r] by:

hϕ(K) = {x ∈ h[m, n, r](K)|(K, K((t)), Z) = ϕ(x)}.

More generally, if W = X× X ×Zr, with X a κ((t))-variety, X a κ-variety,
then

hW(K) := X(K((t)))× X(K)×Z
r.

Definition 3.2. We define Defκ to be the category of all the definable T-
subassignments

K 7→ hϕ(K).

Let S ⊂ Defκ be any object. Let DefS or (DefS(LDP, T)) be the category of
objects of Defκ over S. Define

RDefS; or (RDefS(LDP, T))

to be the subcategory of DefS whose objects are subassignments of S × hAn
κ
, for

variable n, morphisms to S are the ones induced by the projection onto the S-factor.

We define the Grothendieck group for RDefS.
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Definition 3.3. The Grothendieck group K0(RDefS) is defined to be a free abelian
group generated by symbols:

[X → S]

with X → S in RDefS, modulo the relations:

[X → S] = [Y → S]

if [X → S] is isomorphic to [Y → S] in RDefS, and

[X ∪ Y → S] + [X ∩Y → S] = [X → S] + [Y → S]

for any definable T-subassignments X and Y of S× hAn
κ

for some n ∈ N.

. (3.2.3) Let X → S be an object in RDefS and m ∈ N>0. Assume that
X = hW with W = X× X ×Zr. A good µm-action on X is a µm-action

µm × X → X

on X such that each orbit intersected with hX is contained in hV with V an
affine subvariety of X. A good µ̂-action on X is a µ̂-action on X that factors
through a good µm-action on X for some m ∈ N>0.

Definition 3.4. The monodromic Grothendieck group K
µ̂
0 (RDefS) is a free abelian

group generated by:
[X → S, µ̂]; ([X, µ̂])

with X → S in RDefS, and X admits a µ̂-action, with the relations in Definition
3.3, together with one more relation:

[X × hV , µ̂] = [X × hAn
κ
, µ̂],

where V is the n-dimensional affine κ-space endowed with an linear µ̂-action and
An

κ with trivial µ̂-action for n ∈ N.

The groups K0(RDefS) and K
µ̂
0 (RDefS) are rings with respect to the fiber

product of subassignments in [17, §2.2].

. (3.2.4) We talk about the rings of motivic constructible functions. Let

A := Z[L, L
−1, (1−L

i)−1, i > 0],

where L is the Lefschetz motive of the affine line A1
κ. For S ∈ Defκ, let

P(S) be the subring of the ring of functions

S→ A

generated by:

(1) all constant functions into A;
(2) all definable functions S→ Z;
(3) all functions of the form Lα, where α : S→ Z is a definable function.

This is called the ring of Presburger functions as in [17].
Let P0(S) be the subring of P(S) generated by L − 1 and by character

function 1Y for all definable subassignments Y of S.
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Definition 3.5. The ring of constructible motivic functions C (S) on S and the
monodromic one C µ̂(S) are defined as:

C (S) := K0(RDefS)⊗P0(S) P(S); C
µ̂(S) := K

µ̂
0 (RDefS)⊗P0(S) P(S).

The following result can be found in [33], [17, §16.2, §16.3].

Proposition 3.6. Let X be an algebraic variety. Then

(1) K0(RDefhX
) ∼= K0(VarX);

(2) C (hX) ∼=MX,loc;

(3) K
µ̂
0 (RDefhX

) ∼= K
µ̂
0 (VarX);

(4) C µ̂(hX) ∼=M
µ̂
X,loc.

. (3.2.5) We talk about the rationality results of the motivic constructible
functions, which we refer to [17, §4.4-5.7]. Let S ∈ Defκ, let r ∈ N>0 and
T = (T1, · · · , Tr) be variables. Denote by C (S)[[T]] to be the formal power
series ring with coefficients in C (S). If α : S → Nr is a definable function,
let

Tα := ∑
i∈Nr

1Cj
T j,

where

Cj := {x ∈ S|α(x) = j}.

Let C (S){T} be the C (S)-subalgebra of C (S)[[T]] generated by the series
Tα with α : S→ Nr definable. Let Γ be the multiplicative set of polynomials

in C (S)[[T]] generated by 1−LaTb with (a, b) ∈ Z×Nr, b 6= 0. We denote
by

C (S){T}Γ

the localization of C (S){T} with respect to Γ and by

C (S)[[T]]Γ

the image of the injective morphism of rings

C (S){T}Γ → C (S)[[T]]Γ .

Let us also consider the C (S)-module

C (S)[[T, T−1]].

It is a ring defined by the Hadamard product: for

f = ∑
i∈Zr

aiT
i; g = ∑

i∈Zr

biT
i,

f ∗ g := ∑
i∈Z

aibiT
i.

The subrings X(S)[[T]]Γ and X(S)[[T, T−1]]Γ are stable by the Hadamard
product.
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Let ϕ ∈ C (S×Zr) and i ∈ Zr, or ϕ ∈ C (S×Nr) and i ∈ Nr, we denote
by ϕi the restriction of ϕ to S× {i} and consider it as an element of C (S).
Define:

M(ϕ) := ∑
i∈∆

ϕiT
i,

which is a series in C (S)[[T, T−1]], where ∆ = Zr or Nr depending on ϕ ∈
C (S×Zr) or C (S×Nr).

Theorem 3.7. ([17], [33]) The mapping

C
µ̂(hX ×N

r)→M
µ̂
X,loc[[T]]Γ

defined by

ϕ 7→ M(ϕ)

is an isomorphism of rings.

3.3. The proof of Formula (1) in Conjecture 1.2.

. (3.3.1) Recall that for coherent sheaves or semi-Schur objects E1, E2, E :=
E1 ⊕ E2 ∈ Db(Coh(Y)) for a smooth Calabi-Yau threefold Y, we have the
following data:

(1) f : Ext1(E, E)→ κ;

(2) f1 : Ext1(E1, E1)→ κ;

(3) f2 : Ext1(E2, E2)→ κ,

where f , f1, f2 are the corresponding superpotential functions coming from
the corresponding cyclic L∞-algebras studied in [24].

We have:

Ext1(E, E) = Ext1(E1, E1)⊕ Ext1(E2, E2)⊕ Ext1(E1, E2)⊕ Ext1(E2, E1)

and let (x, y, z, w) be the corresponding coordinates of Ext1(E, E). Let C∗

act on Ext1(E, E) by

λ · (x, y, z, w) = (x, y, λ · z, λ−1 · w).

Then Ext1(E, E)C∗ = Ext1(E1, E1)⊕ Ext1(E2, E2).

. (3.3.2) For any semi-Schur object E ∈ Db(Coh(Y)), we have the motivic

Milnor fiber S0(E) ∈ M
µ̂
κ defined in Definition 1.1. It is given by the

generically smooth special formal R-scheme

f̂ := f̂E : ̂Ext1(E, E)→ spf(R)

which is the formal completion of f := fE : Ext1(E, E)→ κ along the origin.
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. (3.3.3) We make the following notations:

X := Ext1(E, E); Z := Ext1(E1, E1)⊕ Ext1(E2, E2).

For E = E1 ⊕ E2, let
f̂ : X := X̂ → spf(R)

be the formal completion of X along the origin. Then

f̂ |Z : Z→ spf(R)

is the formal completion of f |Z along the origin. Let d = dim(X),
di := dimκ(Ext1(Ei, Ei)) for i = 1, 2 and d12 = dimκ(Ext1(E1, E2)), d21 =
dimκ(Ext1(E2, E1)).

For the formal R-scheme X, we have the generic fiber:

Xη =



(x, y, z, w) ∈ A

d,an
K

∣∣∣
val(x) > 0, val(y) > 0;
val(z) > 0, val(w) > 0;
f (x, y, z, w) = t.





Here val(x) := min1≤i≤d1
{val(xi)}, and val(y), val(z), val(w) are similarly

defined. We divide the generic fiber Xη into two parts:

Xη = X0 ⊔X1,

where

X0 = {(x, y, z, w) ∈ Xη |z = 0 or w = 0}

and

X1 = {(x, y, z, w) ∈ Xη |z 6= 0, w 6= 0} = Xη \ X0 .

Theorem 3.8. We have:

S f̂ ,0 = L
d−1 ·MV([Xη ])

and
S f̂ |Z,0 = L

d−1 ·MV([X0]),

where
MV : K(BSRig

K
)→M

µ̂
κ

is the homomorphism in Theorem 2.8.

Proof. The first formula is just from Theorem 2.8. We prove:

S f̂ |Z,0 = L
d−1 ·MV([X0]).

By the property of the potential function f : X → κ, if z = 0 or w = 0, then
f (x, y, z, w) = f (x, y, 0, 0). Then we may write:

X0 = Y0×Zη,

where

Y0 = {(z, w) ∈ A
d3+d4,an
K

| val(z) > 0, val(w) > 0}

and

Zη =

{
(x, y, 0, 0) ∈ A

d1+d2,an
K

∣∣∣ val(x) > 0, val(y) > 0;
f (x, y, 0, 0) = t.

}
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Let dz ∧ dw := dz1 ∧ · · · ∧ dzd3
∧ dw1 ∧ · · · ∧ dwd4

be the standard gauge
form on the open ball Y0. From Theorem 2.6,

∫

Y0(m)
|dz ∧ dw(m)| = L

−d3−d4 .

So

MV([X0]) = MV([Y0×Zη]) = − lim
T→∞

∑
m≥1

(∫

Y0(m)×Zη(m)
|dz ∧ dw ∧ω(m)|

)
Tm

= −L
−d3−d4 lim

T→∞
∑

m≥1

(∫

Zη(m)
|ω(m)|

)
Tm

= L
1−dS f̂ |Y ,0.

So

L
d−1 ·MV([X0]) = S f̂ |Y ,0.

�

. (3.3.4) We prove the following result:

Theorem 3.9. We have

MV([X1]) = 0

inM
µ̂
κ,loc.

Proof. First similar to [33, Theorem 5.1], we argue that MV([X1]) ∈
C µ̂(N>0), with structural map:

θ : (x, y, z, w) 7→ val(z) + val(w).

From Theorem 2.7,

MV([X1]) = − lim
T→∞

∑
m≥1

(∫

X1(m)
|ω(m)|

)
Tm,

with ω a gauge form on X1. By choosing a formal model X1 of X1 and a
Néron smoothening X′, according to [44, §4],
∫

X1(m)
|ω(m)| =

∫

X′0
∑

n∈Z

[{(x, y, z, w) ∈ Grl X
′(m)| ordt1/m,X′(m)(ω(m))(x, y, z, w) = n} → X′0]

So the correspondence

(x, y, z, w) 7→ ordt1/m(z) + ordt1/m(w)

defines a mapping

θm :
∫

X1(m)
|ω(m)| → N>0
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for each m ∈ N>0. All of these maps θm give a map:

θ : MV([X1])→ N>0.

So MV([X1]) can be taken as an element in C µ̂(N>0) with structure
morphism θ.

Let n ∈ N>0, and θ−1
m (n) is a definable subset of

∫
X1(m) |ω(m)| defined

by

val(z) + val(w) = n

i.e.

θ−1(n) = MV([X1, n])

where

X1,n :=
⋃

m≥1

{(x, y, z, w) ∈ X1 | val(z) + val(w) =
n

m
}.

Lemma 3.10. We have:

MV
(
[{(x, y, z, w) ∈ X1 | val(z) + val(w) =

n

m
}]
)
= 0.

Proof. Let

Y := {(x, y, z, w) ∈ X1 | val(z) + val(w) =
n

m
}.

The linear analytic group Gm := Gm,Kalg acts on

Z := A
d1+d2,an
K

×
(

A
d3,an
K
\ {0}

)
×
(

A
d4,an
K
\ {0}

)

by

λ · (x, y, z, w) = (x, y, λz, λ−1w)

for λ ∈ Gm. Let

π : Z→ Z/Gm

be the projection and Y ⊂ Z/Gm be the image of Y under π. Hence

Y → Y

is a fibration with fiber

{(x, y, λz, λ−1w)| − val(z) ≤ val(λ) ≤ val(w)}

over the class [(x, y, z, w)] ∈ Y. The fiber is isomorphic to the annulus:

A n
m

:= {λ ∈ Gm|0 ≤ val(λ) ≤
n

m
}.

So

[Y] = [Y] · [A n
m
] = [Y× A n

m
]
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and

MV([Y]) = − lim
T→∞

∑
l≥1

(∫

Y(l)
|ω(l)|

)
Tl

= − lim
T→∞

∑
l≥1

(∫

Y(l)
|ω(l)|

)
·

(∫

A n
m
(l)
|dλ(l)|

)
Tl.

for some gauge form ω, ω on Y,Y, respectively. By [37, Lemma 7.6]:

MV([Y]) =

(
lim

T→∞
∑
l≥1

(∫

Y(l)
|ω(l)|

)
Tl

)
·

(
lim

T→∞
∑
l≥1

(∫

A n
m
(l)
|dλ(l)|

)
Tl

)
.

For the same reason as in [33, Lemma 5.2], the annulus A n
m

is B− B′, where

B := {τ ∈ A
1,an

Kalg | val(λ) ≥ 0}; B′ := {τ ∈ A
1,an

Kalg | val(λ) ≥
n

m
}.

The closed ball B(l) of radius l has motivic volume:
∫

B(l)
dλ(l) = 1.

In [33, Lemma 5.2] Le shows that
∫

B′(l)
dλ(l) =

{
0, m 6 |l;

L−me, l = me.

Hence

lim
T→∞

∑
l≥1

(∫

A n
m
(l)
|dλ(l)|

)
Tl = lim

T→∞

(

∑
l≥1

Tl −∑
e≥1

L
−meTme

)

= lim
T→∞

(
T

1− T
−

L−eTe

1−L−eTe

)

= 0.

�

Lemma 3.11. For the mapping θ : MV([X1])→ N>0, and n ∈N>0,

θ−1(n) = 0 ∈ M
µ̂
κ,loc.

Proof. Let
sn : X1,n → N>0

be the map

(x, y, z, w) 7→ m, if val(z) + val(w) =
n

m
.

Then θ−1(n) = MV([X1,n]) ∈ C µ̂(N>0) and there is a structural mapping

τn : θ−1(n)→ N>0

induced by sn. For any m ∈ N>0, from Lemma 3.10,

τ−1
n (m) = MV

(
[{(x, y, z, w) ∈ X1 | val(z) + val(w) =

n

m
}]
)
= 0.
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By Theorem 3.7,

M : C
µ̂(N>0)→M

µ̂
κ,loc[[T]]Γ

is an isomorphism of rings, so

M(θ−1(n)) = ∑
m≥1

τ−1
n (m)Tm = 0

and
θ−1(n) = 0 ∈ C

µ̂(N>0).

Hence
θ−1(n) = 0 ∈ M

µ̂
κ,loc.

�

Now the theorem is proved by the following: from the isomorphism

M : C
µ̂(N>0)→M

µ̂
κ,loc[[T]]Γ

and Lemma 3.11

M(MV([X1])) = ∑
m≥1

θ−1(n)Tn = 0.

So
MV([X1]) = 0.

�

. (3.3.5) Now the proof of Formula (1) in Conjecture 1.2 is obtained as

follows: From the formula S f̂ ,0 = Ld−1 ·MV([Xη ]) in Theorem 3.8 and

MV([X1]) = 0 in Theorem 3.9, since MV([Xη ]) = MV([X0]) + MV([X1]),

we have S f̂ ,0 = Ld−1 ·MV([X0]). So by Theorem 3.8 again,

S f̂ ,0 = S f̂ |Z,0.

The potential function
f |Z = f1 + f2,

where f1, f2 are the potential functions on Z1 := Ext1(E1, E1) and Z2 :=
Ext2(E2, E2). Hence

f̂ |Z : Z→ spf(R)

can be split into f̂ |Z = f̂1 + f̂2 with f̂i : Zi → spf(R) the formal completion
of Zi along the origin for i = 1, 2. By motivic Thom-Sebastiani theorem
proved in [19] for regular functions and [34] for formal functions,

(1− S f̂ |Z,0) = (1− S f̂1,0) · (1−S f̂2,0)

Note that S0(E) = S f̂ ,0, and S0(E1) = S f̂1,0,S0(E2) = S f̂2,0, we have

(1− S0(E)) = (1−S0(E1)) · (1− S0(E2)).

3.4. The proof of Formula (2) in Conjecture 1.2.
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. (3.4.1) We use the same notations as in §(3.3.3). For the coherent sheaves
or simple complexes E = E1 ⊕ E2, E1, E2, let

f̂ : X = ̂Ext1(E, E)→ spf(R)

be the special formal scheme as in §(3.3.2). The formula (2) in Conjecture
1.2 is equivalent to the following formula:

∫

F∈P(Ext1(E2,E1))
S0(F)−

∫

F∈P(Ext1(E1,E2))
S0(F)(3.4.2)

= ([P(Ext1(E2, E1))]− [P(Ext1(E1, E2))]) · S f̂ |Z,0.

We prove Formula (3.4.2). Let

U = {(x, y, z, w) ∈ Ext1(E, E)|w 6= 0}

and

V = {(x, y, z, w) ∈ U|z = 0}.

We consider the formal schemes

f̂ |U : U→ spf(R), f̂ |V : V→ spf(R)

which are the formal completions along the origin. Consider the formal
admissible blow-up

φ : Ũ→ U

with center V ⊂ U. Let ˜̂f := f̂ ◦ φ be the composition map.

. (3.4.3) Let

ǫ21 := (0, 0, 0, ε21) ∈ V.

Then from Theorem 3.1,
∫

P(Tǫ21
U/Tǫ21

V)
S˜̂f = S f̂ ,ǫ21

+ [Pdim(U)−dim(V)−1− 1] · S f̂ |V,ǫ21
∈ M

µ̂
κ ,

where
∫

P(Tǫ21
U/Tǫ21

V) is understood as the pushforward from

M
µ̂

P(Tǫ21
U/Tǫ21

V)
→M

µ̂
κ . Note that

V = Ext1(E1, E1)⊕ Ext1(E2, E2)⊕W,

where W = {(x, y, z, w) ∈ X|x = y = z = 0, w 6= 0}. The property of
the potential function f : X → κ implies that f |V = f1 + f2 + 0, where

fi : Ext1(Ei, Ei) → κ is the potential function for Ei with i = 1, 2. Hence
the motivic Milnor fiber of f |V is the product of the motivic Milnor fiber of

f |Z with the motive of a small ball in ̂Ext1(E2, E1). Since the close ball has
motive 1 from Theorem 2.6, we have:

S f̂ |V,ǫ21
= S f̂ |Z,0.
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Hence integrating over all [ǫ21] ∈ P(Ext1(E2, E1)),

∫

P(Ext1(E2,E1))
S f̂ ,ǫ21

=

(3.4.4)

∫

P(Ext1(E1,E2))×P(Ext1(E2,E1))
S˜̂f − [Pdim(Ext1(E1,E2)) − 1] · [Pdim(Ext1(E2,E1))]S f̂ |Z,0.

Similarly let ǫ12 = (0, 0, ε12, 0) ∈ V ′, where V ′ ⊂ U′ are defined by:

U′ = {(x, y, z, w) ∈ Ext1(E, E)|z 6= 0}

and

V ′ = {(x, y, z, w) ∈ U′|w = 0}.

Then a similar argument gives:

∫

P(Ext1(E1,E2))
S f̂ ,ǫ12

=

(3.4.5)

∫

P(Ext1(E1,E2))×P(Ext1(E2,E1))
S˜̂f − [Pdim(Ext1(E2,E1)) − 1] · [Pdim(Ext1(E1,E2))]S f̂ |Z,0.

Then (3.4.4)-(3.4.5) we get:
∫

P(Ext1(E2,E1))
S f̂ ,ǫ21

−
∫

P(Ext1(E1,E2))
S f̂ ,ǫ12

=
(
(−[P(Ext1(E1, E2))] + 1)[P(Ext1(E2, E1))]

+ ([P(Ext1(E2, E1))]− 1)[P(Ext1(E1, E2))]
)
· S f̂ |Z,0

= ([P(Ext1(E2, E1))]− [P(Ext1(E1, E2))]) · S f̂ |Z,0,

which is the formula in (3.4.2). Hence Formula (2) in Conjecture 1.2 is
proved. �

4. THE POISSON ALGEBRA HOMOMORPHISM

In this section we study the Poisson algebra homomorphism from the
motivic Hall algebra of the abelian category of coherent sheaves on the
Calabi-Yau threefold Y to the motivic quantum torus.

4.1. Motivic Hall algebras.

. (4.1.1) In this section we review the definition and construction of motivic
Hall algebra of Joyce and Bridgeland in [29], [10].
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. (4.1.2) We define the Grothendieck ring of stacks of finite type.

Definition 4.1. The Grothendieck ring of stacks K(St /κ) is defined to be the κ-
vector space spanned by isomorphism classes of Artin stacks of finite type over κ
with affine stabilizers, modulo the relations:

(1) for every pair of stacks X1 and X2 a relation:

[X1 ⊔ X2] = [X1] + [X2];

(2) for any geometric bijection f : X1 → X2, [X1] = [X2];
(3) for any Zariski fibrations pi : Xi → Y with the same fibers, [X1] = [X2].

Let [A1] = L, the Lefschetz motive. If S is a stack of finite type over κ,
we define the relative Grothendieck ring of stacks K(St /S) as follows:

Definition 4.2. The relative Grothendieck ring of stacks K(St /S) is defined to be
the κ-vector space spanned by isomorphism classes of morphisms

[X
f
→ S],

with X an Artin stack over S of finite type with affine stabilizers, modulo the
following relations:

(1) for every pair of stacks X1 and X2 a relation:

[X1 ⊔ X2
f1⊔ f2
−→ S] = [X1

f1
→ S] + [X2

f2
→ S];

(2) for any diagram:

X1

g
//

f1   
❅❅

❅❅
❅❅

❅❅
X2

f2~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

S,

where g is a geometric bijection, then [X1
f1
→ S] = [X2

f2
→ S];

(3) for any pair of Zariski fibrations

X1
h1→ Y ; X2

h2→ Y

with the same fibers, and g : Y → S, a relation

[X1
g◦h1
−→ S] = [X2

g◦h2
−→ S].

. (4.1.3) The motivic Hall algebra in [10] is defined as follows. Let M be the
moduli stack of coherent sheaves on Y. It is an algebraic stack, locally of
finite type over κ. The motivic Hall algebra is the vector space

H(A ) = K(St /M)

equipped with a non-commutative product given by the role:

[X1
f1
−→M] ⋆ [X2

f2
−→M] = [Z

b◦h
−→M],
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where h is defined by the following Cartesian square:

Z
h

//

��

M(2) b
//

(a1,a2)
��

M

X1 ×X2
f1× f2

// M×M,

with M(2) the stack of short exact sequences in A , and the maps a1, a2, b
send a short exact sequence

0→ A1 −→ B −→ A2 → 0

to sheaves A1, A2, and B respectively. Then H(A ) is an algebra over
K(St /κ).

4.2. Algebraic d-critical locus.

. (4.2.1) We recall the algebraic (analytic) d-critical locus from [28]. We
mainly focus on the algebraic version, but the analytic version is a slightly
modification of the algebraic one.

The algebraic d-critical locus is a classical model for the −1-shifted
symplectic derived scheme as developed by PTVV in [47]. In the same
paper [47], PTVV prove that the moduli space of stable coherent sheaves
or simple complexes over Calabi-Yau threefolds admit the −1-shifted
symplectic derived structure, hence their underlying schemes have the
algebraic d-critical locus structure. Thus the algebraic d-critical locus of
Joyce provides the classical schemetical framework for the moduli space of
stable simple complex over smooth Calabi-Yau threefolds.

. (4.2.2) To define the algebraic d-critical locus, we first recall the following
theorem in [28]:

Theorem 4.3. ([28]) Let X be a κ-scheme, which is locally of finite type.
Then there exists a sheaf SX of κ-vector spaces on X, unique up to canonical
isomorphism, which is uniquely characterized by the following two properties:

(i) Suppose that R ⊆ X is Zariski open, U is a smooth κ-scheme, and i : R →֒ U
is a closed embedding. Then there is an exact sequence of sheaves of κ-vector spaces
on R:

0→ IR,U −→ i−1(OU)
i#
−→ OX |R → 0,

where OX ,OU are the structure sheaves of X and U, and i# is the morphism of
sheaves over R. There is also an exact sequence of sheaves of κ-vector spaces over
R:

0→ SX |R
ιR,U
−→

i−1(OU)

I2
R,U

d
−→

i−1(T∗U)

IR,U · i−1(T∗U)

where d maps f + I2
R,U to d f + IR,U · i

−1(T∗U).
(ii) If R ⊆ S ⊆ X are Zariski open, and U, V are smooth κ-schemes, and

i : R →֒ U
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j : S →֒ V

are closed embeddings. Let

Φ : U → V

be a morphism with Φ ◦ i = j|R : R → V. Then the following diagram of sheaves
on R commutes:

(4.2.3)

0 −−−→ S|R
ιS,V |R
−−−→ j−1(OV)

I2
S,V
|R

d
−−−→ j−1(T∗V)

IS,V ·j−1(T∗V)
|R −−−→ 0

yid

yi−1(Φ#)

yi−1(dΦ)

0 −−−→ SX |R
ιR,U
−−−→ i−1(OU)

I2
R,U

d
−−−→ i−1(T∗U)

IR,U ·i−1(T∗U)
−−−→ 0.

Here Φ : U → V induces

Φ# : Φ−1(OV)→ OU

on U, and we have:

(4.2.4) i−1(Φ#) : j−1(OV)|R = i−1 ◦Φ−1(OV)→ i−1(OU),

a morphism of sheaves of κ-algebras on R. As Φ ◦ i = j|R, then (4.2.4) maps to
IS,V |R → IR,U, and I2

S,V |R → I2
R,U. Thus (4.2.4) induces the morphism in the

second column of (4.2.3). Similarly, dΦ : Φ−1(T∗V) → T∗U induces the third
column of (4.2.3).

According to [28], there is a natural decomposition

SX = S0
X ⊕ κX

and κX is the constant sheaf on X and SX ⊂ SX is the kernel of the
composition:

SX → OX
i#X−→ OXred

with Xred the reduced κ-scheme of X, and iX : Xred →֒ X the inclusion.

Definition 4.4. An algebraic d-critical locus over the field κ is a pair (X, s),
where X is a κ-scheme, locally of finite type, and s ∈ H0(S0

X) for S0
X in Theorem

4.3. These data satisfy the following conditions: for any x ∈ X, there exists a
Zariski open neighbourhood R of x in X, a smooth κ-scheme U, a regular function
f : U → κ, and a closed embedding i : R →֒ U, such that i(R) = Crit( f )
as κ-subschemes of U, and ιR,U(s|R) = i−1( f ) + I2

R,U. We call the quadruple

(R, U, f , i) a critical chart on (X, s).
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. (4.2.5) Some properties of (X, s) are as follows:

Theorem 4.5. [28] Let (X, s) be an algebraic d-critical locus, and
(R, U, f , i), (S, V, g, j) be critical charts on (X, s). Then for each x ∈ R ∩ S ⊂ X
there exists subcharts

(R′, U′, f ′, i′) ⊆ (R, U, f , i),

(S′, V ′, g′, j′) ⊆ (S, V, g, j)

with x ∈ R′ ∩ S′ ⊆ X, a critical chart (T, W, h, k) on (X, s), and embeddings

Φ : (R′, U′, f ′, i′) →֒ (T, W, h, k)

and

Ψ : (S′, V ′, g′, j′) →֒ (T, W, h, k).

. (4.2.6) We introduce the canonical line bundle of (X, s):

Theorem 4.6. [28, Theorem 2.28] Let (X, s) be an algebraic d-critical locus, and

Xred ⊂ X the associated reduced κ-scheme. Then there exists a line bundle KX,s

on Xred which we call the canonical Line bundle of (X, s), that is natural up to
canonical isomorphism, and is characterized by the following properties:

(i) If (R, U, f , i) is a critical chart on (X, s), there is a natural isomorphism

ιR,U, f ,i : (KX,s)|Rred → i∗(K⊗2
U )|Rred

where KU is the canonical line bundle of U.
(ii) Let Φ : (R, U, f , i) →֒ (S, V, g, j) be an embedding of critical charts on

(X, s). Then there is an isomorphism of line bundles on Crit( f )red:

JΦ : (K⊗2
U )|Crit( f )

∼=
−→ Φ|∗Crit( f )red(K

⊗2
V ).

Since i : R→ Crit( f ) is an isomorphism as schemes with Φ ◦ i = j|R, this gives

i|∗Rred(JΦ) : i∗(K⊗2
U )|Rred

∼=
−→ j∗(K⊗2

V )|Rred ,

and we have:

ιS,V,g,j|Rred = i|∗Rred(JΦ) ◦ ιR,U, f ,i : (KX,s)|Rred → j∗(K⊗2
V )|Rred .

. (4.2.7) We talk about the orientation data for d-critical locus in [28]:

Definition 4.7. Let (X, s) be an algebraic d-critical locus, and KX,s the canonical
line bundle of (X, s). An orientation on (X, s) is a choice of square root line

bundle K1/2
X,s for KX,s on Xred. I.e., an orientation of (X, s) is a line bundle L

over Xred and an isomorphism L⊗2 = L⊗ L ∼= KX,s. A d-critical locus with an
orientation will be called an oriented d-critical locus.
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Bussi, Brav and Joyce [12] prove the following interesting result: Let
(X, ω) be a (−1)-shifted symplectic derived scheme over κ in the sense of
[47], and let X := t0(X) be the associated classical κ-scheme of X. Then X
naturally extends to an algebraic d-critical locus (X, s). The canonical line
bundle KX,s

∼= det(LX)|Xred is the determinant line bundle of the cotangent
complex LX of X.

. (4.2.8) One of the applications of the (−1)-shifted symplectic derived
scheme or stack is on moduli problems. Let Y be a smooth Calabi-Yau
threefold over κ, and X a classical moduli scheme of simple coherent
sheaves in Coh(Y), the abelian category of coherent sheaves on Y. Then in
[47], the authors prove that there is a natural (−1)-shifted derived scheme
structure X on the moduli space X, such that if

i : X →֒ X

is the inclusion, then the pullback i∗LX of the cotangent complex of X is
a perfect obstruction theory of X, thus from the result in [12], X has an
algebraic d-critical locus structure.

Actually similar story holds for derived Artin stacks. Still let Y be a
smooth Calabi-Yau threefold over κ, and M a moduli stack of simple
coherent sheaves in Coh(Y). Then in [47], there is a natural (−1)-shifted
derived stack structure M on the moduli spaceM, such that if

i :M →֒M

is the inclusion, then the pullback i∗LM of the cotangent complex of M is
an obstruction theory ofM, thus from the result in [13],M has an algebraic
d-critical stack structure.

. (4.2.9) The orientation of d-critical locus or stack has application to
motivic Donaldson-Thomas theory. Let X := (X, s) be an algebraic d-
critical locus, which is the moduli scheme of simple coherent sheaves or
simple complexes over a smooth Calabi-Yau threefold Y. Let (R, U, f , i) be
a critical chart of (X, s). Then in [14], the authors associated with this local
chart a perverse sheaf of vanishing cycle

(4.2.10) S
φ
U, f ∈ M

µ̂
X

such that

S
φ
U, f |Xc = L

− dim(U)/2⊙ ([Uc, ι̂]− SU, f−c)|Xc ,

where f : X → κ is the function f restricted to X, and X = ⊔c inf(X)Xc and

Xc = X ∩Uc with Uc = f−1(c) ∈ U. We call S
φ
U, f the motivic vanishing cycle

of f .
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. (4.2.11) As in [14], a principal Z2-bundle P → X is a proper, surjective,
śtale morphism of κ-schemes π : P → X together with a free involution
σ : P→ P such that the orbits of Z2 are the fibers of π.

Let Z2(X) be the abelian group of isomorphism classes [P] of principal
Z2-bundles P → X, with multiplication [P] · [Q] = [P ⊗Z2

Q] and the
identity the trivial bundle [X × Z2]. We know that P ⊗Z2

P ∼= X × Z2,
so every element in Z2(X) has order 1 or 2.

In [14], the authors define the motive of a principal Z2-bundle P → X
by:

Υ(P) = L
− 1

2 ⊙ ([X, ι̂]− [P, ρ̂]) ∈ M
µ̂
X,

where ρ̂ is the µ̂-action on P induced by the µ2-action on P.

In [14], for any scheme Y, the authors define an ideal I
µ̂
Y inM

µ̂
Y which is

generated by

φ∗(Υ(P⊗Z2
Q)− Υ(P)⊙ Υ(Q))

for all morphisms φ : X → Y and principal Z2-bundles P, Q over X. Then
define

M
µ̂
Y =M

µ̂
Y/I

µ̂
Y.

Then (M
µ̂
Y,⊙) is a commutative ring with ⊙ and there is a natural

projection ∏
µ̂
Y :M

µ̂
Y →M

µ̂
Y.

. (4.2.12) Let (X, s) be an oriented d-critical locus. Recall the isomorphism
in the canonical line bundle KX,s in Theorem 4.6. Let QR,U, f ,i → R be the
principal Z2-bundle parameterizing local isomorphisms

α : K1/2
X,s |Rred → i∗(KU)|Rred

with α⊗ α = ιR,U, f ,i, where

ιR,U, f ,i : KX,s|Rred → i∗(K⊗2
U )|Rred

is the isomorphism in Theorem 4.6.

Theorem 4.8. ([14]) If (X, s) is a finite type algebraic d-critical locus with a choice

of orientation K1/2
X,s , then there exists a unique motive

S
φ
X,s ∈ M

µ̂
X

such that if (R, U, f , i) is a critical chart on (X, s), then

S
φ
X,s|R = i∗(S

φ

U, f )⊙ Υ(QR,U, f ,i) ∈ M
µ̂
R

where

Υ(QR,U, f ,i) = L
−1/2 ⊙ ([R.ι̂]− [Q, ρ̂]) ∈ M

µ̂
R

is the motive of the principal Z2-bundle defined in §2.5 of [14].
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Remark 4.9. (1) On the Donaldson-Thomas moduli scheme X over the
Calabi-Yau threefold Y, the Behrend function

νX : X → Z

is a constructible function defined using the local Euler obstruction of the
canonical cycle of X defined in §2 of [1]. In [1], Behrend proves

χ(X, νX) =
∫

[X]virt
1

if X is a proper scheme, where [X]virt is the virtual fundamental class of X
defined by the perfect obstruction theory. This is the Donaldson-Thomas
invariant.

(2) Let (X, s) be the corresponding algebraic d-critical locus of the moduli

scheme X. If (X, s) is oriented, i.e. there exists a global square root K1/2
X,s ,

then there exists S
φ
X ∈ M

µ̂
X such that

χ(X,S
µ̂
X) = χ(X, νX),

thus categorifying the Donaldson-Thomas invariant.

(3) The orientation data K1/2
X,s and the triangle property of the motives of the

quadratic forms Q were introduced by Kontsevich-Soibelman in [31] in the
more general setting of the motivic Donaldson-Thomas invariants. Several
cases of the square root line bundle have been proved in [18], [30], [21].

. (4.2.13) In order to define the Poisson algebra homomorphism from the
motivic Hall algebra to the motivic quantum torus, we need to modify the

global motive S
φ
X .

Let us now fix the moduli stack M as the stack of coherent sheaves on
the abelian category of coherent sheaves A of Y. From [10], [27], M is an
Artin stack, locally of finite type.

Lemma 4.10. Let (X, s) be a finite type algebraic d-critical locus, which is the
moduli scheme of stable coherent sheaves over Y, or the coarse moduli scheme
of moduli of semi-stable coherent sheaves on Y, then (X, s) is the coarse moduli
scheme of an Artin stack X of finite type, which is the underlying Artin stack of a
(−1)-shifted derived Artin stack X in sense of [13].

Proof. We consider the algebraic d-critical locus (X, s) ⊂ M such that it is
the coarse moduli space of a moduli stack X with fixed topological data.
From [47] and [13], X can be extended to a canonical (−1)-shifted derived
Artin stack structure X . �
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. (4.2.14) On the Artin stack X , in [13], the authors define an algebraic d-
critical stack structure (X , s) on X , similar to Definition 4.4. An oriented
algebraic d-critical stack is the one (X , s) such that there exists a global

square root line bundle K1/2
X ,s . Let t : X → X be a morphism from an

algebraic d-critical locus to the algebraic d-critical stack (X , s), then in
Theorem 5.14 of [13], there exists a

S
φ
X ∈ M

µ̂

X ,loc

such that

t∗S
φ
X = L

n/2 ⊙ S
φ
X ∈ M

µ̂
X,loc,

where n is the relative dimension of the morphism t.

Remark 4.11. Étale locally if the algebraic d-critical stack (X , s) is given by the
quotient stack

[Q/E],

then Q is an algebraic d-critical locus, and the morphism t is given by:

t : Q→ [Q/E]

and

S
φ

[Q/E]
= L

dim(E)/2⊙ S
φ
Q

with S
φ
Q the motivic vanishing cycle sheaf.

4.3. The integration map.

. (4.3.1) In this section we define the integration map from the motivic Hall
algebra to the motivic quantum torus.

. (4.3.2) Recall that in §3 of [10], there exists maps of commutative rings:

K(Sch /κ)→ K(Sch /κ)[L−1]→ K(St /κ),

where K(Sch /C) is the Grothendieck ring of schemes of finite type over κ.
Since H(A ) is an algebra over K(St /κ), define a K(Sch /κ)[L−1]-module

Hreg(A ) ⊂ H(A )

to be the span of classes of maps [X
f
→ M] with X a scheme. An element

of H(A ) is regular if it lies in Hreg(A ). Then from Theorem 5.1 of [10], the
Hall algebra product preserves the regular elements in Hreg(A ).
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. (4.3.3) For our purpose, we define a K(Sch /κ)[L−1]-module

Hd−Crit(A ) ⊂ H(A )

to be the span of classes of maps [X
f
→M] with (X, s) an algebraic d-critical

locus in the sense of Joyce [28], reviewed in §4.2. Since X is a scheme, the
module

Hd−Crit(A ) ⊂ Hreg(A ).

The following is a generalization of Theorem 5.1 of [10]:

Theorem 4.12. The sub-module of d-critical elements of H(A ) is closed under
the convolution product:

Hd−Crit(A ) ⋆ Hd−Crit(A ) ⊂ Hd−Crit(A )

and is a K(Sch /κ)[L−1]-algebra. Moreover, the quotient

Hssc,d−Crit(A ) = Hd−Crit(A )/(L− 1)Hd−Crit(A )

is a commutative K(Sch /κ)-algebra.

Proof. The proof is similar to Theorem 5.1 of [10]. Let

ai = [Xi
fi
→M] ∈ Hd−Crit(A ); i = 1, 2

with both X1 and X2 are algebraic d-critical loci. Let Ei be the family of
coherent sheaves on Xi corresponding to the map fi. As in the proof of
Theorem 5.1 of [10], stratify X1 × X2 by locally closed sub varieties Sj, we
have the following diagram:

Zj
//

tj

��

Z

t

��

q
// M(2) h

//

(a1,a2)

��

M

Sj
// X1 × X2

f1× f2
// M×M,

where Zj is the fiber product. Let

Vk(x1, x2) = Extk
M(E2|{x2}×M, E1|{x1}×M); (x1, x2) ∈ S

and dk(Sj) = dim(Extk
M). Then from §7.1 of [10],

Zj
∼= [Qj/κd0(Sj)],

where Qj = V1(Sj) is the total space of the trivial vector bundle over Sj

with fiber V1(x1, x2) over (x1, x2) ∈ Sj, and

a1 ⋆ a2 = [Z
b◦h
→ M] = ∑

j

L
−d0(Sj)[Qj

gj
→M].

So for us we only need to prove that Qj is an algebraic d-critical locus. Since

Qj is the trivial vector bundle Sj × κd1(Sj), by assuming that Sj is a strata
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such that d1(Sj) is constant, the algebraic d-critical structure on Sj comes as
follows: around a point (x1, x2) ∈ Sj, there exists an algebraic function

fE1⊕E2
: Ext1(E1 ⊕ E2, E1 ⊕ E2)→ κ

such that (x1, x2) ∈ Crit( fE1⊕E2
). Or we can use [13, Corollary 5.17] to argue

that Zj = [Qj/κd0(Sj)] is a canonical truncation t0(X ) for a (−1)-shifted
Artin stack X , where X is the derived moduli stack of coherent sheaves of
the form E1 ⊕ E2.

The second statement is the same as in Theorem 5.1 of [10], since split Qj

into the zero-section and the complement, we can write

(4.3.4) a1 ⋆ a2 = ∑
j

L
−d0(Sj)

(
[Sj

k
→M] + (L− 1)[P(Qj)

gj
→M]

)

and

(4.3.5) a1 ⋆ a2 = ∑
j

L
−d0(Sj)[Sj

k
→M] = [X1 × X2

k
→M] mod (L− 1).

So we are done. �

. (4.3.6) The algebra Hssc,d−Crit(A ) is called semi-classical Hall algebra for
the elements of d-critical locus. In [10], Bridgeland also defines a Poisson
bracket on H(A ) by:

{ f , g} =
f ⋆ g− g ⋆ f

L− 1
.

This bracket preserves the subalgebra Hd−Crit(A ).

. (4.3.7) We define the motivic quantum torus. Let K(Y) = K(A ) be the
Grothendieck group of the category A . Let E, F ∈ k(A ) and let

χ(E, F) = ∑
i

(−1)i dimκ Exti(E, F).

So χ(−,−) is a bilinear form on K(A ), which is called the Euler form. The
numerical Grothendieck group is the quotient

N(Y) = K(Y)/K(Y)⊥,

where K(Y)⊥ means the Euler form zero subgroup. Let Γ ⊂ N(Y) denote
the monoid of effective classes, which is to say the classes of the form [E]
with E a sheaf.

Remark 4.13. The stack M split into disjoint union of open and closed substacks

M =
⊔

α∈Γ

Mα

where Mα ⊂M is the stack of objects of class α ∈ Γ. And Mα ⊂ M implies that
K(St /Mα) ⊂ K(St /M).
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Also the Hall algebra

H(A ) =
⊕

α∈Γ

H(A )α

and H(A ) is a graded algebra with respect to the convolution product.

. (4.3.8) LetM
µ̂
κ be the ring of motives and consider

M
µ̂
κ,loc =M

µ̂
κ [L

−1, L
−1/2, (Li − 1)−1, i ∈ N≥0].

LetM
µ̂
κ,loc be the ring with the product ⊙.

Definition 4.14. Define

M
µ̂

κ,loc[Γ] =
⊕

α∈Γ

M
µ̂

κ,loc · x
α

to be the ring generated by symbols xα for α ∈ Γ, with product defined by:

xα
⋆ xβ = L

1
2 ·χ(α,β) · xα+β.

The ring is commutative since the Euler form is skew-symmetric. The Poisson
bracket is given by:

{xα, xβ} = L
1
2 ·χ(α,β)⊙

∑
3
i=0(−1)i+1Ldim Exti(α,β)

L− 1
· xα+β.

We define the integration map. Let

(4.3.9) I : Hssc,d−Crit(A )→M
µ̂
κ,loc[Γ]

be the map defined by: for any element [Z →M] ∈ Hssc,d−Crit(A ), let

t : Z→ Z

be the map from the algebraic d-critical locus Z to the corresponding d-
critical Artin stack Z . Then

I([Z →M]) =

(∫
t∗S

φ
Z

)
· xα ∈ M

µ̂
κ,loc[Γ]

where
∫

:M
µ̂
Z,loc →M

µ̂
κ,loc is the pushforward of motives.

Remark 4.15. Let νZ be the Behrend function on Z which is the pullback i∗νM
from i : Z → M. Then taking cohomology of the perverse sheaf t∗S

φ
Z we get the

weighted Euler characteristic χ(Z, t∗νZ ). This is the map I in [10, Theorem 5.2].

Theorem 4.16. The map I in (4.3.9) is a Poisson algebra homomorphism.

Remark 4.17. Theorem 4.16 generalizes the result of Bridgeland in [10, Theorem
5.2] to the motivic level.
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Remark 4.18. The proof of Theorem 4.16 relies on the motivic Behrend function
identities in Conjecture 1.2. The Euler characteristic level of these identities
was originally proved for coherent sheaves by Joyce-Song [27]. These identities
was recently proved by V. Bussi [15] using algebraic method and also works in
characteristic p. In [24] we study these formulas using Berkovich spaces.

4.4. The proof of Theorem 4.16.

. (4.4.1) For each algebraic d-critical locus (Z, s) such that Z factors through

[Z
f
→ Mα], the perverse sheaf S

φ
Z of vanishing cycles is constructible.

hence there exists a stratification Z = ∪iZi such that S
φ
Z|Zi

is given by the
vanishing cycle of the function

f : U → κ,

where we can take Zi fits into a critical chart Zi, U, f , i. So I is well-defined.

. (4.4.2) From Serre duality,

Vk(x1, x2) = V3−k(x2, x1)
∗.

Let Q̂j = V2(Sj) be the bundle over Sj whose fiber at (x1, x2) is V1(x2, x1).
Let

gj : Qj →M; ĝj : Q̂j →M

be the induced morphisms induced by taking the universal extensions. For

a1 = [X1
f1
→Mα1

],

a2 = [X1
f2
→Mα2 ],

we have:

(4.4.3) I(ai) =

(∫
t∗i S

φ
Xi

)
· xαi ∈ M

µ̂

κ,loc[Γ],

where
ti : Xi → Xi

are the smooth morphisms from the d-critical loci to the corresponding d-
critical Artin stacks for i = 1, 2.

From the expression of a1 ⋆ a2 in (4.3.5) in the proof of Theorem 4.12,

(4.4.4) I(a1 ⋆ a2) =

(∫
∑

j

t∗j S
φ
Sj

)
· xα1+α2 =

(∫
t∗S

φ
X1×X2

)
· xα1+α2 ,

where tj : Sj → Sj is the morphism from the d-critical locus scheme to the
d-critical stack Sj, and so is the morphism

t := t1 × t2 : X1 × X2 → X1 ×X2.

From [13], we have:

t∗S
φ
X1×X2

= L
n/2 ⊙ S

φ
X1×X2

= L
n/2 · S

φ
U, f ⊙ Υ(QX,U, f ,i),
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where (X = X1 × X2, U, f , i) is the local critical chart of X1 × X2,

S
φ
U, f = L

− dim(U)/2(1U −SU, f ),

n is the relative dimension of the smooth morphism t, and Υ(QX,U, f ,i) is
the motive of a quadratic form, parameterizing the local isomorphism of
the canonical line bundles as in §(4.2.12).

Over a point (x1, x2) ∈ X1 × X2 ⊂ U, the dimension dim(U) =
dim Ext1(E1 ⊕ E2, E1 ⊕ E2) and n = dim Ext0(E1 ⊕ E2, E1 ⊕ E2), where
E1, E2 are the coherent sheaves corresponding to x1, x2 respectively. When
restricted to X1×X2 ⊂ U, the quadratic form QX,U, f ,i split into the product

QX,U, f ,i = QX1,U1, f1,i1 ⊗ QX2,U2, f2,i2

and

Υ(QX,U, f ,i) = Υ(QX1,U1, f1,i1)⊙ Υ(QX2,U2, f2,i2) ∈ M
µ̂
X1×X2

.

Here (X1, U1, f1, i1) and (X2, U2, f2, i2) are the critical charts of x1 ∈ X1

and x2 ∈ X2 respectively. For coherent sheaves E1, E2, the first formula
in Conjecture 1.2 is:

(1− S0(E1⊕ E2)) = (1−S0(E1)) · (1−S0(E1)).

And this formula of motivic Milnor fibers holds for every point on X1×X2.
Hence we calculate (let E := E1 ⊕ E2):

L
n/2 ⊙S

φ
X1×X2

= L
dim Ext0(E,E)/2 ·L− dim Ext1(E,E)/2⊙ (1− SU, f ) · Υ(QX,U, f ,i)

= L
χ(E1,E2)/2 ⊙L

dim Ext0(E1,E1)/2
L
− dim Ext1(E1,E1)/2(1− SU1, f1

)·

L
dim Ext0(E2,E2)/2

L
− dim Ext1(E2,E2)/2(1−SU2, f2

) · Υ(QX1,U1, f1,i1)⊙ Υ(QX2,U2, f2,i2)

= L
χ(E1,E2)/2 ⊙L

dim Ext0(E1,E1)/2 · S
φ
X1
·Ldim Ext0(E2,E2)/2 · S

φ
X2

= L
χ(E1,E2)/2 · t∗1S

φ
X1
· t∗2S

φ
X2

.

So

(4.4.5) t∗S
φ
X1×X2

= L
n/2 ⊙S

φ
X1×X2

= L
χ(α1,α2)/2 · t∗1S

φ
X1
· t∗2S

φ
X2

.

Comparing the formulas in (4.4.3), (4.4.4) and (4.4.5), we have

I(a1 ⋆ a2) = I(a1) ⋆ I(a2).

. (4.4.6) Now we prove that the map I preserves the Poisson bracket. From
the definition of the Poisson bracket:

{a1, a2} =
a1 ⋆ a2 − a2 ⋆ a1

L− 1
.

Modulo L− 1, from (4.3.5),
(4.4.7)

{a1, a2} = ∑
j

(
L

d3(Sj) −L
d0(Sj)

L− 1

)
[Sj

k
→M]+ [P(Qj)

gj
→M]− [P(Q̂j)

ĝj
→M].
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Recall that in (4.4.3),

I(ai) =

(∫
t∗i S

φ
Xi

)
· xαi ∈ M

µ̂
κ,loc[Γ].

From the definition of motivic quantum torus, we first calculate the Poisson
bracket of I(ai):

{I(a1), I(a2})

(4.4.8)

= L
1
2 ·χ(α1,α2) ·

∑
3
i=0(−1)i+1Ldim Ext1(α1,α2)

L− 1
·

(∫
t∗1S

φ
X1

)
·

(∫
t∗2S

φ
X2

)
· xα1+α2 .

Still let

tj : Sj → Sj

qj : Qj → Qj

q̂j : Q̂j → Q̂j

be the smooth morphisms from the d-critical loci to the d-critical Artin
stacks. Then from (4.4.7),

I({a1, a2}) = ∑
j

L
d3(Sj) −L

d0(Sj)

L− 1

(∫
t∗j S

φ
Sj

)
· xα1+α2(4.4.9)

+

((∫

P(Q j)
q∗j S

φ
Q j

)
−

(∫

P(Q̂ j)
q̂∗j S

φ

Q̂ j

))
· xα1+α2 .

Note that (still let E := E1⊕ E2)

t∗j S
φ
Sj

= L
1
2 dim Ext0(E,E) ·L−

1
2 dim Ext1(E,E) · (1−SSj

)

q∗j S
φ
Q j

= L
1
2 dim Ext0(E,E) ·L−

1
2 dim Ext1(E,E) · (1−SQ j

)

q̂∗j S
φ

Q̂ j
= L

1
2 dim Ext0(E,E) ·L−

1
2 dim Ext1(E,E) · (1− SQ̂ j

).

Here for simplicity of the notations we assume that the vanishing cycles
(1 − SSj

), (1 − SQ j
) and (1 − SQ̂ j

) have already contained the quadratic

forms in the definition of global motives in Theorem 4.8. The reason is

that the quadratic forms on P(Qj) and P(Q̂j) are the same as the quadratic

forms on X since Qj and Q̂j are trivial vector bundles over Sj.
The Formula (2) in Conjecture 1.2 says that

(∫

P(Q j)
(1− SQ j

)−
∫

P(Q̂ j)
(1− SQ̂ j

)

)
= ([P(Qj)]− [P(Q̂j)]) · (1−SX1

) · (1−SX2
).

So using

t∗i S
φ
Xi

= L
1
2 dim Ext0(Ei,Ei) · S

φ
Xi

= L
1
2 dim Ext0(Ei,Ei) ·L−

1
2 dim Ext1(Ei,Ei) · (1− SXi

),
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and note that

∑
j

(1− SSj
) = (1− SX1

) · (1−SX2
),

we have:

I({a1, a2}) =
L

d3(Sj) −L
d0(Sj)

L− 1
L

1
2 χ(α1,α2) ·

(∫
t∗1S

φ
X1

)
·

(∫
t∗2S

φ
X2

)
· xα1+α2

+
(
[Pdim Ext1(E1,E2)]− [Pdim Ext1(E2,E1)]

)
·L

1
2 χ(α1,α2)·

(∫
t∗1S

φ
X1

)
·

(∫
t∗2S

φ
X2

)
· xα1+α2

=

(
Ldim Ext3(E1,E2) −Ldim Ext0(E1,E2)

L− 1
+

Ldim Ext1(E1,E2) −Ldim Ext1(E2,E1)

L− 1

)
·

L
1
2 χ(α1,α2) ·

(∫
t∗1S

φ
X1

)
·

(∫
t∗2S

φ
X2

)
· xα1+α2

= L
1
2 χ(α1,α2) ·

∑
3
i=0(−1)i+1Ldim Exti(α1,α2)

L− 1
·

(∫
t∗1S

φ
X1

)
·

(∫
t∗2S

φ
X2

)
· xα1+α2

= {I(a1), I(a2)}.

The last equality is from (4.4.8). The proof is complete. �

Remark 4.19. When letting L
1
2 = (−1) we get the semi-classical limit of

Kontsevich-Soibelman in [31]. Note that

lim
L

1
2→(−1)

Ln −Lm

L− 1
= n−m

for any n, m ∈ N>0. So when taking the semi-classical limit we get

I({a1, a2}) = (−1)χ(α1,α2) · χ(α1, α2) · χ(X1, f ∗1 νM) · χ(X2, f ∗2 νM) · xα1+α2 ,

which is the Poisson bracket in [10].

.
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