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Abstract

Constacyclic and quasi-twisted Hermitian self-dual codesover finite fields are studied. An
algorithm for factorizingxn − λ over Fq2 is given, whereλ is a unit inFq2. Based on this fac-
torization, the dimensions of the Hermitian hulls ofλ-constacyclic codes of lengthn over Fq2

are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp.,
complementary dual) codes of lengthn overFq2 are given through their Hermitian hulls. Subse-
quently, a new family of MDS constacyclic Hermitian self-dual codes overFq2 is introduced.

As a generalization of constacyclic codes, quasi-twisted Hermitian self-dual codes are stud-
ied. Using the factorization ofxn − λ and the Chinese Remainder Theorem, quasi-twisted codes
can be viewed as a product of linear codes of shorter length some over extension fields ofFq2.
Necessary and sufficient conditions for quasi-twisted codes to be Hermitian self-dual are given.
The enumeration of such self-dual codes is determined as well.

1 Introduction

Quasi-twisted (QT) codes, introduced in [4], play an important role in coding theory since they
contain remarkable classes of codes such as quasi-cyclic (QC) codes, constacyclic codes, and cyclic
codes. In [8], [15] and [20], it has been shown that QT and QC codes meet a modified version of the
Gilbert-Vashamov bound. Various codes with good parameters and some optimal codes over finite
fields have been obtained from the classes of QT and QC codes (see [9], [1], [5] and [2]). Moreover,
there is a link between QC codes and convolution codes in [11]and [28].

Constacyclic codes are an important subclass of QT codes dueto their nice algebraic structures
and various applications in engineering [3], [10] and [6]. Such codes are optimal in some cases (see,
[29], [7], [17], [10] and [14]). These motivate the study of constacyclic codes in [13], [3], [29], [6],
[24] and [18].

Self-dual codes are another interesting class of codes due to their fascinating links to other
objects and their wide applications [23] and [25]. Both Euclidean and Hermitian self-dual codes are
also closely related to quantum stabilizer codes [16]. In [19], [21], [22] and [12], QT and QC codes
have been decomposed into a product of linear codes of shorter length and the Euclidean duals of
such codes have been determined via this decomposition. Consequently, the characterization of QT
and QC Euclidean self-dual codes have been given. In some cases, the enumeration of such codes
has been established as well.

To the best of our knowledge, only few works have been done on Hermitian duals of constacyclic
and QT codes. In [29], a characterization of Hermitian dualsof constacyclic Hermitian self-dual
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†Corresponding author.
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codes has been established but not an enumeration. It is therefore of natural interest to characterize
and enumerate constacyclic and QT codes with Hermitian self-duality.

Our goal is to study constacyclic and QT codes and their dualswith respect to the Hermitian
inner product which are defined over a finite field whose cardinality is square. Throughout the
paper, we are therefore assume that the cardinality of a fieldis square and the notationFq2 will be
used.

For a nonzeroλ ∈ Fq2, letoq2(λ) denote the order ofλ in the multiplicative groupF×
q2 := Fq2r {0}.

In [29, Proposition 2.3], it has been shown that the Hermitian dual of aλ-constacyclic code is also
λ-constacyclic if and only ifoq2(λ)|(q+1). Later, in Proposition 6.2, we show that the Hermitian dual
of a (λ, ℓ)-QT code overFq2 is again (λ, ℓ)-QT if and only ifoq2(λ)|(q+1). To study constacyclic and
QT Hermitian self-dual codes, it suffices to restrict the study to the case whereoq2(λ)|(q+1). Forλ ∈
{1,−1} (or equivalently,oq2(λ) ∈ {1, 2}), λ-constacyclic Hermitian self-dual codes have been studied
in [26]. In this paper, we give the characterization and enumeration ofλ-constacyclic Hermitian
self-dual codes of any lengthn and overFq2 for every nonzeroλ ∈ Fq2 such thatoq2(λ)|(q + 1).
Subsequently, the characterization and enumeration of QT Hermitian self-dual codes of lengthnℓ
overFq2 are given in the case where gcd(q, n) = 1.

The paper is organized as follows. In Section 2, some preliminary concepts and proofs of some
basic results are discussed. An algorithm for explicit factorization ofxn − λ overFq2 which is key
to study constacyclic and QT codes is given in Section 3. In Section 4, the characterization of the
Hermitian hulls of constacyclic codes of any lengthn overFq2 is given. Subsequently, necessary
and sufficient conditions for constacyclic codes of lengthn overFq2 to be Hermitian self-dual (resp.,
Hermitian complementary dual) are determined together with the number of such codes. A new
family of MDS constacyclic Hermitian self-dual codes overFq2 is introduced in Section 5. The
decomposition for quasi-cyclic codes is generalized to thecase of quasi-twisted codes in Section 6.
The number of (λ, ℓ)-QT Hermitian self-dual codes of lengthnℓ overFq2 is also determined

2 Preliminaries

In this section, we recall some basic properties of codes andpolynomials over finite fields.
Let Fq2 denote a finite field of orderq2. For a positive integern, denote byFn

q2 the vector space
of all vectors of lengthn overFq2. A linear code Cof lengthn and dimensionk overFq2 is a k-
dimensional subspace ofFn

q2. A linear codeC overFq2 is said to have parameters [n, k, d] if C is of
lengthn, dimensionk, and minimum Hamming distanced = min{ω(c) | 0 , c ∈ C}, whereω(c)
denotes the Hamming weight ofc. The parameters of every [n, k, d] linear code satisfy the Singleton
bound

k ≤ n− d+ 1.

An [n, k, d] linear code overFq2 is said to be amaximum distance separable (MDS) codeif k =
n− d+ 1.

For a linear codeC overFq2, the Euclidean dualC⊥E of C is defined under theEuclidean inner
product

〈a, b〉E :=
n−1∑

i=0

aibi ,

wherea = (a0, . . . , an−1), b = (b0, . . . , bn−1) ∈ Fn
q2. A codeC is said to beEuclidean self-dualif

C = C⊥E .
TheHermitian dual C⊥H of C is defined under theHermitian inner product

〈a, b〉H :=
n−1∑

i=0

aib
q
i ,

wherea = (a0, . . . , an−1), b = (b0, . . . , bn−1) ∈ Fn
q2. The Hermitian hull of C is defined to be

HullH(C) = C ∩ C⊥H . A linear codeC is said to beHermitian self-dual(resp.,Hermitian comple-
mentary dual) if C = HullH(C) = C⊥H (resp.,HullH(C) = {0}). The Euclidean hull of a linear code
C is defined in the same fasion and studied in [26].
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2.1 Constacyclic Codes

Given a nonzeroλ ∈ Fq2, a linear codeC of lengthn overFq2 is said to beconstacyclic, or specifically,
λ-constacyclicif for each (c0, c1, . . . , cn−1) ∈ C, the vector (λcn−1, c0, . . . , cn−2) is again a codeword
in C. A λ-constacyclic code is calledcyclic andnegacyclicif λ = 1 andλ = −1, respectively. It
is well known (see, for example, [29]) that everyλ-constacyclic codeC of lengthn overFq2 can be
identified with an ideal inFq2[x]/〈xn − λ〉 generated by a unique monic divisor ofxn − λ. Such a
polynomial is called thegenerator polynomialof C.

Given a polynomialf (x) = a0 + a1x + . . . + akxk ∈ Fq2[x] with nonzerosa0 andak, denote by
f †(x) := a−q

0

∑k
i=0 aq

i xk−i theconjugate-reciprocal polynomialof f (x). The polynomialf (x) is said
to beself-conjugate-reciprocalif f (x) = f †(x). Otherwise,f (x) and f †(x) are called aconjugate-
reciprocal polynomial pair.

Let g(x) be the generator polynomial of aλ-constacyclic codeC of lengthn overFq2 and let
h(x) = xn−λ

g(x) . Thenh†(x) is a monic divisor ofxn − λ and it is the generator polynomial ofC⊥H (see

[29, Lemma 2.1]). Therefore,C is Hermitian self-dual if and only ifg(x) = h†(x). By [26, Theorem
1], HullH(C) is generated by lcm(g(x), h†(x)).

2.2 Quasi-Twisted Codes

View a codeword in a linear codeC of lengthnℓ overFq2 as ann×ℓmatrix overFq2. Given a nonzero
λ ∈ Fq2, a linear codeC of lengthnℓ overFq2 is said to be (λ, ℓ)-quasi-twisted ((λ, ℓ)-QT) of length
nℓ overFq2 if for each

c =



c00 c01 . . . c0,ℓ−1

c10 c11 . . . c1,ℓ−1
...

...
. . .

...

cn−1,0 cn−1,1 . . . cn−1,ℓ−1


∈ C,

the vector

c′ =



λcn−1,0 λcn−1,1 . . . λcn−1,ℓ−1

c00 c01 . . . c0,ℓ−1
...

...
. . .

...

cn−2,0 cn−2,1 . . . cn−2,ℓ−1



is again a codeword inC. We define an actionTλ,ℓ on the codewords asTλ,ℓ(c) = c′. Then every
(λ, ℓ)-QT code is invariant as a subspace under the actionTλ,ℓ.

Let R := Fq2[x]/〈xn − λ〉. Define a mapψ : Fnℓ
q2 → Rℓ by

ψ(c) =



c0(x)
c1(x)
...

cℓ−1(x)


=



c00+ c10x+ . . . + cn−1,0xn−1

c01+ c11x+ . . . + cn−1,1xn−1

...

c0,ℓ−1 + c1,ℓ−1x+ . . . + cn−1,ℓ−1xn−1


. (2.1)

Then the next lemma follows.

Lemma 2.1. The mapψ induces a one-to-one correspondence between the QT-codes of lengthnℓ
overFq2 and theR-submodules ofRℓ.

3 The Factorization of xn − λ in Fq2[x]

In this section, we give an algorithm for the factorization of xn − λ in Fq2[x] which is key to study
both the structures ofλ-constacyclic and (λ, ℓ)-QT codes.

Let λ be a nonzero element inFq2 such thatoq2(λ) = r and letn be a positive integer written in
the form ofn = n′pν, wherep = char(Fq2), p ∤ n′ andν ≥ 0.
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Since the mapa 7→ apν onFq2 is a power of the Frobenious automorphism ofFq2 overFp, there
is a uniqueΛ ∈ Fq2 such thatΛpν = λ. Then

xn − λ =
(
xn′ − Λ

)pν

. (3.1)

Since an automorphism is order preserving, we haveoq2(Λ) = oq2(λ) = r. Therefore, it is sufficient
to focus on the factorization ofxn′ − Λ.

Let k be the smallest integer such that (n′r)|(q2k − 1). Then, there exists a primitiven′rth root of
ξ in Fq2k such thatξn′ = Λ, and hence,

xn′ − Λ = xn′ − ξn′ . (3.2)

It is not dificult to see thatxn′ − ξn′ dividesxn′r − 1. Sincexn′r − 1 =
∏

j|n′r

Q j(x), where

Q j(x) :=
∏

z∈Z×j

(
x− ξ

(
n′r

j

)
z
)

is the jth cyclotomic polynomialoverFq2 (see [13]) , we have

xn′ − ξn′ = gcd


∏

j|n′r

Q j(x), xn′ − ξn′

 =
∏

j|n′r

gcd
(
Q j(x), xn′ − ξn′

)
. (3.3)

Hence, for each divisorj of n′r, ξ
(

n′r
j

)
z is a root ofxn′−ξn′ if and only if ξn′

(
n′ r

j

)
z
= ξn′ , or equivalently,(

n′r
j

)
z≡ 1 modr. The set of elements inZn′r satisfying the preceeding conditions is denoted by

S j :=

{(
n′r
j

)
z ∈ Zn′r

∣∣∣∣∣∣ z ∈ Z
×
j ,

(
n′r
j

)
z≡ 1 modr

}
.

In other words,S j is the set of alls’s such thatξs is a root of

gcd(Q j(x), xn′ − ξn′ ) =
∏

s∈S j

(x− ξs).

It follows that

deg gcd(Q j(x), xn′ − ξn′ ) = |S j |.

For eachj | n′r, necessary and sufficient conditions forS j to be nonempty are given in the following
proposition.

Proposition 3.1. Let j be a positive divisor ofn′r. ThenS j , ∅ if and only if

gcd

(
n′r
j
, r

)
= 1.

Proof. Assume thatS j , ∅. Then there exists
(

n′r
j

)
z ∈ S j . Then

(
n′r
j

)
z− rm = 1 for somem ∈ N. It

follows that gcd
(

n′r
j , r

)
= 1.

Conversely, assume that gcd
(

n′r
j , r

)
= 1. Then there existsw1 ∈ Z

×
r such thatn

′r
j w1 ≡ 1 modr.

Observe that (rm+w1)
(

n′r
j

)
≡ 1 modr for all m ∈ Z+. By Dirichlet’s theorem on arithmetic progres-

sions (see [27]), there exist infinitely many primes of the form rm + w1. Let m1 ∈ Z
+ be such that

rm1 + w1 is prime andrm1 + w1 > j. Hence, we obtainw = (rm1 + w1) mod j such thatw ∈ Z×j and

w
(

n′r
j

)
≡ 1 modr. Therefore,S j , ∅ as desired. �

From now on, we focus only on the positive divisorsj of n′r such thatS j , ∅, or equivalently,
gcd

(
n′r
j , r

)
= 1. The cardinality ofS j is determined in the following lemma.
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Lemma 3.2. Let j be a positive divisor ofn′r such that gcd
(

n′r
j , r

)
= 1. Then|S j | =

φ( j)
φ(r) , whereφ is

the Euler’s totient function.

Proof. Let H j be defined byH j :=
{
h ∈ Z×j | h ≡ 1 modr

}
. We divide the proof into two steps. First,

we show that|S j | = |H j |. Then we determine|H j |.
By Proposition 3.1, we haveS j , ∅. Let

(
n′r

j

)
w ∈ S j , wherew ∈ Z×j . Then there existsw′ ∈ Z×j

such thatww′ ≡ 1 mod j.
Let Φ : S j → H j be defined byΦ

((
n′r
j

)
z
)
= w′z. Sincew′z ≡ w′w

(
n′r

j

)
z ≡

(
n′r
j

)
z ≡ 1 modr,

we havew′z ∈ H j . Let
(

n′r
j

)
z1 =

(
n′r
j

)
z2 in S j . Then

(
n′r
j

)
(z1 − z2) ≡ 0 modn′r. Since j = n′r

n′r/ j , we
havez1 ≡ z2 mod j, and hence,w′z1 ≡ w′z2 mod j. Therefore,Φ is well-defined.

Let z1, z2 ∈ Z
×
j be such thatΦ

((
n′r
j

)
z1

)
= Φ

((
n′r
j

)
z2

)
. Thenw′z1 = w′z2 in Z×j , i.e., w′z1 ≡

w′z2 mod j. Hence, we havez1 ≡ z2 mod j. It follows that
(

n′r
j

)
z1 ≡

(
n′r
j

)
z2 modn′r, and hence,(

n′r
j

)
z1 =

(
n′r
j

)
z2 in S j . Therefore,Φ is injective.

For eachh ∈ H j , we have
(

n′r
j

)
wh in S j andΦ

((
n′r
j

)
wh

)
= w′wh ≡ hmod j. ThenΦ is

surjective, and hence, it is a bijection. Therefore,|S j | = |H j |.
By the Fundamental Theorem of Arithmetic, we havej = pa1

1 . . . pat
t , wherep1 < p2 < · · · < pt

are primes andai is a positive integer. Since gcd(n′r
j , r) = 1, we haver | j. Hence, we can write

r = pb1
1 . . . pbt

t , wherebi is non-negative integer andbi ≤ ai for all 1 ≤ i ≤ t. By the Chinese
Remainder Theorem,

Z×j � Z
×

p
a1
1
× Z×

p
a2
2
× · · · × Z×

pat
t

and each element inH j corresponds to (z1, . . . , zt) in Hp
a1
1
× · · · × Hpat

t
. Therefore,

|H j | = |Hp
a1
1
| · |Hp

a2
2
| · · · |Hpat

t
|. (3.4)

Note that, for each 1≤ i ≤ t,

Hpai =
{
z ∈ Z×pai | z≡ 1 modpbi

}
=

{
1, 1+ pbi , 1+ 2pbi , . . . , 1+ (pai−bi − 1)pb

}
.

Then|Hpai | = pai−bi =
pai

pbi
=

φ(pai )
φ(pbi )

.
From (3.4), we conclude that

|H j | =
φ(pa1

1 )

φ(pb1

1 )
·
φ(pa2

2 )

φ(pb2

2 )
· · ·

φ(pat
t )

φ(pbt
t )
=
φ( j)
φ(r)

as desired. �

Therefore, for each divisorj of n′r with gcd
(

n′r
j , r

)
= 1, we have

deg gcd(Q j(x), xn′ − ξn′ ) =
φ( j)
φ(r)

.

Let π be a map defined on the pair (j, q2), wherei is a positive integer, by

π( j, q2) :=


0 if j|(q2k + q) for somek ≥ 0,

1 otherwise.

For each positive integerj such that gcd(j, q) = 1, the order of q2 in the multiplicative groupZ×j
is denoted byord j(q2). The following lemma can be obtained by replacingq with q2 in the proofs
of [26, Lemma 3 and Lemma 19].

Lemma 3.3. Let j be a positive integer and letFq2 be a finite field with gcd(j, q) = 1. The jth
cyclotomic polynomialQ j(x) factors into φ( j)

ordj (q2) distinct monic irreducible polynomials overFq2 of

the same degreeord j(q2), whereφ is the Euler’s totient function.
If π( j, q2) = 0, then all the irreducible polynomials in the factorization of Q j(x) are self-

conjugate-reciprocal. Otherwise, they form conjugate-reciprocal polynomial pairs.
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By Lemma 3.3, gcd(Q j(x), xn′ − ξn′ ) can be factored into φ( j)
φ(r)ordj (q2) distinct monic irreducible

polynomials overFq2 of the same degreeord j(q2). In addition,

gcd(Q j(x), xn′ − ξn′ ) =



γ( j)∏

i=1

gi j (x) if π( j, q2) = 0,

β( j)∏

i=1

fi j (x) f †i j (x) otherwise,

(3.5)

where

γ( j) :=
φ( j)

φ(r)ord j(q2)
, (3.6)

β( j) :=
φ( j)

2φ(r)ord j(q2)
, (3.7)

fi j (x) and f †i j (x) are a monic irreducible conjugate-reciprocal polynomialpair, andgi j (x) is a monic
irreducible self-conjugate-reciprocal polynomial.

By (3.1)-(3.3), and (3.5), it can be concluded that

xn − λ =
(
xn′ − Λ

)pν

=
(
xn′ − ξn′

)pν

=


∏

j|n′r, gcd
(

n′r
j ,r

)
=1

gcd(Q j(x), xn′ − ξn′ )



pν

=
∏

j|n′r, gcd
(

n′r
j ,r

)
=1

π( j,q2)=0

γ( j)∏

i=1

(
gi j (x)

)pν ∏

j|n′r, gcd
(

n′r
j ,r

)
=1

π( j,q2)=1

β( j)∏

i=1

(
fi j (x)

)pν (
f †i j (x)

)pν

. (3.8)

For simplicity, let

Ω =

{
j | n′r

∣∣∣∣∣∣ gcd

(
n′r
j
, r

)
= 1 andπ( j, q2) = 0

}
(3.9)

and

Ω′ =

{
j | n′r

∣∣∣∣∣∣ gcd

(
n′r
j
, r

)
= 1 andπ( j, q2) = 1

}
. (3.10)

Then (3.8) becomes

xn − λ =
∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)pν ∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)pν (
f †i j (x)

)pν

. (3.11)

Let s andt denote the number of monic irreducible self-conjugate-reciprocal polynomials and the
number of monic irredcible conjugate-reciprocal polynomial pairs in the factorization ofxn′ − Λ,
respectively. Then

s =
∑

j∈Ω

γ( j) (3.12)

and

t =
∑

j∈Ω′
β( j), (3.13)

whereγ andβ are defined in (3.6) and (3.7), respectively.
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Example 3.4. ConsiderF4 =
{
0, 1, α, α2 = α + 1

}
. Let n = 5. Theno4(α) = 3 and

{
j | j is a divisor of 15 and gcd

(
15
j
, 3

)
= 1

}
= {3, 15} .

Sinceπ(3, 4) = 0, π(15, 4) = 1 andord3(4) = 1 andord15(4) = 2, we haveγ(3) = φ(3)
φ(3)ord3(4) = 1 =

β(4) = φ(15)
2φ(3)ord15(4) . Therefore, by (3.11)-(3.13), the factors ofx5 − α containsγ(3) = 1 irreducible

self-conjugate-reciprocal polynomial of dergreeord3(4) = 1 andγ(5) = 1 irreducible conjugate-
reciprocal polynomial pair of dergreeord15(4) = 2.

From the discussion above, we can determine the degrees and the number of self-conjugate-
reciprocal polynomials and conjugate-reciprocal polynomial pairs in the factorization ofxn′ − Λ in
(3.11). However, we are not yet able to determine the explicit irreducible factors ofxn′ − Λ. The
following algorithm gives the explicit factors ofxn′ − Λ.

A q2-cyclotomic coset modulo n′r containing a, denoted bySq2(a), is defined to be the set

Sq2(a) :=
{
q2i · a modn′r | i = 0, 1, . . .

}
.

Since gcd(Q j(x), xn′ − ξn′ ) can be factored as a product of irreducible polynomials inFq2[x], S j is a
union of someq2-cyclotomic cosets modulon′r. Therefore, we conclude the following algorithm.

Algorithm

1. For eachj|n′r such that gcd
(

n′r
j , r

)
= 1, find the setS j .

2. PartitionS j into q2-cyclotomic cosets modulon′r.

3. Determineπ( j, q2).

(3.1) If π( j, q2) = 1, then denote byT j a set ofq2-cyclotomic cosets ofS j such thatSq2(a) ∈
T j if and only if Sq2(−qa) < T j . Let T j denote a set of representative ofq2-cyclotomic
cosets in eachq2-cyclotomic cosets inT j.

(3.2) If π( j, q2) = 0, letS j denote a set of representative ofq2-cyclotomic cosets inS j .

4. We have
xn′ − Λ =

∏

a∈S j

mξa(x)
∏

b∈T j

mξb(x)m†
ξb(x).

The following example illustrates an application of the algorithm.

Example 3.5. Let F4 =
{
0, 1, α, α2 = α + 1

}
. Theno4(α) = 3. To factorx5 − α overF4, let ξ be a

primitive 15th root of unity inF16 such thatα = ξ5. Note that allj|5 ·3 with gcd
(

15
j , 3

)
= 1 are 3 and

15. Sinceπ(3, 4) = 0 andπ(15, 4) = 1, we haveS3 =
{
5z

∣∣∣ z ∈ Z×3 , 5z≡ 1 mod3
}
= {10} = S3 and

S15 =
{
z
∣∣∣ z ∈ Z×15, z≡ 1 mod3

}
= {1, 4, 7, 13}. PartitioningS15 into 4-cyclotomic coset modulo 15,

we haveS15 = {1, 4} ∪ {7, 13}. ThenT15 = {{1, 4}} andT15 = {1}. Therefore,x5 − α can be written
in term of equation (3.11) as

x5 − α = mξ10(x)
(
mξ(x)mξ(x)†

)
= (x+ α2)(x2 + x+ α)(x2 + αx+ α).

4 Hermitian Hull of λ-Constacyclic Codes

In this section, the dimensions of the Hermitian hulls of constacyclic codes of lengthn overFq2 are
determined via the factorization ofxn− λ given in Section 3. The number of constacyclic Hermitian
self-dual codes and the number of Hermitian complementary dual constacyclic codes of lengthn
overFq2 are given as well.
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Theorem 4.1. Let Fq2 denote a finite field of orderq2 with characteristicp and letn = npν with
p ∤ n. Then the dimensions of the Hermitian hulls ofλ-constacyclic codes of lengthn overFq2 are
of the form

∑

j∈Ω

ord j(q2) · a j +
∑

j∈Ω′
ord j(q2) · b j , (4.1)

where 0≤ a j ≤ γ( j)
⌊

pν

2

⌋
and 0≤ b j ≤ β( j)pν.

Proof. The theorem can be obtained using arguments similar to thosein the proof of [26, Theorem
5] by replacingχ with π andq with q2. �

Next theorem gives a characterization ofλ-constacyclic Hermitian self-dual codes in terms ofΩ
defined in (3.9).

Theorem 4.2. Let Fq2 denote a finite field of orderq2 with characteristicp and letn = npν with
p ∤ n. Let xn − λ be factored as in (3.11). Then there exists aλ-constacyclic Hermitian self-dual
code of lengthn overFq2 if and only if

1. Ω = ∅, or

2. Ω , ∅ and p = 2.

In this case, the generator polynomial of a code is of the form

g(x) =



∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)vi j
(
f †i j (x)

)wi j
if Ω = ∅,

∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)2ν−1 ∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)vi j
(
f †i j (x)

)wi j
if Ω , ∅ and p = 2,

(4.2)

where 0≤ vi j ,wi j ≤ pν andvi j + wi j = pν.

Proof. LetC be aλ-constacyclic code of lengthn overFq with the generator polynomialg(x). Then,
by (3.11), we have

g(x) =
∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)ui j
∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)vi j
(
f †i j (x)

)wi j
, (4.3)

where 0≤ ui j , vi j ,wi j ≤ pν. It follows that

h(x) :=
xn − λ

g(x)
=

∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)pν−ui j
∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)pν−vi j
(
f †i j (x)

)pν−wi j
,

and hence,

h†(x) =
xn − λ

g(x)
=

∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)pν−ui j
∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)pν−wi j
(
f †i j (x)

)pν−vi j
.

Assume thatC is Hermitian self-dual. Theng(x) = h(x)†. By comparing the exponents, we have

ui j = pν − ui j and vi j = pν − wi j ,

and hence, 2ui j = pν andvi j + wi j = pν. Since 2ui j = pν, we havep = 2 orΩ = ∅.
Conversely, assume thatΩ = ∅, or Ω , ∅ and p = 2. Let g(x) be defined as in (4.2) and

h(x) =
(xn − λ)

g(x)
. It is not difficult to see thatg(x) = h†(x), and hence, a constacyclic code generated

by g(x) is Hermitian self-dual. �
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Corollary 4.3. Let t be the number of monic irreducible conjugate-reciprocal polynomial pairs as
in (3.13). The number ofλ-constacyclic Hermitian self-dual codes of lengthn overFq2 is



(pν + 1)t if Ω = ∅,

(2ν + 1)t if Ω , ∅ and p = 2,

0 if Ω , ∅ and p , 2.

In particular, ifΩ′ = ∅ (or equivalently,π(nr, q2) = 0) andp = 2, then there exists a unique
λ-constacyclic Hermitian self-dual code. In this case, the generator polynomial is

∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)2ν−1

.

Proof. By Theorem 4.2, the number of generator polynomials ofλ-constacyclic Hermitain self-dual
codes of lengthn overFq2 depends only onvi j andwi j such thatvi j +wi j = pν where 0≤ vi j ,wi j ≤ pν.
Then the number ofλ-constacyclic Hermitain self-dual codes of lengthn overFq2 is (pν + 1)t.

Since the number of generator polynomials ofλ-constacyclic Hermitian self-dual codes of length
n overFq2 depends only onvi j andwi j , a uniqueλ-constacylic Hermitian self-dual code occurs if
Ω′ = ∅ andp = 2. It is not difficult to see thatΩ′ = ∅ is equivalent toπ(n′r, q2) = 0. Therefore, the
generator polynomial of the code is

∏

j∈Ω

γ( j)∏

i=1

gi j (x)2ν−1
.

�

Necessary and sufficient conditions for constacyclic Hermitian complementary dual codes are
given as follows.

Theorem 4.4. Let Fq2 denote a finite field of orderq2 with characteristicp and letn = npν with
p ∤ n. Let C be aλ-constacyclic code of lengthn overFq2. ThenC is Hermitian complementary
dual if and only if its generator polynomial is of the form

∏

j∈Ω

γ( j)∏

i=1

(
gi j (x)

)ui j
∏

j∈Ω′

β( j)∏

i=1

(
fi j (x)

)vi j
(
f †i j (x)

)wi j
,

whereui j ∈ {0, pν}, and (vi j ,wi j ) ∈ {(0, 0), (pν, pν)}.

Proof. In the proof of Theorem 4.2, we haveλ-constacyclic codesC andC⊥ of lengthn overFq2

generated byg(x) andh†(x) respectively. Hence,C is aλ-constacyclic Hermitian complementary
dual code if and only if lcm(g(x), h†(x)) = xn−λ or, equivalently max{ui j , pν−ui j } = pν,max{vi j , pν−
wi j } = pν and max{wi j , pν − vi j } = pν. Thus,ui j ∈ {0, pν}, and (vi j ,wi j ) ∈ {(0, 0), (pν, pν)}. �

Corollary 4.5. The number ofλ-constacyclic Hermitian complementary dual codes of length n over
Fq2 is

2s+t,

wheres is the number of monic irreducible self-conjugate-reciprocal polynomials andt is the num-
ber of monic irreducible conjugate-reciprocal polynomialpairs as in (3.13).

Proof. From the proof of Theorem 4.4, the number of generator polynomials of λ-constacyclic
Hermitain complementary dual codes of lengthn overFq2 depend only onui j ∈ {0, pν} and (vi j ,wi j ) ∈
{(0, 0), (pν, pν)}. Then the number ofλ-constacyclic Hermitain complementary dual codes of length
n overFq2 is 2s+t. �
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5 MDS Constacyclic Hermitian Self-dual Codes over Fq2

In this section, we construct a class of MDSλ-constacyclic Hermitian self-dual codes overFq2.
Throughout this section, letn be an even positive integer relatively prime toq such that (nr)|(q2− 1)
andr |(q+ 1), wherer = oq2(λ). Equivalently,n = n′ in the previous section.

In [29], a family of MDS constacyclic Hermitian self-dual code overFq2 whose length is a divisor
of q − 1 is introduced. We now introduce a new family of MDS constacyclic Hermitian self-dual
code overFq2 whose length is a divisor ofq+1. Therefore, our family is different to a family in [29]
if n , 2.

Let ξ be a primitivenrth root of unity in an extension fieldFq2k of Fq2 such thatξn = λ. Then the

set of all roots ofxn − λ is
{
ξ, ξr+1, ξ2r+1, . . . , ξ(n−1)r+1

}
. Define

Or,n = {1, r + 1, 2r + 1, . . . , (n− 1)r + 1} = {ir + 1 | 0 ≤ i ≤ n− 1} ⊆ Znr.

Let C be aλ-constacyclic code. Therootsof the codeC is defined to be the roots of its generator
polynomial. Thedefining set ofλ-constacyclic code Cis defined as

T :=
{
ir + 1 ∈ Or,n | ξ

ir+1 is a root ofC
}
.

It is not difficult to see thatT ⊆ Or,n and dimC = n− |T |. The following theorem can be obtained
by slightly modified [29, Corollary 3.3].

Theorem 5.1. Let CT be aλ-constacyclic code with the defining setT. Then

(i) CT is a Hermitian self-orthogonal constacyclic code if and only if Or,n r T ⊆ −qT.

(ii) CT is a constacyclic Hermitian self-dual code if and only if−qT = Or,n r T, or equivalently,
T ∩ −qT = ∅.

Proof. Note thatq2 ≡ 1 modnr. Then, by [29, Corollary 3.3],CT is a Hermitian self-orthogonal
constacyclic code if and only if−q

(
Or,n r T

)
⊆ T. Hence,

Or,n r T = −q
(
−q

(
Or,n r T

))
⊆ −qT.

The proof of (ii) can be obtained similarly. �

The BCH bound for constacyclic codes is as follows.

Theorem 5.2 ([2, Theorem 2.2]). LetC be aλ-constacyclic code of lengthn overFq2. Let r = oq2(λ).
Let ξ be a primitivenrth root of unity in an extension field ofFq2 such thatξn = λ. Assume

the generator polynomial ofC has roots that include the set
{
ξri+1 | i1 ≤ i ≤ i1 + d− 1

}
. Then the

minimum distance ofC is at leastd+ 1.

Example 5.3. Let q = 3, n = 4 and letλ = −1 in F9. Theno9(λ) = 2 andO2,4 = {1, 3, 5, 7}. Let
T = {1, 3}. Then−qT = 5T = {5, 7}. By Theorems 5.1-5.2 and the Singleton bound,CT is an MDS
λ-constacyclic Hermitian self-dual code with parameter [4, 2, 3] overF9.

Example 5.4. Let q = 11, n = 6 and letλ = α30 in F121 whereα is a primitive element ofF121. Then
o121(α30) = 4 andO4,6 = {1, 5, 9, 13, 17, 21}. Let T = {1, 5, 9}. Then−qT = 13T = {13, 17, 21}. By
Theorems 5.1-5.2 and the Singleton bound,CT is an MDSλ-constacyclic Hermitian self-dual code
with parameter [6, 3, 4] overF121.

Examples 5.3 and 5.4 show that there exist MDS constacyclic Hermitian self-dual codes. The
following theorem is a generalization of Examples 5.3 and 5.4.

Theorem 5.5. Let λ ∈ Fq2 be such thatr = oq2(λ) is even. Letn be an even integer such that
nr|(q2 − 1) bothn andr divideq+ 1. Let

T =
{
1, r + 1, . . . ,

(n
2
− 1

)
r + 1

}
=

{
ir + 1 | 0 ≤ i ≤

n
2
− 1

}
.

If 2(q+1)
nr is odd, thenCT is an MDSλ-constacyclic Hermitian self-dual code with parameters

[
n, n

2 ,
n
2 + 1

]
.
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Proof. Note that

Or,n = {1, r + 1, 2r + 1, . . . , (n− 1)r + 1} = {ir + 1 | 0 ≤ i ≤ n− 1} ⊆ Znr

and

Or,n r T =
{(n

2

)
r + 1,

(n
2
+ 1

)
r + 1, . . . , (n− 1)r + 1

}
=

{(n
2
+ i

)
r + 1 | 0 ≤ i ≤

n
2

}
.

Claim that−qT = Or,n r T such that−q(ir + 1) = 1+ ( n
2 + i)r for all 0 ≤ i ≤ n

2. Since2(q+1)
nr is odd,

q+1
r +

n
2 ≡ 0 modn. Thenq+1

r +( n
2+i+iq) ≡ q+1

r +
n
2+i(q+1) ≡ 0 modn. We obatinq+1+

(
n
2 + i + iq

)
r ≡(

q+1
r

)
r +

(
n
2 + i(q+ 1)

)
r ≡ 0 modnr, or equivalently,−q(ir + 1) ≡ 1+

(
n
2 + i

)
r modnr. Therefore,

the codeCT is aλ-constacyclic Hermitian self-dual code. Clearly,C is an MDSλ-constacyclic code
with parameters

[
n, n

2 ,
n
2 + 1

]
.

�

Since the length of the MDS codes given in [29] is a divisor ofq − 1 and the MDS codes
condtructed in Theorem 5.5 is a divisor ofq + 1, the later is different from the former whenever
n , 2. Some families of codes derived from Theorem 5.5 are given in the following example.

Example 5.6. Let q be an odd prime andm be the largest positive integer such thatq ≡ −1 mod2m.
For each 1≤ i ≤ m− 1, let r = 2i andn = q+1

2m−i . Thenn|(q+ 1) and2(q+1)
nr =

q+1
rm is odd. Therefore,

by Theorem 5.5, there exists an MDS [n = q+1
2m−i ,

q+1
2m−i+1 ,

q+1
2m−i+1 + 1] code overFq2 for all 1 ≤ i ≤ m− 1.

Conditions for nonexistence MDSλ-constacyclic Hermitian self-dual codes of lengthn overFq2

are given as follows.

Theorem 5.7. Let λ ∈ Fq2 be such thatr = oq2(λ) is even. Letn be an even integer such that

nr|(q2− 1). If a
(

q+1
r

)
≡ 0 modn for somea in Or,n then there are no MDSλ-constacyclic Hermitian

self-dual codes of lengthn overFq2.

Proof. Let a in Or,n be such thata
(

q+1
r

)
≡ 0 modn. Then,a(q + 1) ≡ 0 modnr, which implies

−qa = a. Let CT be an MDSλ-constacyclic Hermitian self-dual code and letT ⊆ Or,n be the
defining set of a codeCT . By Theorem 5.1,T ∩ −qT = ∅ andT ∪ −qT = Or,n.

If a ∈ T, thena ∈ T ∩ −qT, a contradiction. Ifa < T, thena ∈ −qT. Soa = −qa ∈ q2T = T, a
contradiction. �

The following example shows that there are no (−1)-constacyclic Hermitian self-dual code of
length 6 overF49.

Example 5.8. Let q = 7, n = 6 and letλ = −1 inF49. Thus,o49(−1) = 2 andO2,6 = {1, 3, 5, 7, 9, 11}.
Since 3· 82 = 12≡ 0 mod 6, by Theorem 5.7, there are no MDS (−1)-constacyclic Hermitian self-dual
code of length 6 overF49.

6 Quasi-Twisted Hermitian Self-Dual Codes over Fq2

In this section, we focus on simple root (λ, ℓ)-QT Hermitian self-dual codes of lengthnℓ overFq2,
or equivalently, gcd(n, q) = 1. The decomposition of (λ, ℓ)-QT codes is given. The characterization
and enumeration of (λ, ℓ)-QT Hermitian self-dual codes of lengthnℓ overFq2 can be obtained via
this decomposition.

In [12], QT codes over finite fields with respect to the Euclidean inner product were studied. QT
codes were decomposed and the Euclidean duals of such codes are determined. In particular, the
characterization of Euclidean self-dual QT codes were given. As a generalization of [12] and [19],
we study QT codes over finite fields with respect to the Hermitian inner product..

From Lemma 2.1, every (λ, ℓ)-QT code of lengthnℓ overFq2 can be viewed as anR submodule
of Rℓ, whereR := Fq2[x]/〈xn − λ〉.
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Define aninvolution∼ onR to be theFq2-linear map that sendsα to αq for all α ∈ Fq2 and sends
x to x−1 = xn−1. Let 〈·, ·〉∼ : Rℓ × Rℓ → R be defined by

〈v, s〉∼ :=
ℓ−1∑

j=0

v j(x)s̃j(x),

wherev = (v0(x), . . . , vℓ−1(x)) ands = (s0(x), . . . , sℓ−1(x)) in Rℓ. The∼-dualof D ⊆ Rℓ is defined to
be the set

D⊥∼ :=
{
v ∈ Rℓ | 〈v, s〉∼ = 0 for all s ∈ D

}
.

We say thatD ⊆ Rℓ is ∼-self-dualif D = D⊥∼ .

Proposition 6.1. Let a, b ∈ Fnℓ
q2. Then

〈
Tk
λ,ℓ

(a), b
〉

H
= 0 for all 0 ≤ k ≤ n − 1 if and only if

〈ψ(a), ψ(b)〉∼ = 0.

Proof. Let ψ(a) = (a0(x), . . . , aℓ−1(x)) =
(∑n−1

i=0 ai0xi , . . . ,
∑n−1

i=0 ai,ℓ−1xi
)

and

ψ(b) = (b0(x), . . . , bℓ−1(x)) =
(∑n−1

i=0 bi0xi , . . . ,
∑n−1

i=0 bi,ℓ−1xi
)
. By comparing the coefficients,

0 =
ℓ−1∑

j=0

a j(x)b̃ j(x) =
ℓ−1∑

j=0


n−1∑

i=0

ai j x
i




n−1∑

k=0

bq
k jx
−k

 (6.1)

is equivalent to

ℓ−1∑

j=0

n−1∑

i=0

ai+h, jb
q
i j x

h = 0 (6.2)

for all 0 ≤ h ≤ n − 1, where the subscriptsi + h are computed modulon. The expression in (6.2)
is equivalent to

〈
T−h
λ,ℓ

(a), b
〉

H
= 0 for all 0 ≤ h ≤ n − 1. SinceT−h

λ,ℓ
= T(n−h)

λ,ℓ
, (6.1) is equivalent to〈

Tk
λ,ℓ

(a), b
〉

H
= 0 for all 0≤ k ≤ n− 1. �

Next proposition follows from the definition of QT codes and [29, Proposition 2.3].

Proposition 6.2. Let C be a (λ, ℓ)-QT code of lengthnℓ overFq2 and letC⊥H be the Hermitian dual
of C. ThenC⊥H is a (λ−q, ℓ)-QT code of lengthnℓ overFq2.

Proof. Let d ∈ C⊥H and letc ∈ C. Then
〈
T i
λ,ℓ

(c), d
〉

H
= 0 for all 0≤ i ≤ n− 1 . Since

〈
c,Tλ−q,ℓ(d)

〉
H =

〈
c,Tλ−1,ℓ(d

q)
〉

E
where dq denote

(
dq

00, . . . , d
q
n−1,ℓ−1

)

=

ℓ−1∑

j=0

c0 jd
q
n−1, jλ

−1 +

n−1∑

i=1

ℓ−1∑

j=0

ci j d
q
i−1, j

= λ−1


ℓ−1∑

j=0

c0 jd
q
n−1, j +

n−1∑

i=1

ℓ−1∑

j=0

λci j d
q
i−1, j



= λ−1
〈
Tn−1
λ,ℓ (c), d

〉
H

= 0,

it follows thatTλ−q,ℓ(d) ∈ C⊥H . Therefore,C⊥H is a (λ−q, ℓ)-QT code. �

By Proposition 6.2, bothC andC⊥H are (λ, ℓ)-QT codes if and only ifoq2(λ)|(q+ 1). Therefore,
it makes sense to focus on only the case whereoq2(λ)|(q+ 1).

Corollary 6.3. Let λ ∈ Fq2 r {0} be such thatoq2(λ)|(q+ 1). Let C be a (λ, ℓ)-QT code of length
nℓ overFq2 and letψ(C) be its image inRℓ underψ defined in (2.1). Thenψ(C)⊥∼ = ψ(C⊥H ). In
particular,C is Hermitian self-dual if and only ifψ(C) is ∼-self-dual.
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6.1 Decomposition

Since gcd(q, n) = 1, by (3.11),xn − λ can be factored as follows

xn − λ = g1(x) . . .gs(x)h1(x)h†1(x) . . .ht(x)h†t (x),

whereh j(x) andh†j (x) are a monic irreducible conjugate-reciprocal polynomialpair for all 1≤ j ≤ t
andgi(x) is a monic irreducible self-conjugate-reciprocal polynomial for all 1≤ i ≤ s.

By the Chinese Remainder Theorem (c.f. [12] and [19] ), we write

R= Fq2[x]/〈xn − λ〉 �


s∏

i=1

Fq2[x]/〈gi(x)〉

 ×


t∏

j=1

(
Fq2[x]/

〈
h j(x)

〉
× Fq2[x]/

〈
h†j (x)

〉)
 .

For simplicity, letG := Fq2[x]/ 〈gi(x)〉i , H′j := Fq2[x]/
〈
h j(x)

〉
andH′′j := Fq2[x]/

〈
h†j (x)

〉
. Then

we have

R= Fq2[x]/〈xn − λ〉 �


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′′j

)
 . (6.3)

For an irreducible self-conjugate-reciprocal factorf (x) of xn − λ in Fq2[x] of degreek, the map
Fq2[x]/〈 f (x)〉

¯:Fq2[x]/〈 f (x)〉 −→ Fq2[x]/〈 f (x)〉

defined byc(x) =
∑k−1

i=0 ci xi + 〈 f 〉 7→ c(x) =
∑k−1

i=0 cq
i x−i + 〈 f 〉 is an automorphim.

For irreducible conjugate-reciprocal factors pairf (x) and f †(x) of xn − λ in Fq2[x] of degreek,

the extension fieldsFq2[x]/〈 f (x)〉 andFq2[x]/
〈

f †(x)
〉

are isomorphic. The map

ˆ: Fq2[x]/〈 f (x)〉 −→ Fq2[x]/
〈
f †(x)

〉

defined byc(x) =
∑k−1

i=0 ci xi + 〈 f (x)〉 7→ ĉ(x) =
∑k−1

i=0 cq
i x−i +

〈
f †(x)

〉
is an isomorphism.

Using the above isomorphisms, we have

R= Fq2[x]/〈xn − λ〉 �


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′j

)
 . (6.4)

Let σ1, σ2 denote the isomorphisms in (6.3) and (6.4), respectively. Then an elementr ∈ R can be
written as

σ1(r) =
(
r1, . . . , rs, r

′
1, r
′′
1 , . . . , r

′
t , r
′′
t
)

in


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′′j

)
 ,

wherer i ∈ Gi , r ′j ∈ H′j andr ′′j ∈ H′′j , and

σ2(r) =
(
r1, . . . , rs, r

′
1, r̂
′′
1 , . . . , r

′
t , r̂
′′
t

)
in


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′j

)
 , (6.5)

wherer i ∈ Gi andr ′j , r̂
′′
j ∈ H′j . Therefore, an elementr̃ ∈ Rcan be expressed as

σ1(r̃) =
(
r1, . . . , rs, r̂ ′′1 , r̂

′
1, . . . , r̂

′′
t , r̂
′
t

)
in


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′′j

)
 ,

wherer i ∈ Gi , r̂ ′′j ∈ H′j andr̂ ′j ∈ H′′j , and

σ2(r̃) =
(
r1, . . . , rs, r̂ ′′1 , r

′
1, . . . , r̂

′′
t , r
′
t

)
in


s∏

i=1

Gi

 ×


t∏

j=1

(
H′j × H′j

)
 , (6.6)

wherer i ∈ Gi andr̂ ′′j , r
′
j ∈ H′j .
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Remark 6.4. If f (x) is self-conjugate-reciprocal, then∼ induces the field automorphism ¯onFq2[x]/ 〈 f (x)〉 �
Fq2k. The mapr 7→ r onFq2[x]/ 〈 f (x)〉 is actually the mapr 7→ rqk

onFq2k .

Using statements similar to those in the proof of [19, Proposition 4.1], we conclude the next
proposition.

Proposition 6.5. Let a, b ∈ Rℓ and writea = (a0, a1, . . . , aℓ−1) andb = (b0, b1, . . . , bℓ−1). Decom-
posingσ2(ai) andσ2(bi) using (6.4), we have

σ2(ai) = (ai1, . . . , ais, a
′
i1, a

′′
i1, . . . , a

′
it , a
′′
it ) and σ2(bi) = (bi1, . . . , bis, b

′
i1, b

′′
i1, . . . , b

′
it , b
′′
it ),

whereai j , bi j ∈ Gi anda′i j , a
′′
i j , b

′
i j , b

′′
i j ∈ H′j . Then

〈σ2(a), σ2(b)〉∼ =
ℓ−1∑

i=1

σ2(ai)σ̃2(bi)

=


∑

i

ai1bi1, . . . ,
∑

i

aisbis,
∑

i

a′i1b′′i1,
∑

i

a′′i1b′i1, . . . ,
∑

i

a′itb
′′
it ,

∑

i

a′′it b
′
it

 .

In particular,〈σ2(a), σ2(b)〉∼ = 0 if and only if
∑

i ai j bi j = 0 for all 1 ≤ j ≤ s and
∑

i a′ikb′′ik = 0 =∑
i a′′ikb′ik for all 1 ≤ k ≤ t.

By (6.4), we have

Rℓ
�


s∏

i=1

Gℓ
i

 ×


t∏

j=1

(
H′j

ℓ
× H′j

ℓ
)
 .

In particular,RsubmoduleC of Rℓ can be decomposed as

C �


s∏

i=1

Ci

 ×


t∏

j=1

(
C′j ×C′′j

)
 ,

whereC′j andC′′j are linear codes of lengthℓ overH′j andCi is a linear code of lengthℓ overGi .
By Proposition 6.5, we have

C⊥H �


s∏

i=1

C⊥H
i

 ×


t∏

j=1

(
C′′j
⊥E ×C′j

⊥E
)
 ,

and hence, the next corollary follows.

Corollary 6.6. An R submoduleC of Rℓ is ∼-self-dual, or equivalently, a (λ, ℓ)-QT codeψ−1(C) of
lengthnℓ overFq2 is Hermitian self-dual if and only if

C �


s∏

i=1

Ci

 ×


t∏

j=1

(
C′j ×C′j

⊥E
)
 ,

whereCi is a Hermitian self-dual code of lengthℓ overGi for 1 ≤ i ≤ s, C′j is a linear code of length

ℓ overH j , andC′⊥E
j is Euclidean dual ofC′j for 1 ≤ j ≤ t.

Let N(q, ℓ) (resp.,NH(q, ℓ)) denote the number of linear codes (resp., Hermitian self-dual codes)
of lengthℓ overFq. It is well known [25] that

N(q, ℓ) =
ℓ∑

i=0

i−1∏

j=0

qℓ − qi

qi − q j
(6.7)

and

NH(q, ℓ) =



ℓ
2−1∏

i=0

(qi+ 1
2 + 1) if ℓ is even,

0, otherwise,

(6.8)

where the empty product is regarded as 1.
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Proposition 6.7. Let Fq2 be a finite field and letn, ℓ be positive integers such thatℓ is even and
gcd(n, q) = 1. Let λ be a nonzero element inFq2 such thatoq2(λ)|(q + 1). Suppose thatxn − λ =

g1(x) . . .gs(x)h1(x)h†1(x) . . .ht(x)h†t (x). Let di deggi(x) andej = degh j(x). The number of (λ, ℓ)-QT
Hermitian self-dual codes of lengthnℓ overFq2 is

s∏

i=1

NH(q2di , ℓ)
t∏

j=1

N(q2ej , ℓ).

In the case whereΩ = ∅ or π(n′r, q2) = 0, the formula for the number of Hermitian self-dual
(λ, ℓ)-QT codes of lengthnℓ overFq2 can be simplified in the following corollaries.

Corollary 6.8. Let xn− λ = g1(x) . . .gs(x)h1(x)h†1(x) . . .ht(x)h†t (x). and letej = degh j(x). If Ω = ∅,
then the number of (λ, ℓ)-QT Hermitian self-dual codes of lengthnℓ overFq2 is

t∏

j=1

N(q2ej , ℓ).

Corollary 6.9. Let xn − λ = g1(x) . . .gs(x)h1(x)h†1(x) . . .ht(x)h†t (x) and let di = deggi(x). If
π(n′r, q2) = 0, then the number of (λ, ℓ)-QT Hermitian self-dual codes of lengthnℓ overFq2 is

s∏

i=1

NH(q2di , ℓ).
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[24] H. Özadamb, F.̈Ozbudak,A note on negacyclic and cyclic codes of length ps over a finite field
of characteristic p, Advances in Mathematics of Communications,3 (2009), 265 –271.

[25] E. M. Rains, N. J. A. Sloane, Self-dual codes. In: Handbook of Coding Theory, 177–294,
Elsevier, North-Holland, Amsterdam, 1998.

[26] E. Sangwisut, S. Jitman, S. Ling, P. Udomkavanich,Hulls of cyclic and negacyclic codes over
finite fields, Finite Fields Appl.,33 (2015), 232–257.

[27] J. P. Serre, “A course in arithmetic,” Graduate Texts inMathematics 7, Springer-Verlag, New
York-Heidelberg-Berlin, 1973.

[28] G. Solomon, H. C. A. van Tilborg,A connection between block and convolutional codes, SIAM
J. Appl. Math.,37 (1979), 358-369.

[29] Y. Yang, W. Cai,On self-dual constacyclic codes over finite fields, Des. Codes Cryptogr.,74
(2015), 355-364.

16

http://arxiv.org/abs/1311.2505

	1 Introduction
	2 Preliminaries
	2.1 Constacyclic Codes
	2.2 Quasi-Twisted Codes

	3 The Factorization of xn- in Fq2[x]
	4  Hermitian Hull of -Constacyclic Codes
	5 MDS Constacyclic Hermitian Self-dual Codes over Fq2
	6 Quasi-Twisted Hermitian Self-Dual Codes over Fq2
	6.1 Decomposition


