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Abstract

The generalized Polynomial Chaos (gPC) method using stochastic collocation is one of
the most popular computational approaches for solving partial differential equations (PDEs)
with random inputs. The main hurdle preventing its efficient direct application for high-
dimensional randomness is that the solution ensemble size grows exponentially in the number
of inputs (the “curse of dimensionality”). In this paper, we design a weighted version of the
reduced basis method (RBM) and synergistically integrate it into the gPC framework. The
resulting algorithm is capable of speeding up the traditional gPC by orders of magnitude
without degrading its accuracy. Perhaps most importantly, the relative efficiency improves as
the parametric dimension increases demonstrating the potential of our method in significantly
delaying the curse of dimensionality. Theoretical results as well as numerical evidence justify
these findings.

1 Introduction

Computational methods for stochastic problems in uncertainty quantification (UQ) are an increasingly-
important area of research and much recent effort in this direction has been rewarded with many
promising developments. In particular, algorithms that quantify the effect of random input param-
eters on solutions to differential equations have seen rapid advancement. One of the most widely
used methods in this context is the generalized Polynomial Chaos (gPC) method [32], which con-
structs a parametric response surface using a polynomial representation. This method exploits
parametric regularity of the system to achieve fast convergence rates [30]. With gPC, stochastic
solutions are represented as expansions in orthogonal polynomials of the input random parameters,
and so many stochastic algorithms concentrate on computation of the expansion coefficients in a
gPC representation. Stochastic collocation is a popular non-intrusive approach to compute these
coefficients, using a collection of interpolation or quadrature nodes in parameter space [31]. This
requires one to query an expensive yet deterministic computational solver once for each parameter
node. However, when the dimension of the random parameter is large, the number of required
parameter nodes (and hence the number of computational solves) grows exponentially fast. This
is a manifestation of the “curse of dimensionality”.
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One popular strategy that combats the computational burden arising from multiple queries
of an expensive model is model order reduction, which includes proper orthogonal decomposition
(POD) methods, Krylov subspace methods, and reduced basis methods (RBM). We refer to [5] for
a recent survey detailing some of these methods. Model reduction strategies allow one to replace
an expensive computational model with an inexpensive yet accurate emulator for which performing
a large number of queries is computationally feasible.

Such an approach appeals to the same motivation as POD methods: although the random
inputs live in a high-dimensional space, the output of interest (such as the full solution field or
integrated quantities of interest) frequently lie in a low-dimensional manifold [6,9,25]. The search
for, identification, and exploitation of this low-dimensional manifold are the central goals of many
model order reduction strategies. Assuming such a low-dimensional manifold exists, then it may be
possible to build a reduced-complexity emulator and consequently form the sought accurate gPC
approximation. In this paper we employ the RBM model reduction strategy, for which [6, 16, 28]
are good references with [1, 2, 4, 18] the appropriate historical references.

The Reduced Basis Method performs a projection onto “snapshots”, i.e., a small and carefully
chosen selection of the most representative high-fidelity solutions. These snapshots are selected
via a greedy algorithm that appeals to an a posteriori error estimate [17, 28]. The computational
methods that one uses to compute high-fidelity snapshots include typical legacy solvers, like col-
location or finite element discretizations. The ingredient in RBM that allows for computational
savings is the “offline-online” decomposition. The offline stage is the more expensive part of the
algorithm where a small number of parameter values are chosen and the snapshots are generated
by executing the expensive high-fidelity computational model at these parameter locations. (Typ-
ically Op10q such evaluations are necessary.) The preparation completed during the offline stage
allows very efficient evaluation of an emulator of the high-fidelity model during the online stage.
During the online stage, each evaluation of the emulator can typically be computed 100-1000 times
faster than evaluation of the original expensive model. One of the major benefits of RBM that
we exploit in this paper is that the RBM model reduction is rigorous: Certifiable error bounds
accompany construction of the emulator in the offline stage [28].

The idea of utilizing the RBM for problems in a general uncertainty quantification framework
is not new [7,8,10,14,20,27]. However in this paper our ultimate aim is to form a gPC expansion.
The use of the RBM in this context and the exploration of its effectiveness in high-dimensional
random space are underdeveloped to the best of our knowledge. A näıve stochastic collocation
method is computationally infeasible in high-dimensional parameter spaces, even when employing
a sparse grid of economical cardinality. But the hybrid gPC-RBM algorithm we propose is able to
reduce the computational complexity to a manageable load, and thus enables construction of the
gPC approximation in high-dimensional parameter spaces with rigorous error bounds.

This paper introduces, refines, and extends the idea of combining a goal-oriented Reduced
Basis Method with a generalized Polynomial Chaos expansion. Our framework is goal-oriented :
the construction of the approximation is optimized with a user-specifiable quantity of interest in
mind. The algorithm is rigorous: we can guarantee an error tolerance for general quantities of
interest. Our numerical results indicate that our method improves in performance (efficiency)
as the parametric dimension increases – this suggests that our method is particularly useful for
delaying the curse of dimensionality.

In section 2, we introduce the general framework of a PDE with stochastic input data. The
two major ingredients in our approach, gPC and RBM, are likewise discussed. In section 3 we
introduce the hybrid algorithm which is analyzed in section 4. Our numerical results are collected
in section 5, which verify the efficiency and convergence of the hybrid algorithm.

2



2 Background

In this section, we introduce the necessary background material of the hybrid algorithm, namely,
generalized Polynomial Chaos and the Reduced Basis Method.

2.1 Problem setting

Probability framework: Let µ “ pµ1, ...µKq be a K-variate random vector with independent
components on a complete probability space pΩ,B,Pq, with Ω the sample space equipped with the
σ-algebra B, and P a probability measure. For Γi “ µipΩq the state space of µi, the probability
density function of the random variable µi is denoted ρi : Γi Ñ R`. Since the components of µ
are mutually independent, then

ρpµq “ ΠK
i“1ρipµiq (2.1)

is the joint probability density function of random vector µ. The image of µ is

Γ “
à

K
i“1Γi Ă RK

Partial Differential Equation with random parameters: Let D Ă Rd pd “ 1, 2, 3q be an
open set in the physical domain with boundary BD, and x “ px1, ...xdq P D be a point in this set.
We consider the problem of finding the solution u : D ˆ Γ Ñ R of the following stochastic PDE:

#

Lpx, u,µq “ fpx,µq, @ px,µq P D ˆ Γ,

Bpx, u,µq “ gpx,µq, @ px,µq P BD ˆ Γ.
(2.2)

Here L is a differential operator defined on domain D and B is a boundary operator defined on
the boundary BD. The functions f and g represent the forcing term and the boundary conditions,
respectively.

We require the problem (2.2) to have well-posed solutions in a Hilbert space X. We thus assume
up¨ ;µq P X almost surely. The Hilbert space X is equipped with inner product p¨, ¨qX and induced
norm } ¨ }X . A straightforward example is furnished when (2.2) corresponds to a canonical elliptic
partial differential equation: X satisfies H1

0 pDq Ă X Ă H1pDq, with H1 the space of functions
whose L2-derivatives are square-integrable over D, and H1

0 the space of functions in H1 whose
support is compact in D.

In most applications, one has access to a deterministic computational solver that, for each fixed
value of µ, produces an approximate, discrete solution to (2.2). We assume that for this fixed µ,
such a computational solver produces the discrete solution uN , which has N degrees of freedom.
This discrete solution is obtained by solving a discretized version of (2.2). For a fixed µ P Γ, this
is given by

#

LN puN ,µq “ fN pµq,

BN puN ,µq “ gN pµq.
(2.3)

Standard legacy discretizations, such as finite element or spectral collocation solvers, can be written
in this way. The continuous Hilbert space X is replaced with its discrete Hilbert space counterpart
XN , with norm } ¨ }XN .

As before, we assume that uN pµq P XN almost surely. We will need an additional assumption
that the norm of the solution is uniformly bounded as a function of the parameter. I.e.,

›

›uN p¨,µq
›

›

XN
ď U, @µ P Γ (2.4)
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This assumption is satisfied for many practical problems of interest. For example, for a linear
elliptic operator LN puN q, boundedness of the solution is a simple consequence of the bilinear weak
form being coercive and the linear form being continuous [23]. In our setting, uniform coercivity
of the bilinear form and uniform continuity of the linear form with respect to µ would be sufficient
to guarantee the uniform boundedness (2.4).

When introducing the discretized PDE (2.3) we assume that, for any µ P Γ, uN pµq « upx,µq,
where the approximation has an acceptable level of accuracy. In practice, one requires N " 1 to
achieve this.

In what follows we will usually treat µ as a parameter rather than as an explicitly random
quantity. This is a standard approach, and is without loss since all of our statements can be framed
in the language of probability by appropriate change of notation. (E.g., ρ-weighted integrals are
expectations.)

2.2 Generalized Polynomial Chaos

The Generalized Polynomial Chaos method is a popular technique for solving stochastic PDE and
representing stochastic processes. The main idea of the gPC method is to seek an approximation of
the exact solution of the PDE (2.2) by assuming that the dependence on µ is efficiently represented
by a µ-polynomial. If u depends smoothly on µ, then exponential convergence with respect to the
polynomial degree can be achieved [30]. Computational implementations of gPC use an expansion
in an orthogonal polynomial basis; as a consequence, quantities of interest such as expected value
and variance can be efficiently evaluated directly from expansion coefficients.

2.2.1 gPC basis

Consider one-dimensional parameter space Γi corresponding to the random variable µi. If µi has
finite moments of all orders, then there exists a collection of orthonormal polynomials tφmp¨qu

8

m“0,
with φm a polynomial of degree m, such that

E rφmpµiqφnpµiqs “

ż

Γi

ρipµiqφmpµiqφnpµiqdµi “ δm,n

where δm,n is the Kronecker delta function. The type of orthogonal polynomial basis tφmu depends
on the distribution of µi. For instance, if µi is uniformly distributed in r´1, 1s, its probability den-
sity function ρi is a constant and tφmu

8
m“0 is the set of orthonormal Legendre polynomials. Several

well-studied orthogonal polynomial families correspond to standard probability distributions [30].
The correspondence for common probability distributions is shown in Table 1.

For the K-dimensional case (K ą 1), an orthogonal polynomial family associated to the full
tensor-product density ρpµq can be formed from products of univariate polynomials:

Φαpµq “ φα1
pµ1q...φαK pµKq,

where α “ pα1, . . . , αKq P N
K
0 is a multi-index. The degree of Φα is |α| “

řK
k“1 αk. Note that the

Φα defined in this manner are indeed orthonormal:

ż

ΦαpµqΦβpµqρpµqdµ “
K
ź

k“1

ż

φαkφβkρkpµkqdµ “
K
ź

k“1

δαk,βk “ δα,β

4



Random variable distribution gPC polynomial basis Support

Gaussian Hermite p´8,8q

Gamma Laguerre r0,8q

Beta Jacobi r´1, 1s

Uniform Legendre r´1, 1s

Poisson Charlier t0, 1, 2, 3, ...8u

Binomial Krawtchouk t0, 1, 2, 3, ..., Nu

Negative Binomial Meixner t0, 1, 2, 3, ...8u

Hypergeometric Hahn t0, 1, 2, 3, ..., Nu

Table 1: Various probability distributions with their corresponding gPC polynomial family and
support.

A standard polynomial space to consider in the multivariate setting is the total degree space,
formed from the span of all Φα whose degree is less than a given P P N:

UPK ” span
 

Φα
ˇ

ˇ |α| ď P
(

The dimension of UPK is

dimpUPKq “
ˆ

K ` P
K

˙

, (2.5)

which grows comparably to PK for largeK. In what follows, we will index multivariate orthonormal
polynomials as either Φα with α P NK0 satisfying |α| ď P , or Φm with m P N satisfying 1 ď m ď

dimUPK . To achieve this, we assume any ordering of multi-indices α that preserves a partial ordering
of the total degree (for example, graded lexicographic ordering).

2.2.2 gPC approximation and quadrature

The L2
ρpΓq-optimal gPC approximation of the solution upx,µq to (2.2) in the space UPK is the

L2
ρpΓq-orthogonal projection onto UPK , given by

uPKpx,µq “
M
ÿ

m“1

rumpxqΦmpµq, M “ dimpUPKq “
ˆ

K ` P
K

˙

. (2.6)

The Fourier coefficient functions rump1 ď m ďMq are defined as

rumpxq “

ż

upx,µqΦmpµqρpµqdµ. (2.7)

For any x P D, the mean-square error in this finite-order projection is

EgPCpxq “
›

›upx,µq ´ uPKpx,µq
›

›

L2
ρpΓq

“

ˆ
ż

Γ

pupx,µq ´ uPKpx,µqq
2ρpµqdµ

˙1{2

. (2.8)
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Figure 1: Tensor-product vs sparse grid (Gauss-Patterson-based sparse grid) quadrature rule sizes

Note that this error is usually not achievable in practice: The Fourier coefficients rum cannot be
computed without essentially full knowledge of the solution u. Therefore, one frequently resorts to
approximating these coefficients. One popular non-intrusive method is quadrature-based stochastic
collocation, where the integral in (2.7) is approximated by a quadrature rule.

Toward that end, let tµq, wqu
Q
q“1 denote quadrature nodes and weights, respectively, for a

quadrature rule that implicitly defines a new empirical probability measure:

ż

Γ

fpµqρpµqdµ «
Q
ÿ

q“1

wqf pµ
qq . (2.9)

For example, two common choices for quadrature rules are tensor-product Gauss quadrature rules,
and Gauss-Patterson-based sparse grid quadrature rules. Each of these rules can effectively inte-
grate polynomials of high degree, but the requisite size of the quadrature rule Q is large in high
dimensions: See Figure 1.

With this quadrature rule, the Fourier coefficients can be approximated by

rum « pum “
Q
ÿ

q“1

u px,µqqΦmpµ
qqwq. (2.10)

The advantage of this formulation is that we need only compute the quantities u p¨,µqq, which
are a collection of solutions to a deterministic PDE. Since this is all done in the context of a
computational solver given by (2.3), one will replace the continuous solution up¨,µq with the
discrete solution uN pµq.

Then a straightforward stochastic collocation approach first collects the solution ensemble from
the computational solver,

 

uNq pxq
(Q

q“1
fi
 

uN px,µqq
(Q

q“1
(2.11)
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then computes the approximate Fourier coefficients

puNm “
Q
ÿ

q“1

uNq pxqΦmpµ
qqwq, (2.12)

and finally forms the full approximation

upx,µq « uN px,µq “
M
ÿ

m“1

puNmpxqΦmpµq. (2.13)

Note that, in order for the quadrature approximation (2.12) to be reasonably accurate, the
number of quadrature points Q should be comparable with M . We already know from (2.5) that
M scales like PK . A canonical type of problem for the system (2.2) and its resulting discretization
(2.3) is a linear elliptic PDE. In this case, the cost of obtaining each uNq requires at least OpN q
computational effort. (In some cases OpN 3q effort is required.) Q solves of the PDE are required,
with each solve costing at least OpN q work. Since Q „ M „ PK , then in the best-case scenario
the total work scales like O

`

NPK
˘

. Thus, the requisite computational effort for a straightforward
stochastic collocation method is infeasible when the random parameter µ is high-dimensional.

However, if one could construct the approximation (2.13), then it is usually extremely accurate.
The focus of this paper is to inexpensively achieve an approximation whose error is comparable
to that from the projected gPC coefficients (2.13). The rest of this paper provides an algorithmic
method that allows one to approximate (2.13) in a computationally feasible manner. The essential
ingredient is replacement of uNq by an accurate surrogate that is much cheaper to compute.

2.2.3 Quantities of Interest

In many UQ scenarios, one is not necessarily interested in the entire solution field upx,µq, but
rather some other quantity of interest derived from it. We introduce a functional F that serves
to map the solution u to the quantity of interest (the “goal”). Our theoretical results require two
assumptions on the quantity of interest map F : that it has affine dependence on an M -term gPC
expansion, and that the affine terms are Lipschitz continuous in the sense described below. We
demonstrate in this section that these assumptions are not restrictive. Our construction exploits
the well-known property of gPC that common quantities of interest such as the mean field and
variance field can be exactly recovered by simple manipulation of the gPC coefficients [30].

The first assumption we make is that F has affine dependence on an M -term gPC expansion,
specifically

F ruM s “ F

«

M
ÿ

m“1

pumpxqφmpµq

ff

“

M
ÿ

m“1

θF ppum pxqqF rφmpµqs . (2.14)

It is not hard to show that typical quantities of interest satisfy this condition on F with simple
coefficient functions θF :

• F is expected value E and θF is the identity function,

F ruM s “ E ruM px,µqs “
M
ÿ

m“1

pumpxqE rφmpµqs “ pu1 (2.15a)

• F is the variance field, with θF the quadratic function θF pvq “ v2,

F ruM s “ varpuM px,µqq “
M
ÿ

m“1

ppumpxqq
2var rφmpµqs “

M
ÿ

m“2

ppumpxqq
2 (2.15b)
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• F is the norm-squared operator ‖¨‖2L2
ρ

defined in (2.8) and θF is again the quadratic θF pvq “

v2,

F ruM s “ ||uM px,µq||2L2
ρ
“

M
ÿ

m“1

ppumpxqq
2||φmpµq||L2

ρ
“

M
ÿ

m“1

ppumpxqq
2 (2.15c)

Thus, our assumption (2.14) is not too restrictive.
Our theoretical results also require the second assumption that the functional θF is Lipschitz

continuous with Lipschitz constant CLip, i.e., that

}θF pvq ´ θF pwq} ď CLip }v ´ w} , (2.16)

for all appropriate inputs v and w. For F “ E, this constant is CLip “ 1. For the latter cases of
F “ var and F r¨s “ }¨}L2

ρ
where θF pvq “ v2, then CLip “ 2U , where U is the uniform bound in

(2.4).

2.3 Reduced Basis Method (RBM)

The reduced basis method is one of the most widely used model order reduction strategies to solve
a parameterized PDE with a large number of different parameter configurations. RBM seeks to
form an approximation uN satisfying

uN pµq « uN pµq, µ P Γ,

such that the surrogate uN can be computed with an algorithm whose complexity depends only
on N , in contrast to the full solution uN whose complexity depends on N " N . In this section,
we present the key ingredients of RBM, including the greedy algorithm for the construction of the
reduced basis space, the a posteriori error estimate, and the efficient offline-online computational
decomposition. The RBM algorithm will be a central part of the novel hybrid approach that we
present in Section 3.

2.3.1 Reduced basis approximation

We take the general problem (2.2) for presentation of reduced basis approximations. To simplify the
presentation, we assume that the boundary condition is homogeneous Dirichlet and the differential
operator L is linear, affine with respect to functions of µ. However, there are constructive remedies
available for non-affine and non-linear operators [3, 19,26].

We recall from the discussion in Section 2.1 that a computational solver in (2.3) uses N " 1
degrees of freedom to produce uNq pxq, which is deemed an acceptably accurate approximation to
u px,µqq. In the RBM context, this approximation is called the truth solution or truth approx-
imation and we will use this terminology when appropriate. The starting point for developing
computational reduced basis methods is to replace the expensive truth solution with an inexpen-
sive reduced-order solution. We briefly describe the standard method for accomplishing below. For
simplicity we assume a linear operator L, but note that extensions to nonlinear problems exist [19].

Assume that a dense training set of parameter samples Ξ P Γ is given such that the µ-variation
of the solution u is accurately captured by the resulting truth solution ensemble {uN px,µq : µ P Ξ}.
In the framework of this paper, we take Ξ to be the quadrature rule nodal set introduced in (2.9),

that is, Ξ “ tµqu
Q
q“1.
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For any given reduced-order dimension N ! N , we build the N -dimensional reduced basis
space XN by a greedy algorithm. The reduced basis space is constructed as a span of “snapshots”
(i.e., truth solutions) based on judiciously chosen samples from the training set Ξ [24]

XN “ spantuN px,ν1q, ..., uN px,νN qu, (2.17)

where
 

ν1, . . . ,νN
(

Ă Ξ. For a fixed µ˚ P Γ, the idea of RBM is to approximate the truth
solution uN px,µ˚q by its RB surrogate, which is formed as an element of XN . The RBM surrogate
uN px,µ˚q can thus be represented as

uN px,µ˚q “
N
ÿ

k“1

ckpµ
˚quN px,µkq (2.18)

By exploiting the linearity of the operator, RBM seeks to find coefficients ckpµ
˚q such that the

residual of (2.3) using the solution uN ,

N
ÿ

k“1

ckpµ
˚qLN px, uN px,µkq,µ˚q ´ fN px,µ˚q,

is as small as possible. The meaning of “small” is made precise by the prescription of an appropriate
projection operator P such that the following holds

P
´

N
ÿ

k“1

ckpµ
˚qLN px, uN px,µkq,µ˚q

¯

“ P
´

fN px,µ˚q
¯

. (2.19)

Concrete examples of this abstract projection operator are the continuous L2 projection onto
XN , a discrete `2 projection (least-squares) on the spatial mesh, or an empirical interpolation
procedure [12,13].

2.3.2 A posteriori error estimate

Error estimates play a crucial role in computational procedures for RBM algorithms. These esti-
mates allow one to choose the parameter values ν1, . . . ,νN in (2.17) in an efficient and accurate
way. Let R : D ˆ Γ Ñ R denote the (Riesz representation of the) truth discretization residual in
(2.3) with the reduced-order solution uN , defined as

RN p¨;µq “ fN p¨ ;µq ´ LN puN px,µq;µq. (2.20)

The goal is to use knowledge of RN to quantify the error in an RBM surrogate. The surrogate
error is given by epx,µq :“ uN px,µq ´ uN px,µq and, due to linearity of LN , satisfies

LN pepx,µq,µq “ Rp¨;µq (2.21)

To obtain a computable error bound for epx,µq, we let βLBpµq be a lower bound for the smallest
eigenvalue of LN pµqTLN pµq.

0 ă βLBpµq ď min
v

vT
`

LN pµq
˘T LN pµqv

‖v‖XN

(2.22)

Here LN pµq should be understood as the matrix representation of LN p¨ ;µq. The relations (2.21)
and (2.22) can be used to conclude [13]

‖epx,µq‖XN ď
‖RN px,µq‖XN

a

βLBpµq
@µ P Ξ (2.23)
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Therefore, we can define a rigorous a posteriori error estimate as

∆N pµq “
‖RN px,µq‖XN

a

βLBpµq
ě ‖epx,µq‖XN @µ P Ξ. (2.24)

We see that it is computationally tractable to bound the RBM surrogate error so long as we
can efficiently compute the residual RN along with βLB . The residual can indeed be computed
with OpNq complexity (see Section 2.3.4). The efficient and feasible evaluation of βLBpµq can be
accomplished via the successive constraint linear optimization method (SCM) [11, 17, 21, 22] with
the marginal computational cost for each µ independent of the truth solution complexity N . With
the ability to efficiently compute ∆N , we can describe the greedy algorithm for choosing the RBM
parameter snapshot locations tνku.

2.3.3 Greedy Algorithm

Given the training parameter set Ξ, the greedy algorithm deals with an optimization problem in
a greedy way, seeking a new parameter νk`1 P Ξ such that

νk`1 “ argmax
µPΞ

∆kpµq (2.25)

Guided by the error estimate ∆kpµq, the parameter values that accurately represent the solution
manifold will not be omitted.

Algorithm 1 Greedy algorithm for construction of an RBM approximation

1: Input: training set Ξ;
2: Input: stopping criterion tolerance εtol;
3: Randomly select the first sample µ1 P Ξ;
4: Obtain truth solution uN

`

x,ν1
˘

, set X1 “ span
 

uN px,ν1q
(

;
5: Set N “ 1 and ∆max “ 8;
6: while ∆max ą εtol do

7: for each µ P Ξ do
8: Obtain RBM solution uN px,µq by computing cjpxq that satisfy (2.19)
9: Compute a posteriori error estimate ∆N pµq

10: end for

11: Set νN`1 “ argmaxpµPΞq∆N pµq, and ∆max “ ∆N pν
N`1q;

12: Obtain truth solution uN px,νN`1q from (2.3) at µ “ νN`1;

13: Augment the reduced basis space XN`1 “ span
 

XN Y tu
N px,νN`1qu

(

;

14: Set N Ð N ` 1
15: end while

This process is repeated until the maximum of the error estimate is sufficiently small. At every
step we choose the parameter whose surrogate error is largest.

Note that we need to query the truth solution at lines 4 and 12 of Algorithm 1. However, we
only require N such solutions, with N ! |Ξ|. Lines 8 and 9 can be completed efficiently with only
OpNq complexity, as we describe in the next section.
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2.3.4 Offline-online decomposition

The offline-online computational decomposition is the central idea that makes RBM so effective [29].
The core idea that permits this decomposition is that in many cases the operator LN and forcing
term fN in (2.3) exhibit affine dependence on the parameter, i.e.,

Lpµq “
QL
ÿ

q“1

θLq pµqLq, fpx,µq “

Qf
ÿ

q“1

θfq pµqfqpxq (2.26)

where the coefficient functions θLq and θfq depend only on the parameter µ, and the operators Lq
and fq are parameter-independent. (We recall again that the RBM can likewise handle non-affine
problems [19].)

This affine assumption allows the RBM algorithm to be divided into two stages: offline and
online. The offline stage has complexity that is N -dependent and thus is expensive, but it is done
only once. The online stage complexity is independent of N , and thus it is inexpensive and is
computationally feasible for a large number of inputs.

That the offline portion is N -dependent is not surprising; what is remarkable is that the online
portion, computation of the RBM surrogate uN , can be accomplished with complexity depending
only on N ! N . The essential idea is that by using the formula (2.18) along with the affine
assumptions (2.26), then the discrete PDE (2.3) at any value µ˚ has the form

N
ÿ

k“1

ckpµ
˚q

QL
ÿ

q“1

θLq pµ
˚qLqpuN px,µkqq “

Qf
ÿ

q“1

θfq pµ
˚qfqpxq

We note that only the terms that are double-underlined require N -dependent complexity to evalu-
ate. However, these terms do not depend on µ˚, and so they may be computed and stored during
the offline stage. Thus, for any µ˚, determining the RBM coefficients ck pµ

˚q via the projection
in (2.19) may be performed with a complexity that depends only on N , QL and Qf . We refer
to [13,29] for more details.

3 Hybrid Algorithm

We recall the discussion from the end of section 2.2.2 that stochastic collocation can be compu-
tationally burdensome when the random parameter dimension K is large. The results in Figure
1 indicate that the number of stochastic collocation nodes easily exceeds the current capacity of
computational power for high dimensions. For instance, a 20-dimensional problem using a 5-point-
per-dimension quadrature rule requires 520 « 1014 nodes. Although a sparse grid approach is more
efficient than a tensor product grid, such a grid still has more than one million parameter values,
requiring more than one million solves of (2.3). Therefore it still takes a onerous amount of time
in practical engineering problems to achieve reasonable accuracy. Our approach ameliorates the
cost-per-solve by using a gPC-goal-oriented variant of the RBM algorithm.

In this section, we develop a reduced basis method utilizing a modified a posteriori error
estimate in the traditional RB greedy algorithm. We design this RBM-gPC hybrid to efficiently
and accurately construct a gPC surrogate for the PDE system (2.3).

We avoid the direct hybridization of RBM and gPC, where RBM as introduced in section 2.3
would be used to give equal weight to all parameter values. This näıve approach would result in
a gPC approximation that converges slowly in the L2

ρ norm, requiring a large N (the dimension
of the RBM surrogate). We exploit the observation that each upx,µqq associated with parameter
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value µq should have some quantitative measure of importance as indicated by the probability
density ρ pµqq. This idea was explored [27], but our version differs notably from earlier methods
since we do not explicitly use ρ as a weight for the a posteriori error estimate.

Instead, we propose and analyze a new “goal-oriented reduced basis method” adopting a
weighted a posteriori error estimate. Rigorous error analysis is provided to validate the use of
the weighted approach and the resulting gPC construction.

3.1 Weighted a posteriori error estimate

Appropriate design of the error estimate can critically determine the performance of any reduced
basis method, particularly so for our goal-oriented approach. The approximate gPC coefficient
formula (2.10) is the wq-weighted inner product between the polynomial Φm and uN . Thus, the
error estimate should likewise be weighted using the quadrature weight wq. We emphasize again
that our strategy is different from using the probability density function ρ as done in [27]; even in
simple one-dimensional cases, it is easy to see that wq ff ρ pµqq (cf., e.g., Gaussian quadrature or
Clenshaw-Curtis quadrature).

We introduce the following cheap, dependable, and tight evaluation of reduced basis approxi-
mation, a weighted a posteriori error estimate ∆w

N pµq, given by

∆w
N pµ

qq “
}RN p¨,µ

qq}XN
a

βLBpµqq

b

Q|wq|, q “ 1, . . . , Q, (3.1)

where βLBpµ
qq is a lower bound for the smallest eigenvalue, and RN is the PDE residual of the

order-N surrogate as defined in (2.20). Note that the novel quantity is the factor
a

Q|wq|; since
wq corresponds to a Q-point normalized quadrature rule the quantity Q|wq| has Op1q magnitude,
in principle. The absolute value bars are necessary in general because sparse grid quadrature rules
can have negative weights. For a tensor-product Gaussian quadrature rule, the weights are all
positive.

Having defined this weighted a posteriori error estimate, we can bound the error between the
m-th truth Fourier coefficient puNm in (2.12) and its surrogate puNm

puNm “
Q
ÿ

q“1

uN pµqqΦmpµ
qqwq. (3.2)

The precise estimate is below in section 4.

3.2 Goal-oriented greedy algorithm

Given the training parameter set Ξ and a current RB selection tν1, . . . ,νku, the goal-oriented
greedy algorithm, stated in Algorithm 2, aims to construct the reduced basis space in hierarchical
manner by finding a new parameter νk`1 P Ξ such that

νk`1 “ argmax
µPΞ

∆w
k pµq (3.3)

Guided by the weighted a posteriori error estimate ∆w
k pµq, the greedy algorithm chooses parameters

by weighting them with the (square root of the) quadrature weights as shown in (3.1). We show
later in Theorem 4.2 and Corollary 4.3 that this weighting allows one to guarantee that the gPC
approximation that is formed from the RBM surrogates is within a user-defined tolerance of the
gPC-truth approximation.
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Another major difference in the goal-oriented algorithm is that the tolerance criterion is tuned
to the quantity of interest of the gPC surrogate. At each stage with k RB snapshots, we compute
the error estimate

ε “ CQ,M

g

f

f

e

1

Q

Q
ÿ

q“1

p∆w
k q

2pµqq, with CQ,M “

M
ÿ

m“1

g

f

f

e

Q
ÿ

q“1

|wq|Φ2
mpµ

qq |F rΦmpµqs| , (3.4)

where F denotes the quantity of interest as introduced in (2.14). Note that the constant CQ,M is
computable independent of the solution u, and depends only on the choice of quadrature rule and
quantity of interest. (See Lemma 4.6, and the discussion following Corollary 4.3.) As we show in
Corollary 4.3, it turns out that ε is an upper bound on the error in the quantity of interest defined
by F between the inexpensive RBM surrogate and the full expensive gPC stochastic collocation
approximation.

Algorithm 2 Goal-oriented greedy algorithm

1: Input: training set Ξ with associated quadrature weights wq;
2: Input: stopping criterion tolerance εtol;
3: Input: goal-oriented constant CQ,M “

řM
m“1BQ,mF rΦm pµqs.

4: Randomly select the first sample µ1 P Ξ;
5: Obtain truth solution uN

`

x,µ1
˘

, set X1 “ span
 

uN px,µ1q
(

;
6: Set k “ 1 and ε “ 8;

7: while ε ą εtol do

8: for each µ P Ξ do
9: Obtain RBM solution ukpx,µq by computing cjpxq that satisfy (2.19)

10: Compute weighted a posteriori error estimate ∆w
k pµq from (3.1)

11: end for

12: Choose µk`1 “ argmaxpµPΞq∆w
k pµq;

13: augment the reduced basis space Xk`1 “ Xk Y tu
N px,µk`1qu;

14: Calculate ∆sum “
ř

µPΞp∆
w
N q

2pµq;

15: Set ε “ CQ,M
b

1
|Ξ|∆

sum.;

16: Set N Ð N ` 1;

17: end while

3.3 Goal-oriented hybridized RBM-gPC algorithm

We are now ready to present the unified, goal-oriented hybrid method; summary pseudocode is
shown in Algorithm 3. The main idea of the hybrid algorithm is leveraging the goal-oriented
RBM to alleviate the computational burden of obtaining the gPC coefficients. One major tool
to accomplish that goal is splitting the work of solving (2.2) into two stages, one offline and one
online.

The offline stage is Algorithm 2: first the RBM space is built by scanning the quadrature node
set Ξ and evaluating the weighted a posteriori error estimate ∆w

k pµ
qq. Algorithm 2 utilizes the

expensive PDE solver, solving (2.3) a total of N times over the parameter set ν1, . . . ,νN . The
offline phase stops when the computed error indicator ε defined in (3.4) falls below the user-defined
tolerance εtol.
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The online stage proceeds as indicated on line 5 of Algorithm 3. In this phase, the RBM surro-
gate that was constructed in the offline phase is evaluated several times to compute the approximate

gPC coefficients
 

puNm
(M

m“1
. This portion of the algorithm is much faster than näıve evaluation of

(2.12); it is in this section of the procedure where the hybrid algorithm reaps computational savings
compared to a traditional stochastic collocation approach.

Once the approximate coefficients puNm are collected, the quantity of interest F
“

uNM
‰

may be
evaluated. As we show in the next section, a significant benefit of using the hybrid approach is
that the error in this computed quantity of interest can be rigorously controlled by the user-defined
input tolerance εtol.

Thus, the hybrid algorithm both achieves significant computational savings in construction of
a gPC approximation and provides strict error bounds on quantities of interest.

Algorithm 3 Hybrid Algorithm

1: Input: the general stochastic PDE (2.2) and a tolerance εtol.

2: Offline procedure:

3: Set Ξ as the training set and use the goal-oriented greedy procedure with tolerance εtol (Algo-
rithm 2) to compute N reduced basis elements tuN px,µjquNj“1.

4: end Offline procedure
5: Using the online RBM surrogate uN px,µq, compute M -term gPC coefficients and approxima-

tion of uN :

puNm “
Q
ÿ

q“1

wqu
N px,µqqΦm pµ

qq

uNM px,µq “
M
ÿ

m“1

ûNmpxqΦmpµq.

6: Output: Solution uNM , or quantity of interest FruNM s “
řM
m“1 θF rpu

M
N pxqsF rΦmpµqs.

4 Analysis of the hybrid algorithm

In this section, we show the convergence of this goal-oriented gPC-RBM algorithm. More precisely,
we show that the error committed by the hybrid RBM algorithm is controlled by the user-defined
input parameter εtol in Algorithm 3. Given a P -th order M -term gPC projection (2.6), the m-th
truth Fourier coefficient puNm is evaluated by (2.12) and its surrogate puNm by (3.2). The truth and
reduced basis stochastic solutions are then, respectively,

uNM px,µq “
M
ÿ

m“1

ûNmpxqΦmpµq, (4.1)

uNM px,µq “
M
ÿ

m“1

ûNmpxqΦmpµq. (4.2)

The properties of the RBM algorithm allow us to bound the error between the computationally
expensive F

“

uNM
‰

and the efficiently computable hybrid surrogate F
“

uNM
‰

. This bound is our main
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theoretical result and is shown in Theorem 4.2.
To begin, we first need to control the error between the full stochastic collocation gPC coeffi-

cients uNm pxq and its RBM surrogate uNm pxq.

Lemma 4.1. Given a Q-point quadrature rule tµq, wqu
Q
q“1 and an N -dimensional reduced basis

approximation uN px,µq for the solution upx,µq to the PDE (2.2), the error in the m-th gPC
coefficient is given by

›

›

puNmpxq ´ puNmpxq
›

›

XN
ď BQ,m

g

f

f

e

1

Q

Q
ÿ

q“1

p∆w
N q

2 pµqq,

where BQ,m is the uncentered second moment of Φmpµq under the discrete measure defined by the
quadrature rule:

BQ,m “

g

f

f

e

Q
ÿ

q“1

|wq|Φ2
mpµ

qq. (4.3)

Proof. We use the quadrature representation for these functions:

›

›

puNmpxq ´ puNmpxq
›

›

XN
“

›

›

›

›

›

Q
ÿ

q“1

wqΦm pµ
qq
“

uN px,µqq ´ uN px,µqq
‰

›

›

›

›

›

XN

ď

Q
ÿ

q“1

ˇ

ˇ

ˇ

ˇ

b

|wq|Φm pµ
qq

ˇ

ˇ

ˇ

ˇ

ˆ

b

|wq| }epx,µ
qq}XN

˙

ď

g

f

f

e

Q
ÿ

q“1

|wq|Φ2
m pµ

qq

g

f

f

e

Q
ÿ

q“1

|wq| }epx,µqq}
2
XN

ď BQ,m

g

f

f

e

Q
ÿ

q“1

1

Q
p∆w

N q
2 pµqq

This result bounds the error in each gPC coefficient as a product of two terms: the first
term BQ,m indicates the accuracy of the quadrature rule, which is computable independent of
the solution u. The second term is an average of the weighted a posteriori error estimate over
parameter space.

We can now bound the RBM error in the quantity of interest.

Theorem 4.2. Given an M -term gPC projection (2.6) and an N -dimensional reduced basis ap-
proximation (2.19), the error in the quantity of interest computed from the RBM-gPC approxima-
tion uNM , and that computed from the truth gPC approximation uNM is

›

›F
“

uNM
‰

´ F
“

uNM
‰
›

›

XN
ď CLip CQ,M

g

f

f

e

1

Q

Q
ÿ

q“1

r∆w
N pµ

qqs
2
, (4.4)
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where CLip is the Lipschitz constant of F defined in (2.16), and CQ,M is a constant independent
of u, defined by

CQ,M “

M
ÿ

m“1

BQ,m |F rΦmpµqs| , (4.5)

with BQ,m defined in (4.3).

Proof. We begin by using our assumption (2.14) regarding the affine dependence of F on a gPC
representation:

F
“

uNM
‰

´ F
“

uNM
‰

“

M
ÿ

m“1

`

θF ppu
N
mpxqq ´ θF ppu

N
mpxqq

˘

F rΦmpµqs .

Applying triangle inequality and Lipschitz continuity of θF p¨q, we have

›

›F
“

uNM
‰

´ F
“

uNM
‰
›

›

XN
ď CLip

M
ÿ

m“1

›

›

puNM pxq ´ puNM pxq
›

›

XN
|F rΦmpµqs| .

Using Lemma 4.1 on the right-hand side, we obtain

›

›F
“

uNM
‰

´ F
“

uNM
‰
›

›

XN
ď CLip

M
ÿ

m“1

BQ,m |F rΦmpµqs|

g

f

f

e

1

Q

Q
ÿ

q“1

p∆w
N q

2pµqq,

and this proves (4.4).

Corollary 4.3. The output gPC approximation uNM from Algorithm 3 satisfies

›

›F
“

uNM
‰

´ F
“

uNM
‰
›

›

XN
ď CLip ε

where ε is defined in (3.4).

Remark 4.4. The Lipschitz constant CLip is trivially 1 when Fr¨s is the expected value operator.
For the other two cases listed in (2.15b) and (2.15c), it is finite as long as we have uniform stability
with respect to the parameter µ for the computational solver (2.3). As the discussion around (2.4)
indicates, this is a standard assumption, and in that case CLip “ 2U .

Remark 4.5. We emphasize that CQ,M is a scalar whose value is independent of the solution u, its
truth discretization uN , or the RBM surrogate uN . It depends only on the choice of quadrature
rule, the gPC order, and the choice of what quantity of interest is to be computed.

The coefficient CQ,M is not analytically computable in general since it depends on the chosen
quadrature rule in parameter space. However, the next lemma shows that for quadrature rules of
sufficiently high accuracy, BQ,m ” 1.

Lemma 4.6. Let tΦ1, . . . ,ΦMu span the degree-P isotropic total-degree space, so that M “
ˆ

K ` P
P

˙

. Assume that the quadrature rule (2.9) corresponds to an isotropic tensor product

quadrature rule with q points in each dimension, totaling Q “ qK nodes. If P ă q, then BQ,m ” 1
for m “ 1 . . . ,M .
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Quantity of interest BQ,m CQ,M Assumptions

Mean value, F “ E 1 1 The quadrature rule (2.9)
exactly integrates the con-
stant function, all weights
are positive

Variance, F “ var 1´ δm,1 M ´ 1 Assumptions of Lemma 4.6

L2
ρ-norm squared, F r¨s “ }¨}2L2

ρ
1 M Assumptions of Lemma 4.6

Variance, F “ var
b

řQ
q“1 |wq|Φ

2
mpµqq

řM
m“2

b

řQ
q“1 |wq|Φ

2
mpµqq None

L2
ρ-norm squared, F r¨s “ }¨}2L2

ρ

b

řQ
q“1 |wq|Φ

2
mpµqq

řM
m“1

b

řQ
q“1 |wq|Φ

2
mpµqq None

Table 2: Summary of explicit values for bounding constants BQ,m and CQ,M for common quantity
of interest operators F . In the table, δj,k is the Kronecker delta function.

Proof. This is a simple consequence of the fact that a q-point Gaussian quadrature rule exactly
integrates polynomials up to degree 2q ´ 1. With α the size-K multi-index corresponding to the
linear index m, then

Φ2
mpµq “

K
ź

k“1

φ2
αk
pµkq, αk ď |α| “ P.

Thus, in dimension k, we have deg φ2
αk
ď 2P ă 2q. Additionally, a Gauss quadrature rule has

all positive weights. Therefore, the quadrature rule integrates the polynomial in each dimension
exactly, so B2

Q,m “
řQ
j“1 wjΦ

2
m

`

µj
˘

“ EΦ2
mpµq “ 1.

Of course, similar statements about BQ,m can be made for non-total-degree or anisotropic
spaces so long as one has a good understanding of the quadrature rule. Even if one cannot
analytically derive values for BQ,m, it is easily and inexpensively computable by applying the
quadrature rule to the gPC basis Φ2

m.
Thus under certain assumptions, the constants CQ,M and BQ,m are explicitly computable.

We summarize some of these results in Table 2. However, in some cases we do not have explicit
formulas for BQ,m, but these constants can be easily computed, based on for example sparse grid
code [15]. In Figures 2, we take a widely used sparse grid with two typical types of gPC bases as
examples, where wq are the weights of 4 dimensional Gauss-Patterson-based sparse grid and Φm
are chosen as Legendre polynomials and Jacobi polynomials (α “ 1, β “ 1) individually.

5 Numerical results

In this section, we present numerical results to illustrate the accuracy of the proposed hybrid
approach and its efficiency compared to the conventional gPC method. The PDE with random
inputs is the following linear elliptic equation posed on the spatial domain D “ r´1, 1s ˆ r´1, 1s
with homogeneous Dirichlet boundary conditions for simplicity.

#

´∇ ¨ papx,µq∇upx,µqq “ f in D ˆ Γ,

upx,µq “ 0 on BD ˆ Γ.
(5.1)
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Figure 2: Value of BQ,m with Legendre polynomial (left) and Jacobi polynomial (right). Q varies
with the accuracy level of sparse grid (level 7 to level 16). m records the sequence of gPC bases
with degree ď 5

The stochastic coefficient apx,µq is defined as:

apx,µq “ A`
K
ÿ

k“1

cosp30 ˚ µk ´ 1q

k2
cospkxq sinpkyq,

where K is the parameter dimension and A is a positive constant ensuring a ą 0, so that the
equation is uniformly elliptic on D. We take as the right hand side f “ 1. As we mentioned in
(2.14), the output of interest F is defined as a certain functional of the solution over the physical
domain D. Here, we explore the following two cases:

• F “ E. By (2.15a), the error of the mean value we observe is

ξmean “
∥∥FruNM s ´ FruNM s∥∥`2pDq “ ∥∥

puN1 pxq ´ puN1 pxq
∥∥
`2pDq

(5.2)

• F “ ‖¨‖2L2
ρ
. By (2.15c), the error of norm-squared operator we evaluate is

ξnorm “
∥∥FruNM s ´ FruNM s∥∥`2pDq “

∥∥∥∥∥ M
ÿ

m“1

ppuNmpxqq
2 ´

M
ÿ

m“1

ppuNmpxqq
2

∥∥∥∥∥
`2pDq

(5.3)

In our numerical experiments, we test problem (5.1) with A “ 5 and K “ 2, 4, 6. We use the
5th total degree space

U5
K ” span

 

Φα
ˇ

ˇ |α| ď 5
(

(5.4)

for gPC approximation. We adopt a tensor product quadrature rule for lower dimensional case
K “ 2, and sparse grid for the higher dimensional cases K “ 4, 6. See Table 3 for the num-
bers of nodes Q and gPC polynomial bases M for each K. To obtain truth approximations uNM ,
we implement a spectral collocation solver on a Nx ˆ Nx pNx “ 35q grid. The online solver of
our goal-oriented reduced basis method is the least squares reduced collocation method developed
in [13]. We test the algorithm for two different probability distributions for the random variable
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K 2 4 6

Q(K) 1,600 22,401 367,041

M(K) 21 126 462

Table 3: The number of quadrature nodes and gPC polynomial bases for different dimension K.

µ, namely, the uniform distribution and Beta distribution with shape parameters α “ 2, β “ 2.

We plot in Figure 3 the expected value EpuNM q. The error estimates ε defined in (3.4) with
F “ E and F “ ‖¨‖2L2

ρ
are plotted in Figure 4 and Figure 5 respectively, both displaying exponential

convergence. We then evaluate the actual error in the quantity of interest of the resulting surrogate
solution, as defined in (5.2) and (5.3). These are shown in Figure 6 for the two choices, Ep¨q and
‖¨‖2L2

ρ
. We note that both ξmean and ξnorm have a clear exponential trend in convergence for both

cases of probability distributions. Finally, we measure the efficiency of the hybrid algorithm by
calculating the ratio of the runtime between those of the hybrid and the traditional gPC approach.
This is plotted in Figure 7. Here the time for the hybrid algorithm includes both offline and
online time. It is clear that the proposed hybrid gPC-RBM method can reach a high level of
accuracy (Figure 6) while significantly alleviating the computational burden (Figure 7). Moreover,
we observe that the efficiency is increasing as K gets larger. Therefore, this alleviation is more
significant for high-dimensional problems, indicating great potential of the hybrid approach for
even higher parametric dimensions.

Figure 3: Expected value when K “ 4 for uniform (left) and Beta (right) distribution.

6 Conclusion

We propose, analyze, and numerically test a hybridized RBM-gPC algorithm. It is based on a
newly designed weighted RBM enabling a particular greedy algorithm tailored for any applicable
quantity of interest in the context of uncertainty quantification. The final algorithm is analyzed to
be reliable, and tested to be accurate. Most importantly, its efficiency is increasing with respect
to the dimension of the randomness in the partial differential equation.
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Figure 4: Error estimate ε with F “ E for uniform distribution (left) and Beta distribution (right).

Figure 5: Error estimate ε with F “ ‖¨‖2L2
ρ

for uniform distribution (left) and Beta distribution

(right).
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