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Abstract

A new submodule clustering method via sparse and low-
rank representation for multi-way data is proposed in this
paper. Instead of reshaping multi-way data into vectors, this
method maintains their natural orders to preserve data in-
trinsic structures, e.g., image data kept as matrices. To im-
plement clustering, the multi-way data, viewed as tensors,
are represented by the proposed tensor sparse and low-rank
model to obtain its submodule representation, called a free
module, which is finally used for spectral clustering. The
proposed method extends the conventional subspace clus-
tering method based on sparse and low-rank representa-
tion to multi-way data submodule clustering by combin-
ing t-product operator. The new method is tested on sev-
eral public datasets, including synthetical data, video se-
quences and toy images. The experiments show that the
new method outperforms the state-of-the-art methods, such
as Sparse Subspace Clustering (SSC), Low-Rank Repre-
sentation (LRR), Ordered Subspace Clustering (OSC), Ro-
bust Latent Low Rank Representation (RobustLatLRR) and
Sparse Submodule Clustering method (SSmC).

1. Introduction

The clustering or segmentation problem of multi-way
data, particularly images and videos, has attracted great
interest in computer vision, pattern recognition and signal
processing [3, 2, 1]. In the traditional setting, data sam-
ples are assumed to be embedded in linear spaces and are
in high dimensional and multi-dimensional (a.k.a. multi-
way) format demanding huge amount of computation time
and memory to conduct data analysis. Fortunately, it has
been demonstrated that high dimensional and multi-way
data often lie in lower dimensional subspaces and have in-
trinsic subspace structures [4]. From this observation, one
can assume that data are drawn from multiple subspaces

and each datum in a subspace could be linearly represented
by a smaller number of data samples from the same sub-
space. Thus the main goal of subspace clustering is to
group data into different clusters such that data in each
cluster just come from one particular subspace. Based on
the aforementioned subspace hypothesis, researchers pro-
posed many subspace clustering methods. The most rep-
resentatives are Sparse Subspace Clustering (SSC) [5], Or-
dered Subspace Clustering (OSC) [6], Low-Rank Represen-
tation (LRR) [7] and Robust Latent Low Rank Represen-
tation (RobustLatLRR) [8] . In these methods, an affinity
matrix is firstly learned from sample data and the cluster-
ing results are obtained by a clustering algorithm such as
K-means or Normalized Cuts (NCut) [9].

To deal with high dimensional and multi-way data, the
classic and straight way is to vectorize them as vectors
which are then fed to a learning algorithm designed for vec-
torial data. However this vectorization procedure certainly
destroys any intrinsic structure such as spatial information
contained in data. For example, if we reshape or map a
2D image in size of H × D into a vector of length HD,
the correlation of the local area of pixels and other inherent
properties such as texture will be destroyed. This leads to
lose some useful intrinsic information in following-up ap-
plications, such as clustering and recognition. A better strat-
egy to deal with multi-way data is to maintain their intrinsic
structure. Many newly proposed methods take advantage of
matrix structure by adopting dimensionality reduction ap-
proach or finding the best subspace to approximate the ma-
trix data, and achieve successful performance [11, 10].

Observing that the most typical clustering methods use
the vector form to represent the data and ignore the multi-
way data intrinsic structure, we concentrate on exploiting
the tensor representation of multi-way data, especially the
2D images, and propose a new image submodule clustering
method. In this method, different from the traditional clus-
tering methods which map the matrix data to vector data,
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the H × D matrix of image data are kept and modeled as
a tensor form by twisting it into a third order tensor of size
H × 1 × D. Particularly, in video segmentation applica-
tions, samples of video frames are sometimes arbitrarily
shifted or in some cases rotated due to camera movement
or changes in the pose. Images with this kind of dynamic
variation would generate a submodule [13, 12]. However,
the traditional scalar product is always adopted to represent
the linear combination of samples in subspace but lacks of
ability to describe the shifted copies in submodule. There-
fore, we adopt the t-product [14] based on the circular con-
volution to describe the dynamic character in consecutive
images sequences from a submodule. By the t-product, the
image data samples will be grouped into a third-order ten-
sor and represented by the proposed tensor low-rank model
in terms of the union of free submodules, in which the new
affinity information will be used for the final clustering. By
the t-product and factorization operations of tensor, we suc-
cessfully extend the traditional LRR [7] clustering method
to the case of multi-way data. The proposed method has
been evaluated on both synthetic data and real-world data
and outperforms state-of-the-art methods.

The paper is organized as follows. We introduce the no-
tations and preliminaries about t-product in Section 2 and
review the related works in Section 3. Section 4 presents
the proposed multi-way data clustering method and Section
5 is dedicated to solving the optimization problem. Sec-
tion 6 assesses the performance of the proposed method on
several databases against several state-of-the-art methods.
Finally, conclusions are discussed in Section 7.

2. Notations and Preliminaries
In this section, we will introduce some notations and

basic definitions for tensors, and the preliminaries of lin-
ear algebra for tensor with t-product used in the proposed
method.

2.1. Notations and basic definitions for tensor

We use calligraphy letters for tensors, e.g. Y , bold lower-
case letters for vectors, e.g. y, bold uppercase for matrices,
e.g. Y, lowercase letters for entries, e.g. y, uppercase letters
for dimension numbers, e.g. H,D,L,N . For convenience,
we adopt Matlab notation to denote the elements in tensors.
We use Y(:, :, i), Y(:, i, :) and Y(i, :, :) to represent the i-th
frontal, lateral and horizontal slice, respectively. Y(:, i, j),
Y(i, :, j) and Y(i, j, :) represent the mode-1, mode-2 and
mode-3 fiber, respectively. We use Ŷ=fft(Y, [ ], 3) to de-
note the Discrete Fourier Transform (DFT) along the third
dimension for third order tensor Y . Also we use Y(i) and
Ŷ(i) to denote the i-th frontal slice of Y and Ŷ , respectively,
and ~Y(i) as the i-th lateral slice of tensor Y .

It is necessary to introduce five block-based operators,
i.e., bcirc, bvec, bvfold, bdiag and bdfold [15]. For a tensor

Y ∈ <n1×n2×n3 , the Y(i) could be used to form the block
circulant matrix as below:

bcirc(Y) =


Y(1) Y(n3) · · · Y(2)

Y(2) Y(1) · · · Y(3)

...
...

. . .
...

Y(n3) Y(n3−1) · · · Y(1)

 . (1)

The block vectorizing and its opposite operation are

bvec(Y) =


Y(1)

Y(2)

...
Y(n3)

 , bvfold(bvec(Y)) = Y. (2)

And the block diagonal matrix and its opposite operation
are

bdiag(Y) =


Y(1)

Y(2)

. . .
Y(n3)

 ,
bdfold(bdiag(Y)) = Y.

(3)

To develop our method, we also need some norm defini-
tions for tensor as below:

Definition 1. The Frobenius norm of a tensor Y is ‖Y‖F =

(
∑
i,j,k Y(i, j, k)2)

1
2 .

Definition 2. The F1 norm of a tensor Y is ‖Y‖F1 =∑
i,j ‖Y(i, j, :)‖F .

Definition 3. The FF1 norm of a tensor Y is ‖Y‖FF1 =∑
i ‖Y(i, :, :)‖F .

Definition 4. The F-Nuclear norm of a tensor Y is
‖Y‖∗f =

∑
i ‖Y(:, :, i)‖∗.

Definition 5. The F-Infinite norm of a tensor Y is ‖Y‖∞ =
maxi{‖Y(:, :, i)‖∞}.

In the above definitions, ‖·‖F , ‖·‖∗ and ‖·‖∞ are matrix
Frobenius norm, nuclear norm and maximal infinity norm,
respectively.

2.2. Linear algebra for tensor with t-product

As described above, we orient an H ×D image data Y
by twisting it into the page which will change each image
data as a H × 1×D third order tensor as shown in Figure 1
instead of vectorizing from typical clustering methods.

Therefore, anH×Dmatrix image data has been changed
as a vector with length of H where each element is a
1 × 1 × D tube fiber and N image samples will be orga-
nized as a H ×N ×D tensor Y . We denote KD as the set
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Y


Y
Figure 1. The twist and squeeze operations for matrix.

of tube fibers with the size of 1× 1×D and KHD as the set
of oriented matrices of size H × 1×D. The first task is to
find a method to multiply two tube fibers which means to
“linearly” combine oriented matrices where the weights are
tube fibers and not scalars. In the spirit of [16], the set of
oriented matrices could be regarded as a module over the
ring KD. Therefore, we adopted the method of t-product
proposed in [14] to implement the fibers multiplication. It
has been proved that the t-product is a useful generaliza-
tion of matrix multiplication for tensors [17]. It is generally
defined by unfolding tensors into block circulant matrices,
multiplying the matrices, and folding the result back up into
a three-dimensional array. For 3-way tensors, the t-product
is defined as [15]:

Definition 6. Let X ∈ <n1×n2×n3 and Y ∈ <n2×n4×n3 ,
then the t-product X ∗ Y isM∈ <n1×n4×n3 as follows:

M = X ∗ Y = bvfold(bcirc(X )bvec(Y)). (4)

where ∗ denotes the circular convolution.

The t-product is analogous to the matrix multiplication
except that the circular convolution replaces the multiplica-
tion operation between the elements, which are now mode-3
fibers as follows:

M(i, j, :) =

n2∑
k=1

X (i, k, :) ∗ Y(k, j, :). (5)

The t-product could be efficiently computed by using the
FFT [14]. Therefore, the t-product in the original domain
corresponds to the matrix multiplication of the frontal slices
in the Fourier domain as follows:

M̂(i) = X̂(i)Ŷ(i), M = ifft(M̂, [ ], 3). (6)

where ifft(M̂, [ ], 3) denotes the inverse Fourier Transform
along the third dimension of M̂. We denote (KHD , ∗) as
the KHD equipped with the t-product ∗. Although (KHD , ∗)
does not form a field because there are non-zero tubes which
are not invertible, it does form what is referred to as a ring
with unity [14]. A module over a ring could be regarded
as a generalization of the concept of a vector space over a
field, where the corresponding “scalars” are the elements
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Figure 2. An illustration of t-linear combination.

of the ring [12]. Therefore, the t-product is an appropriate
operator to model the orient matrices and have the “tensor
linear (t-linear) combination” for free submodule. The t-
linear combination means a sum of oriented matrices form
KDH multiplied by coefficients from KD shown in Figure 2.

As shown in Figure 2, ~Y represents an oriented matrix
image with the size ofH×1×D. Y represents the set ofN
oriented matrix image samples with the size ofH×N×D.
~C represents the t-linear combination matrix with the size
of N ×1×D and each 1×1×D tube fiber in ~C represents
the coefficient for oriented matrix image sample ~Y with the
t-product.

3. Related Work
There is little existing prior work on the submodule clus-

tering of multi-way data, particulary 2D images. Therefore,
we will provide an overview of the recent developments in
subspace clustering which is closely related to the submod-
ule clustering. Consider a 2D image set Y = {Yi}Ni=1,
where Yi ∈ <H×D and N represents the number of im-
age samples. The common preprocessing approach of typi-
cal subspace clustering methods is mapping each 2D image
sample Yi to 1-D vector yi and form all samples as a ma-
trix, i.e. Y = [y1, ...,yN ] ∈ <L×N , where yi ∈ <L, i =
1, 2, ..., N and L = HD. It is assumed that all these vec-
tors are drawn from a union of K subspaces {Sk}Kk=1. The
task of subspace clustering or segmentation is to segment
the sample set Y according to the underlying subspaces.

In the past decade, sparse and low rank theories have
been applied to subspace clustering successfully. Elhamifar
and Vidal [5] proposed Sparse Subspace Clustering (SSC)
method. In this method, the authors aims to find the sparsest
representation by using `1 norm. The detailed SSC model
is defined as follows:

min
C,E,Z

‖C‖1 + λe‖E‖1 +
λz
2
‖Z‖2F ,

s.t. Y = YC + E + Z, diag(C) = 0.

(7)

where Z represents the Gaussian noise, E is high magni-
tude sparse noise and C represents the affinity matrix. The
learned C can be used for final clustering by NCut [9].
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Instead of sparse representation, Liu et al. [7] proposed
LRR method for clustering by using low rank constraint or
nuclear norm ‖ · ‖∗ for the coefficient matrix. The general
LRR model is shown as follows:

min
C,E

‖C‖∗ + λ‖E‖2,1, s.t. Y = YC + E. (8)

where ‖ · ‖2,1 represents the `2,1 norm which is used to im-
prove the robustness of the model for gross noise and data
outliers. Furthermore, researchers extended SSC and LRR
by introducing some other extra penalty terms to model
the spatial correlation between sample data. Tierney et al.
[6] proposed Ordered Subspace Clustering (OSC) method
which provides a more robust model to deal with the se-
quential data clustering problem. Zhang et al. [8] proposed
a Robust latent low rank representation (RobustLatLRR)
method for subspace clustering. After learning the coeffi-
cient matrix, we could construct an affinity matrix to sim-
ulate the similarity among data. Then the affinity matrix
could be used in the followup spectral clustering.

Although these vector subspace clustering methods have
achieved lots of success, the development of multi-way rep-
resentation method [16] makes a more promised way to the
multi-way data clustering. Recently, the t-product has been
adopted as an advantageous generalization of matrix mul-
tiplication for third or higher order tensors [15, 17]. It has
also been applied in some image applications successfully,
i.e. face recognition [11] and video completion [18]. Kern-
feld et al. [12] used t-product for 2D images clustering by
keeping the matrix structure and proposed a Sparse Sub-
module Clustering method (SSmC). This is the most related
work to this study. The general SSmC model is defined as
follows:

min
C

‖C‖F1 + λh‖C‖FF1 + λg‖Y − Y ∗ C‖2F ,

s.t. C(i, i, k) = 0,
(9)

where Y is a tensor with 2D image samples, C is affinity
tensor, ∗ denotes the t-product, ‖ · ‖F1 and ‖ · ‖FF1 are
the tensor sparse norms extended from matrix sparse norms
as described in Section 2. Compared with the conventional
subspace clustering methods, SSmC has the most signifi-
cant advantage of keeping the 2D structure for images in-
stead of mapping them to vectors and adopts t-product to
multiplying two matrices instead of scalar product. How-
ever, SSmC considers the sparse structure only and ignores
the inner correlation of image samples from the same sub-
module. To explore such inner correlation, we extend the
low-rank structure for tensors and utilize the t-product op-
eration to construct a submodule clustering method. The
new method offers good clustering results as demonstrated
in experiments.

4. Submodule Clustering by Sparse and Low-
Rank Representation

In this section, we describe the proposed method in de-
tail. As described above, we assume all the oriented matrix
data are lying on a union of disjoint free submodules in-
stead of subspace. Our goal is to find these submodules
and group the data into their respective clusters. We denote
Y as the 2D matrix image samples tensor with the size of
H × N × D, which is obtained by twisting each H × D
image sample into a H × 1×D tensor. Further denote by C
the t-linear combination tensor of size ofN×N×D which
is used to represent the samples tensor Y itself by minimiz-
ing the error ‖Y − Y ∗ C‖2F . Under the t-linear combina-
tion of tensors specified in Definitions 1 to 4, we extend the
sparse and low-rank representations for tensors. The sparse
t-linear combination model for 2D images submodule clus-
tering, which is similar to [12], is defined as follows:

min
C

α‖C‖F1 +
1

2
‖Y − Y ∗ C‖2F . (10)

where α is a tunable parameter. Under the F1 norm, the
model enforces that each oriented 2D image matrix can be
sparsely represented as a t-linear representation by all other
oriented 2D images. Similar to the sparse subspace repre-
sentations, the non-zero fibers in C correspond to the sam-
ples from the same submodule and the zero ones from the
samples from different submodules. We have an illustra-
tion of sparse t-linear combination for one sample shown in
Figure 3:

15

Y


C


Figure 3. An illustration of sparse t-linear combination. The sam-
ples with same color inY are from the same submodule. The white
tube fibers in ~C represent the zeros fibers.

As demonstrated in Figure 3, model (10) is equivalent to
a number of individual models. To further explore intrinsic
correlation information among the entire dataset, inspired
by the LRR [7], we propose the following new sparse and
low-rank submodule clustering model:

min
C

α‖C‖F1 + λ‖C‖∗f +
1

2
‖Y − Y ∗ C‖2F . (11)

In this model, we adopt the F -nuclear norm, see Defini-
tion 4, which is extended from the nuclear norm for t-linear
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combination. In clustering applications, the number of sam-
ples is much larger than the number of classes. So there
exists high correlation within the samples. In many typical
clustering methods, such as LRR and RobustLatLRR, re-
searchers always use low-rank constraint for the represen-
tation matrix to express the inner correlation for samples.
The nuclear norm is the most suitable substitute for low-
rank constraint. In the case of submodule clustering, we
cannot directly use the nuclear norm for t-linear representa-
tion tensor, but use theF -nuclear norm defined in Definition
4 instead. With the F -nuclear norm, the low-rank constraint
has been adopted for each frontal slice from the representa-
tion tensor C. Therefore, the entries could be constrained
with high correlation. Figure 4 illustrates low-rank t-linear
combination.

N

D

15H

D

N

15H

D
N N

Figure 4. An illustration of low-rank t-linear combination. The
samples with same color in Y are from the same submodule. The
white tube fibers in C represent the zeros fibers.

Furthermore, we should eliminate the self-correlation for
each sample in the t-linear combination. Therefore, we add
the zero-constraint for the diagonal fibers in the represen-
tation tensor. Finally, we obtain a completed sparse and
low-rank submodule clustering model as follows,

min
C

α‖C‖F1 + λ‖C‖∗f +
1

2
‖Y − Y ∗ C‖2F ,

s.t. C(i, i, k) = 0.
(12)

We call (12) the Sparse and Low-Rank Submodule Clus-
tering (SLRSmC) Method based on t-product. Compared
with the majority of existing clustering methods, the most
significant difference is that we keep the 2D matrix structure
of image samples and cluster them in terms of submodules.
In addition, we adopt F1 and F -nuclear norms for t-linear
combination. After solving the above model and obtaining
the t-linear combination tensor C, we build the following
affinity matrix W

W(i, j) = ‖C(i, j, :)‖F + ‖C(j, i, :)‖F (13)

which can be pipelined into the NCut to obtain final cluster-
ing results. In the next section, we will propose an efficient
algorithm to solve the optimization problem (12).

5. Optimization
To solve problem (12), we adopt an alternating direction

method by dividing (12) into several subproblems. First, we
introduce two auxiliary variables Z = C and X = C to sep-
arate the first two terms in the objective (12). The original
model could be re-written as follows:

min
Z,X ,C

α‖X‖F1 + λ‖Z‖∗f +
1

2
‖Y − Y ∗ C‖2F ,

s.t. X (i, i, k) = 0,X = C,Z = C.
(14)

We adopt the alternating direction method of multipliers
(ADMM) [19] to solve the above problem. Then the Aug-
mented Lagrangian for the two introduced constraints is

L(X ,Z, C) =α‖X‖F1 + λ‖Z‖∗f +
1

2
‖Y − Y ∗ C‖2F

+ 〈G1,Z − X〉+ 〈G2,X − C〉

+
γ

2
(‖Z − C‖2F + ‖X − C‖2F ),

s.t. X (i, i, k) = 0. (15)

where 〈A,B〉 =
∑
i tr(A(i)TB(i)), G1 and G2 are Lagrange

multipliers and γ > 0 is a penalty parameter. Therefore,
the overall algorithm can be decomposed into solving three
subproblems:

1. Updating X with fixed Z and C

X t+1 = arg min
X

α‖X‖F1 + 〈G2,X − C〉+
γ

2
‖X − C‖2F ,

= arg min
X

α‖X‖F1 +
γ

2
‖X −A‖2F . (16)

where A = C − G2γ . Therefore, we could solve X fiber-by-
fiber from the third dimension with the constraint of Xiik =
0 as follows:

X (i, j, :)t+1 =


‖A(i,j,:)‖F−αγ
‖A(i,j,:)‖F A(i, j, :), if i 6= j and

‖A(i, j, :)‖F > α
γ ,

0, otherwise.
(17)

2. Updating Z with fixed X and C

Zt+1 = arg min
Z

λ‖Z‖∗f + 〈G1,Z − C〉+
γ

2
‖Z − C‖2F ,

= arg min
Z

λ‖Z‖∗f +
γ

2
‖Z − B‖2F . (18)

where B = C − G1γ . Therefore, we could solve Z slice-by-
slice from the frontal side as follows:

Z(i)t+1

= arg min
Z(i)

λ‖Z(i)‖∗ +
γ

2
‖Z(i) −B(i)‖2F . (19)

This problem has closed-form solution according to [20]

Z(i)t+1

= USλ
γ

[Σ]VT , (20)
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where UΣVT is the singular value decomposition (SVD)
of B(i). Sλ

γ
[·] is the soft-thresholding operator with the fol-

lowing definition:

Sλ
γ

[x] = sign(x) max{|x| − λ

γ
, 0}. (21)

3. Updating C with fixed Z and X

Ct+1 = arg min
C

1

2
‖Y − Y ∗ C‖2F + 〈G1,Z − C〉 (22)

+ 〈G2,X − C〉+
γ

2
(‖Z − C‖2F + ‖X − C‖2F )

= arg min
C

1

2
‖Y − Y ∗ C‖2F +

γ

2
(‖C − P1‖2F + ‖C − P2‖2F ).

where P1 = Z + G1
γ and P2 = X + G2

γ . According to [14],
we can solve the problem above in Fourier domain.

Ĉt+1 = arg min
Ĉ

1

2
‖Ŷ − Ŷ � Ĉ‖2F +

γ

2
(‖Ĉ − P̂1‖2F

+ ‖Ĉ − P̂2‖2F ). (23)

where � represents the face-product. Therefore, we can
solve Ĉ slice-by-slice from the frontal side.

Ĉ(i)t+1

= arg min
Ĉ(i)

1

2
‖Ŷ(i) − Ŷ(i)Ĉ(i)‖2F (24)

+
γ

2
(‖Ĉ(i) − P̂

(i)
1 ‖2F + ‖Ĉ(i) − P̂

(i)
2 ‖2F ).

Let f(Ĉ(i)) = 1
2‖Ŷ

(i) − Ŷ(i)Ĉ(i)‖2F + γ
2 (‖Ĉ(i) −

P̂
(i)
1 ‖2F + ‖Ĉ(i) − P̂

(i)
2 ‖2F ) and set ∂f

∂Ĉ(i)
= 0, we have:

Ĉ(i)t+1

= (Ŷ(i)T Ŷ(i) + 2γI)−1(Ŷ(i)T Ŷ(i) + γ(P̂
(i)
1 + P̂

(i)
2 )).

(25)
where I represents identity matrix. After solving each
frontal slice of Ĉ, we could get the solution of C as follows,

Ct+1 = ifft(Ĉt+1, [ ], 3). (26)

4. Updating G1,G2 and γ

Gt+1
1 = Gt1 + γt(Zt+1 − Ct+1). (27)

Gt+1
2 = Gt2 + γt(X t+1 − Ct+1). (28)

γt+1 = min{ργt, γmax}. (29)

where ρ > 1 is a constant and γmax is the upper bound of
γ.

The overall algorithm is summarized in Algorithm 1.
Remark 1: In the algorithm, the stopping criterion is

measured by the following condition:

max

 ‖Zt+1 − Ct+1‖∞, ‖X t+1 − Ct+1‖∞,
‖Zt+1 −Zt‖∞, ‖X t+1 −X t‖∞,

‖Ct+1 − Ct‖∞

 ≤ ε.
(30)

Algorithm 1 The solution of SLRSmC
Require: The image sample data tensor Y , and the pa-

rameters λ, α
1: Initialize : Z0 = X 0 = 0 ∈ <N×N×D, G01 = G12 =

1 ∈ <N×N×D, γ0 = 0.1, ρ = 1.9, γmax = 1010, ε =
10−5, the number of maximum iteration MaxIter =
500

2: t = 0;
3: while not converged and t ≤MaxIter do
4: Update X by (16) and (17);
5: Update Z by (18) and (21);
6: Update C by (22) to (26);
7: Update G1 and G2 by (27) and (28);
8: Update γ by (29);
9: Check the convergence conditions defined as (30);

10: t = t+ 1.
11: end while
Ensure:

The tensor Z,X , C.

Remark 2: We can make steps 4-8 in the Algorithm par-
allel as suggested in [19], then it can be proved that Al-
gorithm 1 is convergent, see [19]. Our experiments show
that the convergence speed is relatively high and a value of
MaxIter < 100 is sufficient for good results.

6. Experimental Results
To evaluate the proposed method, we implement cluster-

ing experiments on four databases of three types: synthetic,
videos and images. We aim to cluster the image data from
video clips or image sequences for the purpose of video seg-
mentation/images clustering. The performance of the pro-
posed method is compared with some state-of-the-art clus-
tering algorithms, such as SSC [5], OSC [6], LRR [7], Ro-
bustLatLRR [8] and SSmC [12].

6.1. Synthetic Experiment

Figure 5. Some images of the synthetic data.

As described above, all the sample data can be arranged
as a set of oriented matrices which is regarded as module
over the ring KD. In this experiment, we design a synthetic
set of ring data to evaluate the performance of the proposed
method. We choose ten different scenes from a video se-
quence freely available from the Internet Archive1. For each

1http://archive.org/
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K Noise SSC OSC LRR RobustLatLRR SSmC Ours

3

0% 0 (±0) 54.59 (±15.70) 40.59 (±19.19) 39.86 (±18.25) 0 (±0) 0 (±0)
20% 32.71 (±21.99) 42.32 (±12.15) 41.24 (±16.92) 39.56 (±18.31) 0.14 (±0.72) 0.03 (±0.13)
50% 35.12 (±5.88) 43.98 (±21.08) 56.71 (±10.81) 40.26 (±3.97) 4.40 (±3.82) 3.13 (±8.12)
80% 36.88 (±13.90) 44.69 (±9.73) 55.66 (±3.63) 46.95 (±3.27) 6.04 (±10.70) 5.94 (±10.26)

4

0% 0 (±0) 58.75 (±10.76) 48.64 (±9.83) 41.56 (±7.25) 0 (±0) 0 (±0)
20% 40.81 (±14.28) 54.59 (±13.73) 49.07 (±4.88) 47.26 (±4.92) 1.15 (±3.73) 1.04 (±3.76)
50% 42.55 (±15.62) 51.62 (±10.78) 68.69 (±1.67) 54.62 (±2.25) 3.28 (±5.20) 2.79 (±4.18)
80% 45.63 (±7.66) 54.53 (±6.06) 69.02 (±8.90) 59.56 (±8.72) 6.97 (±7.62) 7.66 (±6.75)

5

0% 0 (±0) 68.72 (±8.62) 51.25 (±10.25) 47.62 (±9.13) 0 (±0) 0 (±0)
20% 40.70 (±10.01) 49.34 (±5.91) 51.01 (±7.49) 47.92 (±7.23) 1.00 (±3.47) 0.42 (±0.86)
50% 41.68 (±9.79) 53.60 (±6.64) 72.66 (±2.29) 65.95 (±2.46) 6.30 (±7.76) 5.36 (±7.22)
80% 38.13 (±13.32) 57.36 (±7.68) 71.89 (±2.02) 67.95 (±2.37) 11.28 (±6.86) 8.87 (±7.03)

6

0% 0 (±0) 69.98 (±4.88) 53.78 (±6.20) 48.56 (±6.42) 0 (±0) 0 (±0)
20% 42.79 (±9.52) 54.04 (±7.88) 55.70 (±5.91) 49.56 (±4.23) 0.33 (±0.42) 0.29 (±0.59)
50% 45.34 (±12.35) 58.62 (±6.79) 69.24 (±9.80) 59.59 (±8.26) 7.29 (±5.64) 6.64 (±5.80)
80% 47.58 (±10.62) 63.49 (±5.11) 57.58 (±5.55) 52.03 (±5.21) 12.54 (±5.66) 11.04 (±6.60)

7

0% 0 (±0) 71.94 (±5.88) 55.94 (±5.78) 49.56 (±5.02) 0 (±0) 0 (±0)
20% 43.05 (±13.37) 53.86 (±5.10) 58.93 (±4.83) 51.94 (±3.25) 0.43 (±0.72) 0.45 (±0.64)
50% 45.09 (±10.86) 59.21 (±5.89) 58.21 (±5.21) 53.62 (±5.02) 7.84 (±3.24) 7.68 (±2.87)
80% 52.87 (±4.96) 66.26 (±2.70) 64.30 (±4.69) 59.87 (±4.12) 17.70 (±4.11) 16.63 (±8.15)

Table 1. Misclassification rates (%) on the synthetic data with different noise, lower is better. Numbers in brackets indicate the standard
deviation in each case.

of the ten randomly chosen frames (images), we shift the
first 10 columns to the right end of the image and repeat
64 times. By this way, we synthetically produce module
subspace along image rows. Finally, we obtain 10 image
sequences in which each sequence consists of 64 contin-
uously shifted images. The pre-processing of sequences
includes converting color images to grayscale and down-
sampling to the resolution of 90×120. The sequence exam-
ples are shown in Figure 5. From these 10 sequences, we
randomly selected K= [3, 4, 5, 6, 7] sequences. Thus in
total we have 64×K 2D frames (images) in each clustering
test. To further test the robustness of the proposed method,
we add 3 different magnitudes (20%, 50%, 80%) of Gaus-
sian noise into the samples. For each K, we conduct 20
experiments. The average results are shown in Table 1. The
best results is in bold text and the second one is underlined.
From the results, we observe that our method outperforms
all other methods in most cases especially with larger mag-
nitudes of noise. The experimental results demonstrate that
our method is more efficient than others.

6.2. UCSD dynamic scenes benchmarking datasets

Figure 6. Some images of the UCSD dynamic scenes dataset.

This dataset2 provides a wide range of different chal-
lenges and environmental settings including occlusion,
camera motion, clustered background and especially highly
dynamic backgrounds such as smoke, fire, swing trees as
well as water waves. We select 10 categories from the
dataset, in which the background changes evidently includ-
ing birds, boats, bottle, chopper, cyclists, flock, hockey,
landing, ocean, skiing. Each category has 30 to 246 2D
images. We down sampling all the images to the resolution
of 90×135. The examples are shown in Figure 6. In this set
of experiments, we selectK =[3, 4, 5, 6, 7] categories, each
of which characterize certain degree of scene shifting from
left to right. All the 2D images from the selected sequences
are collected for clustering. We repeat the experiment 20
times for each K and the average cluster results are shown
in Table 2. The best results is in bold text and the second
one is underlined.

It shows that the proposed SLRSmC method has supe-
rior performance against others though the performance de-
grades with the increasing number of class.

6.3. Olympic Sports Dataset

The Olympic Sports Dataset [22] contains videos of ath-
letes practicing different sports obtained from YouTube and
annotated using Amazon Mechanical Turk. There are 16
sports actions among a total of 783 video sequences. We
choose six scenes with slightly larger change including
high-jump, long-jump, pole-vault, basketball lay-up, javelin

2http://www.svcl.ucsd.edu/projects/background_
subtraction/
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K SSC OSC LRR RobustLatLRR SSmC Ours
3 28.79 (±13.26) 17.32 (±16.60) 10.14 (±14.79) 9.23 (±14.21) 9.02 (±11.93) 4.50 (±10.21)
4 29.29 (±7.92) 21.22 (±14.48) 17.47 (±14.37) 16.25 (±14.52) 12.76 (±8.40) 7.66 (±10.82)
5 30.41 (±8.75) 24.83 (±9.12) 24.48 (±15.96) 17.19 (±15.32) 13.65 (±7.73) 12.41 (±8.17)
6 31.32 (±7.40) 27.57 (±8.65) 26.04 (±13.49) 20.15 (±12.14) 16.41 (±8.63) 14.27 (±8.52)
7 33.68 (±5.76) 28.48 (±6.88) 30.85 (±12.28) 28.12 (±12.15) 21.01 (±9.50) 19.02 (±8.32)

Table 2. Misclassification rates (%) on the UCSD dynamic scenes dataset with different class numbers. The lower the better. Numbers in
brackets indicate the standard deviation in each case.

K SSC OSC LRR RobustLatLRR SSmC Ours
2 27.14 (±18.11) 35.13 (±11.34) 32.84 (±10.21) 29.56 (±10.46) 12.35 (±14.51) 11.57 (±14.72)
3 35.72 (±10.46) 48.73 (±10.59) 43.10 (±5.99) 38.26 (±5.72) 20.43 (±13.10) 19.65 (±12.91)
4 35.92 (±10.92) 47.77 (±6.78) 53.51 (±7.51) 48.62 (±8.21) 33.41 (±13.21) 25.11 (±11.75)
5 43.91 (±11.26) 47.03 (±5.51) 47.72 (±4.92) 42.68 (±4.72) 33.01 (±9.11) 27.40 (±15.81)

Table 3. Misclassification rates (%) on the Olympic Sports Dataset with different class numbers. The lower the better. Numbers in brackets
indicate the standard deviation in each case.

K SSC LRR RobustLatLRR SSmC Ours
5 16.37 (±11.64) 18.11 (±11.51) 15.22 (±12.69) 12.56 (±12.22) 11.23 (±11.75)
6 26.51 (±10.99) 23.46 (±9.30) 21.28 (±11.20) 16.78 (±11.03) 13.46 (±10.03)
7 26.07 (±12.28) 15.07 (±9.91) 18.47 (±8.02) 19.87 (±9.68) 17.47 (±11.39)
8 27.37 (±11.13) 18.83 (±9.82) 22.96 (±10.14) 20.60 (±11.60) 17.56 (±9.96)
9 27.11 (±9.38) 21.91 (±8.99) 23.11 (±9.20) 24.08 (±7.77) 20.47 (±7.93)
10 27.88 (±9.77) 25.59 (±8.03) 25.17 (±7.62) 26.36 (±11.29) 21.64 (±8.90)
11 30.48 (±11.02) 28.25 (±8.13) 26.01 (±8.33) 30.56 (±13.58) 22.15 (±6.90)

Table 4. Misclassification rates (%) on the COIL20 Image Database with different class numbers, lower is better. Numbers in brackets
indicate the standard deviation in each case.

Figure 7. Some images of the Olympic Sports Dataset.

and vault. For each class, we down-sample all the images
at the resolution of 90×120. The examples are shown in
Figure 7. In this set of experiments, we set the cluster num-
ber K to [2, 3, 4, 5], then collect the frames for clustering.
Similarly we repeat the experiment 20 times for eachK and
the average results are reported in Table 3.

It can be observed that our method outperforms all the
other methods in all cases. This demonstrates that the intro-
duced method enhances the clustering performance due to
the t-linear combination.

6.4. COIL20 Image Database

Finally we test the clustering performance of our method
on the COIL image database [21] for image clustering. The
database contains 20 objects viewed from varying angels, as
demonstrated in Figure 8. In this experiment, similarly we
consider K = [5, 6, 7, 8, 9, 10, 11] objects and pick up 36
images from each class for clustering. Each image sample
is down-sampled to the resolution of 32×32. As there is no

Figure 8. Some images of the COIL20 Image Database.

special order specified for image samples, the OSC method
is not suitable for this experiment. The experiment has been
repeated 20 times for each K. Table 4 reports the overall
results, which indicate that our SLRSmC consistently out-
performs all the other methods in most cases.

7. Conclusion

In this paper, we proposed a new image submodule clus-
tering method by combining sparse representation, low-
rank representation and t-product. Different from other typ-
ical clustering methods, we keep the 2D structure of image
data without vectorizing them. The data affinity information
is learned by exploring the embedded submodule structure
by using the sparse and low-rank representation over ten-
sors with t-product operation. Our experiment results have
demonstrated that the t-product assisted low-rank represen-
tation does facilitate clustering based on submodule infor-
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mation, evidenced by the better clustering results.
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