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A unified, goal-oriented, hybridized reduced basis method
and generalized polynomial chaos algorithm for partial
differential equations with random inputs
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Abstract

The generalized Polynomial Chaos (gPC) method using stochastic collocation is one of
the most popular computational approaches for solving partial differential equations (PDEs)
with random inputs. The main hurdle preventing its efficient direct application for high-
dimensional randomness is that the solution ensemble size grows exponentially in the number
of inputs (the “curse of dimensionality”). In this paper, we design a weighted version of the
reduced basis method (RBM) and synergistically integrate it into the gPC framework. The
resulting algorithm is capable of speeding up the traditional gPC by orders of magnitude
without degrading its accuracy. Perhaps most importantly, the relative efficiency improves as
the parametric dimension increases demonstrating the potential of our method in significantly
delaying the curse of dimensionality. Theoretical results as well as numerical evidence justify
these findings.

1 Introduction

Computational methods for stochastic problems in uncertainty quantification (UQ) are an increasingly-

important area of research and much recent effort in this direction has been rewarded with many
promising developments. In particular, algorithms that quantify the effect of random input param-
eters on solutions to differential equations have seen rapid advancement. One of the most widely
used methods in this context is the generalized Polynomial Chaos (gPC) method , which con-
structs a parametric response surface using a polynomial representation. This method exploits
parametric regularity of the system to achieve fast convergence rates . With gPC, stochastic
solutions are represented as expansions in orthogonal polynomials of the input random parameters,
and so many stochastic algorithms concentrate on computation of the expansion coeflicients in a
gPC representation. Stochastic collocation is a popular non-intrusive approach to compute these
coeflicients, using a collection of interpolation or quadrature nodes in parameter space [31]. This
requires one to query an expensive yet deterministic computational solver once for each parameter
node. However, when the dimension of the random parameter is large, the number of required
parameter nodes (and hence the number of computational solves) grows exponentially fast. This
is a manifestation of the “curse of dimensionality”.
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One popular strategy that combats the computational burden arising from multiple queries
of an expensive model is model order reduction, which includes proper orthogonal decomposition
(POD) methods, Krylov subspace methods, and reduced basis methods (RBM). We refer to [5] for
a recent survey detailing some of these methods. Model reduction strategies allow one to replace
an expensive computational model with an inexpensive yet accurate emulator for which performing
a large number of queries is computationally feasible.

Such an approach appeals to the same motivation as POD methods: although the random
inputs live in a high-dimensional space, the output of interest (such as the full solution field or
integrated quantities of interest) frequently lie in a low-dimensional manifold [6,9,[25]. The search
for, identification, and exploitation of this low-dimensional manifold are the central goals of many
model order reduction strategies. Assuming such a low-dimensional manifold exists, then it may be
possible to build a reduced-complexity emulator and consequently form the sought accurate gPC
approximation. In this paper we employ the RBM model reduction strategy, for which [6}16}28]
are good references with [1,|2,/41|18] the appropriate historical references.

The Reduced Basis Method performs a projection onto “snapshots”, i.e., a small and carefully
chosen selection of the most representative high-fidelity solutions. These snapshots are selected
via a greedy algorithm that appeals to an a posteriori error estimate [17}/28]. The computational
methods that one uses to compute high-fidelity snapshots include typical legacy solvers, like col-
location or finite element discretizations. The ingredient in RBM that allows for computational
savings is the “offline-online” decomposition. The offline stage is the more expensive part of the
algorithm where a small number of parameter values are chosen and the snapshots are generated
by executing the expensive high-fidelity computational model at these parameter locations. (Typ-
ically O(10) such evaluations are necessary.) The preparation completed during the offline stage
allows very efficient evaluation of an emulator of the high-fidelity model during the online stage.
During the online stage, each evaluation of the emulator can typically be computed 100-1000 times
faster than evaluation of the original expensive model. One of the major benefits of RBM that
we exploit in this paper is that the RBM model reduction is rigorous: Certifiable error bounds
accompany construction of the emulator in the offline stage |28].

The idea of utilizing the RBM for problems in a general uncertainty quantification framework
is not new [7,8,{10}/14}/20,27]. However in this paper our ultimate aim is to form a gPC expansion.
The use of the RBM in this context and the exploration of its effectiveness in high-dimensional
random space are underdeveloped to the best of our knowledge. A naive stochastic collocation
method is computationally infeasible in high-dimensional parameter spaces, even when employing
a sparse grid of economical cardinality. But the hybrid gPC-RBM algorithm we propose is able to
reduce the computational complexity to a manageable load, and thus enables construction of the
gPC approximation in high-dimensional parameter spaces with rigorous error bounds.

This paper introduces, refines, and extends the idea of combining a goal-oriented Reduced
Basis Method with a generalized Polynomial Chaos expansion. Our framework is goal-oriented:
the construction of the approximation is optimized with a user-specifiable quantity of interest in
mind. The algorithm is rigorous: we can guarantee an error tolerance for general quantities of
interest. Our numerical results indicate that our method improves in performance (efficiency)
as the parametric dimension increases — this suggests that our method is particularly useful for
delaying the curse of dimensionality.

In section [2] we introduce the general framework of a PDE with stochastic input data. The
two major ingredients in our approach, gPC and RBM, are likewise discussed. In section [3| we
introduce the hybrid algorithm which is analyzed in section[d] Our numerical results are collected
in section [§] which verify the efficiency and convergence of the hybrid algorithm.



2 Background

In this section, we introduce the necessary background material of the hybrid algorithm, namely,
generalized Polynomial Chaos and the Reduced Basis Method.

2.1 Problem setting

Probability framework: Let p = (u1,...ux) be a K-variate random vector with independent
components on a complete probability space (€2, B, P), with Q the sample space equipped with the
o-algebra B, and P a probability measure. For I'; = p;(€2) the state space of p;, the probability
density function of the random variable p; is denoted p; : I'; — R™. Since the components of p
are mutually independent, then

p(k) =TI 1 pi(s) (2.1)

is the joint probability density function of random vector p. The image of p is
I=@L T <R

Partial Differential Equation with random parameters: Let D < R%(d = 1,2,3) be an
open set in the physical domain with boundary 0D, and « = (z1,...z4) € D be a point in this set.
We consider the problem of finding the solution v : D x I' — R of the following stochastic PDE:

{ﬁ(w,u,u) = f(@,p), V(z,p)eDxT, (2.2)

B(z,u,p) = g(z, pn), V(x,p)edD xT.

Here L is a differential operator defined on domain D and B is a boundary operator defined on
the boundary ¢D. The functions f and g represent the forcing term and the boundary conditions,
respectively.

We require the problem to have well-posed solutions in a Hilbert space X. We thus assume
u(-; p) € X almost surely. The Hilbert space X is equipped with inner product (-, ) x and induced
norm | - |x. A straightforward example is furnished when corresponds to a canonical elliptic
partial differential equation: X satisfies H}(D) ¢ X < H'(D), with H! the space of functions
whose L2-derivatives are square-integrable over D, and H} the space of functions in H' whose
support is compact in D.

In most applications, one has access to a deterministic computational solver that, for each fixed
value of pu, produces an approximate, discrete solution to (2.2]). We assume that for this fixed p,
such a computational solver produces the discrete solution «”V, which has A degrees of freedom.
This discrete solution is obtained by solving a discretized version of . For a fixed pu € ', this
is given by

{Muﬂﬂm = (). 23)

BN (N, p) = gV ().

Standard legacy discretizations, such as finite element or spectral collocation solvers, can be written
in this way. The continuous Hilbert space X is replaced with its discrete Hilbert space counterpart
X, with norm || - || x,-

As before, we assume that u? (1) € X almost surely. We will need an additional assumption
that the norm of the solution is uniformly bounded as a function of the parameter. IL.e.,



This assumption is satisfied for many practical problems of interest. For example, for a linear
elliptic operator £V (uN ), boundedness of the solution is a simple consequence of the bilinear weak
form being coercive and the linear form being continuous [23]. In our setting, uniform coercivity
of the bilinear form and uniform continuity of the linear form with respect to u would be sufficient
to guarantee the uniform boundedness .

When introducing the discretized PDE ([2.3)) we assume that, for any p € T, uN(u) ~ u(x, p),
where the approximation has an acceptable level of accuracy. In practice, one requires N' » 1 to
achieve this.

In what follows we will usually treat p as a parameter rather than as an explicitly random
quantity. This is a standard approach, and is without loss since all of our statements can be framed
in the language of probability by appropriate change of notation. (E.g., p-weighted integrals are
expectations.)

2.2 Generalized Polynomial Chaos

The Generalized Polynomial Chaos method is a popular technique for solving stochastic PDE and
representing stochastic processes. The main idea of the gPC method is to seek an approximation of
the exact solution of the PDE by assuming that the dependence on p is efficiently represented
by a p-polynomial. If u depends smoothly on p, then exponential convergence with respect to the
polynomial degree can be achieved [30]. Computational implementations of gPC use an expansion
in an orthogonal polynomial basis; as a consequence, quantities of interest such as expected value
and variance can be efficiently evaluated directly from expansion coefficients.

2.2.1 gPC basis

Consider one-dimensional parameter space I'; corresponding to the random variable p;. If p; has
finite moments of all orders, then there exists a collection of orthonormal polynomials {d)m(')}ﬁ:w
with ¢, a polynomial of degree m, such that

E [¢m(ﬂz)¢n(ul)] = L pi(ﬂi)¢m(ﬂi)¢n(ui)dﬂi = (sm,n

where d,, ,, is the Kronecker delta function. The type of orthogonal polynomial basis {¢,,} depends
on the distribution of ;. For instance, if u; is uniformly distributed in [—1, 1], its probability den-
sity function p; is a constant and {¢,, }:°_ is the set of orthonormal Legendre polynomials. Several
well-studied orthogonal polynomial families correspond to standard probability distributions [30].
The correspondence for common probability distributions is shown in Table

For the K-dimensional case (K > 1), an orthogonal polynomial family associated to the full
tensor-product density p(u) can be formed from products of univariate polynomials:

cI)a(/v”) = Qa, (Ul)-~-¢ax (UK)7

where o = (o, ...,ak) € NE is a multi-index. The degree of ®, is |a| = Zszl ay. Note that the
@, defined in this manner are indeed orthonormal:

K K
| @atw@stwptudi = [T [ o, bsonlm)ds = [ [ . =0
k=1 k=1



Random variable distribution gPC polynomial basis Support

Gaussian Hermite (—o0, 00)

Gamma Laguerre [0, 0)

Beta Jacobi [-1,1]

Uniform Legendre [-1,1]
Poisson Charlier {0,1,2,3,...00}
Binomial Krawtchouk {0,1,2,3,..., N}
Negative Binomial Meixner {0,1,2,3,...00}
Hypergeometric Hahn {0,1,2,3,..., N}

Table 1: Various probability distributions with their corresponding gPC polynomial family and
support.

A standard polynomial space to consider in the multivariate setting is the total degree space,
formed from the span of all &, whose degree is less than a given P € N:

Ux, = span{®, | |o| < P}

The dimension of U} is

K+P ) (2.5)

amp) = (5

which grows comparably to PX for large K. In what follows, we will index multivariate orthonormal
polynomials as either ®, with o € N& satisfying |a| < P, or ®,, with m € N satisfying 1 < m <
dim U }?. To achieve this, we assume any ordering of multi-indices « that preserves a partial ordering
of the total degree (for example, graded lexicographic ordering).

2.2.2 gPC approximation and quadrature

The L2(T)-optimal gPC approximation of the solution u(x, ) to (2.2) in the space Uf is the
Li(I‘)—orthogonal projection onto UE, given by

N K+P
wilep) = 3 tn@n (). 01 - ame) - (K. (2.0
m=1
The Fourier coefficient functions @,,(1 < m < M) are defined as
(@) = [ ula, 1) () plas) (2.7)

For any x € D, the mean-square error in this finite-order projection is

Egpe(T) = HU(CC’ p) — Uﬁ(% ) HL%,(I")

= (L(u(m‘?u) - uf}(wvu))zp(u)d@ - (2:8)
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Figure 1: Tensor-product vs sparse grid (Gauss-Patterson-based sparse grid) quadrature rule sizes

Note that this error is usually not achievable in practice: The Fourier coefficients %, cannot be
computed without essentially full knowledge of the solution u. Therefore, one frequently resorts to
approximating these coefficients. One popular non-intrusive method is quadrature-based stochastic
collocation, where the integral in is approximated by a quadrature rule.

Toward that end, let {uq,wq}=1 denote quadrature nodes and weights, respectively, for a
quadrature rule that implicitly defines a new empirical probability measure:

Q

L Fp(dn ~ 3 w,f (). (2.9)

g=1

For example, two common choices for quadrature rules are tensor-product Gauss quadrature rules,
and Gauss-Patterson-based sparse grid quadrature rules. Each of these rules can effectively inte-
grate polynomials of high degree, but the requisite size of the quadrature rule @ is large in high
dimensions: See Figure

With this quadrature rule, the Fourier coefficients can be approximated by

Q
U & G = . (@, 1) Opy ()10, (2.10)
q=1

The advantage of this formulation is that we need only compute the quantities w (-, u?), which
are a collection of solutions to a deterministic PDE. Since this is all done in the context of a
computational solver given by , one will replace the continuous solution wu(-, p) with the
discrete solution u? (p).

Then a straightforward stochastic collocation approach first collects the solution ensemble from
the computational solver,

{u (@)} = (@, w)) (2.11)



then computes the approximate Fourier coefficients

Q
W= ) (@) B ()i, (2.12)
q=1
and finally forms the full approximation
M
w(, ) ~ oV (@) = 3 N (@)D (1), (2.13)
m=1

Note that, in order for the quadrature approximation to be reasonably accurate, the
number of quadrature points ) should be comparable with M. We already know from that
M scales like PX. A canonical type of problem for the system and its resulting discretization
is a linear elliptic PDE. In this case, the cost of obtaining each u{]\/ requires at least O(N)
computational effort. (In some cases O(N3) effort is required.) @ solves of the PDE are required,
with each solve costing at least O(N') work. Since Q ~ M ~ PX | then in the best-case scenario
the total work scales like O (N pPK ) Thus, the requisite computational effort for a straightforward
stochastic collocation method is infeasible when the random parameter p is high-dimensional.

However, if one could construct the approximation , then it is usually extremely accurate.
The focus of this paper is to inerpensively achieve an approximation whose error is comparable
to that from the projected gPC coefficients (2.13). The rest of this paper provides an algorithmic
method that allows one to approximate @ in a computationally feasible manner. The essential
ingredient is replacement of ufl\/ by an accurate surrogate that is much cheaper to compute.

2.2.3 Quantities of Interest

In many UQ scenarios, one is not necessarily interested in the entire solution field u(x, p), but
rather some other quantity of interest derived from it. We introduce a functional F that serves
to map the solution u to the quantity of interest (the “goal”). Our theoretical results require two
assumptions on the quantity of interest map F: that it has affine dependence on an M-term gPC
expansion, and that the affine terms are Lipschitz continuous in the sense described below. We
demonstrate in this section that these assumptions are not restrictive. Our construction exploits
the well-known property of gPC that common quantities of interest such as the mean field and
variance field can be exactly recovered by simple manipulation of the gPC coefficients [30].

The first assumption we make is that F has affine dependence on an M-term gPC expansion,
specifically

M

M
Flum] =F l > ﬁm(m)aﬁm(u)} = 2 05l (@) F [$m(p)] - (2.14)

m=1

It is not hard to show that typical quantities of interest satisfy this condition on F with simple
coefficient functions 0z:

e F is expected value [E and 6 is the identity function,

M
Flun] = B fun (@, p)] = D) (@) E [$m ()] = iy (2.15a)

m=1

e F is the variance field, with 8 the quadratic function 87 (v) = v?,

F lunr] = var(uns (@, 1) = 3 (@ (@) *var [on(w)] = D (@n(@))” (2.15b)

m=1 m=2



e F is the norm-squared operator ||-||2, defined in (2.8) and 0 is again the quadratic 6 (v) =
P
2

M M
Fluae] = lfuar(@, wiZs = Y, @n(@))?lom(m)llzz = ) (Gm())” (2.15¢)

Thus, our assumption ([2.14)) is not too restrictive.
Our theoretical results also require the second assumption that the functional 6z is Lipschitz
continuous with Lipschitz constant Ch,p, i.e., that

107 (v) = 0F(w)| < CLip v —w|, (2.16)

for all appropriate inputs v and w. For F = IE, this constant is CL;, = 1. For the latter cases of
F = var and F[-] = ||| . where £(v) = v?, then Cp;, = 2U, where U is the uniform bound in
P

£

2.3 Reduced Basis Method (RBM)

The reduced basis method is one of the most widely used model order reduction strategies to solve
a parameterized PDE with a large number of different parameter configurations. RBM seeks to
form an approximation u'V satisfying

K, pel,

such that the surrogate V' can be computed with an algorithm whose complexity depends only
on N, in contrast to the full solution «" whose complexity depends on A" » N. In this section,
we present the key ingredients of RBM, including the greedy algorithm for the construction of the
reduced basis space, the a posteriori error estimate, and the efficient offline-online computational
decomposition. The RBM algorithm will be a central part of the novel hybrid approach that we
present in Section [3]

2.3.1 Reduced basis approximation

We take the general problem for presentation of reduced basis approximations. To simplify the
presentation, we assume that the boundary condition is homogeneous Dirichlet and the differential
operator L is linear, affine with respect to functions of . However, there are constructive remedies
available for non-affine and non-linear operators [3,19}26].

We recall from the discussion in Section that a computational solver in uses NV » 1
degrees of freedom to produce u{]\/ (x), which is deemed an acceptably accurate approximation to
u(x, p?). In the RBM context, this approximation is called the truth solution or truth approz-
imation and we will use this terminology when appropriate. The starting point for developing
computational reduced basis methods is to replace the expensive truth solution with an inexpen-
sive reduced-order solution. We briefly describe the standard method for accomplishing below. For
simplicity we assume a linear operator £, but note that extensions to nonlinear problems exist [19].

Assume that a dense training set of parameter samples = € T is given such that the p-variation
of the solution w is accurately captured by the resulting truth solution ensemble {uN (z,p) : pe=}.
In the framework of this paper, we take = to be the quadrature rule nodal set introduced in ,
that is, = = {u‘l}qQ=1.



For any given reduced-order dimension N « A/, we build the N-dimensional reduced basis
space X by a greedy algorithm. The reduced basis space is constructed as a span of “snapshots”
(i.e., truth solutions) based on judiciously chosen samples from the training set = [24]

XV = span{uN (z,v1), ..., uN (x, V), (2.17)

where {Vl, . .7I/N} c Z. For a fixed p* € T', the idea of RBM is to approximate the truth
solution u?V’ (x, u*) by its RB surrogate, which is formed as an element of X~V. The RBM surrogate
uN (z, u*) can thus be represented as

N

uN (@, p*) = Y e () (a, w) (2.18)
k=1

By exploiting the linearity of the operator, RBM seeks to find coefficients ¢ (™) such that the
residual of (2.3) using the solution u”,

N
D en(w*) LN (zu (@, pF), w*) — PV (0, 1),
k=1

is as small as possible. The meaning of “small” is made precise by the prescription of an appropriate
projection operator P such that the following holds

N

P(;C’“(“*)EN(‘”’“N(«’&uk),u*)) _ ’P(fN(w,u*)). (2.19)

Concrete examples of this abstract projection operator are the continuous L? projection onto
XN a discrete £2 projection (least-squares) on the spatial mesh, or an empirical interpolation
procedure [12,/13].

2.3.2 A posteriori error estimate

Error estimates play a crucial role in computational procedures for RBM algorithms. These esti-
mates allow one to choose the parameter values v!,...,v" in in an efficient and accurate
way. Let R: D x T' — R denote the (Riesz representation of the) truth discretization residual in
with the reduced-order solution 4", defined as

Ru(sp) = fN(sp) — £V (W (=, p); p). (2.20)

The goal is to use knowledge of Ry to quantify the error in an RBM surrogate. The surrogate
error is given by e(x, u) := vV (z, u) — uN (z, p) and, due to linearity of LV, satisfies

LN (e(@, ), ) = R(-s p) (2.21)
To obtain a computable error bound for e(x, i), we let S.5(p) be a lower bound for the smallest
eigenvalue of LN ()T LN ().
o (LN ()" £V ()
[0l

Here £V (p) should be understood as the matrix representation of £V (-; ). The relations (2.21)
and (2.22) can be used to conclude [13]

0 < Bre(p) < min (2.22)

| Ry (2, 1)l x

Vue= 2.23
M) W e (2.23)

lle(@, )|l xn <



Therefore, we can define a rigorous a posteriori error estimate as

BN ()l xu
Balp) = Bre(p)

We see that it is computationally tractable to bound the RBM surrogate error so long as we
can efficiently compute the residual Ry along with ;5. The residual can indeed be computed
with O(N) complexity (see Section [2.3.4)). The efficient and feasible evaluation of 31,5 (p) can be
accomplished via the successive constraint linear optimization method (SCM) [11,/17,21,/22] with
the marginal computational cost for each p independent of the truth solution complexity . With
the ability to efficiently compute Ay, we can describe the greedy algorithm for choosing the RBM
parameter snapshot locations {v*}.

> lle(@, m)lxy  YneE. (2.24)

2.3.3 Greedy Algorithm

Given the training parameter set =, the greedy algorithm deals with an optimization problem in
a greedy way, seeking a new parameter v**! € = such that

v = argmax Ay () (2.25)

MHEE

Guided by the error estimate Ag(p), the parameter values that accurately represent the solution
manifold will not be omitted.

Algorithm 1 Greedy algorithm for construction of an RBM approximation

Input: training set =;

Input: stopping criterion tolerance €;o;

Randomly select the first sample pu! € Z;

Obtain truth solution u/V (a:, 1/1)7 set X1 = span {uN(:B, Vl)};
Set N =1 and A ax = o0;

while A, .« > € do

for each e = do
Obtain RBM solution v (x, u) by computing c;(z) that satisfy
Compute a posteriori error estimate Ay (u)

end for

=
= o

Set N H! = argmax ez An (1), and Apax = Ax (N H);
12: Obtain truth solution v (x, vN*1) from (2.3) at p = N+,
13: Augment the reduced basis space Xy11 = span {Xy U {uN (x, vV

14: Set N« N +1
15: end while

This process is repeated until the maximum of the error estimate is sufficiently small. At every
step we choose the parameter whose surrogate error is largest.

Note that we need to query the truth solution at lines [] and [I2] of Algorithm [II However, we
only require N such solutions, with N « |Z|. Lines [§[and |§| can be completed efficiently with only
O(N) complexity, as we describe in the next section.
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2.3.4 Offline-online decomposition

The offline-online computational decomposition is the central idea that makes RBM so effective [29).
The core idea that permits this decomposition is that in many cases the operator £V and forcing
term fV in (2.3) exhibit affine dependence on the parameter, i.e.,

Qr Qy
L(p) = 0% ()L, fla,p) = > 0) (1) fy(e) (2.26)

where the coefficient functions 05 and 0(]; depend only on the parameter p, and the operators L,
and f, are parameter-independent. (We recall again that the RBM can likewise handle non-affine
problems [19].)

This affine assumption allows the RBM algorithm to be divided into two stages: offline and
online. The offline stage has complexity that is A/-dependent and thus is expensive, but it is done
only once. The online stage complexity is independent of A/, and thus it is inexpensive and is
computationally feasible for a large number of inputs.

That the offline portion is N-dependent is not surprising; what is remarkable is that the online
portion, computation of the RBM surrogate u”, can be accomplished with complexity depending
only on N « N. The essential idea is that by using the formula along with the affine
assumptions (2.26)), then the discrete PDE at any value p* has the form

N QL Qy
D er(p®) Y 05 (u*)Lg(uN (a, pb)) = > 65 (n*) fy ()
k=1 q q=1

=1

We note that only the terms that are double-underlined require N -dependent complexity to evalu-
ate. However, these terms do not depend on pu*, and so they may be computed and stored during
the offline stage. Thus, for any p*, determining the RBM coefficients ¢ (u*) via the projection
in may be performed with a complexity that depends only on N, @Qr and Qf. We refer
to [13L29] for more details.

3 Hybrid Algorithm

We recall the discussion from the end of section that stochastic collocation can be compu-
tationally burdensome when the random parameter dimension K is large. The results in Figure
indicate that the number of stochastic collocation nodes easily exceeds the current capacity of
computational power for high dimensions. For instance, a 20-dimensional problem using a 5-point-
per-dimension quadrature rule requires 52° ~ 10 nodes. Although a sparse grid approach is more
efficient than a tensor product grid, such a grid still has more than one million parameter values,
requiring more than one million solves of . Therefore it still takes a onerous amount of time
in practical engineering problems to achieve reasonable accuracy. Our approach ameliorates the
cost-per-solve by using a gPC-goal-oriented variant of the RBM algorithm.

In this section, we develop a reduced basis method utilizing a modified a posteriori error
estimate in the traditional RB greedy algorithm. We design this RBM-gPC hybrid to efficiently
and accurately construct a gPC surrogate for the PDE system .

We avoid the direct hybridization of RBM and gPC, where RBM as introduced in section [2.3
would be used to give equal weight to all parameter values. This naive approach would result in
a gPC approximation that converges slowly in the Lf) norm, requiring a large N (the dimension
of the RBM surrogate). We exploit the observation that each w(x, u?) associated with parameter

11



value pu? should have some quantitative measure of importance as indicated by the probability
density p (u?). This idea was explored [27], but our version differs notably from earlier methods
since we do not explicitly use p as a weight for the a posteriori error estimate.

Instead, we propose and analyze a new “goal-oriented reduced basis method” adopting a
weighted a posteriori error estimate. Rigorous error analysis is provided to validate the use of
the weighted approach and the resulting gPC construction.

3.1 Weighted a posteriori error estimate

Appropriate design of the error estimate can critically determine the performance of any reduced
basis method, particularly so for our goal-oriented approach. The approximate gPC coefficient
formula is the wg-weighted inner product between the polynomial ®,, and uwVN. Thus, the
error estimate should likewise be weighted using the quadrature weight w,. We emphasize again
that our strategy is different from using the probability density function p as done in [27]; even in
simple one-dimensional cases, it is easy to see that w, # p (u?) (cf., e.g., Gaussian quadrature or
Clenshaw-Curtis quadrature).

We introduce the following cheap, dependable, and tight evaluation of reduced basis approxi-
mation, a weighted a posteriori error estimate Al (u), given by

A () = 2 ﬁm/m 1=1,...,Q, (3.1)

where Bpp(u?) is a lower bound for the smallest eigenvalue, and Ry is the PDE residual of the
order-N surrogate as defined in . Note that the novel quantity is the factor /Qwgl; since
w, corresponds to a -point normalized quadrature rule the quantity Q|w,| has O(1) magnitude,
in principle. The absolute value bars are necessary in general because sparse grid quadrature rules
can have negative weights. For a tensor-product Gaussian quadrature rule, the weights are all
positive.

Having defined this weighted a posteriori error estimate, we can bound the error between the
m-th truth Fourier coefficient 7Y in and its surrogate 1’

Q
A = U () Dy () (3.2)
q=1
The precise estimate is below in section [4

3.2 Goal-oriented greedy algorithm

Given the training parameter set = and a current RB selection {v?!,... ,v*}, the goal-oriented
greedy algorithm, stated in Algorithm 2] aims to construct the reduced basis space in hierarchical
manner by finding a new parameter #**1 € = such that

v = argmax AY () (3.3)
pEE

Guided by the weighted a posteriori error estimate A} (i), the greedy algorithm chooses parameters
by weighting them with the (square root of the) quadrature weights as shown in . We show
later in Theorem and Corollary that this weighting allows one to guarantee that the gPC
approximation that is formed from the RBM surrogates is within a user-defined tolerance of the
gPC-truth approximation.
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Another major difference in the goal-oriented algorithm is that the tolerance criterion is tuned
to the quantity of interest of the gPC surrogate. At each stage with k& RB snapshots, we compute
the error estimate

Q
e = Couny| g X (AR(wn), with Co - |02, (19) | F [0n(m)]],  (3.4)
g=1
where F denotes the quantity of interest as introduced in (2.14). Note that the constant Cg as is
computable independent of the solution u, and depends only on the choice of quadrature rule and
quantity of interest. (See Lemma and the discussion following Corollary ) As we show in
Corollary it turns out that € is an upper bound on the error in the quantity of interest defined
by F between the inexpensive RBM surrogate and the full expensive gPC stochastic collocation
approximation.

Algorithm 2 Goal-oriented greedy algorithm

1: Input: training set = with associated quadrature weights wg;

2: Input: stopping criterion tolerance e¢o;

3: Input: goal-oriented constant Cg ar = Z%zl BomF [®m (1)].

4: Randomly select the first sample p! € =;

5: Obtain truth solution u (a:, ul), set X1 = span {uN(a:, ul)};

6: Set k=1 and ¢ = oo;

7: while ¢ > ¢4, do

8: for each € = do

9: Obtain RBM solution u*(z, p) by computing c;(z) that satisfy (2.19)
10: Compute weighted a posteriori error estimate A}’ () from (3.1])
11: end for
12: Choose pF+1 = argmax ez Ay (1);
13: augment the reduced basis space Xgi1 = Xp U {uV (z, p*+1)};

14: Calculate A" = Zuea(A%)z(u);

15: Set e = Co,m4/ ‘%lAsum';

16: Set N «— N +1;
17: end while

3.3 Goal-oriented hybridized RBM-gPC algorithm

We are now ready to present the unified, goal-oriented hybrid method; summary pseudocode is
shown in Algorithm The main idea of the hybrid algorithm is leveraging the goal-oriented
RBM to alleviate the computational burden of obtaining the gPC coefficients. One major tool
to accomplish that goal is splitting the work of solving into two stages, one offline and one
online.

The offline stage is Algorithm [2} first the RBM space is built by scanning the quadrature node
set Z and evaluating the weighted a posteriori error estimate A}’ (u?). Algorithm [2] utilizes the
expensive PDE solver, solving a total of N times over the parameter set v',..., Y. The
offline phase stops when the computed error indicator € defined in falls below the user-defined
tolerance .
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The online stage proceeds as indicated on line |5 of Algorithm [3] In this phase, the RBM surro-
gate that was constructed in the offline phase is evaluated several times to compute the approximate
gPC coefficients {ﬁﬁ}ﬁj:l This portion of the algorithm is much faster than naive evaluation of
; it is in this section of the procedure where the hybrid algorithm reaps computational savings
compared to a traditional stochastic collocation approach.

Once the approximate coefficients 4Y are collected, the quantity of interest F [uJ\NA may be
evaluated. As we show in the next section, a significant benefit of using the hybrid approach is
that the error in this computed quantity of interest can be rigorously controlled by the user-defined
input tolerance e¢o.

Thus, the hybrid algorithm both achieves significant computational savings in construction of
a gPC approximation and provides strict error bounds on quantities of interest.

Algorithm 3 Hybrid Algorithm
1: Input: the general stochastic PDE (2.2]) and a tolerance &¢o).

2: Offline procedure:

3: Set = as the training set and use the goal-oriented greedy procedure with tolerance et (Algo-
rithm [2) to compute N reduced basis elements {uN (x, u?) j-vzl.

4: end Offline procedure
5: Using the online RBM surrogate u”¥ (x, ), compute M-term gPC coefficients and approxima-

tion of u®:
Q
iy = D weu™ (@, p?) B (17)

q=1

M
upr(@,p) = ) i (@) (k).
m=1
6: Output: Solution u}), or quantity of interest F[ul;] = erf:l 07 [N ()] F [@m ()]

4 Analysis of the hybrid algorithm

In this section, we show the convergence of this goal-oriented gPC-RBM algorithm. More precisely,
we show that the error committed by the hybrid RBM algorithm is controlled by the user-defined
input parameter e, in Algorithm 3] Given a P-th order M-term gPC projection (2.6)), the m-th
truth Fourier coefficient @ is evaluated by (2.12)) and its surrogate @Y by (3.2). The truth and
reduced basis stochastic solutions are then, respectively,

M

u%(wvll) = Z ai\n/(w)q)m<p’)7 (41)
M

() = S A (@) () (12)

The properties of the RBM algorithm allow us to bound the error between the computationally
expensive F [uf\\f/[] and the efficiently computable hybrid surrogate F [uAN/I] This bound is our main
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theoretical result and is shown in Theorem [4.2]
To begin, we first need to control the error between the full stochastic collocation gPC coeffi-
cients u () and its RBM surrogate ul ().

Lemma 4.1. Given a Q-point quadrature rule {p? ,wq} _q and an N-dimensional reduced basis

approzimation uN (x, p) for the solution u(x,p) to the PDE , the error in the m-th gPC
coefficient is given by

R 1<
|a () —a HX Bgom 9] Z(Aw 2
q=1

where Bg ., is the uncentered second moment of ®,,,(p) under the discrete measure defined by the
quadrature rule:

(4.3)
Proof. We use the quadrature representation for these functions:
Q
[aX @) = | 25 wa®m (1) [ (2, 1) — u (a, )]
g=1 X
Q
< 33wl | (ol et
q=1
Q Q )
< | D0 lwgl @2 () | Y lwg e(e, ),
g=1 q=1
31
< Baumy | 2, 7 (A%)? (n9)
g=1 Q
O

This result bounds the error in each gPC coefficient as a product of two terms: the first
term Bg,, indicates the accuracy of the quadrature rule, which is computable independent of
the solution u. The second term is an average of the weighted a posteriori error estimate over
parameter space.

We can now bound the RBM error in the quantity of interest.

Theorem 4.2. Given an M-term gPC projection (2.6) and an N-dimensional reduced basis ap-
prozimation (2.19)), the error in the quantity of interest computed from the RBM-gPC approzima-
tion u%;, and that computed from the truth gPC approximation u% 18

Q
|7 [udt] = F [unt]l ., < Cuip Com Z [AR (1)] (4.4)
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where Crip 15 the Lipschitz constant of F defined in (2.16), and Cgo ar is a constant independent
of u, defined by

M
Conr = Y, Bom |F[@m(w)]l, (4.5)

m=1

with Bg,m defined in (4.3)).

Proof. We begin by using our assumption (2.14]) regarding the affine dependence of F on a gPC
representation:

M
Fludi] = Fluti] = Y (07@h () — 07 (@) (2))) F [@0 ()]

m=1

Applying triangle inequality and Lipschitz continuity of 8£(), we have

M
|7 [ur] = F[udf]lx, < Cup Y, [831(=) — @3 (@)] 17 [@m ()] -

Using Lemma [4.1] on the right-hand side, we obtain

M
17 [13) = F L], < Cuse 3 B P[0l |

m=1 q

e

(AR)? (1),

and this proves (4.4]). O

Corollary 4.3. The output gPC approzimation ul; from Algorithm@ satisfies

H]: [U%] - F [ué\\/[/] < CLip €

HXN

where ¢ is defined in (3.4)).

Remark 4.4. The Lipschitz constant Cr,p is trivially 1 when F[-] is the expected value operator.
For the other two cases listed in and , it is finite as long as we have uniform stability
with respect to the parameter p for the computational solver . As the discussion around
indicates, this is a standard assumption, and in that case Cri, = 2U.

Remark 4.5. We emphasize that Cg as is a scalar whose value is independent of the solution u, its
truth discretization ', or the RBM surrogate u”. It depends only on the choice of quadrature
rule, the gPC order, and the choice of what quantity of interest is to be computed.

The coefficient Cg s is not analytically computable in general since it depends on the chosen
quadrature rule in parameter space. However, the next lemma shows that for quadrature rules of
sufficiently high accuracy, Bg ., = 1.

Lemma 4.6. Let {®q,..., P} span the degree-P isotropic total-degree space, so that M =

K+ P
("5
quadrature rule with q points in each dimension, totaling Q = ¢’ nodes. If P < q, then Bgogm =1
form=1... M.

). Assume that the quadrature rule (2.9) corresponds to an isotropic tensor product
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uantity of interest Bo.m Co.m Assumptions
y Q, Q, p

Mean value, F = E 1 1 The quadrature rule
exactly integrates the con-
stant function, all weights
are positive

Variance, F = var 1—0m,1 M-1 Assumptions of Lemma
L2-norm squared, F [] = |32 1 M Assumptions of Lemma
P
Variance, F = var Zqul [wq| @5, (12,) M Zqul [wq| @5, (12,) None

Lj-norm squared, F[] = || Sy |wal®7, (1) D1\ S [wa ®3 (1) None

Table 2: Summary of explicit values for bounding constants Bg », and Cg s for common quantity
of interest operators F. In the table, d; is the Kronecker delta function.

Proof. This is a simple consequence of the fact that a ¢g-point Gaussian quadrature rule exactly
integrates polynomials up to degree 2qg — 1. With « the size- K multi-index corresponding to the
linear index m, then

K
o7, (1) = | | 62, (uw), o < |a| = P.
k=1

Thus, in dimension k, we have deg gbik < 2P < 2q. Additionally, a Gauss quadrature rule has
all positive weights. Therefore, the quadrature rule integrates the polynomial in each dimension
exactly, so Bf, ,,, = Z;‘Tg:l w;PZ, (p!) = E®Z (p) = 1. O

Of course, similar statements about Bg,, can be made for non-total-degree or anisotropic
spaces so long as one has a good understanding of the quadrature rule. Even if one cannot
analytically derive values for Bg ,,, it is easily and inexpensively computable by applying the
quadrature rule to the gPC basis ®2 .

Thus under certain assumptions, the constants Cg a and B, are explicitly computable.
We summarize some of these results in Table [2l However, in some cases we do not have explicit
formulas for Bg ,,, but these constants can be easily computed, based on for example sparse grid
code [15]. In Figures [2| we take a widely used sparse grid with two typical types of gPC bases as
examples, where w, are the weights of 4 dimensional Gauss-Patterson-based sparse grid and @,
are chosen as Legendre polynomials and Jacobi polynomials (o = 1,8 = 1) individually.

5 Numerical results

In this section, we present numerical results to illustrate the accuracy of the proposed hybrid
approach and its efficiency compared to the conventional gPC method. The PDE with random
inputs is the following linear elliptic equation posed on the spatial domain D = [—-1,1] x [-1,1]
with homogeneous Dirichlet boundary conditions for simplicity.
-V (a(x, p)Vu(z,n)) = f in DxT, (5.1)
u(x, pu) =0 on 0D xT. '
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2.0528

1.7754

1.4980

1.2205

0.9431

Figure 2: Value of Bg ,,, with Legendre polynomial (left) and Jacobi polynomial (right). @ varies
with the accuracy level of sparse grid (level 7 to level 16). m records the sequence of gPC bases
with degree <5

The stochastic coefficient a(x, @) is defined as:

0s(30 * py, — 1)

K
c .
ale,p) = A+ Z 2 cos(kx) sin(ky),
k=1

where K is the parameter dimension and A is a positive constant ensuring a > 0, so that the
equation is uniformly elliptic on D. We take as the right hand side f = 1. As we mentioned in
, the output of interest F is defined as a certain functional of the solution over the physical
domain D. Here, we explore the following two cases:

e F =1IE. By (2.15a)), the error of the mean value we observe is

gmean = ||J—_.[u%] _‘F[uﬁ]Hﬁ(D) = ||a/1\[(w) o ﬁ{\](w)Hp(D) (52)

o F = ||||%% . By (2.15¢)), the error of norm-squared operator we evaluate is

M M
Enorm = | Flutr] = Flup)|l oy = || 25 @ (@)* = X (@ (2)? (5:3)

m=1

(D)

In our numerical experiments, we test problem (5.1) with A =5 and K = 2,4,6. We use the
5" total degree space

Uy =span{®, | |o| <5} (5.4)

for gPC approximation. We adopt a tensor product quadrature rule for lower dimensional case
K = 2, and sparse grid for the higher dimensional cases K = 4,6. See Table [3] for the num-
bers of nodes  and gPC polynomial bases M for each K. To obtain truth approximations uf\\/ff,
we implement a spectral collocation solver on a N, x N, (N, = 35) grid. The online solver of
our goal-oriented reduced basis method is the least squares reduced collocation method developed
in . We test the algorithm for two different probability distributions for the random variable
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K 2 4 6
Q(K) | 1,600 | 22,401 | 367,041
M(K) | 21 126 462

Table 3: The number of quadrature nodes and gPC polynomial bases for different dimension K.

u, namely, the uniform distribution and Beta distribution with shape parameters a = 2, 8 = 2.

We plot in Figure [3] the expected value E(u);). The error estimates ¢ defined in with
F=Eand F = ||||%% are plotted in Figureand Figurerespectively, both displaying exponential
convergence. We then evaluate the actual error in the quantity of interest of the resulting surrogate
solution, as defined in and (5.3). These are shown in Figure [6] for the two choices, E(-) and
||||%2 We note that both &pean and &uorm have a clear exponential trend in convergence for both
caseg of probability distributions. Finally, we measure the efficiency of the hybrid algorithm by
calculating the ratio of the runtime between those of the hybrid and the traditional gPC approach.
This is plotted in Figure [] Here the time for the hybrid algorithm includes both offline and
online time. It is clear that the proposed hybrid gPC-RBM method can reach a high level of
accuracy (Figure[6) while significantly alleviating the computational burden (Figure[7). Moreover,
we observe that the efficiency is increasing as K gets larger. Therefore, this alleviation is more
significant for high-dimensional problems, indicating great potential of the hybrid approach for
even higher parametric dimensions.

mean value for uniform distribution mean value for Beta distribution

0.06 012
0.08
0.05 0.1
0.04 0.07
0.04 0.08
0.06
0.03 0.06
0.03 0.05
0.02 0.04 :
0.04
0.01 0.02 0.02
0 0 0.03
40 40
0.02
30 40 [ 0.01 30 40
20 0 30 20 " 30 0.01
y 10 10 o y 10 10 o
0 o X 0 o X

Figure 3: Expected value when K = 4 for uniform (left) and Beta (right) distribution.

6 Conclusion

We propose, analyze, and numerically test a hybridized RBM-gPC algorithm. It is based on a
newly designed weighted RBM enabling a particular greedy algorithm tailored for any applicable
quantity of interest in the context of uncertainty quantification. The final algorithm is analyzed to
be reliable, and tested to be accurate. Most importantly, its efficiency is increasing with respect
to the dimension of the randomness in the partial differential equation.
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Figure 4: Error estimate € with 7 = IE for uniform distribution (left) and Beta distribution (right).
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