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Abstract

In this paper, the Wigner function of two-mode qubit and qutrit like entangled co-

herent states (ECS’s) is investigated. We use the displacement operator together with

parity operation to construct the superposition of two coherent states. By transmitting

this superposition from 50-50 beam splitter the two-mode qubit like ECS is generated.

Moreover, we introduce a controllable method for producing qutrit like ECS using atom-

field interaction in cavity QED and beam splitter. We will show that the distances of

peaks of Wigner functions for two-mode ECS’s are entanglement sensitive and can be a

witness for entanglement. To confirm the results we use concurrence measure to compare
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bipartite entanglement of ECS’s with the behavior of peaks of Wigner functions. More-

over, we investigate decoherence effects on Wigner function, arising from transmitting

ECS’s through noisy channels.

PACs Index:03.65.Ud

1 Introduction

Phase-space representations of quantum states have been important tools for exploring the

connections between quantum and classical physics. In 1932, Wigner introduced a distribution

function in mechanics that permitted a description of mechanical phenomena in a phase space

[1, 2]. Some important characteristics of the spatial Wigner function of entangled photon pairs

were analyzed in [3]. In [4] the negativity of the Wigner function was discussed as a measure of

the non-classicality. Negativity of the Wigner function is the reason why the Wigner function

can not be regarded as a real probability distribution but a quasi-probability distribution

function and it is a good indication of the possibility of the occurrence of nonclassical properties.

Wigner functions have been especially used for describing the quadratures of the electrical

field with coherent and squeezed states or single photon states [5, 6, 7]. The four-dimensional

chronocyclic Wigner function of the parametric downconversion state was discussed in [8].

In 1926, Schrodinger introduced coherent states [9] then advanced studies were done in

[10, 11]. In recent years, there has been the considerable interest in studying multi-mode

quantum states of radiation fields because they have widely role in quantum information

theory. The problem of generating various quantum states of an electromagnetic field was

discussed in [12, 13, 14, 15, 16, 17, 18, 19]. In [20, 21] it was proposed a scheme for producing

a superposition of two arbitrary Glauber coherent states via parity and displacement operator.

The other scheme for preparation of superposition of coherent states in cavity QED was studied

in [22, 23] in which an atom either flying through or trapped within a cavity, is controlled
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by the classical Stark effect. ECS’s have many applications in quantum optics and quantum

information processing [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. In [34, 35] the required conditions

for the maximal entangled states of the form |ψ〉 = µ|α〉|β〉 + ν|γ〉|δ〉 have been studied and

then have been generalized to the state |ψ〉 = µ|α〉|β〉 + λ|α〉|δ〉 + ρ|γ〉|β〉 + ν|γ〉|δ〉 in Ref.

[36]. Generation of multipartite ECS’s and entanglement of multipartite states constructed by

linearly independent coherent states are investigated in [37, 38]. In [39] it was considered the

production and entanglement properties of the generalized balanced N-mode Glauber coherent

states of the form

|Ψ(d)
N 〉 =

1√
M

(d)
N

d−1∑
i=0

µi|αi〉 · · · |αi〉︸ ︷︷ ︸
N modes

, (1.1)

which is a general form of the balanced two-mode entangled coherent state |Ψ(2)〉bal = 1√
M(2)

(|α〉|α〉+

µ|β〉|β〉) and |Ψ(3)〉bal = 1√
M(3)

(|α〉|α〉+µ1|β〉|β〉+µ2|γ〉|γ〉). By assumption that the coherent

states are linearly independent, these states recast in two qubit and qutrit form respectively.

Then the entanglement of this states was evaluated by concurrence measure.

Another problem which has been investigated extensively in quantum information process-

ing is noise effect or decoherence which arise from the coupling of the system to its surroundings

[38, 40, 41]. van Enk in [40] introduced the effect of noise on coherent states with the modes

1 or 2 after traveling through a noisy channel as |α〉1(2)|0〉E → |
√
ηα〉1(2)|

√
1− ηα〉E where the

second state now refers to the environment and η is the noise parameter, which gives the frac-

tion of photons that survives the noisy channel. The effect of noise on entanglement between

modes 1 and 2 in qubit and qutrit like ECS’s was investigated.

In this paper we use the displacement operator together with parity operation to construct

the superposition of two coherent states |α〉 + µ|β〉. By transmitting this superposition from

50-50 beam splitter the two-mode qubit like ECS, |Ψ(2)〉, is generated. Moreover we introduce

a method for producing qutrit like ECS using atom-field interaction in cavity QED and beam

splitter. The Wigner functions of both two-mode qubit and qutrit like ECS’s yield some

information about the quantum entanglement of ECS’s. This information comes from the
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separation of peaks of Wigner quasi-probability as a function of ECS’s parameters (e.g., α, β, µ

in state |α〉+µ|β〉). The results are compared with another useful measure such as concurrence

which confirm the outcomes. Moreover we investigate the noise effects on Wigner function. As

a result Wigner function is affected by noise effect and the entanglement of ECS’s is decreased

after traveling through the noisy channel.

The outline of this paper is as follows: In section 2 we propose a method for generation

of two-mode ECS’s and investigate the Wigner quasi-probability distribution function. We

compare the Wigner function with bipartite entanglement which is obtained by concurrence

measure. Section 3 devoted to the qutrit like ECS generated via cavity QED and beam splitter.

The effect of noise on Wigner function of ECS is studied in section 4. Our conclusions are

summarized in section 5.

2 Generation of Two-mode Qubit like ECS

In this section, we consider how to generate the two-mode ECS. The first problem is the

generation of the superposition of two number coherent states like as |α〉 + µ|β〉, (up to nor-

malization factors). Various attempts proposed scheme for generating of discrete superposition

of coherent states [13, 14, 15, 38, 42, 43, 44].

2.1 Generation of Two-mode Qubit like ECS

In [20, 21], the authors use the displacement operator together with parity operation to con-

struct the unitary operation

Û(λ, α) = eiλD̂(α)Π̂, (2.2)

where λ is real number, Π̂ = cos(πâ†â) is a Hermitian and unitary operator with property

Π̂|n〉 = (−1)n|n〉 where |n〉 refers to photon number state and D̂(α) = exp(αâ† − α∗â) is

usual displacement operator. In order to obtain a linear combination of two arbitrary Glauber
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coherent states, it is enough to use another displacement operator, D̂(β):

D̂(β)Û(λ, α)|0〉 = cosλ|β〉+ i sinλ|α + β〉. (2.3)

Using V̂ (α, β, λ) = D̂(α)Û(λ, β − α), one may recast the above state in a convenient form as

follows

V̂ (α, β, λ)|0〉 = cosλ|α〉+ i sinλeiIm(αβ∗)|β〉. (2.4)

We next use polarizing beam splitter (PBS). The polarizing beam splitter is commonly made

by cementing together two birefringent materials like calcite or quartz, and has the property

of splitting a light beam into its orthogonal linear polarizations. The beam splitter interaction

given by the unitary transformation

B̂i−1,i(θ) = exp[θ(â†i−1âi − â
†
i âi−1)], (2.5)

which âi−1, âi, â
†
i−1 and â†i are the annihilation and creation operators of the field mode i− 1

and i, respectively. Using Baker-Hausdorf formula, the action of the beam splitter on two

modes i− 1 and i , can be expressed as

B̂i−1,i(θ)

 âi−1

âi

 B̂†i−1,i(θ) =

 â′i−1

â′i

 =

 cos θ − sin θ

sin θ cos θ


 âi−1

âi

 . (2.6)

For 50− 50 beam splitter, i.e. θ = π/4 the above equation reduces to

B̂1,2(π/4)|α′〉1|0〉2 = | α
′
√

2
〉1|

α′√
2
〉2 . (2.7)

This result says that like classical light wave where the incident intensity is evenly divided

between the two output beams, e.g. half the incident average photon number, |α|
2

2
, emerges

in each beam. Note that the output is not entangled. For producing ECS suppose that our

input state is a superposition of two coherent states as |α′〉1 +µ|β′〉1 . Following the procedure

above, we may then, obtain the output state (see figure 1)

B̂1,2(π/4)(|α′〉1 + µ|β′〉1)⊗ |0〉2 = | α
′
√

2
〉1|

α′√
2
〉2 + µ| β

′
√

2
〉1|

β′√
2
〉2 . (2.8)



Wigner Function For Two-Mode ECS 6

By renaming α ≡ α′√
2

and β ≡ β′√
2

we have |α〉1|α〉2 +µ|β〉1 |β〉2 , which is a two-mode qubit like

ECS.

Figure 1: Experimental set up for generating ECS.

2.2 Wigner Function for Qubit like ECS’s

One of the important quasi-probability distribution over phase space is the Wigner function.

The Wigner function seems to be the earliest introduced of the phase-space quasi-probability

distributions, making its debut in 1932. Wigner function is defined as [45]

W (γ) =
1

π2

∫
d2λCW (λ)eλ

∗γ−λγ∗ , (2.9)

in which CW (λ) = Tr(ρD(λ)). Here we investigate the Wigner function behaviour for qubit

like ECS.

Let us consider qubit like ECS which was generated in previous section in the form

|Ψ(2)〉 =
1√
M (2)

(|α〉|α〉+ µ|β〉|β〉), (2.10)

in which the normalization factor is M (2) = 1 + µ2 + 2µRe(p2) with p = 〈α|β〉. Note that we

used the superscript (2) for qubit-like states to distinguish it from that of qutrit like states in

the next section. Wigner characteristic function reads

C
(2)
W (λ) =

1

M (2)
{〈α|D(λ)|α〉+ µ2〈β|D(λ)|β〉+ µp(〈β|D(λ)|α〉+ 〈α|D(λ)|β〉)}, (2.11)

by substituting C
(2)
W (λ) in Eq.(2.9), the corresponding Wigner function is obtained as

W (2)(γ) =
2

πM (2)
{e−2|γ−α|2 +µ2e−2|γ−β|2 +µe−(|α|2+|β|2)e−2|γ|2(e2(γβ∗+γ∗α)+e2(γα∗+γ∗β))}. (2.12)
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For simplicity, let us assume that α and β are real numbers and µ = 1. Setting γ = x + iy,

we plot diagram of W (2)(x, y) as a function of x and y for given α and β. Figure 2 shows that

Figure 2: (Color online) (a) Concurrence of |Ψ(2)〉 as a function of α for a given β = 2 and W (2)(x, y)

as function of x and y for α = 2: (b) β = 2, (c) β = 4 and (d) β = 4.5.

by considering α and β as real numbers, the Wigner function moves along x axis (real part of

γ) while if we regard that α and β are imaginary numbers, the Wigner function moves along

y axis (imaginary part of γ). Moreover, the study of Wigner function reveals information on

the entanglement between modes in two-mode ECS, Eq.(2.10). For more details, one can do

a comparison between(a), (b), (c) and (d) in figure 2 which shows that if α = β the state is

separable and there is one peak (figure (2b)). For α 6= β the state is entangled. As a result,

the separation of two peaks can be a witness for amount of entanglement of |Ψ(2)〉. For clarity

we assume that y = 0 and solve the equation dW (2)(x)
dx

= 0:

(α− x)e−2(α−x)2

+ (β − x)e−2(β−x)2

+ (α + β − 2x)e−(α−x)2−(β−x)2

= 0. (2.13)

Clearly, x = α = β is one solution for Eq.(2.13), which means that the diagram of W (2)(γ)

assumes one peak at point x = α. Whereas if α 6= β and considering u = e−(x−α)2+(x−β)2
,
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Eq.(2.13) is rewritten as

(α− x)u2 + (−2x+ α + β)u+ β − x = 0, (2.14)

which has two solutions u = −1 and u = x−β
α−x . The former must be ignored as u is always

positive. The equation u = e−(x−α)2+(x−β)2
= x−β

α−x is a transcendent equation and it can not

be solved in an algebraic way. However, if we plot both sides of this equation for a given α

and β, then their intersections are required solutions (see figure 3). Figure 3 shows that by

Figure 3: (Color online) u = e−(x−α)2+(x−β)2
(full line) and u = x−β

α−x (dashed line) as function of x

for given α = 2: (a)β = 3 (Red), (b)β = 4 (Green) and (c)β = 4.5 (Blue).

increasing ∆ = α− β the separation of two maximum in Wigner function increases too. This

comes from the fact that putting x = α in Eq. (2.13) yields (β − α)[e−2(β−α)2
+ e−(β−α)2

] ' 0

which is satisfied only for |α − β| � 1. The result is that the separation of two peaks in

Wigner function is a monotone function of ∆ and for large α − β, the separation of two

peaks in Wigner function just depends on ∆ = α − β. To confirm the above results we use

another measure, the so called concurrence, which illustrates that the entanglement of |Ψ(2)〉,

depends solely on ∆. As in general two coherent states |α〉 and |β〉 are linearly independent,

they may span a two dimensional qubit like Hilbert space {|0〉, |1〉}, hence the two-mode

coherent state |Ψ(2)〉 can be recast in two qubit form [39]. For any pure state in the form
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|ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉, the concurrence is defined as C = 2|a00a11− a01a10|

[46, 47]. Therefore the concurrence of Eq.(2.10) in term of ∆ is rewritten as

C(2)(∆) =
1− e−∆2

1 + e−∆2 . (2.15)

This equation shows that the concurrence is a monotone function of ∆. If the separation of two

peaks, becomes large (∆→∞), the concurrence tends to its maximum (C
(2)
max = 1), while for

small separation (i.e. ∆→ 0) the concurrence tends to zero and the state becomes separable.

Figure 4 shows the concurrence as a monotone function of separation of two peaks (see figure

4).

Figure 4: (Color online) Concurrence of |Ψ(2)〉 as a function of separation of two peaks ∆.

3 Generation of Two-mode Qutrit like ECS

In the previous section, we introduced a method to produce superposition of even number of

coherent states. These states lead to qubit like ECS. One may construct qutrit like ECS. To

this aim, we introduce a controllable method for producing qutrit like ECS. Then the Wigner

function and bipartite entanglement of this state is investigated.
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3.1 Generation of Two-mode Qutrit like ECS

Here we use atom-field interaction in cavity QED and beam splitter to produce qutrit like

ECS. The hamiltonian of Jaynes-Cummings model [22, 23] is defined as

Ĥint = ωcâ
†â+ ωaσ̂z + g(â†σ̂− + âσ̂+) + εe−iωLtσ̂+ + ε∗eiωLtσ̂−, (3.16)

where â(â†) is the annihilation (creation) operator for the cavity field and for simplicity we

assume that ~ = 1. ωc, ωL and ωa are the frequencies of the cavity, classical field and the atomic

transition frequency between the excited state |e〉 and the ground state |g〉 respectively. g is

the atom-cavity coupling constant. The complex amplitude is represented by ε. σ̂± and σ̂z are

the atomic transition operators which are given by

σ̂+ = |e〉〈g|, σ̂− = |g〉〈e|,

σ̂z = |e〉〈e| − |g〉〈g|.
(3.17)

In this method, an atom interact alternately with a (resonant) classical field and with the

(dispersive) cavity field. Let us suppose that the atom is not affected by the cavity field

and is initially resonant with the classical field so the interaction hamiltonian is given by

ĤI1 = εe−iϕσ̂+ + ε∗eiϕσ̂−. If the atom is initially in the ground state |g〉 or |e〉, after the atom

interacts with the classical field we have

|g〉 → 1√
1+|εk|2

(|g〉+ εk|e〉),

|e〉 → 1√
1+|εk|2

(−ε∗k|g〉+ |e〉),
(3.18)

respectively, where εk(k = 0, 1, 2, ...) is an adjustable complex number controlled by the pa-

rameters of the classical field. Now if the atom is interacting dispersively with the cavity field

and far away from the classical field, the effective hamiltonian of the atom-cavity system is

given by ĤI2 = g2

∆̃
â†âσ̂z, in which ∆̃ = ωa − ωc. We assume that the cavity field is initially

in a coherent state |α〉, thus the total system has the form |ψ1〉 ≡ 1√
1+|ε0|2

(|g〉|α〉 + ε0|e〉|α〉).

After an interaction time t = π∆̃
2g2 , the atom-cavity system evolves to

|ψ1〉 →
1√

1 + |ε0|2
(|g〉|iα〉+ ε0|e〉| − iα〉). (3.19)
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Again the atomic transition is resonant with the classical field but far away from the cavity

field. After a given time and performing a measurement on the atom we have

|ψ′1〉 =
1√
M (2)

(−ε0ε
∗
1| − iα〉+ |iα〉), (3.20)

where M (2) = 1 + |ε0ε
∗
1|2 − 2Re(ε0ε

∗
1)e−2|α|2 . Further the phase shifter P̂ = e−i

π
2
â†â transforms

the state Eq.(3.20) as

P̂|ψ′1〉 =
1√
M (2)

(−ε0ε
∗
1|α〉+ | − α〉). (3.21)

Similar to the first step N = 1, once again the atom interacts alternately with a (resonant)

classical field and with the (dispersive) cavity field N = 2, then by performing a measurement

on the atom in ground state, we can generate superpositions of three coherent states with

adjustable weighting factors as the form

|ψ′2〉 =
1√
M (3)

(|2α〉 − (ε0ε
∗
2 + ε0ε

∗
1)|0〉 − ε1ε

∗
2| − 2α〉), (3.22)

in which M (3) is normalization factor. In [22] the optimal values of ε0, ε1, and ε2 determined to

be −0.8200, 2.1184, and −0.4720, respectively. Acting displacement operator D̂(β) = eβâ
†−β∗â

with property D̂(β)|α〉 = |α + β〉, onto state Eq.(3.22) leads to the following superposition of

coherent states

D̂(β)|ψ′2〉 =
1√

2e−8α2 + 5.4e−2α2 + 3.8225
(|2α + β〉+ 1.35|β〉+ | − 2α + β〉). (3.23)

By transmitting this state Eq.(3.23) through 50− 50 beam splitter we have

|Φ(3)〉 =
1√
M (3)

(|2α + β√
2
〉|2α + β√

2
〉+ 1.35| β√

2
〉| β√

2
〉+ |−2α + β√

2
〉|−2α + β√

2
〉). (3.24)

This state is a two-mode qutrit like ECS. In the following, we concern the Wigner function of

qutrit like ECS’s. Firstly, we will consider the general state |Ψ(3)〉 = 1√
M ′(3)

(|αα〉 + µ1|ββ〉 +

µ2|γγ〉) then as an especial example we will consider the state Eq.(3.24).
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3.2 Wigner Function for Qutrit like ECS’s

Let us consider two qutrit like ECS

|Ψ(3)〉 =
1√
M ′(3)

(|α〉|α〉+ µ1|β〉|β〉+ µ2|γ〉|γ〉), (3.25)

with M ′(3) = 1 + µ2
1 + µ2

2 + 2µ1p
2
1 + 2µ1µ2p

2
2 + 2µ2p

2
3 in which p1 = 〈α|β〉, p2 = 〈β|γ〉 and

p3 = 〈α|γ〉. Again for simplicity we assumed that α, β, γ, µ1 and µ2 are real parameters.

Using the definition Eq.(2.9) the Wigner function is obtained as

W (3)(δ) = 2
πM ′(3){e−2|δ−α|2 + µ2

1e
−2|δ−β|2 + µ2

2e
−2|δ−γ|2 + µ1p1e

− 1
2

(α+β)2
e−2|δ|2(e2(δβ+δ∗α) + e2(δ∗β+δα))

+µ1µ2p2e
− 1

2
(γ+β)2

e−2|δ|2(e2(δγ+δ∗β) + e2(δ∗γ+δβ)) + µ2p3e
− 1

2
(α+γ)2

e−2|δ|2(e2(δγ+δ∗α) + e2(δ∗γ+δα))}.
(3.26)

Taking δ = x+iy and assuming µ1 = µ2 = 1, the Wigner function W (3)(x, y) can be represented

diagrammatically as a function of x and y for given α, β and γ in the figure 5. One can see

Figure 5: (Color online) (a) Concurrence of |Ψ(3)〉 as a function of α for β = γ = 5 and W (3)(x, y)

as function of x and y: (b) α = β = γ = 5, (c) α = β = 3, γ = 8, (d) α = 0, β = 3, γ = 8.

that for α = β = γ = 5 there is just one peak in diagram of W (3)(x, y) and the qutrit like ECS
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is reduced to separable state (C(3)(α) = 0), while for α 6= β 6= γ there exist three peaks and

the state is in general entangled. Figure 5 shows that the distance of peaks in Wigner function

W (3)(x, y) depends on parameters ∆i defined as

∆1 = |α− β|,

∆2 = |α− γ|,

∆3 = |β − γ|.

(3.27)

which in turn implies that W (3)(x, y) is entanglement sensitive. To confirm this result we use

the general concurrence measure for bipartite state |ψ〉 =
∑d1

i=1

∑d2

j=1 aij|ei ⊗ ej〉 [48]. The

norm of concurrence vector is obtained as C = 2(
d1∑
i<j

d2∑
k<l

|aikajl − ailajk|2)1/2, where d1 and

d2 are dimensions of first and second part respectively. If the set {|α〉, |β〉, |γ〉} are linearly

independent meaning they may span a three dimensional Hilbert space {|0〉, |1〉, |2〉}, hence

two mode coherent state |Ψ(3)〉 can be recast in two qutrit form. Therefore the concurrence in

terms of the separation of peaks is obtained as

C(3)(∆1,∆2,∆3) = 2

3+2e−∆2
1+2e−∆2

2+2e−∆2
3
{3 + e−2∆2

1 + e−2∆2
2 + e−2∆2

3

+ 2e−∆2
2−∆2

3 − 12e−
1
2

(∆2
1+∆2

2+∆2
3) + 2e−∆2

1(e−∆2
2 + e−∆2

3)}1/2.
(3.28)

This equation shows that if all ∆i → 0(i = 1, 2, 3) the concurrence tends to zero and the state

become non entangled and we have one peak (figure(5b)) while for ∆i →∞, the concurrence

tends to its maximum value i.e. Cmax = 1.154 and three peaks appear as in figure (5d). We

note that the Wigner function is positive for all values of x and y. Another example for two-

mode qutrit like ECS which is generated via atom-field interaction was given in Eq.(3.24). For

this state, Wigner function is obtained as

W (3)(δ) = 2
πM(3){e

−2|δ− 2α+β√
2
|2

+ 1.8225e
−2|δ− β√

2
|2

+ e
−2|δ−−2α+β√

2
|2

+ 1.35e−2α2−2αβ−β2−2|δ|2(e
√

2(δβ+δ∗(2α+β)) + e
√

2(δ∗β+δ(2α+β))

+ 1.35e−2α2+2αβ−β2−2|δ|2(e
√

2(δ(−2α+β)+δ∗β) + e
√

2(δ∗(−2α+β)+δβ)

+ e−4α2−β2−2|δ|2(e
√

2(δ(−2α+β)+δ∗(2α+β)) + e
√

2(δ∗(−2α+β)+δ(2α+β))}.

(3.29)
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Figure 6: (Color online) Concurrence of |Ψ(3)〉 as function of ∆1 and ∆2 in the range [0, 10] for a

given ∆3 = 10.

Diagram of concurrence and Wigner function for the state |Φ(3)〉 is shown in figure 7. Figure

(7a) shows that only for α = 0 the concurrence is zero and independent of β. This corresponds

exactly with one peak in W (3)(x, y). By increasing α the width of the peak is increased so for

α = 2, we see three peaks in diagram (see figure (7c) and (7d)). Moreover by assuming y = 0

for given α and β, we draw a profile of W (3)(x) as a function of x for given α and β (see also

figure 8). Figure 8 shows that if α = 0 Wigner function has one peak and the state is separable

and by increasing α, the peaks go away from each other and concurrence is raised.

4 Noise Effect on Wigner Function of ECS’s

Let us assume that the mode 1 travel through a noisy channel characterized by

|α〉1|0〉E → |
√
ηα〉1|

√
1− ηα〉E, (4.30)

where the second state now refers to the environment and η is the noise parameter, which

gives the fraction of photons that survives the noisy channel [40, 41]. Here the effect of noise

on Wigner function of qubit like ECS is investigated. Let us consider the state |Ψ(2)〉. After
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Figure 7: (Color online) (a) Concurrence of |Φ(3)〉 as a function of α and W (3)(x, y) as function of

x and y for β = 7: (b) α = 0, (c) α = 1 and (d) α = 2.

traveling through the noisy channel the state |Ψ(2)〉 becomes

|Ψ′(2)〉 = 1√
M(2)

(|√ηα,√ηα〉1,2|
√

1− ηα,
√

1− ηα〉
E

+ µ|√ηβ,√ηβ〉1,2|
√

1− ηβ,
√

1− ηβ〉
E

).
(4.31)

In order to study the noise effect on Wigner function we should trace out the mode 2 and

environment mode E by partial trace, i.e. ρ1 = Tr2E(|Ψ(2)〉〈Ψ(2)|), then reduced density

matrix in coherent basis |α〉 and |β〉 reads

ρ1 =
1

M (2)
{|√ηα〉〈√ηα|+ µ2|√ηβ〉〈√ηβ|+ µp2−η(|√ηα〉〈√ηβ|+ |√ηβ〉〈√ηα|)}. (4.32)

From Eq.(2.9) we find the Wigner function of qubit like ECS after traveling through a noisy

channel as

W (2)(γ) =
2

πM (2)
{e−2|γ−√ηα|2+µ2e−2|γ−√ηβ|2+µp2−ηe−

η
2

(α+β)2

e−2|γ|2(e2
√
η(γ∗α+βγ)+e2

√
η(γ∗β+αγ))}.

(4.33)

Setting λ = x diagram of W (2)(x) as a function of x for given η, α, β and µ = 1 is represented

in figure (9b). On the other hand the state |Ψ(2)〉 after traveling through the noisy channel
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Figure 8: (Color online) Wigner function of |Φ(3)〉 as a function of x for β = 7.

becomes

|Ψ′(2)〉 = 1√
M(2)

(|√ηα,√ηα〉1,2|
√

1− ηα,
√

1− ηα〉
E

+ |√ηβ,√ηβ〉1,2 |
√

1− ηβ,
√

1− ηβ〉
E

),

(4.34)

In order to study the noise effect on entanglement between modes 1 and 2, we should trace

out the environment mode E by partial trace, i.e. ρ12 = TrE(|Ψ′(2)〉〈Ψ′(2)|). By assumption

|α〉 and |β〉 are linearly independent the reduced density matrix in orthogonal basis |0〉 and

|1〉 reads

ρ
(2)
12 =

1

2 + 2p2



a11 a12 a12 a14

a12 a22 a22 a24

a12 a22 a22 a24

a14 a24 a24 a44


, (4.35)
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Figure 9: (Color online) (a) C(2)(ρ) as a function of η, (b) W (2)(x) as a function of x for a given η

and α = 4, β = 6.

where

a11 = 1 + 2p2 + p4η,

a12 = p−η
√

1− p2η(p2 + p4η),

a14 = p2−2η + p2η − p4η − p2,

a22 = p2η − p4η,

a24 = pη(1− p2η)3/2,

a44 = (1− p2η)2,

(4.36)

in which p = e−
1
2

(α−β)2
. Clearly this state is a two qubit mixed state and one of the suitable

measure to evaluate the amount of entanglement is concurrence. For any two-qubit mixed

state, concurrence is defined as C = max{0, λ1 − λ2 − λ3 − λ4} where the λi’s are the non-

negative eigenvalues, in decreasing order, of the Hermitian matrix R =
√√

ρρ̃
√
ρ, with ρ̃ =

(σy ⊗ σy)ρ
∗(σy ⊗ σy) in which ρ∗ is the complex conjugate of ρ when it is expressed in a

standard basis and σy represents the usual second Pauli matrix in a local basis {|0〉, |1〉} [46].

The concurrence is found as

C(2)(ρ) =
p2(−1 + p−2η)

1 + p2
. (4.37)

Figure (9a) demonstrate the behaviour of concurrence for ρ
(2)
12 as a function of η. Figure (9a)

shows that by decreasing noise parameter η the concurrence of state |Ψ(2)〉 is decreased. Figure
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(9b) yields the same result, i.e. by decreasing the η two peaks close together and finally in

η = 0 we have one peak, which in turn implies that the state reduces to separable state as one

would expect for complete decoherence.

5 Conclusion

In summary, we introduced two methods for generation of two-mode qubit and qutrit like

ECS’s. We found that the Wigner functions of these ECS’s reveals some information on the

entanglement between modes in ECS’s. For qubit like ECS, it was shown that if α = β the

state is separable and there is one peak in Wigner function W (2)(x, y). For α 6= β, by increasing

β the distance of the peaks is also increased. The same results arise when we use concurrence

measure. It was shown that concurrence is a monotone function of separation of two peaks,

∆, in which for ∆ large enough concurrence tends to its maximum value (C
(2)
max = 1) while

for small values (∆ → 0) the concurrence tends to zero. A similar result was discussed for

qutrit like ECS, |Ψ(3)〉. On the other hand we showed that the Wigner function W (3)(x, y) is

entanglement sensitive. Finally we investigated the noise effects on the two-mode qubit like

ECS. We recognized that by decreasing noise parameter η, the concurrence of state |Ψ(2)〉 is

decreased and at the same time two peaks on the Wigner function W (2)(x) approach each

other. Ultimately for η = 0 (maximum noise) the state is separable and one peak appears in

the profile of Wigner function.
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