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Wormholes may arise as solutions of extensions of General Relativity without violation
of the energy conditions. Working in a Palatini approach we consider classical geometries
supporting such wormholes. It is shown that the resulting space-times represent explicit
realizations of the concept of geon introduced by Wheeler, interpreted as self-consistent
bodies generated by an electromagnetic field without sources.
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1. Introduction

For a long time wormholes have been regarded as exotic solutions of General Rel-

ativity (GR), more suitable for science fiction than representing true situations

happening in Nature. However, a number of developments and findings in the last

few decades, including the seminal paper by Morris and Thorne1, the supernova

data2 suggesting the potential existence of exotic forms of energy driving the accel-

erated expansion of the universe, and the different approaches to a quantum theory

of gravity where topologically non-trivial structures could play a relevant role, have

put these once bizarre objects under a new light. Following Visser3, a (traversable)

time-independent, spherically symmetric wormhole space-time can be generically

written as

ds2 = −e2φ(x)dt2 + dx2 + r2(x)(dθ2 + sin2 θdϕ2) (1)

where x is the proper time. Wormholes are characterized by a number of properties,

of which we underline the following:

• The coordinate x covers the whole space-time (−∞,+∞).

• The asymptotic flatness of the two regions connected by the wormhole

requires the limits limx→±∞ φ(x) = φ± to be both finite.

• At the asymptotically flat regions, x → ±∞, one has limx→±∞ r(x) = x.

• The throat of the wormhole satisfies r0 = min{r(x)}.

http://arxiv.org/abs/1601.00156v1
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Loosely speaking, wormhole are hypothetical tunnels connecting two asymptotically

flat portions of the same universe, or two asymptotically flat universes. Historically,

the first example was given by the Einstein-Rosen bridge4, which was later shown

to be just two copies of the exterior region of a Schwarzschild space-time joined

at their event horizons. But with the new insights given by Morris and Thorne in

their celebrated 1988 paper1 the interest on this field boosted. It is worth pointing

out that, within the context of GR, wormholes violate all the pointwise energy

conditions, and face the problematic issue of topology change. Because of this, in the

past they have been largely regarded as mere theoretical tools for the understanding

and teaching of GR.

The related concept of geon - gravitational electromagnetic entities - was in-

troduced by J. A. Wheeler5 as hypothetical objects mirroring the idea of body

within gravitational physics. Wheeler’s original proposal consisted in balls of light,

an electric beam with so high an intensity that would be held together by its own

self-interaction. With the seasoning of non-trivial topology, Misner and Wheeler6

were able to give an interpretation of both charge and mass as properties resulting

from lines of electric flux trapped in the non-trivial topology of a wormhole. In their

picture, geons would represent self-gravitating objects resulting from the Einstein-

Maxwell equations without sources with the ambitious goal of explaining all particle

properties in terms of non-trivial topologies and fields. The geon program failed,

partially due to the lack of explicit, physically motivated, and analytically tractable

models.

Starting from a slightly different perspective, in a series of papers7–13 we have

implemented a systematic analysis of classical effective geometries supported by

modified theories of gravity. As opposed to the standard procedure in the litera-

ture, where a wormhole space-time is given a priori and then the Einstein equations

are driven back to find the matter sources generating such a geometry, in our ap-

proach we derive them from gravitational actions including additional contractions

of the Ricci tensor with the metric, and assuming independent metric and affine

structures (Palatini approach). This is in sharp contrast with the more standard

metric approach, where the connection is given a priori by the Christoffel symbols

of the metric (see e.g.14 for a review on modified gravity). In the last few years

we have studied in detail such gravitational actions with electromagnetic fields and

found that the black hole point-like singularity of GR is generically replaced by

a wormhole structure. Because of their properties, the resulting objects represent

explicit implementations of Wheeler’s geon within the context of modified gravity.

2. Wormholes in Palatini gravity

In Palatini gravity, the field equations admit a GR-like representation of the form

Rµ
ν(q) =

1
√

det Σ̂

(

f

2
δµ

ν + κ2Tµ
ν

)

(2)
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This representation is valid for f(R) theories7, f(R,RµνR
µν) theories8, Born-Infeld

gravity9 and in higher-dimensional13 and braneworld scenarios15. The matrix Σµ
ν

represents the transformation between the effective metric qµν and the physical

metric gµν as qµν = Σµ
αgαν and, though is model-dependent, can be shown to

depend only on the matter stress-energy tensor Tµ
ν , and the same applies to the

gravity function f . The independent connection Γλ
µν is compatible with the metric

qµν , namely, ∇µ(
√−qqαβ) = 0 (but not with gµν , ∇µ(

√−ggαβ) 6= 0), so it is given

by the Christoffel symbols of qµν . The field equations (2) thus represent a system of

second-order field equations, where all the terms on the right-hand-side only depend

on the matter. As gµν is algebraically related to qµν via the matter sources, the

field equations for gµν are second-order as well. In vacuum, Tµ
ν = 0, the equations

(2) yield those of GR, which implies the absence of ghost-like degrees of freedom.

In static, spherically symmetric space-times, we take the matter sector to be that

of an electromagnetic field. By solving the field equations in different gravitational

backgrounds [see Refs.7–13 for full details] one finds a line element that can be

written under the generic (Eddington-Filkenstein) form

ds2 =
1

Ω+(z)

(

1− 1 + δ1G(z)

δ2zΩ−(z)1/2

)

dv2 + 2
dvdx

Ω+
+ r2(x)dΩ2 (3)

where z = r/rc is a re-scaled radial coordinate through rc, which typically contains

the charge q and some length scale l2ǫ encoding the deviations with respect to GR.

The constants δ1 and δ2 parameterize the solutions in terms of mass, charge and

length scale l2ǫ . The explicit form of the objects Ω±(z) depends on the particular

theory of gravity chosen, and the matter-dependent function G(z) typically recov-

ers the GR behaviour, G(z) ≃ −1/z, at large distances (provided an asymptotic

Coulombian behaviour), but undergoes drastic modifications around z ≃ 1.

The space-times (3) above satisfy a number of properties:

• Asymptotic flatness is obtained provided that the matter fields satisfy usual

energy conditions. Slight modifications of (3) also allow for asymptotically

(Anti-)de Sitter solution16.

• For large distances, r(x) ≃ x and the role of x as the standard radial

coordinate of the Reissner-Nordström space-time is restored.

• The radial coordinate r(x) reaches a minimum r = rc at x = 0 and bounces

off [see Fig.1]. On this region, large departures from the GR behaviour are

found.

• The existence or not of horizons depends on the combination of parameters

δ1 and δ2, namely, on the charge-to-mass ratio.

This is in agreement with Visser’s requirements introduced discussed above and,

therefore, the space-times (3) represent a generalization of the Reissner-Nordström

solution where the point-like singularity is replaced by a finite-size wormhole struc-

ture, with the surface r = rc representing its throat.
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Fig. 1. Behaviour of the radial function r(x) for Born-Infeld gravity coupled to an electromagnetic
field in the case l2ǫ < 0 (see Ref.11 for details) in D = 4 (solid), 6 (dashed) and 10 (dotted) space-

time dimensions, as given by the expression r2(x) = (|x|D−2+(|x|2(D−2)+4r
2(D−2)
c )1/2)/2, where

rc =
√
κqlǫ with κ = 8πG and q the electric charge. For r ≫ 1 one has r2 ∼ x2 and the standard

GR behaviour. A bounce occurs at r = rc, setting the location of the wormhole throat.

In Wheeler’s approach5,6 geons are self-gravitating structures where the non-

trivial topology of the geon allows to generate both its charge and mass without

sources. In our case:

• The non-trivial topology of the wormhole allows to define the electric charge

as the flux of electric lines through a S2 surface enclosing the wormhole

throat:
∫

S2

∗F = ±4πq (4)

where ∗F is Hodge dual of the electromagnetic field and the sign ± comes

from which side of the wormhole this computation is done. Note that no

point-like sources are needed, which is consistent with the sourceless elec-

tromagnetic field of the matter sector. A local observer on one of the sides

of the wormhole would measure a positive (or negative) charge, though no

charges are present in the system and the net global flux is zero, which rep-

resents a explicit implementation of the charge-without-charge mechanism.

• Evaluation of the total action (gravitational + electromagnetic) for these

geonic solutions produce the generic result ST = 2M0δ1/δcc
2
∫

dt [with δc
some constant], where M0 is the total mass of space-time (as given by the

mass seen by an asymptotic observer) and the factor 2 comes from the

need of integrating on both sides of the wormhole. This is just the action

of a point particle of mass 2M0δ1/δc. The new gravitational effects are

essential for this result, which can be seen as an implementation of the

mass-without-mass mechanism.
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In order for these wormholes to be traversable one first requires the absence of

horizons which, according to the discussion above, depends on the values of δ1 and δ2
for each model. Moreover, one must guarantee its safeness, namely, that a physical

observer crossing the wormhole throat is not destroyed on its transit. However,

in the wormhole geometries above curvature divergences generically arise at the

throat, r = rc, though in some scenarios they can be completely removed for a given

mass-to-charge ratio8. We point out that both the existence of the bounce in the

wormhole radial function, and some physical properties associated to the geon (like

the energy density), are insensitive to the existence or not of curvature divergences

[these are generically much milder than their GR counterparts]. Indeed, a three-

fold strategy - geodesic completeness, congruence of geodesics, and scattering of

waves off the wormhole - has revealed that, in the case of quadratic and Born-Infeld

gravity in four dimensions, curvature divergences seem to have little impact (if any)

on physical observers, who find a geodesically complete space-time no matter the

behaviour of curvature invariants and where no loss of causality occurs among the

constituents making up the observer17. One thus concludes that physical observers

are not affected by any absolutely destructive effect as they cross the wormhole

throat and thus these space-times constitute explicit examples where curvature

divergences do not entail space-time singularities.

Let us point out that, as opposed to what happens in the GR case, the fact that

we are using a standard electromagnetic field means that the energy conditions are

satisfied. The generation of the wormhole structure is a genuine non-perturbative

gravitational effect, since only as one gets close to the center of the solutions the

wormhole modification of the point-like singularity of GR becomes manifest. The

wormhole structure is robust, in the sense that it arises in different gravitational

backgrounds and coupled to several kinds of matter, but disappears when the the-

ories are formulated in the standard metric approach. In addition, these wormhole

geometries might be generated in dynamical scenarios sourced by high-intensity

fluxes of particles carrying mass and charge18 or even by large magnetic fields in

the early universe19, which could shed new light on the issues of topology change

and the geometry of entanglement20.

3. Conclusions

In summary, in Palatini theories of gravity, which are supported by the physics of

crystalline structures with defects21, self-gravitating, particle-like, non-singular so-

lutions of sourceless equations generated by an electromagnetic field can be found.

These classical effective geometries are able to generate a wormhole structure with-

out any need of violation of the energy conditions, and without resorting to the

standard thin-shell formalism or engineering constructions. Implications of such

geonic solutions regarding our understanding of particles and fields are still to be

seen. Since we have dealt with a simplified scenario with spherical symmetry and

an electromagnetic field it is thus important to investigate if other particle prop-
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erties (like color charges or spin) can be reproduced by adding other free gauge

fields. In this way, geons might potentially yield an interesting phenomenology for

gravitational and high-energy physics.
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