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Abstract

We introduce a general framework for estimation of inverse covariance, or precision, matrices from
heterogeneous populations. The proposed framework uses a Laplacian shrinkage penalty to encourage
similarity among estimates from disparate, but related, subpopulations, while allowing for differences
among matrices. We propose an efficient alternating direction method of multipliers (ADMM) algo-
rithm for parameter estimation, as well as its extension for faster computation in high dimensions by
thresholding the empirical covariance matrix to identify the joint block diagonal structure in the esti-
mated precision matrices. We establish both variable selection and norm consistency of the proposed
estimator for distributions with exponential or polynomial tails. Further, to extend the applicability of
the method to the settings with unknown populations structure, we propose a Laplacian penalty based
on hierarchical clustering, and discuss conditions under which this data-driven choice results in con-
sistent estimation of precision matrices in heterogenous populations. Extensive numerical studies and
applications to gene expression data from subtypes of cancer with distinct clinical outcomes indicate
the potential advantages of the proposed method over existing approaches.

Keywords: Hierarchical clustering; Graph Laplacian; High-dimensional estimation; Precision ma-
trix; Heterogeneous populations; Sparsity.

1 Introduction

Estimation of large inverse covariance, or precision, matrices has received considerable atten-

tion in recent years. This interest is in part driven by the advent of high-dimensional data

in many scientific areas, including high throughput omics measurements, functional magnetic

resonance images (fMRI), and applications in finance and industry. Applications of various

statistical methods in such settings require an estimate of the (inverse) covariance matrix.

Examples include dimension reduction using principal component analysis (PCA), classifica-

tion using linear or quadratic discriminant analysis (LDA/QDA), and discovering conditional

independence relations in Gaussian graphical models (GGM).

In high-dimensional settings, where the data dimension p is often comparable or larger than

the sample size n, regularized estimation procedures often result in more reliable estimates.
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†ashojaie@u.washington.edu.
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Of particular interest is the use of sparsity inducing penalties, specifically the `1 or lasso

penalty (Tibshiranit, 1996), which encourages sparsity in off-diagonal elements of the precision

matrix (Yuan and Lin, 2007; d’Aspremont et al., 2008; Friedman et al., 2007; Yuan, 2010).

Theoretical properties of `1-penalized precision matrix estimation have been studied under

both multivariate normality, as well as some relaxations of this assumption (Meinshausen and

Bühlmann, 2006; Rothman et al., 2008; Cai et al., 2011; Ravikumar et al., 2011).

Sparse estimation is particularly relevant in the setting of GGMs, where conditional inde-

pendencies among variables correspond to zero off-diagonal elements of the precision matrix

(Lauritzen, 1996). The majority of existing approaches for estimation of high-dimensional

precision matrices, including those cited in the previous paragraph, assume that the obser-

vations are identically distributed, and correspond to a single population. However, data

sets in many application areas include observations from several distinct subpopulations. For

instance, gene expression measurements are often collected for both healthy subjects, as well

as patients diagnosed with different subtypes of cancer. Despite increasing evidence for dif-

ferences among genetic networks of cancer and healthy subjects (Ideker and Krogan, 2012;

Sedaghat et al., 2014), the networks are also expected to share many common edges. Separate

estimation of graphical models for each of the subpopulations would ignore the common struc-

ture of the precision matrices, and may thus be inefficient; this inefficiency can be particularly

significant in high-dimensional low sample settings, where p� n.

To address the need for estimation of graphical models in related subpopulations, few

methods have been recently proposed for joint estimation of K precision matrices Ω(k) =

(ω
(k)
ij )pi,j=1 ∈ Rp×p, k = 1, . . . ,K (Guo et al., 2011; Danaher et al., 2014). These methods

extend the penalized maximum likelihood approach by combining the Gaussian likelihoods

for the K subpopulations

`n(Ω) =
1

n

K∑
k=1

nk

(
log det(Ω(k))− tr

(
Σ̂(k)
n Ω(k)

))
. (1)

Here, nk and Σ̂
(k)
n are the number of observations and the sample covariance matrix for the

kth subpopulation, respectively, n =
∑K

k=1 nk is the total sample size and tr(·) and det(·)

denote matrix trace and determinant.

To encourage similarity among estimated precision matrices, Guo et al. (2011) modeled the

(i, j)-element of Ω(k) as product of a common factor θij and group-specific parameters γ
(k)
ij , i.e.

ω
(k)
ij = δijγ

(k)
ij . Identifiability of the estimates is ensured by assuming δij ≥ 0. A zero common
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factor δij = 0 induces sparsity across all subpopulations, whereas γ
(k)
ij = 0 results in condition-

specific sparsity for ω
(k)
ij . This reparametrization results in a non-convex optimization problem

based on the Gaussian likelihood with `1-penalties
∑

i 6=j δij and
∑

i 6=j
∑K

k=1 |γ
(k)
ij |. Danaher

et al. (2014) proposed two alternative estimators by adding an additional convex penalty to

the graphical lasso objective function: either a fused lasso penalty
∑

i 6=j
∑

k 6=k′ |ω
(k)
ij − ωk

′
ij |

(FGL), or a group lasso penalty
∑

i 6=j

√∑K
k=1(ω

(k)
ij )2 (GGL). The fused lasso penalty has also

been used by Kolar et al. (2009), for joint estimation of multiple graphical models in multiple

time points. The fused lasso penalty strongly encourages the values of ω
(k)
ij to be similar across

all subpopulations, both in values as well as sparsity patterns. On the other hand, the group

lasso penalty results in similar estimates by shrinking all ω
(k)
ij across subpopulations to zero

if
∑K

k=1(ω
(k)
ij )2 is small.

Despite their differences, methods of Guo et al. (2011) and Danaher et al. (2014) inherently

assume that precision matrices in K subpopulations are equally similar to each other, in that

they encourage ω
(k)
ij and ω

(k′)
ij and ω

(k)
ij and ω

(k′′)
ij to be equally similar. However, when K > 2,

some subpopulations are expected to be more similar to each other than others. For instance,

it is expected that genetic networks of two subtypes of cancer be more similar to each other

than to the network of normal cells. Similarly, differences among genetic networks of various

strains of a virus or bacterium are expected to correspond to the evolutionary lineages of their

phylogenetic trees. Unfortunately, existing methods for joint estimation of multiple graphical

models ignore this heterogeneity in multiple subpopulations. Furthermore, existing methods

assume subpopulation memberships are known, which limits their applicability in settings

with complex but unknown population structures; an important example is estimation of

genetic networks of cancer cells with unknown subtypes.

In this paper, we propose a general framework for joint estimation of multiple precision

matrices by capturing the heterogeneity among subpopulations. In this framework, similarities

among disparate subpopulations are presented using a subpopulation network G(V,E,W ), a

weighted graph whose node set V is the set of subpopulations. The edges in E and the weights

Wkk′ for (k, k′) ∈ E represent the degree of similarity between any two subpopulations k, k′. In

the special case where Wkk′ = 1 for all k, k′, the subpopulation similarities are only captured

by the structure of the graph G. An example of such a subpopulation network is the line

graph corresponding to observations over multiple time points, which is used in estimation

of time-varying graphical models (Kolar et al., 2009). As we will show in Section 2.3, other
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existing methods for joint estimation of multiple graphical models, e.g. proposals of Danaher

et al. (2014), can also be seen as special cases of this general framework.

Our proposed estimator is the solution to a convex optimization problem based on the

Gaussian likelihood with both `1 and graph Laplacian (Li and Li, 2010) penalties. The

graph Laplacian has been used in other applications for incorporating a priori knowledge

in classification (Rapaport et al., 2007), for principal component analysis on network data

(Shojaie and Michailidis, 2010), and for penalized linear regression with correlated covariates

(Li and Li, 2010; Huang et al., 2011; Weinberger et al., 2006; Liu et al., 2014, 2011; Zhao

and Shojaie, 2015). The Laplacian penalty encourages similarity among estimated precision

matrices according to the subpopulation network G. The `1-penalty, on the other hand,

encourages sparsity in the estimated precision matrices. Together, these two penalties capture

both unique patterns specific to each subpopulation, as well as common patterns shared among

different subpopulations.

We first discuss the setting where G(V,E,W ) is known from external information, e.g.

known phylogenetic trees (Section 2), and later discuss the estimation of the subpopula-

tion memberships and similarities using hierarchical clustering (Section 4). We propose an

alternating methods of multipliers (ADMM) algorithm (Boyd et al., 2011) for parameter esti-

mation, as well as its extension for efficient computation in high dimensions by decomposing

the problem into block-diagonal matrices. Although we use the Gaussian likelihood, our the-

oretical results also hold for non-Gaussian distributions. We establish model selection and

norm consistency of the proposed estimator under different model assumptions (Section 3),

with improved rates of convergence over existing methods based on penalized likelihood. We

also establish the consistency of the proposed algorithm for the estimation of multiple preci-

sion matrices, in settings where the subpopulation network G or subpopulation memberships

are unknown. To achieve this, we establish the consistency of hierarchical clustering in high

dimensions, by generalizing recent results of Borysov et al. (2014) to the setting of arbitrary

covariance matrices, which is of independent interest.

The rest of the paper is organized as follows. In Section 2 we describe the formal setup of

the problem and present our estimator. Theoretical properties of the proposed estimator are

studied in Section 3, and Section 4 discusses the extension of the method to the setting where

the subpopulation network is unknown. The ADMM algorithm for parameter estimation

and its extension for efficient computation in high dimensions are presented in Section 5.
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Results of the numerical studies, using both simulated and real data examples, are presented

in Section 6. Section 7 concludes the paper with a discussion. Technical proofs are collected

in the Appendix.

2 Model and Estimator

2.1 Problem Setup

ConsiderK subpopulations with distributions P(k), k = 1, . . . ,K. LetX(k) = (X(k),1, . . . , X(k),p)T ∈

Rp be a random vector from the kth subpopulation with mean µk and the covariance ma-

trix Σ
(k)
0 = (σ

(k)
ij )pi,j=1. Suppose that an observation comes from the kth subpopulation with

probability πk > 0.

Our goal is to estimate the precision matrices Ω
(k)
0 ≡ (Σ

(k)
0 )−1 ≡ (ω

(k)
ij )pi,j=1, k = 1, . . . ,K.

To this end, we use the Gaussian log-likelihood based on the correlation matrix (see Roth-

man et al. (2008)) as a working model for estimation of true Ω
(k)
0 , k = 1, . . . ,K. Let

X
(k)
i , i = 1, . . . , nk, be independent and identically distributed (i.i.d.) copies from P(k), k =

1, . . . ,K. We denote the correlation matrices and their inverse by Θ(k) = (θ
(k)
ij )pi,j=1, and

Ψ(k) = (ψ
(k)
ij )pi,j=1, k = 1, . . . ,K, respectively. The Gaussian log-likelihood based on the cor-

relation matrix can then be written as

˜̀
n(Θ) =

1

n

K∑
k=1

nk

(
log det(Θ(k))− tr

(
Ψ(k)
n Θ(k)

))
, (2)

where Ψ
(k)
n , k = 1, . . . ,K is the sample correlation matrix for subpopulation k.

Examining the derivative of (2), which consists of Ψ
(k)
0 − Ψ

(k)
n , k = 1, . . . ,K, justifies its

use as a working model for non-Gaussian data: the stationary points of (2) is Ψ
(k)
n , which

gives a consistent estimate of Ψ
(k)
0 . Thus we do not, in general, need to assume multivariate

normality. However, in certain applications, for instance LDA/QDA and GGM, the resulting

estimate is useful only if the data follows a multivariate normal distribution.

2.2 The Laplacian Shrinkage Estimator

Let Θ = (Θ(1), . . . ,Θ(K)) and write Θij = (θ
(1)
ij , . . . , θ

(K)
ij )T ∈ RK , i, j = 1, . . . , p for a vector

of (i, j)-elements across subpopulations. Our proposed estimator, Laplacian Shrinkage for

Inverse Covariance matrices from Heterogeneous populations (LASICH), first estimates the

inverse of the correlation matrices for each of the K subpopulations, and then transforms them
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into the estimator of inverse covariance matrices, as in Rothman et al. (2008). In particular,

we first obtain the estimate Θ̂ of the true inverse correlation matrix by solving the following

optimization problem

Θ̂ρn ≡ arg min
Θ=ΘT ,Θ�0

−˜̀
n(Θ) + ρn‖Θ‖1 + ρnρ2‖Θ‖L

≡ arg min
Θ=ΘT ,Θ�0

−˜̀
n(Θ) + ρn

K∑
k=1

∑
i 6=j

∣∣∣Θ(k)
ij

∣∣∣+ ρnρ2

∑
i 6=j
‖Θij‖L, (3)

where Θ = ΘT enforces the symmetry of individual inverse correlation matrices, i.e. Θ(k) =

(Θ(k))T , and Θ � 0 requires that Θ(k) is positive definite for k = 1, . . . ,K. The `1-penalty

‖Θ‖1 =
∑K

k=1‖Θ(k)‖1 in (3) encourages sparsity in estimated inverse correlation matrices. The

graph Laplacian penalty, on the other hand, exploits the information in the subpopulation

network G to encourage similarity among values of θ
(k)
ij and θ

(k′)
ij . The tuning parameters ρn

and ρnρ2 control the size of each penalty term.

Figure 1: Illustration of similarities in the sparsity patterns of precision matrices Ω(1),Ω(2) and Ω(3).

Nonzero and zero off-diagonal entries are colored in black and white, respectively, while diagonal entires

are colored in gray. The associated subpopulation network G reflects the similarities between precision

matrices of subpopulations 1 and 2 and 1 and 3. The simulation experiments in Section 6.1 use a similar

subpopulation network in a high-dimensional setting.

Figure 1 illustrates the motivation for the graph Laplacian penalty ‖Θij‖L in (3). The

gray-scale images in the figure show the hypothetical sparsity patterns of precision matrices

Θ(1),Θ(2),Θ(3) for three related subpopulations. Here, Θ(1) consists of two blocks with one

“hub” node in each block; in Θ(2) and Θ(3) one of the blocks is changed into a “banded”

structure. It can be seen that one of the two blocks in both Θ(2) and Θ(3) have a similar

sparsity pattern as Θ(1). However, Θ(2) and Θ(3) are not similar. The subpopulation network

G in this figure captures the relationship among precision matrices of the three subpopulations.
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Such complex relationships cannot be captured using the existing approaches, e.g. Guo et al.

(2011); Danaher et al. (2014), which encourage all precision matrices to be equally similar to

each other. More generally, G can be a weighted graph, G(V,E,W ), whose nodes represent

the subpopulations 1, . . . ,K. The edge weights W : E → R+ represent the similarity among

pairs of subpopulations, with larger values of Wkk′ ≡ W (k, k′) > 0 corresponding to more

similarity between precision matrices of subpopulations k and k′.

In this section, we assume that the weighted graph G is externally available, and defer the

discussion of data-driven choices of G, based on hierarchical clustering, to Section 4. Given

G, the (unnormalized) graph Laplacian penalty ‖Θij‖L is defined as

‖Θij‖L =


K∑

k,k′=1

Wkk′

(
θ

(k)
ij − θ

(k′)
ij

)2


1/2

(4)

where Wkk′ = 0 if k and k′ are not connected. The Laplacian shrinkage penalty can be

alternatively written as ‖Θij‖L = ΘT
ijLΘij , where L = (lkk′)

K
k,k′=1 ∈ RK×K is the Laplacian

matrix (Chung, 1997) of the subpopulation network G defined as

lkk′ =


dk −Wkk, k = k′, dk 6= 0,

−Wkk′ , k 6= k′,

0, otherwise,

where dk =
∑

k′ 6=kWkk′ is the degree of node k in G with Wkk′ = 0 if k and k′ are not

connected. The Laplacian shrinkage penalty can also be defined in terms of the normalized

graph Laplacian, I − D−1/2WD−1/2, where D = diag(d1, . . . , dK) is the diagonal degree

matrix. The normalized Laplacian penalty,

‖Θij‖L =


K∑

k,k′=1

Wkk′

 θ
(k)
ij√
dk
−
θ

(k′)
ij√
dk′

2
1/2

,

which we also denote as ‖Θij‖L, imposes smaller shrinkage on coefficients associated with

highly connected subpopulations. We henceforth primarily focus on the normalized penalty.

Given estimates of the inverse correlation matrices Θ̂(1), . . . , Θ̂(K) from (3), we obtain esti-

mates of precision matrices Ω(k) by noting that Ω(k) = Ξ(k)Θ(k)Ξ(k), where Ξ(k) is the diagonal

matrix of reciprocals of the standard deviations Ξ(k) = diag({σ(k)
11 }−1/2, . . . , {σ(k)

pp }−1/2). Our

estimator Ω̂ρn = (Ω̂
(1)
ρn , . . . , Ω̂

(K)
ρn ) of precision matrices Ω is thus defined as

Ω̂(k)
ρn = {Ξ̂(k)}−1Θ̂(k)

ρn {Ξ̂
(k)}−1, k = 1, . . . ,K,
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where Ξ̂(k) = diag(1/{σ̂(k)
11 }1/2, . . . , 1/{σ̂

(k)
pp }1/2) with sample variance σ̂

(k)
ii for the ith element

in the kth subpopulation.

A number of alternative strategies can be used instead of the graph Laplacian penalty

in (3). First, similarity among coefficients of precision matrices can also be imposed using

a ridge-type penalty, ‖Θij‖2L. The main difference is that our penalty ‖Θij‖L discourages

the inclusion of edges θ
(1)
ij , . . . , θ

(K)
ij if they are very different across the K subpopulations.

Another option is to use the graph trend filtering (Wang et al., 2014), which impose a fused

lasso penalty over the subpopulation graph G. Finally, ignoring the weights Wkk′ in (4), the

Laplacian shrinkage penalty resembles the Markov random field (MRF) prior used in Bayesian

variable selection with structured covariates Li and Zhang (2010). Our penalized estimation

framework can thus be seen as an alternative to using an MRF prior to estimate the precision

matrices in a mixture of Gaussian distributions.

2.3 Connections to Other Estimators

To connect our proposed estimator to existing methods for joint estimation of multiple

graphical models, we first give an alternative interpretation of the graph Laplacian penalty

‖Θij‖L =
(

ΘT
ijLΘij

)1/2
as a norm for a transformed version of θ

(k)
ij s. More specifically, con-

sider the mapping gG : RK → RK defined based on the Laplacian matrix for graph G

gG(Θij) =


0, k = k′,

√
Wkk′

(
θ
(k)
ij√
2dk
− θ

(k′)
ij√
2dk′

)
, k 6= k′,

if G has at least one edge. For a graph with no edges, define gG(Θij) = IK ⊗Θij = diag(Θij),

where IK is the K-identity matrix, and ⊗ denotes the Kronecker product. It can then be seen

that the graph Laplacian penalty can be rewritten as

‖Θij‖L = ‖gG(Θij)‖F .

where ‖·‖F is the Frobenius norm.

Using the above interpretation, other methods for joint estimation of multiple graphical

models can be seen as penalties on transformations gG(Θij) corresponding to different graphs

G. We illustrate this connection using the hypothetical subpopulation network shown in

Figure 2a.
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Figure 2: Comparison of subpopulation networks used in the penalty for different methods for joint

estimation of multiple precision matrices: a) the true network, modeled by LASICH; b) FGL; c) GGL &

Guo et al; and d) estimation of time-varying networks (Kolar & Xing, 2009); see Section 2.3 for details.

Consider first the FGL penalty of Danaher et al. (2014), applied to elements of the inverse

correlation matrix |θ(k)
ij − θ

(k′)
ij |. Let GC be a complete unweighted graph (Wkk′ = 1∀k 6= k′),

in which all
(
K
2

)
node-pairs are connected to each other (Figure 2b). It is then easy to see

that ∑
k 6=l
|θ(k)
ij − θ

(l)
ij | =

√
2(K − 1)‖gGC

(Θij)‖1,

where the factor of
√

2(K − 1) can be absorbed into the tuning parameter for the FGL

penalty. A similar argument can also be applied to the GGL penalty of Danaher et al. (2014),

‖Θij‖, by considering instead an empty graph Ge with no edges between nodes (Figure 2c).

In this case, the mapping gG would give a diagonal matrix with elements θ
(k)
ij , and hence

‖Θij‖= ‖gGe(Θij)‖F .

Unlike proposals of Danaher et al. (2014), the estimator of Guo et al. (2011) is based

on a non-convex penalty, and does not naturally fit into the above framework. However,

Lemma 2 in Guo et al. (2011) establishes a connection between the optimal solutions of the

original optimization problem, with those obtained by considering a single penalty of the form{∑K
k=1 |θ

(k)
ij |
}1/2

≡‖Θij‖1,2. Similar to GGL, the connection with the method of Guo et al.

(2011) can be build based on the above alternative formulation, by considering again the

empty graph Ge (Figure 2c), but instead the ‖.‖1,2 penalty, which is a member of the CAP

family of penalties Zhao et al. (2009). More specifically,{
K∑
k=1

|ω(k)
ij |

}1/2

= ‖gGe(Θij)‖1,2.

Using the above framework, it is also easy to see the connection between our proposed

estimator and the proposal of Kolar et al. (2009): the total variation penalty in Kolar et al.
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(2009) is closely related to FGL, with summation over differences in consecutive time points.

It is therefore clear that the penalty of Kolar et al. (2009) (up to constant multipliers) can

be obtained by applying the graph Laplacian penalty defined for a line graph connecting the

time points (Figure 2d).

The above discussion highlights the generality of the proposed estimator, and its connection

to existing methods. In particular, while FGL and GGL/Guo et al. (2011) consider extreme

cases with isolated, or fully connected nodes, one can obtain more flexibility in estimation of

multiple precision matrices by defining the penalty based on the known subpopulation net-

work, e.g. based on phylogenetic trees or spatio-temporal similarities between fMRI samples.

The clustering-based approach of Section 4 further extends the applicability of the proposed

estimator to the settings where the subpopulation network in not known a priori. The sim-

ulation results in Section 6 show that the additional flexibility of the proposed estimator can

result in significant improvements in estimation of multiple precision matrices, when K > 2.

The above discussion also suggests that other variants of the proposed estimator can be de-

fined, by considering other norms. We leave such extensions to future work.

3 Theoretical Properties

In this section, we establish norm and model selection consistency of the LASICH estimator.

We consider a high-dimensional setting p � nk, k = 1, . . . ,K, where both n and p go to

infinity. As mentioned in the Introduction, the normality assumption is not required for

establishing these results. We instead require conditions on tails of random vectors X(k) for

each k = 1, . . . ,K. We consider two cases, exponential tails and polynomial tails, which both

allow for distributions other than multivariate normal.

Condition 1 (Exponential Tails). There exists a constant c1 ∈ (0,∞) such that

E
[
exp

{
t(X

(k)
j − µ

(k)
j )/(σ

(k)
jj )1/2

}]
≤ ec21t2/2, ∀t ∈ R, k = 1, . . . ,K, j = 1, . . . , p.

Condition 2 (Polynomial Tails). There exist constants c2, c3 > 0 and c4 such that

E
[{
X

(k)
j /(σ

(k)
jj )1/2

}4(c2+c3+1)
]
≤ c4, k = 1, . . . ,K, j = 1, . . . , p.

Since we adopt the correlation-based Gaussian log-likelihood, we require the boundedness

of the true variances to control the error between true and sample correlation matrices.
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Condition 3 (Bounded variance). There exist constants c5 > 0 and c6 < ∞ such that

c5 ≤ mink,j σ
(k)
jj and maxk,j σ

(k)
jj ≤ c6.

Condition 4 (Sample size). Let λΘ ≡ maxk‖Θ
(k)
0 ‖2. Let

C1 ≡
{

2c−2
5 + c5 + c

−3/2
6 + 2c

−5/2
5 c6 + (c−4

5 + 2c−5
5 c6)1/2

}−1
.

(i) (Exponential tails). It holds that

n ≥ max

{
12

mink πk
, 21833C2

1 (1 + 4c2
1)2c2

6λ
4
Θ

(
1 + ‖L‖1/22

)2
s

}
log p,

and log p/n→ 0.

(ii) (Polynomial tails). Let C2 = supn{ρn
√
n/ log p} = O(1) where ρn is given in Lemma 1

in the Appendix and c7 > 0 be some constant. It holds that

n ≥ max

{
p1/c2

c
1/c2
7

, 2732C2
1C

2
2K min

k
πkλ

4
Θ

(
1 + ‖L‖1/22

)2
s log p

}
.

Condition 4 determines the sufficient sample size n =
∑

k for consistent estimation of pre-

cision matrices Θ(1), . . . ,Θ(K) in relation to, among other quantities, the number of variables

p, the sparsity pattern s and the spectral norm of the Laplacian matrix ‖L‖2 of the subpopu-

lation network G. While a general characterization of ‖L‖2 is difficult, investigating its value

in special cases provides insight into the effect of the underlying population structure on the

required sample size. Consider, for instance, two extreme cases: for a fully connected graph

G associated with K subpopulations, ‖L‖2 = 1/(K − 1); for a minimally connected “line”

graph, corresponding to e.g. multiple time points, ‖L‖2 = 2: with K = 5, 30% more samples

are needed for the line graph, compared to a fully connected network. The above calculations

match our intuition that fewer samples are needed to consistently estimate precision matrices

of K subpopulations that share greater similarities. This, of course, makes sense, as infor-

mation can be better shared when estimating parameters of similar subpopulations. Note

that, here L represents the Laplacian matrix of the true subpopulation network capturing the

underlying population structure. The above conditions thus do not provide any insight into

the effect of misspecifying the relationship between subpopulations, i.e., when an incorrect L

is used. This is indeed an important issue that garners additional investigation; see Zhao and

Shojaie (2015) for some insight in the context of inference for high dimensional regression. In

Section 4, we will discuss a data-driven choice of L that results in consistent estimation of

precision matrices.
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Before presenting the asymptotic results, we introduce some additional notations. For a

matrix A = (aij)
p
i,j=1 ∈ Rp×p, we denote the spectral norm ‖A‖2 = maxx∈Rp,‖x‖=1‖Ax‖, and

the element-wise `∞-norm ‖A‖∞ = maxi,j |ai,j | where ‖x‖ is the Euclidean norm for a vector

x. We also write the induced `∞-norm ‖A‖∞/∞ = sup‖x‖∞=1‖Ax‖∞ where ‖x‖∞ = maxi |xi|

for x = (x1, . . . , xp). For the ease of presentation, the results in this section are presented in

asymptotic form; non-asymptotic results and proofs are deferred to the Appendix.

3.1 Consistency in Spectral Norm

Let s ≡ #{(i, j) : ω
(k)
0,ij 6= 0, i, j = 1, . . . , p, i 6= j, k = 1, . . . ,K}, and d = maxk,i #{(i, j) :

ω
(k)
0,ij 6= 0, j = 1, . . . , p, i 6= j}. The following theorem establishes the rate of convergence of the

LASICH estimator, in spectral norm, under either exponential or polynomial tail conditions

(Condition 1 or 2). Convergence rates for LASICH in `∞-and Frobenius norm are discussed

in Section 3.3.

Theorem 1. Suppose Conditions 3 and 4 hold. Under Condition 1 or 2,

K∑
k=1

‖Ω̂(k)
ρn − Ω

(k)
0 ‖2 = OP

(√
λ4

Θ(s+ 1) log p

n

)
,

as n, p→∞ where ρn is given in Lemma 1 in the Appendix with γ = mink πk/2.

Theorem 1 is proved in the Appendix. The proof builds on tools from Negahban et al.

(2012a). However, our estimation procedure does not match their general framework: First,

we do not penalize the diagonal elements of the inverse correlation matrices; our penalty is

thus not a norm. Second, the Laplacian matrix is nonpositive definite. Thus, the Laplacian

shrinkage penalty is not strictly convex. The results from Negahban et al. (2012a) are thus

not directly applicable to our problem. To establish the estimation consistency, we first show,

in Lemma 3, that the function r(·) = ‖ · ‖1 + ρ2‖ · ‖L is a seminorm, and is, moreover, convex

and decomposable. We also characterize the subdifferential of this seminorm in Lemma 6,

based on the spectral decomposition of the graph Laplacian L. The rest of the proof uses

tools from Negahban et al. (2012a), Rothman et al. (2008) and Ravikumar et al. (2011), as

well as new inequalities and concentration bounds. In particular, in Lemma 4 we establish

a new `∞ bound for the empirical covariance matrix for random variables with polynomial

tails, which is used to established the consistency in the spectral norm under Condition 2.

The convergence rate in Theorem 1 compares favorably to several other methods based

12



on penalized likelihood. Few results are currently available for estimation of multiple preci-

sion matrices. An exception is Guo et al. (2011), who obtained a slower rate of convergence

Op({(s+ p) log p/n}1/2) under the normality assumption and based on a bound on the Frobe-

nius norm. Our rates of convergence are comparable to the results of Rothman et al. (2008) for

spectral norm convergence of a single precision matrix, obtained under the normality assump-

tion. Ravikumar et al. (2011), on the other hand, assumed the irrepresentability condition

to obtain the rate Op({min{s+ p, d2} log p/n}1/2) and Op({min{s+ p, d2}pτ/(c2+c3+1)/n}1/2),

under exponential and polynomial tail conditions, respectively, where τ > 2 is some scalar.

The rate in Theorem 1 is obtained without assuming the irrepresentability condition. In

fact, our rates of convergence are faster than those of Ravikumar et al. (2011) given the ir-

representability condition 5 (see Corollary 1). Cai et al. (2011) obtained improved rates of

convergence under both tail conditions for an estimator that is not found by minimizing the

penalized likelihood objective function, and may be nonpositive definite. Finally, note that

the results in Rothman et al. (2008); Ravikumar et al. (2011); Cai et al. (2011) are for separate

estimation of precision matrices and hold for the minimum sample size across subpopulations,

mink nk, whereas our results hold for the total samples size
∑

k nk.

3.2 Model Selection Consistency

Let S(k) = {(i, j) : ω
(k)
0,ij 6= 0, i, j = 1, . . . , p} be the support of Ω

(k)
0 , and denote by d the

maximum number of nonzero elements in any rows of Ω
(k)
0 , k = 1, . . . ,K. Define the event

M(Ω̂ρn ,Ω0) ≡
{

sign(ω̂
(k)
ρn,ij

) = sign(ω
(k)
0,ij), i, j = 1, . . . , p, k = 1, . . . ,K

}
, (5)

where sign(a) is 1 if a > 0, 0 if a = 0 and −1 if a < 0. We say that an estimator Ω̂ρn of Ω0 is

model-selection consistent if P{M(Ω̂ρn ,Ω0)} → 1.

We begin by discussing an irrepresentability condition for estimation of multiple graph-

ical models. This restrictive condition is commonly assumed to establish model selection

consistency of lasso-type estimators, and is known to be almost necessary (Meinshausen and

Bühlmann, 2006; Zhao and Yu, 2006). For the graphical lasso, Ravikumar et al. (2011) showed

that the irrepresentability condition amounts to a constraint on the correlation between en-

tries of the Hessian matrix Γ = Ω−1 ⊗ Ω−1 in the set S corresponding to nonzero elements

of Ω, and those outside this set. Our irrepresentability condition is motivated by that in

Ravikumar et al. (2011), however, we adjust the index set S to also account for covariances

13



of “non-edge variables” that are correlated with each other. More specifically, the description

of irrepresentability condition in Ravikumar et al. (2011) involves ΓSS consisting only of ele-

ments σijσkl with (i, j) ∈ S and (k, l) ∈ S. However, σij 6= 0 for (i, j) /∈ S is not taken into

account by this definition. We thus adjust the index set S so that ΓSS also includes elements

σijσkl if (i, k) ∈ S and (j, l) ∈ S. This definition is based on the crucial observations that

Γ = Σ⊗Σ involves the covariance matrix Σ instead of the precision matrix Ω, and that some

variables are correlated (i.e., σij 6= 0) even though they may be conditionally independent

(i.e., ωij = 0). Defining S(k) for k = 1, . . . ,K as above, we assume the following condition.

Condition 5 (Irrepresentability condition). The inverse Θ
(k)
0 of the correlation matrix Ψ

(k)
0

satisfies the irrepresentability condition for S(k) with parameter α: (a) (Θ
(k)
0 ⊗ Θ

(k)
0 )S(k)S(k)

and (Ψ
(k)
0 ⊗Ψ

(k)
0 )S(k)S(k) are invertible, and (b) there exists some α ∈ (0, 1] such that

max
(i,j)∈(S(k))c

‖Γ(k)

{(i,j)}×S(k){Γ
(k)

S(k)S(k)}−1‖1 ≤ 1− α, (6)

for k = 1, . . . ,K where Γ(k) ≡ Ψ
(k)
0 ⊗Ψ

(k)
0 .

In addition to the irrepresentability condition, we require bounds on the magnitude of

θ
(k)
ij 6= 0 and their normalized difference.

Condition 6 (Lower bounds for the inverse correlation matrices). There exists a constant

c8 ∈ R such that

θmin ≡ min
k=1,...,K,i 6=j

|θ(k)
0,ij | ≥ c8 > 0.

Moreover, for Ω0,ij 6= 0, LΩ0,ij 6= 0 and there exists a constant c9 > 0 such that

min

lkk′ 6=0,
ω
(k)
0,ij√
dk
−

ω
(k′)
0,ij√
dk′
6=0

∣∣∣∣∣∣ θ
(k)
0,ij√
dk
−
θ

(k′)
0,ij√
dk′

∣∣∣∣∣∣ ≥ c9.

The first lower bound in Condition 6 is the usual “min-beta” condition for model selection

consistency of lasso-type estimators. The second lower bound, which is represented here for

the normalized Laplacian penalty, is a mild condition which ensures estimates based on inverse

correlation matrices can be mapped to precision matrices. For any pair of subpopulations k

and k′ connected in G it requires that if the difference in (normalized) entries of the entires of

the precision matrices are nonzero, the difference in (normalized) entries of inverse correlation

matrices are bounded away from zero. In other words, the bound guarantees that Θ0,ij is not
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in the null space of L, whenever Ω0,ij is outside of the null space. This bound can be relaxed

if we use a positive definite matrix Lε = L+ εI for ε > 0 small.

Our last condition for establishing the model selection consistency concerns the minimum

sample size and the tuning parameter for the graph Laplacian penalty. This condition is

necessary to control the `∞-bound of the error Θ̂ρn − Θ0, as in Ravikumar et al. (2011).

Our minimum sample size requirement is related to the irrepresentability condition. Let

κΓ be the maximum of the absolute column sums of the matrices {(Γ(k))−1}S(k)S(k) , k =

1, . . . ,K, and κΨ be the maximum of the absolute column sums of the matrices Ψ
(k)
0 , k =

1, . . . ,K. The minimum sample size in Ravikumar et al. (2011) is also a function of the

irrepresentability constant, in particular, their κΓ involves {(Γ(k)

S(k)S(k))}−1. There is, therefore,

a subtle difference between our definition and theirs: in our definition, the matrix is first

inverted and then partitioned, while in Ravikumar et al. (2011), the matrix is first partitioned

and then inverted. Corollary 2 establishes the model selection consistency under a weaker

sample size requirement, by exploiting instead the control of the spectral norm in Theorem 1.

Condition 7 (Sample size and regularization parameters). Let

C3 = max

{
2634κ2

Ψκ
2
Γ

mink π
2
k

max

{
1,

2672κ4
Ψκ

2
Γ

α2 mink π
2
k

}
,
36

c2
8

,
2432

c2
9 mink dk

}
(i) (Exponential tails). It holds

n >
12 log p

mink πk
max

{
1, 2632C2

1 (1 + c2
1)2c2

6C3d
2
}

(ii) (Polynomial tails). It holds n > max{p1/c2c
−1/c2
7 , C2

1C
2
2C3d

2 log p}.

(iii) It holds that ρ2 ≤ α2/{4‖L‖1/22 (2− α)}.

With these condition, we obtain

Theorem 2. Suppose that Conditions 3, 5, 6 and 7 hold. Under Condition 1 or 2, P (M(Ω̂ρn ,Ω0))→

1 as n, p→∞ where ρn is given in Lemma 1 in the Appendix with γ = mink πk/2.

3.3 Additional Results

In this section, we establish norm and variable selection consistency of LASICH under alterna-

tive assumptions. Our first result gives better rates of convergence for consistency in the `∞-,

spectral and Frobenius norms, under the condition for model selection consistency. Our rates

in Corollary 1 improve the previous results by Ravikumar et al. (2011), and are comparable

to that of Cai et al. (2011) in the `∞- and spectral norms under both tail conditions.
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Corollary 1. Suppose the conditions in Theorem 2 hold. Then, under Condition 1 or 2,

K∑
k=1

‖Ω̂(k)
ρn − Ω

(k)
0 ‖F = OP

(√
min{λ4

Θp(s+ 1), κ2
Γ(s+ p)} log p

n

)
,

K∑
k=1

‖Ω̂(k)
ρn − Ω

(k)
0 ‖2 = OP

(√
min{λ4

Θ(s+ 1), κ2
Γd

2} log p

n

)
,

K∑
k=1

‖Ω̂(k)
ρn − Ω

(k)
0 ‖∞ = OP

(√
κ2

Γ log p

n

)
.

Our next result in Corollary 2 establishes the model selection consistency under a weaker

version of the irrepresentability condition (Condition 6). Aside from the difference in the index

sets S(k), the form of the Condition 6 and the assumption of invertibility of (Ψ
(k)
0 ⊗Ψ

(k)
0 )S(k)S(k)

are similar to those in Ravikumar et al. (2011). On the other hand, Ravikumar et al. (2011) do

not require invertibility of (Θ
(k)
0 ⊗Θ

(k)
0 )S(k)S(k) . However, their proof is based on an application

of Brouwer’s fixed point theorem, which does not hold for the corresponding function (Eq. (70)

in page 973) since it involves a matrix inverse, and is hence not continuous on its range. The

additional inevitability assumption in Condition 6 is used to address this issue in Lemma 11.

The condition can be relaxed if we assume an alternative scaling of the sample size stated in

Condition 8 below instead of Condition 7.

Condition 8. Let λΨ = maxk‖Ψ
(k)
0 ‖. Suppose ρ2 ≤ α2/{4‖L‖1/22 (2− α)} and

(i) (Exponential tails)

n > 21933{min
k
πk}−3C2

1 (1 + 4c2
1)2c2

6λ
4
Θ

(
1 + ρ2‖L‖1/22

)2
s log pmax{λΨ, 4λ

4
Θα
−1},

or

(ii) (Polynomial tails)

n > 21233{min
k
πk}−2K2C2

1C
2
2λ

4
Θ

(
1 + ρ2‖L‖1/22

)2
s log pmax{λΨ, 4λ

4
Θα
−1}.

Corollary 2. Suppose that Conditions 3, 6 and 8 hold. Suppose also that Condition 5 holds

without requiring the invertibility of (Θ
(k)
0 ⊗ Θ

(k)
0 )S(k)S(k). Then, under Condition 1 or 2,

P (M(Ω̂ρn ,Ω0)) → 1 as n, p → ∞ where ρn is given in Lemma 1 in the Appendix with

γ = mink πk/2.
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4 Laplacian Shrinkage based on Hierarchical Clustering

Our proposed LASICH approach utilizes the information in the subpopulation network G. In

practice, however, similarity between subpopulations may be difficult to ascertain or quan-

tify. In this section, we present a modified LASICH framework, called HC-LASICH, which

utilizes hierarchical clustering to learn the relationships among subpopulations. The informa-

tion from hierarchical clustering is then used to define the weighted subpopulation network.

Importantly, HC-LASICH can even be used in settings where the subpopulation membership

is unavailable, for instance, to learn the genetic network of cancer patients, where cancer

subtypes may be unknown.

We use hierarchical clustering with a complete, single or average linkage to estimate both

the subpopulation memberships and the weighted subpopulation network G. Specifically,

the length of a path between two subpopulations in the dendrogram is used as a measure

of dissimilarity between two subpopulations; the weights for the subpopulation networks are

simply defined by taking the inverse of these lengths. Throughout this section, we assume that

the number of subpopulations K is known. While a number of methods have been proposed

for estimating the number of subpopulations in hierarchical clustering (see e.g. Borysov et al.

(2014) and the references therein), the problem is beyond the scope of this paper.

Let I = (I(1), . . . , I(K)) be the subpopulation membership indicator such that I follows the

multinomial distribution MultK(1, (π1, . . . , πK)) with parameter 1 and subpopulation mem-

bership probabilities (π1, . . . , πK) ∈ (0, 1)K . Note that I is missing and is to be estimated.

Let Ii, i = 1, . . . , n be i.i.d. copies of I and Îi = (Î1
i , . . . , ÎKi ) be an estimated subpopu-

lation indicator for the ith observation via hierarchical clustering. Based on the estimated

subpopulation membership and subpopulation network Ĝ, we apply our method to obtain

the estimator, HC-LASICH, Ω̂HC,ρn = (Ω̂
(1)
HC,ρn

, . . . , Ω̂
(K)
HC,ρn

). Interestingly, HC-LASICH en-

joys the same theoretical properties as LASICH, under the normality assumption. To show

this, we first establish the consistency of hierarchical clustering in high dimensions, which

is of independent interest. Our result is motivated by the recent work of (Borysov et al.,

2014), who study the consistency of hierarchical clustering for independent normal variables

X(k) ∼ N(µ(k), σ(k)I); we establish similar results for multivariate normal distributions with

arbitrary covariance structures. We make the following assumption.
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Condition 9. For k, k′ = 1, . . . ,K, let

λ
(k)

= p−1
p∑
j=1

λ(k),j ,

µ(k,k′) = p−1

∥∥∥∥Λ
1/2
k,k′Q

T
k,k′

[
Σ(k) + Σ(k′)

]1/2 [
µ(k) − µ(k′)

]∥∥∥∥2

,

where λ(k),j is the eigenvalues of Σ(k) with λ(k),1 ≤ λ(k),2 ≤ . . . ≤ λ(k),p, and the spectral

decomposition of Σ(k) + Σ(k′) is Σ(k) + Σ(k′) = Qk,k′Λk,k′Q
T
k,k′. It holds that

µ(k,k′) > 2 min
{
λ

(k)
, λ

(k′)
}
− λ(k),p − λ(k′),p, k 6= k′, k, k′ = 1, . . . ,K,

0 < c10 ≤ λ(k),j ≤ c11 <∞, ‖µ(k)‖ ≤ c11, k = 1, . . . ,K, j = 1, . . . , p.

for constants m and M .

Under the normality assumption, the following results shows that the probability of suc-

cessful clustering converges to 1, as p, n→∞.

Theorem 3. Suppose that that X(k), k = 1, . . . ,K, is normally distributed. Under Condition

9,

P (Îi = Ii, i = 1, . . . , n)→ 1, (7)

as n, p→∞.

To proof of Theorem 3 generalizes recent results of Borysov et al. (2014) to the case of

arbitrary covariance structures. A key component of the proof is a new bound on the `2

norm of a multivariate normal random variable with arbitrary mean and covariance matrix

established in Lemma 14. The proof of the lemma uses new concentration inequalities for

high-dimensional problems in Boucheron et al. (2013), and may be of independent interest.

Note that the consistent estimation of subpopulation memberships (7) implies that the

estimated hierarchy among clusters also matches the true hierarchy. Thus, with successful

clustering established in Theorem 3, theoretical properties of Ω̂HC,ρn naturally follow.

Theorem 4. Suppose that X(k), k = 1, . . . ,K, is normally distributed and that Condition 9

holds. (i) Under the conditions of Theorem 1,

K∑
k=1

‖Ω̂(k)
HC,ρn

− Ω
(k)
0 ‖2 = OP

(√
λ4

Θ(s+ 1) log p

n

)
.
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Suppose, moreover, that the conditions of Theorem 2 holds. Then

K∑
k=1

‖Ω̂(k)
HC,ρn

− Ω
(k)
0 ‖F = OP

(√
min{λ4

Θp(s+ 1), κ2
Γ(s+ p)} log p

n

)
,

K∑
k=1

‖Ω̂(k)
HC,ρn

− Ω
(k)
0 ‖2 = OP

(√
min{λ4

Θ(s+ 1), κ2
Γd

2} log p

n

)
,

K∑
k=1

‖Ω̂(k)
HC,ρn

− Ω
(k)
0 ‖∞ = OP

(√
κ2

Γ log p

n

)
.

(ii) Under the conditions of Theorem 2,

P (M(Ω̂HC,ρn ,Ω0))→ 1, as n, p→∞.

5 Algorithms

We develop an alternating directions method of multipliers (ADMM) to efficiently solve the

convex optimization problem (3).

Let A(k) = (a
(k)
ij )pi,j=1 ∈ Rp×p, B(k) = (b

(k)
ij )pi,j=1 ∈ Rp×p, C(k) = (c

(k)
ij )pi,j=1 ∈ Rp×p,

D(k) = (d
(k)
ij )pi,j=1 ∈ Rp×p, k = 1, . . . ,K. Define A = (A(1), . . . , A(K)), B = (B(1), . . . , B(K)),

C = (C(1), . . . , C(K)), D = (D(1), . . . , D(K)), and cij ≡ (c
(1)
ij , . . . , c

(K)
ij )T ∈ RK , dij ≡

(d
(1)
ij , . . . , d

(K)
ij )T ∈ RK , eC,ij ≡ (e

(1)
C,ij , . . . , e

(K)
C,ij)

T ∈ RK where E
(k)
C = (e

(k)
C,ij)

p
i,j=1.

To facilitate the computation, we consider instead a perturbed graph Laplacian Lε = L+εI,

where I is the identity matrix and ε > 0 is a small perturbation. The difference between

solutions to the original and modified optimization problem is largely negligible for small ε;

however, the positive definiteness of Lε results in more efficient computation. A similar idea

was used in Guo et al. (2011) and Rothman et al. (2008) to avoid dividision by zero. The

optimization problem (3) with L replaced by Lε can then be written as

minimize

K∑
k=1

nk
n

(
tr
(

Ψ(k)
n A(k)

)
− log det(A(k))

)
+ ρn

K∑
k=1

‖B(k)‖1 + ρnρ2

∑
i 6=j

(cTijLεcij)
1/2

subject to A(k) = D(k), B(k) = D(k), Lεcij = Lεdij k = 1, . . . ,K, i, j = 1, . . . , p. (8)

Using Lagrange multipliers E = (EA, EB, EC)T , with EA = (E
(1)
A , . . . , E

(K)
A ) with E

(k)
A ∈

Rp×p, k = 1, . . . ,K, EB = (E
(1)
B , . . . , E

(K)
B ) with E

(k)
B ∈ Rp×p, k = 1, . . . ,K, and EC =

(E
(1)
C , . . . , E

(K)
C ) with E

(k)
C ∈ Rp×p, k = 1, . . . ,K, the augmented Lagrangian in scaled form is
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given by

L%(A,B,C,D,E)

≡ n−1
K∑
k=1

nk

(
tr
(

Ψ(k)
n A(k)

)
− log det(A(k))

)
+ ρn

K∑
k=1

‖B(k)‖1 + ρnρ2

∑
i 6=j

(cTijLεcij)
1/2

+
%

2

K∑
k=1

∥∥∥A(k) −D(k) + E
(k)
A

∥∥∥2

F
+
%

2

K∑
k=1

∥∥∥B(k) −D(k) + E
(k)
B

∥∥∥2

F

+
%

2

∑
i,j

∥∥∥L1/2
ε cij − L1/2

ε dij + eC,ij

∥∥∥2

F
.

Here % > 0 is a regularization parameter and L
1/2
ε is the square root of Lε with Lε =

(L
1/2
ε )TL

1/2
ε .

The proposed ADMM algorithm is as follows.

• Step 0. Initialize A(k) = A(k),0, B(k) = B(k),0, C(k) = C(k),0, D(k) = D(k),0, E
(k)
A = E

(k),0
A ,

E
(k)
B = E

(k),0
B , E

(k)
C = E

(k),0
C and choose % > 0. Select a scalar % > 0.

• Step m. Given the (m− 1)th estimates,

– Update A(k)) Find Am minimizing −`n(A)−(%/2)
∑K

k=1‖A(k)−D(k),m−1−E(k),m−1
A ‖

(see pages 46-47 of Boyd et al. (2011) for details).

– (Update B(k)) Compute B
(k),m
ij = Sρn/%(D

(k),m−1
ij − E(k),m−1

B,ij ), where Sy(x) is x− y

if x > y, is 0 if |x| ≤ y, and is x+ y if x < −y.

– (Update C(k)) For (x)+ = max{x, 0}, compute

cmij =

1− ρnρ2

%‖L1/2
ε dm−1

ij − em−1
C,ij ‖


+

(dm−1
ij − L−1/2

ε em−1
C,ij ).

– (Update D(k)) Compute

dmij = (2I + Lε)
−1{amij + em−1

A,ij + bmij + em−1
B,ij + Lεc

m
ij + (L1/2

ε )T em−1
C,ij }.

– (Update EA) Compute E
(k),m
A = E

(k)
A +A(k),m −D(k),m.

– (Update EB) Compute E
(k),m
B = E

(k)
B +B(k),m −D(k),m,

– (Update EC) Compute e
(k),m
C,ij = e

(k)
C,ij + L1/2(c

(k),m
ij − d(k),m

ij ).

• Repeat the iteration until the maximum of the errors r
(k)
A = A(k) − D(k), r

(k),m
B =

B(k),m−D(k),m, r
(k),m
C = C(k),m−D(k),m, s(k),m = %(D(k),m−D(k),m−1) in the Frobenius

norm is less than a specified tolerance level.
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The proposed ADMM algorithm facilitates the estimation of parameters of moderately

large problems. However, parameter estimation in high dimensions can be computationally

challenging. We next present a result that determines whether the solution to the optimization

problem (3), for given values of tuning parameters ρn, ρ2, is block diagonal. (Note that this

result is an exact statement about the solution to (3), and does not assume block sparsity

of the true precision matrices; see Theorems 1 and 2 of Danaher et al. (2014) for similar

results.) More specifically, the condition in Proposition 1 provides a very fast check, based

on the entries of the empirical correlation matrices Ψ
(k)
n , k = 1, . . . ,K, to identify the block

sparsity pattern in Ω̂
(k)
ρn , k = 1, . . . ,K after some permutation of the features.

Let UL = [u1 . . . uK ] ∈ RK×K where u1, . . . , uK ’s are eigenvectors of L corresponding to

0, λL,2, . . . , λL,K . Define Λ
−1/2
L as the diagonal matrix with diagonal elements 0, λ

−1/2
L,2 , . . . , λ

−1/2
L,K .

Proposition 1. The solution Ω̂
(k)
ρn , k = 1, . . . ,K to the optimization problem (3) consists of

the block diagonal matrices with the same block structure diag(Ω1, . . . ,ΩB) among all groups

if and only if for Ψn,ij = (ψ
(1)
n,ij , . . . , ψ

(K)
n,ij )

T

min
v∈[−1,1]K

∥∥∥Λ
−1/2
L UL

(nk
n

Ψn,ij − ρnv
)∥∥∥ ≤ ρnρ2, (9)

and for all i, j such that the (i, j) element is outside the blocks.

The proof of the Proposition is similar to Theorems 1 of Danaher et al. (2014) and is

hence omitted. Condition 9 can be easily verified by applying quadratic programming to

the left hand side of the inequality. The solution to (3) can then be equivalently found by

solving the optimization problem separately for each of the blocks; this can result in significant

computational advantages for moderate to large values of ρnρ2.

6 Numerical Results

6.1 Simulation Experiments

We compare our method with four existing methods, graphical lasso, the method of Guo et al.

(2011), FGL and GGL of Danaher et al. (2014). For graphical lasso, estimation was carried

out separately for each group with the same regularization parameter.

Our simulation setting is motivated by estimation of gene networks for healthy subjects and

patients with two similar diseases caused by inactivation of certain biological pathways. We

consider K = 3 groups with sample sizes n = (50, 100, 50) and dimension p = 100. Data are
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generated from multivariate normal distributions N(µ(k), (Ω
(k)
0 )−1), k = 1, 2, 3; all precision

matrices Ω
(k)
0 are block diagonal with 4 blocks of equal size.

To create the precision matrices, we first generated a graph with 4 components of equal

size, each as either an Erdős-Rényi or scale free graphs with 95 total edges. We randomly

assigned Unif((−.7,−.5) ∪ (.5, .7)) values to nonzero entries of the corresponding adjacency

matrix A and obtained a matrix Ã. We then added 0.1 to the diagonal of Ã to obtain a positive

definite matrix Ω
(1)
0 . For each of subpopulations 2 and 3, we removed one of the components

of the graph by setting the off diagonal entries of Ã to zero, and added a perturbation from

Unif(−.2, .2) to nonzero entries in Ã. Positive definite matrices Ω
(2)
0 and Ω

(3)
0 were obtained

by adding 0.1 to the diagonal elements. All partial correlations ranges from .28 to .54 in

the absolute values. A similar setting was considered in in Danaher et al. (2014), where the

graph included more components, but no perturbation was added. We consider two simulation

settings, with known and unknown subpopulation network G.

6.1.1 Known subpopulation network G

In this case, we set µ(k) = 0, k = 1, 2, 3 and use the graph in Figure 1 as the subpopulation

network.

Figures 3a,c show the average number of true positive edges versus the average number of

detected edges over 50 simulated data sets. Results for multiple choices of the second tuning

parameter are presented for FGL, GGL and LASICH. It can be seen that in both cases,

LASICH outperforms other methods, when using relatively large values of ρ2. Smaller values

of ρ2, on the other hand, give similar results as other methods of joint estimation of multiple

graphical models. These results indicate that, when the available subpopulation network

is informative, the Laplacian shrinkage constraint can result in significant improvement in

estimation of the underlying network.

Figures 3b,d show the estimation error, in Frobenius norm, versus the number of detected

edges. LASICH has larger errors when the estimated graphs have very few edges, but, its

error decreases as the number of detected edges increase, eventually yielding smaller errors

than other methods. The non-convex penalty of Guo et al. (2011) performs well in terms

of estimation error, although determining the appropriate range of tuning parameter for this

method may be difficult.
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Figure 3: Simulation results for joint estimation of multiple precision matrices with known subpopulation

memberships. Results show the average number of true positive edges (a & c) and estimation error, in

Frobenius norm (b & d) over 50 data sets with n = 200 multivariate normal observations generated from

a graphical model with p = 100 features; results in top row (a & b) are for an Erdős-Rényi graph and

those in bottom row (c & d) are for a scale free (power-law) graph.
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Figure 4: Simulation results for joint estimation of multiple precision matrices with unknown subpop-

ulation memberships. Results show the average number of true positive edges over 50 data sets with

n = 200 multivariate normal observations generated from a graphical model with over an Erdős-Rényi

graph with p = 100 features. Results for HC-LASICH and FGL/GGL correspond to the best choice of

the second tuning parameter among those in Figure 3a. The Rand indices for HC-LASICH are averages

over 50 generated data sets.

6.1.2 Unknown subpopulation network G

In this case, the subpopulation memberships and the subpopulation network G are estimated

based on hierarchical clustering. We randomly generated µ(1) from a multivariate normal

distribution with a covariance matrix σ2I. For subpopulations 2 and 3, the elements of µ(1)

corresponding to the empty components of the graph were set to zero to obtain µ(2) and µ(3).

Hierarchical clustering with complete linkage was applied to data to obtain the dendrogram;

we took inverse of distances in the dendrogram to obtain similarity weights used in the graph

Laplacian.

Figures 4 compares the performance of HC-LASICH, in terms of support recovery, to

competing methods, in the setting where the subpopulation memberships and network are

estimated from data (Section 4). Here the differences in subpopulation means µ(k,k′) are set

up to evaluate the effect of clustering accuracy. The four settings considered correspond to

average Rand indices of .6 .7, .8 and .9 across 50 data sets, respectively. Here the second

tuning parameter for HC-LASICH, GGL and FGL is chosen according to the best performing
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model in Figure 3. As expected, changing the mean structure, and correspondingly the Rand

index, does not affect the performance of other methods. The results indicate that, as long as

features can be clustered in a meaningful way, HC-LASICH can result in improved support

recovery. Data-adaptive choices of the tuning parameter corresponding to the Laplacian

shrinkage penalty may result in further improvements in the performance of the HC-LASICH.

However, we do not pursue such choices here.

6.2 Genetic Networks of Cancer Subtypes

Breast cancer is heterogenous with multiple clinically verified subtypes (Perou et al., 2000).

Jönsson et al. (2010) used copy number variation and gene expression measurements to identify

new subtypes of breast cancer and showed that the identified subtypes have distinct clinical

outcomes. The genetic networks of these different subtypes are expected to share similarities,

but to also have unique features. Moreover, the similarities among the networks are expected

to corroborate with the clustering of the subtypes based on their molecular profiles. We applied

network estimation methods of Section 6.1 to a subset of the microarray gene expression data

from Jönsson et al. (2010), containing data for 218 patients classified into three previously

known subtypes of breast cancer: 46 Luminal-simple, 105 Luminal-complex and 67 Basal-

complex samples. For ease of presentation, we focused on 50 genes with largest variances.

The hierarchical clustering results of Jönsson et al. (2010), reproduced in Figure 5 for the

above three subtypes, were used to identify the subpopulation membership; reciprocals of

distances in the dendrogram were used to define similarities among subtypes used in the

graph Laplacian penalty.

To facilitate the comparison, tuning parameters were selected such that the estimated

networks of the three subtypes using each method contained a total of 150 edges. For methods

with two tuning parameters, pairs of tuning parameters were determined using the Bayesian

information criterion (BIC), as described in Guo et al. (2011). Estimated genetic networks of

the three cancer subtypes are shown in Figure 5. For each method, edges common in all three

subtypes, those common in Luminal subtypes and subtype specific edges are distinguished.

In this example, results from separate graphical lasso estimation and FGL/GGL are two

extremes. Estimated network topologies from graphical lasso vary from subtype to subtype,

and common structures are obscured; this variability may be because similarities among

subtypes are not incorporated in the estimation. In contrast, FGL and GGL give identical
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Figure 5: Dendrogram of hierarchical clustering of three subtypes of breast cancer from Jönsson et al.

(2010) along with estimated gene networks using graphical lasso (Glasso), method of Guo et al., FGL

and GGL of Daneher et al. (2014) and LASICH. Blue edges are common to Luminal subtypes and black

edges are shared by all three subtypes; condition specific edges are drawn in gray.

networks for all subtypes, perhaps because both methods encourage the estimated networks

of all subtypes to be equally similar. Intermediate results are obtained using LASICH and

the method of Guo et al. (2011). The main difference between these two methods is that Guo

et al. (2011) finds more edges common to all three subtypes, whereas LASICH finds more

edges common to the Luminal subtypes. This difference is likely because LASICH prioritizes

the similarity between the Luminal subtypes via graph Laplacian while the method of Guo

et al. (2011) does not distinguish between the three subtypes. The above example highlights

the potential advantages of LASICH in providing network estimates that better corroborate

with the known hierarchy of subpopulations.
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7 Discussion

We introduced a flexible method for joint estimation of multiple precision matrices, called

LASICH, which is particularly suited for settings where observations belong to three or more

subpopulations. In the proposed method, the relationships among heterogenous subpopu-

lations is captured by a weighted network, whose nodes correspond to subpopulations, and

whose edges capture their similarities. As a result, LASICH can model complex relationships

among subpopulations, defined, for example, based on hierarchical clustering of samples.

We established asymptotic properties of the proposed estimator in the setting where the

relationship among subpopulations is externally defined. We also extended the method to the

setting of unknown relationships among subpopulations, by showing that clusters estimated

from the data can accurately capture the true relationships. The proposed method generalizes

existing convex penalties for joint estimation of graphical models, and can be particularly

advantageous in settings with multiple subpopulations.

A particularly appealing feature of the proposed extension of LASICH is that it can also

be applied in settings where the subpopulation memberships are unknown. The latter setting

is closely related to estimation of precision matrices for mixture of Gaussian distributions.

Both approaches have limitations and drawbacks: on the one hand, the extension of LASICH

to unknown subpopulation memberships requires certain assumptions on differences of pop-

ulation means (Section 4). On the other hand, estimation of precision matrices for mixture

of Gaussians is computationally challenging, and known rates of convergence of parameter

estimation in mixture distributions (e.g. in Städler et al. (2010)) are considerably slower.

Throughout this paper we assumed that the number of subpopulations is known. Ex-

tensions of this method to estimation of graphical models in populations with an unknown

number of subpopulations would be particularly interesting for analysis of genetic networks

associated with heterogeneity in cancer samples, and are left for future research.

8 Appendix: Proofs and Technical Detials

We denote true inverse correlation matrices as Θ0 = (Θ
(1)
0 , . . . ,Θ

(K)
0 ) and true correlation ma-

trices as Ψ0 = (Ψ
(1)
0 , . . . ,Ψ

(K)
0 ), where Θ

(k)
0 ≡ (Ψ

(k)
0 )−1 ≡ (θ

(k)
0,ij)

p
i,j=1, and Ψ

(k)
0 = (ψ

(k)
0,ij)

p
i,j=1.

The estimates of the population parameters are dented as Σ̂
(k)
n = (σ̂ij)

p
i,j=1, Ψ

(k)
n = (ψn,ij)

p
i,j=1,

and Θ̂
(k)
ρn = (θ̂

(k)
ρn,ij

)pi,j=1. For a vector x = (x1, . . . , xp)
T and J ⊂ {1, . . . , p}, we denote
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xJ = (xj , j ∈ J)T . For a matrix A, λk(A) is the kth smallest eigenvalue and ~A is the vector-

ization of A. For J ⊂ {(i, j) : i, j = 1, . . . , p} and A ∈ Rp×p, ~AJ is a vector in R|J | obtained

by removing elements corresponding to (i, j) /∈ J from ~A. A zero-filled matrix AJ ∈ Rp×p is

obtained from A by replacing aij by 0 for (i, j) /∈ J .

8.1 Consistency in Matrix Norms

Theorem 1 is a direct consequence of the following result.

Lemma 1. (i) Suppose that Condition 1 holds. Let γ ∈ (0,mink πk) be arbitrary. For

n ≥ max

{
6γ−1 log p, 21533C2

1γ
−3(1 + 4c2

1)2 max
k,i
{σ(k)

ii }
2λ4

Θ

(
1 + ρ2‖L‖1/22

)2
s log p

}
and ρn = 23

√
6C1(1 + 4c2

1)γ−1/2 maxk,i σ
(k)
ii

√
log p/n, we have with probability (1− 2K/p)(1−

2K exp(−2n(mink πk − γ)2)) that

K∑
k=1

‖Θ̂(k)
ρn −Θ

(k)
0 ‖F ≤ 215/233/2C1γ

−3/2(1 + 4c2
1) max

k,i
σ

(k)
ii λ

2
Θ

(
1 + ρ2‖L‖1/22

)√s log p

n
.

(ii) Suppose that Condition 2 holds with p ≤ c7n
c2, c2, c3, c7 > 0. For ρn = C1Kδn

satisfying

2432C1ρ
2
nγ
−2s(1 + ρ2‖L‖1/22 )2λ4

Θ ≤ 1/4

and τ > (27 + 23

√
1 + 2432c4 maxk,i{σ

(k)
ii }2)/(9c4 maxk,i{σ

(k)
ii }2) we have with probability (1−

2K exp(−2n(mink πk − γ)2))νn that

K∑
k=1

‖Θ̂(k)
ρn −Θ

(k)
0 ‖F ≤ 2433/2C1γ

−2K
(

1 + ρ2‖L‖1/22

)
λ2

Θs
1/2δn,

where

δn ≡ max
k,i
{σ(k)

ii }
2c4(4 + τ)γ−1 log p

n
+ (1 + 2 max

k,i
|µ(k),i|)

√
max
k,i
{σ(k)

ii }2c4(4 + τ)γ−1
log p

n

+2 max
k,i,j

E |X(k),iX(k),j |I
(
|X(k),iX(k),j | ≥

√
γn

log p

)
+ 4

{
max
k,i

E |X(k),i|I
(
|X(k),i| ≥

√
γn

log p

)}2

+2(1 + 2 max
k,i
|µ(k),i|) max

k,i
E |X(k),i|I

(
|X(k),i| ≥

√
γn

log p

)
= O

(√
log p

n

)
,
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and

νn ≡
3c7c4 maxk,i{σ

(k)
ii }2(log p)c2+c3+1

γc3nc3
+
c7c4 maxk,i σ

(k)
ii (log p)2(c2+c3+1)

nc2+c3+1

+8p2 exp

− maxk,i σ
(k)
ii c4(4 + τ) log p

2 maxk,i σ
(k)
ii c4 +

√
maxk,i{σ

(k)
ii }2c4(64 + 16τ)/3


= o(1).

Our proofs adopt several tools from Negahban et al. (2012a). Note however that our penalty

does not penalize the diagonal elements, and is hence a seminorm; thus, their results do not

apply to our case. We first introduce several notations. To treat multiple precision matrices in

a unified way, our parameter space is defined to be the set R̃(pK)×(pK) of (pK)×(pK) symmetric

block diagonal matrices, where the kth diagonal block is a p× p matrix corresponding to the

precision matrix of subpopulation k. We write A ∈ R̃(pK)×(pK) for a K-tuple (A(k))Kk=1 of

diagonal blocks A(k) ∈ Rp×p. Note that for A,B ∈ R̃(pK)×(pK), 〈A,B〉pK =
∑K

k=1〈A(k), B(k)〉p

where 〈·, ·〉p is the trace inner product on Rp×p. In this parameter space, we evaluate the

following map from R̃(pK)×(pK) to R given by

f(∆) = −˜̀
n(Θ0 + ∆) + ˜̀

n(Θ0) + ρn{r(Θ0 + ∆)− r(Θ0)},

where r : R̃(pK)×(pK) 7→ R is given by r(Θ) = ‖Θ‖1 +ρ2‖Θ‖L. This map provides information

on the behavior of our criterion function in the neighborhood of Θ0. A similar map with a

different penalty was studied in Rothman et al. (2008). A key observation is that f(0) = 0

and f(∆̂n) ≤ 0 where ∆̂n = Θ̂ρn −Θ0.

The following lemma provides a non-asymptotic bound on the Frobenius norm of ∆ (see

Lemma 4 in Negahban et al. (2012b) for a similar lemma in a different context). Let

S = ∪Kk=1S
(k) be the union of the supports of Ω

(k)
0 . Define a model subspace M = {Ω ∈

R̃(pK)×(pK) : ω
(k)
ij = 0, (i, j) /∈ S, k = 1, . . . ,K} and its orthocomplement M⊥ = {Ω ∈

R̃(pK)×(pK) : ω
(k)
ij = 0, (i, j) ∈ S, k = 1, . . .K} under the trace inner product in R̃(pK)×(pK).

For A = (aij)
pK
i,j=1 ∈ R̃(pK)×(pK), we write A = AM + AM⊥ where AM and AM⊥ are the

projection of A into M and M⊥, in the Frobenius norm, respectively. In other words, the

(i, j)-element of AM is aij if (i, j) ∈ S and zero otherwise, and the (i, j)-element of AM⊥ is

aij if (i, j) /∈ S and zero otherwise. Note that Θ0 ∈M. Define the set C = {∆ ∈ R̃(pK)×(pK) :

r(∆M⊥) ≤ 3r(∆M)}.
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Lemma 2. Let ε > 0 be arbitrary. Suppose ρn ≥ 2 max1≤k≤K‖Ψ̂
(k)
n − Ψ

(k)
0 ‖∞. If f(∆) > 0

for all elements ∆ ∈ C ∩ {∆ ∈ R̃(pK)×(pK) : ‖∆‖F = ε} then ‖∆̂n‖F ≤ ε.

Proof. We first show that ∆̂n ∈ C. We have by the convexity of −˜̀
n(Θ) that

−˜̀
n(Θ0 + ∆̂n) + ˜̀

n(Θ0) ≥ −|〈−∇˜̀
n(Θ0), ∆̂n〉|.

It follows from Lemma 3(iv) with our choice ρn that the right hand side of the inequality

is further bounded below by −2−1ρn

(
r(∆̂n,M) + r(∆̂n,M⊥)

)
. Applying Lemma 3(iii), we

obtain

0 ≥ f(∆̂n) = −˜̀
n(Θ0 + ∆̂n) + ˜̀

n(Θ0) + r(Θ0 + ∆̂n)− r(Θ0)

≥ ρn
2
r(∆̂n,M⊥)− 3ρn

2
r(∆̂n,M),

or r(∆̂n,M⊥) ≤ 3r(∆̂n,M). This verifies ∆̂n ∈ C. Note that f , as a function of ∆ is sum of two

convex functions `n and r, and is hence convex. Thus, the rest of the proof follows exactly as

Lemma 4 in Negahban et al. (2012b).

Lemma 3. Let ∆ ∈ R̃(pK)×(pK).

(i) The gradient of ˜̀
n(Θ0) is a block diagonal matrix given by

∇˜̀
n(Θ0) = n−1 diag{n1(Ψ

(1)
0 − Ψ̂(1)

n ), . . . , nK(Ψ
(K)
0 − Ψ̂(K)

n )}. (10)

(ii) Let c > 0 be a constant. For ‖∆‖F ≤ c and nk/n ≥ γ > 0 for all k and n,

− ˜̀
n(Θ0 + ∆) + ˜̀

n(Θ0) + 〈∇˜̀
n(Θ0),∆〉 ≥ γ

2 {λΘ + c}2
‖∆‖2F ≡ κ`n,c‖∆‖2F . (11)

(iii) The map r is a seminorm, convex, and decomposable with respect to (M,M⊥) in the

sense that r(Θ1 + Θ2) = r(Θ1) + r(Θ2) for every Θ1 ∈M and Θ2 ∈M⊥. Moreover,

r(Θ0 + ∆)− r(Θ0) ≥ r(∆M⊥)− r(∆M).

(iv) For ∆ ∈ R̃(pK)×(pK),

|〈∇˜̀
n(Θ0),∆〉| ≤ r(∆) max

1≤k≤K
‖Ψ̂(k)

n −Ψ
(k)
0 ‖∞. (12)

(v) For Θ ∈ R̃(pK)×(pK),

r(ΘM) ≤ (s+ 1)1/2
(

1 + ρ2‖L‖1/22

)
‖ΘM‖F .
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Proof. (i) The result follows by taking derivatives blockwise.

(ii) Rothman et al. (2008) (page 500-502) showed that

−˜̀
n(Θ0 + ∆) + ˜̀

n(Θ0)− 〈−∇˜̀
n(Θ0),∆〉

=
K∑
k=1

nk
n

(
− log det(Θ

(k)
0 + ∆(k)) + log det(Θ

(k)
0 ) + 〈Ψ(k)

0 ,∆(k)〉
)

≥
K∑
k=1

nk
n

‖∆(k)‖2F
2 min0≤v≤1

{∥∥∥Θ
(k)
0

∥∥∥
2

+ v
∥∥∆(k)

∥∥
2

}2 .

Since ‖A‖2 ≤ ‖A‖F , nk/n ≥ γ and ‖∆‖F ≤ c, this is further bounded below by

K∑
k=1

γ

2

‖∆(k)‖2F{
‖Θ(k)

0 ‖2 +
∥∥∆(k)

∥∥
F

}2 ≥ κ`n,c‖∆‖
2
F .

(iii) Because the graph Laplacian L is a positive semidefinite matrix, the triangle inequality

r(Θ1 + Θ2) ≤ r(Θ1) + r(Θ2) holds. To see this let L = L̃L̃T be any Cholesky decomposition

of L. Then

{(x+ y)TL(x+ y)}1/2 = ‖L̃T (x+ y)‖ ≤ ‖L̃Tx‖+ ‖L̃y‖ = {xTLx}1/2 + {yTLy}1/2.

It is clear that r(cΘ) = cr(Θ) for any constant c. Thus, given that r does not penalize the

diagonal elements, it is a seminorm. The decomposability follows from the definition of r.

The convexity follows from the same argument for the triangle inequality. Since Θ0 + ∆ =

Θ0 + ∆M + ∆M⊥ , the triangle inequality and the decomposability of r yield

r(Θ0 + ∆)− r(Θ0) ≥ r(Θ0 + ∆M⊥)− r(∆M)− r(Θ0) = r(∆M⊥)− r(∆M).

(iv) We show that, for A,B ∈ R̃(pK)×(pK) with diag(B) = 0, 〈A,B〉 ≤ r(A)‖B‖∞. If A is a

diagonal matrix (or if A = 0), the inequality trivially holds since 〈A,B〉 = 0. If not, r(A) 6= 0

so that

〈A,B〉
r(A)

≤ ‖A‖1‖B‖∞
‖A‖1

= ‖B‖∞.

Since the diagonal elements of ∇˜̀
n(Θ0) are all zero, the result follows.

(v) For s 6= 0, we have

r(ΘM)

‖ΘM‖F
≤ sup

Θ∈M

∑K
k=1‖Θ(k)‖1

‖Θ− diag(Θ)‖F
+ sup

Θ∈M

ρ2
∑

i 6=j

√
θTijLθij

‖Θ‖F

≤ s1/2 + ρ2 sup
Θ∈M

∑
i 6=j

√
‖L‖2‖θij‖2F
‖Θ‖F

≤ s1/2
(

1 + ρ2‖L‖1/22

)
.
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In the last inequality we used the fact that
√∑J

j=1

∑I
i=1 a

2
ij ≥ J−1/2

∑J
j=1

√∑I
i=1 a

2
ij , which

follows by the concavity of the square root function. For s = 0, we trivially have 0 = r(ΘM) ≤

s1/2{1 + ρ2‖L‖1/22 }‖ΘM‖F . Combining these two cases yields the desired result.

Next, we obtain an upper bound for max1≤k≤K‖Ψ̂
(k)
n − Ψ

(k)
0 ‖∞, which holds with high-

probability assuming the tail conditions of the random vectors.

Lemma 4. Suppose that nk/n ≥ γ > 0 for all k and n.

(i) Suppose that Condition 1 holds. Then for n ≥ 6γ−1 log p we have

P

(
‖Σ̂n − Σ0‖∞ ≥ 23

√
6(1 + 4c2

1)2γ−1/2 max
k,i

σ
(k)
ii

√
log p

γn

)
≤ 2K/p. (13)

(ii) Suppose that Condition 2 holds with c2, c3 > 0 and p ≤ c7n
c2. Then we have for τ >

maxk(2
7 + 23

√
1 + 2432c4 maxk,i{σ

(k)
ii }2)/(9c4 maxk,i{σ

(k)
ii }2)

P

(
‖Σ̂n − Σ0‖∞ ≥

K∑
k=1

δ(k)
n

)
≤ Kνn (14)

where

δ(k)
n ≡ (1 + 2 max

i
|µ(k),i|)(2δ(k)

n,1 + δ
(k)
n,2) + (δ

(k)
n,1)2 + (δ

(k)
n,2)2 + 2δ

(k)
n,3,

with

δ
(k)
n,1 ≡ max

i,j
E |X(k),i

l X
(k),j
l |I(|X(k),i

l X
(k),j
l | ≥ n1/2

k (log p)−1/2),

δ
(k)
n,2 ≡ {c4 max

k,i
{σ(k)

ii }
2(4 + τ) log p/nk}1/2,

δ
(k)
n,3 ≡ max

i
E |X(k),i

l |I(|X(k),i
l | ≥ n1/2

k (log p)−1/2).

(iii) Suppose that Condition 3 holds and that P (‖Σ̂n − Σ0‖∞ ≥ bn) = o(1) and bn = o(1) as

n→∞. Then P (‖Ψ̂n −Ψ0‖∞ ≥ C1bn) = o(1).

Proof. (i) This was proved by Ravikumar et al. (2011).

(ii) Note that

Σ̂(k)
n − Σ(k) = nk

−1
nk∑
l=1

(X
(k)
l )⊗2 − E(X(k))⊗2 − (X

(k) − µ(k))⊗2

−µ(k)(X
(k) − µ(k))T − (X

(k) − µ(k))(µ(k))T .
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We first evaluate the probability in (14) for n−1
k

∑nk
l=1(X

(k)
l )⊗2 − E(X(k))⊗2. Let

Y
(k),ij
l ≡ X(k),i

l X
(k),j
l − EX(k),i

l X
(k),j
l ,

Ȳ
(k),ij
l ≡ X(k),i

l X
(k),j
l I

(
|X(k),i

l X
(k),j
l | ≤

√
nk

log p

)
− EX(k),i

l X
(k),j
l I

(
|X(k),i

l X
(k),j
l | ≤

√
nk

log p

)
,

Ỹ
(k),ij
l ≡ Y (k),ij

l − Ȳ (k),ij
l .

We have

P

(
max
i,j

∣∣∣∣∣
nk∑
l=1

Ỹ
(k),ij
l

∣∣∣∣∣ ≥ 2nkδ
(k)
n,1

)

≤ P

(
max
i,j

∣∣∣∣∣
nk∑
l=1

X
(k),i
l X

(k),j
l I

(
|X(k),i

l X
(k),j
l | ≥

√
nk

log p

)∣∣∣∣∣ ≥ nkδ(k)
n,1

)
(triangle inequality)

≤ P
(

max
l,i

(X
(k),i
l )2 ≥ n1/2

k (log p)−1/2

)
(xy ≤ max{x2, y2})

≤ pnk
EX4(c2+c3+1)

0i (log p)c2+c3+1

nc2+c3+1
k

(Markov’s inequality)

≤
c7c4 maxk,i{σ

(k)
ii }2(log p)c2+c3+1

nc3k
(p ≤ c7n

c2)

≤
c7c4 maxk,i{σ

(k)
ii }2(log p)c2+c3+1

γc3nc3
≡ νn,1. (15)

Note that

E(Ȳ
(k),ij
l )2 ≤ E

[
X

(k),i
l X

(k),j
l I

(
|X(k),i

l X
(k),j
l | ≤

√
nk

log p

)]2

≤ E |X(k),i
l X

(k),j
l |2

≤ 2−1(E(X
(k),i
l )4 + E(X

(k),j
l )4) ≤ c4 max

k,i
{σ(k)

ii }
2.

It follows from Bernstein’s inequality that

P

(
max
i,j

∣∣∣∣∣
nk∑
l=1

Ȳ
(k),ij
l

∣∣∣∣∣ ≥ nkδ(k)
n,2

)

≤ 2p2 exp

− c4 maxk,i{σ
(k)
ii }2(4 + τ) log p

2c4 maxk,i{σ
(k)
ii }2 + 2

√
c4 maxk,i{σ

(k)
ii }2(64 + 16τ)/3

 ≡ νn,2. (16)

Note that νn,2 → 0 as p→∞ for τ > (27 +23

√
1 + 2432c4 maxk,i{σ

(k)
ii }2)/(9c4 maxk,i{σ

(k)
ii }2).

To see this note that we need to have

3c4 maxk,i{σ
(k)
ii }2(4 + τ)

6c4 maxk,i{σ
(k)
ii }2 + 8

√
c4 maxk,i{σ

(k)
ii }2(4 + τ)

> 2.
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so that the power in the exponent is strictly negative. This inequality reduces to

3c4 max
k,i
{σ(k)

ii }
2τ > 16

√
c4 max

k,i
{σ(k)

ii }2(4 + τ).

We can solve this by changing a quadratic equation for τ , since τ of our interest is positive.

Combining (15) and (16) yields

P

(∥∥∥∥∥ 1

nk

nk∑
i=1

(X
(k)
l )⊗2 − E(X(k))⊗2

∥∥∥∥∥
∞

≥ 2δ
(k)
n,1 + δ

(k)
n,2

)
≤ νn,1 + νn,2. (17)

Let

Z
(k),i
l ≡ X(k),i

l − EX(k),i
l ,

Z̄
(k),i
l ≡ X(k),i

l I(|X(k),i
l | ≤ n1/2

k (log p)−1/2)− EX(k),i
l I(|X(k),i

l | ≤ n1/2
k (log p)−1/2),

Z̃
(k),i
l ≡ U (k),i

l − Z̄(k),i
l .

Proceeding as for Y
(k),ij
l ’s, we have

P

(
max
i

∣∣∣∣∣
nk∑
l=1

Z̃
(k),i
l

∣∣∣∣∣ ≥ 2nkδ
(k)
n,3

)
≤
c7c4 maxk,i{σ

(k)
ii }2(log p)2(c2+c3+1)

γc2+c3+1nc2+c3+1
≡ νn,3,

and

P

(
max
i

∣∣∣∣∣
n∑
k=1

Z̄
(k),i
l

∣∣∣∣∣ ≥ nkδ(k)
n,2

)
≤ νn,2.

Thus, we have

P (‖(X(k) − µ(k))⊗2‖∞ ≥ (δ
(k)
n,2)2 + (2δ

(k)
n,3)2) ≤ P

(
max
i
|X(k),i − µ(k),i| ≥

√
(δ

(k)
n,1)2 + (δ

(k)
n,2)2

)
≤ P

(
max
i

∣∣∣∣∣
n∑
k=1

Z̄
(k),i
l

∣∣∣∣∣ ≥ nkδ(k)
n,2

)
+ P

(
max
i

∣∣∣∣∣
nk∑
l=1

Z̃
(k),i
l

∣∣∣∣∣ ≥ 2nkδ
(k)
n,3

)
≤ νn,2 + νn,3, (18)

and

P

(
‖(X(k) − µ(k))(µ(k))T ‖∞ ≥ max

i
|µ(k),i|(2δ(k)

n,1 + δ
(k)
n,2)

)
≤ P

(
max
i
|X(k),i − µ(k),i| ≥ 2δ

(k)
n,1 + δ

(k)
n,2

)
≤ νn,1 + νn,2. (19)

Combining (17)-(19) yields

P

(
‖Σ̂(k)

n − Σ(k)‖∞ ≥ (1 + 2 max
i
|µ(k),i|)(2δ(k)

n,1 + δ
(k)
n,2) + (δ

(k)
n,2)2 + (2δ

(k)
n,3)2

)
≤ 3νn,1 + 4νn,2 + νn,3 = νn.
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Note that δ
(k)
n,1, δ

(k)
n,2, δ

(k)
n,3, νn,1, νn,2, νn,3 → 0 as n, p → ∞ if log p/n → 0. Note also that δ

(k)
n,1,

δ
(k)
n,2 and (δ

(k)
n,3)2 are O

(√
log p/n

)
on the set where nk/n ≥ γ. For example, we have by

Jensen’s inequality that√
n

log p
(δ

(k)
n,3)2 =

√
n

log p
max
i
{E |X(k),i|I{|X(k),i| ≥ n1/2

k (log p)−1/2}}2

≤ max
i

E
n

nk

√
nk

log p
|X(k),i|2I{|X(k),i| ≥ n1/2

k (log p)−1/2}

≤ γ−1 max
i

E |X(k),i|3I{|X(k),i| ≥ n1/2
k (log p)−1/2}

≤ c4γ
−1 max

i
{σ(k)

ii }
2.

(iii) Given that |σ(k)
0,ij | ≤

√
σ

(k)
0,iiσ

(k)
0,jj ,

|ψ(k)
n,ij − ψ

(k)
0,ij | =

∣∣∣∣∣∣ σ̂
(k)
n,ij√

σ̂
(k)
n,iiσ̂

(k)
n,jj

−
σ

(k)
0,ij√

σ
(k)
0,iiσ

(k)
0,jj

∣∣∣∣∣∣
=

1√
σ̂

(k)
n,iiσ̂

(k)
n,jjσ

(k)
0,iiσ

(k)
0,jj

∣∣∣∣√σ(k)
0,iiσ

(k)
0,jj(σ̂

(k)
n,ij − σ

(k)
0,ij) + σ

(k)
0,ij

(√
σ

(k)
0,iiσ

(k)
0,jj −

√
σ̂

(k)
n,iiσ̂

(k)
n,jj

)∣∣∣∣
≤

√
σ

(k)
0,iiσ

(k)
0,jj√

σ̂
(k)
n,iiσ̂

(k)
n,jjσ

(k)
0,iiσ

(k)
0,jj

{∣∣∣σ̂(k)
n,ij − σ

(k)
0,ij

∣∣∣+

∣∣∣∣√σ(k)
0,iiσ

(k)
0,jj −

√
σ̂

(k)
n,iiσ̂

(k)
n,jj

∣∣∣∣} ,
wherein √

σ
(k)
0,iiσ

(k)
0,jj −

√
σ̂

(k)
n,iiσ̂

(k)
n,jj

=

√
σ

(k)
0,jj√

σ
(k)
0,ii +

√
σ̂

(k)
n,ii

(σ
(k)
0,ii − σ̂

(k)
n,ii) +

√
σ̂

(k)
n,ii√

σ
(k)
0,jj +

√
σ̂

(k)
n,jj

(σ
(k)
0,jj − σ̂

(k)
n,jj).

Since bn → 0, bn ≤ c5/2 for n sufficiently large by Condition 3. On the event ‖Σ̂n−Σ0‖∞ ≤ bn

with n large, 0 < c5/2 ≤ σ(k)
0,ii − c5/2 ≤ σ̂(k)

n,ii ≤ σ
(k)
0,ii + c5/2 ≤ c6 + c5/2. Thus,√

σ
(k)
0,iiσ

(k)
0,jj√

σ̂
(k)
n,iiσ̂

(k)
n,jjσ

(k)
0,iiσ

(k)
0,jj

≤ 2(c5 + 2c6)

c2
5√

σ
(k)
0,jj√

σ
(k)
0,ii +

√
σ̂

(k)
n,ii

≤
√
c6

2
√
c5√

σ̂
(k)
n,ii√

σ
(k)
0,jj +

√
σ̂

(k)
n,jj

≤
√
c5 + 2c6

2
√
c5

.
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It follows that

|ψ(k)
n,ij − ψ

(k)
0,ij | ≤

{
2c−2

5 + c5 + c
−3/2
6 + 2c

−5/2
5 c6 + (c−4

5 + 2c−5
5 c6)1/2

}
max
k,i,j
|σ̂(k)
n,ij − σ

(k)
0,ij |.

Thus we have

P
(
‖Ψ̂n −Ψ0‖∞ ≥ C1bn

)
≤ P

(
‖Ψ̂n −Ψ0‖∞ ≥ C1bn, ‖Σ̂n − Σ0‖∞ < bn

)
+ P

(
‖Σ̂n − Σ0‖∞ ≥ bn

)
≤ 2P

(
‖Σ̂n − Σ0‖∞ ≥ bn

)
→ 0.

So far we have assumed nk/n ≥ γ in lemmas. We evaluate the probability of this event

noting that nk ∼ Binom(n, πk).

Lemma 5. Let ε > 0 such that γ ≡ mink πk − ε > 0. Then

P

(
min
k
nk/n ≤ min

k
πk − ε

)
≤ 2K exp(−2nε2). (20)

Proof. We have by Hoeffding’s inequality that

P

(
min
k
nk/n ≤ min

k
πk − ε

)
≤ P

(
∃k, nk/n ≤ min

k
πk − ε

)
≤ P (∃k, nk/n ≤ πk − ε) ≤ P (∃k, |nk/n− πk| ≥ ε)

≤
K∑
k=1

P (|nk/n− πk| ≥ ε) ≤ 2K exp(−2nε2).

Proof of Lemma 1. We apply Lemma 2 to obtain the non-asymptotic error bounds.

We first compute a lower bound for f(∆). Suppose ε ≤ c. For ∆ ∈ C ∩ {∆ ∈ R̃(pK)×(pK) :

‖∆‖F = ε}, we have by Lemma 3(ii) and (iii) that

f(∆) ≥ −〈˜̀n(Θ0),∆〉+ κ`n,c‖∆‖2F + ρn{r(∆M⊥)− r(∆M)}.

The assumption on ρn and Lemma 3(iii) and (iv) then yield

|〈˜̀n(Θ0),∆〉| ≤ ρn
2
{r(∆M) + r(∆M⊥)}.

From this inequality and Lemma 3(v) we have

f(∆) ≥ κ`n,c‖∆‖2F −
3ρn
2
r(∆M) ≥ κ`n,c‖∆‖2F −

3ρn
2

(s+ 1)1/2
(

1 + ρ2‖L‖1/22

)
‖∆‖F .
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Viewing the right hand side of the above inequality as a quadratic equation in ‖∆‖F , we

have f(∆) > 0 if

‖∆‖F ≥
3ρn
κ`n,c

(s+ 1)1/2
(

1 + ρ2‖L‖1/22

)
≡ εc > 0.

Thus, if we show that there exists a c0 > 0 such that εc0 ≤ c0, Lemma 2 yields that ‖Θ̂ρn −

Θ0‖F ≤ εc0 .

Consider the inequality (x + y)2z1/2 ≤ y where x, y, z ≥ 0. This inequality holds for

(x, y, z) such that x = y and xz1/2 = 1/4. We apply the inequality above with x = λΘ, y =

c, z = 2432ρ2
nγ
−2s(1 + ρ2‖L‖1/22 )2 and solve xz ≤ 1/4 for n. (i) For ρn = 23

√
6C1(1 +

4c2
1)2γ−1/2 maxk,i σ

(k)
ii

√
log p/n, xz ≤ 1/4 yields

n ≥ max

{
6γ−1 log p, 21533C2

1γ
−3(1 + 4c2

1)2 max
k,i
{σ(k)

ii }
2λ4

Θ

(
1 + ρ2‖L‖1/22

)2
s log p

}
,

and (x+ y)4z becomes

ε2
maxk{‖Θ

(k)
0 ‖2}

≤ 21533(1 + c2
1)2 max

k,i
(σ

(k)
ii )2

(
1 + ρ2‖L‖1/22

)2
γ−3λ4

Θ

s log p

n
.

(ii) For ρn = C1Kδn, there is no closed form solution for n. Note that δn → 0 if log p/n→ 0

so that xz ≤ 1/4 holds for n sufficiently large, given that
∑K

k=1 δ
(k)
n ≤ Kδn.

Computing appropriate probabilities using Lemmas 4 and 5 completes the proof.

Proof of Theorem 1. The estimation error ‖Ω̂(k)
ρn −Ω0‖(2)

2 in the spectral norm can be bounded

and evaluated in the same way as in the proof of Theorem 2 of Rothman et al. (2008) together

with Lemma 1.

8.2 Model Selection Consistency

Our proof is based on the primal-dual witness approach of Ravikumar et al. (2011), with some

modifications to overcome a difficulty in their proof when applying the fixed point theorem

to a discontinuous function. First, we define the oracle estimator Θ̌ρn = (Θ̌
(1)
ρn , . . . , Θ̌

(K)
ρn ) by

Θ̌ρn = arg min
Θ(k)>0,Θ(k)=(Θ(k))T ,Θ

(k)

(S(k))
c=0

n−1
K∑
k=1

nk

(
tr
(

Ψ(k)
n Θ(k)

)
− log det(Θ(k))

)

+ρn

K∑
k=1

‖Θ(k)‖1 + ρnρ2

∑
i,j

√
ΘT
ijLΘij , (21)

where Θ
(k)

(S(k))
c = 0 indicates that Θ

(k)
(i,j) = 0 for (i, j) /∈ S(k).
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Lemma 6. (i) Let A ∈ Rp×p be a positive semidefinite matrix with eigenvalues 0 ≤ λ1 ≤

λ2 ≤ · · · ≤ λp and corresponding eigenvectors ui satisfying ui ⊥ uj , i 6= j and ‖ui‖ = 1. The

subdifferential ∂
√
xTAx of f(x) =

√
xTAx is

∂
√
xTAx =

 Ax/
√
xTAx, Ax 6= 0,

{UΛ1/2y : ‖y‖ ≤ 1}, Ax = 0.

where U ∈ Rp×p has ui as the ith columns and Λ1/2 is the diagonal matrix with λ
1/2
i , i =

1, . . . , p, as diagonal elements. Furthermore, the subgradients are bounded above, i.e.

‖∇f(x)‖∞ ≤ ‖A‖1/22 , for all ∇f(x) ∈ ∂
√
xTAx.

(ii) Let A ∈ Rp×p be a positive semidefinite matrix and S = {Si} ⊂ {1, . . . , p}. Suppose

ASS has eigenvalues 0 ≤ λ1,S ≤ λ2,S ≤ · · · ≤ λ|S|,S and corresponding eigenvectors ui,S

satisfying ui,S ⊥ uj,S , i 6= j and ‖ui,S‖ = 1. Let gS : R|S| → Rp be a map defined by

gS(x) = y where yi = xSj for i = Sj for and yi = 0 for i /∈ S. The subdifferential hA,S(x) =√
gS(x)TAgS(x) equals to the subdifferential of

√
xTASSx given by

∂
√
xTASSx =

 ASSx/
√
xTASSx, ASSx 6= 0,

USΛ
1/2
S {y : ‖y‖ ≤ 1}, ASSx = 0.

where US ∈ R|S|×|S| has ui,S as the ith columns and Λ
1/2
S is the diagonal matrix with λ

1/2
i,S , i =

1, . . . , |S|, as diagonal elements. For x with ASSx 6= 0, there is a relationship between

∂
√
xTASSx and ∂

√
yTAy at y = gS(x) given by{

Ay√
yTAy

}
S

=
ASSx√
xTASSx

,{
Ay√
yTAy

}
Sc

=
AScSx√
xTASSx

.

Subgradients are bounded above:

‖∇hA,S(x)‖∞ ≤ ‖ASS‖1/22 ≤ ‖A‖1/22 , ∀∇fA,S(x) ∈ ∂
√
xTASSx.

Proof. (i) For x with Ax 6= 0, f(x) is differentiable and the subgradient of f at x is simply

the matrix derivative. By definition, for x with Ax = 0, the subgradient v of f at x satisfies

the following inequality √
yTAy ≥ 〈y − x, v〉, (22)
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for all y. Choosing y = 2x and y = 0 yield 0 ≥ 〈x, v〉 and 0 ≥ −〈x, v〉, implying 〈x, v〉 = 0.

The inequality (22) reduces to
√
yTAy ≥ 〈y, v〉, for any y. If Ay = 0, a similar argument

implies that 〈y, v〉 = 0. Hence v ⊥ y for every y with Ay = 0.

Let j0 be the smallest index such that λj0 > 0. Because uj ’s form an orthonormal basis,

any arbitrary vector y can be written as y =
∑p

j=1 βjuj . Moreover, the null space of A is the

span of u1, . . . , uj0−1. Thus, the subgradient v can be written as v =
∑p

j=j0
αjuj . Thus, using

the spectral decomposition of A as A =
∑p

j=j0
λjuju

T
j , we can write f(y) = {

∑p
j=j0

λjβ
2
j }1/2.

On the other hand, 〈y, v〉 =
∑p

j=j0
αjβj . Thus, the inequality (22) further reduces to

p∑
j=j0

λjβ
2
j


1/2

≥
p∑

j=j0

αjβj , ∀βj ∈ R.

It follows from the Cauchy-Schwartz inequality that the left hand side of the inequality is

bounded from above;

p∑
j=j0

αjβj =

p∑
j=j0

αj

λ
1/2
j

λ
1/2
j βj ≤


p∑

j=j0

α2
j

λj


1/2

p∑
j=j0

λjβ
2
j


1/2

.

Thus,

∂f(x) =

v : v =

p∑
j=j0

αjvj ,

p∑
j=j0

α2
j

λj
≤ 1, αj ∈ R

 .

It is easy to see that this set is the image of the map UΛ1/2 on the closed ball of radius 1.

Given that ‖x‖∞ ≤ ‖x‖, to establish the bound in the `∞-norm, we compute the bound

in the Euclidean norm. We use the same notation as in (i). For x with Ax 6= 0,∥∥∥∥ Ax√
xTAx

∥∥∥∥ =
‖UΛ1/2Λ1/2UTx‖
‖Λ1/2UTx‖

≤ ‖UΛ1/2‖2.

But ‖UΛ1/2‖2 = sup‖x‖=1‖UΛ1/2x‖ = supx∈RK‖UΛ1/2(UTx)‖/‖UTx‖ = ‖A‖1/22 , because

‖UTx‖ = ‖x‖. For x with Ax = 0, ‖Λ1/2y/‖y‖‖ ≤ ‖A‖1/22 for every y. Because of the form of

the subdifferential and the fact that ‖Ux‖ = ‖x‖, the result follows.

(ii) Let BS be a product of elementary matrices for row and column exchange such that

BSgS(x) = (x, 0). Notice that BS = B−1
S and that BS = BT

S since BS only rearranges

elements of vectors and exchanges rows by multiplication from the left. Note also that ‖BS‖2 ≤

‖BS‖∞/∞ = 1, since ‖C‖2 ≤ ‖C‖∞/∞ for C = CT and each row of BS has only one element

with value 1. Because

{hA,S(x)}2 = gS(x)TAgS(x) = (BSgS(x))T (BSABS)(BSgS(x)) = xTASSx,
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the subdifferential of hA,S(x) follows from (ii). For x with ASSx 6= x and y = gS(x), Ay =

BSABS(x, 0)T = BS(ASSx,A
T
ScSx)T 6= 0 because of invertibility of BS . The relationship

holds since  (Ay/
√
yTAy)S

(Ay/
√
yTAy)Sc

 = BS
Ay√
yTAy

=
1√

xTASSx

 ASSx

AScSx


An `∞-bound follows from (i) and the fact that ‖ASS‖2 ≤ ‖BS‖22‖A‖2 = ‖A‖2.

Lemma 7. For any ρn > 0 and sample correlation matrices Ψ̂n = (Ψ̂
(1)
n , . . . , Ψ̂

(K)
n ), the

convex problem (3) has a unique solution Θ̂ρn = (Θ̂
(1)
ρn , . . . , Θ̂

(K)
ρn ) with Θ̂

(k)
ρn > 0, k = 1, . . . ,K,

characterized by

n−1nk(ψ
(k)
n,ij − [{Θ̂(k)

ρn }
−1]ij) + ρnÛ

(k)
1,ij + ρnρ2Û

(k)
2,ij = 0, (23)

with Û
(k)
1,ij ∈ ∂|θ̂(k)

ρn,ij
| and (Û

(1)
2,ij , . . . , Û

(K)
2,ij )T ∈ ∂

√
Θ̂T
ρn,ij

LΘ̂ρn,ij for every i 6= j and k =

1, . . . ,K. Moreover,

n−1nk(ψ
(k)
n,ii − [{Θ̂(k)

ρn }
−1]ii) + ρnÛ

(k)
1,ij + ρnρ2Û

(k)
2,ij = 0, (24)

with Û
(k)
1,ij = Û

(k)
2,ij = 0 for every i = 1, . . . , p, and k = 1, . . . ,K.

For each (i, j) ∈ S, let Sij = {k : Θ
(k)
0,ij 6= 0}. The convex problem (21) has a unique

solution Θ̌ρn = (Θ̌
(1)
ρn , . . . , Θ̌

(K)
ρn ) with Θ̌

(k)
ρn > 0, k = 1, . . . ,K, characterized by

n−1nk(ψ
(k)
n,ij − [{Θ̌(k)

ρn }
−1]ij) + ρnǓ

(k)
1,ij + ρnρ2Ǔ

(k)
2,ij = 0, (25)

with Ǔ
(k)
1,ij ∈ ∂|θ̌(k)

ρn,ij
| and Ǔ

(k)
2,ij ∈ ∂

√
{Θ̌ρn,ij}TSij

LSijSij{Θ̌ρn,ij}Sij
for every i 6= j and k =

1, . . . ,K. Moreover,

n−1nk(ψ
(k)
n,ii − [{Θ̌(k)

ρn }
−1]ii) + ρnǓ

(k)
1,ij + ρnρ2Ǔ

(k)
2,ij = 0, (26)

with Ǔ
(k)
1,ij = Ǔ

(k)
2,ij = 0 for every i = 1, . . . , p, and k = 1, . . . ,K.

Proof. A proof for the uniqueness of the solution is similar to the proof of Lemma 3 of

Ravikumar et al. (2011). The rest is the KKT condition using Lemma 6.

We choose a pair Ũ = (Ũ1, Ũ2) of the subgradients of the first and second regularization

terms evaluated at Θ̌ρn . For each (i, j) with Ω0,ij = 0 or with LΘ̌ρn,ij = 0, set

Ũ
(k)
1,ij = ρ−1

n n−1nk(−ψ
(k)
n,ij + [{Θ̌(k)

ρn }
−1]ij), Ũ

(k)
2,ij = 0, k = 1, . . . ,K.
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For (i, j) with ω
(k)
0,ij 6= 0, for all k = 1, . . . ,K, set

Ũ
(k)
1,ij = Ǔ

(k)
1,ij , Ũ

(k)
2,ij = Ǔ

(k)
2,ij , k = 1, . . . ,K.

For (i, j) with LΘ̌ρn,ij 6= 0, Ω0,ij 6= 0 but ω
(k′)
0,ij = 0 for some k′, set

Ũ
(k)
1,ij = ρ−1

n n−1nk(−ψ
(k)
n,ij + [{Θ̌(k)

ρn }
−1]ij)− ρ2

lkΘ̌ρn,ij√
Θ̌T
ρn,ij

LΘ̌ρn,ij

, Ũ
(k)
2,ij =

lTk Θ̌ρn,ij√
Θ̌T
ρn,ij

LΘ̌ρn,ij

,

if ω
(k)
0,ij = 0, and

Ũ
(k)
1,ij = Ǔ

(k)
1,ij , Ũ

(k)
2,ij =

lTk Θ̌ρn,ij√
Θ̌T
ρn,ij

LΘ̌ρn,ij

,

otherwise. Here, lk is the kth row of L.

The main idea of the proof is to show that (Θ̌ρn , Ũ) satisfies the optimality conditions

of the original problem with probability tending to 1. In particular, we show the following

equation, which holds by construction of Ũ1 and Ũ2, is in fact the KKT condition of the

original problem (3):

n−1nk(Ψ̂
(k)
n − {Θ̌(k)

ρn }
−1) + ρnŨ

(k)
1 + ρnρ2Ũ

(k)
2 = 0. (27)

To this end, we show that Ũ1 and Ũ2 are both subgradients of the original problem. We can

then conclude that the oracle estimator in the restricted problem (21) is the solution to the

original problem (3). Then it follows from the uniqueness of the solution that Θ̌ρn = Θ̂ρn .

Let Ξ(k) = Ψ̂
(k)
n −Ψ

(k)
0 , R(k)(∆(k)) = {Θ̌(k)

ρn }−1−Ψ
(k)
0 +Ψ

(k)
0 ∆(k)Ψ

(k)
0 , and ∆̌(k) = Θ̌

(k)
ρn −Θ

(k)
0 .

Lemma 8. Suppose that max{‖Ξ(k)‖∞, ‖R(k)(∆̌(k))‖∞} ≤ αρn/8, and ρ2 ≤ α2/{4‖L‖1/22 (2−

α)}. Suppose moreover that LΘ̌ρn,ij 6= 0 for (i, j) ∈ S. Then |Ũ (k)
1,ij | < 1 for (i, j) ∈ (S(k))c.

Proof. We rewrite (27) to obtain

nk
n

Ψ
(k)
0 ∆̌(k)Ψ

(k)
0 +

nk
n

Ξ(k) − nk
n
R(k)(∆̌(k)) + ρnŨ

(k)
1 + ρnρ2Ũ

(k)
2 = 0.

We further rewrite the above equation via vectorization;

nk
n

(Ψ
(k)
0 ⊗Ψ

(k)
0 ) ~̌∆(k) +

nk
n
~Ξ(k) − nk

n
~R(k)(∆̌(k)) + ρn

~̃U
(k)
1 + ρnρ2

~̃U
(k)
2 = 0.

We separate this equation into two equations depending on S(k);

nk
n

Γ
(k)

S(k)S(k)
~̌∆

(k)

S(k) +
nk
n
~Ξ

(k)

S(k) −
nk
n
~R

(k)

S(k)(∆̌
(k)) + ρn

~̃U
(k)

1,S(k) + ρnρ2
~̃U

(k)

2,S(k) = 0, (28)

nk
n

Γ
(k)

(S(k))cS(k)
~̌∆

(k)

S(k) +
nk
n
~Ξ

(k)

(S(k))c
− nk

n
~R

(k)

(S(k))c
(∆̌(k)) + ρn

~̃U
(k)

1,(S(k))c
+ ρnρ2

~̃U
(k)

2,(S(k))c
= 0.
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where
(
~̃Ul

)
J
≡ ~̃Uk,J , l = 1, 2. Here we used ∆̌

(k)

(S(k))c
= 0. Since Γ

(k)

S(k)S(k) is invertible, we solve

the first equation to obtain

nk
n
~̌∆

(k)

S(k) = (Γ
(k)

S(k)S(k))
−1
{
−nk
n
~Ξ

(k)

S(k) +
nk
n
~R

(k)

S(k)(∆̌
(k))− ρn ~̃U (k)

1,S(k) − ρnρ2
~̃U

(k)

2,S(k)

}
.

Substituting this expression into (28) yields

~̃U
(k)

1,(S(k))c
= ρ−1

n Γ
(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1
(nk
n
~Ξ

(k)

S(k) −
nk
n
~R

(k)

S(k)(∆̌
(k))
)

+Γ
(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1 ~̃U

(k)

1,S(k) + ρ2Γ
(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1 ~̃U

(k)

2,S(k)

−ρ−1
n

(nk
n
~Ξ

(k)

(S(k))c
− nk

n
~R

(k)

(S(k))c
(∆̌(k))

)
− ρ2

~̃U
(k)

2,(S(k))c
.

Taking the `∞-norm yields∥∥∥ ~̃U (k)

1,(S(k))c

∥∥∥
∞
≤ ρ−1

n ‖Γ
(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1‖∞/∞(‖~Ξ(k)

S(k)‖∞ + ‖~R(k)

S(k)(∆̌
(k))‖∞)

+‖Γ(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1‖∞/∞(‖ ~̃U (k)

1,S(k)‖∞ + ρ2‖ ~̃U (k)

2,S(k)‖∞)

+ρ−1
n (‖~Ξ(k)

(S(k))c
‖∞ + ‖~R(k)

(S(k))c
(∆̌(k))‖∞) + ρ2‖ ~̃U (k)

2,(S(k))c
‖∞

≤ 2− α
ρn

(‖~Ξ(k)

(S(k))c
‖∞ + ‖~R(k)

(S(k))c
(∆̌(k))‖∞) + 1− α

+(2− α)ρ2‖L‖1/22 .

Here we used the property that ‖Ax‖∞ ≤ ‖A‖∞/∞‖x‖∞, ‖Γ(k)

(S(k))cS(k)(Γ
(k)

S(k)S(k))
−1‖∞/∞ ≤

1− α, and applied Lemma 6 to bound ‖ ~̃U2,(S(k))c‖∞ and ‖ ~̃U2,S(k)‖∞ by ‖L‖1/22 . We also used

‖ ~̃U (k)

1,S(k)‖∞ = ‖ ~̌U (k)

1,S(k)‖∞ ≤ 1 by construction of Ũ1 and the assumption that Θ̌
(k)
ρn 6= 0 for

(i, j) ∈ S(k). It follows by the assumption of the lemma that

‖Ũ (k)

(S(k))c
‖∞ ≤ 2− α

ρn

αρn
4

+ (1− α) + (2− α)ρ2‖L‖1/22

≤ 1− α

2
− α2

4
+
α2

4
< 1.

Lemma 9 (Lemma 5 of Ravikumar et al. (2011)). Suppose that ‖∆‖∞ ≤ 1/(3κΨd) with

(∆(k))(S(k)∪{(i,i):i=1,...,p]})c = 0.

Then ‖H(k)‖∞/∞ ≤ 3/2 where H(k) ≡
∑∞

j=1(−1)j(Ψ
(k)
0 ∆(k))j , k = 1, . . . ,K, and R(k)(∆(k))

has representation R(k)(∆(k)) = Ψ
(k)
0 ∆(k)Ψ0∆H(k)Ψ

(k)
0 with ‖R(k)(∆(k))‖∞ ≤ (3/2)d‖∆(k)‖2∞(κΨ)3.
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Lemma 10. Suppose ‖∆‖2 ≤ 1/(2 maxk‖Ψ
(k)
0 ‖2) with (∆(k))(S(k)∪{(i,i):i=1,...,p]})c = 0. Then

‖H(k)‖∞/∞ ≤ 2 where H(k) ≡
∑∞

t=1(−1)t(Ψ
(k)
0 ∆(k))t, k = 1, . . . ,K, and R(k)(∆(k)) has repre-

sentation R(k)(∆(k)) = Ψ
(k)
0 ∆(k)Ψ0∆H(k)Ψ

(k)
0 with ‖R(k)(∆(k))‖∞ ≤ 2λ3

Θ‖∆(k)‖22.

Proof. Note that the Neumann series for a matrix (I−A)−1 converges if the operator norm of

A is strictly less than 1, and that the `∞-norm is bounded by the operator norm. A proof is

similar to that of Lemma 5 of Ravikumar et al. (2011) with the induced infinity norm ‖·‖∞/∞
replaced by the operator norm in appropriate inequalities.

The following lemma is similar to the statement of Lemma 6 of Ravikumar et al. (2011).

Lemma 11. Suppose that

r ≡ 4

mink πk
κΓ(max

k
‖Ξ(k)‖∞ + ρn + ρnρ2‖L‖1/22 ) <

1

6dmax
{
κΨ, κ3

ΨκΓ

} , k = 1, . . . ,K.

Suppose moreover that (Θ
(k)
0 ⊗Θ

(k)
0 )S(k)S(k) are invertible for k = 1, . . . ,K. Then with proba-

bility 1− 2K exp(−nmink π
2
k/2),

max
k
‖Θ̃(k)

ρn −Θ
(k)
0 ‖∞ ≤ (3/2)r.

Proof. We apply Shauder’s fixed point theorem on the event mink πk/2 ≤ nk/n, which holds

with probability 1− 2K exp(−nmink π
2
k/2) by Lemma 5 with ε = mink πk/2. We first define

the function fk and its domain Dk to which the fixed point theorem applies. Let S
(k)

=

S(k) ∪ {(i, i) : 1 ≤ i ≤ p}, and define

Dk = {A ∈ Rp×p : A = AT , xT (A+ Θ
(k)
0 )x ≥ 0, ∀x ∈ Rp, ‖A

S
(k)‖∞ ≤ r, A(S

(k)
)c

= 0}.

This set is a convex, compact subset of the set of all symmetric matrices.

Let Ǔ
(k)
l ∈ Rp×p, l = 1, 2, be zero-filled matrices whose (i, j)-element is Ǔ

(k)
l,ij in Lemma

7 if (i, j) ∈ S(k) and zero otherwise. Define the map gk on the set of invertible matrices in

Rp×p by gk(B) = (nk/n)(B−1 − Ψ̂
(k)
n ) − ρnǓ

(k)
1 − ρnρ2Ǔ

(k)
2 . Note that {gk(Θ̌

(k)
ρn )}S(k) = 0

is the KKT condition for the restricted problem (21). Let δ > 0 be a constant such that

δ < min{1/2, 1/{10(4dr + 1)}}r and δ + r ≤ 1/{6dmax{κΨ, κ
3
ΨκΓ}. Define a continuous

function fk : Dk 7→ Dk as

(fk(A))ij =



{
hk(A)Θ

(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 +A

}
ij
, (i, j) ∈ S(k), i 6= j

0, (i, j) ∈ (S(k))c, i 6= j,

Aij i = j,
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where

hk(A) ≡ 2−1 min{λ1(A+ Θ
(k)
0 ), 2−1}+ 2−1

max{|λ1({Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 }S(k) − I)|, 1}

.

Let f̃k(A) = hk(A)Θ
(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 . Then fk(A) = (f̃k(A))S(k) +A for A ∈ Dk.

We now verify the conditions of Shauder’s fixed point theorem below. Once conditions are

established, the theorem yields that fk(A) = A. Since (fk(A))
(S

(k)
)c

= A for any A ∈ Dk, and

hk(A) > 0, the solution A to fk(A) = A is determined by (Θ
(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 )S(k) = 0.

Vectorizing this equation to obtain (Θ
(k)
0 ⊗Θ

(k)
0 )S(k)S(k){gk(A+ Θ

(k)
0 + δI)}S(k) = 0, it follows

from the invertibility of (Θ
(k)
0 ⊗Θ

(k)
0 )S(k)S(k) that {gk(A+Θ

(k)
0 +δI)}S(k) = 0. By the uniqueness

of the KKT condition, the solution is A = Θ̌
(k)
ρn − Θ

(k)
0 − δI. Since A ∈ Dk, and δ < r/2, we

conclude ‖Θ̌(k)
ρn −Θ

(k)
0 ‖∞ ≤ (3/2)r.

In the following, we write ~A = vec(A) for a matrix A for notational convenience. For

J ⊂ {(i, j) : i, j = 1, . . . , p}, vec(A)J should be understood as ~AJ .

The function fk is continuous on Dk. To see this, note first that A+ Θ
(k)
0 + δI is positive

definite for every A ∈ Dk so that the inversion is continuous. Note also that all elements in

the matrices involved with eigenvalues in hk(A) are uniformly bounded in Dk, and hence the

eigenvalues are also uniformly bounded.

To show that fk(A) ∈ Dk, first we show that fk(A) + Θ
(k)
0 is positive semidefinite. This

follows because for any x ∈ Rp

xT (fk(A) + Θ
(k)
0 )x

= xT {(f̃k(A))S(k) − I}x+ xT (A+ Θ
(k)
0 )x+ xTx

≥ hk(A)λ1({Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 }S(k) − I)‖x‖2 + λ1(A+ Θ

(k)
0 )‖x‖2 + ‖x‖2 ≥ 0.

To see this, note that if λA ≡ λ1({Θ(k)
0 gk(A + Θ

(k)
0 + δI)Θ

(k)
0 }S(k) − I) is positive, then the

inequality easily follows. On the other hand, if λA < −1, we have

hk(A)λA‖x‖2 ≥ −2−1 min{λ1(A+ Θ
(k)
0 ), 2−1}‖x‖2 − 2−1‖x‖2

≥ −(λ1(A+ Θ
(k)
0 )/2 + 1/2)‖x‖2.

Lastly, if −1 ≤ λA < 0, we have

hk(A)λA‖x‖2 ≥ −|λA|[2−1 min{λ1(A+ Θ
(k)
0 ), 2−1}+ 1/2]‖x‖2

≥ −|λA|(λ1(A+ Θ
(k)
0 )/2 + 1/2)‖x‖2.
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Next, we show that ‖fk(A)
S
(k)‖∞ ≤ r. Because diag(fk(A)) = diag(A), we have only to

show ‖fk(A)S(k)‖∞ ≤ r. Since δ + r ≤ 1/{6dmax{κΨ, κ
3
ΨκΓ}, we have

‖Ψ(k)
0 (A+ δI)‖∞/∞ ≤ κΨd‖A+ δI‖∞ ≤ κΨd(r + δ) ≤ 1/3.

It follows from Lemma 9 that

R(A+ δI) = (A+ δI + Θ
(k)
0 )−1 −Ψ

(k)
0 + Ψ

(k)
0 (A+ δI)Ψ

(k)
0 = {Ψ(k)

0 (A+ δI)}2H(k)Ψ
(k)
0 .

Thus, adding and subtracting Ψ
(k)
0 yields

f̃k(A) +A = hk(A)Θ
(k)
0 ((nk/n){Ψ(k)

0 (A+ δI)}2H(k)Ψ
(k)
0 − (nk/n)Ξ(k) − ρnǓ (k)

1 − ρnρ2Ǔ
(k)
2 )Θ

(k)
0

+(1− (nk/n)hk(A))A− (nk/n)δhk(A)I.

Vectorization and restriction on S(k) gives

‖vec(fk(A))S(k)‖∞ = ‖vec(f̃k(A) +A)S(k)‖∞

≤ (nk/n)hk(A)‖{(Γ(k))−1}S(k)S(k)vec({Ψ(k)
0 (A+ δI)}2H(k)Ψ

(k)
0 )S(k)‖∞

+hk(A)‖{(Γ(k))−1}S(k)S(k){vec((nk/n)Ξ(k))S(k) + ρnvec(Ǔ
(k)
1 )S(k) + ρnρ2vec(Ǔ

(k)
2 )S(k)}‖∞

+(1− (nk/n)hk(A))‖vec(A)S(k)‖∞ + (nk/n)δ, (29)

where {(Γ(k))−1}S(k)S(k) = (Θ(k) ⊗ Θ
(k)
0 )S(k)S(k) . Here we used hk(A) ≤ (1/4 + 1/2)/1 =

3/4. For the first term of the upper bound in (29), it follows by the inequality ‖Ax‖∞ ≤

‖A‖∞/∞‖x‖∞ for A ∈ Rp×p and x ∈ Rp, Lemma 9 and the choice of δ satisfying δ + r ≤

1/{6dmax{κΨ, κ
3
ΨκΓ} that

‖{(Γ(k))−1}S(k)S(k)vec({Ψ(k)
0 (A+ δI)}2H(k)Ψ

(k)
0 )S(k)‖∞

≤ κΓ‖R(k)(A+ δI)‖∞ ≤ κΓ
3

2
d‖A+ δI‖2∞κ3

Ψ ≤ κΓ
3

2
d‖A+ δI‖∞(r + δ)κ3

Ψ

≤ (r + δ)/4.

For the second term, it follows by the assumption, the inequality that ‖Ax‖∞ ≤ ‖A‖∞/∞‖x‖∞

for A ∈ Rp×p and x ∈ Rp, and Lemma 6 that

‖{(Γ(k))−1}S(k)S(k){(nk/n)vec(Ξ(k))S(k) + ρnvec(Ǔ
(k)
1 )S(k) + ρnρ2vec(Ǔ

(k)
2 )S(k)}‖∞

≤ κΓ(‖Ξ(k) + ρn + ρnρ2‖L‖1/22 ) = (min
k
πk)r/4 ≤ (nk/n)r/2.

Thus, we can further bound ‖vec((f̃k(A) +A)S(k))‖∞ by

nk
n
hk(A)

r + δ

4
+
nk
n
hk(A)

r

2
+
(

1− nk
n
hk(A)

)
r+

nk
n
δ = r

{
1− nk

n

hk(A)

4

}
+
nk
n

{
1 +

hk(A)

4

}
δ

(30)
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Noting that δ ≤ r/2, a similar reasoning shows that

‖(Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 )S(k)‖∞

≤ ‖AS(k)‖∞ + ‖Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 +A)S(k)‖∞

≤ (nk/n)‖{(Γ(k))−1}S(k)S(k)vec({Ψ(k)
0 (A+ δI)}2H(k)Ψ

(k)
0 )S(k)‖∞

+‖{(Γ(k))−1}S(k)S(k){(nk/n)vec(Ξ(k))S(k) + ρnvec(Ǔ
(k)
1 )S(k) + ρnρ2vec((Ǔ

(k)
2 )S(k))}‖∞

+(2− (nk/n))‖vec(A)S(k)‖∞ + (nk/n)δ

≤ r + δ

4
+
r

2
+ 2r + δ ≤ 4r.

Thus, the inequality ‖B‖2 ≤ ‖B‖∞/∞ for B = BT implies that

|λ1({Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 }S(k) − I)|

≤ ‖λ1({Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 }S(k))‖2 + 1

≤ ‖λ1({Θ(k)
0 gk(A+ Θ

(k)
0 + δI)Θ

(k)
0 }S(k))‖∞/∞ + 1

≤ 4dr + 1.

Hence hk(A) ≥ 1/(8dr + 2) for every A ∈ Dk.

Now (30) is further bounded by r:

r

{
1− nk

n

hk(A)

4

}
+
nk
n

{
1 +

hk(A)

4

}
δ

≤ r
{

1− nk
n

hk(A)

4

}
+
nk
n

{
1 +

hk(A)

4

}
r

10(4dr + 1)

≤ r
{

1− nk
n

hk(A)

4

}
+
nk
n

{
1 +

hk(A)

4

}
hk(A)r

5

≤ r − nk
n

hk(A)− h2
k(A)

20
r ≤ r.

Here we used the fact that δ ≤ r/{10(4dr + 1)} and 1/(8dr + 2) ≤ hk(A) < 1. Thus,

‖(fk(A))S(k)‖∞ ≤ r.

Since (fk(A))(S(k))c = 0 by definition, all the conditions for the fixed point theorem are

established. This completes the proof.

We now give a proof of Theorem 2. Note that Condition 7 implies that

ρn < min

{
mink πk
72dκΓ

min

{
1

κΨ
,

1

κ3
ΨκΓ

,
mink πk
56κ3

ΨκΓ
α

}
,
c8

6
,
c9 mink

√
dk

12

}
.
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Proof of Theorem 2. We prove that the oracle estimator Θ̌ρn satisfies (I) the model selection

consistency and (II) the KKT conditions of the original problem (3) with (Θ̌ρn , Ũ1, Ũ2). The

model selection consistency of Θ̂ρn = Θ̌ρn then follows by the uniqueness of the solution to

the original problem. The following discussion is on the event that mink πk/2 ≤ nk/n, k =

1, . . . ,K, and maxk‖Ξ(k)‖∞ ≤ α/8. Note that this event has probability approaching 1 by

Lemmas 4 and 5.

First we obtain an `∞-bound of the error of the oracle estimator. Note that by Condition

7 and the fact that α ∈ [0, 1)

α

8
+ 1 + ρ2‖L‖1/22 ≤ α

8
+ 1 +

α2

4(2− α)
≤ 3.

Thus, it follows from Condition 7 that

(4/min
k
πk)κΓ(‖Ξ(k)‖∞ + ρn + ρnρ2‖L‖1/22 ) <

12κΓ

mink πk

mink πk
72dκΓ

min

{
1

κΨ
,

1

κ3
ΨκΓ

}
=

1

6dmax{κΨ, κ3
ΨκΓ}

.

Because (Θ
(k)
0 ⊗Θ

(k)
0 )S(k)S(k) is invertible by Condition 5, we can apply Lemma 11 to obtain

‖Θ̌(k)
ρn − Θ

(k)
0 ‖∞ ≤ (6/mink πk)κΓ(‖Ξ(k)‖∞ + ρn + ρnρ2‖L‖1/22 ) with probability approaching

1.

As a consequence of the `∞-bound, Θ̌ρn,ij 6= 0 for (i, j) ∈ S, because ‖Θ̌(k)
ρn − Θ

(k)
0 ‖∞ ≤

3ρn ≤ c8/2 < mink=1,...,K,i 6=j |θ
(k)
0,ij | by Conditions 6 and 7. This establishes the model selection

consistency of the oracle estimator.

Next, we show that the Oracle estimator satisfies the KKT condition of the original problem

(3). As the first step, we prove Ũ
(k)
1,ij ∈ ∂Θ̌

(k)
ρn for every i, j, k with probability approaching 1.

Since Θ̌ρn,ij 6= 0 for (i, j) ∈ S with probability approaching 1, Ũ
(k)
1,ij = Ǔ

(k)
1,ij for (i, j) ∈ S(k) by

construction. For (i, j) ∈ (S(k))c, we need to prove |Ũ (k)
1,ij | < 1 for every i, j, k. To this end, it

suffices to verify that ‖R(k)(Θ̌
(k)
ρn − Θ

(k)
0 )‖∞ ≤ α/8 and apply Lemma 8. Applying Lemma 9

with ‖Θ̌(k)
ρn −Θ

(k)
0 ‖∞ ≤ (6/mink πk)κΓ(‖Ξ(k)‖∞ + ρn + ρnρ2‖L‖1/22 ) and Condition 7 gives

‖R(k)(Θ̌(k)
ρn −Θ

(k)
0 )‖∞ ≤

3

2
dκ3

Ψ‖Θ̌(k)
ρn −Θ

(k)
0 ‖

2
∞ ≤

3

2
dκ3

Ψ

324κ2
Γ

mink π
2
k

ρ2
n

≤
486dκ3

Ψκ
2
Γ

mink π
2
k

{
mink πk
72dκΓ

mink πk
56κ3

ΨκΓ
α

}
ρn ≤

α

8
α.

Next, we prove that Ũ2,ij ∈ ∂
√

Θ̌ρn,ijLΘ̌ρn,ij for every (i, j). For (i, j) with ω
(k)
0,ij 6= 0

for all k = 1, . . . ,K, Ũ2,ij = Ǔρn ∈ ∂
√

Θ̌ρn,ijLΘ̌ρn,ij . For (i, j) with Ω0,ij = 0, Ũ2,ij = 0 ∈
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∂
√

Θ̌ρn,ijLΘ̌ρn,ij by Lemma 6. For (i, j) with Ω0,ij 6= 0 and ω
(k′)
0,ij = 0 for some k′,

Ũ2,ij = LΘ̌ρn,ij/
√

Θ̌ρn,ijLΘ̌ρn,ij ∈ ∂
√

Θ̌ρn,ijLΘ̌ρn,ij

if LΘ̌ρn,ij 6= 0. To see LΘ̌ρn,ij 6= 0 holds with probability approaching 1, let (k, k′) ∈ S with

k 6= k′ such that Θ
(k)
0,ij/
√
dk − Θ

(k′)
0,ij/
√
dk′ 6= 0. This pair (k, k′) exists by Condition 6 and

the assumption LΘ0,ij 6= 0. We assume without loss of generality θ
(k)
0,ij/
√
dk − θ

(k′)
0,ij /
√
dk′ > 0.

Since ‖Θ̌(k)
ρn −Θ

(k)
0 ‖∞ ≤ 3ρn ≤ c9 mink

√
dk/12, it follows from Condition 7 that

θ̌
(k)
ρn,ij√
dk
−
θ̌

(k′)
ρn,ij√
dk′

≥
θ

(k)
0,ij√
dk
−
θ

(k′)
0,ij√
dk′
− 3ρn

(
1√
dk

+
1√
dk′

)
≥ c9 − 3ρn

(
max

Wk,k′ 6=0

1√
dk

+
1√
dk′

)
≥ 1

2
c9.

Hence, Θ̌T
ρn,ij

LΘ̌ρn,ij ≥Wkk′c
2
9/4 > 0 or LΘ̌ρn,ij 6= 0.

Finally, we show that Equation (27) for the KKT condition holds. For the (i, j)-element

of the equation with Ω0,ij = 0, this equation hold by construction for every k = 1, . . . ,K.

For the (i, j)-element with ω
(k)
0,ij 6= 0 for every k = 1, . . . ,K, the equation holds for every

k = 1, . . . ,K, because it is the equation for the KKT condition of the corresponding element

in a restricted problem (21). For (i, j)-element with Ω0,ij 6= 0 and ω
(k′)
0,ij = 0 for some k′,

note that Θ̌ρn,ij 6= 0 with probability approaching 1 and that the rearrangement in Θij and

corresponding exchange of rows and columns of L for each i, j does not change the original and

restricted optimization problems (3) and (21). Thus, with the appropriate rearrangement of

elements and exchange of rows and columns, Ũ
(k)
2,ij with ω

(k)
0,ij 6= 0 is in fact Ǔ

(k)
2,ij . Thus for such

k the equation holds because of the corresponding KKT condition in the restricted problem

(21). For other k, the equation holds by construction. We thus conclude the oracle estimator

satisfies the KKT condition of the original problem (3). This completes the proof.

Proof of Corollary 1. In the proof of Theorem 2, the `∞-bound of the error yields

‖Θ̂(k)
ρn −Θ

(k)
0 ‖∞ = OP (κΓρn) .

Note that if one of two matrices A and B is diagonal, ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. Thus, we can

proceed in the same way as in the proof of Theorem 2 of Rothman et al. (2008) to conclude

that

‖Ω̂(k)
n − Ω

(k)
0 ‖∞ = OP (κΓρn) .
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The result follows from a similar argument to the proof of Corollary 3 in Ravikumar et al.

(2011).

Proof of Corollary 2. It follows from Condition 8 and Lemma 1 applied to Θ̌ρn that ‖Θ̌(k)
ρn −

Θ
(k)
0 ‖2 ≤ 1/(2λΘ). Then we can apply Lemma 10 instead of Lemma 9. The rest is similar to

the proof of Theorem 2.

Hierarchical Clustering

For simplicity, we prove Theorem 3 for the case of K = 2; the proof can be easily gener-

alized to K > 2. Let X and Y be the random variable from the first and subpopulation,

respectively. Suppose that X = (X1, . . . , Xp)
T ∼ N(µX ,ΣX) with µX = (µ1,X , . . . , µp,X) and

the spectral decomposition ΣX = QXΛXQ
T
X of ΣX where λ1,X , . . . , λp,X are the eigenval-

ues of ΣX and that Y ∼ N(µY ,ΣY ) with µY = (µ1,Y , . . . , µp,Y ) and the spectral decom-

position ΣY = QY ΛYQ
T
Y of ΣY where λ1,Y , . . . , λp,Y are the eigenvalues of ΣY . Define

Z = (X − Y ) = (Z1, . . . , Zp)
T ∼ N(µZ ,ΣZ) with µZ = (µ1,Z , . . . , µp,Z) and the spec-

tral decomposition ΣZ = QZΛZQ
T
Z of ΣZ where λ1,Z , . . . , λp,Z are the eigenvalues of ΣZ .

Let X̃ = (X̃1, . . . , X̃)T = Λ
1/2
X QTXΣ

−1/2
X X, Ỹ = (Ỹ1, . . . , Ỹ )T = Λ

1/2
Y QTY Σ

−1/2
Y Y and Z̃ =

(Z̃1, . . . , Z̃)T = Λ
1/2
Z QTZΣ

−1/2
Z Z. Then X̃ ∼ N(µ̃X ,ΛX), Ỹ ∼ N(µ̃Y ,ΛY ) and Z̃ ∼ N(µ̃Z ,ΛZ)

where µ̃X = (µ̃1,X , . . . , µ̃p,X)T ≡ Λ
1/2
X QTXΣ

−1/2
X µX , µ̃Y = (µ̃1,Y , . . . , µ̃p,Y )T ≡ Λ

1/2
Y QTY Σ

−1/2
Y µY

and µ̃Z = (µ̃1,Z , . . . , µ̃p,Z)T ≡ Λ
1/2
Z QTZΣ

−1/2
Z µZ . Let also

µ2
X̃

= ‖µ̃2
X‖/p, µ2

Ỹ
= ‖µ̃2

Y ‖/p, µ2
Z̃

= ‖µ̃2
Z‖/p,

λX =

p∑
k=1

λk,X/p, λY =

p∑
k=1

λk,Y /p, λZ =

p∑
k=1

λk,Z/p.

Lemma 12 (Lemma 1 of Borysov et al. (2014)). Let W1, . . . ,Wp be independent non-negative

random variables with finite second moments. Let S =
∑p

j=1(Wj−EWj) and v =
∑p

j=1 EW 2
j .

Then for any t > 0 P (S ≤ −t) ≤ exp(−t2/(2v)).

The following lemma is an extension of Lemma 2 in Borysov et al. (2014).

Lemma 13. Let 0 < a < µ2
X̃

+ λX . Then

P (‖X‖2 < ap) ≤ exp

(
−

p2(µ2
X̃

+ λX − a)2

2
∑p

j=1(µ̃4
j,X + 6µ̃2

k,Xλj,X + 3λ2
j,X)

)
.
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Proof. Note that elements of X̃ are independent and that X̃j ∼ N(µ̃j,X , λj,X). Thus, we have

E X̃2
j = µ̃2

j,X + λj,X , Var(X̃2
j ) = 2(λ2

j,X + 2µ̃2
j,Xλj,X),

E X̃4
j = µ̃4

j,X + 6µ̃2
j,Xλj,X + 3λ2

j,X .

Applying Lemma 12 with Wi = X̃2
i gives

P (‖X‖2 < ap) = P (‖X̃‖2 < ap) = P

 p∑
j=1

(X̃2
j − µ̃2

j,X − λj,X) < −p(µ2
X̃

+ λX − a)


≤ exp

(
−

p2(µ2
X̃

+ λX − a)2

2
∑p

j=1(µ̃4
j,X + 6µ̃2

j,Xλj,X + 3λ2
j,X)

)
.

The following is an extension of Lemma 3 in Borysov et al. (2014).

Lemma 14. Let a > λX + µ2
X̃

. Then

P (‖X‖2 > ap) ≤ exp

−1

2

p+

p∑
j=1

a

λj,X
−

p∑
j=1

√
1 + 2

a

λj,X

 .

Proof. By Markov’s inequality, for t >
∑p

j=1 λj,X + µ̃2
j,X , we get

P

 p∑
j=1

X2
j ≥ t

 = P

 p∑
j=1

X̃2
j ≥ t


= P

exp

 p∑
j=1

γX̃2
j − γλj,X − γµ̃2

j,X

 ≥ exp

γt− γ p∑
j=1

(λj,x + µ̃2
j,X)


≤ exp

−γ
t− p∑

j=1

(µ̃2
j,X + λj,X)

 p∏
j=1

E exp((γλj,X)X̃2
j /λj,x)

= exp

−γ
t− p∑

j=1

µ̃2
j,X

 p∏
j=1

exp

(
−γλj,X −

1

2
log(1− 2γλj,X)

)
exp

(
γµ̃2

j,X

1− 2γλj,X

)
.

Since for all u ∈ (0, 1), − log(1 − u) − u ≤ u2/{2(1 − u)} (see page 28 of Boucheron et al.

(2013)), the above display is bounded above by

exp

(
−γ

(
t−

p∑
i=1

µ̃2
i,X

))
p∏
i=1

exp

(
γ2λ2

i,X

1− 2γλi,X

)
exp

(
γµ̃2

i,X

1− 2γλi,X

)
.

Using the following result from Boucheron et al. (2013)

inf
γ∈(0,1/c)

vγ2

2(1− cγ)
− tγ = − v

c2
h

(
ct

v

)
.
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wherein h(u) = 1 + u−
√

1 + 2u, u > 0, we further obtain the upper bound

exp

(
γ

p∑
i=1

µ̃2
i,X

)
p∏
i=1

exp

(
−1

2

(
1 +

t

λi,Xp
−

√
1 + 2

t

λi,Xp

))
exp

(
γµ̃2

i,X

1− 2γλi,X

)
.

Taking γ ↓ 0, the upper bound becomes

exp

(
−1

2

(
p+

p∑
i=1

t

λi,Xp
−

p∑
i=1

√
1 + 2

t

λi,Xp

))
.

Choosing t = ap, we have

P

(
p∑
i=1

X̃2
i ≥ ap

)
≤ exp

(
−1

2

(
p+

p∑
i=1

a

λi,X
−

p∑
i=1

√
1 + 2

a

λi,X

))
.

Note that f(u) = (1 + 2u)1/2 ≤ u for u ≥ 0 because f ′(0) = 1 and f ′ is decreasing for u > 0.

Thus, P
(∑p

i=1 X̃
2
i ≥ ap

)
→ 0 as p→∞.

Proof of Theorem 3. For simplicity, we present the proof for the case of K = 2; the proof can

be easily generalized to K > 2. Let n1 and n2 be the sample sizes for the first and second

subpopulations, respectively. Define

E1 =

{
max
i,j
‖Xi −Xj‖ < min

k,l
‖Xk − Yl‖

}
, E2 =

{
max
i,j
‖Yi − Yj‖ < min

k,l
‖Xk − Yl‖

}
,

E3 =

{
max
i,j
‖Xi −Xj‖2 < ap

}
, E4 =

{
max
i,j
‖Yi − Yj‖2 < ap

}
,

E5 =

{
max
k,l
‖Xk − Yl‖2 > ap

}
.

for a fixed a > 0 satisfying the assumption. The intersection E1∩E2 is contained in the event

that the clustering performs in the way that two subpopulations are joined in the last step.

The intersection E3∩E4∩E5 is also contained in E1∩E2, or in other words, P ((E1∩E2)c) ≤

P (Ec3) + P (Ec4) + P (Ec5). Thus, it suffices to show that P (Ec3) + P (Ec4) + P (Ec5) → 0 as

n, p→∞.

For Ec3 and Ec4 we have by Lemma 14 that

P (Ec3) ≤
n∑
i,j

P (‖Xi −Xj‖2 > ap) =
n1(n1 − 1)

2
P (‖X1 −X2‖2 > ap)

≤ n1(n1 − 1)

2
exp

(
−1

2

(
p+

p∑
l=1

a

2λl,X
−

p∑
l=1

√
1 +

a

λl,X

))

≤ exp

(
−1

2

(
p+

p∑
l=1

a

2λl,X
−

p∑
l=1

√
1 +

a

λl,X

)
+ 2 log n1

)

= exp

(
−p

2

(
1 +

1

p

p∑
l=1

a

2λl,X
− 1

p

p∑
l=1

√
1 +

a

λl,X
+ 4

log n1

p

))
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and that

P (Ec4) ≤ exp

(
−p

2

(
1 +

1

p

p∑
l=1

a

2λl,Y
− 1

p

p∑
l=1

√
1 +

a

λl,Y
+ 4

log n2

p

))
.

for a satisfying a > 2 max{λX , λY }.

Note that log nk/p → 0, k = 1, 2 as n1, n2, p → ∞. Moreover x −
√

1 + 2x ≥ 0 for x > 0.

Thus, P (Ec3)→ 0 and P (Ec4)→ 0 as n1, n2, p→∞. For Ec5, we have by Lemma 13 that

P (Ec5) ≤
∑
i,j

P (‖Xi − Yj‖2 < ap) ≤ n1n2P (‖X1 − Y1‖2 < ap)

≤ exp

(
−

p2(µ2
Z̃

+ λZ − a)2

2
∑p

l=1(µ̃4
i,Z + 6µ̃2

l,Zλl,Z + 3λ2
l,Z)

+ log n1n2

)

for a < µ2
Z̃

+λZ . Given the assumption c10 ≤ λj,X ≤ c11, c10 ≤ λj,Y ≤ c11, max{|µj,X |, |µj,Y |} ≤

c11, j = 1, 2, . . .. Thus, we get P (Ec5)→ 0 as n1, n2, p→∞.

Since 2λX − λp,X − λp,Y ≥ 2λX − λZ , and 2λY − λp,X − λp,Y ≥ 2λY − λZ , the assumption

that µ2
Z̃
> 2 min{λX , λY }−λp,X −λp,Y implies that there exists a such that a < µZ̃ +λZ and

a > 2 max{λX , λY }. This completes the proof.
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